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Abstract. Provenance of scientific data will play an increasingly critical role as sci-
entists are encouraged by funding agencies and grand challenge problems to share
and preserve scientific data. But it is foolhardy to believe that all human processes,
particularly as varied as the scientific discovery process, will be fully automated
by a workflow system. Consequently, provenance capture has to be thought of as a
problem applied to both human and automated processes. The unmanaged workflow
is the full human-driven activity, encompassing tasks whose execution is automated
by an orchestration tool, and tasks that are done outside an orchestration tool. In this
chapter we discuss the implications of the unmanaged workflow as it affects prove-
nance capture, representation, and use. Illustrations of capture include multiple ex-
periences with unmanaged capture using the Karma tool. Illustrations of use include
defining workflows by suggesting additions to workflow designs under construction,
reconstructing process traces, and using analysis tools to assess provenance quality.
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3.1 Introduction

The data products produced during the course of workflow-driven scientific discov-
ery have the potential to advance scholarly research and address pressing societal
problems now and in the future. Nevertheless, however effective workflow systems
have shown themselves to be at solving problems, there remain scientific discov-
ery processes not amenable to representation within, and execution by, a workflow
system. Workflows are inherently human processes, and it would be foolhardy to
believe that human processes, particularly as varied as the scientific discovery pro-
cess, can be fully automated. Computer scientists cannot hope to engineer the hu-
man out of the loop, nor can a workflow system promise to support within a single
environment every tool scientists will ever use through the course of their research.
Acknowledging this fact, we make the distinction between workflows that are exe-
cuted end-to-end and fully under the control of a workflow orchestration system and
those that are not, the latter we call the unmanaged workflow. The unmanaged work-
flow is the full human activity, encompassing tasks whose execution is automated
by an orchestration tool, and tasks that are done outside an orchestration tool.

The issue of relevance to us with unmanaged workflows is provenance capture.
An unmanaged workflow has a simple interpretation as two disjoint subworkflows
with a gap between. We may know only that subworkflow-1, which began at time
t0 and completed at time ti, occurred before subworkflow-2 which began at t j and
ended at tn. Nothing more might be known about the relationship between the two.
Given a distributed system with unsynchronized clocks, even this temporal relation-
ship may not be known. The human activity occurring between the first workflow
subworkflow-1 and second workflow subworkflow-2 could be the act of analyzing
a result using a statistical package, could be the creation of a new layered prod-
uct in at GIS tool, or could be simply a music break completely unrelated to either
subworkflow-1 or subworkflow-2. Figure 3.1 illustrates this case.

For the human-in-the-loop workflow illustrated in Figure 3.1, the provenance of
the humans actions may contribute to the provenance record of data product R. How
can we know what human activity occurred between two workflow fragments? The
two could be completely unrelated, and just mark a music and coffee break between
two distinct and unrelated tasks. Or do we even need to know? The provenance of
a piece of art has gaps in it; gaps that occur when the owner desired anonymity or
when theft occurs. It may be sufficient to merely suggest that the two subgraphs are
related and leave it at that. But suppose we can obtain provenance information from
the human activity piece, how then can we stitch together the provenance from the
human-action piece with the two subworkflows?

Mukhi [6] studies business workflow that cannot be fully automated, and ad-
dresses incompleteness through the notion of the unmanaged business process,
which is a process that encompasses a large number of human driven workflows,
the use of collaborative platforms to accomplish shared tasks, and handling of ex-
ceptional situations that arise in the context of automated workflows. BPEL4People
[40] is an extension to WS-BPEL that allows people to participate in a business pro-
cess. BPEL4People, though, requires a plan of activity (or a workflow) be known in
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Fig. 3.1 Illustration of an unmanaged workflow

advance that describes the entire business process. BPEL4People, while useful in a
limited sense, puts e-Science back at step one in that if scientists do not acknowl-
edge that what they are doing can be described by a workflow, how can one possibly
be specified in advance?

The unmanaged workflow defines a problem space of provenance capture wherein
two things occur, first, there are non-automated steps in the activity, and second, the
full activity cannot be specified in advance. This kind of workflow which is preva-
lent in e-Science though not in business where workflows are better understood, is
a grand challenge for provenance capture.

With no single workflow specification to guide provenance capture, the effects
are cascading. Provenance capture becomes more difficult because there is no guide-
book of what is supposed to happen, nor is there a single workflow orchestrator that
controls execution and determines failure and execution models of the workflow.
Representation of the provenance in a provenance store has to deal with fragments
of provenance because the captured provenance has a higher likelihood of being ad
hoc, noisier, and less complete. Finally, the use of the provenance, though having
much in common with use of the provenance of managed workflows, has unique
challenges because of the ad hoc nature of the information.

This latter point of the ad hoc nature of provenance has significant implications
for trust. A key benefit of having the provenance record of a scientific data object or
set of objects is that someone with whom the data is shared can use the provenance
to determine their level of trust in the data. If the provenance itself is of questionable
quality, it undermines one of the key benefits of provenance of scientific data in the
first place. On the other hand, thinking about the provenance record in terms of frag-
ments of workflows that are either part of the lineage trace of a scientific data object
or not related, models reality more closely. This is mainly because data are rarely
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created from scratch and derived in the same workflow. Finally, the provenance of
a scientific data object is a living record, just as the provenance of a piece of art
is a living record. Flexibility in dealing with provenance over time will provide the
greatest benefit for scientific data provenance.

In this chapter we focus on the provenance of digital scientific data that is gen-
erated automatically from unmanaged workflows, and discuss three areas, capture,
representation, and use. Dealing with unmanaged workflow has implications at ev-
ery step of provenance management. In the provenance capture phase, attention
must be focused on the instrumentation used to capture provenance and the com-
munication protocols by which provenance information is ferried outside the ap-
plication. The provenance representation phase is marked by the noted absence of
a overall plan (the workflow specification), creating uncertainty as execution-level
events arrive. Finally, the use phase must make the provenance valuable for use.
This is complicated in the unmanaged workflow by information that is known to be
incomplete and ad hoc. Good tool support for automatic provenance capture, rep-
resentation, and use in the unmanaged workflow setting is critical for realizing the
vision of broad scientific data sharing today and in decades to come.

3.2 Provenance Creation

3.2.1 Overview

Provenance creation for unmanaged workflow is the activity of identifying the im-
portant provenance activities, defining a data model by which to represent the prove-
nance, mapping the activities to the model, identifying the right communication
protocols and instrumentation techniques to employ, then finally, putting capture in
place for running applications. A good graph-based model for provenance is the
Open Provenance Model (OPM) [7]. OPM represents entities, artifacts, actors, and
relationships in the form of a directed graph. The provenance of a data object, D i,
for instance, can be defined by the processes or transformations that were applied to
create the data object. The processes can in turn be further described by their inputs
and outputs. A relationship between process P 1 and process P 2 exists if process
P 2 consumes a data product generated by process P 1. OPM defines the minimal
provenance but supports name-value pair annotations that can be used to enhance
the information known about the entities and relationships. Provenance can be fur-
ther enhanced by extending the existing set of relationships and objects, such as was
done by Missier et al. [22].

In the unmanaged workflow setting, extracting provenance from an executing
application has similarities to real time performance monitoring of a complex, dis-
tributed and parallel application. The terminology used in performance monitoring
literature when referring to the mechanism for extracting information from an ex-
ecuting application [25] is “instrumentation”, ”instrumentation points”, and ”sen-
sors”, so we adopt the same terminology here. Provenance capture focuses on the
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sensors that collect information; as with performance monitoring these sensors must
be lightweight, and minimally perturb or pollute the application.

One of the first design decisions is the types of instrumentation that can be sup-
ported. Mechanisms for collecting provenance have tradeoffs that must be made
between burdening the user, the developer, or application performance; and in the
ultimate quality of the provenance information as well. Collection mechanisms fall
into one of three categories: user annotation, scavenging, or full provenance in-
strumentation. Provenance capture through User annotation is a human data entry
activity where users enter textual annotations, capturing for instance all the data sets
used during an analysis of a particular forest use in the Amazon forest over a mul-
tiyear period, including video interviews of nearby residents, satellite imagery, and
survey data. To make the entry more uniform, the scientist might be prompted to
enter specific information. It is however widely understood that user-entered meta-
data is often incomplete and inconsistent [26]. The annotation approach imposes
a low burden on the application, but a high burden on the humans responsible for
annotation. The implication is that error rates of the provenance are high.

Full provenance instrumentation refers to instrumentation that is added directly
to an application, such as when a programmer must insert calls into their code to
call out to a provenance library. Full provenance instrumentation allows for good
provenance completeness and consistency, but imposes a substantial burden on the
programmer who must modify the application directly. A middle approach is some-
thing we refer to as scavenging. Here collection is done by means of piggybacking
onto existing collection mechanisms, such as a logging tool or an auditing tool, or
is carried out in the middleware layer so as to not burden the application program-
mer. VisTrails [27] implements a form of scavenging when it captures the “do” and
“undo” actions of graphical modeling tools as a way to pick up provenance for free.
Scavenging has a disadvantage of resulting in incomplete information. Incomplete
provenance information can be an acceptable tradeoff for high levels of collection
interoperability as long as we can provide a sense of the level of completeness and
provide an estimate of the accuracy of the resulting provenance.

The capture layer ingests provenance events, alternately called “notifications”, as
they are generated at runtime, and queues them for storage to a provenance capture
system. The layer is implemented as a protocol and framework to carry provenance
events from application components to the database. In this layer, there may be
different protocols ranging from a Web Service based system to a publish-subscribe
system. This is illustrated on the left of Figure 3.2.

3.2.2 Application in the Karma Tool

The application of provenance capture in unmanaged workflows is best illustrated
through example. Our team has had experience applying provenance capture in mul-
tiple and varied settings, in which we had to think through the data model, instru-
mentation mechanisms, protocols. We summarize this experience in Table 3.1. PC3
is Provenance Challenge 3 [37], a friendly competition undertaken June 2009 in the
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Fig. 3.2 Logical architecture of a provenance system

provenance community. Teams implemented an astronomy workflow that used their
provenance system to answer a set of queries. Ratings depended on the number of
queries the systems could answer and the ability to capture the most information
in the query. AMSR-E is shorthand for a satellite instrument processing pipeline
application. The processing pipeline is for the Advanced Microwave Scanning Ra-
diometer - Earth Observing System sensor located on the NASA Aqua satellite. The
pipeline is a script-driven application that continuously ingests images from the po-
lar orbiting satellite, processes the images to identify sea ice over the poles, etc. The
pipeline is made up of legacy processing scripts and scientific algorithms, the latter
of which are of deep importance to the provenance record. The LEAD application
is a workflow system for executing weather related analysis and modeling activities.
The GENI application is a computer networking application. It applies provenance
capture to the PlanetLab distributed network. Table 3.1 identifies three different
kinds of instrumentation and two protocols that are used in the four applications, in
some applications two instrumentation techniques are used. The implications of the
capture mechanism, using the vernacular identified in Table 3.1, are given in the col-
umn titled “Provenance capture burden”. As it can be seen from Table 3.1, there are
various instrumentation mechanisms, one of which is a full provenance instrumen-
tation approach, with the attendant high burden on the application programmer to
correctly place the instrument points in the code, and to write provenance events to
a format that Karma requires. We see this as our least viable solution because of this
dual-headed burden. The first scavenging approach taps into the messages flowing
between applications and transparently routes a copy of the event to Karma. It treats
the application as a black box, so provenance is limited to what can be captured
through message traffic. Within that approach, there are two schools of thought as
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to whether or not one should peek into the message contents to extract further prove-
nance. The second scavenging approach captures provenance information from log
files.

The Karma system currently supports two forms of communication in which the
provenance event come to the system, a Web service based model and a publish-
subscribe messaging system [38, 39]. In addition to synchronous submission of no-
tifications, support for asynchronous publishing of provenance is supported through
a publish subscribe system. Sometimes called an Enterprise Service Bus, a publish
subscribe system decouples publishers of events and consumers of events, allowing
new publishers and subscribers to join simply by having the topic name and location
of the broker that brokers subscriptions.

3.3 Provenance Representation

A provenance system can be viewed as a repository that (1) actively collects and
ingests events in real time, (2) stores the events in a data model that supports time-
series data storage, aggregation and synthesis of the events to form new knowledge,
and (3) provides an access layer that supports access to the data. Provenance sys-
tems are often designed to serve a single use, such as provenance capture for a
single workflow system. As attention is increasingly being paid to the long term
sharing and preservation of digital scientific data, provenance systems can be valu-
able repositories of information about the circumstances under which data objects
were created, information that is essential to reuse of the data object in a new setting.

The provenance representation layer, illustrated in the middle of Figure 3.2,
stores provenance data using a data model that represents the execution instance
notifications, and higher layers that abstract from execution instances. The represen-
tation layer is where post-processing is carried out such as to organize the events and
derive higher levels of behavior or knowledge from the events. The representation
layer is where the impact of unmanaged workflows is most strongly felt because for
unmanaged workflows there is no obvious reference point to which arriving execu-
tion events can be tied such as would be provided by a workflow known in advance.

Provenance systems use different data models, Karma uses a two level model;
Trident and VisTrails use a three level data model. Karma includes both execu-
tion details for utilizing the data and high level information for long term preserva-
tion [41]. This layer should contain information about services and data products
at a sufficient level of detail to support discovery and automated decisions about
whether to bind a particular data product or service. This layer should contain infor-
mation for locating and retrieving data artifacts for use in a workflow execution and
capture instance invocation and execution details of a particular run. The representa-
tion layer should store common information consistently and without redundancy. A
provenance capture system captures provenance by accumulating discrete run time
activities during the lifecycle of unmanaged workflows, that is, workflows whose
structure is not known to the system in advance of execution.
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Table 3.1 Instrumentation techniques supported by Karma and the two communication pro-
tocols have different tradeoffs [44].

Instrument mech-
anism

Communication
protocol

Provenance collec-
tion burden

Application

Application re-
sponsible for
invoking library
that constructs
provenance notifies

and invokes Axis2
send call. Special-
ized Axis2 handler
routes message to
Karma.

Programmer must
be provenance
savvy. High appli-
cation burden.

PC3

Application re-
sponsible for
invoking library
that constructs
XML provenance
notifies

and publishes to
messaging system
(i.e. RabbitMQ).
Karma listens for
events.

Application pro-
grammer must be
provenance savvy.
High application
burden.

AMSR-E

Application pub-
lishes SOAP
notifications as part
of normal activity

and publishes to
Axis2 call. Axis2
handler transpar-
ently grabs copy
of event and sends
to Karma without
application being
aware.

Karma parses
notifications on
server side to
extract useful
provenance infor-
mation. Assumes
basic provenance
behavior is present
in message. Scav-
enging approach.

LEAD

Application pub-
lishes notifications
as part of normal
activity

and publishes to
RabbitMQ. Karma
is sitting on topic/-
subject so captures
event without
application being
aware.

Same as above.
Scavenging ap-
proach.

GENI

Application writes
log messages to log
file as part of nor-
mal activity

and Karma Adap-
tor parses log file
(client side parsing)
and generates no-
tifications that are
sent via Axis2 or
RabbitMQ.

Adaptors need to be
written to parse log
file; assumes core
provenance behav-
ior has been written
to log. Scavenging
approach.

GENI,
AMSR-E
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3.3.1 Representation in Karma

Karma stores provenance data using a two-layer information model which includes
both execution details for utilizing the data and registry information for long term
preservation [41]. The two-layer information model contains a registry level, which
contains metadata about the instance, and an execution level. The registry level has
similarities to registries used in web service architectures in that it contains infor-
mation about services and data products at a sufficient level of detail to support
discovery and automated decisions about whether or not to bind a particular data
product or service. The registry level is not used for locating and retrieving data
artifacts for use in a workflow execution, but nevertheless contains sufficient infor-
mation for building a data object that can be preserved indefinitely. The execution
level captures instance invocation and execution details of a particular run. The two-
layer model recognizes commonalities in workflows and stores that common infor-
mation consistently and without redundancy. Some of the concepts of this two-layer
information model map directly to OPM. For instance, data products such as data
granule and data collection can be considered artifacts; entities (services including
composite service and opaque service, and methods) can be considered processes;
and clients (a kind of entity, which may be a user or a workflow engine that initiates
the workflow) can be considered agents.

A significant implication of not knowing the structure of workflows in advance
is that in addition to not having a picture of execution before it occurs, Karma can
make no assumptions as to the existence of global state in the application either. A
provenance notification message will be issued by a task, and the information con-
tained in that notification will be based on what can be gathered from local state
only. For instance, tasks within a workflow may not know the session or work-
flow to which they “belong” so it can be difficult for the Karma service to tie a
service invocation back to the workflow that invoked it, particularly for recursive
or chained services. For unmanaged workflows, OPM is inadequate to the task of
defining the formats of provenance events if for no other reason than provenance
capture is messier and more incomplete than the graph-based OPM can handle.

3.4 Provenance Use

Captured provenance provides a rich source of information about workflow exe-
cution. Automatic provenance collection over time generates a substantial body of
knowledge which may be used in many ways. Referring back to the logical archi-
tecture shown in Figure 3.2, the access layer supports the Query API, which is used
to pose queries to the provenance capture system to retrieve provenance. This layer
that allows users to explore and examine large quantities of data requires browse
capabilities. The browse pattern characteristically involves starting with some broad
information, performing a search, finding general result sets and then selecting more
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specific information for drill-down. The access layer includes macro-level queries,
tracing provenance relationships back through time in order to construct a graph, as
well as object-level queries that locate information about specific entities matching
the conditions specified in passed arguments.

Our research investigates three novel additional uses for provenance, described
in the following sections: Using captured provenance to aid workflow construction,
to repair problems in provenance capture, and to analyze workflow trace quality.

3.4.1 Using Provenance to Aid Workflow Construction

Provenance acquired by provenance capture systems is rich source of information
about the workflows which gave rise to the observed processes. We are investigating
how such information can be used to aid workflow construction. When a subpart of
a partially constructed workflow involves a sequence of services observed in a past
provenance instance, that remainder of the stored provenance can suggest extensions
of the partial workflow, to present to the workflow author. We are exploring both the
mining of stored provenance for statistical correlations on which to base predic-
tions, and the use of case-based reasoning (CBR [48, 49]) to predicting solutions to
new problems based on relevant instances of similar prior problems. CBR is a “lazy
learning” method in that cases are stored with minimal pre-processing, simplify-
ing knowledge acquisition. Because CBR reasons from relevant prior episodes—
cases—rather than rules, it is a natural approach for reasoning from libraries of
examples such as provenance databases. The performance of CBR systems depends
on how well their stored cases cover the space of problems to solve. Large-scale
provenance databases provide an extensive starting point, and each new workflow
execution provides a new case to extend coverage. In addition, workflow problem
types tend to recur—for example, scientists in a particular domain will tend to gen-
erate certain types of workflows [50], increasing the chance that stored traces will
be relevant to new situations.

The Phala project1 [50, 51] develops and tests a case-based approach to aiding
workflow construction. Phala is a plug-in to the XBaya graphical workflow com-
poser [45]. Phala’s processing cycle is illustrated in Figure 3.3.

As a user develops a workflow, Phala monitors the partially constructed workflow
and generates background retrieval queries to a provenance database. The prove-
nance database need not have been generated for a single particular task; similarity
assessment process selects those cases which are relevant. When cases are not avail-
able, the system can provide recommendations based on statistical methods, which
use statistics mined from the provenance database. Because there is no guarantee
that the suggestions generated by statistical methods and cases will agree (or even
that all suggestions from relevant cases will agree), we are developing approaches

1 The name Phala was inspired by the naming of the Karma provenance capture system.
In Sanskrit, Karma means causality and reflects captured provenance, Karma means the
ripened fruit, so KarmaPhala means the fruit of provenance capture, reflecting the cases
generated by Phala.
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Fig. 3.3 Phala’s processing cycle

for combining multiple (and possibly conflicting) recommendations, in order to ex-
tend the range of situations for which Phala can make recommendations and in-
crease recommendation accuracy. Initial tests of these methods are promising [51].
In addition, Phala allows users to control the level of confidence required for the
system to propose suggestions.

Large provenance case bases provide both benefits and challenges for CBR.
Given a large and diverse set of cases, a CBR system can solve a wide range of
problems. However, retrieval and similarity assessment for large case bases can
be computationally expensive, especially when the cases which need to be com-
pared involve structured information. For graph-structured case information such
as workflow traces—for which matching could be seen as an instance of the sub-
graph isomorphism problem—matching cost is a particularly acute issue. In addi-
tion, the anticipated size of provenance case bases far exceeds that of case bases pre-
viously studied by the case-based reasoning community (for example, as described
in Section 3.4.3, a 10 GB database was recently developed as a provenance testbed).
Consequently, a central goal of the Phala project has been to develop procedures
enabling efficient retrieval of structured cases.

For generality, Phala’s retrieval methods are primarily domain-independent.
Phala’s retrieval is performed by the Structure Access Interface (SAI), a toolkit for
structure-based retrieval. To increase retrieval efficiency, SAI implements a two-
phase retrieval approach in which the initial phase can be seen as coarse-grained
filtering, to retrieve a small set of potentially relevant cases for more expensive
structural matching. More detailed descriptions of the algorithms and evaluations
are omitted here for reasons of space, but are available elsewhere [50, 51, 53].



70 M.S. Aktas et al.

3.4.2 Using Data Provenance Traces to Reconstruct Process
Traces

Data provenance traces from multiple systems need to be connected into a coher-
ent graph that represents the relationships between various data-related events. For
example, one system might generate an event corresponding to the sending of a
message, while a second system might generate an event corresponding to the mes-
sage being received: if these are in fact the same message, these events need to be
connected to recover the end-to-end trace of what actually occurred. The process of
doing so is termed trace reconstruction; we first discuss how this is done in general,
and then focus more closely on unmanaged processes. The process of reconstruct-
ing process traces from provenance data involves three distinct phases: Collection,
Correlation, and Enrichment.

Collection: This phase involves gathering provenance data from various source sys-
tems. Adapters are built to extract events or log information from the source system,
perform appropriate transformations to produce provenance items and then record
these provenance items into a centralized provenance store. For reconstructing pro-
cess traces, a provenance solution would involve deploying adapters to all systems
where any process activity occurs, such as document repositories, web servers, email
servers and so on.

Correlation: This phase involves correlation of provenance items within the prove-
nance system. Correlation for the purpose of reconstructing a process trace will
involve using an opaque process identifier if available, or a set of application data
that collectively serves as the identifier for a process, and then using the identifier to
stitch together the tasks, data and actors involved in the correct temporal sequence.
The correlation will also locate identifiers that help to bridge systems (such as a
message identifier that helps us connect a message sent from one system to that
received in a different system).

Enrichment: When reconstructing process traces, provenance items recorded as
multiple tasks by adapters may together correspond to a single process activity from
the user’s perspective. Creation of such a higher level abstraction would be done
at this time. For example the entire sub-graph showing the sending of a message
from one system to another could be abstracted into a single node labeled ’message
exchange’, with the underlying provenance of this activity preserved elsewhere in
the graph. This simplification serves two purposes: it allows for easier visualiza-
tion and also reduces the complexity of consuming new information. For example,
further correlation or enrichment of the graph could be triggered on new ’message
exchange’ node, rather than on the more complex pattern it corresponds to.

It is important to note that these phases need to operate concurrently; data that
is being recorded has to be correlated and enriched at the same time other data is
arriving; i.e. development of the provenance information and its use to reconstruct
the process trace is a continuous process. The outcome of this continuous process is
a process trace represented as a provenance graph.
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A result of the observed process being unmanaged is that sometimes correla-
tion and enrichment are non-trivial. Consider the process of running a long-running
scientific experiment across a computing infrastructure that requires data products
from one system to be manually copied to a different system. In many real-world
instances, the method for achieving this is for scientists running the experiment to
request system administrator to perform the data copy. The request forms an impor-
tant part of the overall process and allows the subsequent data set used to be verified
as being the correct one. However, correlating an unstructured request such as an
email with other events such as a file copy is non-trivial. In most cases, the request
would specify the source file and target location, but this may not always be the
case. In such instances, the time the request was made could be used for correlation.
In general, it is certainly possible to miss the request that was used when creating
the provenance graph, or to correlate an incorrect request. We classify uncertainties
in provenance graphs under three categories: Node versus Edge uncertainty, Simple
versus Complex Uncertainty, and Static versus Dynamic uncertainty.

Node versus Edge uncertainty: All the nodes in the provenance graph can be
grouped into two categories, nodes recorded by adapters (Type A) and nodes created
through derivation from those (Type B nodes). Nodes recorded by adapters are accu-
rate since they exactly represent something that occurred in a source system. Derived
nodes, added through feature extraction or enrichment may however be inaccurate,
and may therefore have uncertainty associated with them. Edges are recorded based
on correlations or shared features between nodes. When edges are recorded between
Type A nodes that were recorded from the same source system, they are guaranteed
to be accurate (since they are based on correlations of consistent and accurate data).
All other edges may be imprecise. For example, an edge showing time ordering be-
tween Type A nodes from different source systems may be inaccurate if the clocks
are not synchronized. Additionally, edges between Type B nodes may be imprecise
since the node uncertainty is propagated to the edge, i.e. the edge may be created
based on imprecise data. Going back to our earlier example of correlating a request
to copy data with the actual system activity corresponding to the data movement, the
resulting provenance graph would have accurate information on each of these basic
events, the uncertainty would arise when trying to determine which of the available
email requests correspond to a particular data movement activity.

Simple versus Complex Uncertainty: Uncertainty associated with a provenance
item may be entirely a function of features of that provenance item itself. We call
such uncertainty simple. Sometimes the uncertainty is a function of a set of prove-
nance data; in such cases it is said to be complex.

Static versus Dynamic uncertainty: When the uncertainty associated with a given
provenance item is fixed, it is said to be static uncertainty. Sometimes the uncertainty
associated with a piece of information varies over time. This is dynamic uncertainty.

Doganata et al. [43] have explored an approach in which information is corre-
lated only if it appears to meet a certain confidence threshold. We [6] have found
that it is better to represent uncertainty in a first class manner within the provenance
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graph itself, and allow for provenance applications or further enrichment to decide
what information is accurate, given a more global view of the end-to-end process.

3.4.3 Using Provenance for Analysis of Workflow Traces

Real world provenance data traces are often noisy, resulting in disjoint or incom-
plete provenance traces. Provenance messages may be dropped, messages can be
incomplete (which could occur when the application scope at a point of notification
generation is more restricted than anticipated), or execution of the application (or
workflow) can simply fail. To properly asses captured workflow traces, it is crucial
to establish algorithms to analyze those traces, identifying failures and assessing the
quality of data provenance traces.

Identifying failure in provenance traces: We have developed a model for analyz-
ing provenance traces and identifying failures [52]. The model identifies two types
of failures: a) task failures where a node in a workflow does not complete success-
fully, b) communication failures in which a task completes but the notification is not
successfully transmitted.

We have performed experiments studying four failure modes as follows: a) No
failures and dropped notifications (success case), b) 1% failure rate, c) 1% dropped
notification rate, d) 1% failure rate and 1% dropped notification rate. These failure
rates are modeled using uniform distributions in a workflow emulator, WORKEM
[54], to determine if a particular invocation must fail or drop a notification. Us-
ing the WORKEM to generate provenance, the following six major workflows
were used as the basis for generating a large scale (10 GB) provenance database:
LEAD North American Mesoscale (NAM) initialized forecast workflow, SCOOP
ADCIRC Workflow, NCFS Workflow, Gene2Life Workflow, Animation Workflow,
MotifNetwork Workflow. These workflows are pseudo-realistic, in the sense that
they are modeled after real life workflows. The LEAD NAM, SCOOP and NCFS are
weather and ocean modeling workflows, Gene2Life and MOTIF are bioinformatics
and biomedical workflows, and the Animation workflow carries out computer ani-
mation rendering. Some of the workflows are small, having few nodes and edges,
while others like Motif have a few hundred nodes and edges.

Figure 3.4 shows the results where the distribution is dissimilar. Even though the
generation settings for WORKEM were identical across workflows, WORKEMs
failure model does not result in the same uniform distribution across different work-
flows since the configuration for failure rates is per task in the workflow. For both
Animation and Motif workflows, the number of runs that do not have failures or
dropped messages is approximately half of what the smaller workflows exhibit,
which supports that the larger a workflow, the higher the failure rate and dropped
messages rate. The smaller workflows appear to have the same distribution com-
pared to each other.

Quality Assessment of provenance traces: We have developed a methodology for
assessment of the provenance goodness [52]. This methodology applies statisti-
cal approaches that operate over large volumes of data to zero in on suspicious
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Fig. 3.4 Distribution of workflows by population cases

provenance records. Based on this approach, provenance goodness is determined by
constructing the best possible provenance graph for an execution based on the cap-
tured provenance record, then assessing the goodness of the resulting graph by look-
ing at the partitions in a provenance graph. In this approach, a provenance graph is
be modeled as PG = V, E, where V is a collection of vertices that are linked by one or
more directed edges, E. This approach is used to construct a provenance graph from
nothing (no guiding workflow template) based only on the captured provenance. It
relies on an assumption that all provenance notifications contain the correct ID for
the workflow execution instance to which they belong. WORKEM workflow emu-
lator supports this assumption. Even with this simplification, this approach still may
yield disconnected components. The query of a graph using a workflow ID searches
over the database tables for entities (processes) that have matching IDs. If there are
dropped messages, the queried graph may have missing edges or missing vertices.
The only guarantee for the retrieved graphs is that the components of the graph are
linked through that workflow ID.

Figure 3.5 shows the results of this approach, when the algorithm is applied
to the aforementioned large scale 10GB provenance database. Observing the num-
ber of edge counts of each workflow instance, we conclude that the results for the
LEAD NAM workflow are preliminary. The plot points are classified based on the
statuses of each workflow. Based on the results, the workflows with dropped mes-
sages cluster towards the upper end of Figure 5. This implies that dropped messages
for successful workflows are few. In comparison, workflows that involve failures
typically result in more missing notifications, resulting in lesser number of edges in
their provenance graphs.

Automatic provenance repair: As described previously, automatic provenance cap-
ture is imperfect. Correlation and enrichment methods aid in reconciling and merg-
ing information, but in some cases, the messages relating to a process may simply
be lost, resulting in gaps in the provenance trace. Consequently, we are studying
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Fig. 3.5 Plot of edge counts for LEAD NAM workflow instances with different statuses

methods for assessing overall provenance goodness. For example, we have begun to
explore using simple graph analysis methods to identify connected components: If
a provenance graph is disconnected, it reveals gaps in provenance capture. In such
instances, methods such as Phala’s prediction methods, applied to the disconnected
components, may be able to infer missing steps. Confidence assessment methods al-
ready developed for Phala’s recommendations may be used to determine confidence
in proposed repairs. This will enable a flexible repair approach in which repairs are
only pursued if their confidence exceeds a use-designated threshold, and will also
enable annotating repaired provenance with confidence values for the quality of the
provenance.

3.5 Related Work

Provenance has been studied from different perspectives and several surveys have
been published [4, 21, 28, 29]. Simmhan et al. [4] introduced a taxonomy of prove-
nance in e-science, specifically for scientific workflow systems, based on why they
record provenance, what they describe, how they represent and store provenance,
and ways to disseminate it. Moreau [29] did a comprehensive survey analyzing
425 papers in the provenance literature and reviewing its potential benefits in e-
science, curated databases, and semantic web. In this section, we give a brief review
of provenance capture in major provenance systems particularly designed for sci-
entific workflows. Generally, provenance systems for scientific workflows can be
categorized into two classes: those in scientific workflow systems and standalone
provenance systems.
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Provenance Use: Provenance systems track artifacts from various systems and cor-
relate these to create a provenance graph. Using a provenance graph, it is possible
to recover process traces or data lineage, or to maintain a record of user activity for
various purposes. It is also possible to build systems that aid workflow construction.
Workflows are often generated by scientists who are not experts on scientific com-
putation, who may have difficulty choosing appropriate services. Even for experts,
workflow generation may be time-consuming. Consequently, software to facilitate
workflow generation is highly desirable and a number of efforts have aimed to as-
sist scientist in workflow generation, using both generative planning and interactive
approaches. Systems such as FlowRecommender [11] and Viscomplete [12] mine
process traces for the development of automated workflow recommendations. Wen
et al. introduced an approach for process mining problem in dealing with invisible
tasks, i.e., such tasks that exist in process model but not in its event logs [10], for
deploying new business processes as well as auditing, analyzing and improving al-
ready interacted ones. Interfaces such as XBaya [45] aid users by abstracting away
from the details of workflow languages. Knowledge-rich artificial intelligence meth-
ods have been developed to generate workflows automatically [46] and to provide
interactive support for carefully codified domains [47]. Such approaches can pro-
vide excellent performance, but at the cost of expensive knowledge capture, which
becomes a major impediment to fielding such systems in new domains. We are in-
vestigating data-driven methods to support human workflow generation with mini-
mal knowledge capture.

Provenance tracking has been used to assist in reproducibility of scientific ex-
periments [16], monitoring complex processes that span multiple systems [15] and
measure compliance of unmanaged processes [17]. However, none of the existing
literature has dealt with the the issue of uncertainty in provenance data. We are in-
vestigating the uncertainties involved in creating provenance traces for unmanaged
processes and how to represent these using a provenance data model.

Systems such as Karma address provenance capture that is tightly coupled to a
workflow system and provenance capture in non-structured e-Science environments.
These systems provide a controlled provenance generation environment and do not
necessarily contain provenance with failures.

A number of synthetic workflows have been generated and used in distributed
systems [18, 19, 20] and computing networking [13, 14] research areas for perfor-
mance evaluations and benchmarking purposes. However, none of these workloads
attempt to model failures and have been specifically developed for the purpose of
provenance research. As discussed previously, we use a noisy 10 GB provenance
database that models failures of provenance notifications to explore methods to
provenance repair and provenance quality assessment.

Provenance Systems: Provenance collection is widely supported in scientific work-
flow management systems because provenance data can be easily captured and
recorded during execution of a workflow. Kepler [30] is used by scientists in mul-
tiple disciplines for the design and execution of workflows. The provenance com-
ponent, Provenance Recorder (PR), is optional depending on the user’s requirement
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to track provenance. To enable provenance capture in a workflow instance, the user
drags the provenance recorder from the toolbox, places it on the workspace, and fills
in the configuration menu. The provenance associated with the workflow definition
is automatically generated by the existing MOML (Kepler’s internal XML workflow
representation) generation capabilities during a workflow run. To receive the prove-
nance data, the PR implements several event listener interfaces. When the workflow
is loaded, the PR will register with the appropriate concerns in the workflow. When
the workflow is executed, PR will process information received as events, and save
it in provenance store.

The Taverna workbench [31] is developed for the composition and execution of
workflows for the life sciences community. Provenance data is recorded for work-
flows in the Simplified conceptual workflow language (Scufl) language with four
levels [32]: a) process provenance, b) data provenance, c) organization provenance,
and d) knowledge provenance. The process provenance records the order of service
invocations, inputs/outputs to these services, and the time information of service in-
vocations and workflow executions. The data provenance builds a derivation path of
data objects in a workflow run. The organization provenance stores the metadata for
the experiment such as who, when, and where the information was created and how
it evolved during experiments. The first two levels of provenance are automatically
logged during workflow execution. The organization and knowledge provenance
can be obtained from three different sources: users’ annotations of the Scufl work-
flows through a knowledge template plug-in; service descriptions from the myGrid
semantic service discovery component Feta; and provenance published by the third-
party data providers [33].

VisTrails [27] is a workflow and provenance management system that provides
support for scientific data exploration and visualization. It is designed to handle
rapidly-evolving workflows by using a change-based provenance model. The Vis-
Trails provenance information is organized into three layers: workflow evolution,
which captures the relationships among the series of workflows created in an ex-
ploratory task; workflow, which consists of individual workflows; and execution,
which stores run-time information about the execution of workflow modules. The
information for the first two layers is naturally captured by the change-based prove-
nance mechanism. When a user modifies a workflow, his/her actions are captured
by the History manager and saved in the VisTrails Repository. Run-time informa-
tion is captured by the Workflow Execution Engine and stored in the VisTrails Log.
Annotations are allowed at all levels of the layered provenance model.

The Trident [34] workbench is a scientific workflow system which is built on top
of Windows Workflow Foundation (WF), a workflow enactment engine included in
the Windows operating system. It provides an integrated way to collect, store, query,
and view provenance for scientific workflows. Provenance information in Trident is
a combination of the workflow schema—static, composition information about the
workflow—and the provenance schema—dynamic, runtime information about the
actual execution of a workflow instance. The Workflow Composer is the primary
source of the workflow schema, and the Execution Service and Windows WF engine
are the two main sources of the provenance schema. The Execution Service tracks
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the submission of each workflow instance, and the Windows WF engine natively
generates tracking events of the workflow execution. Trident uses the BlackBoard
[35] publish-subscribe, asynchronous messaging framework, to distribute the events
from the source to the provenance storage. The Provenance Service listens to the
events and records them in the provenance store. Trident event handlers listen for
the built-in events to trace the workflow’s control flow. The data flow knowledge
obtained from the input and output parameter values passed to/from the activities
are captured by the instrumentation in the Trident base activity class to generate
customized user events.

The PASAO project provides an interoperable way to collect provenance in a grid
environment using an open provenance protocol. Miles et al. [36] analyzed 23 use
cases in biology, chemistry, physics, and computer science and determined 14 tech-
nical requirements for a generic, application-independent provenance architecture.
PASOA is designed in three layers: fundamentals of recording and access, query-
ing, and processing. PASAO supports the recording and use of three types of prove-
nance: interaction provenance, which records interactions between components and
data passed between them; actor provenance, which records processes information
and the time of the execution; and input provenance, which records the set of input
data to infer a data product. Groth and Moreau described the recording protocols in
[9] in detail. Additionally, Frew et al. [23] captures application calls to the operating
system (i.e., kernel calls) and Holland et al. [24] captures file system access.

3.6 Current and Future Challenges

The notion of unmanaged workflows reflects acceptance that human processes can-
not be fully automated. For whatever reason, there are pieces of the workflow that
remain with the user or are executed outside of and away from the “eyes” of the
workflow system. If the task of provenance capture is to record a complete prove-
nance or lineage record then the task is doomed to failure. This gives rise to the
question: What can be done? The assumption in the phrase “complete provenance”
must be revisited. Just as the provenance of a work of art may have gaps, so in-
completeness in provenance of scientific data may be more common than we may
think. Methods such as trace reconstruction may help to fill in the trace. However,
is complete provenance necessary, or even desirable? Provenance capture can result
in large volumes of very low level information. Provenance capture in the AMSR-E
satellite imagery processing stream reveals significant amounts of “housekeeping”
information, such as that the processing script ran on a certain day. Scientists who
question a resulting image are interested in the version of the science algorithm
that was applied, but not in the specific day. How can we separate the wheat from
the chaff to identify the provenance that contributes meaningfully to the final out-
come? Finally, too few examples of compelling uses of provenance captured from
real applications exist to convince communities of users that provenance systems
are worth the investment of time. These questions and challenges make provenance
and provenance use a rich research area for the future.
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