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Preface

With the advanced development of computer technology, eScience allows scientific
research to be carried out in highly distributed environments. The research com-
munities involved may cross multiple disciplines, laboratories, organisations, and
national boundaries. The complex nature of the interactions in the eScience infras-
tructure, which includes instrument, data, model, application, people and computa-
tional facilities, has identified a strong need for data management.

Data management addresses research issues in designing, building, managing,
and evaluating advanced data-intensive systems and applications. In these systems
and applications, a large amount of raw data and intermediate data are generated
and stored. Managing data provenance, the origin of data and processes involved to
generate a particular data, has also been widely recognised as a critical issue of data
management system.

Data provenance enables scientists to access and query the information life cycle
of a particular data product. It is essential for improving the collaborators’ confi-
dence in sharing/consuming data products, and to encourage users to participate in
research collaborations. By making the data and its associated provenance infor-
mation accessible for researchers, it not only helps to determine the data’s value,
accuracy, authorship, publication and regulation, but also allows domain scientists
to work more efficiently, achieve greater exposure and protect data from loss.

This book consists of seven chapters that discuss the cutting edge data manage-
ment and data provenance techniques in eScience applications. We are pleased to
include work originating in Australia, Canada, Germany, New Zealand, Pakistan,
the United Kingdom and the United States.

The existing provenance models (e.g. the Open Provenance Model) are designed
in a technology-agnostic manner. To make the model usable in eScience, domain
specialisation is required. Furthermore, most of provenance research focus on prove-
nance capturing and representation. However, provenance data is only useful if
it provides additional value to users. The three chapters of Part I present how to
make provenance collected over time usable through specialisation and knowledge
discovery.



VI Preface

In Chapter 1, Curcin, Danger and their colleagues models Randomised Clinical
Trial processes by extending OPM. It ties the provenance representation closer to
medical experts so that meaningful analysis could be conducted. Chapter 2 discusses
how Hidden Markov Model assumptions can be applied to evaluate the workflow
trust by Naseri and Ludwig. The main idea of the work is that the state of the trust
of the workflow can be determined by the state of the workflow at the previous
time stamp and observing the service that was executed at that time. The trust level
is defined based on the transition probability and sensor probability. In Chapter 3,
Aktas, Plale, Leak and Mukhi investigate the problem of unmanaged workflows
from three perspectives: provenance capture, provenance representation and use.
Particularly, the authors discuss how to use provenance to aid workflow construc-
tion, to reconstruct process traces and to analyse workflow traces.

Distributed provenance raises the issue of efficient reconstruction during the
query time. Chapter 4 in Part II offers some query mechanisms for such situation.
Chapter 5, 6 and 7 introduce some data management systems for real world case
studies.

In Chapter 4, a hybrid approach to answer provenance path queries is adopted
by Malik, Gehani, Tariq and Zaffar. A sketching method is proposed for querying
across distributed systems and for querying within a system, transitive closure is
applied. Yao, Zhang and their colleagues focus on the use of mobile and cloud tech-
niques in data provenance. In Chapter 5, they firstly point out some current challeng-
ing issues in data provenance. A prototype mobile cloud system to solve these issues
is presented and demonstrated in the bioinformatics domain. In Chapter 6, a num-
ber of data provenance/management challenging issues in radio astronomy research
are addressed by Mahmoud, Ensor and their colleagues. According to authors’ real
experience in the Square Kilometre Array (SKA) project, a stream-computing ap-
proach has been introduced to cover some of the addressed issues. The approach is
based on IBM InfoSphere Streams, and can effectively manage huge volume of data
collected from large antennae array. Chapter 7 introduces a scientific data manage-
ment system by Ney, Kloss and Schreiber, called DataFinder, to manage laboratory
records in a computer based infrastructure. Through the usage of such a system, lab-
oratory data can be traced and managed in a more effective and efficient way. The
reliability and transparency of scientific results can also be enhanced.

Each submitted chapter was reviewed by at least 2 reviewers during 2 rounds. The
editors would like to thank the chapter authors and the following external reviewers
(listed in alphabetical order):

Dr Paul Groth, VU University of Amsterdam, The Netherlands
Dr Simon Miles, King’s College London, UK
Dr Heiko Mueller, CSIRO, Australia
Dr Leonardo Salayandia, The University of Texas at El Paso, USA
Dr Eric Stephen, Pacific Northwest National Laboratory, USA
Dr Kerry Taylor, CSIRO, Australia



Preface VII

Dr Qing Zhang, CSIRO, Australia
Dr Ying Zhang, The University of New South Wales, Australia

This book would not have been possible without your contributions. Thank you all.

February 2012 Qing Liu
Quan Bai

Stephen Giugni
Darrell Williamson

John Taylor
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Chapter 1
Provenance Model for Randomized Controlled
Trials

Vasa Curcin, Roxana Danger, Wolfgang Kuchinke, Simon Miles, Adel Taweel,
and Christian Ohmann

Abstract. This chapter proposes a provenance model for the clinical research do-
main, focusing on the planning and conduct of randomized controlled trials, and the
subsequent analysis and reporting of results from those trials. We look at the prove-
nance requirements for clinical research and trial management of different stake-
holders (researchers, clinicians, participants, IT staff) to identify elements needed
at multiple levels and stages of the process. In order to address these challenges,
a provenance model is defined by extending the Open Provenance Model with
domain-specific additions that tie the representation closer to the expertise of medi-
cal users, and with the ultimate aim of creating the first OPM profile for randomized
controlled clinical trials. As a starting point, we used the domain information model
developed at University of Dusseldorf, which conforms to the ICH Guideline for
Good Clinical Practice (GCP) standard, thereby ensuring the wider applicability
of our work. The application of the model is demonstrated on several examples and
queries based on the integrated trial data being captured as part of the TRANSFoRm
EU FP7 project.

1.1 Introduction

Within the medical domain, there is a pressing need for an extensible provenance
model to enable both auditability and accountability in software. Making electronic
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4 V. Curcin et al.

systems provenance-aware enables users to investigate data sources and services that
produced a particular output from the system, together with the individuals who
instigated the requests and received those outputs. In such way, the software can
be audited to assess that correct decisions were made and appropriate procedures
followed.

Randomized controlled trials (RCT), also referred to as randomized clinical tri-
als, are widely accepted as the best test of therapeutic efficacy, and as such are
subject to particularly stringent quality controls to ensure legal, organizational, and
scientific procedures have been adhered to. ICH Guideline for Good Clinical Prac-
tice (GCP) standard is an international ethical and scientific quality standard for the
design, conduct and record of research involving humans, and it states that All clin-
ical trial information should be recorded, handled, and stored in a way that allows
its accurate reporting, interpretation and verification. [2]

From the computer science point of view, typical for this type of research is the
necessity to eliminate the assumption of data and services being freely available.
Clinical research happens in a strictly closed world, where each data exchange needs
to be justified, and approved on multiple levels (patient, institution, country) which
adds complexity both to the provenance of software actions involving that data, and
the management of any data derived from those actions. The models already present
in the domain are by and large ontologies and controlled vocabularies, defining in-
ternational terminology standards, and process models specifying, often informally,
the required actions during the trial. Therefore, it is essential that the provenance
models link to existing standards by reusing their ontologies and provide clear map-
ping to their process models.

The provenance requirements for clinical research and trial management of dif-
ferent stakeholders (researchers, clinicians, participants, IT staff) need to be investi-
gated to identify provenance needs at multiple levels and stages of clinical research
process. Our work was done within the context of a particular clinical study, con-
ducted within the EU TRANSFoRm project, as an exemplar to emphasise real-world
provenance challenges such as privacy and security requirements arising from legal
and logistical constraints. It was the bridging of data from the care context with
data from registers and clinical research in TRANSFoRm that made it necessary
to develop, together with data privacy and data security frameworks, a distinct data
provenance framework. Further requirements within the domain are also presented
with respect to traceability and subsequent provenance record analysis, including
questions on task ownership, study properties, and degrees of anonymization of var-
ious parts of contributing data.

Section 1.2 introduces the clinical trial conceptual model, conforming to the GCP
standard. Key aspects of the Open Provenance Model (OPM) are presented in sec-
tion 1.3. Section 1.4 describes OPM-RCT, the new profile for randomised controlled
trials, while examples of its usage in querying the provenance repositories are given
in section 1.5. Section 1.6 summarizes the work done and lays out future directions
both within TRANSFoRm and beyond.
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1.2 Process Flow of Clinical Trials

Clinical trials are research studies into particular medical questions that work with
human data, and follow a protocol. A clinical trial consists of three phases: (1) plan-
ning and preparation, (2) trial conduct and (3) analysis and reporting of results (see
legend of diagram).

The model, as used for the OPM-RCT profile, including steps involved and the
documents produced and used in each step, is based on the ICH Good Clinical Prac-
tice guideline, a standard which dates back to 1996. when it was produced by EU,
US, and Japanese regulatory bodies, and has since been enshrined in law following
the introduction of the EU Clinical Trials Directive 2001 and its UK implementa-
tion, UK Medicines for Human Use (Clinical Trials) Regulation 2004.

1.2.1 Trial Planning and Development

The most important preparatory step is the creation of the trial protocol. It describes
objectives, design, methodology, statistical considerations, and the organisation of
a clinical trial. The content and structure of the trial protocol is determined by the
ICH GCP E6 guideline. Protocol feasibility research goes into the formulation of
the protocol insuring that a suitable patient population exists and that the clinical
trial conduct is viable. For the document and records management during the trial,
a Trial Master File (TMF) and an Investigator Site File (ISF) have to be prepared.
Both files contain relevant documents and are gradually filled with study documents
during the course of the clinical trial. Trial support has to be prepared, including
investigator training, development of the investigator’s brochure containing efficacy
and safety information, development of patient information and informed consent
forms, and the development of data management plan, monitoring plan and statis-
tical analysis plan. For medicinal product studies the logistics of drug supply has
to be organised, including packaging, labelling, shipment, and accountability man-
agement. Trial quality management includes the preparation of standard operating
procedures (SOPs) and audits by the sponsor. For the collection of patient data spe-
cial forms, the Case Report Forms (CRF) have to be prepared. The drug supply for
patient treatment has to be prepared, including the storage, distribution and man-
agement of the Investigational Medicinal Product (IMP), and the generation of a
drug inventory log and temperature log. Administrative activities that accompany
the trial include the negotiation of insurances, contracts and the management of
trial finances. The clinical trial team has to be formed based on the responsibility
split and the accompanying signature sheet. Appropriate sites have to be identified,
recruited for the trial and qualified. In addition laboratories and additional service
providers have to be identified, enlisted and qualified.Prior to the commencement
of a trial the approval of the Competent Authority (CA) and a positive vote of an
Ethics Committee (EC) must be obtained. To obtain an approval documents have
to be prepared and submitted, including patient information and informed consent
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form, and insurance confirmation. Any clinical trial on a medicinal product also
requires a clinical trial authorisation (CTA) from the CA in the EU member states
in which the trial is being carried out.

1.2.2 Conduct of the Clinical Trial Process (Trial Management)

The clinical trial starts with the initiation of sites and the recruitment of patients,
but only after the approval has been obtained. The data management plan is imple-
mented and patients are screened for participation. Patients that meet the inclusion
criteria are randomised and, provided the consent is given, their data is collected,
cleaned by a query process and stored (data and records management); data and
medical reviews are performed according to the data management plan. For data
collection an infrastructure consisting of EDC system (Electronic Data Capture),
web server, and a clinical database has to be set up. Every data management system
used in clinical trials has to be system validated. During clinical trial conduct ac-
companying quality measures, such as monitoring and audits by the sponsor, have
to be in place. The monitor performs initiation visits at the outset, monitoring vis-
its during the trial and close out visits at the end of the trial. Enabling faultless
safety management in clinical trials is one of the most important issues. All adverse
events are recorded, however serious adverse reactions (SAR) and suspected unex-
pected serious adverse reactions (SUSAR) require an additional risk assessment and
must be reported within a fixed period (SAE management). Serious adverse events
(SAE) are adverse events that result in death or are life-threatening, require inpatient
hospitalisation, or result in significant disabilities or damage, etc. Adverse Events
recording has to be harmonised with SAE reporting (SAE reconciliation). Interim
Safety Reports are also created during the process.

1.2.3 Trial Ending

After all patients have been recruited and all trial related procedures performed ac-
cording to trial protocol, the sites are closed and the database is locked; the data
collected is then sent to the sponsor or leading investigator for analysis. The trials
differ in their aims: industry sponsored trials aim at marketing authorisation, while
investigator initiated trials aim to improve scientific evidence about interventions
and develop reports and publications. The finalisation of the trial includes the cre-
ation of the statistical report with the analysis of all results according to the statistical
analysis plan, and the final trial report. The end of a clinical trial should be commu-
nicated to both the Competent Authority and the Ethics Committee. The trial ends
with the archiving of all clinical study documents, with the trial master file (TMF)
including the locked study database, archived by the sponsor, and the investigator
site file (ISF) at the corresponding clinical centre (site).
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1.2.4 Trial Metadata Analysis

The metadata of clinical studies allows the researchers, auditors, and any other au-
thorised parties to examine the evolution of a study design for a range of purposes,
from comparing multiple studies for differences in approach, via ensuring regula-
tory compliance, to tracing a particular investigator or participant.

Currently, the audit information about the trial, changes, and amendments is
stored in individual, often paper-based documents, that are part of the Trial Mas-
ter File, containing items such as notes, literature, meeting minutes, protocol draft
versions, trial feasibility information etc. With respect to the conduct of a study,
the process already incorporates a number of documents, e.g. data audit trail, con-
firmation by signature, monitoring of trial conduct, patient recruitment rate, data
querying, and source data verification. Some of this information is stored in paper
documents, while some is kept in the trial database.

Therefore, any analysis of the study lifecycle involves searching through a col-
lection of paper documents, computer files, and database repositories and, by neces-
sity requires a large number of people, from administrative personnel to clinicians
and database managers. Especially in international clinical trials over different time
zones, protocol amendments and changes in eCRFs may be implemented at differ-
ent time points at different sites. A computerised provenance storage centralises this
disparate information in a single resource that can be made accessible as needed to
various user profiles, giving each an appropriate view of the data stored.

1.2.5 ICH GCP and Other Models

The OPM-RCT is based on the ICH Good Clinical Practice guideline. However,
there are also other tools and models that aim to standardize the conduct of clinical
trials and their data representation.

Clinical Trials Toolkit [11] was designed to help meet the requirements of the
UK Medicines for Human Use (Clinical Trials) Regulation 2004, and through it the
EU Clinical Trials Directive 2001. Its specification consists of three process maps
covering different stages in the trial process, so called “stations.” Each station has
associated with it one or more resources: documents, links to other web resources,
forms and others. In addition to that, each station is also classified as being either
standard practice, legal requirement, or good practice, and for each of these whether
it is specific to Directive’s requirements, or relevant to all trials.

In the United States, Clinical Data Interchange Standards Consortium (CDISC),
Health Level Seven (HL7), the National Cancer Institute, and Cancer Biomedical
Informatics Grid (caBIG), have combined their individual efforts in representing
trial data to develop a single standard domain model of regulated clinical research
in the biomedical domain, which combines the terminologies and domains from
their previous work, most notably HL7 Resource Information Model 3.0 [1]. The
result is the Biomedical Research Integrated Domain Group (BRIDG) model [15]
that aims to facilitate integration of disparate models within the clinical research
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area, integration of biomedical/clinical research with healthcare data, while being
understandable to the clinical users. As such, it is not specific to any single standard.

Finally, Primary Care Research Object Model [36] aims to create a link between
the reference model of clinical research, as defined by BRIDG, and the real-world
design and implementation of systems to support the design, execution, analysis,
and report of clinical trials in primary care research. It is based on UML method-
ology and designed with the view of using it for clinical trial data management
systems, and other software tools. Like HL7, it is a general model that does not
promote a particular standard.

1.3 Provenance

Provenance, also referred to as lineage or pedigree, refers to where something comes
from or why it holds a certain property. When viewed as a technical issue with re-
gard to some processes, such as with clinical trials, provenance typically refers to
documentation of the processes that have occurred and the capture and subsequent
access to that documentation, i.e. the infrastructure required to find the provenance
of data produced by those processes. In comparison to features such as auditing,
provenance focuses on tracking the interoperation of processes across different sys-
tems, stages and authorities, so that the full set of influences on some data output
can be understood. As a research topic, provenance is currently receiving consider-
able attention in domains such as healthcare, banking/finance, science, journalism,
and many others [27].

While many of the technical challenges around provenance are the same as for
any structured data to be stored over a long term, most notably access and curation,
the model used for provenance must be suited to its particular characteristics. Many
high-level models of provenance have been proposed over recent years, including
the Open Provenance Model [28], described further below. Due to this prolifera-
tion, and the many specialist representations of provenance developed in specific
application domains, a W3C group has been established to produce a recommended
standard model for provenance interchange [39].

1.3.1 Provenance in Healthcare

In the case of distributed medical applications, the data (electronic health records
and instrument data), the workflows (procedures carried out to perform analysis on
healthcare data) and the record of those workflows may be distributed among mul-
tiple heterogeneous information systems. These information systems may be under
the authority of different healthcare actors such as general practitioners, hospitals,
hospital departments, etc. which form disconnected islands of information. In such
systems, provenance technology may take on the additional role of verifying the
adherence of actors in the process to security policies.
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There is a wide range of use cases which may underlie the need for prove-
nance [26]. Users may wish to simply better interpret their data through knowing
its source, or to decide whether to rely on it based on their trust for that source.
As provenance documents the enactment of procedures, it can be used to analyse
whether procedures are being performed efficiently, which is important in time-
critical applications such as organ transplantation [22]. The involvement of private
patient data means that audit and records of approval for releasing data are funda-
mental aspects of provenance dictated by local, national and international regula-
tions.

Clinical trials are by nature distributed, as the sources of patient data are com-
monly distinct from their users. In projects such as TRANSFoRm, the interrogation
of data from multiple electronic sources, at independent sites, means that an addi-
tional layer of system distribution is added. In order to execute meaningful queries
regarding provenance, the provenance data needs to be interconnected and poten-
tially integrated. To make this possible, a common model for provenance across all
stages and locations of the workflow is desirable.

1.3.2 Open Provenance Model

The Open Provenance Model (OPM) [28] is a representation of the processes which
have led to data being produced or transformed into a new state, and so can represent
the provenance of one or more data items. Here we will summarise the relevant
aspects from the OPM v1.1 specification [28].

OPM is a causal graph model of provenance, meaning that an OPM description
of provenance is a graph whose edges denote causal relationships (X was caused
by Y) between the occurrences denoted by the nodes. This structure allows OPM
graphs to describe how multiple events led to some data being produced (serially or
independently), how one piece of data was derived from another, etc. OPM clas-
sifies occurrences (nodes) into three types: artifacts, processes and agents. Arti-
facts are pieces of data of fixed value and context, e.g. one version of a document.
Processes are (non-instantaneous) actions which are performed using artifacts to
generate other artifacts, e.g. a random selection process uses the full set of eligible
patients and generates a subset of these with which to conduct the trial. The arti-
facts used by a process can play different roles in the process, e.g. a document being
edited versus the additions being made to the document. Agents denote the entities
controlling process execution, potentially in different roles, such as researchers and
clinicians.

The properties which artifacts, processes and agents possess can be documented
by arbitrary key-value annotations to the nodes. Edges can also have annotations
to provide further information on how one occurrence caused another. OPM allows
for multiple levels of granularity of description of the same set of past events, with
each description being a separate account of what occurred. Specifically, what is
represented as a single process in one account can be refined in another account to
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describe how that process is decomposed into multiple sub-processes with interme-
diate data being generated and used.

In the following sections, we show illustrative OPM graphs, which use the fol-
lowing conventions: (i) circles are artifacts, rectangles are processes, and octagons
are agents; (ii) an edge from an artifact to a process is of type wasGeneratedBy,
from process to artifact is used, from process to process is wasTriggeredBy,
from artifact to artifact is wasDerivedFrom, from process to agent is
wasControlledBy; (iii) we omit these types from the figures for brevity, while if
a role is specified, where the role is shown in brackets as in (R) — if not specified,
it has the value undefined.

1.3.3 Profiles

A generic provenance model such as OPM provides the high-level concepts required
to generate and query provenance data across interconnected systems. When used in
practice, it must be augmented with application-specific terminology and data, i.e.
vocabulary for expressing particular kinds of artifact, process, agent, etc.

In many domains, such terminology requirements are not specific to a single de-
ployment. In such cases, rather than each separate team solving a similar problem
determining their own vocabulary to use in conjunction with the generic provenance
model, it is preferable that there is some agreed community standard extension to
the generic model. In OPM as elsewhere, this is called a profile. By defining a profile
for provenance in clinical trial research, we aim to allow far greater interoperability
between systems involved in supporting such trials. Without a profile, it is doubt-
ful that deep interoperation of systems would be useful, because critical questions
regarding the provenance of the data they use and produce would be unanswerable.

An OPM profile is intended to define a specialisation of OPM, and it consists of
the following elements.

• A unique global identifier for the profile
• A controlled vocabulary
• Guidance on how to express OPM graphs in the domain of this profile
• Expansion rules stating how concepts introduced in the profile translate into

generic OPM graph structures
• Profile-specific syntax to be used in serialisation of OPM graphs

As with OPM itself, a profile can be defined independently of how data using that
profile is serialised (excepting the optional serialisation syntax mentioned above).
OPM does not specify how data using the profiles must be serialised, and there are
a variety of formats available, including two OWL1 ontologies (OPMO [29] and
OPMV [45]) with different levels of expressivity, and RDF serialisations.

1 OWL is the acronym for Web Ontology Language [24]
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1.4 OPM RCT Profile Proposal

This section describes the OPM profile proposal for modelling Ran-
domized Controlled Trial processes. Its URI identifier is defined as
http://www.lesc.imperial.ac.uk/rcto/rctpo, and in the rest
of the chapter rctpo: will be used as the shortened prefix for the profile. We now
proceed to present the controlled vocabulary for the profile, its expansion rules, and
give several examples.

1.4.1 RCT Controlled Vocabulary

The OPM-RCT proposal requires an underlying ontology to capture the RCT do-
main concepts in the provenance model. We do this by integrating several popular
ontologies and controlled vocabularies, and extending them with missing concepts
and relations to define the Randomized Controlled Trials Ontology (RCTO) that
serves as the back-end to OPM-RCT.

RCT and RCT-related concepts that appear in the ICH GCP guideline can be
found in several ontologies.

• Ontology for Biomedical Investigations2 [12] contains a formal description of the
protocols, instrumentation, material, data used, results generated, and analysis
performed during biomedical research.

• Biomedical Research Integrated Domain Group (BRIDG) Model3 [44] contains
the common concepts in regulated clinical research protocols. The current ver-
sion describes in detail the protocol, the study conduct and adverse event data, as
well as a hierarchy of all concepts involved in clinical trial studies.

• Ontology of Clinical Research4 [35] contains a formal description of human stud-
ies and the studies elements. It does not contain details of study conduct yet, but
includes a hierarchy of study types and status, as well as a set of administrative
processes during the planning phase that are not described in any other controlled
vocabulary.

• Epoch Clinical Trial Ontology5 [34] is composed of seven ontologies (Clini-
cal Trial, Assay, ConstrainExpression, Labware, Measurement, Organization and
Protocol) resulting in a detailed formal description of trial protocols and the ex-
perimental conditions of assays.

2 http://purl.obolibrary.org/obo/obi, prefix: obi:.
3 http://www.bridgmodel.org, used prefix: bridg:.
4 http://purl.org/net/OCRe/HSDB_OCRe.owl, used prefix: ocre:.
5 http://epoch.stanford.edu/ClinicalTrialOntology.owl, used prefix:

epoch:.

http://www.lesc.imperial.ac.uk/rcto/rctpo
http://purl.obolibrary.org/obo/obi
http://www.bridgmodel.org
http://purl.org/net/OCRe/HSDB_OCRe.owl
http://epoch.stanford.edu/ClinicalTrialOntology.owl
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• Adverse Event Ontology (AEO)6 [17] was designed with the aim of standardising
adverse event annotation, integrating various adverse event data, and supporting
computer-assisted reasoning.

All of the above have been defined using OWL, except for BRIDG, which is based
on UML7.

These ontologies and controlled vocabularies are complementary in some con-
cepts, and overlapping in others, therefore, an ontological alignment is needed in
order to provide interoperability of the systems using them. Also, although some
types of entities, such as documents, electronic clinical resources, roles and pro-
cesses are already described in these ontologies, complete and rigorous conceptual
hierarchies for them are completely lacking.

To overcome these challenges a new ontology is introduced, Random-
ized Controlled Trial Ontology, at http://www.lesc.imperial.ac.uk/
rcto/rcto and with the shortened prefix rcto:. RCTO is an extension of the OBI
ontology, with the following features:

• The ontology alignment is included in the concepts of rcto.
• A hierarchy is introduced for Clinical Trial Documents, an extension of the

obi:Document concept, by characterizing each of the documents, and the re-
lationships between them. The full description, using Description Logic state-
ments, is in Table 1.1.

• A hierarchy is introduced for Electronic Clinical Resources, which is an exten-
sion of the obi:information content entity concept, as described in Table 1.2.

• The hierarchy of obi:roles has been refined in accordance with the hierarchy in
BRIDG model.

• As the above ontologies are all missing some fundamental process concepts
(namely Trial protocol definition, Trial master file and essential document prepa-
ration, monitoring plan preparation, statistical analysis preparation, CRF cre-
ation, and others), they have been introduced to the new process hierarchy.

Note that rcto: specifies only the clinical trial concepts derived from the above pro-
posed extensions, as opposed to rctpo:, which specifies OPM-RCT concepts.

The OPM-RCT vocabulary proposal is described in subsections 1.4.1.1 - 1.4.1.5
and a summary of a formal description of some representative entities definition are
given in subsection 1.4.1.6. The elements of the vocabulary are annotated onto the
OPM artifact, agent and process entities through OPM Annotations framework and
the rdf:type property, effectively declaring subtypes.

6 http://bioportal.bioontology.org/ontologies/1489, used prefix:
aeo:.

7 UML is the acronym for Unified Modeling Language [10]

http://www.lesc.imperial.ac.uk/rcto/rcto
http://www.lesc.imperial.ac.uk/rcto/rcto
http://bioportal.bioontology.org/ontologies/1489
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1.4.1.1 Artifacts

Artifacts describe an instantaneous state of an entity in the application. In OPM-
RCT applications, we introduce three new types of artifacts:

• Document (rctpo:DocumentArtifact): A type of artifact to characterize a clinical
trial document.

• Observation Result (rctpo:ObservationResultArtifact): A type of artifact to
characterize an observation (clinical intervention) result which was performed
during the trial.

• Electronic Resource (rctpo:ElectronicResourceArtifact): A type of artifact to
characterize electronic resource used/accessed during a trial.

In provenance graphs, these three types represent the exact state of documents,
data observation results, and electronic resources in relation to individual process
instances, e.g. exact version of a trial document that resulted from a completed ap-
proval process.

1.4.1.2 Agents

Agents are entities which control the processes of an application. In RCT application
an agent can be:

• Person (rctpo:PersonAgent): Physical actor in the process who can perform a
number of roles (see below) depending on the exact function with relation to the
task.

• System (rctpo:SystemAgent): System is a program or computational module for
data control and processing.

The distinction between the two is introduced to clearly separate automated steps,
performed by a computer system, from those that require human intervention, which
we foresee to be important for auditing purposes.

1.4.1.3 Processes

Processes are entities characterizing the activities of an application. As explained
in Section 1.2, an RCT trial is divided in three phases: planning, in which the trial
is planned; trial conduct, in which, after the trial approval, all planned events to
validate the trial hypothesis are performed; and analysis, in which data collected
during the trial conduct phase are analysed and the conclusions of the trial are given.

Processes in the RCT application can be of different subtypes, according to their
general goal:

• Documentation (rctpo:DocumentationProcess): a process which has to produce,
at the very least, a document describing the results of its processing. That is, all
OPM graphs containing a Document preparation process also contain a depen-
dence with a rctpo:DocumentArtifact.
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• Support preparation (rctpo:SupportPreparationProcess): a process to describe
how to select and prepare staff, materials and sponsors of the trial.

• Intervention (rctpo:InterventionProcess): a process to describe the applied pa-
tient interventions (observations, in the bridg terms) during the trial.

• Data publication (rctpo:DataPublicationProcess): a process which describes
how data are introduced and published.

• Data analysis (rctpo:DataAnalysisProcess): a process which describes how data
can be accessed and analysed; as a result, at least one document, written by a
study researcher and describing the conclusions of the analysis, should be re-
turned.

In the following, we enumerate a set of more specific RCT processes, organised
according to the phase in which they are involved:

I. Planning phase
This phase is characterized by a set of documentation processes:

• Trial master file and essential document preparation
• Monitoring plan development
• Patient information and inform consent (rctpo:PatientInformationAnd

Consent Process)
• eCRF development, validation and data management plan development
• Statistical analysis plan development
• Administrative documents preparation
• Quality management and SOPs preparation

There are other processes related with support preparation:

• Trial team formation
• Study sites identification
• Patient randomization preparation
• Recruitment phase: informed consent collection
• Trial personal support preparation
• Drugs and other interventions supplies preparation
• Labs identification, qualification and preparation

The last three processes above are of rcto:DocumentationProcess type, as they
have to guarantee a documented output describing the selected entities for the
trial execution. In particular, a Trial personal support preparation process con-
tains a dependence with an rcto:InvestigatorSiteFile artifact; Drugs and other
interventions supplies preparation, with the rcto:SuppliesFileDescription arti-
fact; and Labs identification, qualification and preparation, with the
rcto:LabsFileDescription artifact.

Figure 1.1 represents the planning phase of an example RCT. The trial
planning process triggered four processes. The Trial master file and essen-
tial document preparation, Labs identification, qualification and preparation
and Monitoring plan development processes generated the TrialMasterFile, the
LabsFileDescription and the MonitoringPlan documents, respectively. Trial
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master file and essential document preparation was guided by the Guideline
for Good Clinical Practice [2] document (the specifiedBy dependence, an
specialization of the used dependence, is explained in Section 1.4.1.4). Re-
cruitment phase was also executed as consequence of the beginning of the
planning phase, and controlled by an investigator, who explained the study to
the patient. Following that, the investigator answered patient’s questions, and
the patient filled in the informed consent. The Trial protocol document for the
study was then generated as the final result of the Trial planning process. Note
that the derivedFrom relations were added from it to all previous generated
documents.

Patient
[pat1]

Monitoring plan 
development

Laboratory 
identification, 

qualification, and 
preparation

Trial protocol
[tp1]

Recruitment 
phase: Informed 

consent collection

Trial master file 
and essential 

document 
preparation

(patient)

Trial planning

ICH Topic E6 
R1

GCP Guideline
[D7]

Lab file 
description

[LF_EudraCT1]

specifiedBy

Trial Master File 
[TMF_EudraCT1]

Inform consent

Informed 
Consent

[IC1]

Researcher
[R1]

Monitoring 
plan

[MP_EudraCT1]

Fig. 1.1 OPM graph during the planning phase of a RCT.
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II. Trial conduct phase
This phase is characterized by two major groups of processes. The Data pub-
lication ones include:

• Randomize selection. All patients with an informed consent are inserted
into the system to perform a random selection

• Patient registering. (rctpo:PatientRegisteringProcess) All selected patients
are introduced into a Clinical Trial Data Management (CTDM) system (that
is, the execution of the CRF creation process for example EDC). In order to
maintain their trial data and the Trial Master File and the Investigator Site
File documents are adequately updated.

• CRF creation. (rctpo:CRFCreationProcess) A CRF is associated with each
patient in a CTDM system. It takes the eMR of a patient and fill out the
eCRF of the current health status of the patient.

• Patient data update. (rctpo:PatientDataUpdateProcess) This process modi-
fies the patient data under the control of a system and/or person agent and
the previous stored patient data, and belongs to one of the following sub-
types:
– Paper based data update; a data manager annotation based on paper no-

tifications from the investigator or study nurse.
– Obtaining data from worksheet; investigator notes in worksheet.
– Electronic update data; patient data are updated automatically from a

quality of life questionnaire, an intervention result, or amendments over
the eCHR done by the investigator.

The Data analysis processes in this phase include:

• Data queries and validation. Data managers can query the trial patient
database and validate some data, which can trigger a process for Data and
medical intervention reviews,

• Data and medical intervention reviews. Investigators can review the data
from interventions and other data acquisition sources in order to add detail.

• Statistical Validation. At the end of the trial, biostatisticians can query the
complete database for remaining discrepancies or missing data.

Finally, the remaining processes of this phase are:

• Quality-of-life questionnaire application. Patient fills out a questionnaire
about his/her current health state.

• Patient intervention. Patient is subjected to a specific planned procedure.
• Adverse event control An adverse event is controlled and, consequently, the

planned procedure for such case is triggered.
• Monitor control. Monitors review documents and data for completeness and

correctness (source data validation).
• Close site. Closure of a study site is performed when all data have been

updated, validated and no inconsistencies have been observed.
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III. Trial analysis phase
The data analysis starts after all the study sites have been closed.
Two processes are present here, both of which are subtypes of both
rctpo:DocumentationProcess and rctpo:DataAnalysisProcess:

• Analyse data. (rctpo:TrialDataAnalysisProcess) All planned analyses are
performed over the collected trial data, according to the Statistical Analysis
Plan, and a document is created with all the findings. The example can be
found in Section 1.4.3.

• Finalization trial. (rctpo:FinalizationTrialProcess) The conclusions of the
trial are presented in a document.

The last process in an RCT is the Archiving trial process, in which the trial is
considered as finished.

1.4.1.4 Dependences

These are relations between different entities in the graph. In RCT application two
new causal dependences are needed:

• wasSpecifiedBy is a specialisation of used establishes the relation between
a process and the document artifact which proscribes how to conduct the process.
For example, in Figure 1.1 it is used to describe that the Trial Master File and
other essential document preparation process was constructed according to the
Good Clinical Practices document.

• laterGenerationThan, a specialisation of wasDerivedFrom denotes the
relation between two artifacts, in which the former is an updated version of the
latter. It is used to trace the changes in the CRF of a patient, or any trial docu-
ments following update actions during the trial.

Neither of these dependences is necessarily restricted to the RCT domain.
laterGenerationThan was also used in [25], applied to versioning of doc-
uments represented with Dublin Core terms.

1.4.1.5 Roles and Accounts

Roles in OPM-CRT serve to further specify the part that entities play in relations,
for example that an agent is not only controlling a process, but is doing so as a study
coordinator, or that a piece of software controlled the task in the role of a recruitment
service, or that an artifact is used as input data to the process. The following roles
have been identified:

• Controlled-by (persons): Study coordinator, Investigator, Study nurse, Statisti-
cian, Biometrician, Data manager, eCRF designer, Head of eCRF data manage-
ment, Sponsor, Patient, Clinician.

• Controlled-by (computer systems): Randomization service, Recruitment ser-
vice, Monitor service, eCRF based data collection, Clinical Trial Data Manage-
ment system.
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• Used-by: Input.

The OPM RCT profile also introduces several accounts, each of which is as-
sociated with a certain level of abstraction in displaying the graphs, i.e. visibility
restrictions on artifact types and processes. The profiles mirror the intended user
types of the system, and the segments of provenance data space that will be relevant
and accessible to them. These will include study coordinators, clinicians, investiga-
tors, database administrators and data managers. The exact granularity of each of
these is still under development.

1.4.1.6 Formal Definition Examples of the Proposed RCT Profile Vocabulary

In Table 1.3 some representative examples of each entity type in the proposed profile
are formally defined using description logic statements.

1.4.2 Profile Expansion Rules

The expansion rules are used to introduce new relations between the entities in the
OPM model. Three derived dependences are used in OPM-RCT.

[Artifact wasDefinedBy Agent] An artifact, a, wasDefinedBy an agent
ag, written as: a→∗ ag if the following chain of dependences can be constructed: a
wasGeneratedBy p wasControlledBy ag, that is, the agent ag controlled a
process which generated the artifact a.

If the artifact is a document, the wasReviewedBy relation can be used. It is
defined as a specialization of wasDefinedBy.

[Artifact wasReviewedBy Agent] This is a specialization of the
wasDefinedBy dependence that is created if the object is a Document arti-
fact. A document artifact, da, wasReviewedBy an agent ag, written as: da→∗ ag
if the following chain of dependencies can be constructed: da wasGeneratedBy
p wasControlledBy ag, that is, the agent ag controlled a process which
generated the Document artifact da.

[Agent wasOverseenBy Agent] An agent, ag′, wasOverseenBy another
agent, ag, written as: ag′ →∗ ag if the following chains of dependences can be con-
structed:

1. p wasControlledBy[study coordinator] ag,
2. p′ →∗ p,
3. p′ wasControlledBy ag′,

In this way, it is established who was the person overseeing the actions of some
agent in a study task.
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1.4.3 Examples

To illustrate the usage of OPM-RCT, in this section we provide two examples of
provenance graphs tracing the execution of tasks from TRANSFoRm project. Entity
types are denoted by labels, while the identifiers for individual entities are written
in angular brackets below.

In Figure 1.2, a trace of the analysis phase of the RCT is shown, omitting tasks
preceding it and other documents. The initialization step was performed by the study
coordinator coord1, as represented by the wasControlledBy relation between
the agent and the process, with the agent having the role study coordinator. The next
step, connected by wasTrigerredBy relation to the previous, was the statistical
data analysis, done by the statistician stat1, and which resulted in the data analysis
report, which wasGeneratedBy the process, and was used to derive the final trial
conclusions report in the task that finalized the trial. Once this had completed, the
trial was archived for future reference.

Applying the new expansion rules produces two new relations that can be added
to the graph: a) statistical report wasReviewedBy the statistician stat1, and, b)
stat1 wasOverseenBy the study coordinator coord1.

Researcher
[coord1]

Researcher
[stat1]

Initialization of 
Analyze data 

phase

Statistical data 
analysis

Data analysis 
report

[eudract1]

Trial 
conclusions 

report
[eudract1]

Finalize trial

Archiving trial

(study coordinator)

(statistician)

wasReviewedBy

wasOverseenBy

Fig. 1.2 OPM graph for the analysis phase of a RCT.

The second example, shown in Figure 1.3 involves the creation of a quality-of-life
questionnaire.

The coordinator coord1 controlled a process of patient data update, which was
performed on the CRF entity using an eCRF software, through the electronic data
collection update process. The data for the update was obtained from the question-
naire produced in a quality of life questionnaire application process, by a patient
pat1 and a study nurse, and wasSpecifiedBy the trial protocol EudraCTTP1.
A new updated version of the CRF was produced and used to generate an updated
version of the patient CRF study database.
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Researcher
[nur1]

Patient
[pat1]

Update patient 
data

Electronic data 
collection update 

Questionnaire
[HC21072011]

Updated PCRF 
database

[db1]

Quality of life 
questionnaire 

application

(study nurse) (patient)

Change control

Document 
[EudraCT1]

(input)

Clinical Data 
Management 

System
[sys1]

PCRF
[pid1247]

PCRF
[pid1234]

specified by

laterGenerationThan

eCRF

Researcher
[coord1]

(study coordinator)

Fig. 1.3 OPM graph questionnaire application and data updating during a RCT.

The new profile dependency laterGenerationThan explicitly captures the
change control of the two versions of the CRF. Also, the expansion rule for
wasOverseenBy asserts that the study nurse nur1 was overseen by the study
coordinator coord1. Finally, the new version of the CRF wasDefinedBy the
Clinical Data Management System sys1, enabling the explicit querying of docu-
ments produced using this particular version of the CDMS software in some future
audit.

1.5 Storage and Analysis of Provenance Data

As presented above, OPM-RCT graphs are implemented as RDFs containing OPM-
RCT profile instances, which could be very large in size, and as a requirement of a
RCT application, they must be made persistent. Therefore, the OPM-RCT graphs
need to be managed using one of the available RDF stores which typically use
a RDBMS to manage the RDF data and support SPARQL [31], the W3C recom-
mendation as Query Language for RDF data, or a similar semantic query language.
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Jena [43, 42, 18], Sesame [7, 8], Mulgara [41], OpenLinkVirtuoso [14, 19], Alle-
groGraph [20, 21], BigOWLIM [5], Garlik 4store [16, 33], BigData[38], Semantic
Oracle (11g)[32, 30], Intellidimension Semantic Platform8 and RDFprov [9] are ex-
amples of this type of RDF repositories.

Amongst them, only RDFProv has been designed to also serve as a provenance
metadata management system and is compliant with OPM (v1.1). It defines two
types of relational database schema suitable for RDF storage, with algorithms for
data insertion and SPARQL-to-SQL translation, considering the specific features of
provenance data.

Non-semantic approaches for provenance data storage and querying have been
described in literature, but most of them provide only export functionality from
internal workflow format to OPM in XML or RDF such as VisTrails [13],
eBioFlow [40], and Kepler [3]. Taverna [37], OPMProv [23] and PLIER [4], use a
relational database at the back end, and reasoning and querying is expressed directly
in SQL, without any inference engine present. This strategy is valid for general do-
mains in which OMP graph entities are direct instances of the OPM ontology and
not more specific objects. In knowledge domains, like RCT, where a hierarchical
classification of the OPM entities is needed, inference engines increase the detail of
the metadata analysis and SQL alone may not suffice.

Another solution, incorporating the best of both worlds, consists of virtualizing
the provenance database as an RDF schema, using an engine such as D2RQ [6],
which contains a declarative mapping between relational database schemata and
OWL/RDFS ontologies. In this way, simple queries can be efficiently answered us-
ing SQL, while more complex queries can utilize SPARQL over the RDF views
of the provenance data in the OPM database. Examples of using this strategy for
querying provenance data in the RCT domain are given below.

The current prototype uses a variant of the database schema in [23], extended by
the table Graph(OPMGraphId, OTimeLower, OTimeUpper), which stores the graphs
and the timestamp of their executions.

Example 1.1. The SQL queries are convenient for simple structural relationships
between task instances that do not require relation roles to be considered. This query
lists all the processes of executions completed on 01/08/2011 that were the starting
(root) tasks.

1 SELECT ProvenanceDB.Process.ProcessId

2 FROM ProvenanceDB.Process, ProvenanceDB.OPMGraph, ProvenanceDB.ExplicitWasTriggeredBy,

3 WHERE ProvenanceDB.Process.OPMGraphId = ProvenanceDB.OPMGraph.OPMGraphId AND

4 ProvenanceDB.OPMGraph.OTimeUpper BETWEEN ‘01/08/2011’ AND ‘02/08/2011’ AND

5 NOT ProvenanceDB.ExplicitWasTriggeredBy.EffectProcessId = ProvenanceDB.Process.ProcessId

8 http://www.intellidimension.com/products/semantics-platform/
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Example 1.2. For detailed, domain-specific questions, such as the actions of various
study personnel to do with certain actions, SPARQL allows us to use the ontolog-
ical information defined. This query is used to find all the study nursers who have
checked a screening marked as erroneous by the monitor at a specified study site.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX opmo: <http://openprovenance.org/model/opmo>

3 PREFIX rctpo: <http://www.lesc.imperial.ac.uk/rcto/rctpo>

4 SELECT ?studyNurse

5 WHERE {

6 ?graph rdfs:subClassOf opmo:OPMGraph .

7 ?graph rctpo:executedIn s .

8 ?graph opmo:hasProcess ?screenProc .

9 ?screenProc rdfs:subClassOf rctpo:ScreenProcess .

10 ?screenProc rctpo:hasStatus ‘Error’ .

11 ?graph opmo:hasDependence ?dep .

12 ?dep rdfs:subClassOf opmo:WasControlledBy .

13 ?dep opmo:effect ?screenProc .

14 ?dep opmo:cause ?studyNurse .

15 ?dep opmo:Role ‘Study Nurse’ .

16 }

Example 1.3. Similarly, semantic searches are used to track the provenance of a par-
ticular entity, whether physical or electronic. This listing includes all versions of a
specified pCRF, together with the date and the people involved in each modification,
given the patient identifier.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX opmo: <http://openprovenance.org/model/opmo>

3 PREFIX obi: <http://purl.obolibrary.org/obo/obi>

4 PREFIX rcto: <http://www.lesc.imperial.ac.uk/rcto/rcto>

5 SELECT ?a, ?t, a1

6 WHERE {

7 ?graph rdfs:subClassOf opmo:OPMGraph .

8 ?graph opmo:hasArtifact ?a .

9 ?a rdfs:subClassOf rcto:pCRF .

10 ?a rcto:hasHCNumber hc .

11 ?a opmo:endTime ?t .

12 ?graph opmo:hasProcess ?p

13 ?graph opmo:hasDependence ?dep .

14 ?dep rdfs:subClassOf opmo:WasGeneratedBy .

15 ?dep opmo:effect ?a .

16 ?dep opmo:cause ?p .

17 ?p (opmo:effectInverse/opmo:cause)* ?a1 .

18 ?a1 rdfs:subClassOf obi:Person .

19 }
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Example 1.4. Queries can also relate to other types of entities. This query returns the
document describing the feasibility of the laboratory lname and the occurrences of
that laboratory in the trial master file.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX opmo: <http://openprovenance.org/model/opmo>

3 PREFIX obi: <http://purl.obolibrary.org/obo/obi>

4 PREFIX rcto: <http://www.lesc.imperial.ac.uk/rcto/rcto>

5 SELECT ?doc, ?i

6 WHERE {

7 ?graph rdfs:subClassOf opmo:OPMGraph .

8 ?graph opmo:hasArtifact ?a .

9 ?a rdfs:subClassOf obi:Laboratory .

10 ?a obi:hasFacilityName lname .

11 ?graph opmo:hasArtifact ?doc .

12 ?doc rdfs:subClassOf rcto:FeasibilityAnalysisDocument .

13 ?graph opmo:hasArtifact ?TMF .

14 ?doc rdfs:subClassOf rcto:TrialMasterFile .

15 ?TMF hasIncidence ?i .

16 ?i rcto:involved ?a .

17 }

Example 1.5. Another useful global query gives the listing of all documents used
during the execution of a specified process proc.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX opmo: <http://openprovenance.org/model/opmo>

3 PREFIX rcto: <http://www.lesc.imperial.ac.uk/rcto/rcto>

4 PREFIX rctpo: <http://www.lesc.imperial.ac.uk/rcto/rctpo>

5 SELECT ?doc

6 WHERE {

7 ?graph rdfs:subClassOf opmo:OPMGraph .

8 ?graph opmo:hasProcess ?p .

9 ?a rdfs:subClassOf PROC .

10 ?p opmo:usedStar ?a .

11 ?a rdfs:subClassOf ?rctpo:DocumentArifact .

12 }

Example 1.6. Finally, individual pieces of information may also be retrieved, in-
cluding which researcher created the linkage data associated to the Serious Adverse
Events (SAEs) in the trial.

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

2 PREFIX opmo: <http://openprovenance.org/model/opmo>

3 PREFIX rcto: <http://www.lesc.imperial.ac.uk/rcto/rcto>

4 PREFIX rctpo: <http://www.lesc.imperial.ac.uk/rcto/rctpo>

5 SELECT ?research

6 WHERE {

7 ?graph rdfs:subClassOf opmo:OPMGraph .

8 ?graph opmo:hasProcess ?p .

9 ?p rdfs:subClassOf rctpo:LinkageProcess .

10 ?p rcto:query ?q .

11 ?q rcto:useTable ‘SAE’ .

12 ?graph opmo:hasDependence ?dep .

13 ?dep rdfs:subClassOf opmo:WasControlledBy .

14 ?dep opmo:effect ?p .

15 ?dep opmo:cause ?research .

16 ?research opmo:role ‘StudyResearch’ .

17 }
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1.6 Summary

Provenance provides a powerful tool for capturing the actions and interactions in
complex systems by creating an extensible infrastructure for standardized auditing
and in-depth querying of events that led to a certain output or action. Randomized
controlled trials in particular are in dire need of both a semantic representation to un-
derpin the knowledge management tools currently in development, and some means
of supporting the complex process model proscribed by legal, scientific, and prag-
matic requirements. The model presented in this chapter addresses the latter point
by delivering a mechanism for standardized auditing of trials using provenance data
captured both by software tools and human actors in the process.

The model is the key part of the provenance framework, developed within the
context of the TRANSFoRm project to support interpretation, reporting and repro-
ducibility of results delivered by a decision support system built around clinical
trial data. The framework performs the capture of all occurrences of data access or
queries that occur during studies in the context of the TRANSFORM project, al-
lowing users to track their studies and processes, and reproduce and reconstruct the
steps that were used to achieve a particular decision, thereby ensuring trust in the
processes and procedures used to perform studies and produce results.

OPM-RCT model was designed as a profile extension to the Open Provenance
Model, currently an input to a W3C provenance standard that is in development. The
profile incorporates two new ontologies: Randomized Control Trial Provenance On-
tology (RCTPO) that specifies additional provenance entities and relations needed to
easily formulate important queries within the RCT domain, and Randomized Control
Trial Ontology (RCTO) aligning several existing ontologies in related domains, and
extending them by RCT specific terms and concepts enabling full representation of
ICH Good Clinical Practice guideline on RCTs. The latter ontology is therefore rele-
vant for any RCT knowledge application that wants to conform to the GCP standard.

The general approach taken in the chapter, of defining a semantic representa-
tion for the domain, together with a generic provenance module that incorporates
the querying capabilities needed, is applicable to any process and document inten-
sive domain, ranging from business enterprises to algorithm flow charts. Indeed, the
current direction that the provenance community is taking is the one of developing
profile extensions both for fundamental computing concepts (e.g. data models and
transformations) and for requirements of particular domains such as document ver-
sioning. The eventual aim is to have a rich collection of profiles that can be freely
combined to achieve the right level of complexity and expressivity that the domain
application requires. OPM-RCT fits firmly within that philosophy.
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Chapter 2
Evaluating Workflow Trust Using Hidden
Markov Modeling and Provenance Data

Mahsa Naseri and Simone A. Ludwig

Abstract. In service-oriented environments, services with different functionalities
are combined in a specific order to provide higher-level functionality. Keeping track
of the composition process along with the data transformations and services pro-
vides a rich amount of information for later reasoning. This information, which is
referred to as provenance, is of great importance and has found its way into areas
of computer science such as bioinformatics, database, social, sensor networks, etc.
Current exploitation and application of provenance data is limited as provenance
systems have been developed mainly for specific applications. Therefore, there is a
need for a multi-functional architecture, which is application-independent and can
be deployed in any area. In this chapter we describe the multi-functional architec-
ture as well as one component, which we call workflow evaluation. Assessing the
trust value of a workflow helps to determine its rate of reliability. Therefore, the
trustworthiness of the results of a workflow will be inferred to decide whether the
workflow’s trust rate should be improved. The improvement can be done by replac-
ing services with low trust levels with services with higher trust levels. We provide
a new approach for evaluating workflow trust based on the Hidden Markov Model
(HMM). We first present how the workflow trust evaluation can be modeled as a
HMM and provide information on how the model and its associated probabilities
can be assessed. Then, we investigate the behavior of our model by relaxing the
stationary assumption of HMM and present another model based on non-stationary
hidden Markov models. We compare the results of the two models and present our
conclusions.
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2.1 Introduction

In service-oriented environments, services with different functionalities are com-
bined in a specific order to provide higher-level functionality. The composition of
services is usually referred to as workflows. A workflow is defined as the automation
of the processes and involves the orchestration of a set of services, agents and actors
that must be combined together to solve a problem or define a new service. Differ-
ent services of the workflow represent the transformation processes that receive the
data as input to produce the transformed data as output. The workflow graph often
describes a network where the nodes are services and the edges represent messages
or data streams that channel work or information between services. Each node pro-
cesses a stream of messages and forwards the resulting streams into its connected
nodes.

In such environments, great numbers of workflows are executed to perform mostly
scientific and not often business experiments. The workflow activities are run repeat-
edly by one or more users and large numbers of result data sets in the form of data
files and data parameters are produced. As the number of such datasets increases,
it becomes difficult to identify and keep track of them. Besides, in these large-scale
scientific computations how a result dataset is derived is of great importance as it
specifies the amount of reliability that can be placed on the results. Thus, informa-
tion on data collection, data usage and computational outcome of these workflows
provide a rich source of information.

Capturing the execution details of these transformations is a significant advan-
tage for using workflows. The execution details of a workflow, referred to as prove-
nance information, is usually traced automatically and stored in provenance stores.
Provenance data contains the data recorded by a workflow engine during a work-
flow execution. It identifies what data is passed between services, which services
are involved, and how results are eventually generated for particular sets of input
values. Data associated with a particular service, recorded by the service itself or
its provider, is also stored as provenance information. Such data may relate to the
accuracy of results a service produces, the number of times a given service has been
invoked, or the types of other services that have made use of it [2].

One of the unexplored applications of provenance is exploiting it for the purpose
of learning. A large store of the previous executions of services and workflows, as
well as their specifications, provide an appropriate data set for learning and knowl-
edge discovery. The provenance data can be explored using data mining and pattern
recognition methods to discover the patterns of interest in the data. The store is also
a suitable source for learning probabilities. Therefore, probability learning methods
can be used to produce the required parameters for the probabilistic decision making
processes. As the provenance data is recorded at regular intervals, and consists of
values and events that are changing with time, we believe time series mining meth-
ods [1] are a suitable choice for evaluating and describing the changes that occur in
the data.

Applying learning and knowledge discovery methods to provenance data can pro-
vide rich and useful information on workflows and services. Therefore, the
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challenges with workflows and services are studied to discover the possibilities and
benefits of providing solutions by using provenance data. Previously, large amount
of research has been done to target workflow challenges such as composition, pat-
tern discovery, service selection, and process refinement. Workflow composition and
selection methods require a description of resources and Quality of Service (QoS)
specifications as well as well-defined inputs and outputs. These descriptions are usu-
ally presented in the service ontologies provided in service registries. As the prove-
nance store keeps the specification of services such as input or output or service
description, it can be regarded as a large informational registry providing the chance
of intelligent composition and service selection using previous experiences. Among
the workflow issues and challenges, workflow analysis and evaluation, which mostly
includes QoS assessment and trust measurements, is the least-attended problem.
Provenance provides a suitable resource of information for performing analytical
evaluation on data. Discovering workflow patterns has been previously studied us-
ing event logs, which provide a very small amount of data for learning the workflow
models, while provenance provides a rich knowledge base for extracting hidden and
unknown models [3].

The remaining sections of this book chapter are organized as follows: in Sections
2 and 3 the motivation and requirements as well as the multi-functional provenance
architecture1 is described. Section 4 outlines how workflow trust can be evaluated
using the Hidden Markov Model, in Section 5 we discuss the procedure followed
for assessing the HMM probabilities, and in Section 6 the implementation details
of the model are provided. Section 7 presents a case study, as well as the stationary
assumption of the model is investigated and some experiments are performed to
compare the NSHMM trust evaluation results with HMM. In the final section the
conclusion and future work is given.

2.2 Motivation and Requirements

A service-oriented architecture provides an environment in which services are shared
among distributed systems. Potentially, thousands of services are available, which
can be discovered or combined dynamically through appropriate mechanisms for
the purpose of workflow selection, composition, or refinement. Thus, current major
issues regarding workflow and services can be summarized to service composition
and selection, workflow model extraction, refinement, and evaluation. In literature,
these problems are targeted via semantic descriptions of services and event logs.
In this section, we are going to discuss the knowledge requirements of each prob-
lem, and will argue how provenance data satisfies these requirements and provides a
suitable platform for improving as well as optimizing the quality of the solutions to
these problems. Workflow composition and selection methods require an expressive
language that supports flexible descriptions of models and data to facilitate reason-
ing and automatic discovery and composition. Therefore, they mostly exploit the
semantic descriptions of services as well as their QoS specifications from service

1 These two chapters have been partly published in [2]
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repositories or service providers to perform the composition or selection. In [46],
the authors discuss the requirements for workflow composition. These requirements
can be summarized as follows:

• Workflows must be described at different levels of abstraction that support vary-
ing degrees of reuse and adaptation. It is important to mention that this require-
ment is based on the fact that workflows can often be created by re-using existing
workflows with minimal changes.

• Expressive descriptions of workflow components are needed to enable workflow
systems to reason about how alternative components are related, the data require-
ments and products for each component, and any interacting constraints among
them.

• Flexible workflow composition approaches are needed that accept partial work-
flow specifications from users and automatically transform them into executable
workflows.

In order to satisfy these requirements, the authors consider three stages for the cre-
ation of the workflows, which include: defining workflow templates, creating work-
flow instances that are execution independent, and creating executable workflows.
The three requirements mentioned can be satisfied through provenance data. In [47],
the authors argue that a robust provenance trace provides multiple layered presenta-
tion of provenance. Thus, a layered architecture and engine for automatically gener-
ating and managing workflow provenance data is considered in provenance systems.
As a result, provenance data can be used for interpreting the services and datasets of
the workflows. Provenance creation is performed by following a layered approach
that fulfills the requirements of the workflow composition process. The first layer
of the architecture represents an abstract description of the workflow that consists
of abstract activities with the relationships that exist among them. The second layer
provides an instance of the abstract model by presenting bindings and instances of
the activities. The third layer captures provenance of the execution of the workflow
including specification of services and run-time parameters. The final level captures
execution time specific parameters including information about internal state of the
activities, machines used for running, status and execution time of the activities.

As the execution time specific parameters are also gathered in provenance stores,
provenance data also includes the QoS specifications of services. Thus, service se-
lection solutions can be applied to this data in order to automatically select appro-
priate services that provide some QoS requirements. Service providers may not be
trustworthy enough to deliver the services based on the agreed-on QoS. On the other
hand, the validity period of the agreement might have come to an end and no agree-
ment updates might have been made afterwards. The ontological QoS specification
of service providers are updated periodically while there might be many requests in
each period. In case the QoS guarantees change during a period, the providers will
not be able to satisfy the agreed-on thresholds. Or the service provider might not
be able to provide the specifications at all. Using the history of previous executions,
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the provided QoS overcomes the inconsistencies between the guaranteed and deliv-
ered QoS values of services to some extent by providing an estimate of the QoS
parameters of the services with regard to time.

Most research on workflow systems focus on prediction, tracking and monitor-
ing of workflows, and not on the evaluation of these processes. Few research efforts
which studied the evaluation component of workflows, investigated a very narrow
research problem aimed to improve the performance or fault tolerance of workflow
systems [6]. As the provenance information maintains the records of previous exe-
cution details of workflows, it provides the facility to analyze, assess, and evaluate
the behavior of a workflow as well as its performance. The performance of a work-
flow, its trustworthiness, improvements, and its future trend, etc. can be analyzed
and evaluated through provenance data.

Workflow mining discusses techniques for acquiring a workflow model from a
workflow log. Workflows can be investigated from many perspectives: functional,
behavioral, informational, organizational and operational. In case of the behavioral
perspective, which looks at control flow, workflow mining is done by following the
order in which events for tasks are stored; for the informational perspective which
looks for data flow, usually inputs/outputs are being used; in case of the organiza-
tional perspective, participants of tasks and their roles are being discovered. The
workflow mining methods use the event-logs for discovering the patterns and min-
ing the workflows, which keep track of a very small amount of information. The
information provided in event logs is not enough for mining workflows with re-
gard to all the mentioned workflow perspectives while much stronger reasoning and
mining can be done over the data presented in workflow provenance.

To improve the efficiency of the composition and selection processes, previous
executions of workflows and services can be used to augment these processes with
more intelligence during the composition or selection. The feedback learned through
previous runs secure the composition (or selection) from services that either do not
have available resources, or do not satisfy the promised trust levels at a particular
time. In case of the composition, the feedback of previous runs of the composed
process will also be analyzed later to discover the possible deficiencies that might
exist in the composed model.

As more provenance information is gathered, the extracted workflow process
models are refined over time and the structure is geared to improve the efficiency
with regard to changes in the data. These variations might include updates of the
most frequently chosen paths, or assigning/changing the weights of the links in the
model with regard to the rate of usage in time. These types of augmentations in the
model also facilitate the process of refining or repairing a workflow model.

Since the provenance information of the same executions might provide the in-
termediate data generated by a process, the processes can be reduced by removing
existing services, or replacing the parts, which cannot be executed with other parts,
by looking for a more optimal path in the extracted workflow model with regards to
the weights of the connections.

As mentioned earlier, the history of previous executions of workflows and ser-
vices satisfies the requirements of addressing the discussed challenges. Apart from
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the requirements, it was discussed that the provenance data augments the challenges
with more efficiency, and reliability. Thus, there is a need for an architecture that
facilitates addressing and solving all these aforementioned issues by exploiting the
provenance data.

2.3 Architecture

In this section, the multi-functional architecture discussed earlier is presented along
with its components. Figure 2.1 outlines the architecture. The structure is composed
of 5 components that cooperate together along with the provenance store to provide
different functionalities. The responsibilities of each component, the way compo-
nents collaborate to provide the promised functionalities, and the approach taken to
achieve the goals of the components are discussed.

Workflow Model Extraction and Discovery Component: This component is re-
sponsible for extracting the workflow pattern and associations that exist among the
relevant workflows previously run and executed. Two workflows are considered rel-
evant if they are in the same area of interest. The extraction component discovers
the hidden connections that might exist among services and were not known before-
hand. It generates a policy graph of the relevant services with edges representing
the associations between them. The output is an optimal policy graph including all
possible paths that could exist between the services of similar functionality. The ex-
tracted policy graph can be used later for the purpose of workflow construction and
repair. The component is also able to receive a workflow pattern, and look for the
same pattern sequence in the store to discover if there is any information regarding
its previous executions in the provenance store.

Workflow and Service Evaluation Component: Evaluating workflows and ser-
vices in terms of trust and quality is an important and less studied topic in the area of
workflows. Workflows need to be assessed and analyzed to discover how trustwor-
thy the composition of services are, therefore, in case the trust given by a workflow
is not satisfactory, the workflow sequence can be repaired and improved. Another
responsibility of this component is to identify the points in time at which a signif-
icant variation in trust occurs. This information can help us in identifying the parts
of the workflow that are not providing the promised or required trust levels. Similar
to workflows, the services are evaluated by this component. Large fluctuations of
the QoS values of services are investigated to predict when in the future the service
will not support the promised QoS requirements. Based on the previous executions,
this component is also able to predict which services are going to be executed and
in case the results of another instance of the same service are available, the process
of workflow execution can be improved by exploiting those results. Apart from the
trust assessment, the performance of the workflow is evaluated in terms of resource
usage, and total time elapsed from the submission to completion.

Workflow Repair and Refinement Component: In case a workflow does not
provide the required trust level, or it cannot be executed due to lack of available
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services, the workflow needs to be repaired or refined. The repairment/refinement
component takes advantage of the extracted policy graph of the workflow along
with the assessment results of the evaluation component. The policy graph is traced
to find a path that can replace the defective part of the workflow. The defective path
is either inefficient due to lack of trust provision, or cannot be executed any longer
because of unavailable services. In case a service is predicted to not provide the
promised non-functional requirements, the service is replaced by another service or
services to provide a similar functionality.

Workflow Composition and Generation Component: Composing a set of ser-
vices using provenance data is a very useful exploitation of the provenance store.
The stored specifications of services and their states provide the facility of compos-
ing the services automatically. On the other hand, having the previous history of
executions, provides the data, which is essential for learning, therefore, the compo-
sition will be done in a more efficient way by exploiting the provenance data. This
component receives the requirements and composes a workflow dynamically by tak-
ing advantage of the service specifications provided in the store. Previous execution
of workflows enables the composition to be more robust as it exploits the evaluation
results of services and workflows to generate a well-designed workflow process.

Workflow Service Selection Component: The problem of selecting a set of con-
crete services that provide the required QoS specifications for a complete abstract
workflow is referred to as abstract workflow service selection problem. The prove-
nance data can be exploited to speed up this task. In order to find the set of concrete
services that match a single abstract service, service registries are looked at and
matchmaking algorithms are applied to discover the matching services. The service

Fig. 2.1 Architecture
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discovery phase is much simpler if provenance data is used. Previous executions
of workflows along with the workflow templates simplify the process of service
discovery for a simple query. The set of suitable concrete services for the abstract
workflow can then be selected more optimally by using the selection mechanisms
along with the evaluations of previous executions.

2.4 Hidden Markov Modeling for the Evaluation of Workflow
Trust

In the remainder of this book chapter we want to focus on the workflow evaluation
component of the architecture.

Execution of a sequence of services requires much more resources and time in
comparison to a single service. Thus, if a workflow is not very reliable, many re-
sources and time will be wasted; since the results of the workflow can not be trusted.
Therefore, it is important to be able to evaluate the trust of a workflow to find the de-
gree of reliability of the workflow and its results. This also helps to decide whether
the workflow needs some refinement and whether less trustful services should be
exchanged with more trustful ones.

Having the trust value of each service, allows to evaluate the overall trust value
of a sequence of services, i.e. a workflow. Therefore, we can determine the amount
of trust that can be placed on the overall workflow as well as the results and datasets
generated during the workflow execution. There are very few approaches addressing
the subject of workflow trust evaluation. One approach uses a decision tree model,
which is presented in [19]. In this chapter, a decision tree is built out of a question
sequence that will help in assessing the trust that can be associated with the data
produced from a process. The root node asks about the trust of the workflow and
has three child nodes, evaluating the trustfulness of services, data and the workflow
process. Each child node has a sub-tree representing a set of yes/no questions. The
decision making process starts with one child node, traverses its sub-trees and con-
tinues to the next child node. This procedure is followed continuously until all the
sub-trees are investigated. The result of the investigation is either a yes or no, de-
termining whether the workflow can be trusted or not. This work has been extended
and an important shortcoming of it, the crisp result, has been addressed in [20].
Therefore, the outcome of each analysis node of the trust decision tree is mapped to
a fuzzy membership function. Later, these values are combined together using fuzzy
inference rules.

However, all the current solutions lack accuracy, automation, and reliability. They
are based on a decision tree model with categorical nodes that have been designed by
the developers. The decision nodes of the tree are simple sets of questions regarding
the user’s views or behaviors toward service, data or process trust. Besides, the trust
value of each service or data is not considered separately, but instead the overall
trust level of services is involved in the decision making process.

We propose a new approach for the evaluation of trust of workflows, which is
based on a statistical model named Hidden Markov Model (HMM). Rather than



2 Evaluating Workflow Trust Using Provenance Data 43

traversing a set of question nodes, in our model, the trust will be assessed by solv-
ing a set of mathematical equations that describe the behavior of the workflow trust
in terms of random variables and their probability distributions. Thus, our method is
more accurate in comparison to the previous approaches and will support automa-
tion.

A HMM is a probabilistic process over a finite set of states, where each state
generates an observation. Given a HMM, and a sequence of observations, the prob-
ability of the observation sequence given the model can be evaluated. It is also pos-
sible to discover the hidden state sequence that was most likely to have produced the
observation sequence. Another type of inference on HMMs can estimate the HMM
model through training examples and learning methods.

HMM has become the method of choice for modeling stochastic processes and
sequences in applications such as speech and handwriting recognition [8], compu-
tational molecular biology [9], natural language modeling [10], etc. In this work,
HMM is used for the purpose of workflow trust evaluation.

In order to be able to assess the proposed HMM model, probability learning algo-
rithms like Maximum Likelihood (ML) or Expectation Maximization (EM) learning
techniques are used along with provenance data. Provenance is one of the growing
demands in distributed service oriented environments, which supports the systems
with documentation of the origin and the processing steps of data that is part of a
workflow execution process. It also provides explanations about which, how and
what resources and services were used to produce that data, and is referred to as
provenance data that is captured and stored in provenance stores for the purposes of
reasoning, validation and re-execution. A provenance store provides the necessary
information that is exploited for the purpose of estimating HMM probabilities.

Many approaches have been proposed to improve the predictive power of HMM
in practice. For example, factorial HMM [12] is proposed to decompose the hidden
state representation into multiple independent Markov chains. In speech recogni-
tion, factorial HMM can help in representing the combination of multiple signals.
Hierarchical HMM [13] is another method that facilitates the inference of corre-
lated observations over long periods in the observation sequence via higher level
hierarchy. However, from the essential definition of HMM, there are other ways to
improve the predictive power of HMMs. One approach is to relax the stationary
hypothesis of HMMs and make use of time information. To investigate this further
and observe the behavior of our model with regard to the non-stationary assump-
tion, the workflow trust has also been evaluated using the Non-Stationary HMMs
(NSHMM).

2.5 Methodology

The notion of trust of an enacted workflow is an important issue in distributed ser-
vice oriented environments. Trust evaluation aims at contributing in the discovery of
how trustful the results of a workflow are. It also helps the optimization of composite
service executions. In this section, we are going to first present how the workflow
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trust can be evaluated using hidden Markov modeling. Later, we explain how the
model can be assessed by taking advantage of the previous history of the execution
of workflows.

A HMM is a statistical model that can be considered as the simplest kind of
Dynamic Bayesian Networks (DBNs). The system that is being modeled according
to HMMs is assumed to be a Markov process with unknown parameters. Markov
processes are an important class of stochastic processes that are governed by the
Markov property. The Markov property states that the future behavior of a process
given its path only depends on its present state. The HMM model basically consists
of two sets of variables: state variables and evidence variables, which are also called
the observations. The state variables are the hidden variables that change over time;
while the evidence variables are the observable variables that are known in advance
at each time step. The challenge is to determine the hidden parameters from the
observed ones.

Figure 2.2 shows a simple first order HMM. The state variable xt is a hidden
variable at time t and can have a value from xt the domain of x. The random variable
yt denotes the observable parameter at time t. From the figure, it can be seen that the
value of the hidden variable at time t, i.e. xt , depends only on the value of the hidden
variable xt−1, and other previous parameters have no influence on it. This property
is referred to as the first order Markov property.

In order to model the workflow trust evaluation as a HMM, the state and observ-
able variables are mapped as follows:

• Trt : the trust state variable, represents the state of the trust of the workflow at
time t.

• St : the evidence variable represents the service that is being executed at time t.

Figure 2.3 depicts a simple linear workflow and the correspondent HMM, modeled
to evaluate the trust level of the workflow. As it can be observed form the figure,
the state of the trust of the workflow at the beginning (Tr0) is only determined by
the evidence variable observed at that time (xt). For the following time steps, the
state of the trust of the workflow can be determined by investigating the state of the
workflow at the previous time step, and observing the service that was executed at
that time.

In theory of HMMs, some assumptions are made for the sake of mathematical and
computational tractability. Here we present how these assumptions can be applied
to our model:

Fig. 2.2 Basic HMM.
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1. The Markov assumption: It is assumed that the next state is dependent only upon
the current state. This is true in case of our model, as the state of the trust of the
workflow at each time only depends on the state of the trust at the previous time
and not the other prior states.

2. The output independence assumption: This is the assumption that the current
observation is statistically independent of the previous observations. In case of
our model, the service at time t is independent of the previous services.

3. The stationary assumption: This assumption is based on the fact that the transi-
tion probabilities between the states are independent of the actual time at which
the transitions take place. In case of the workflow trust problem, we can not say
that transition probabilities are completely independent of time. We suppose
that this assumption will be true for our model since we can take the average of
the state transitions of all times and have one set of state transition probabilities
for the overall time period. In order to investigate this further, later in the chap-
ter, we will observe the behavior of the model by relaxing this assumption and
having a non-stationary HMM.

Having defined the HMM and described how the HMM parameters and assumptions
can be mapped to the workflow trust evaluation parameters, we will now clarify how
this model can be exploited for the purpose of trust evaluation.

As mentioned earlier, different kinds of inference can be done on HMM struc-
tures. These include methods for computing the posterior distribution over the cur-
rent, future, or a past state, or finding the sequence of states that is most likely to
have generated those observations. Filtering or monitoring is the task of computing
the posterior distribution over the current state, given all evidences and observations
to date. The following probability expresses filtering inference:

P(Xt | y1,y2, ...,yt) (2.1)

Using the filtering model, the probability of the state of the trust at the final state
of the workflow can be roughly estimated given all the observations, which are the
services seen so far. Therefore, for the case of the trust evaluation, the following
probability should be assessed:

Fig. 2.3 A sample workflow
and the HMM for workflow
trust evaluation.
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P(Tr2 | s1,s2,s3) (2.2)

for different possible trust state levels. Evaluation of the above probability provides
us with estimations of probabilities for different trust levels at time t2. In this work,
the state of the trust will be evaluated at three different levels of High, Medium and
Low. The work can later be extended to support further trust levels.

2.5.1 Trust Model Assessment

In order to be able to compute the filtering inference, two other probabilities should
be assessed beforehand. These probabilities are referred to as state transition proba-
bility and sensor probability. The state transition probability is defined as the proba-
bility of being in the next state given the current state, i.e. P(xt | xt−1), which in our
case is the probability of being at a trust level at time t given the level at the previous
time, i.e. t− 1. The sensor probability is defined as the probability of the observa-
tion at time t, which is the service that was executed at time t, given the different
level of trustworthiness of the workflow at that time. To assess the state transition or
sensor probabilities, the ML or EM learning algorithms are utilized along with the
provenance data.

In service-oriented environments, great numbers of workflows are executed to
perform computational and business experiments. The workflow activities are run
repeatedly by one or more users and large numbers of result data sets in the form
of data files and data parameters are produced. As the number of such datasets in-
creases, it becomes difficult to identify and keep track of them. Besides, in these
large scale scientific computations how a result dataset is derived is of great im-
portance as it can specify the amount of reliability that can be placed on the re-
sults. Thus, information on data collection, data usage and computational outcome
of these workflows provide a rich source of information. Capturing this informa-
tion, which is regarded as provenance information, is a significant advantage of
using workflows. Provenance information facilitates data dependency determina-
tion, workflow result validation, efficient workflow re-executions, error recovery,
etc. [14]. Provenance also enables users to trace how a particular result has been
arrived at by identifying the aggregation of services that produces such a particular
output. This data can provide us with the history of previous execution details of
workflows. In this work, we are exploiting the provenance data to learn the HMM
probabilities.

2.5.1.1 Assessment of Transition Probabilities

In order to assess the transition probabilities, the trust state transitions, i.e. P(Trt |
Trt−1), should be computed for all pairs of workflow services that are being exe-
cuted in sequence. Having a large provenance record of the previous executions of
workflows, we will be able to learn the transition probabilities by applying the ML
method on the provenance data.
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ML learning is a data analysis approach for determining the parameters that max-
imize the probability (likelihood) of the sample data, which is trust state transitions
in this case. From a statistical point of view, the method of ML is considered to be
robust and yields probabilities with good statistical properties [15].

To assess this probability using the ML method, we determine the number of
each trust state transition with regard to the total number of transitions of that state.
The transition probability estimation for our model is computed based on Equation
2.3:

P(Trt = j | Trt−1 = i) =
ni j

ni
(2.3)

where ni j denotes the number of transitions from trust level i to trust level j, and
ni denotes the number of transitions from trust level i. For example, for the sample
workflow in Figure 2.3, which was composed of three services, the trust state tran-
sition from high to low will be computed by first determining the number of high to
low transitions for the service pairs (s1,s2) and dividing it by the number of times
the service s2 had low trust level. The same will be done for the pair (s2,s3). The
average of these values represents the transition probability from high to low.

It is important to mention that the same pair of sequential services might be re-
peated in several workflows, and the transition probabilities for these services will
be learnt without considering specific workflows. The average of all these probabil-
ities will denote the final transition probability for these pairs of services.

Assessment of Sensor Probabilities
To assess the sensor probabilities for each time instance t, the probability of ob-
serving an evidence variable given the state at that time should be computed. There-
fore, we should compute P(St | Trt ), which again will be learnt by utilizing the ML
method and the provenance data.

For this purpose, the number of times the trust state of service instance St was
at each trust level is estimated. This value is divided by the total number of times
any service was at that trust state. As before, the provenance history of the workflow
will be used. Equation 2.4 represents the assessment of the sensor probabilities for
our model:

P(St = st | Trt = j) =
nst j

n j
(2.4)

where nst j denotes the number of times being in state j and observing service st ,
and n j denotes the number of times being in state j.

Assessing the Trust Level
Having assessed the sensor and transition probabilities, we will be able to assess the
filtering model of HMM and therefore evaluate the workflow trust using Equation
2.5:

P(Trt | S1 = s1,S2 = s2, ...,St = st) =∝ P(St = st | Trt )∑
t
(PTr | P(Trt−1)

P(Trt−1 | S1 = s1,S2 = s2, ...,St−1 = st−1) (2.5)
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The probability of P(Trt−1 | S1 = s1,S2 = s2, ...,St−1 = st−1) is computed recur-
sively. Equation 2.6 evaluates the probability of different trust levels at time t having
observed the services the workflow is composed of until that time.

As discussed, for the purpose of assessing the probabilities, the ML learning
algorithm is utilized in this work. This is based on the assumption that the prove-
nance data does not include a large amount of missing data. To be able to find the
probabilities in case of missing data, the EM learning algorithm can be used. The
EM algorithm is an efficient iterative procedure to compute the ML estimate in the
presence of missing or hidden data. Using this algorithm, we first predict the miss-
ing values based on assumed values for the parameters. Later, these predictions are
used to update the parameter estimates. The sequence of parameters converges to
ML estimates, and EM implicitly averages over the distribution of the missing val-
ues.

2.5.2 Cases with Dynamic or Parallel Sections

The presented trust model is compatible for workflows which contain not only se-
quential but also parallel sections in the workflow. In case of non-sequential work-
flows, a sequential workflow is extracted from them by selecting one of the subsec-
tions of each parallel section according to a policy, and replacing that parallel sub-
section with the selected subsection. Starting with the deepest parallel subsections,
a subsection is chosen for each section by first applying the HMM model to all the
parallel sub-sections of that section, and then the trust level probabilities of the sub-
sections are compared with each other. For each section, the subsection that has the
lowest trust level is selected and the parallel section is replaced by that subsection.
By following this policy for all the parallel sections, the workflow is transformed
to a sequential workflow, and finally the HMM model is applied to assess the trust
level.

It is important to mention that as the proposed approach exploits provenance in-
formation to get an assessment of the QoS values, it works for the static scenarios. In
case of workflows with services for which there is no history in the provenance store,
the online QoS values presented by the service provider are used for assessment.

2.6 Implementation

As mentioned earlier in this work, the trust of each service instance is categorized
into three levels of High, Medium, and Low and can be evaluated by aggregating the
QoS parameters of the service. These QoS parameters can include status, availabil-
ity, reliability, execution time, reputation, etc. The trust value is usually determined
by assigning a weight to each parameter and the summation of the multiplication
of the parameters by their weights results in the final trust value. As in our current
model we are concerned with trust levels rather than trust values, we determine the
level of the trust with regard to the level of the QoS parameters.
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In our implementation, we have considered the QoS parameters of status, reli-
ability and availability. The QoS parameter status is a binary value that represents
the status of the execution of the service. A value of 1 describes that the service was
executed successfully and a value of 0 reports unsuccessful execution. The QoS pa-
rameter availability presents how available a certain service and its data are, while
reliability denotes the degree we can rely on the processing and the response time
of the service. Both parameters have a value in the range of [0,1].

In order to decide about the trust level of each service using these parameters, we
followed a table model, Table 2.1, in which the level of all QoS parameters of avail-
ability and reliability in conjunction with the status of the execution determines the
level of the trust. The table is referred to as the trust level decision table throughout
this book chapter. A sample row in this table represents the associated trust level
in combination with the discussed QoS parameters. For example, LL1 denotes that
the level of the reliability and availability of a service is Low, and the status is 1.
According to the table, the trust level of the service is assessed as Low.

The levels of reliability and availability of the services are determined according
to a set of pre-determined range levels. For the examples and experiments provided
in this book chapter, the following range table (Table 2.2) was used.

As was discussed earlier, the probabilities are assessed by applying learning
methods over the provenance data. For the purpose of learning, we implemented
a provenance store in MySQL [28] including tables for storing the information of
workflows, services, workflow instances, and workflow sequences. The provenance
data is then generated by a random workflow generator implemented to produce
instances of a workflow. The generator asks for the following parameters as input:

• Ns: the number of services the workflow should be composed of.
• Nw: the number of previously executed instances of the workflow.

In order to assess the HMM, we followed the matrix algorithm which describes the
sensor and transition models in form of matrices. The transition matrix denoted by
T is a m×m (in our case 3× 3) matrix where m is the number of possible states.
The probability of a transition from state i to state j is denoted by the entry Ti j:

Ti j = P(Trt = j | Trt−1 = i) (2.6)

which, as discussed, will be evaluated using the generated provenance data along
with the trust level decision table (Table 2.1), QoS parameters range level (Table
2.2) and the ML algorithm.

The sensor model is also put into matrix form. For each time step t, a diagonal
matrix, Ot , is constructed whose diagonal entries are given by the values P(St | Trt =
i), with the other entities set to 0.

Now, to accomplish the filtering inference and represent the forward messaging
in HMMs using the matrix model, Equation 2.7 is applied recursively:

f1:t+1 = αOt+1T T f1:t (2.7)
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Table 2.1 Trust level decision table, L, M, and H denote Low, Medium, and High.

Trust Reliability, Availability,
Status

L LL0
L LL1
L ML0
M ML1
L HL0
M HL1
L LM0
M LM1
L MM0
M MM1
L HM0
H HM1
L LH0
M LH1
M MH0
H MH1
M HH0
H HH1

Table 2.2 Range Level of the QoS parameters Availability, and Reliability.

Trust Level Low Medium High

Availability [0,0.3] (0.3,0.7) [0.7,1]
Reliability [0,0.3] (0.3,0.7) [0.7,1]

where α is the normalization factor. The result is a one column matrix denoting the
probability of the trust level of the workflow for all the different possible levels.

2.6.1 Verification of the Model

Our approach is verified by a comparison done with the Viterbi algorithm [17],
which finds the most likely sequence of hidden states that result in a sequence of
observed events. For the verification, different observation sequences of different
sizes were generated and the most likely sequence of underlying hidden states that
might have generated those observation sequences was produced by applying the
Viterbi algorithm. Having compared the resulting hidden states of the algorithm
with the real hidden states, we received identical results. Therefore, this verifies that
the HMM modeled for the purpose of workflow trust evaluation and the way the
probabilities were assessed is valid.
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2.7 Case Study

In this section, we present a workflow scenario and describe how its trust can be
evaluated using the presented model. The sample workflow is the process of knowl-
edge discovery in databases which is referred to as KDD process [16]. The KDD
process is composed of four services for data selection and cleaning, data transfor-
mation, data mining, and data interpretation. Figure 2.4 shows the process.

The following assumption is made. A distributed service-oriented environment is
sharing services for the purpose of knowledge discovery, and that a workflow is ex-
ecuted using four different services shared by service providers in the environment
each having different QoS values, and therefore, different trust estimations. Using
the workflow generator, the above workflow was defined and 50 execution instances
were generated, representing the provenance data. Table 2.3 shows the average of
the QoS parameters of those instances.

The QoS parameters availability and reliability were generated in the range of
0.3 to 0.9, which mostly covers the medium and high trust levels. The status of the
execution was set to zero in less than 20% of the cases. It is important to emphasize
that according to the trust level decision table (Table 2.1) the state of the trust of a
service instance is evaluated as Low if its status is zero. The reason for this decision
is that if a service does not complete its execution successfully, that service instance
should not be trusted at all. Therefore, we evaluate the trust as low regardless of the
instance’s level of reliability and availability.

Fig. 2.4 A sample workflow scenario - KDD Process.

Table 2.3 The average of the values of the QoS parameters generated for the scenario.

QoS Parameter Reliability Availability Status

Data Selection 0.58 0.59 0.8
Data Transformation 0.7 0.7 0.88
Data mining 0.34 0.34 0.82
Interpretation 0.84 0.84 0.82

In the next step, the transition matrix is built by learning the probabilities from
the generated provenance data. Given the data, the transition matrix T , of the above
example was estimated as given in Figure 2.5.

L, M, and H represent the trust levels Low, Medium and High. An entry Ti j de-
notes the transition probability of being transferred from trust level i to j. For a better
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understanding, the state transition diagram is also provided in Figure 2.6, which is
the same as the transition matrix but presents it in a graphical view which is easier
to follow.

Fig. 2.5 Transition matrix
of the example

Fig. 2.6 The state transition diagram showing the transition probabilities for the above ex-
ample learnt through ML method.

Having learnt the transition matrix, the forward algorithm starts with assessing
the sensor probability at the first time step and forwards this message along with
the transition messages to the next time step. This process of forwarding messages
continues until the last service is observed, and therefore the overall trust of the
workflow is evaluated. It is important to mention that the prior belief about the trust
state probabilities, i.e. the initial state probabilities, is considered equal for all the
three possible states and was set to 0.33 for all the trust levels.

To investigate the behavior of the filtering method and observe the trust level
probabilities estimated at each time step is provided in Figure 2.6. The figure shows
how the trust state probabilities change over time during the HMM assessment for
the discussed example.

It can be observed that the trust state is evaluated as Medium after observing the
first service, it then heads toward High, then again Medium and finally the trust level
is evaluated as High.
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Taking a look at the average values of the QoS parameters of each service ex-
plains the behavior of the model. According to the QoS range evaluation table (Ta-
ble 2.3), the trust level of the first service, which is the data selection service, can be
evaluated as Medium. The trust level of the third service is also evaluated as Medium,
and the trust level of the second and the fourth service is estimated as High.

The explanation above and the transition matrix shown in Figure 2.5 describe the
reason behind the path taken in Figure 2.7. The path shows the route between the
trust levels with the highest probabilities at each time step. The transition probabil-
ities with large probability values include transitions from High to Medium, Low to
High, and Medium to High. The evaluation process starts with the first service which
has an average of Medium trust level. As the transition probability of Medium to
High is the largest, this leads the state of the trust toward High. Being in state High
and having observed a service with High trust level leads the trust level toward
Medium as the largest transition probability from High is the one toward Medium.
The rest of the transitions can be explained in the same way.

Fig. 2.7 The change of the trust state probabilities over time using a HMM.

It should be considered that there is always a less than 20% probability for a low
trust state to be chosen for all the services. Because as discussed earlier, the status
of the executions of services were randomly set to zero in almost 10 to 20 percent
of the cases. Therefore, the final trust level probabilities will have a 10% low level
probability on average.
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2.7.1 Investigation of the Stationary Assumption

It was mentioned earlier that one of the assumptions of HMM is the stationary as-
sumption. In order to follow this assumption, the transition probabilities were as-
sessed by taking the average of the transitions between each pair of services to
have the same state transition matrix at all times. As this assumption can not be
verified completely in case of the workflow trust problem, this section investigates
how the model will behave if we relax this assumption and transition probabilities
are considered time-dependent. To achieve this goal, the transition probabilities are
computed separately for each time step.

In the theory of HMMs, it is assumed that state transition probabilities are in-
dependent of the actual time at which the transitions take place. This assumption
can be mathematically presented as:

P(xt1+1 = j | xt1 = i) = P(xt2+1 = j | xt2 = i) (2.8)

for any t1 and t2. Equation 2.8 states that the transition probabilities are constant over
time which means that the probability of transition between different trust levels is
the same for all times. Therefore, the Markov chain is described as stationary in the
strictest sense. In general, it is possible to lift the constancy constraint and define
the transition probabilities as a function of time. This model is referred to as the
Non-Stationary Markov Model (NSMM) [11] and has a set of transition probability
distributions that vary over time. This means that, given a state i, the probability of
moving to another state j is a function of time. The time can be either absolute or
relative. Equation 2.9 shows how the state transition function can be estimated:

Pi jt =
C(i, j, t)
C(i, t)

(2.9)

where C(i, j, t) is the co-occurrence frequency of state i and state j at time t and it
can be estimated by counting the co-occurrence times of state i and state j at the tth

time. C(i, t) is the frequency of state i at time t and can be estimated by counting
the occurrence times of state i in the tth time. And Pi jt is the transition probability
between state i and j at time t.

In case of the workflow trust evaluation, the transition probabilities can be con-
sidered as a function of time since the probability of transition from one trust level
to the other at time t depends on the services that are being executed at that time
instance. Therefore, it is important to investigate the behavior of the model this time
using the NSHMM in order to observe the effect of the stationary assumption on the
trust evaluation results.

In case of relaxing the stationary assumption for the workflow trust evaluation,
the state transition probabilities were assessed separately at each time step and a
transition matrix was built using the ML method along with the provenance data
representing the history of the observations seen previously at those time steps.
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Following the ML estimation method, the transition probability from state i to
state j at time t will be assessed as follows:

Pt(Trt = j | Trt−1 = i) =
ni jt

nit
(2.10)

where ni jt denotes the number of transitions from trust level i to trust level j at time
t, and nit denotes the number of transitions from trust level i at time t.

The non-stationary model was further implemented and the result of the same
scenario studied in the previous section was investigated using the new model. It is
observed that the trust state probabilities have not changed much as time elapses.
The maximum trust level path follows the same routine with very little changes in
the state probabilities at each time. The evaluation result of the NSHMM shows that
the workflow can be trusted with a probability of 93%, while using the HMM this
probability was 83%.

To investigate this further, we ran experiments using both models and compared
their results. The experiments were done by creating workflows with 5 to 25 services
in increments of 5. A previous execution history of 50 instances was randomly gen-
erated for each workflow in order to learn the sensor and transition probabilities. The
average of the trust level probabilities was then computed. It was observed from the
experiment results that for both models the distance between the same trust levels
was equal in 96% of the cases.

Figure 2.8 represents the average trust level probabilities of the HMM compared
to NSHMM. It can be observed that the differences are very small. In all the exper-
iments, the level of the trust was estimated to be the same.

Fig. 2.8 Comparing the average trust level of HMM vs. NSHMM for 5 to 25 numbers of
services with increments of 5.



56 M. Naseri and S.A. Ludwig

In order to determine whether the results of the two models are the same, we ran
the paired T-test on the datasets of the two models. The T-test is a statistical test that
assesses whether the means of two groups of data are statistically different from
each other. The result was a p-value of 0.78, which represents that the datasets are
not significantly different from each other. The chart in Figure 2.8 and the T-test
results both verify that the stationary assumption does not have a significant effect
on the results of the trust level assessment, as both models provide estimations for
the same trust levels with very little difference.

Experiments were done to compare both models in terms of the execution time
and it was observed that while there is not large differences between the execution
times, the execution time of the non-stationary model is larger. The reason for this
observation goes back to the transition matrices that should be computed for each
time instance separately while for the HMM with stationary assumption, the transi-
tion matrix is built once at the beginning by computing the average of all values.

2.8 Conclusion and Future Work

In this book chapter, a multi-functional architecture was described that addresses
the current research issues of workflows and services using provenance data. The
components of the architecture were described consisting of model extraction and
discovery, workflow evaluation, workflow repair and refinement, workflow compo-
sition, and workflow service selection.

In addition, we focused on one component of the multi-functional architec-
ture and put forward an approach for evaluating workflow trust level using hidden
Markov models and provenance data. We discussed how the HMM assumptions
can be applied to this problem, and we provided details on how the model can be
assessed using the provenance data and maximum likelihood method.

In order to investigate the behavior of the model, we provided a workflow sce-
nario and expressed how its trust level is evaluated using the proposed model. Fur-
thermore, we presented how the Viterbi algorithm was used to verify the HMM. In
order to verify the effect of the stationary assumption of HMMs for the trust eval-
uation problem, we investigated the results of applying the non-stationary hidden
Markov model to our problem.

The two models were then compared with each other. It was observed that the
same trust level was estimated by both models with a small difference in their proba-
bility values. Therefore, the stationary assumption does not have a significant impact
on the trust evaluation results. The non-stationary assumption of transition probabil-
ities seems to be more accurate in case of our model since the probability of moving
from one state to the other at a time instance depends on the state of the two services
that are being executed at those times. Thus, for this problem, it is better to consider
the transition probabilities as time-dependent probabilities for more accurate results.

Future work involves performing a large number of experiments to evaluate the
scalability and accuracy of the system, preferably with real data. Various experiments
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will be done for different workflow sizes, and the behavior of the system will be
observed in response to larger workflows.

As the amount of provenance data affects the accuracy of the learnt probabilities,
the reliability of the system will be evaluated considering different learning data.
We will also consider incomplete data and experiments will be performed with EM
learning to estimate the results in case of missing data.

The main concern of the current implementation was randomly generating a large
amount of valid provenance data for many workflows, each having some common
pattern with others. The future workflows ought to be realistic and consist of com-
mon services and patterns with reasonable provenance values and data from a num-
ber of executions. The model will be improved to also consider trust values of the
workflow process and input data for the evaluations.

Furthermore, the fluctuation of trust with the Markov process needs to be investi-
gated in order to discover the points at which the workflow lacks trustworthiness and
should be refined. It is desired to automatically detect and replace less trustworthy
services with trustworthy ones. This part of the work will be extended by learn-
ing the workflow patterns from the provenance data and substituting less trustful
services or sections of the workflow with more trustworthy ones.
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Chapter 3
Unmanaged Workflows: Their Provenance
and Use

Mehmet S. Aktas, Beth Plale, David Leake, and Nirmal K. Mukhi

Abstract. Provenance of scientific data will play an increasingly critical role as sci-
entists are encouraged by funding agencies and grand challenge problems to share
and preserve scientific data. But it is foolhardy to believe that all human processes,
particularly as varied as the scientific discovery process, will be fully automated
by a workflow system. Consequently, provenance capture has to be thought of as a
problem applied to both human and automated processes. The unmanaged workflow
is the full human-driven activity, encompassing tasks whose execution is automated
by an orchestration tool, and tasks that are done outside an orchestration tool. In this
chapter we discuss the implications of the unmanaged workflow as it affects prove-
nance capture, representation, and use. Illustrations of capture include multiple ex-
periences with unmanaged capture using the Karma tool. Illustrations of use include
defining workflows by suggesting additions to workflow designs under construction,
reconstructing process traces, and using analysis tools to assess provenance quality.
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3.1 Introduction

The data products produced during the course of workflow-driven scientific discov-
ery have the potential to advance scholarly research and address pressing societal
problems now and in the future. Nevertheless, however effective workflow systems
have shown themselves to be at solving problems, there remain scientific discov-
ery processes not amenable to representation within, and execution by, a workflow
system. Workflows are inherently human processes, and it would be foolhardy to
believe that human processes, particularly as varied as the scientific discovery pro-
cess, can be fully automated. Computer scientists cannot hope to engineer the hu-
man out of the loop, nor can a workflow system promise to support within a single
environment every tool scientists will ever use through the course of their research.
Acknowledging this fact, we make the distinction between workflows that are exe-
cuted end-to-end and fully under the control of a workflow orchestration system and
those that are not, the latter we call the unmanaged workflow. The unmanaged work-
flow is the full human activity, encompassing tasks whose execution is automated
by an orchestration tool, and tasks that are done outside an orchestration tool.

The issue of relevance to us with unmanaged workflows is provenance capture.
An unmanaged workflow has a simple interpretation as two disjoint subworkflows
with a gap between. We may know only that subworkflow-1, which began at time
t0 and completed at time ti, occurred before subworkflow-2 which began at t j and
ended at tn. Nothing more might be known about the relationship between the two.
Given a distributed system with unsynchronized clocks, even this temporal relation-
ship may not be known. The human activity occurring between the first workflow
subworkflow-1 and second workflow subworkflow-2 could be the act of analyzing
a result using a statistical package, could be the creation of a new layered prod-
uct in at GIS tool, or could be simply a music break completely unrelated to either
subworkflow-1 or subworkflow-2. Figure 3.1 illustrates this case.

For the human-in-the-loop workflow illustrated in Figure 3.1, the provenance of
the humans actions may contribute to the provenance record of data product R. How
can we know what human activity occurred between two workflow fragments? The
two could be completely unrelated, and just mark a music and coffee break between
two distinct and unrelated tasks. Or do we even need to know? The provenance of
a piece of art has gaps in it; gaps that occur when the owner desired anonymity or
when theft occurs. It may be sufficient to merely suggest that the two subgraphs are
related and leave it at that. But suppose we can obtain provenance information from
the human activity piece, how then can we stitch together the provenance from the
human-action piece with the two subworkflows?

Mukhi [6] studies business workflow that cannot be fully automated, and ad-
dresses incompleteness through the notion of the unmanaged business process,
which is a process that encompasses a large number of human driven workflows,
the use of collaborative platforms to accomplish shared tasks, and handling of ex-
ceptional situations that arise in the context of automated workflows. BPEL4People
[40] is an extension to WS-BPEL that allows people to participate in a business pro-
cess. BPEL4People, though, requires a plan of activity (or a workflow) be known in
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Fig. 3.1 Illustration of an unmanaged workflow

advance that describes the entire business process. BPEL4People, while useful in a
limited sense, puts e-Science back at step one in that if scientists do not acknowl-
edge that what they are doing can be described by a workflow, how can one possibly
be specified in advance?

The unmanaged workflow defines a problem space of provenance capture wherein
two things occur, first, there are non-automated steps in the activity, and second, the
full activity cannot be specified in advance. This kind of workflow which is preva-
lent in e-Science though not in business where workflows are better understood, is
a grand challenge for provenance capture.

With no single workflow specification to guide provenance capture, the effects
are cascading. Provenance capture becomes more difficult because there is no guide-
book of what is supposed to happen, nor is there a single workflow orchestrator that
controls execution and determines failure and execution models of the workflow.
Representation of the provenance in a provenance store has to deal with fragments
of provenance because the captured provenance has a higher likelihood of being ad
hoc, noisier, and less complete. Finally, the use of the provenance, though having
much in common with use of the provenance of managed workflows, has unique
challenges because of the ad hoc nature of the information.

This latter point of the ad hoc nature of provenance has significant implications
for trust. A key benefit of having the provenance record of a scientific data object or
set of objects is that someone with whom the data is shared can use the provenance
to determine their level of trust in the data. If the provenance itself is of questionable
quality, it undermines one of the key benefits of provenance of scientific data in the
first place. On the other hand, thinking about the provenance record in terms of frag-
ments of workflows that are either part of the lineage trace of a scientific data object
or not related, models reality more closely. This is mainly because data are rarely
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created from scratch and derived in the same workflow. Finally, the provenance of
a scientific data object is a living record, just as the provenance of a piece of art
is a living record. Flexibility in dealing with provenance over time will provide the
greatest benefit for scientific data provenance.

In this chapter we focus on the provenance of digital scientific data that is gen-
erated automatically from unmanaged workflows, and discuss three areas, capture,
representation, and use. Dealing with unmanaged workflow has implications at ev-
ery step of provenance management. In the provenance capture phase, attention
must be focused on the instrumentation used to capture provenance and the com-
munication protocols by which provenance information is ferried outside the ap-
plication. The provenance representation phase is marked by the noted absence of
a overall plan (the workflow specification), creating uncertainty as execution-level
events arrive. Finally, the use phase must make the provenance valuable for use.
This is complicated in the unmanaged workflow by information that is known to be
incomplete and ad hoc. Good tool support for automatic provenance capture, rep-
resentation, and use in the unmanaged workflow setting is critical for realizing the
vision of broad scientific data sharing today and in decades to come.

3.2 Provenance Creation

3.2.1 Overview

Provenance creation for unmanaged workflow is the activity of identifying the im-
portant provenance activities, defining a data model by which to represent the prove-
nance, mapping the activities to the model, identifying the right communication
protocols and instrumentation techniques to employ, then finally, putting capture in
place for running applications. A good graph-based model for provenance is the
Open Provenance Model (OPM) [7]. OPM represents entities, artifacts, actors, and
relationships in the form of a directed graph. The provenance of a data object, D i,
for instance, can be defined by the processes or transformations that were applied to
create the data object. The processes can in turn be further described by their inputs
and outputs. A relationship between process P 1 and process P 2 exists if process
P 2 consumes a data product generated by process P 1. OPM defines the minimal
provenance but supports name-value pair annotations that can be used to enhance
the information known about the entities and relationships. Provenance can be fur-
ther enhanced by extending the existing set of relationships and objects, such as was
done by Missier et al. [22].

In the unmanaged workflow setting, extracting provenance from an executing
application has similarities to real time performance monitoring of a complex, dis-
tributed and parallel application. The terminology used in performance monitoring
literature when referring to the mechanism for extracting information from an ex-
ecuting application [25] is “instrumentation”, ”instrumentation points”, and ”sen-
sors”, so we adopt the same terminology here. Provenance capture focuses on the
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sensors that collect information; as with performance monitoring these sensors must
be lightweight, and minimally perturb or pollute the application.

One of the first design decisions is the types of instrumentation that can be sup-
ported. Mechanisms for collecting provenance have tradeoffs that must be made
between burdening the user, the developer, or application performance; and in the
ultimate quality of the provenance information as well. Collection mechanisms fall
into one of three categories: user annotation, scavenging, or full provenance in-
strumentation. Provenance capture through User annotation is a human data entry
activity where users enter textual annotations, capturing for instance all the data sets
used during an analysis of a particular forest use in the Amazon forest over a mul-
tiyear period, including video interviews of nearby residents, satellite imagery, and
survey data. To make the entry more uniform, the scientist might be prompted to
enter specific information. It is however widely understood that user-entered meta-
data is often incomplete and inconsistent [26]. The annotation approach imposes
a low burden on the application, but a high burden on the humans responsible for
annotation. The implication is that error rates of the provenance are high.

Full provenance instrumentation refers to instrumentation that is added directly
to an application, such as when a programmer must insert calls into their code to
call out to a provenance library. Full provenance instrumentation allows for good
provenance completeness and consistency, but imposes a substantial burden on the
programmer who must modify the application directly. A middle approach is some-
thing we refer to as scavenging. Here collection is done by means of piggybacking
onto existing collection mechanisms, such as a logging tool or an auditing tool, or
is carried out in the middleware layer so as to not burden the application program-
mer. VisTrails [27] implements a form of scavenging when it captures the “do” and
“undo” actions of graphical modeling tools as a way to pick up provenance for free.
Scavenging has a disadvantage of resulting in incomplete information. Incomplete
provenance information can be an acceptable tradeoff for high levels of collection
interoperability as long as we can provide a sense of the level of completeness and
provide an estimate of the accuracy of the resulting provenance.

The capture layer ingests provenance events, alternately called “notifications”, as
they are generated at runtime, and queues them for storage to a provenance capture
system. The layer is implemented as a protocol and framework to carry provenance
events from application components to the database. In this layer, there may be
different protocols ranging from a Web Service based system to a publish-subscribe
system. This is illustrated on the left of Figure 3.2.

3.2.2 Application in the Karma Tool

The application of provenance capture in unmanaged workflows is best illustrated
through example. Our team has had experience applying provenance capture in mul-
tiple and varied settings, in which we had to think through the data model, instru-
mentation mechanisms, protocols. We summarize this experience in Table 3.1. PC3
is Provenance Challenge 3 [37], a friendly competition undertaken June 2009 in the
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Fig. 3.2 Logical architecture of a provenance system

provenance community. Teams implemented an astronomy workflow that used their
provenance system to answer a set of queries. Ratings depended on the number of
queries the systems could answer and the ability to capture the most information
in the query. AMSR-E is shorthand for a satellite instrument processing pipeline
application. The processing pipeline is for the Advanced Microwave Scanning Ra-
diometer - Earth Observing System sensor located on the NASA Aqua satellite. The
pipeline is a script-driven application that continuously ingests images from the po-
lar orbiting satellite, processes the images to identify sea ice over the poles, etc. The
pipeline is made up of legacy processing scripts and scientific algorithms, the latter
of which are of deep importance to the provenance record. The LEAD application
is a workflow system for executing weather related analysis and modeling activities.
The GENI application is a computer networking application. It applies provenance
capture to the PlanetLab distributed network. Table 3.1 identifies three different
kinds of instrumentation and two protocols that are used in the four applications, in
some applications two instrumentation techniques are used. The implications of the
capture mechanism, using the vernacular identified in Table 3.1, are given in the col-
umn titled “Provenance capture burden”. As it can be seen from Table 3.1, there are
various instrumentation mechanisms, one of which is a full provenance instrumen-
tation approach, with the attendant high burden on the application programmer to
correctly place the instrument points in the code, and to write provenance events to
a format that Karma requires. We see this as our least viable solution because of this
dual-headed burden. The first scavenging approach taps into the messages flowing
between applications and transparently routes a copy of the event to Karma. It treats
the application as a black box, so provenance is limited to what can be captured
through message traffic. Within that approach, there are two schools of thought as
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to whether or not one should peek into the message contents to extract further prove-
nance. The second scavenging approach captures provenance information from log
files.

The Karma system currently supports two forms of communication in which the
provenance event come to the system, a Web service based model and a publish-
subscribe messaging system [38, 39]. In addition to synchronous submission of no-
tifications, support for asynchronous publishing of provenance is supported through
a publish subscribe system. Sometimes called an Enterprise Service Bus, a publish
subscribe system decouples publishers of events and consumers of events, allowing
new publishers and subscribers to join simply by having the topic name and location
of the broker that brokers subscriptions.

3.3 Provenance Representation

A provenance system can be viewed as a repository that (1) actively collects and
ingests events in real time, (2) stores the events in a data model that supports time-
series data storage, aggregation and synthesis of the events to form new knowledge,
and (3) provides an access layer that supports access to the data. Provenance sys-
tems are often designed to serve a single use, such as provenance capture for a
single workflow system. As attention is increasingly being paid to the long term
sharing and preservation of digital scientific data, provenance systems can be valu-
able repositories of information about the circumstances under which data objects
were created, information that is essential to reuse of the data object in a new setting.

The provenance representation layer, illustrated in the middle of Figure 3.2,
stores provenance data using a data model that represents the execution instance
notifications, and higher layers that abstract from execution instances. The represen-
tation layer is where post-processing is carried out such as to organize the events and
derive higher levels of behavior or knowledge from the events. The representation
layer is where the impact of unmanaged workflows is most strongly felt because for
unmanaged workflows there is no obvious reference point to which arriving execu-
tion events can be tied such as would be provided by a workflow known in advance.

Provenance systems use different data models, Karma uses a two level model;
Trident and VisTrails use a three level data model. Karma includes both execu-
tion details for utilizing the data and high level information for long term preserva-
tion [41]. This layer should contain information about services and data products
at a sufficient level of detail to support discovery and automated decisions about
whether to bind a particular data product or service. This layer should contain infor-
mation for locating and retrieving data artifacts for use in a workflow execution and
capture instance invocation and execution details of a particular run. The representa-
tion layer should store common information consistently and without redundancy. A
provenance capture system captures provenance by accumulating discrete run time
activities during the lifecycle of unmanaged workflows, that is, workflows whose
structure is not known to the system in advance of execution.
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Table 3.1 Instrumentation techniques supported by Karma and the two communication pro-
tocols have different tradeoffs [44].

Instrument mech-
anism

Communication
protocol

Provenance collec-
tion burden

Application

Application re-
sponsible for
invoking library
that constructs
provenance notifies

and invokes Axis2
send call. Special-
ized Axis2 handler
routes message to
Karma.

Programmer must
be provenance
savvy. High appli-
cation burden.

PC3

Application re-
sponsible for
invoking library
that constructs
XML provenance
notifies

and publishes to
messaging system
(i.e. RabbitMQ).
Karma listens for
events.

Application pro-
grammer must be
provenance savvy.
High application
burden.

AMSR-E

Application pub-
lishes SOAP
notifications as part
of normal activity

and publishes to
Axis2 call. Axis2
handler transpar-
ently grabs copy
of event and sends
to Karma without
application being
aware.

Karma parses
notifications on
server side to
extract useful
provenance infor-
mation. Assumes
basic provenance
behavior is present
in message. Scav-
enging approach.

LEAD

Application pub-
lishes notifications
as part of normal
activity

and publishes to
RabbitMQ. Karma
is sitting on topic/-
subject so captures
event without
application being
aware.

Same as above.
Scavenging ap-
proach.

GENI

Application writes
log messages to log
file as part of nor-
mal activity

and Karma Adap-
tor parses log file
(client side parsing)
and generates no-
tifications that are
sent via Axis2 or
RabbitMQ.

Adaptors need to be
written to parse log
file; assumes core
provenance behav-
ior has been written
to log. Scavenging
approach.

GENI,
AMSR-E
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3.3.1 Representation in Karma

Karma stores provenance data using a two-layer information model which includes
both execution details for utilizing the data and registry information for long term
preservation [41]. The two-layer information model contains a registry level, which
contains metadata about the instance, and an execution level. The registry level has
similarities to registries used in web service architectures in that it contains infor-
mation about services and data products at a sufficient level of detail to support
discovery and automated decisions about whether or not to bind a particular data
product or service. The registry level is not used for locating and retrieving data
artifacts for use in a workflow execution, but nevertheless contains sufficient infor-
mation for building a data object that can be preserved indefinitely. The execution
level captures instance invocation and execution details of a particular run. The two-
layer model recognizes commonalities in workflows and stores that common infor-
mation consistently and without redundancy. Some of the concepts of this two-layer
information model map directly to OPM. For instance, data products such as data
granule and data collection can be considered artifacts; entities (services including
composite service and opaque service, and methods) can be considered processes;
and clients (a kind of entity, which may be a user or a workflow engine that initiates
the workflow) can be considered agents.

A significant implication of not knowing the structure of workflows in advance
is that in addition to not having a picture of execution before it occurs, Karma can
make no assumptions as to the existence of global state in the application either. A
provenance notification message will be issued by a task, and the information con-
tained in that notification will be based on what can be gathered from local state
only. For instance, tasks within a workflow may not know the session or work-
flow to which they “belong” so it can be difficult for the Karma service to tie a
service invocation back to the workflow that invoked it, particularly for recursive
or chained services. For unmanaged workflows, OPM is inadequate to the task of
defining the formats of provenance events if for no other reason than provenance
capture is messier and more incomplete than the graph-based OPM can handle.

3.4 Provenance Use

Captured provenance provides a rich source of information about workflow exe-
cution. Automatic provenance collection over time generates a substantial body of
knowledge which may be used in many ways. Referring back to the logical archi-
tecture shown in Figure 3.2, the access layer supports the Query API, which is used
to pose queries to the provenance capture system to retrieve provenance. This layer
that allows users to explore and examine large quantities of data requires browse
capabilities. The browse pattern characteristically involves starting with some broad
information, performing a search, finding general result sets and then selecting more
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specific information for drill-down. The access layer includes macro-level queries,
tracing provenance relationships back through time in order to construct a graph, as
well as object-level queries that locate information about specific entities matching
the conditions specified in passed arguments.

Our research investigates three novel additional uses for provenance, described
in the following sections: Using captured provenance to aid workflow construction,
to repair problems in provenance capture, and to analyze workflow trace quality.

3.4.1 Using Provenance to Aid Workflow Construction

Provenance acquired by provenance capture systems is rich source of information
about the workflows which gave rise to the observed processes. We are investigating
how such information can be used to aid workflow construction. When a subpart of
a partially constructed workflow involves a sequence of services observed in a past
provenance instance, that remainder of the stored provenance can suggest extensions
of the partial workflow, to present to the workflow author. We are exploring both the
mining of stored provenance for statistical correlations on which to base predic-
tions, and the use of case-based reasoning (CBR [48, 49]) to predicting solutions to
new problems based on relevant instances of similar prior problems. CBR is a “lazy
learning” method in that cases are stored with minimal pre-processing, simplify-
ing knowledge acquisition. Because CBR reasons from relevant prior episodes—
cases—rather than rules, it is a natural approach for reasoning from libraries of
examples such as provenance databases. The performance of CBR systems depends
on how well their stored cases cover the space of problems to solve. Large-scale
provenance databases provide an extensive starting point, and each new workflow
execution provides a new case to extend coverage. In addition, workflow problem
types tend to recur—for example, scientists in a particular domain will tend to gen-
erate certain types of workflows [50], increasing the chance that stored traces will
be relevant to new situations.

The Phala project1 [50, 51] develops and tests a case-based approach to aiding
workflow construction. Phala is a plug-in to the XBaya graphical workflow com-
poser [45]. Phala’s processing cycle is illustrated in Figure 3.3.

As a user develops a workflow, Phala monitors the partially constructed workflow
and generates background retrieval queries to a provenance database. The prove-
nance database need not have been generated for a single particular task; similarity
assessment process selects those cases which are relevant. When cases are not avail-
able, the system can provide recommendations based on statistical methods, which
use statistics mined from the provenance database. Because there is no guarantee
that the suggestions generated by statistical methods and cases will agree (or even
that all suggestions from relevant cases will agree), we are developing approaches

1 The name Phala was inspired by the naming of the Karma provenance capture system.
In Sanskrit, Karma means causality and reflects captured provenance, Karma means the
ripened fruit, so KarmaPhala means the fruit of provenance capture, reflecting the cases
generated by Phala.
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Fig. 3.3 Phala’s processing cycle

for combining multiple (and possibly conflicting) recommendations, in order to ex-
tend the range of situations for which Phala can make recommendations and in-
crease recommendation accuracy. Initial tests of these methods are promising [51].
In addition, Phala allows users to control the level of confidence required for the
system to propose suggestions.

Large provenance case bases provide both benefits and challenges for CBR.
Given a large and diverse set of cases, a CBR system can solve a wide range of
problems. However, retrieval and similarity assessment for large case bases can
be computationally expensive, especially when the cases which need to be com-
pared involve structured information. For graph-structured case information such
as workflow traces—for which matching could be seen as an instance of the sub-
graph isomorphism problem—matching cost is a particularly acute issue. In addi-
tion, the anticipated size of provenance case bases far exceeds that of case bases pre-
viously studied by the case-based reasoning community (for example, as described
in Section 3.4.3, a 10 GB database was recently developed as a provenance testbed).
Consequently, a central goal of the Phala project has been to develop procedures
enabling efficient retrieval of structured cases.

For generality, Phala’s retrieval methods are primarily domain-independent.
Phala’s retrieval is performed by the Structure Access Interface (SAI), a toolkit for
structure-based retrieval. To increase retrieval efficiency, SAI implements a two-
phase retrieval approach in which the initial phase can be seen as coarse-grained
filtering, to retrieve a small set of potentially relevant cases for more expensive
structural matching. More detailed descriptions of the algorithms and evaluations
are omitted here for reasons of space, but are available elsewhere [50, 51, 53].



70 M.S. Aktas et al.

3.4.2 Using Data Provenance Traces to Reconstruct Process
Traces

Data provenance traces from multiple systems need to be connected into a coher-
ent graph that represents the relationships between various data-related events. For
example, one system might generate an event corresponding to the sending of a
message, while a second system might generate an event corresponding to the mes-
sage being received: if these are in fact the same message, these events need to be
connected to recover the end-to-end trace of what actually occurred. The process of
doing so is termed trace reconstruction; we first discuss how this is done in general,
and then focus more closely on unmanaged processes. The process of reconstruct-
ing process traces from provenance data involves three distinct phases: Collection,
Correlation, and Enrichment.

Collection: This phase involves gathering provenance data from various source sys-
tems. Adapters are built to extract events or log information from the source system,
perform appropriate transformations to produce provenance items and then record
these provenance items into a centralized provenance store. For reconstructing pro-
cess traces, a provenance solution would involve deploying adapters to all systems
where any process activity occurs, such as document repositories, web servers, email
servers and so on.

Correlation: This phase involves correlation of provenance items within the prove-
nance system. Correlation for the purpose of reconstructing a process trace will
involve using an opaque process identifier if available, or a set of application data
that collectively serves as the identifier for a process, and then using the identifier to
stitch together the tasks, data and actors involved in the correct temporal sequence.
The correlation will also locate identifiers that help to bridge systems (such as a
message identifier that helps us connect a message sent from one system to that
received in a different system).

Enrichment: When reconstructing process traces, provenance items recorded as
multiple tasks by adapters may together correspond to a single process activity from
the user’s perspective. Creation of such a higher level abstraction would be done
at this time. For example the entire sub-graph showing the sending of a message
from one system to another could be abstracted into a single node labeled ’message
exchange’, with the underlying provenance of this activity preserved elsewhere in
the graph. This simplification serves two purposes: it allows for easier visualiza-
tion and also reduces the complexity of consuming new information. For example,
further correlation or enrichment of the graph could be triggered on new ’message
exchange’ node, rather than on the more complex pattern it corresponds to.

It is important to note that these phases need to operate concurrently; data that
is being recorded has to be correlated and enriched at the same time other data is
arriving; i.e. development of the provenance information and its use to reconstruct
the process trace is a continuous process. The outcome of this continuous process is
a process trace represented as a provenance graph.
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A result of the observed process being unmanaged is that sometimes correla-
tion and enrichment are non-trivial. Consider the process of running a long-running
scientific experiment across a computing infrastructure that requires data products
from one system to be manually copied to a different system. In many real-world
instances, the method for achieving this is for scientists running the experiment to
request system administrator to perform the data copy. The request forms an impor-
tant part of the overall process and allows the subsequent data set used to be verified
as being the correct one. However, correlating an unstructured request such as an
email with other events such as a file copy is non-trivial. In most cases, the request
would specify the source file and target location, but this may not always be the
case. In such instances, the time the request was made could be used for correlation.
In general, it is certainly possible to miss the request that was used when creating
the provenance graph, or to correlate an incorrect request. We classify uncertainties
in provenance graphs under three categories: Node versus Edge uncertainty, Simple
versus Complex Uncertainty, and Static versus Dynamic uncertainty.

Node versus Edge uncertainty: All the nodes in the provenance graph can be
grouped into two categories, nodes recorded by adapters (Type A) and nodes created
through derivation from those (Type B nodes). Nodes recorded by adapters are accu-
rate since they exactly represent something that occurred in a source system. Derived
nodes, added through feature extraction or enrichment may however be inaccurate,
and may therefore have uncertainty associated with them. Edges are recorded based
on correlations or shared features between nodes. When edges are recorded between
Type A nodes that were recorded from the same source system, they are guaranteed
to be accurate (since they are based on correlations of consistent and accurate data).
All other edges may be imprecise. For example, an edge showing time ordering be-
tween Type A nodes from different source systems may be inaccurate if the clocks
are not synchronized. Additionally, edges between Type B nodes may be imprecise
since the node uncertainty is propagated to the edge, i.e. the edge may be created
based on imprecise data. Going back to our earlier example of correlating a request
to copy data with the actual system activity corresponding to the data movement, the
resulting provenance graph would have accurate information on each of these basic
events, the uncertainty would arise when trying to determine which of the available
email requests correspond to a particular data movement activity.

Simple versus Complex Uncertainty: Uncertainty associated with a provenance
item may be entirely a function of features of that provenance item itself. We call
such uncertainty simple. Sometimes the uncertainty is a function of a set of prove-
nance data; in such cases it is said to be complex.

Static versus Dynamic uncertainty: When the uncertainty associated with a given
provenance item is fixed, it is said to be static uncertainty. Sometimes the uncertainty
associated with a piece of information varies over time. This is dynamic uncertainty.

Doganata et al. [43] have explored an approach in which information is corre-
lated only if it appears to meet a certain confidence threshold. We [6] have found
that it is better to represent uncertainty in a first class manner within the provenance
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graph itself, and allow for provenance applications or further enrichment to decide
what information is accurate, given a more global view of the end-to-end process.

3.4.3 Using Provenance for Analysis of Workflow Traces

Real world provenance data traces are often noisy, resulting in disjoint or incom-
plete provenance traces. Provenance messages may be dropped, messages can be
incomplete (which could occur when the application scope at a point of notification
generation is more restricted than anticipated), or execution of the application (or
workflow) can simply fail. To properly asses captured workflow traces, it is crucial
to establish algorithms to analyze those traces, identifying failures and assessing the
quality of data provenance traces.

Identifying failure in provenance traces: We have developed a model for analyz-
ing provenance traces and identifying failures [52]. The model identifies two types
of failures: a) task failures where a node in a workflow does not complete success-
fully, b) communication failures in which a task completes but the notification is not
successfully transmitted.

We have performed experiments studying four failure modes as follows: a) No
failures and dropped notifications (success case), b) 1% failure rate, c) 1% dropped
notification rate, d) 1% failure rate and 1% dropped notification rate. These failure
rates are modeled using uniform distributions in a workflow emulator, WORKEM
[54], to determine if a particular invocation must fail or drop a notification. Us-
ing the WORKEM to generate provenance, the following six major workflows
were used as the basis for generating a large scale (10 GB) provenance database:
LEAD North American Mesoscale (NAM) initialized forecast workflow, SCOOP
ADCIRC Workflow, NCFS Workflow, Gene2Life Workflow, Animation Workflow,
MotifNetwork Workflow. These workflows are pseudo-realistic, in the sense that
they are modeled after real life workflows. The LEAD NAM, SCOOP and NCFS are
weather and ocean modeling workflows, Gene2Life and MOTIF are bioinformatics
and biomedical workflows, and the Animation workflow carries out computer ani-
mation rendering. Some of the workflows are small, having few nodes and edges,
while others like Motif have a few hundred nodes and edges.

Figure 3.4 shows the results where the distribution is dissimilar. Even though the
generation settings for WORKEM were identical across workflows, WORKEMs
failure model does not result in the same uniform distribution across different work-
flows since the configuration for failure rates is per task in the workflow. For both
Animation and Motif workflows, the number of runs that do not have failures or
dropped messages is approximately half of what the smaller workflows exhibit,
which supports that the larger a workflow, the higher the failure rate and dropped
messages rate. The smaller workflows appear to have the same distribution com-
pared to each other.

Quality Assessment of provenance traces: We have developed a methodology for
assessment of the provenance goodness [52]. This methodology applies statisti-
cal approaches that operate over large volumes of data to zero in on suspicious
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Fig. 3.4 Distribution of workflows by population cases

provenance records. Based on this approach, provenance goodness is determined by
constructing the best possible provenance graph for an execution based on the cap-
tured provenance record, then assessing the goodness of the resulting graph by look-
ing at the partitions in a provenance graph. In this approach, a provenance graph is
be modeled as PG = V, E, where V is a collection of vertices that are linked by one or
more directed edges, E. This approach is used to construct a provenance graph from
nothing (no guiding workflow template) based only on the captured provenance. It
relies on an assumption that all provenance notifications contain the correct ID for
the workflow execution instance to which they belong. WORKEM workflow emu-
lator supports this assumption. Even with this simplification, this approach still may
yield disconnected components. The query of a graph using a workflow ID searches
over the database tables for entities (processes) that have matching IDs. If there are
dropped messages, the queried graph may have missing edges or missing vertices.
The only guarantee for the retrieved graphs is that the components of the graph are
linked through that workflow ID.

Figure 3.5 shows the results of this approach, when the algorithm is applied
to the aforementioned large scale 10GB provenance database. Observing the num-
ber of edge counts of each workflow instance, we conclude that the results for the
LEAD NAM workflow are preliminary. The plot points are classified based on the
statuses of each workflow. Based on the results, the workflows with dropped mes-
sages cluster towards the upper end of Figure 5. This implies that dropped messages
for successful workflows are few. In comparison, workflows that involve failures
typically result in more missing notifications, resulting in lesser number of edges in
their provenance graphs.

Automatic provenance repair: As described previously, automatic provenance cap-
ture is imperfect. Correlation and enrichment methods aid in reconciling and merg-
ing information, but in some cases, the messages relating to a process may simply
be lost, resulting in gaps in the provenance trace. Consequently, we are studying
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Fig. 3.5 Plot of edge counts for LEAD NAM workflow instances with different statuses

methods for assessing overall provenance goodness. For example, we have begun to
explore using simple graph analysis methods to identify connected components: If
a provenance graph is disconnected, it reveals gaps in provenance capture. In such
instances, methods such as Phala’s prediction methods, applied to the disconnected
components, may be able to infer missing steps. Confidence assessment methods al-
ready developed for Phala’s recommendations may be used to determine confidence
in proposed repairs. This will enable a flexible repair approach in which repairs are
only pursued if their confidence exceeds a use-designated threshold, and will also
enable annotating repaired provenance with confidence values for the quality of the
provenance.

3.5 Related Work

Provenance has been studied from different perspectives and several surveys have
been published [4, 21, 28, 29]. Simmhan et al. [4] introduced a taxonomy of prove-
nance in e-science, specifically for scientific workflow systems, based on why they
record provenance, what they describe, how they represent and store provenance,
and ways to disseminate it. Moreau [29] did a comprehensive survey analyzing
425 papers in the provenance literature and reviewing its potential benefits in e-
science, curated databases, and semantic web. In this section, we give a brief review
of provenance capture in major provenance systems particularly designed for sci-
entific workflows. Generally, provenance systems for scientific workflows can be
categorized into two classes: those in scientific workflow systems and standalone
provenance systems.
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Provenance Use: Provenance systems track artifacts from various systems and cor-
relate these to create a provenance graph. Using a provenance graph, it is possible
to recover process traces or data lineage, or to maintain a record of user activity for
various purposes. It is also possible to build systems that aid workflow construction.
Workflows are often generated by scientists who are not experts on scientific com-
putation, who may have difficulty choosing appropriate services. Even for experts,
workflow generation may be time-consuming. Consequently, software to facilitate
workflow generation is highly desirable and a number of efforts have aimed to as-
sist scientist in workflow generation, using both generative planning and interactive
approaches. Systems such as FlowRecommender [11] and Viscomplete [12] mine
process traces for the development of automated workflow recommendations. Wen
et al. introduced an approach for process mining problem in dealing with invisible
tasks, i.e., such tasks that exist in process model but not in its event logs [10], for
deploying new business processes as well as auditing, analyzing and improving al-
ready interacted ones. Interfaces such as XBaya [45] aid users by abstracting away
from the details of workflow languages. Knowledge-rich artificial intelligence meth-
ods have been developed to generate workflows automatically [46] and to provide
interactive support for carefully codified domains [47]. Such approaches can pro-
vide excellent performance, but at the cost of expensive knowledge capture, which
becomes a major impediment to fielding such systems in new domains. We are in-
vestigating data-driven methods to support human workflow generation with mini-
mal knowledge capture.

Provenance tracking has been used to assist in reproducibility of scientific ex-
periments [16], monitoring complex processes that span multiple systems [15] and
measure compliance of unmanaged processes [17]. However, none of the existing
literature has dealt with the the issue of uncertainty in provenance data. We are in-
vestigating the uncertainties involved in creating provenance traces for unmanaged
processes and how to represent these using a provenance data model.

Systems such as Karma address provenance capture that is tightly coupled to a
workflow system and provenance capture in non-structured e-Science environments.
These systems provide a controlled provenance generation environment and do not
necessarily contain provenance with failures.

A number of synthetic workflows have been generated and used in distributed
systems [18, 19, 20] and computing networking [13, 14] research areas for perfor-
mance evaluations and benchmarking purposes. However, none of these workloads
attempt to model failures and have been specifically developed for the purpose of
provenance research. As discussed previously, we use a noisy 10 GB provenance
database that models failures of provenance notifications to explore methods to
provenance repair and provenance quality assessment.

Provenance Systems: Provenance collection is widely supported in scientific work-
flow management systems because provenance data can be easily captured and
recorded during execution of a workflow. Kepler [30] is used by scientists in mul-
tiple disciplines for the design and execution of workflows. The provenance com-
ponent, Provenance Recorder (PR), is optional depending on the user’s requirement
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to track provenance. To enable provenance capture in a workflow instance, the user
drags the provenance recorder from the toolbox, places it on the workspace, and fills
in the configuration menu. The provenance associated with the workflow definition
is automatically generated by the existing MOML (Kepler’s internal XML workflow
representation) generation capabilities during a workflow run. To receive the prove-
nance data, the PR implements several event listener interfaces. When the workflow
is loaded, the PR will register with the appropriate concerns in the workflow. When
the workflow is executed, PR will process information received as events, and save
it in provenance store.

The Taverna workbench [31] is developed for the composition and execution of
workflows for the life sciences community. Provenance data is recorded for work-
flows in the Simplified conceptual workflow language (Scufl) language with four
levels [32]: a) process provenance, b) data provenance, c) organization provenance,
and d) knowledge provenance. The process provenance records the order of service
invocations, inputs/outputs to these services, and the time information of service in-
vocations and workflow executions. The data provenance builds a derivation path of
data objects in a workflow run. The organization provenance stores the metadata for
the experiment such as who, when, and where the information was created and how
it evolved during experiments. The first two levels of provenance are automatically
logged during workflow execution. The organization and knowledge provenance
can be obtained from three different sources: users’ annotations of the Scufl work-
flows through a knowledge template plug-in; service descriptions from the myGrid
semantic service discovery component Feta; and provenance published by the third-
party data providers [33].

VisTrails [27] is a workflow and provenance management system that provides
support for scientific data exploration and visualization. It is designed to handle
rapidly-evolving workflows by using a change-based provenance model. The Vis-
Trails provenance information is organized into three layers: workflow evolution,
which captures the relationships among the series of workflows created in an ex-
ploratory task; workflow, which consists of individual workflows; and execution,
which stores run-time information about the execution of workflow modules. The
information for the first two layers is naturally captured by the change-based prove-
nance mechanism. When a user modifies a workflow, his/her actions are captured
by the History manager and saved in the VisTrails Repository. Run-time informa-
tion is captured by the Workflow Execution Engine and stored in the VisTrails Log.
Annotations are allowed at all levels of the layered provenance model.

The Trident [34] workbench is a scientific workflow system which is built on top
of Windows Workflow Foundation (WF), a workflow enactment engine included in
the Windows operating system. It provides an integrated way to collect, store, query,
and view provenance for scientific workflows. Provenance information in Trident is
a combination of the workflow schema—static, composition information about the
workflow—and the provenance schema—dynamic, runtime information about the
actual execution of a workflow instance. The Workflow Composer is the primary
source of the workflow schema, and the Execution Service and Windows WF engine
are the two main sources of the provenance schema. The Execution Service tracks
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the submission of each workflow instance, and the Windows WF engine natively
generates tracking events of the workflow execution. Trident uses the BlackBoard
[35] publish-subscribe, asynchronous messaging framework, to distribute the events
from the source to the provenance storage. The Provenance Service listens to the
events and records them in the provenance store. Trident event handlers listen for
the built-in events to trace the workflow’s control flow. The data flow knowledge
obtained from the input and output parameter values passed to/from the activities
are captured by the instrumentation in the Trident base activity class to generate
customized user events.

The PASAO project provides an interoperable way to collect provenance in a grid
environment using an open provenance protocol. Miles et al. [36] analyzed 23 use
cases in biology, chemistry, physics, and computer science and determined 14 tech-
nical requirements for a generic, application-independent provenance architecture.
PASOA is designed in three layers: fundamentals of recording and access, query-
ing, and processing. PASAO supports the recording and use of three types of prove-
nance: interaction provenance, which records interactions between components and
data passed between them; actor provenance, which records processes information
and the time of the execution; and input provenance, which records the set of input
data to infer a data product. Groth and Moreau described the recording protocols in
[9] in detail. Additionally, Frew et al. [23] captures application calls to the operating
system (i.e., kernel calls) and Holland et al. [24] captures file system access.

3.6 Current and Future Challenges

The notion of unmanaged workflows reflects acceptance that human processes can-
not be fully automated. For whatever reason, there are pieces of the workflow that
remain with the user or are executed outside of and away from the “eyes” of the
workflow system. If the task of provenance capture is to record a complete prove-
nance or lineage record then the task is doomed to failure. This gives rise to the
question: What can be done? The assumption in the phrase “complete provenance”
must be revisited. Just as the provenance of a work of art may have gaps, so in-
completeness in provenance of scientific data may be more common than we may
think. Methods such as trace reconstruction may help to fill in the trace. However,
is complete provenance necessary, or even desirable? Provenance capture can result
in large volumes of very low level information. Provenance capture in the AMSR-E
satellite imagery processing stream reveals significant amounts of “housekeeping”
information, such as that the processing script ran on a certain day. Scientists who
question a resulting image are interested in the version of the science algorithm
that was applied, but not in the specific day. How can we separate the wheat from
the chaff to identify the provenance that contributes meaningfully to the final out-
come? Finally, too few examples of compelling uses of provenance captured from
real applications exist to convince communities of users that provenance systems
are worth the investment of time. These questions and challenges make provenance
and provenance use a rich research area for the future.
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Chapter 4
Sketching Distributed Data Provenance

Tanu Malik, Ashish Gehani, Dawood Tariq, and Fareed Zaffar

Abstract. Users can determine the precise origins of their data by collecting detailed
provenance records. However, auditing at a finer grain produces large amounts of
metadata. To efficiently manage the collected provenance, several provenance man-
agement systems, including SPADE, record provenance on the hosts where it is gen-
erated. Distributed provenance raises the issue of efficient reconstruction during the
query phase. Recursively querying provenance metadata or computing its transitive
closure is known to have limited scalability and cannot be used for large provenance
graphs. We present matrix filters, which are novel data structures for representing
graph information, and demonstrate their utility for improving query efficiency with
experiments on provenance metadata gathered while executing distributed workflow
applications.

4.1 Introduction

The provenance of data is a description of how the data came into being or was
derived. Provenance metadata is becoming increasingly useful in addressing a wide
variety of issues, such as performance optimization, generating repeatable and re-
producible scientific computation, security verification, and policy validation for
checking regulatory compliance. Consequently, applications are being coupled with
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suitable provenance middleware that can audit events, read logs, and answer
provenance-related questions.

We are particularly interested in provenance infrastructure that is used with appli-
cations that perform distributed computation. In this context, consider some exam-
ples that give rise to a variety of interesting issues: (i) scientific applications decom-
pose data-intensive problems into subtasks and distribute them across a Grid through
a workflow planner that may not track provenance; (ii) scientists who conduct dis-
tributed experimental analyses on a variety of research hardware, such as mass spec-
troscopes, DNA sequencers, or oscilloscopes, must maintain records of the com-
bined analyses for reproducibility; (iii) when different users share data through net-
work connections, the resulting information generated has distributed provenance
that may be drawn from multiple, independent administrative domains.

A characteristic feature of such distributed applications is that they are of-
ten conducted in loosely controlled environments and use heterogeneous software
platforms. It is therefore important to collect such provenance metadata in an
application-agnostic manner. The Open Provenance Model (OPM) provides a spec-
ification that serves this purpose and allows provenance to be exchanged between
systems through a generic vocabulary [27]. Tracking distributed computations at the
operating system level allows coupling between the filesystem’s state and the asso-
ciated provenance metadata [32, 11]. A significant implication of this design choice,
however, is that it results in large volumes of provenance metadata [12]. Neverthe-
less, a number of systems, including PASS and SPADE, support transforming such
provenance records into OPM.

Provenance systems that audit at fine granularity employ various architectures
and mechanisms to manage the resulting metadata. Several systems [32, 4, 36] col-
lect provenance information in centrally managed databases, often referred to as
provenance stores. Benefits of aggregating provenance information in central stores
include the ease of maintenance and curation, storage efficiency, and access con-
trol [17]. These mechanisms, however, also introduce significant network overhead,
with many provenance records being transferred to the central provenance store, al-
though remote queries for them may never arise [12]. Accordingly, it is important
for distributed applications to account for the location where provenance metadata
is collected, processed, stored, and consumed.

Support for Provenance Auditing in Distributed Environments, SPADE [37] is
a data provenance management system. SPADEv2 refers to the second generation
of the system, which has modular components for gathering, integrating, filtering,
storing, and querying data provenance. Except for the components that gather prove-
nance, the rest are completely agnostic to the source domain. SPADE uses Reporter
modules customized to the provenance domain to transform the specific semantics
into an OPM compliant form. The domain can be a particular application, the oper-
ating system, or even manual curation. To manage the resulting provenance,SPADE
embodies a decentralized model, with each distributed host maintaining the author-
itative repository of provenance metadata collected on it. SPADEv2’s modules for
tracking operating system activity record not only data flow dependencies between
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files and processes but also data movement across systems via network connections.
All provenance information is stored in a local database.

Distributed provenance management systems, such as SPADE, face a significant
challenge when reconstructing data provenance that spans multiple hosts. The prob-
lem is often solved by tracing a path or recursively querying metadata that is mani-
fested as a directed graph. Recursive querying is known to have poor response times
for large provenance graphs [20]. In the case of distributed provenance, it is also
expensive in terms of network operations since the provenance metadata is unlikely
to be located where the data is stored, and the appropriate remote sources must be
identified. The alternative to recursive querying is computing a transitive closure,
which is computationally expensive. In addition, this requires global knowledge,
which raises traditional distributed system challenges.
SPADE employs provenance sketches to address the problem of reconstructing

distributed data provenance. Such provenance can be viewed as a collection of sub-
graphs, each from a different host, that interface through vertices corresponding to
network connections between the hosts. The provenance sketches determine which
network connections are relevant to a query, while locally computed transitive clo-
sures provide host-specific subgraphs that must then be stitched together. In our
earlier work [24], provenance sketches summarized host-specific provenance sub-
graphs with Bloom filters [2]. In contrast, we now encode an entire provenance
graph by organizing a set of Bloom filters into a new data structure that we term a
matrix filter. Matrix filters, when propagated to other downstream hosts, determine
in a single lookup the existence of a path between any two distributed hosts, which
would previously have required contacting multiple hosts. If the path exists, the
matrix filter can also be used to determine the specific remote hosts that contain the
intermediate path. This allows us to contact the intermediate remote hosts in parallel
to construct the full provenance path rather than building the path one remote host at
a time. The parallel operation substantially improves the performance of distributed
path queries.

We deployed SPADE to collect fine-grained provenance of workflows used in
the NIGHTINGALE project [30]. The project uses heterogeneous machine learn-
ing algorithms to translate information from multiple languages so that monolin-
gual users can query the content. The provenance of intermediate outputs is used
when comparing the quality of competing approaches. We mapped the provenance
metadata to distributed SPADE databases, and constructed representative prove-
nance queries. SPADEwas augmented with functionality to compute the provenance
sketches needed for each host. Our experiments indicate that queries are answered
accurately with the aid of matrix filters. Query response times remain constant even
when the number of levels in the provenance increases.

The remainder of the chapter is organized as follows. Section 4.2 describes prove-
nance systems for distributed applications. Section 4.3 outlines the SPADE archi-
tecture and data model for auditing system-level provenance and storing it in dis-
tributed repositories. Section 4.4 describes sketches for encoding graphs. In partic-
ular, it describes the matrix filter and how it can be used for improving the latency
of provenance queries in a distributed provenance system, such as SPADE. Section
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4.5 reports our findings about the use of matrix filters to improve the efficiency of
SPADE queries in a PlanetLab [31] distributed environment. Section 4.6 concludes.

4.2 Related Work

Distributed applications manage and query digital provenance in a variety of ways.
Chimera [8] uses a virtual data catalog to store information about Grid data ob-
jects, transformation types, and applications. Swift extends concepts in Chimera
to include a custom provenance data store with an SQL-like language [10]. ES3
[9, 25] and PASOA [14, 16] record the provenance of files in distributed services,
but provide minimal query interfaces. Karma explores a service-oriented architec-
ture for collecting provenance metadata about workflows. It employs basic recur-
sive traversal to enhance query capabilities [36]. Service-oriented Grids also gather
provenance at multiple locations using distributed protocols [15].

One primary issue that arises with distributed data artifacts is how they should
be semantically described and referenced. OPM facilitates interoperability between
systems by providing a common model for provenance. Several projects provide
OPM-compliant provenance, such as SPADE, PASS [33], VisTrails [4], and Tupelo
[40]. More recently, an OPM profile (which is a set of conventions) models aspects
such as transactions in distributed systems [18].

Not all systems, however, provide a combined comprehensive recording and
querying infrastructure. The PASS project developed the provenance query lan-
guage (PQL) [21]. PQL, however, does not interact with the distributed provenance
gathering system PA-NFS [33] that enhances NFS to record provenance in local area
networks. ExSPAN [41] allows the exploration of provenance in networked systems.
Both systems use provenance metadata to answer queries about the origin of data
and how it was derived. The ExSPAN scheme extends traditional relational models
for storing and querying provenance metadata, while SPADE supports both graph
and relational database storage and querying. Queries in ExSPAN are not optimized
for performance.

ProQL [22] is a query language for provenance graphs and presents a convenient
way of exploring tuples and nodes, and the ability to isolate and request portions
of the graph. Similarly, D-PQuery [17] allows fetching of portions of a provenance
graph in a distributed setting. However, the efficiency of queries is not addressed.
ExSPAN explores storage and query optimization techniques to reduce communi-
cation latency and bandwidth, and employs caching of provenance metadata to im-
prove query performance [41]. Caching assumes locality over the incoming query
pattern. SPADE employs summary data structures to improve the performance of
each distributed query.

An issue related to distributed provenance querying is the identification of objects
uniquely across different administrative boundaries. PASS describes global naming,
indexing, and querying in the context of sensor data [34]. SPADE addresses the
issue by using storage identifiers for provenance vertices that are unique to a host
and requiring distributed provenance queries to disambiguate vertices by referring
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to them by the host on which the vertex was generated as well as the identifier local
to that host.

Given the data-intensive nature of managing provenance metadata, providing
adequate storage can be a challenge. PASS explores storing provenance in highly
available fault tolerant environments, such as clouds [34, 35]. SPADE employs flex-
ible provenance storage, including graph databases, installed on the hosts where the
provenance is generated. Provbase [1] uses Hbase, an open-source implementation
of Google’s BigTable [5] to store and query scientific workflow provenance. Prove-
nance metadata is exported to Hbase as RDF triples, and SPARQL is used to query
Hbase using its native API. Storing provenance concisely has also been investigated
elsewhere [41, 20] and remains an active area of research.

4.3 Tracking System-Level Provenance with SPADE

Fig. 4.1 The SPADE kernel provides an independent provenance middleware service on each
host in the distributed system. A SPADE Reporter is a module that transforms records from
a domain, such as operating system activity, into an OPM-compliant representation of data
provenance. Distributed provenance queries are transparently handled by the local service,
which contacts remote daemons as needed.

SPADEv1 refers to an initial implementation that enabled provenance questions
about executed processes and files that were read and written by them. SPADEv2
is a second generation of the system and adopts the OPM model. It has a ker-
nel, storage, querying, and filtering that is agnostic to the source of provenance,
with domain-specific annotations created in Reporter modules, as illustrated in Fig-
ure 4.1. The rest of this chapter focuses on the use of operating system Reporters
that audit filesystem reads and writes, process execution, and TCP connections, and
transform them to OPM.

In a distributed environment each computer has the freedom to maintain an inde-
pendent filesystem and accompanying namespace, and yet data can be shared across
organizational boundaries. The provenance recording infrastructure must overlay a
coherent framework that facilitates reasoning about the origins of data in such a
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distributed environment. In particular, the infrastructure must track data flows within
a host — that is, intra-host dependencies, and across hosts — that is, inter-host de-
pendencies. We now describe how we record both intra-host and inter-host operating
system dependencies with SPADE.

Recording provenance by tracking data flows requires the system to (i) identify
the producers and consumers of each piece of data, and (ii) define the granularity
at which a piece of data will be tracked. On a single host, the immediate source
of a piece of data will be a process, which may in turn (recursively) have used
data written by other processes that have executed on the same host. In addition to
the data flowing within a single host, processes may have read data from other hosts
through network connections. In such an event, the provenance of any data modified
by a process must also include the provenance of the data read from the remote host.
We adopt the convention of identifying data by both its location in the system and
the time at which it was last modified.

The granularity at which we track the provenance of a data object affects the
overhead that will be introduced in the system. The advantage of fine-grain auditing,
at the level of assembly instructions or system calls, for example, is that information
flow can be traced more precisely, allowing an output’s exact antecedents to be
ascertained by reconstructing the exercised portion of the control flow graph of the
relevant process. The disadvantage is that the system’s performance will perceptibly
degrade and the monitoring will generate large volumes of provenance metadata.
Since persistent data is managed at file granularity, a reasonable compromise on the
level of abstraction at which to track data provenance is to define it in terms of files
read and written.

4.3.1 Intra-host Dependencies

We utilize the following elements to model intra-host dependencies in a provenance
graph:

• Process vertices are initialized when the auditing system first encounters a pro-
cess. Each vertex contains a range of attributes, including the name of the pro-
cess, its operating system identifier, owner, and group. Each vertex also records
the parent process, the host on which the process is running, the creation time
of the process, the command line with which it was invoked, and the values of
environment variables. We do not version process vertices as the state changes
(when an environment variable is updated, for example), although this could be
useful for long-running processes such as server daemons.

• File vertices include various attributes associated with a file, including the host
on which it resides, its pathname in the host’s filesystem, the size of the file, the
last time it was modified, and optionally a hash of the file’s contents and a digital
signature by the file’s owner to attest the integrity of the hash. When the prove-
nance of a file is being discussed, the sink of the associated provenance graph
will be the vertex corresponding to the file. We adopt the convention of iden-
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tifying a file using both its logical location and its last time of modification to
disambiguate different versions of the same file, which avoids data dependency
cycles in the provenance graph.

• Edges in a provenance graph are directed, signifying the direction of the data
dependency. An edge to a file vertex indicates that the file was read, while an
edge from a file vertex indicates that the file had been modified. Analogously, an
edge from a process indicates that a read operation was performed by the process,
while an edge to a process vertex reflects a write operation. Consequently, read
and write operations to and from the filesystem by a process can be modeled by
a provenance graph.

In the context of provenance, we define the semantics of a primitive operation to
be an output file, the process that generated it, and the set of input files it read
in the course of its execution. For example, if a program reads a number of data
sets from disk, computes a result and records it in a file, a primitive operation has
been performed. If a process modifies a number of files, a separate instance of the
representation is used for each output file.

Primitive operations are combined into a compound operation. For instance, if
the result of appending together several data sets (by a program such as UNIX cat)
is then sorted into a particular order (using another program, such as UNIX sort,
that executes as a separate process), then the combination of appending and sorting
is a compound operation. Thus, the provenance of every file can be represented by
a compound operation that is a directed graph, consistent with the model used by
Grid projects [39].

4.3.2 Inter-host Dependencies

We now consider a simple example where an operation spans multiple hosts. A user
with identity 501 on the machine with IP address 10.12.0.55 uses ssh to connect
to a remote host. The user runs the UNIX cat program to output the contents of
the file /var/log/remote httpd.log. The output is redirected into the file /tmp/lo-
cal httpd.log in the filesystem of the host where the ssh command was invoked.
This effectively copies the contents of the remote file to the local file.

% ssh 501@10.12.0.55 cat /var/log/remote httpd.log > /tmp/local httpd.log

Similar commands and analogous file transfer utilities like sftp, FTP, or GridFTP
are commonly used in large distributed computations to move input data to idle
processors and to retrieve the results after the execution completes. If the provenance
tracking was restricted to inter-host dependencies, queries about the provenance of
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pidname:cat
pid:1364
uid:501

starttime:Fri Dec 9 9:15:02 2011

fi lename:remote_httpd.log
path:/var/log/remote_httpd.log

size:44182
lastmodified:Wed Dec 7 13:48:26 2011

pidname:sshd
pid:1422
uid:501

starttime:Fri Dec 9 9:14:57 2011

pidname:ssh
pid:3106

uid:10
starttime:Fri Dec 9 9:14:15 2011

local_host:10.12.0.34
local_port:1359

remote_host:10.12.0.55
remote_port:22

pidname:tcsh
pid:3059

uid:10
starttime:Fri Dec 9 9:14:11 2011

local_host:10.12.0.55
local_port:22

remote_host:10.12.0.34
remote_port:1359

filename:local_httpd.log
path:/tmp/local_httpd.log

size:44182
lastmodified:Wed Dec 7 13:48:26 2011

Fig. 4.2 A vertex shown with a rectangle represents the execution of a process, while a vertex
shown with an ellipse represents a file that was read or written. A network vertex, depicted
using a diamond, has the property that its attributes can independently be inferred at both
ends of a connection. TCP connections used for protocols such as ssh, FTP, HTTP, or Java
RMI allow the construction of such network vertices.

the file /tmp/local httpd.log would not be able to establish a relationship to the file
/var/log/remote httpd.log on the machine 10.12.0.55.

One approach to addressing the gap described above is to record information
about the host on which each process runs and where each file is located. Users
can then be provided a mechanism for transferring the provenance metadata when
a file moves from one computer to another. Records that refer to the part of the
provenance graph that originated on a remote host will be explicitly disambiguated
using the host attribute. While this scheme ensures that all provenance queries can
be answered at the destination host, it incurs considerable storage overhead [11].
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An alternate approach would avoid replicating the provenance records at the des-
tination host to which the file is being transferred. Instead, the provenance store at
the destination would be provided with a pointer back to the relevant provenance
metadata on the source host. However, provenance queries at the destination would
require the source hosts to be contacted, slowing the response time and decreasing
reliability (since remote hosts may be unreachable).

In the above example, a distributed data flow takes the form of a file transfer. In
practice, data may also flow through network connections directly from one process
to another, as is the case in service-oriented architectures. In such systems, a series
of HTTP calls is made from one host to another, each passing XML documents
that include requests and arguments, and corresponding XML responses with return
values.

• To model network flows, we introduce a fourth type of element in provenance
graphs — the network vertex — that has the property that its attributes can inde-
pendently be inferred in two or more processes. If the processes are being audited
by different provenance middleware, the property ensures that each system can
construct an equivalent network vertex without any explicit coordination. For
example, equivalent network vertices associated with a TCP connection can be
constructed at both endpoints using the local IP address and TCP port, remote IP
address and TCP port, and timestamp (including the date), as illustrated in Figure
4.2.

Figure 4.2 depicts the provenance graph for the file /tmp/local httpd.log that would
arise after execution of the ssh command described earlier. (The graph is simplified
for clarity.) The key point to note is that the provenance vertex for the network con-
nection (between ssh and sshd in the example) can be independently constructed
by both the hosts at the two ends of the network connection. This allows com-
plete decentralization of the provenance recording in the distributed system, with
each host’s provenance infrastructure operating independently. At the same time,
the provenance records generated can be pieced together to yield a coherent and
complete reconstruction of the distributed data flows.

4.4 Querying Provenance

SPADE provides a query client that can be used to inspect the provenance metadata
generated by the operating-system-level Reporters to ask questions about processes
that ran, the files they read or wrote, and the network connections they initiated or
handled. In particular, this can be used to answer the questions asked in the First
Provenance Challenge of the International Provenance and Annotation Workshop
(IPAW) [26]. SPADEv2 supports a variety of storage formats for the provenance
metadata. This includes the default storage in the graph database Neo4j [29], the
embedded relational database H2 [19] (and with minor changes, MySQL [28]). The
client can interrogate each storage with the underlying database’s query language,
as well as custom provenance queries.
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All of the domain-specific semantics are recorded as annotations of the OPM
vertices. SPADEv2 requires the user to specify the hosts on which the known ele-
ments of the query are present. It maps these elements to globally unique provenance
identifiers in an initial phase, and then uses its auxiliary data structures to operate
on provenance graphs that are represented in terms of these identifiers.

The provenance queries in the IPAW challenge can be classified into those that re-
quire access to (i) the entire provenance graph of the output file, (ii) just a subgraph
of the provenance of a vertex, or (iii) a path in the provenance graph between spe-
cific input and output vertices. These categories lead to the following query specifi-
cations: (a) given a vertex, request its entire provenance graph, (b) path expressions
with vertex attributes that include process and file identifiers, (c) given a vertex, re-
quest its provenance subgraph up to k levels, and (d) check if a path exists between
two vertices, s and t. We will focus on provenance path queries of type (d) as they
are the most general and often have high latency.

Provenance path queries can be answered recursively – by following a pointer,
corresponding to the direction from which data had flowed – or by computing the
transitive closure over the entire graph. It has been shown experimentally that stan-
dard recursive graph traversal algorithms do not scale for large workflow processes
and for large collections of data sets [20]. The alternative method of computing
the transitive closure over the entire provenance graph is computationally expensive
and has a large storage overhead [7]. When the graph is distributed, computing the
transitive closure is a complex operation. An efficient method for computing the
transitive closure has been described [20], but it is not clear how it translates to a
decentralized scenario.

We adopt a hybrid approach for answering distributed provenance path queries.
Across distributed hosts, the query is computed recursively. Within a host, the query
is computed using the transitive closure, an operation that is natively supported if
the storage used is a graph database.

We improve the efficiency of recursive querying with sketches that help reduce
the number of hosts that must be contacted when constructing the response to a
provenance path query. The sketches are space-efficient representations of graphs
and are used in SPADE to track connections between network vertices. In the rest
of this section, we describe how provenance sketches are constructed and how they
are used in SPADE to efficiently answer provenance path queries.

4.4.1 Provenance Sketches

Consider a graph, such as the one at the top of Figure 4.3, that depicts the prove-
nance of a piece of data on a single host in terms of identifiers for file and process
vertices and edges representing the data dependencies. We introduced the notion of
a provenance sketch [13] to allow such a graph to be succinctly represented. De-
pending on how the sketch is constructed, it can support a specific set of queries.

The sketches we will describe use Bloom filters as building blocks. A Bloom
filter is a compact data structure that provides a probabilistic representation of a set.
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Fig. 4.3 A sketch of a provenance graph can created by inserting the hash of each vertex in
a Bloom filter, the hash of each direct edge in a second Bloom filter, and the hash of each
indrect edge in a third Bloom filter. However, this construction has limitations.

It supports membership queries – that is, queries that ask “Is element X in set Y?”,
denoted with the predicate inSet(Y,X). Given a set A = a1, . . . ,an of n elements, a
Bloom filter uses a vector v of m bits, with all bits initially set to 0, and k independent
hash functions, h1, . . . ,hk, each with a range 1, . . . ,m. For each element a ∈ A, the
bits at positions h1(a), . . . ,hk(a) in v are set to 1. Inserting an element only requires
it to be hashed with the k functions. Each of the k outputs determines a bit in the
vector v that should be set to 1 (if it is currently 0). Given a query for b, the bits at
positions h1(b), . . . ,hk(b) are checked. If any of them is 0, then certainly b is not in
the set S. Otherwise, b is conjectured to be in the set with probability (1− e−kn/m)k.
The possibility of a false positive is what causes this probability to differ from 1.

We considered a number of methods to encode graphs with Bloom filters, each
enabling a different set of queries. The simplest approach is to use the vertices of
the graph as elements of the set S [13]. However, this only enables set membership
queries, such as inSet(S,F1) and inSet(S,P1) where F1 is a file vertex and P1 is a pro-
cess vertex. This cannot support queries about a path in a provenance graph, such
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as P1/F2/*/P2/F4, which determines if file F2 generated by process P1 is part of
the provenance of file F4, generated by P2. To enable path queries, an alternative ap-
proach is to store the edges of the graph as set members. This enables path queries
in which all the vertices on a path are specified. However, it cannot handle regu-
lar expression path queries, which are among the provenance queries in the First
Provenance Challenge.

A provenance sketch with a second filter that contains edges can answer some
path queries but at the cost of topology-induced false positive [24]. To see why this
occurs, consider the path query P1/F2/*/P2/F4. A filter with edges as set members
returns “true”, since edges P1-F2 and P2-F4 are in the filter. However, file F2 is not
in the provenance of file F4. To address this, we previously proposed an edge-based
sketch for graphs. Two Bloom filters are maintained – corresponding to the sets of
direct and indirect edges in the graph [24]. The set of indirect edges is obtained by
computing the transitive closure of the provenance graph, as shown in Figure 4.3.
Such an edge-based Bloom filter correctly answers all path queries (other than the
false positives from the underlying Bloom filters).

The above provenance sketch construct does not capture all the ancestral relation-
ships of a vertex – in particular, ancestors that are on other hosts are not encoded.
To answer a distributed path query, the construct would require SPADE to maintain
an additional table of cross-edges between network artifact vertices. Below we in-
troduce a provenance sketch that encodes all the ancestral relationships of vertices
and supports queries about whether a path exists between two vertices, regardless
of whether they are on the same host or on different hosts.

4.4.2 Matrix Filter

We introduce the matrix filter, a new data structure to probabilistically represent
graph connectivity (or any other data that can be stored in a matrix). Whereas the
original matrix may have a size of μ × μ for an arbitrary μ , the filter only uses
O(m×m) space for a fixed m, thereby providing a compact representation of the
matrix.

A matrix filter consists of (a) a row array of m bits, (b) a column array of m2

bits, and (c) k independent hash functions {h1, . . . ,hk}, each of which has a range
of {1, . . . ,m}. Further, the ith bit bi of the row array defined in (a) is associated with
the ith set of m bits in the column array defined in (b).

Assume that S is the set of direct edges in the provenance graph G = (V,E).
During an initial setup phase, the edges in S are inserted into the filter. Consider
the insertion of a direct edge (s, t) ∈ E – that is, s is the parent of t – into the matrix
filter, as showin in Figure 4.4(b). First k hash functions are applied to t and each
resulting value sets the bits in the row array defined above in (a). Thus, Hk(t) sets
one or more of the m bits. For each bit in the row array that is set by Hk(t), k hash
functions are applied to s. Each resulting value sets one or more of the ith set of
m bits in the column array. Figure 4.4(c) shows that when edge (s, t) is inserted
into the empty filter, Hk(t) sets the bits in positions 1, 5, 7. Each of these bits is
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Fig. 4.4 A graph edge (s,t) is stored in a matrix filter. The filter is then used to determine that
edge (s’,t) is not in the graph.

associated with a set of m bits, which is updated with the value of the hash of s,
Hk(s) = 0010110.

To check if an edge, (s′, t), is present in the graph, the k hash functions are applied
to t. The bits indexed by Hk(t) are checked in the row array. If they are all set to 1,
t is potentially in the graph. Each such bit is associated with a set of m bits in the
column array. All these sets of m bits are combined by a bitwise AND. A vertex s′ is
potentially an ancestor of t if all the bits determined by the hashes Hk(s′) are in the
bitwise AND. If any of the row array bits is set to 0, this indicates that t is not a child
vertex. If any of the bits in the computed bitwise AND is 0 but was pointed to by one
of the hashes of s′, this indicates that s′ is not a parent vertex of t. In Figure 4.4(d),
the test for edge (s′, t) fails and thus the edge is not in the graph.

In the matrix filter, vertices of an edge are hashed to distinct arrays – one vertex
to the row array and the other to the column arrays indexed by the set row array bits.
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By encoding the ancestry relationship of the edge into different arrays, the matrix
filter can compute if a path exists between any two vertices of the graph without
computing the graph’s transitive closure. We demonstrate this property of the matrix
filter through examples:

• A completely specified path query, such as s/t/u/v, can be checked by issuing
set membership subqueries (s, t), (t,u), and (u,v). If the set membership test is
true for all subqueries, then the path exists.

• A path query specified with a regular expression s/*/t can be performed by first
checking if t is in the row array of the matrix filter. If t is present, then a check is
done to see if s is in the bitwise AND of the corresponding subsets of the column
array of the matrix filter.

4.4.3 SPADE’s Use of Matrix Filters

To collect the provenance of data created by a distributed application, SPADE is
deployed on all the hosts where the application executes. Each instance operates
independently, creating its own matrix filter to represent the provenance graph for
the host on which it resides. Detailed provenance metadata in the form of process,
file artifact, and network artifact vertices are collected in a local provenance store.
Intra-host provenance queries can be resolved using these provenance stores. What
remains then is to determine the cross-host provenance relationships, which are cap-
tured by the set of network artifact vertices in a distributed provenance graph. Hence,
the matrix filter on each host is used to store the set S of edges between network
artifact vertices and their ancestor vertices that are also network artifacts. Each net-
work artifact is stored in the row array of the host’s matrix filter. Its ancestor net-
work artifact vertices are stored in the corresponding column array locations. This
includes ancestors on the same host as well as on other hosts. Figure 4.5 shows the
sets S of edges between network artifacts that the hosts insert in their respective
matrix filters.

Provenance path queries whose end points reside on different hosts must deter-
mine the exact hosts through which their path traverses. Otherwise, computing them
will result in a commensurate number of (high latency) network connections on
several hosts. Since network artifacts connect hosts, we observe that storing edges
only between network artifacts is sufficient to answer distributed provenance path
queries. We elucidate this observation with a concrete example in the next subsec-
tion.

When a network artifact is generated on a host, SPADE adds it to the prove-
nance store. If the new vertex is associated with an incoming network connection,
the SPADE server on the remote host is contacted and that host’s matrix filter is
retrieved. The set of ancestor network vertices of the new vertex is extracted from
the remote host’s matrix filter. The new vertex and the set of ancestor vertices are
added to the local matrix filter. (A performance optimization was also implemented
where remote matrix filters are locally cached to avoid repeated retrieval at the cost
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Fig. 4.5 A provenance graph can be distributed across multiple hosts. Query F1/∗/F6 arrives
at host 4. The list of all hosts that must be contacted is completely determined locally using
host 4’s matrix filter.

of losing distributed consistency.) Consequently, the matrix filter of a host includes
the ancestral network vertices from all upstream hosts.

A matrix filter construction also requires a judicious choice of the value of k and
m. In general, a smaller k is preferred since it reduces the amount of computation [2].
The appropriate choice of m depends on the number of network connections being
made. For applications with limited network connectivity, a smaller m in the range
10-50 provides low falses. Similarly, a higher m in the range of 100-500 provides
low false positives for more network intensive distributed applications.

4.4.4 Querying Provenance across Multiple Hosts

To illustrate how SPADE handles queries about provenance metadata that spans
multiple hosts, we consider the case when the path is a regular expression that in-
cludes vertices s and t from different hosts. SPADE tackles distributed provenance
path queries in two stages.

In the first step, the SPADE daemon on the host where the query arrives inspects
its local matrix filter. The daemon determines if a path exists between the network
artifacts that are the descendants and ancestors of vertices s and t, respectively. If
such a path exists, SPADE determines the list of potential intermediate hosts that the
path traverses. In the second step, the SPADE daemon on each of the hosts in the
list is contacted to retrieve a part of the path that satisfies the query specification.
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compute query hosts(Ns,Nt ,M,C)
begin

H←{}
foreach n s ∈ Ns

foreach n t ∈ Nt

if inFilter(ns,nt ,M)
print(Path exists)
mark(ns)

fi
end

end
foreach n s ∈ NS

if isMarked(ns)
foreach c ∈C

if ns ∈ c
H ← H U host(c)

fi
end

fi
end

end

Fig. 4.6 M is the matrix filter and C is the cache of sketches, both at the host where t is
located. H is the set of hosts that will be contacted for path fragments. In the first stage, every
network vertex ns is marked if there is a descendant network vertex nt in the matrix filter.
In the second stage, a list is built of the hosts with sketches that contain any of the marked
network vertices.

Assuming the existence of a provenance graph with components distributed
across multiple hosts, each of which has its own matrix filter, we can perform a
distributed provenance path query s/ ∗ /t as follows:

1. Query the host where s is located to determine Ns, the set of network artifacts
that are the descendants of s, and Nt , the set of network artifacts that are ances-
tors of t.

2. Execute the algorithm in Figure 4.6 to determine the list of hosts that need to be
contacted.

If a path exists between the two distributed vertices, the provenance subgraphs cor-
responding to the query specification must be obtained. To determine the subgraphs,
queries are sent to relevant remote hosts in parallel. The daemon that initiated the
query receives the path fragments in response and assembles them into a single path
from s to t. False positives from a sketch may result in extra path fragments in the
response, necessitating careful selection of the parameter m when initializing the
matrix filters.
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Figure 4.5 illustrates the process of determining which hosts need to be contacted
to obtain path fragments in response to a query. In this example, the query F1/∗/F6

arrives at Host 4. The daemon on Host 4 queries the daemon Host 1 to obtain
NF1 = {N1,N2,N3}, the network artifacts that are the descendants of F1, and locally
determines NF6 = {N′5}, the network artifacts that are ancestors of F6. Using the lo-
cal sketch, a check is performed to see if any path in the set {N1/N′5,N2/N′5,N3/N′5}
exists. The paths {N2/N′5,N3/N′5} are present. The cached sketches are used to de-
cide which hosts have network vertices in NF1 as ancestors. If the sketch produces
false positives, a small number of unnecessary network connections may still be
made.

4.5 Experimental Results

Our experiments are conducted on provenance metadata that was gathered by using
SPADE to monitor the workflow of a large distributed application in SRI Interna-
tional’s Speech Technology and Research Laboratory [38]. The application work-
load originated as part of the NIGHTINGALE project [30], which allows monolin-
gual users to query information from newscasts and documents in multiple lan-
guages. The objective of the NIGHTINGALE project is to produce an accurate
translation. NIGHTINGALE aims to achieve this with a workflow that specifies
the tools that will transform the inputs using automatic speech recognition algo-
rithms, machine translation between languages, and distillation to extract responses
to queries. However, there is no canonical algorithm for each of these steps, neces-
sitating a choice between a variety of tools. The speech scientists use accompanying
metadata to estimate which combination of available tools will produce the most
accurate result. This is further complicated by the fact that the tools have multiple
versions and are developed in parallel by experts from 15 universities and corpora-
tions. Finally, the choice of which specific version of a tool to use depends on the
outcome of previous workflow runs.

A representative application workload executed for roughly half an hour with
SPADE collecting provenance metadata about the processes that ran and files that
were accessed and modified. The resulting provenance graph had 5256 file vertices,
5948 process vertices, 35948 edges, and a depth of 24 levels. Since the workflow
was obtained from a single site (at SRI), we divided it to correspond to a distributed
execution over eight geographically diverse hosts with matching network connec-
tion entries. These were PlanetLab [31] hosts located at SRI, University of Wash-
ington, and Princeton University.

To divide the workload into subgraphs corresponding to a distributed workflow,
we used hMETIS [23], a graph partitioning tool. When running hMETIS, we used
a high UBfactor (in the range of 40 to 50), which specifies that a large imbalance
is allowed between partitions during recursive bisection. Since hMETIS partitions
the workload by recursively creating bisections, the resulting topology over the dis-
tributed system has a tree structure, similar to what would result from a workflow
planner. This also results in fewer edges between partitions, consistent with the goal
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of a distributed workflow planner, such as Pegasus [6]. The longest network path
length in this tree was 4.

The resulting partitioned provenance graphs were then deployed on each of the
eight PlanetLab hosts as SPADE databases. In addition, we constructed a synthetic
workload that consists of a single linear path through nine PlanetLab hosts. The
second workload provides a control to understand the effect of the sketches on the
network latency of provenance queries, independent of the graph characteristics of
the workload (since it consists of a series of network connections sequenced through
all the hosts). In both workloads, there are 16 network vertices.

We use matrix filters with 20 bit row filters, 20 bit column filters, and 4 hash
functions each. The matrix filters are built by inserting all network vertices created
on a host, as well as ancestor network vertices from matrix filters of upstream hosts.

A client requests the provenance through a query, which may originate at any
host in the system. A query is considered to be local to a host if the end vertex is
on that host. Otherwise, the query is transported to the host where it is local. Matrix
filters are used to both determine if a path exists as well as to locate the hosts that
may contain parts of the provenance related to a query.

Fig. 4.7 The latency of path queries with and without the use of provenance sketches as
a function of the number of hosts that must be contacted. The provenance is of a speech
processing workflow.

4.5.1 Reduction in Network Latency

The dominant cost of answering distributed provenance path queries comes from the
network connections. To measure the reduction in network latency, we undertook
the following experiment. The x axis of Figure 4.7 shows the actual number of
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Fig. 4.8 The latency of path queries with and without the use of provenance sketches as a
function of the number of hosts that must be contacted. The provenance is of a synthetic
workload, consisting of a sequence of network connections through consecutive hosts.

hosts that need to be contacted to respond to a query asking for all the paths from
one distributed vertex to another. The time taken to complete the request with and
without the use of sketches is shown along the y axis. In particular, note that when
using sketches, the latency does not increase when an increasing number of hosts
must be contacted. This is true because the sketches allow all the remote hosts to be
contacted in parallel, each with a suitable query, corresponding to the piece of the
distributed path from that host.

While Figure 4.7 shows that using provenance sketches significantly reduces the
time to answer a path query, this is seen even more dramatically in Figure 4.8 with
the synthetic workload that demonstrates the effect as the query is scaled to a depth of
nine distributed hosts. The latency for answering queries remains constant regardless
of the number of remote hosts that must be contacted when sketches are utilized.

4.5.2 Sketch Robustness

To understand the efficacy of our sketches as the provenance graph grows in size,
we measured the number of false positive answers to queries about whether an edge
between two network vertices exists in a matrix filter. Since the sketch contains
provenance metadata of an increasing number of hosts as it propagates along a dis-
tributed path in the system, it is expected to provide an increasing number of false
positive responses. Figure 4.9 shows that the rate of such false positives is very low,
ensuring that the sketches are robust as the provenance grows. Figure 4.10 shows
that this is not an issue even in the case of the more strenuous synthetic workload
with longer path lengths.
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Fig. 4.9 The number of false positive responses in 100,000 random provenance queries. Each
query checks if an edge exists between two network vertices using the matrix filter sketch of
a host. The provenance is of a speech processing workflow.

Fig. 4.10 The number of false positive responses in 100,000 random provenance queries
checking if an edge exists between two network vertices using the matrix filter sketch of a
host. The provenance is of a synthetic workload, consisting of a sequence of network connec-
tions through consecutive hosts.
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4.6 Conclusion

SPADE is a system for auditing, recording, and querying the provenance of dis-
tributed applications. Domain-specific (such as operating system level) activity is
transformed into an OPM-compliant record by SPADEv2 modules. Each host main-
tains the authoritative repository of its data provenance. The distributed model
of SPADE introduces the problem of reconstructing provenance during querying.
SPADE uses novel provenance sketches to improve the performance of querying
such provenance metadata. The provenance sketches determine which past network
connections were relevant to a query, allowing all appropriate hosts to be contacted
in parallel. Host-specific provenance subgraphs are computed using local transitive
closures between network vertices. These subgraphs are retrieved in parallel and
stitched together. SPADE is currently deployed within the NIGHTINGALE [30]
project for auditing distributed workflows. Using real provenance data, we have
shown the efficiency of SPADE’s novel matrix filter summary data structure.
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Chapter 5
A Mobile Cloud with Trusted Data Provenance
Services for Bioinformatics Research

Jinhui Yao, Jingyu Zhang, Shiping Chen, Chen Wang, David Levy, and Qing Liu

Abstract. Cloud computing provides a cheap yet reliable outsourcing model for
anyone who needs large computing resources. Together with the Cloud, Service Ori-
ented Architecture (SOA) allows the construction of scientific workflows to bring
together various scientific computing tools offered as services in the Cloud, to an-
swer complex research questions. In those scientific workflows, certain critical steps
need the participation of research personnel or experts. It is highly desirable that
scientists have easy access, such as mobile devices, to the workflows running in
the Cloud. Furthermore, since the participants in this cross-domain collaboration
barely trust each other, achieving reliable data provenance becomes a challenging
task. This book chapter aims to discuss these issues and possible solutions. In this
book chapter, we describe a Mobile Cloud system with a trusted provenance mech-
anism. The Mobile Cloud system facilitates the use of mobile devices to manipulate
and interact with the scientific workflows running in the Cloud. Moreover, it pro-
vides trusted data provenance by acting as a trusted third party to record provenance
data submitted by the participating services during the workflow execution. We have
implemented a prototype which allows the bioinformatics workflow design and par-
ticipation using mobile devices. We prove the concept of Mobile Cloud with the
prototype and conducted performance evaluation for the significant points of bioin-
formatics workflow platform.
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5.1 Introduction

The emergence of computing resource provisioning known as the Cloud has revolu-
tionized classical computing. It provides a cheap and yet reliable outsourcing model
for anyone who needs large computing resources. Given the fact that many scientific
breakthroughs need to be powered by advanced computing capabilities that help re-
searchers manipulate and explore massive datasets [11], Cloud computing offers the
promise of “democratizing” research, as a single researcher or small team can have
access to the same large-scale compute resources as large as well-funded research
organizations without the need to invest in purchasing or hosting their own physical
IT infrastructure.

Together with the Cloud, the concept of Service Oriented Architecture (SOA)
allows flexible and dynamic collaborations among different service providers. A
service can either directly be used for its own functions or be composed with other
services to form new value-added workflows [14]. Through SOA, scientific work-
flows can be used to bring together various scientific computing tools and compute
resources offered as services in the Cloud to answer complex research questions.
Workflows describe the relationship of individual computational components and
their input and output data in a declarative way. In astronomy, for example, scientists
are using workflows to generate science-grade mosaics of the sky [12], to examine
the structure of galaxies [24]. In bioinformatics, researchers are using workflows to
understand the underpinnings of complex diseases [17].

In the design of scientific workflows, certain critical steps need the participation
of research personnel or experts. For example, details of the workflow design and
which scientific tools need to be included must be decided by an expert in the area.
Complex patterns generated from the experiments need to be visually inspected by
the scientists who will, based on their domain knowledge and experience, determine
the next steps for further analysis. In this regard, it is highly desirable that scientists
have easy access, such as mobile devices, to the services and workflows running
in the Cloud so that they can design and participate in the workflows efficiently at
anytime anywhere.

Furthermore, data provenance has been widely acknowledged as an important is-
sue for scientific experiments [31][22][19], for the provenance data collected during
the experiment can be used to understand, reproduce the experiments conducted;
identify the way data are derived. However, within this service-oriented collabo-
ration, each service provider or individual researcher is from different companies,
organizations or research institutions. The cross-domain collaboration intuitively
suggests that the participants do not fully trust each other even though they need
to collaborate. This implies they will question each other i) if a particular partici-
pant has employed proper data provenance mechanisms during the experiment; ii) if
the recorded provenance data have been or will be tampered with; and iii) if the is-
suer and the integrity of the provenance data are somehow verifiable. These doubts
caused by the lack of trustworthiness makes achieving reliable data provenance a
challenging task. As a computing resource provider, these domain specific trust con-
cerns are difficult for the Cloud infrastructure to address. Hence, these shortcomings
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reduce the incentives of individuals to participant in such cross-domain collabora-
tive scientific workflow and are harmful for the wide adaptation of this computing
paradigm. Therefore, a means to record the provenance data during the experiments
in a trustworthy way is needed.

To address the above needs, in this book chapter, we describe a Mobile Cloud
system with trusted provenance mechanisms. The Mobile Cloud system facilitates
the use of mobile devices to manipulate and interact with the scientific workflows
running in the Cloud. Through the light applications running in the mobile devices,
the users can choose the services in the Cloud to form workflows for certain exper-
iments, and be involved in the workflow execution, e.g. to conduct approval tasks
as a step of the workflow. Mobile Cloud offers great mobility to the Cloud comput-
ing resources that, one can design, view, and participate in the scientific workflows
running in the Cloud at anywhere and any time.

A significant aspect of the Mobile Cloud is its ability to provide trusted data
provenance. The execution result of the workflows cross multiple domain service
would be questionable without corresponding provenance data. In our system the
Mobile Cloud serves as a trusted third party to record provenance data submitted by
the participating services during the workflow execution. By enforcing strong ac-
countability via the use of cryptographic techniques, the provenance data submitted
by the participants in the workflow are undeniably linked to the submitter, which
means its issuer and integrity can be cryptographically verified. With these verifi-
able provenance data recorded by a trusted platform, the collaborating entities can
have a much better sense of trust in the validity of the provenance information they
need to use. In general, the trusted data provenance implies that the provenance data
collected is unarguably attributed to a particular service conducted the associated
operations; and the chance any entity can tamper this data after it has been issued
without being noticed is extremely low.

The main contributions of this book chapter are: 1) we design a Mobile Cloud
system as a middleware layer to facilitate the use of mobile devices to design and
interact with the scientific workflows running in the Cloud; 2) we define and illus-
trate the concept of strong accountability and the way it can be applied to record
activity traces with provability; 3) we propose a novel approach to obtain activity
traces from the execution of workflows and use them to construct data provenance
graph to illustrate provenance information; and 4) we evaluate the performance of
the Mobile Cloud system in the Cloud with real services.

5.2 The Application Scenario

In the area of gene research, the recent development of microarray technology [20]
has led to rapid increase in the variety of available data and analytical tools. Some
recent surveys published in Nucleic Acids Research show there are 1037 databases
[4] and more than 1200 tools [2]. The analysis of microarray data commonly re-
quires the biologists to query various online databases and perform a set of analysis
using both local and online tools.
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Following is an example. One of the important methods to understand colorectal
cancer (CRC) is to understand the underlying molecular pathways involved in this
disease. The rat azoxymethane (AOM) model of CRC is often used in dietary inter-
vention studies as it induces mutations in genes which are also found to be mutated
in human adenomas and adenocarcinomas. To define the baseline variation in global
gene expression, the biologists extract RNA from mucosa scraped from colon and
analyze the global gene expression using the Affymetrix Gene Chip. Data is normal-
ized and then analyzed for differential expression. By contrasting the results from
normal and cancer mice, biologists can identify candidate genes through statistical
analysis. Further analysis – such as searching for the functions known to these genes
are commonly performed to examine whether and how the candidate genes relate to
the colorectal cancer. The followings are the data acquisition and analysis steps to
perform the study of microarray experiment:

Quality control. It is to identify significant errors in the experiment, such as those
caused by contaminated tissue samples. If any anomaly is detected by the biologists,
the microarray result data are discarded.

Normalization. Microarray results from different samples need to be normalized
before any meaningful comparison can be conducted.

Gene differentiation. By contrasting the results from cancerous and healthy tissues,
differentially expressed genescandidate genes that are active in cancer are identified
by applying some statistical methods (e.g. LIMMA).

Functional analysis. Most differentially expressed genes are further studied to
understand the biological functions of the disease. There are various resources
available for study. For example, gene symbols and descriptions could be retrieved
from the Rat Genome Database and/or BioMart. Gene Ontology (GO) and KEGG
databases could provide gene functions and molecular pathways information
respectively. Experts need to be involved in order to make arrive at decisions as
which study to conduct and which database to use.

We can see that the four standard analysis procedures listed above can not only
be extremely computing intensive but also require some decision making from the
research scientists or experts at certain critical steps (e.g. quality control). It clearly
follows that, a viable approach to conducting such research must utilize a computing
platform with enormous computing capacity, but which allows research scientists
to interact easily with it. This is essentially the reason why we are promoting the
“Mobile Cloud” - a composition of the Cloud and the mobile devices as a suitable
paradigm for complicated bioinformatics research.

5.3 A Mobile Cloud System for Bioinformatics Research

As we have established in previous sections, the Mobile Cloud system composes the
Cloud and the mobile devices to conduct complex bioinformatics research. The bioin-
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Fig. 5.1 Overview of the Mobile Cloud system

formatics research scenario we chose is the study of the cause of colorectal cancer
(described in section 2); Fig. 5.1 shows the system with this research scenario.

In the Cloud, different computing-intensive gene-research tools are deployed by
different research bodies and provided as services. Outside the Cloud, research sci-
entists or gene analysts locate the desired services in the Cloud, and use them to
compose a workflow for studying the cancer. In a gene research lab, we assume the
gene data in the subject microarray chips are scanned and archived in some digital
database, which can be reached from the Cloud or itself could be a Cloud storage
service [18] such as Amazon S3. The Mobile Cloud operates as this: a researcher
(user A) designs the scientific workflow and composes the needed services in the
Cloud, then he invokes the first service “Data collection and Quality Check”, which
retrieves the gene data from the nominated “Gene Lab” where the gene subjects are
stored, then conducts quality checks on the gene data. Once finished, the data is sent
to the next service “Normalization” and a quality report is sent to user B for confir-
mation. If user B confirms the data quality, the normalization service will normalize
the data and send the results to “Gene Differentiation”. Another report is sent to
user C After the differentiation, to choose the suitable experiment for the functional
analysis. When the workflow is complete, the results are sent to a client end and a
final report is sent to user D. We can see in the workflow multiple research scientists
are involved. They participate in the workflow by using portable or desktop devices
to invoke or receive output from the services.

Given the recent impressive advances in the mobile technology, the computing
capability of mobile devices – however limited compared to desktops or laptops –
is more than enough to run basic UI, display data sets and process reports. Then
it is completely plausible that one can use some light applications running in his
mobile device to design, execute and participate in the workflows running in the
cloud that are composed of computing intensive scientific tools. The benefit of this
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is intuitive – scientists, researchers and any other people who need to leverage the
vast computing capacity of the cloud to conduct scientific researches, can do so at
anywhere in the world as long as there is internet connection for his/her mobile
device (e.g. 3G network).

5.3.1 Overall Architecture of the Mobile Cloud

To enable mobile devices to construct and participate in the workflows running in
the Cloud, the Mobile Cloud middleware layer (MC-layer) is developed to facilitate
these. This middleware shall be deployed or even provided by the cloud environment
provider in that environment to facilitate efficient interactions with the services and
the clients. Fig. 5.2 provides an architectural design of the system, which consists of
a user interface (residing on mobile devices), a Cloud environment containing vari-
ous services and a middleware layer consists of three function units. The respective
functionalities of its components are summarized as follows:

• Cloud environment provides various services deployed by respective providers
and the MC-layer to facilitate the Mobile Cloud. The services have registered
their access end-point with the MC-layer.

• Service repository/composition stores the information about the services in the
Cloud that have registered with it. It helps the user to search for the services that
best satisfy the requirements specified, and compose them into workflows.

• Workflow execution fulfils two functions: (a) orchestrating workflows during the
operation; (b) invoking web services according to the defined workflow.

• Trusted data provenance unit (TPU) records cryptographically signed prove-
nance data submitted by the participating services during the execution of the
workflows. Using the recorded data, it monitors the status of the execution and
allows the clients to query data provenance traces (this part will be elaborated in
detail in section 4).

• User interface allows users to register, design workflows and participate in a
running workflow.

For mobile devices to construct workflows, they first need to send a search request to
the Service Repository in order to get a list of the services/workflows they are look-
ing for. A convenient UI has been implemented on the mobile devices to allow the
users easily to design the workflows using the services listed by the Service Repos-
itory (the UI will be elaborated in the evaluations). Once the workflow has been
designed, a representative XML based description script is generated to be submit-
ted to the Service Composition unit. The Service Composition unit thus according
to the script, composes the services to form the desired workflows. The services can
be composed in two ways: i) centrally composed, where the MC-layer invokes the
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Fig. 5.2 Architecture of Mobile Cloud Middle layer

services in the sequence designed by the user; and ii) remotely orchestrated, where
certain orchestration scripts such as BPEL [1] will be generated and distributed to
all the services involved for deployment.

5.3.2 Workflow Design through Abstract Description Script

In our system, the workflow designed by the users is an abstract workflow, that
is, the users only need to specify the type of service needed, and the MC-layer
will search its service repository and recommend the best suited ones according
to the user’s specifications to let users select from. This enables researchers and
scientists to use light weight editing applications in their mobile devices or desktop
computers to write simple scripts to design the workflows. Listing 12 gives a sample
of the abstract workflow description script. As it is developed based on the BPEL,
“sequences” and “flows” are used to specify serial and parallel composition, and
“Actions” are used to define the invocation operations. The sample describes the
first half of the gene analysis workflow in Fig. 5.1. In some action, the endpoint is
set to be “OPTIMAL”. This is to tell the Service Composition unit to recommend
the best suited services. When the abstract script is submitted to the MC-layer, a list
of suitable services will be returned for selection.
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1 <s equence name=” main ”>
2 <Act ion o p e r a t i o n =” s t a r t ” i n v o k e r =” c l i e n t ” e n d p o i n t =” Qua l i tyCheck ”
3 t y p e =” s end&f o r g e t ” . . . />
4 <Act ion o p e r a t i o n =” f e t c h G e n e ” i n v o k e r =” Qua l i tyCheck ”
5 e n d p o i n t =” GeneLab” t y p e =” s end&r e c e i v e ” . . . />
6 <f low>
7 <Act ion o p e r a t i o n =” s endForApprova l ” i n v o k e r =” Qua l i tyCheck ”

e n d p o i n t =” User B” t y p e =” s end&f o r g e t ” . . . />
8 <Act ion o p e r a t i o n =” n o r m a l i z a t i o n ” i n v o k e r =” Qua l i tyCheck ”

e n d p o i n t =”OPTIMAL” t y p e =” s end&f o r g e t ” . . . />
9 </ f low>

10 . . .
11 </ s equence>

Listing 5.1 Sample workflow description script

As we have established in our system design, mobile devices will be involved in
the workflows as web services. To facilitate this, we created a customized web ser-
vice engine to run on the mobile devices. Using this engine, mobile devices can both
send and receive service requests, as well as interpreting the workflow description
scripts delivered by the MC-layer. Once a user has designed and submitted a work-
flow, the workflow description script will be forwarded to the researcher that are
involved. The mobile devices they are using will interpret the workflow script and
save the workflow logic. When a service request is received during the execution
of the workflow, the UI will allow the user to view the content (e.g. quality check
reports) and provide the list of the services that the user should send output request
to according to the workflow logic (e.g. normalization services).

The MC-layer recommends services from its registry by matching the descriptive
documentations of the services (e.g. WSDL, user annotations) with the requirements
specified by the user. It provides a simple means for researchers who are not very
familiar with the web service technologies or have not found the suitable service
for a specific task. When all services involved in the workflow are determined, the
orchestration engine in MC-layer will then execute the designed workflow. For the
technical details of this aspect of the MC-layer, please refer to our previous publi-
cations about the Web Service Management System (WSMS) [26].

5.4 Accountability for Trusted Data Provenance

For scientific experiments, not only the resultant data are considered, the steps of
how these data are derived along the process can also be very valuable. It has been
widely realized that data provenance plays an important role in the scientific re-
searches [21]. A mechanism is needed to preserve the intermediate data forms gen-
erated by different services and participating scientists during the execution of the
workflow. However, the workflows in the Cloud are constructed using services pro-
vided by different parties who barely know each other, and the participating sci-
entists are most likely from different institutions. The correctness of the resultant
workflow relies on the individual correctness of all participators, that is, if the ser-
vice or the individual is compliant to the pre-defined workflow logic, or Service
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Level Agreement (SLA). The scientific integrity of the gene analysis results in our
example scenario, will be highly questionable if the services and scientists involved,
can act willy-nilly and get away with processing errors.

Therefore, trusted data provenance mechanisms are necessary in such systems
with participants from different administrative domains. Provenance data should be
preserved in a trustworthy way that, the contributors of the data are committed to
their truthfulness. This naturally leads us to the issue of accountability.

5.4.1 Accountability for Trustworthiness

Accountability can be interpreted as the ability to have an entity account for its
behaviors to some authorities [15]. This is achieved by binding each activity con-
ducted to the identity of its actor with proper evidence [27]. Such binding should be
achieved under the circumstance that all actors within the system are semi-trusted.
That is, each identified actor may lie according to their own interest. Therefore, ac-
countability should entail a certain level of stringency in order to maintain a system’s
trustworthiness. Below, we identify several desirable properties of a fully account-
able system:

Verifiable: The correctness of the conducted process can be verified according to
the actions and their bindings recorded.

Non-repudiable: Actions are bound to the actors through evidence, and this bind-
ing is provable and undeniable.

Tamper-evident: Any attempt to corrupt to recorded evidence inevitably involves
the high risk of being detected.

Accountability can be incorporated into activity-based workflow by requiring the
entity conducting the process to log non-disputable evidence about the activities in
a separate entity. This is illustrated in Fig. 5.3. In the figure, after incorporating ac-
countability into an ordinary process, entity A is now required to perform logging
operations before and after conducting the activity in its process. The evidence is
logged in a separate entity - entity B - so that entity A cannot access the logged
evidence. The evidence needed to be logged should contain enough information to
describe the conducting activity. In our simple example, which is intuitive enough,
the evidence should include the states of the factors concerning the start of the ac-
tivity (e.g. the input variables) and the factors concerning its completion (e.g. the
output value and the parameters).

The logging operations require the employment of Public Key Infrastructure
(PKI) in all involved service entities. Each of them has its own associated public-
private key pair issued by certificated authorities which are used for signing pur-
poses. The logging operations are as follows:
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Fig. 5.3 Example of incorporating accountability into process

1. The logger - A signs the evidence E with his private key Ka− to create a digital
signature of the evidence 〈E〉a.

2. The evidence and its signature are then logged in a separate entity - B.
3. When received, B signs 〈E〉a with his private key to create a receipt 〈〈E〉a〉b.
4. Lastly, the receipt is sent back to the logger in the reply.

Assuming the digital signature is un-forgeable. B can use 〈E〉a to prove A produced
E . A can use 〈〈E〉a〉b to prove a separate entity - B has accepted 〈E〉a in the past,
which is the evidence produced by A. With this logging procedure, both parties
can prove the true issuer of the evidence logged, in our case, the provenance data
produced.

5.4.2 Logging Provenance Data at Trusted Provenance Unit

In Mobile Cloud, the Trusted Provenance Unit (TPU) acts as the separate entity
B, dedicated to provide accountability to all underlying services involved in the
workflow. Fig. 5.4 shows the structure. All the mobile devices, service nodes in the
Cloud as well as local computing nodes that are involved in the workflow, register
with TPU and submit provenance data during the execution of the workflow.

The provenance data can be recorded in various ways, for instance, if the ser-
vice invocations are all relayed by the MC-layer, they can be simply archived when
received. Here we illustrate a generic approach to incorporate the data logging into
the workflows by transforming the workflow descriptive scripts. Business process or
workflows are often defined through process descriptive languages, which will be
interpreted by orchestration engines (e.g. Apache ODE) to conduct the process ac-
cordingly. A good example of the process descriptive language is Business Process
Execution Language (BPEL) [1]. BPEL models the business activities into several
basic activity types, and then composes those types to describe the whole process.
The core activity types include:
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Fig. 5.4 TPU records provenance data from various sources

1. Receive, receiving the request from a requester. This activity type will specify
the variable to which the input data is to be assigned.

2. Invoke, invocation to an endpoint (service). Invoke activity type will specify the
variable used as the input and the variable used to store the output data for this
invocation.

3. Reply, replying the invocation. A variable will be specified to be returned to the
requester as the result.

To add logging activities into the workflow, we can insert invoke activity types
into the BPEL script to invoke a certain endpoint (e.g. logging service) with the
provenance data to be logged. And due to the distinct natures of receive, invoke and
reply activity types, the rules used to decide the insertion locations are in fact quite
straightforward. For the receive activity, an invoke should be inserted right after it,
to log the input data received. For the invoke activity, one invoke should be inserted
before this activity and another to be inserted after, to log the input data and the reply
data of the invocation respectively. And finally for the reply activity, an invoke needs
to be inserted just before it to log the result data that is about to be returned to the
requester. The invocation endpoint for the invoke activities inserted (i.e. logging ser-
vice) should either be a service in the same domain of the logger, or a trusted party
nominated by the logger, which in turn signs the evidence on the logger’s behalf and
forward the signed evidence to the TPU.

To further illustrate this transformation process, we have presented an example
in Fig. 5.5. Fig. 5.5a shows the graphical view of an ordinary sample BPEL. This
simple process is started by receiving an input (ReceiveInput); then a partner link
(collaborating service) is invoked in turn (InvokePartnerLink), and finally, replies
the result to the client (ReplyClient). Fig. 5.5b is the BPEL after the transformation.
We can see in Fig. 5.5b that four logging invoke activities (the InvokeLogging) have
been inserted, one after the “ReceiveInput”; one before and one after “InvokePart-
nerLink”; and one before “ReplyClient”. Because BPEL is entirely based on xml
schema, any xml schema parser will be capable of analyzing and inserting activities
into it. The implementation details of the incorporation of accountability have been
elaborated in our previous work [25].
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(a) Original BPEL (b) Transformed BPEL

Fig. 5.5 Transformation of BPEL

5.4.3 Architectural Design of Trusted Provenance Unit

TPU is responsible of recording the provenance data from all the participants of the
workflow. As accountability requires the submitter of the data to sign the data be-
fore submission to commit its truthfulness, services and the entities involved in the
workflow are needed to register their identity documents (e.g. X.509) at MC-layer.
When a new abstract workflow is proposed by a researcher, the Service Reposito-
ry/Composition unit first find the services that best suit the specified requirements,
then the filled workflow script is transformed by TPU to have logging activities (re-
fer to Chapter 6 for details). Meanwhile, TPU uses the knowledge obtained from the
documents registered to generate analysis logics to process the incoming data dur-
ing the execution of the workflow. The resultant data provenance information will
be delivered to the user through querying and visual displays.

The internal architectural design of TPU is shown in Fig. 6. In the initialization
phase, registered information about the services, like WSDL, X.509 certificate etc.;
and information about the workflows, like BPEL scripts are transmitted to TPU from
Service Repository/Composition unit. TPU first transform the workflow script to in-
corporate logging activities and send the transformed script for redeployment; then
it uses the registration information received to generate two components: “Monitor-
ing Logic” and “Provenance Logic”. In the monitoring phase, the provenance data
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Fig. 5.6 Internal architecture of Trusted Provenance Unit

will be submitted from the participants in the workflow. These data will first be
analysed by the monitoring logic to find obvious compliance violations (e.g. QoS
service level agreement); then be processed by the provenance logic to generate data
provenance information to be stored in the data warehouse.

When the provenance data are received, the provenance logic first labels the
provenance data with information regarding the “four Ws”: who, when, where and
what. In general, the provenance logic will add labels explaining what this prove-
nance data is about, in which workflow (where) it is generated, at what time and
by which participant (who). Then, based on the knowledge obtained from the docu-
mentation registered, the provenance logic links the different provenance data with
Open Provenance Model [13] edges to form a provenance graph. An example of
such graph is displayed in Fig. 5.7. We can see from the example, the provenance
information of the data pieces (circles marked with numbers) are expressed in terms

Fig. 5.7 An example of provenance graph
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of their links to the activities (round rectangles) that used or/and generate them. The
figure is a visual display of the provenance graph, it is not necessarily an actual
graph when stored in the data warehouse. The provenance logic simply needs to
label the data so they are linked with each other.

The query engine provides an interface for the users to fetch the provenance
information about specific data. In order to enable simple and efficient querying,
a query language in XML is developed, called SWQL (Simple Workflow Query
Language). SWQL allows the user to specify the information regarding the “four
Ws” to fetch the desired provenance data. An example is shown in Listing 16. The
example is a query to fetch all the differentiated gene (what) recorded from the
colorectal cancer workflow (where), submitted by service A and B (who) from 9am
to 5pm on 20 July 2011 (when).

1 <SWQL>
2 <Act ion>Find</ Ac t ion>
3 <D a t a I d e n t i f i e r>
4 <Type>D i f f e r e n t i a t e d gene</ Type>
5 </ D a t a I d e n t i f i e r>
6 <E n t i t y I d e n t i f i e r>
7 <E n t i t y>D i f f e r e n t i a t i o n s e r v i c e A</ E n t i t y>
8 <E n t i t y>D i f f e r e n t i a t i o n s e r v i c e B</ E n t i t y>
9 </ E n t i t y I d e n t i f i e r>

10 <T i m e I n t e r v a l>
11 <From>9AM−20JUL2011</ From><To>5PM−20JUL2011</ To>
12 </ T i m e I n t e r v a l>
13 <W o r k f l o w I d e n t i f i e r>C o l o r e c t a l c a n c e r</ W o r k f l o w I d e n t i f i e r>
14 . . .
15 </SWQL>

Listing 5.2 An example of SWQL query

The provenance and monitoring console is a graphical user interface to display
provenance and monitoring information as well as let users query the data ware-
house. During the execution of the workflow, the evolution of the data will be dis-
played in terms of the provenance graph generated by the provenance logic, and
the status of the workflow will been shown. More details about the console will be
discussed in the evaluation section.

5.5 Prototype Implementation

We prototyped a demonstration system to showcase our mobile-cloud concept. Our
system consists of three parts: i) a client UI deployed in the mobile device; ii) an
MC-layer for composing workflows and provenance; and iii) a number of demon-
strating service nodes in Amazon EC2. We implemented five services nodes in EC2
to represent the gene research tools provided by different organizations. The ser-
vices are linearly composed (one node finishes its job then invokes the next) to form
a workflow using BPEL. The information about the services as well as the workflow
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are registered at the MC-layer, which is deployed in another computing instance in
EC2. A remote user designs and invokes the workflow using the client UI locally de-
ployed in the mobile device. With this setting, in this section, we will elaborate the
implementation of the client UI; examine the communication overhead introduced
when provenance data are logged at TPU during the execution ; and we show some
processing latency when a real gene database (KEGG) is involved in a workflow.

The UI on mobile device is developed using Java platform, micro edition (J2ME).
The mobile web service feature is deployed and runs on a HTC 9500 mobile phone,
which is running on IBM Websphere Everyplace Micro Environment that supports
a connected device configuration (CDC1.1). Fig. 5.8a and 5.8b show two screen
shots of the Mobile Gene Management System (MGMS) - a scientific workflows
design and surveillance tools. A user can define or edit a scientific process from the
“New Work” button or “Previous Work” button as shown in Fig. 5.8a. Then, the user
can select into process items and specify their detail information as shown in Fig.
5.8b. System users define the steps from four aspects, what services carry out these
tasks; the number of child nodes; which methods/services are invoked; and what are
the inputs and outputs of each step. Finally, an abstract workflow in BPEL will be
generated and uploaded to the WSMS in Cloud, which will instantiate the abstract
workflow by filling up the endpoints in the BPEL with the best concrete services
URLs.

We have conducted testing to evaluate the latency introduced by incorporating
the logging actions into the workflow. Figure 5.9a shows the overall latency to fin-
ish the process with untransformed BPEL scripts and with transformed ones. We
have tested the workflow with request message size from 0.1KB (equivalent to a
sentence) to 50KB (equivalent to a medium size document). For the process with
transformed BPEL scripts to log the entire input/output messages (the series marked
with “circles”), the latency introduced compared to the untransformed one (the se-
ries marked with “squares”) grows as the request message becomes larger. In per-
centage terms, on average we observed a 30% increase in the overall process latency.

(a) Main menu (b) Designing a workflow

Fig. 5.8 Screen shots of Mobile Cloud client end UI
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Intuitively, this latency is significant to the business process; however it can be im-
proved through the use of hash functions. We can see in the graph, the extra latency
is significantly reduced if the BPEL scripts are transformed only to log the hash of
the evidence (the series marked with “triangles”). In fact, the extra latency almost
remains constant regardless of the size of the request message, so it becomes more
and more negligible when the message size increases.

(a) Overall execution latency of the workflow (b) Throughput of TPU under different load

Fig. 5.9 Performance evaluation

In practice, it is very rare that the entire communication message is urgently
needed to be logged at runtime for provenance purposes. Instead, the hash of the
message computed using collision-resistant hash functions (e.g., SHA-1), which is
a very small digest (160 bits for SHA-1), can be logged as a substitute. Because the
hashes computed are collision-resistant, which means it is theoretically impossible
to have two different items with the same hash, so the hash can be logged to repre-
sent the data. When the system is idle, the provenance data can be eventually logged
and verified according to the hash values.

As the MC-layer will be managing a number of workflows, naturally, it is interest-
ing to find out the processing capability of the TPU. To evaluate this, we replicated
the workflow we have implemented (the colorectal cancer workflow), and execute
multiple workflows replicated concurrently. As such, multiple service nodes will be
submitting provenance data to the TPU deployed in a computing instance simulta-
neously. With this setting, we evaluate the processing throughput of the TPU when
it is under different loads (in terms of logging received per unit time). Fig. 5.9b
shows the testing results. In the figure we can see that, the processing throughput
of TPU improves as the number of workflows increments, it reaches its peak when
TPU is monitoring 6 workflows, and then it decays gradually if more workflows are
involved in the monitoring. We tested this with messages of size 50KB, the pro-
cessing operations conducted by AS involves both SLA monitoring and provenance
data processing, which may need to fetch history data from the data warehouse to
make conclusions. Since the computing power of a computing instance is fixed, an
decrease in message size or processing complexity will shift the peak towards right
to occur when more workflows are involved, and vice versa.
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Fig. 5.10 Gene retrieval experiment with KEGG

To evaluate the performance of gene retrieving from gene bank services, we se-
lected 6 example genes which are the genetic causes of colorectal cancer and retrieve
their genetic neighbors from KEGG disease Database [8]. We test the response time
from 0 neighbors to 50 neighbors. As shown in Fig. 5.10, it is clear that the latency
is slowly increasing with changing the number of neighbors. The has-581 contin-
ually kept the best performance at all stages from the 1427msec for retrieving 0
gene neighbor to 2746.8msec for getting 50 neighbors. However, has-10297 spent
2078msec to search 0 neighbors and it cost 2912.6msec for finding 50 neighbors.

5.6 Related Work

Mobile computing provides a luggable computation model for users. Its portability
makes it very ideal for many application scenarios. To extend its limited computing
power, research communities have proposed novel designs to leverage the Cloud.
[7] proposed a virtual cloud system, [28] detailed a distributed computing platform
using mobile phones. They improve the capacities of mobile phones in the purpose
of storage and computation. [5][10][9] presented some computation offloading stud-
ies that move some parts of the applications to run on the Cloud. Executing parts of
application remotely can save battery lifetimes and significantly extend computing
resources. However, these solutions do not support platform-independent coopera-
tive interaction over an open network. In addition, after moving some parts of ap-
plications from stand-alone handheld devices to the cloud, several issues need to be
considered in advance such as privacy, trustworthy or provenance.

The importance of provenance for scientific workflows has been widely acknowl-
edged by various research communities. Many approaches have been proposed to
record the derivations of the data during the scientific process. Approaches like
[3][30] allow the designer to capture the intermediate data forms generated by the
experiments at different granularities. In our work, we introduced the concept of
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accountability which not only provides trusted data provenance but can enforce
compliance among the service providers. Compliance assurance has been studied
decently in recent years, some remarkable works include [16][6][29][23]. Our work
differs from them at the point that we consider a more hostile environment where
all service entities are expected to behave in any possible manner and deceive for
their own benefit. Cryptographic techniques are deployed in our system to ensure
the evidence are undeniable.

5.7 Conclusions and Future Work

Cloud computing has emerged as a way to provide a cost effective computing in-
frastructure for anyone with large needs for computing resources. Together with the
Service Oriented Architecture, research scientists can construct scientific workflows
composed of various scientific computing tools offered as services in the Cloud to
answer complex research questions.

In this book chapter, we have described a Mobile Cloud system which enables
mobile devices to design and participate in the scientific workflows running in
the Cloud. The scientific researchers can use mobile devices to sketch an abstract
workflow design to be submitted to the mobile cloud middleware layer, which will
recommend and compose the optimal services according to the designer’s require-
ments. On top of that, we further incorporated accountability mechanisms to provide
trusted data provenance during the execution of the scientific workflows. Trusted
data provenance implies that the recorded provenance data about a certain workflow
is cryptographically verifiable to be attributed to the responsible services who, is-
sued them. The provenance data thus can be used with confidence that its source is
verifiable and its integrity has been preserved.

In the future development, it will be interesting to explore the utilization of the
trusted provenance data collected, to improve the service recommendation for work-
flow design. The applicability of a particular service in a certain workflow and its
performances in the past executions can provide much information to the research
scientists and the recommendation system about characteristics of this service and
its eligibility for the workflow under design. Another direction of development is to
utilize existing workflow platforms or service repositories (e.g. BioCatalogue1) to
construct workflows and provide trusted data provenance. In this way we can testify
the concept of Mobile Cloud and trusted data provenance in the practise, improve
our methodology so as to offer more value and insights to the community.
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Chapter 6
Data Provenance and Management in Radio
Astronomy: A Stream Computing Approach

Mahmoud S. Mahmoud, Andrew Ensor, Alain Biem, Bruce Elmegreen,
and Sergei Gulyaev

Abstract. New approaches for data provenance and data management (DPDM) are
required for mega science projects like the Square Kilometer Array, characterized by
extremely large data volume and intense data rates, therefore demanding innovative
and highly efficient computational paradigms. In this context, we explore a stream-
computing approach with the emphasis on the use of accelerators. In particular,
we make use of a new generation of high performance stream-based parallelization
middleware known as InfoSphere Streams. Its viability for managing and ensuring
interoperability and integrity of signal processing data pipelines is demonstrated in
radio astronomy.

IBM InfoSphere Streams embraces the stream-computing paradigm. It is a shift
from conventional data mining techniques (involving analysis of existing data from
databases) towards real-time analytic processing. We discuss using InfoSphere
Streams for effective DPDM in radio astronomy and propose a way in which Info-
Sphere Streams can be utilized for large antennae arrays. We present a case-study:
the InfoSphere Streams implementation of an autocorrelating spectrometer, and us-
ing this example we discuss the advantages of the stream-computing approach and
the utilization of hardware accelerators.

6.1 Introduction

Started in the 1930s, radio astronomy has produced some of the greatest discoveries
and technology innovations of the 20th century. One of these innovations – radio
interferometry and aperture synthesis – was awarded a Nobel Prize for Physics in
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1974 (Martin Ryle and Antony Hewish, 1974). An aperture synthesis radio telescope
consists of multiple receiving elements in an array that observe the same radiating
source(s) simultaneously. Essentially, an array of radio telescopes is used to emulate
a much large telescope with size that of the diameter of the array, enabling a better
angular resolution of the radio source(s) to be obtained. While angular resolution
is determined by the array diameter, another important characteristic is telescope
sensitivity, which is determined by its collecting area. The Square Kilometer Array
(SKA) will be an aperture synthesis radio telescope, scheduled for completion in the
2020s, that will combine both factors, resolution and sensitivity. The total SKA col-
lecting area of one square kilometer (106 m2) will provide sensitivity that is 50-100
times higher than that of the best current radio telescope arrays. Its high angular res-
olution will be provided by distributing the square kilometer of collecting area into
many stations that are spread out on a continental scale (with the baseline between
some antennae over 3000 km).

A radio telescope antenna element detects electromagnetic waves by a current
induced in an antenna receiver system. This can be measured as a voltage si(t) at
receiver i that is sampled and digitized at regular times t. Whereas a single receiver
can measure the source brightness I(d) in a specific direction d, a pair of receivers
i, j separated by a baseline vector Bi j can be used as an interferometer to measure the
difference in phase between the signals si and s j due to the time delay τi j = Bi j ·d/c
between the received signals as illustrated in Figure 6.1.

The time delay τi j can be roughly approximated by the geometry of the antennae
relative to the source direction (provided by an Ephemerides service), and more
precisely determined by the resulting interference pattern in the cross-correlation
between the signals:

(si � s j)(τ) =
∫ ∞

−∞
si(t)s j(t + τ)dt.

The value Vi j = (si � s j)(τi j) is termed a visibility and gives a source brightness
measurement at a (u,v) point in the Fourier domain determined by the baseline Bi j

for that pair of antennae. An array of n antennae has n(n−1)
2 baselines (one per pair of

antennae) and so n(n−1)
2 visibilities can be obtained. However, if readings are taken

over an interval of hours then each baseline changes over time due to the rotation
of the Earth. Hence, over time the baselines sweep out elliptical arcs in the Fourier
plane, illustrated in Figure 6.2.

The Fourier domain coverage of an array is the combination of the (u,v) tracks
from all baselines provided by the array. It shows where the array samples the
Fourier transform of the source image. For high quality imaging, it is desirable
to have the best possible coverage of the Fourier domain, which is effectively the
telescope aperture. A perfect source brightness distribution (the image of the radio
source) could be obtained simply by taking the inverse Fourier transform if all (u,v)
points in the Fourier domain were able to be measured, but this is never the case.
A deconvolution process such as Clean or Maximum Entropy used in any modern
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interferometer imaging can be thought of as a scheme for interpolating or extrapo-
lating from the measured (u,v) points to all other points in the (u,v) plane [1].

Measuring the signals from all n antennae over a period of hours results in an
enormous dataset for a large array and its processing is a very compute intensive
problem. Figure 6.3 shows the operations that are performed in an array on the
digitized signals in a simplified pipeline from raw data through to analyzed data
products. Computational power required for these operations can be very significant,
particularly for the Correlation operation which calculates the visibility Vi j for each

of the n(n−1)
2 baselines at each time t via cross-correlations. It also performs an

autocorrelation of each signal as discussed in Section 6.4, which together with the
visibilities forms the datacube for the array at time t.
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Fig. 6.2 A uv-plot shown for the VLBI array in Australia and New Zealand, including Aus-
tralian Long Baseline Array (five radio telescopes), Warkworth (New Zealand), ASKAP
(Western Australia) and AuScope antennas in Katherine and Yarragadee. The uv-plot results
in 36× 2 baseline tracks for a 4 hour observation, 21-cm wavelength and common source
declination of −70◦ [2].

It is estimated that LOFAR with its 36 antennae stations can produce over 100
TB/day [3]. For the SKA which will eventually have about 3000 antennae dishes,
the data will increase by at least 5 orders of magnitude [4]. Such a huge amount
of data places very high processing demands and requires a special approach to the
overall organization of how data are processed and stored. It is only feasible to store
the digitized raw signals required for calculating data cubes for small arrays and is
limited to measurements taken over short time periods; in all other cases the data
storage requirements are too large to be practical.

In the next section we introduce the stream computing paradigm and how IBM’s
InfoSphere Streams data management middleware utilizes this paradigm. In Section
6.2 we describe how InfoSphere Streams can be applied to the operational facets
of large radio astronomy telescope arrays to handle the enormous data volumes
and compute intensive operations. In Section 6.4 we consider an actual InfoSphere
Streams application that performs streaming autocorrelations of actual radio astro-
nomical observations.
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6.2 IBM InfoSphere Streams and the Stream-Computing
Paradigm

With the vast expansion of data volumes generated in the current information age,
there has been a paradigm shift in data management toward the processing of stream-
ing data. Stream computing differs from traditional computing in that real-time data
is processed on the fly by relatively static queries that continuously execute during
the lifetime of an application, instead of the data being considered relatively static
and all queries being short lived. This is illustrated in Figure 6.4.

In May 2010 IBM released InfoSphere Streams or Streams. Streams is the result
of several year’s research conducted by the exploratory stream processing systems
group at the IBM T.J. Watson Center. It is a data stream management system mid-
dleware designed to ingest, filter, analyze and correlate enormous amounts of data
streaming from any number of data sources. Streams is designed to facilitate a rapid
response to changing environments leveraging the stream computing paradigm. It
has the following objectives [6]:

• Scale using a variety of hardware architectures as demand for processing power
changes.

• Provide a platform for handling data streams that is responsive to dynamic user
requirements, changing data, and system resource availability.

• Incremental tasking for changing data schemes and types.
• Secure transmission of data streams at all system levels, along with comprehen-

sive auditing of the execution environment.
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Fig. 6.4 (a) Traditional computing techniques versus (b) stream-computing paradigm [5]

In the remainder of this chapter, we focus on Streams version 1.21 which was the
platform used in our exploration.

6.2.1 InfoSphere Streams Terminology and Concepts

Streams is designed to be highly scalable, so it can be deployed on a single node or
on thousands of computing nodes that may have various hardware architectures. The
stream processing core distributed runtime environment executes numerous long
running queries, which Streams refers to as jobs [5]. A job can be represented by
a data-flow graph. Each vertex in the graph represents a processing element that
transforms the data, and each connecting edge is a data stream, as illustrated in
Figure 6.5.

Stream processing elements provide running statistics on their operation. These
statistics are utilized by the stream processing core to dynamically optimize job per-
formance by distributing the load and allocating suitable resources for executing
each job [7]. Note that a processing element that maps to an underlying computing
resource may be changed dynamically by the stream processing core according to
load distribution.

The following is a brief description of the stream processing core’s main archi-
tectural components [8], which is also illustrated in Figure 6.6:

• Dataflow Graph Manager
The dataflow graph manager is responsible for the data stream links between the
processing elements. Its primary function is to manage the specifications of the
input and output ports.

• Data Fabric
The data fabric provides the distributed facet of the stream processing. It is made
up of a set of daemons that run on each available computing node. The data fab-
ric uses the data stream link specification information from the data-flow graph
manager to establish connections between the processing elements and the under-
lying available computing nodes to transport stream data objects from producer
elements to consumer elements.

1 The current version is 2.0 with similar philosophy but with changes in the programming
language
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• Processing Element Execution Container
The processing element execution container provides the runtime environment
and access to the Streams middleware. Furthermore, it also acts as a security
fence preventing applications that are running on the processing elements from
corrupting the middleware as well as each other.
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• Resource Manager
The resource manager facilitates system analytics by collecting runtime infor-
mation from the data fabric daemons and the processing element execution con-
tainers. The analytics information is used to optimize the operation of the entire
system.

There are three different ways that users and developers can utilize Streams to pro-
cess streaming data [10]:

• Inquiry Services Planner
This level is designed for users with little or no programming experience. The
inquiry services planner gives user access to a collection of predefined process-
ing elements that generate underlying data-flow graphs (behind the scenes the
planner generates SPADE applications).

• Stream Processing Application Declarative Engine (SPADE)
SPADE is an intermediate declarative language that enables the construction of
data-flow graphs from predefined and custom stream operators.

• Streams API and the Eclipse Plug-in
This is designed for experienced developers who use programming languages
such as C++ or Java to implement stream applications that run on the processing
elements using the Streams API. Development can be facilitated by using a plug-
in available for Eclipse.

6.2.2 Data Streaming Applications with SPADE

Constructing a distributed stream processing application can be a complex process.
The following considerations need to be made:

• What data stream transform operations must be developed. Transform operations
are the building blocks that are combined together to ingest, process, analyze and
produce the desired output data stream.

• How the data stream transform operations can be mapped efficiently to dis-
tributed computing resources.

• The interconnections, network protocols, scheduling and synchronization of op-
erations between the available computing resources.

SPADE is designed to deal with these considerations so that programmers can focus
on the design of a distributed stream processing application. Using SPADE they can
avoid having to develop transform operators as well as face deployment issues that
vary depending on the availability of computing resources, network infrastructure
and specific technologies [9]. SPADE fulfills its design objectives by collaborat-
ing with the stream processing core to provide a dynamic runtime code generation
framework capable of achieving scalability and performance through automatic de-
ployment and optimization. This is illustrated in Figure 6.7.
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The source code of a SPADE application is structured into five main parts:

• Application Meta Information
This part contains the application name and optionally the debug/trace level.

• Type Definitions
In this part the name-spaces and aliases used by the application are declared.

• External Libraries
References to external libraries and header files that contain custom user defined
operations are declared in this part. This part is optional.

• Node Pools
In this part pools of computing nodes can be optionally declared. This part is
optional since the SPADE compiler can interact with the resource manager to
discover available computing node resources.

• Program Body
This is the part where the actual SPADE application is written. In SPADE, streams
are considered first class objects where the order of execution is fully character-
ized by the resulting data streams.

The SPADE language offers the following relational stream operators, used to con-
struct long-running queries:
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• Functor
A functor operator is used to carry out tuple level operations such as filtering,
projection, mapping, attribute creation and transformation. A Functor can also
access tuples that have appeared earlier in the input stream.

• Aggregate
An aggregate operator facilitates grouping of input stream tuples. Tuples can be
grouped in a variety of ways.

• Join
The join operator is used for combining two streams in a variety of ways.

• Sort
The sort operator is used to order tuples.

• Barrier
The barrier operator is used for stream synchronization. It accepts tuples from
multiple input streams and only starts to output tuples when it has received a
tuple from each input stream.

• Punctor
A punctor operator is somewhat similar to a functor operator. The difference
between the two is that a punctor operator performs tuple level operations on the
current tuple or tuples that have appeared earlier based on punctuations inserted
in the data stream.

• Split
A split operator is used to pass input stream tuples to multiple output streams
based on specified user conditions.

• Delay
The delay operator allows a time interval to be specified for delaying a data
stream.

• Edge Adapters
Edge adapters are stream operators that function on the boundaries of the SPADE
application. They allow a SPADE application to obtain and provide streamed data
to applications and entities that are external to the system. There are two types of
edge adapter operators:

– A source operator is used to create an incoming data stream of tuples from
external data sources.

– A sink operator is used to convert tuples to a format suitable for applications
and entities that are external to the system, such as a file system, database, or
external application.

• User Defined Operators (UDOPs)
SPADE allows external libraries to be utilized within the SPADE application.
Functionality of existing operators can also be extended using UDOPs. UDOPs
are developed in C++ or Java using the Streams Eclipse plug-in. UDOPs can be
used to port legacy code from other data management platforms into the Streams
platform. Furthermore, UDOPs can be used to wrap external libraries from other
systems so they can be interfaced with the Streams platform.
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• User Defined Built-in Operators (UBOPs)
Although UBOPs allow users to define customized operators they are restricted
to the scope of the SPADE application that declares them. On the other hand once
defined UBOPs become part of the SPADE language and essentially available for
use with any SPADE application.

SPADE also offers advanced features to extend its capabilities and provide a
richer platform for data stream application developers.

• Matrices, Lists and Vectorized Operations
Lists and matrices plus the capability to carry out operations on them is a core
fundamental feature in many applications such as signal processing, computer
graphics, data mining and pattern classification. SPADE offers native support for
list and matrix data types as well as vectorized operations which operate on them.
Lists or matrices can be created either from external sources via the source op-
erator, functor or punctor operators can be used to create lists or matrices from
incoming tuples, or the aggregate operator can create lists or matrices from multi-
ple tuple streams. Many of the SPADE built-in functions are capable of handling
matrix, list and scalar type attributes.

• Flexible Windowing Schemes
SPADE supports general windowing mechanisms such as sliding and tumbling
windows. SPADE takes these mechanisms further by allowing more sophisti-
cated windowing mechanisms. As an example, an operator can accumulate tuples
in a window to hold prior to processing. When a punctuation symbol is received,
a processing operation is triggered on tuples currently contained in the window,
such as averaging or summing the tuples, and then the window is made to tumble
or slide.

• Per-group Aggregates and Joins
Per-group aggregates and joins are designed to cut the number of computations
required for operating on a large number of tuple groups. SPADE has the ability
to define distinct groupings within a window, so that when a trigger is received
an aggregate or join operation can be applied to the entire window or distinct
groups within the current window.

6.2.3 Deploying SPADE Applications and Performance
Optimization

Discovering the exact optimal mapping (deployment) of a parallelized computer
program to loosely coupled (gridded) computing resources is an NP-hard problem
[11]. However, heuristics techniques can be used as a practical means for determin-
ing an acceptable approximation to an optimal mapping [12]. These heuristics can
be improved over time by collecting running statistics that monitor the utilization
and performance of computing and network resources.

A SPADE application is a parallelized computer program since it consists of
many operators working in parallel towards achieving a common task. InfoSphere
Streams approaches optimization of mapping a SPADE program to its underlying
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computing and network resources in two stages. First, how operators are logically
combined (fused) into processing elements, and second how processing elements
are assigned to physical computing nodes [13].

Info Sphere Streams uses a profiling framework that repeatedly maps processing
elements to physical nodes, collects statics and makes necessary remapping adjust-
ments. At the same time the fusion optimizer uses the collected statics along with a
greedy algorithmic technique to fuse operators into single processing elements.

6.3 Utilizing InfoSphere Streams to Address Large Antennae
Array Software Architecture

One of the characteristics of radio astronomy is that it often involves very large
volumes of data, particularly when an array of radio telescopes is used for radio
interferometry to obtain greater angular resolution of a celestial object. It also has
involved many ad-hoc techniques for processing and managing the data.

For instance, the Australian Square Kilometre Array Pathfinder (ASKAP) is a
CSIRO-led radio telescope array currently under development at the Murchison ra-
dio astronomy observatory. It will consist of 36 antennae, each with a phased array
feed that supplies 1.9 Tbps of data and requires 27 Tflops processing to extract
a beam visibility. Correlating the resulting 0.6 Tbps data from each antenna is esti-
mated to require 340 Tflops and provide 8 Gbps results for further analysis. ASKAP
will have the following the architectural components as given in Fig. 6.8, which il-
lustrates components required to control and manage the data pipeline in a radio
telescope array [14]:

Antenna Operations: includes positioning an antenna and setting data acquisition
parameters such as sampling rate, bit resolution and filter bank configuration.

Central Processor: correlates the beam visibility data and performs further anal-
ysis such as image synthesis or spectral line work.

Array Executive System: responsible for coordinating an observation by the array.
Monitoring Archiver: archives monitoring data generated by the system.
Logging: responsible for logging messages generated by the system.
Data Service: responsible for managing the database storage.
Alarm Management System: manages alarm conditions such as failures.
RFI Mitigation Service: identifies potential sources of radio frequency interfer-

ence in the received signals.
Ephemerides Service: calculates the positions of celestial objects.
Operator Display: a user interface for system control and monitoring.
Observation Preparation Tool: facilitates the setup and pre-planning of observa-

tions.
Observation Scheduler: generates schedules for the execution of observations by

the Executive System.
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Fig. 6.8 ASKAP top level architectural component view adapted from [14]

Although initially InfoSphere Streams has primarily been applied to the analy-
sis of financial markets, the healthcare sector, manufacturing, and traffic manage-
ment, it is also suited for managing a radio astronomy pipeline. In particular, the
ASKAP architecture in Fig. 6.8 provides a high level abstracted view of how that
data pipeline will look like within the ASKAP system. That data pipeline could be
instantiated with minimal design effort into streams operators graph, making the
transformation of the data in the pipeline transparent. It also allows for the mapping
of stream operators to processing elements to be dynamically reconfigurable, im-
portant for system scalability, optimizations, and fault tolerance. In fact most of the
described architectural components would benefit from these features.

One straightforward scenario for a streams software design mapping the ASKAP
architecture is to implement two core main streams instances. The first instance runs
at the front-end close to the antennae and is responsible for data conditioning, RFI
mitigation, and visibility production. The second instance runs at the central pro-
cessing unit, and is responsible, among others tasks, for generating images from the
visibilities. These two Streams applications could communicate through the Streams
middleware services and implement a fast, real-time processing scheme for manag-
ing the data from its acquisition all the way through to the analyzed data products.

Other streams jobs could run on the central processing unit. One such job could
be responsible for logging, archiving and storage using sink operators. Another
could communicate with the scheduling system and send control signals for co-
ordination.
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6.3.1 Data Provenance and Management Capabilities

Radio astronomical artifacts such as visibilities can be characterized by the obser-
vation schedule, station configuration, along with the recording and processing per-
formed on the sampled receiver voltages. This metadata describes how an artifact
has resulted from an observation and so provides important provenance informa-
tion. The common provenance standard for VLBI is the VLBI EXperiment (VEX)
format. A VEX file provides a complete description of a VLBI experiment from the
scheduling and data capture through to the correlations that result in a data cube. It
is designed to be independent of any data acquisition and correlator hardware and
to accommodate new equipment, recording and correlation modes [15]. Every VEX
file starts with a line identifying the file type and VEX version, and is followed by a
number of separate blocks, currently classified as either:

• Primitive blocks which define low-level station, source, and recording parame-
ters, such as antenna configuration and clock synchronization.

• Global block which specifies general experiment parameters.
• Station and mode blocks which define keywords that combined with the global

parameters provide a detailed configuration for an observation at a station.
• Sched block which specifies an ordered list of observations to perform.

For a steady-state radio source the VEX file allows a VLBI experiment to be repro-
duced, which can be valuable in large arrays where it is impractical to store the huge
volumes of raw data. For transient or micro-lensing observations [16, 17] the VEX
file provides a basic audit trail for verifying the origins of the experimental results.

However, data provenance practices are less standard for stages after correlation
processing. Correlated data can be analyzed in a variety of way, such as for image
synthesis or to obtain the power spectral density, and there are not yet standard
formats for defining how the resulting data artifacts are produced. The development
of a set of provenance standards will be essential for the SKA to ensure the origins
of the large number of artifacts produced and for automating their generation.

A radio astronomy system such as ASKAP should be able to provide the follow-
ing characteristics for managing data:

• Adequate end-to-end throughput not hindered by latency due to the processing
elements.

• Intermediate storage capabilities (persistence) to be able to store data summaries
in a storage of choice, such as a database or file.

• High availability: the system should be able to work reliably and if failure occurs,
data recovery services should be available to avoid important and critical loss of
data.

In Streams, adequate throughput can be achieved by a proper architecting of the
operators’ graph (the graph illustrating how processing elements are linked together
to form an application) and by an optimal assignment of processing elements to
nodes. This process can only be done on an application-by-application basis. IBM
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InfoSphere Streams facilitates the design and optimization of such a graph. Opti-
mizations can be done at compile time, such as those related to the placement of
processing elements into nodes or the fusion of processing elements into operators,
or at run-time, such as when some nodes get overloaded. Compile-time optimiza-
tion is efficient when workload and underlying resources are static. Offline profiling
of system characteristics prior to deployment is also available, in which case a first
pass (prior to deployment) can provide statistics on the data throughput and a sec-
ond pass (on-deployment) uses those statistics to optimize operators placement and
determine when fusion of processing elements should occur.

Data storage can be achieved by use of sink operators capable of storing data to
a file, database, or url port. In addition, the software supports user-developed sink
operators, useful for custom-based storage needed when sending data to specialized
storage recipients.

High availability can be achieved at the middleware level, the application level,
and the operator level. At the middleware level, various services are provided to
restart a job (potentially on a different node or hardware), replicate name servers
across multiple nodes, and monitor activities by writing log files to transactional
storage recipients. At the application-level (data processing level), Streams provides
checkpointing and automatic restart of processing elements in case of failure. It has
tools to provide partial fault tolerance when data loss is a critical issue by means of
state persistence capability (the capability to save the state of an operator and restore
it).

6.3.2 Some Applications of Streams in Radio Astronomy

There are several examples where Streams has been utilized in the area of radio
astronomy and space science.

A space weather monitoring system was developed through joint work by LOIS
and IBM Research [18]. It is known that the high-rate, large-volume of near-Earth
space data generated by various satellites (such as those of the European Space
Agency) is a serious challenge for standard techniques for space weather data moni-
toring and forecasting. In particular, mining these data in a store-and-process system
is not amenable. Streams software was used in [18] to develop a real-time streaming
application that measures the intensity, polarization and direction of arrival for sig-
nals in the 10 kHz and 100 MHz frequency bands, and on-the-fly generated signal
summaries that could be used for space weather forecasting and prevision.

A streaming version of the convolution resampling algorithm was developed by
IBM and CSIRO [19] as a prototype imaging application in the Central Processor of
ASKAP as described earlier. The version of the algorithm implemented was the w-
projection algorithm, which included a CPU intensive gridding step (the process of
mapping visibility coordinates into a power of 2 grid). That study showed the flexi-
bility of the streaming software by describing various implementations of streaming
scenarios resulting in significant improvements in gridding time.
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The next section describes a stream-based autocorrelation approach developed
using Streams for data received from a single radio telescope.

6.4 Implementing a Stream-Centric Autocorrelation Data
Pipeline & Utilizing Hardware Accelerators

Cross correlation is a fundamental tool in radio astronomy since it helps with iden-
tifying repeating patterns obscured by the predominant random noise content of
extraterrestrial signals. As these signals are mostly composed of random noise they
can be characterized as stationary stochastic processes where the mean and variance
do not change over time.

An autocorrelation is the cross correlation of a signal with itself. Autocorrelation
is mainly used for single antenna applications and calibration of individual arrayed
antennae. Implementing autocorrelation requires less effort since only one signal is
considered and therefore no time delays are required. As a consequence of its rel-
ative simplicity implementing an autocorrelation pipeline is a logical starting point
for constructing a basic cross correlation pipeline for radio astronomy signal pro-
cessing.

6.4.1 Autocorrelation and the Power Spectral Density in Radio
Astronomy

If voltage samples s(t) are obtained from an antenna the energy spectral density
E( f ) of the incident electromagnetic waves can be determined. The energy spectral
density is the energy carried by the incident waves per unit frequency f , which is
given by the Fourier transform:

E( f ) =

∣∣∣∣
∫ ∞

−∞
s(t)e−2π i f t dt

∣∣∣∣
2

.

However, s(t) is a stationary signal and is not square integrable so its Fourier trans-
form does not exist. Instead the Wiener-Khinchin theorem is applied to obtain the
power spectral density (PSD) of the voltage signal from the autocorrelation function
r(τ):

r(τ) =< s(t)s(t− τ)> .

The Wiener-Khinchin theorem states that the PSD P( f ) of the signal s(t) is the
Fourier transform of the autocorrelation function r(τ):

P( f ) =
∫ ∞

−∞
r(τ)e−2π i f t dt.

The PSD P( f ) is the power carried by the incident waves per unit frequency f .
From Figure 6.9 the PSD can be obtained by either performing an FX or XF

correlation. An FX correlation is a Fourier transform followed by element-wise
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Fig. 6.9 Relation between voltage in time and frequency domains with the autocorrelation
function and power spectral density [20]

multiplication. An XF correlation is a cross multiplication followed by a Fourier
transform. FX style correlation is preferred for software implementations since it
involves fewer multiplications [21].

6.4.2 Implementing a PSD Pipeline as a Stream Based
Application

Analogue voltage signals on the antenna receiver are sampled and digitized by an
analogue to digital converter. The digitized real value data (2-16 bit digitization)
are then streamed in real-time into an FX style pipeline to produce the power spec-
tral density (PSD) of the signal. The FX PSD pipeline illustrated in Figure 6.10 is
comprised of the following steps:

• Collect digitized signal data into chunks whose size is determined by the amount
of data optimally processed together in the pipeline.

• Channelize each chunk to obtain frequency domain data by applying a Fast
Fourier Transform to obtain single-precision float complex value data chunks.

• Obtain the autocorrelation of the data in the frequency domain by multiplying
each complex value in a chunk by its complex conjugate.

• Integrate and average the data chunks over time to obtain a best PSD estimate of
the signal.

The final stage plays an important role in improving the signal to noise ratio, hope-
fully allowing buried coherent signals of interest to emerge from the predominantly
random noise polluted signal.

The entire pipeline can be viewed as a parallel program where each stage of
the pipeline is an independent task. As data flow through the pipeline each stage
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operates on the data concurrently. Since the auto-correlation pipeline can be de-
composed into independent stages the pipeline can be easily defined as a Streams
application with appropriate SPADE operators.

Compute intensive tasks can be delegated to specialist hardware accelerators such
as GPUs, PowerCell CPUs or FPGAs. Delegating tasks to various computing archi-
tectures demonstrates Stream’s capabilities to construct and deploy parallel pro-
grams to heterogeneous computing clusters. For the PSD pipeline the most compute
intensive task is the Fourier transform, and will be assigned to a hardware accelera-
tor for processing.

The SPADE application makes use of virtual streams for predefining the various
tuple data structures, known as a tuple’s schema, that are utilized by its underlying
stream operators. Virtual streams contribute towards ease of programming as well
as understandability of the tuple structure flowing between stream operators. The
PSD SPADE application declares the following virtual streams:

RawData(data:ShortList) defines the schema used for creating tuples
arising from ingesting and parsing real value integer radio astronomy antenna
data. The bit resolution used to digitize the antenna analogue signal may vary
from as low as 2 bits up to 16 bits according to the recording system and type
of observation. Essentially, using a ShortList data type satisfies the bit-level
representation requirements for most radio astronomy recording formats.

RawDataChunk(acceleratorID:Integer, schemaFor(RawData))
defines the structure for a data chunk designated to a specific accelerator server
for channelization.

ChannelData(real:FloatList, imag:FloatList) defines the
structure for channelized data chunks that have been channelized by an
accelerator server.

PowerSpectrumData(psd:FloatList) defines the structure for tuples
containing PSD data. This virtual stream’s schema is used by several operators
for producing the different integration stages of the PSD.

Altogether the autocorrelation spectrometer SPADE application uses seven distinct
stream operators. The number of actual operators depends on the number of accel-
erators utilized for channelization and integration stages. Figure 6.11 shows the data
flow graph for the SPADE PSD application (see Appendix for SPADE code listing).

The first stream operator in the application is a Source operator which ingests
digitized unsigned integers from the signal. The data are parsed by this operator
according to the format used to digitize and pack samples. The Source operator
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builds a tuple according to the RawDataChunk virtual stream schema, reading
into the ShortList data tuple attribute. Each RawDataChunk tuple is assigned
to an accelerator server by assigning a positive integer to the acceleratorID
tuple attribute. The number of tokens contained in the data attribute is given by the
size and number of FFTs to be performed by the channelization stage. A positive
integer value between 0 and the total number of accelerators utilized is assigned to
the acceleratorID attribute in a round robin fashion.

Tuples resulting from a Source operator are ingested by a Split operator. Essen-
tially the Split operator is a multiplexed stream. Each sub-stream in the multiplex
stream carries RawDataChunk tuples according to their respective identifier. Ef-
fectively the Split enables RawDataChunk tuples to be fanned out to several ac-
celerators.

The Streams Processing Core may not be supported on a particular accelerator
architecture, so one way around is to use a UDOP. To enable asynchronous commu-
nication with the accelerator server multi-threaded UDOPs (MTUDOP) are adopted
by the SPADE application. An MTUDOP facilitates uncoupling the processes of re-
ceiving and transmitting tuples. For further versatility the UDOP uses configuration
switches so that the same UDOP can be reused.

The MTUDOP uses three switches allowing the SPADE application to configure
its operation with respect to which accelerator will be used for processing as well as
the communication mode for incoming and outgoing data. During the initialization
phase the MTUDOP extracts configuration information from the switch operators
and establishes incoming and outgoing connections.

Once the connections have been made to a specific accelerator the MTUDOP
runs two processes:

• The input tuple process ingests tuples transmitted by a specific Split operator
sub-stream. The ingested tuples are converted to floats since software implemen-
tations for Fourier transforms require this. Following that some byte reordering
may be necessary depending on the architecture of the accelerator. Once the type
conversion and byte reordering are accomplished the data are sent to the acceler-
ator for channelization.

• The output tuple process receives data from the accelerator. Similarly to the
previous process, received data may need byte reordering. The ChannelData
schema is used to define the outgoing tuple structure. The channelized data chunk
received from the accelerator arrives in interleaved complex number format, and
so real and imaginary parts are separated into two FloatList data types. One
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FloatList represented by the tuple attribute real holds real values and the
other FloatList represented by the tuple attribute imag holds imaginary val-
ues.

ChannelData produced by the MTUDOP are ingested by a Functor operator
responsible for computing the instantaneous PSD values, multiplying each complex
number by its complex conjugate to produce a real value. The resulting real values
are defined by the PowerSpectrumData virtual stream schema.

Each PowerSpectrumData tuple arising from the first Functor operator con-
tains data for several FFT problems, so the second Functor operator integrates those
results. Effectively the second Functor integrates multiple FFT problems contained
in a single data chunk. To accomplish integration within a data chunk the sec-
ond Functor operator uses customized user-defined logic. Integrations within a data
chunk are performed using a Slice operation that helps with extracting the result of
each FFT problem for summing and averaging. Summing and averaging produces a
FloatList and so the same PowerSpectrumData schema is used to represent
the resultant tuples.
PowerSpectrumData tuples from the second Functor operator are then inte-

grated with an Aggregate operator. The aggregation count is specified by the SPADE
application. Fundamentally the aggregation count is the required integration time.
The longer the integration time, that is the higher the aggregation count, the better
the signal to noise ratio.

Integrated power spectral density tuples produced by the Aggregate operator and
defined by the PowerSpectrumData schema are ingested by a Sink operator.
The Sink operator may either write the integrated PSD strips to disk or possibly
stream them over the network for deeper analysis or visualization.

6.4.3 Using Accelerators (Heterogeneous Computing)

An accelerator is intended to provide specialized accelerated computing services to
assist with handling compute intensive operations. The objective for utilizing ac-
celerators is to enable real-time data management operations especially for areas
that involve processing large amounts of data. An important consideration that must
be made when using a particular accelerator hardware is the use of its unique per-
formance primitives and libraries. Neglecting this consideration in many cases will
lead to ineffective utilization of the accelerator’s intensive computing capabilities.

The SPADE PSD application described previously is designed to function with
any type of accelerator. At the time of implementation the PowerCell CPU accelera-
tor was available. In this subsection we describe how the compute intensive Fourier
transform was implemented on the PowerCell CPU using its unique performance
primitives and libraries.

The Fourier transform service is provided by an implementation of the discrete
Fast Fourier Transform (FFT) on a PowerCell QS22 Blade Server. The QS22 Blade
Server comprises of two PowerCell CPUs. Each PowerCell CPU comprises of nine
cores; one 64 bit duo-core PowerPC processor and eight 128 bit RISC processors.
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The FFT server program is a multi-threaded application that executes the follow-
ing four threads:

• Applications main thread; responsible for initializing the FFT memory buffers
working area as well as starting the receiving, processing and sending threads.
After initialization the main thread blocks until the application is terminated.

• The receiving thread creates a server socket and listens for a single client connec-
tion. Once a sender client connects, the FFT Server receives data chunks contain-
ing multiple FFT blocks. Each data chunk is written to a specific buffer, which is
then flagged to indicate that it is ready for processing.

• The processing thread performs a real to complex FFT on memory buffers that
have been flagged as fully received by the receiver thread. Consequently since
the FFT is real to complex then ultimately the same amount of data received will
be the same amount sent. The FFT is accomplished using all 16 SPU cores on a
QS22, hence the reason why a single data chunk contains multiple FFT blocks.
Once a single data chunk contained in a given buffer has been processed it is then
flagged by the processor thread to indicate that the results are ready for sending.

• The sending thread sends the contents of memory buffers that have been flagged
as processed. Memory buffers that have been sent are flagged to indicate that the
buffer can be reused for receiving.

The application makes use of a multi-buffering scheme for allowing the receiving,
processing and sending threads to operate in an asynchronous fashion. The threads
operate asynchronously as long as there are buffers available. Any contribution to-
wards asynchronous operation between concurrent threads reduces blocking thereby
contributing to a gain in overall performance. Nevertheless mitigating concurrency
between thread access to each individual buffer is still required, and this is accom-
plished via a two-phase locking mechanism. The processing thread makes use of
the SDK for Multicore Acceleration FFT library to efficiently compute a large num-
ber of FFT problems in parallel. The FFT library achieves significant computational
performance gains by exploiting the PowerCell CPU’s vectorized SIMD capabilities
utilizing two main approaches:

• Striping across vector registers
The SPE’s architecture is 128-bit hence its underlying Synergistic Processing
Unit (SPU) registers can be considered as vector registers. In the case of this
implementation the FFTs are performed using 32 bit (single-precision) floating
point values. A single SPU register can therefore hold four individual 32-bit floats
and operate on the entire vector of floats using a single instruction. When per-
forming FFT operations rather than loading four values from one FFT problem,
four values are loaded from four problems. This technique is known as striping
multiple problems across a single register. Striping values from four problems
across a register enables these problems to be accomplished in unison, and the
code used for indexing and twiddle calculations can be reused [22].

The FFT algorithm makes extensive use of compute intensive trigonomet-
ric mathematical operations. Fortunately the SIMD Math Library contains vec-
torized versions of common mathematical operations. Utilizing vectorized math
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operations along with data stripping across vector registers dramatically reduces
the frequency of their usage. However data striping values across vector registers
is limited since it requires all the values from the FFT problems to be present in
the SPU’s LS, which has maximum capacity of only 256 kB. Hence data striping
across vectors is limited to small point size FFT problems.

• Vector synthesis
To accommodate the memory bound limitations imposed by a SPU’s LS, SPU
shuffle operations can rearrange a large set of FFT problems residing in main
memory into vector form prior to DMA transfer to the SPUs. This rearrangement
of scalar FFT problem values into vector form is known as vector synthesis, and
is illustrated in Figure 6.12. Subsequently, once the SPUs complete FFT com-
putations of the large set of problems, the vectorized values must be rearranged
back into scalar form. Naturally the rearrangement of a large data set of FFT
problems into vectors then back to scalars does incur a computational expense.
However since the large data set is prepared for vectorized trigonometric oper-
ations then the gains made in reducing the amount of computational intensive
trigonometric operations greatly outweigh the costs incurred by vector synthesis
operations [22, 23].

To gain further significant performance speed-ups (of almost 10 times) on the Cell
B.E. architecture, the implementation uses the huge translation lookaside buffer
(TLB) file system. Huge TLB page files allocate large pages (16 MB per page) of
contiguous memory. Utilizing huge page files reduces the TLB miss rate and con-
sequently leads to a gain in performance. The data chunk size mentioned in Section
6.4.2 was set to 16 MB to fully utilize an entire huge TLB page.

Scalar data

Vector data

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Fig. 6.12 Scalar versus vector data arrangement in a contiguous block of main memory [22]



6 DPDM in Radio Astronomy: A Stream Computing Approach 151

6.4.4 Testing the SPADE PSD Application

The SPADE PSD application was tested using network streamed data from the AUT
University 12m radio telescope located at Warkworth in New Zealand. An IBM
Blade Center holding x86 HS12 and dual-PowerCell QS22 blades was used to run
the application. The HS12 blade was used to execute the SPADE PSD application.
As the PowerCell FFT library is limited to a maximum size of 8192 points (for real
to imaginary number FFT transforms) each huge TLB page could accommodate 512
FFT problems.

Test data were sampled by the radio telescope from the European Space Agency
Mars Express Orbiter at 60 MHz (32 MHz bandwidth due to Nyquist criterion) using
8-bit digitization. The resulting power spectral density is illustrated in Figure 6.13.

The overall shape of the distribution is dictated by the specific telescope and its
receiving system. This shape was also determined independently using a hardware
spectrum analyzer to verify the correctness of the PSD application. Of particular
interest in the spectrum was the 8420.4321 MHz signal detected by the application
which was being emitted by the orbiter at the time of the test.

On average the application took 8 ms to autocorrelate 512 FFT problems of size
8192 with a just single accelerator, a performance of 30 Gflops. Although greater
performance could also be achieved by either using an FFT implementation tuned
for the specific size or by utilizing more accelerators, the application could already
handle 524 MHz sampling from a single antenna. However, careful attention must
be paid to the networking layers in order to utilize the potential power of any ac-
celerator. During initial testing the QS22 blade accelerators utilized TCP over full
duplex Gigabit Ethernet links and both the average data chunk inter-arrival and inter-
departure times were found to be 0.6 s, limiting the sampling rate to 6 MHz per link.
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Fig. 6.13 Plot of the PSD results obtained from a 40 second observation of the ESA Mars
Express spacecraft conducted by the AUT 12m radio telescope



152 M.S. Mahmoud et al.

This limitation can be removed by either utilizing multiple links in a round robin
fashion from an x86 blade, utilizing an alternative protocol to TCP, or employing an
alternative networking technology such as Infiniband.

6.4.5 Performance and Scalability

The results from the previous subsection demonstrate that Streams shows good per-
formance calculating the PSD using a mix of HS12 and QS22 blades with the Pow-
erCell as the accelerator. In particular, the greatest performance limitation was deter-
mined to be inter-blade networking rather than anything associated with the Streams
framework itself, despite Streams being hardware and network technology agnostic.
Streams allows the underlying computer and network technologies to be changed for
best suiting the computations required in a particular application. This enables it to
leverage the performance of new hardware as it becomes available, while reducing
the effort to reengineer software applications.

The scalability features of Streams are valuable for meeting growing computa-
tional demands. The SPADE PSD application can scale to handle greater sampling
rates, higher frequency resolution via a larger FFT point size, or additional anten-
nae. The SPC performs dynamic assignment of processing elements to physical
nodes which enables the SPADE application to dynamically meet the demands of
intensifying computations. This ability to dynamically redeploy a parallel program
during runtime to physical nodes allows Streams to scale effectively.

6.5 Conclusion

This application successfully demonstrated the viability of implementing a real-
time PSD entirely in software using InfoSphere Streams. The SPADE application
showed good data throughput without being specifically tailored to a specific ac-
celerator, and allowed dynamic reconfiguration to allow more accelerators to be
utilized as necessary or alternative types of accelerators included. Due to the use of
standard SPADE operations the management of the data through the pipeline was
transparent and the application could be easily extended to provide further analysis
or provenance features.

The operations of an FX style autocorrelating spectrometer pipeline are domi-
nated by the algorithmic complexity n log2(n) of the FFT operation. A single dual-
PowerCell QS22 blade measured 30 GFlops for the FFT operation. In comparison
measuring the performance of the FFT operation utilizing all four cores of a sin-
gle x86 HS12 blade achieved almost 10 times less performance, and was measured
at 3.5 GFlops. Essentially this shows that using various architectures for parallel
computing by utilizing suitable accelerator hardware for specific compute intense
operations can yield significant speed ups. In our case for an FX style autocorrela-
tion pipeline a speed up of almost 10 times was achieved per QS22 blade.

IBM Info Streams proved it’s flexibility to operate using various architectures in
unison. Despite the I/O bound links Streams was capable of maximizing the link
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bandwidth as well as manage the data flow without information loss. Implementing
the PSD pipeline in SPADE allowed parameters such as the integration time and
FFT point size to be changed in real-time without compromising the flow of data.

Streams facilitates both implicit and explicit parallelization. Implicit paralleliza-
tion is achieved by fusing operators into processing elements, and explicit paral-
lelization by deployment of processing elements to many physical nodes. Further-
more Streams goes beyond conventional parallelization middleware and frameworks
such as MPI (Message Passage Interface) and OpenMP by allowing dynamic oper-
ator fusing and processing element deployment to physical nodes during runtime.
This degree of dynamic operation enables Streams to provide on demand scalability
to increasing data loads and computations.

In this work we mainly focus on reviewing InfoSphere Streams and its potential
use for Radio Astronomy. In our opinion the Streams approach has shown positive
results to warrant further research and serious consideration for managing DPDM
aspects of large antennae arrays. Further research is required to conduct more formal
and specific comparative analysis between Streams and other middleware such as
MPI and ICE (Internet Connection Engine). Another interesting area that requires
more rigorous investigation is Streams scaling capabilities using a larger cluster of
x86 nodes as well as combining other accelerators such as GPUs, Intel MIC (Many
Integrated Core) architecture and FPGAs.

Acknowledgements. The first author would like to thank the New Zealand government’s
Tertiary Education Commission Build IT fund for funding this research and the IBM cooper-
ation for providing the computing hardware under the shared university research grant.

Appendix

The following SPADE code listing shows an implementation of an autocorrelation
spectrometer application. Lines 4-7 define the virtual streams used by the applica-
tions stream operators. In lines 8-11 is a user defined source operator responsible
for receiving network digitized raw antenna data using TCP. In lines 12-15 a split
operator is used to distribute data to the PowerCell accelerators (for simplicity this
listing uses two accelerators). In lines 17-20 an MTUDOP is used to send time series
data and receive frequency domain data to and from the PowerCell accelerators. The
frequency domain data received from a particular accelerator is then autocorrelated
by a functor operator in lines 21-24. Since the accelerators are given a chunk con-
taining multiple FFTs lines 25-41 integrate this chunk. In lines 43-46 an aggregate
operator is used to integrate averaged chunks. In this particular listing the aggregate
operator sends a result to the sink operator in line 47 every time it integrates 523
averaged PSD chunks.
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1 [Application]
2 AutoCorrelator
3 [Program]
4 vstream RawData(data : ShortList)
5 vstream RawDataChunk(cellID: Integer, schemaFor(RawData))
6 vstream ChannelData(real : FloatList, imag : FloatList)
7 vstream PowerSpectrumData(psd : FloatList)
8 stream Antenna(schemaFor(RawDataChunk))
9 := Source() ["stcp://thishost:9932/",

10 udfBinFormat="AntennaParser",
11 blockSize=8*1024] {}
12 for_begin @Blade_ID 1 to 2
13 stream QS22@Blade_ID(schemaFor(Antenna))
14 for_end
15 := Split(Antenna)[cellID]{}
16 for_begin @Blade_ID 1 to 2
17 stream FFT@Blade_ID(schemaFor(ChannelData)) :=
18 MTUdop(QS22@Blade_ID)["MT_QS22_FFT"] {
19 switch1="@Blade_ID", switch2="9933", switch

3="9934"
20 }
21 stream PSD@Blade_ID(schemaFor(PowerSpectrumData))
22 := Functor(FFT@Blade_ID) [] {
23 psd := apply(pow, real, 2.0) .+ apply(pow, imag,

2.0)
24 }
25 stream IntegrateChunk@Blade_ID(schemaFor(
26 PowerSpectrumData)) := Functor(PSD@Blade_ID)
27 <
28 Integer $count := 1;
29 FloatList $average := makeFloatList();
30 >
31 <
32 $average := slice(psd, 0, 4096);
33 while($count < 512) {
34 $average := $average .+ slice(psd, $count * 4096,

4096);
35 $count := $count + 1;
36 }
37 $average := $average ./ 512.0;
38 $count := 1;
39 >
40 [true]
41 {psd := $average}
42 for_end
43 stream Integrate(schemaFor(PowerSpectrumData)) :=
44 Aggregate(IntegrateChunk1, IntegrateChunk2 <count(523)>)

[] {
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45 psd := Avg(psd)
46 }
47 Nil := Sink(Integrate)["file:///../data/spectrum.bin",

nodelays, udfBinFormat="DataFormatter"] {}
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12. Culler, D., Karp, R., Patterson, D., Sahay, A., Schauser, K.E., Santos, E., Subramonian,
R., von Eicken, T.: LogP: Towards a Realistic Model of Parallel Computation. In: 4th
ACM PPOPP,5/93/CA, USA (1993)

13. Gedik, B., Andrade, H., Wu, K.: A Code Generation Approach to Optimizing Dis-
tributed Data Stream Processing. In: ACM CIKM 2009, Hong Kong, China, Novemebr
2-6 (2009)

http://hdl.handle.net/10292/449
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.Projects.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.Projects.html
http://www.redbooks.ibm.com/redbooks/pdfs/sg247865.pdf
http://public.dhe.ibm.com/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf
http://public.dhe.ibm.com/software/data/sw-library/ii/whitepaper/SystemS_2008-1001.pdf


156 M.S. Mahmoud et al.

14. Guzman, J.C., Humphreys, B.: The Australian SKA Pathfinder (ASKAP) Software Ar-
chitecture. In: Proceedings of SPIE, vol. 7740, p. 77401J (2010)

15. VEX File Definition. VLBI Standards & Resources Website, Retrieved from
http://vlbi.org/vex/

16. McLaughlin, M.: Rotating Radio Transients. In: Becker, W. (ed.) Neutron Stars and Pul-
sars, pp. 41–66. Springer, Berlin (2009)

17. Refsdal, S.: The gravitational lens effect. Monthly Notices of the Royal Astronomical
Society 128, 295 (1964)

18. Daldorff, L.K.S., Mohammadi, S.M., Bergman, J.E.S., Thide, B., Biem, A., Elmegreen,
B., Turaga, D.S.: Novel data stream techniques for real time HF radio weather statistics
and forecasting. In: Proceedings of IRTS, Edinburgh, UK, April 28-30 (2009) ISBN: 978
1 84919 123 4

19. Biem, A., Elmegreen, B., Verscheure, O., Turaga, D., Andrade, H., Cornwell, T.: A
streaming approach to radio astronomy imaging. In: Proceedings of IEEE ICASSP, pp.
1654–1657 (2010), doi:10.1109/ICASSP.2010.5495521

20. Rohlfs, K., Wilson, T.L.: Tools of Radio Astronomy, 4th edn., pp. 50–52. Springer, Hei-
delberg

21. Bunton, J.D.: New Generation Correlators. In: Proceedings of the XXVIIth General As-
sembly of International Union Radio Science (URSI), Commission J06, Vigyan Bhavan,
New Delhi, India, October 23-29 (2005)

22. Arevalo, A., Matinata, R.M., Pandian, M., Peri, E., Ruby, K., Thomas, F., Almond, C.:
Programming the Cell Broad Engine Architecture: Examples and Best Practices, 1st edn.
IBM Redbooks: International Business Machines Corporation (2008)

23. Lu, J., Nobels, A., Perrone, M.: IBM Research Report: Accelerating FFT Performance
Using the Cell BE Processor. T. J. Watson Research Center, Yorktown Heights. IBM
Research Division, New York (2007)

http://vlbi.org/vex/


Chapter 7
Using Provenance to Support Good Laboratory
Practice in Grid Environments

Miriam Ney, Guy K. Kloss, and Andreas Schreiber

Abstract. Conducting experiments and documenting results is daily business of sci-
entists. Good and traceable documentation enables other scientists to confirm pro-
cedures and results for increased credibility. Documentation and scientific conduct
are regulated and termed as “good laboratory practice.” Laboratory notebooks are
used to record each step in conducting an experiment and processing data. Orig-
inally, these notebooks were paper based. Due to computerised research systems,
acquired data became more elaborate, thus increasing the need for electronic note-
books with data storage, computational features and reliable electronic documenta-
tion. As a new approach to this, a scientific data management system (DataFinder) is
enhanced with features for traceable documentation. Provenance recording is used
to meet requirements of traceability, and this information can later be queried for
further analysis. DataFinder has further important features for scientific documenta-
tion: It employs a heterogeneous and distributed data storage concept. This enables
access to different types of data storage systems (e. g. Grid data infrastructure, file
servers). In this chapter we describe a number of building blocks that are available
or close to finished development. These components are intended for assembling an
electronic laboratory notebook for use in Grid environments, while retaining maxi-
mal flexibility on usage scenarios as well as maximal compatibility overlap towards
each other. Through the usage of such a system, provenance can successfully be
used to trace the scientific workflow of preparation, execution, evaluation, interpre-
tation and archiving of research data. The reliability of research results increases
and the research process remains transparent to remote research partners.
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7.1 Introduction

With the “Principles of Good Laboratory Practice and Compliance Monitoring” the
OECD provides research institutes with guidelines and a framework to ensure good
and reliable research. It defines “Good Laboratory Practice” as “a quality system
concerned with the organisational process and the conditions under which non-
clinical health and environmental safety studies are planned, performed, monitored,
recorded, archived and reported” (p. 14 in [8]). This definition can be extended to
other fields of research. To prove the quality of research is of relevance for cred-
ibility and reliability in the research community. Next to organisational processes
and environmental guidelines, part of the good laboratory practice is to maintain a
laboratory notebook when conducting experiments.

The scientist documents each step, either taken in the experiment or afterwards
when processing data. Due to computerised research systems, acquired data in-
creases in volume and becomes more elaborate. This increases the need to migrate
from originally paper-based to electronic notebooks with data storage, computa-
tional features and reliable electronic documentation. For these purposes suitable
data management systems for scientific data are available.

7.1.1 A Sample Use Case

As an example use case a group of biologists are conducting research. This task
includes the collection of specimen samples in the field. Such samples may need to
be archived physically. The information on these samples must be present within the
laboratory system to refer to it from further related entries. Information regarding
these samples possibly includes the archival location, information on name, type,
date of sampling, etc.

The samples form the basis for further studies in the biological (wet) laboratories.
Researchers in these environments are commonly not computer scientists, but biol-
ogists who just “want to get their research done.” An electronic laboratory notebook
application therefore must be similarly easy to operate in day-to-day practice like
a paper-based notebook. All notes regarding experimentation on the samples and
further derivative stages (processing, treatments, etc.) must be recorded, and linked
to a number of other artifacts (other specimen, laboratory equipment, substances,
etc.).

As a result of this experimentation further artifacts are derived, which need to
be managed. These could be either further physical samples, or information (data,
measurements, digital images, instrument readings, etc.). Along with these artifacts
the team manages documents outlining the project plan, documents on experimental
procedures, etc.

In the end every managed artifact (physical or data) must be linked through a
contiguous, unbroken chain of records, the provenance trail. The biologists in our
sample use case cooperate with researchers from different institutes in different (ge-
ographical) locations. Therefore, the management of all data as well as provenance
must be enabled in distributed environments, physically linked through the Internet.



7 Provenance to Support Good Laboratory Practice 159

The teams rely on a common Grid-based authentication, which is used to authorise
principals (users, equipment, services) across organisational boundaries.

The recorded provenance of all managed artifacts can be used in a variety of
ways. Firstly, it is useful to document and prove proper scientific procedures and
conduct. Beyond this compliance requirement provenance information can be used
in further ways: It enables often previously not possible (or very tedious) ways of
analysis. By querying the present provenance information, questions can be an-
swered which depend on the recorded information. These questions may include
some of the following:

• Question for origin: What artifacts were used in the generation of another arti-
fact?

• Question for inheritance: What artifacts and information were generated using a
given artifact?

• Question for participants: What actors (people, devices, applications, versions
of tools, etc.) were employed in the generation of an artifact?

• Question for dependencies: Which resources from other projects/processes have
been used in the generation of an artifact?

• Question for progress: In what stage of a processing chain is a given artifact?
Has the process the artifact is part of been finalised?

• Question for quality: Did the process the artifact is part of reach a satisfactory
conclusion by some given regulations or criteria?

7.1.2 Data Management with the DataFinder

In order find a solution to common data management problems, the German
Aerospace Centre (DLR) – as Germany’s largest research institute – developed
an open source data management application aimed at researchers and engineers:
DataFinder [17, 20]. DataFinder is a distributed data management system. It al-
lows heterogeneous storage back-ends, meta-data management, flexible extensions
to the user interface and script-based automation. To implement required features
for reliable and auditable electronic documentation provenance technologies can be
used [5].

When analysing the data management situation in scientific or research labs, sev-
eral problems are noticeable:

• Each scientist individually is solely responsible for the data generated and man-
aging it as deemed fit. Often others cannot access it, and duplication of effort
may occur.

• If a scientist leaves the organisation, it is possible that no one understands the
structure of the data left behind. Information can be lost.

• Researchers often spend a lot of time searching for data. This waste of time
decreases productivity.

• Due to long archiving periods and an increasing data production rate, the data
volume to store increases significantly.
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To overcome this situation common in many research institutes, the DLR facility
Simulation and Software Technology has developed the scientific data management
system DataFinder (cf. [20]).

7.1.2.1 General Concepts

DataFinder is an open source software written in Python. It uses a server and a
client component. The server component holds data and associated meta-data. Data
and meta-data is aggregated in a shared data repository and accessed and managed
through the client application. Fig. 7.1 shows the user interface of the DataFinder,
when connected to a shared repository.

Fig. 7.1 User interface of the DataFinder.

It is designed similar to a file manager on common operating systems. The left
hand side presents the local file hierarchy, and the right displays the shared repos-
itory. All data on the server can be augmented with arbitrary meta-data. Common
actions available for both sides are: open, copy, paste, import and export data. Open-
ing an entry will make an attempt to use the local system’s default association for a
file. These operations are all essential due to the nature of DataFinder being a data
management tool. One must be aware that on some operations (e. g. copying) prove-
nance related information is not copied with it. Copying would create a fork in the
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provenance graph to create a duplicate of a formerly uniquely referenced artifact.
Special treatment to treat these cases in a way as to extend the graph properly are
not in place, yet.

An advantage of DataFinder is, that an individual data model is configured for a
shared repository, which must be followed by all its users. A data model defines the
structure of collections. Collections can contain (configurable) allowed data types,
that can be inserted into the collection. The data model also defines a pre-defined
meta-data structure for these collections. This meta-data can be specified to be either
optional or mandatory information when importing a data item. Based on the data
model, data can be managed on a heterogeneous storage system (certain data items
stored in different storage sub-systems, see 7.1.2.2). This requires that DataFinder
provides the ability to manage data on different storage systems, under the control
of a single user interface under a single view (even within the same collection).

Lastly, it is the possibility to extend the application with Python scripts. This en-
ables a user to take advantage of more customised features, such as tool integration,
task automation, etc.

The DataFinder-based system aims at providing many options and to be highly
extensible for many purposes. DataFinder is already in use in different fields of re-
search. New use cases are identified and extensions implemented frequently. One of
these is the new use case for supporting a good laboratory practice capable notebook
as outlined in this chapter.

7.1.2.2 Distributed Data Storage

One of the key features of DataFinder is the capability to use different distributed,
heterogeneous storage systems (concurrently). A user has the freedom to store data
on different systems, while meta-data for this data can be kept either on the same or
on a different storage system.

Possible data storage options can be accessed for example through: WebDAV,
Subversion, FTP, GridFTP. Other available storage systems possibilities are Ama-
zon S3 Cloud services as well as a variety of hosted file systems. Meta-data for
systems not capable of providing extensive free-form meta-data is managed cen-
trally with another system. Such systems then are accessed through meta-data capa-
ble protocols like WebDAV or Subversion. Further storage back-ends are relatively
simple to integrate, due to the highly modular factory design of the application. This
design feature of DataFinder will be further examined in Sect. 7.3 for the integration
of a distributed Grid data storage infrastructure.

It must be noted at this point however, that DataFinder is responsible for main-
taining consistently managed data. DataFinder uses these protocols and systems for
this purpose. If data is accessed without using the DataFinder directly on the server
through other clients, data policies may be compromised (due to different access re-
strictions), or consistency may be compromised (with writing access to the storage
systems). With certain caution, this can however be used to integrate other (legacy)
systems into the overall concept.
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Due to the design of the DataFinder it is further possible to manage physical (real
world) items, such as laboratory analysis samples or offline media (e. g. video tapes,
CDs, DVDs). Physical items can be stored on shelves, or archived in any other way.
These can be valuable artifacts for research, and the knowledge of their existence
as well as their proper management is a common necessity. Therefore, it is crucial
to managed them electronically in a similar fashion by the same management tools.
Doing so enables extensive meta-queries provided by the DataFinder, taking advan-
tage of utilising the search capabilities over all managed items in the same way.
Furthermore, this enables to reference them consistently in provenance assertions
from within the realm of the provenance enabled system.

7.1.3 Overview

This chapter ties the link between the existing DataFinder application to convert it
into a tool useful for a good laboratory practice compliant electronic notebook. It
will introduce how DataFinder can be combined with provenance recording services
and (Grid) storage servers to form the back bone of such a system. The concept of
DataFinder is to be a system that can be customised towards different deployment
scenarios, it is to support the researchers or engineers in their way of working. This
includes the definition of a data storage hierarchy, required meta-data for storage
items and much more, usually alongside with customisation or automation scripts
and customised GUI dialogues. In a similar fashion, DataFinder can be used to con-
struct an electronic laboratory notebook with provenance recording for good labo-
ratory practice. Again, to do so one creates the required data models and customises
GUI dialogues to suit the purpose.

The used provenance technologies and their applications are described in
Sect. 7.2. Concepts to integrate Grid technologies for scientific data management
are outlined in Sect. 7.3. Sect. 7.4 presents the results of integrating the good lab-
oratory practice into a provenance system as well as a data management system. It
also provides a solution on how to connect these two system practically. Finally, the
concept of the resulting system of an electronic laboratory notebook is evaluated.

7.2 Provenance Management

Provenance originates from the Latin word: “provenire” meaning “to come
from” [11]. It is described as “the place that sth. originally came from” thus the
origin or source of something (cf. [22]). It was originally used for art, but other
disciplines adapted it for their objects, such as fossils or documents. In the field of
computer science and data origin it could be defined as:

“The provenance of a piece of data is the process that led to that piece of data.” [12]

Based on this understanding, approaches for identifying provenance use cases for
modeling processes and for integrating provenance tracking into applications are
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developed. Also, concepts to store and visualise provenance information are inves-
tigated. An overview of the different areas of provenance gives Fig. 7.2.

Fig. 7.2 Provenance taxonomy according to [19].

The figure shows five major areas: Usage, Subject, Representation, Storage and
Dissemination. [19] gives a detailed description on each area and their subdivisions.
In this application, embedded provenance tracking in the data management system
enables DataFinder to provide information about the chain of steps or events leading
to a data item as it is. The following list outlines relevant elements of the taxonomy
from Fig. 7.2 (additionally framed elements):

Use of provenance: Provenance is used to present information of the origin of the
data, but also to provide data quality.

Subject of Provenance: The subject is the process of conducting a study or ex-
periment. It is focused on documentation. To identify the subject further, the
Provenance Incorporating Methodology (PrIMe, Sect. 7.4.1) is used.

Provenance Representation: Provenance information will be represented in an an-
notational model, based on the Open Provenance Model (OPM, Sect. 7.2.1) and
it will mainly hold syntactic information.

Storing Provenance: Provenance information will be stored in the prOOst
(Sect. 7.2.2) system (can also hold additional information).

Provenance Dissemination: To extract provenance information, the provenance
system can be queried using a graph traversal language (Sect. 7.2.2.2).

The main concepts of OPM and the provenance system prOOst are described
in the following sections, whereas PrIMe is discussed in the scope of applying the
technical system to the domain of good laboratory practice in Sect. 7.4.
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7.2.1 OPM – Open Provenance Model

The Open Provenance Model [13] is the result of the third “provenance challenge”
efforts [18] to provide an interchangeable format between provenance systems. In its
core specification, it defines elements (nodes and edges) to describe the provenance
of a process.

Nodes can be processes, agents/actors and artifacts/data items. The nodes can be
connected through edges, such as “used”, “wasUndertakenBy”, “wasTriggeredBy”,
“wasDerivedFrom” and “isBasedOn”. Each edge is directed, clearly defining the
possible relations within a provenance model. Each node can be enriched by anno-
tations. Fig. 7.3 gives an example for conducting experiments in a biological labora-
tory and it shows the usage of the model notation. In the example, a scientist (actor)
discovers a biological anomaly (controls the process of thinking and inspiration).
So he starts experimenting (triggered by the discovery). For it to produce research
results (derived from experimenting), he needs (uses) specimen samples to work on.
If the results show a significant research outcome, a research paper can be written
(based on) the results.

Fig. 7.3 Example a biological study as an OPM model.

7.2.2 Provenance Storage with prOOst

Groth et al. describe in [6] theoretically the architecture of a provenance system.
In [14] the representation of a provenance system is described as follows: A prove-
nance aware application sends information of interest to the provenance store. From
this store inquiries and information is gathered, and possibly given back to the ap-
plication.

To record the information, different approaches have been investigated. In [7]
four different realisations are discussed: Relational, XML with XPath, RDF
with SPARQL and semi-structured approaches. They conclude semi-structured
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approaches to be most promising. In semi-structured systems, the used technology
has no formal structure, but it provides means of being queried.

This work uses a semi-structured approach for the provenance storage system
prOOst. It uses the graph database “Neo4j” [3] for storage and the graph traversal
language “Gremlin” [1] for querying. Furthermore, it provides a REST interface to
record data into the store, and a web front end to query the database. The prOOst
provenance system was published under the Apache license in July 2011 on Source-
Forge.1

It is not the first implementation using a graph database for storage technology.
In [21] this approach was already successfully tested. Neo4j was chosen as it is a ro-
bust, performant and popular choice for graph storage systems. Additionally it read-
ily connectible with the suitable Gremlin query system to meet our requirements.
Further discussions on alternative storage or query systems are outside the scope of
this chapter. Further information on the implementation of OPM model provenance
assertions using these systems are described in the following two sections.

7.2.2.1 Graph Database: Neo4j

“Neo4j is a graph database, a fully transactional database that stores data structured as
graphs.” (cf. [3])

An advantage of graph databases like Neo4j is that they offer very flexible storage
models, allowing for a rapid development. Neo4j is dually licensed (AGPLv3 open
source and commercial).

Fig. 7.4 OPM example in Neo4j.

1 http://sourceforge.net/projects/proost/

http://sourceforge.net/projects/proost/
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Modelling OPM using Neo4j is described in more detail in [23]. Fig. 7.4 shows
the previous example (from Fig. 7.3) modelled as an OPM graph. Each element
is represented by a node (vertex) in the database. Nodes are indexed according to
the Neo4j standard. The nodes can be annotated with further (OPM specific) infor-
mation, such as “process” or “artifact”. Analogously, also the edges connecting the
nodes are indexed and annotated with a label (the OPM relationship).

7.2.2.2 Query Language: Gremlin

“Gremlin is a graph traversal language” [1]. Gremlin already provides an interface
to interact with the Neo4j graph database. The following example shows its use for
querying Neo4j on the example database, searching for the names (identifiers) of all
discoveries of a certain scientistX:

$_g := neo4j:open(’database’)
$scientists := g:key($_g, ’type’, ’scientist’)
$scientistX := g:key($scientists, ’identifier’, ’scientistX’)
$discoveries := $scientistX/inE/inV[@identifier’]

7.3 Distributed, Scientific Data Management

The previous sections have discussed the technical means to manage data on the user
side (DataFinder) and to store and query the provenance information. As indicated,
DataFinder can handle a variety of different data storage servers. However, to store
data and its associated meta-data on the same system, and to take full advantage of
Grid technologies for cross-organisational federated access, a suitable data storage
service has to be chosen. For the example use case of the team of biologists, fed-
erated access management (e. g. through Shibboleth2) and integration with further
Grid-based resources would be desired (e. g. for resources to compute on sequenced
genome data).

An electronic laboratory notebook system is a data management system, only
with the particular needs towards managing the experimental and laboratory relevant
data in a suitable fashion. This can generally be accomplished by tweaking a generic
storage system for data and (extensive) associated meta-data towards the use case
for supporting good laboratory practice. This section therefore mainly raises the
questions towards the use of such storage systems in Grid-based environments.

Various ways are possible to envision for making relevant data available to re-
searchers in distributed teams. Commonly encountered mechanisms in such (Grid)
research environments are based on top of GridFTP (the “classic” Grid data proto-
col) or WebDAV (extension to the HTTP protocol). In some environments more full
featured infrastructures, like iRODS3 have been deployed. One such environment
is the New Zealand based “Data Fabric” – as implemented for the New Zealand
eScience Infrastructure (during the recently concluded BeSTGRID project). iRODS

2 http://shibboleth.internet2.edu/
3 http://www.irods.org/

http://shibboleth.internet2.edu/
http://www.irods.org/
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offers data replication over multiple geographically distributed storage locations,
with one centralised meta-data catalogue. Its data is exposed through the iRODS
native tools and libraries, as well as through WebDAV (using Davis4), a web-based
front-end and GridFTP (through the Griffin GridFTP server [24, 25] with an iRODS
back-end using Jargon5).

7.3.1 Integration of Existing Storage Servers

We are discussing data integration solutions according to the above mentioned sce-
nario of the New Zealand Data Fabric. From this, slight variations of the setup can
be easily extrapolated.

Three obvious possibilities exist to use this type of infrastructure for provenance
enabled data management and/or as a laboratory notebook system for distributed
environments. For all these, users need to be managed and mapped between multiple
systems, as iRODS introduces its own mandatory user management. This may only
be required for the storage layer, but it does introduce a redundancy. The options are
discussed in the following paragraphs.

The easiest, and directly usable, way is to integrate this Grid Data Fabric as an
external WebDAV data store, using the existing persistence module. Even though
WebDAV is a comprehensive storage solution for the DataFinder for data and meta-
data, this service layer on top of iRODS does not permit the required WebDAV
protocol means to access the meta-data. An additional meta-data server is required,
and therefore potentially multiple incompatible and separate sets meta-data may
exist for the same data item stored. Unfortunately this WebDAV service does not
use the full common Grid credentials for access, but is limited to MyProxy6 based
authentication as a work around.

As the next step up, DataFinder can be equipped with a GridFTP back-end in its
persistence layer. Such a module was already available for a previous version (1.3)
of DataFinder, and only requires some porting effort for the current (2.x) series.
Again, GridFTP is only able to access the payload data, and is not capable to access
any relevant meta-data, resulting in the need of an additional and separate meta-data
service. An advantage is that this solution uses the common Grid credentials for
authentication.

Lastly, the development of a native iRODS storage back-end based on the
txIRODS Python bindings7 is a possibility. This solution could also use the iRODS
meta-data capabilities for native storage on top of the payload data storage. Unfor-
tunately, this last solution also requires the use of the native iRODS user credentials

4 WebDAV-iRODS/SRB gateway:
http://projects.arcs.org.au/trac/davis/

5 https://www.irods.org/index.php/Jargon
6 Software for managing X.509 Public Key Infrastructure (PKI) security credentials:
http://grid.ncsa.illinois.edu/myproxy/

7 http://code.arcs.org.au/gitorious/txirods

http://projects.arcs.org.au/trac/davis/
https://www.irods.org/index.php/Jargon
http://grid.ncsa.illinois.edu/myproxy/
http://code.arcs.org.au/gitorious/txirods
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for accessing the repository, as it is completely incompatible to any of the common
Grid authentication procedures.

The above mentioned scenarios can be freely modified, particularly the first two
regarding their underlying storage infrastructure. One could deploy other storage
systems that expose access using WebDAV or GridFTP as service front ends for
simplicity, potentially sacrificing any of the other desired features of iRODS like
cross-site replication.

When sketching out a potential deployment, the above mentioned scenarios did
not strike us as being particularly nice to implement or manage. Several shortcom-
ings were quite obvious. Firstly, the central meta-data catalogue, which can turn
out to be a bottle neck. Particularly meta-data heavy scenarios requiring extensive
queries on meta-data would suffer due to increased latencies. Secondly, the iRODS
system provides a multitude of features, which make the system implementation as
well as its deployment at times quite convoluted. A simpler, more straight forward
system is often preferred. Lastly, multiple user management systems can be an issue,
particularly if this includes the burden of mapping between, particularly if they are
based on different concepts. Grid user management is conceptually based on cross-
organisational federation, including virtual organisations (VOs) and delegation us-
ing proxy certificates, which cannot be neatly projected to other user concepts as
employed by iRODS.

7.3.2 Designing an Alternative Storage Concept – MataNui

The idea for an alternative storage solution came up, which is simpler and a better
“Grid citizen.” For performant storage of many or large files inclusive meta-data,
the NoSQL database MongoDB with its driver side file system implementation
“GridFS” seemed like a good choice. A big advantage of this storage concept is,
that MongoDB can perform sharding (horizontal partitioning) and replication (de-
centralised storage with cross-site synchronisation) “out of the box.” Therefore, the
only concerns to target were to provide suitable service front-ends to the storage
sub-system, to offer the capabilities for the required protocols and interfaces to the
DataFinder. This means that research teams can opt for running local server in-
stances (alternatively to accessing a remote server) for an increase in performance
as well as decrease in latencies. This local storage sub-system also increases data
storage redundancy, which leads to a better fault protection in cases of server or
networking problems. Each storage server individually can be exposed through dif-
ferent service front-ends, reducing bottle necks. These service front-ends can be
deployed in a site specific manner, reducing the number of server instances to those
required for a site.

This distributed storage concept for data and meta-data, complimented by
individual front-end services in a building block fashion, has been dubbed
“MataNui” [10]. The MataNui server [9] itself provides full access to all content,
including server side query capability and protection through native Grid (proxy)
certificate authentication (X.509 certificates). As the authentication is based on
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native Grid means, it is obvious to base the user management on Grid identities
as well, the distinguished names (DN) of the users. MataNui is based on a REST
principle based Web Service (using JSON encoding), and is therefore easy to access
through client side implementations.

Exposing further server side protocols is done by deploying generic servers, that
have been equipped with a storage back-end accessing the MataNui data structures
hosted in the MongoDB/GridFS containers. It was relatively simple to implement
the GridFTP protocol server on the basis of the free and open Griffin [24, 25] server.
A first beta development level GridFS back-end is already part of the Griffin code
base. Possibly later a WebDAV front end is going to be implemented, equipping one
of the quite full featured Catacomb8 or LimeStone9 servers with a GridFS back-end
for data and meta-data. Such servers then could also be used to access (and query)
the meta-data through the WebDAV protocol, if the storage back-end supports this.
Lastly, it is even possible to use a file system driver to mount a remote GridFS into
the local Linux/UNIX system. However, access control to the content is provided
through the services on top of the MongoDB/GridFS server. Therefore, this will
likely circumvent any protective mechanisms. A better solution would be to mount
a WebDAV exposed service into a local machine’s file system hierarchy.

Access through protocols as GridFTP and WebDAV is quite straight forward
through various existing clients in day-to-day use within the eResearch communi-
ties. This is different with the MataNui RESTful service. As outlined in Sect. 7.3.1
already, the DataFinder can be quite easily extended towards providing further per-
sistence back-ends, like a potential iRODS back-end. In a similar fashion a MataNui
REST service client back-end can be implemented. The big difference being, that it
does not require any external modules that are not well maintained. It can mainly be
based on the already available standard library for HTTP(S) server access, with the
addition of suitable cryptography provider for extended X.509 certificate manage-
ment. This can be done either by simply wrapping the OpenSSL command line tool
or by using one of the mature and well maintained libraries such as pyOpenSSL.10

This modularity of service front-ends leaves administrators the option to set up
sites with exactly the features required locally. However, in a global perspective,
MataNui enables a new perspective on the functionality of a data fabric for eRe-
search. Fig. 7.5 provides a conceptual overview of how such a distributed data
repository can be structured. Every storage site requires an instance of MongoDB
with GridFS. These are linked with each other into a replication set (with optional
sharding). The storage servers for the different sites expose the repository through
one or more locally hosted services, such as the MataNui RESTful Web Service,
a GridFTP server, etc. These services can be accessed by clients suitably equipped
for the particular service. Clients, such as the DataFinder, may require an addi-
tional implementation for a particular persistence back-end. Some of these clients
(e. g. DataFinder or a WebDAV client) may be equipped to take advantage of the full
meta-data capabilities of the data fabric, whereas others (e. g. GridFTP or file system

8 http://catacomb.tigris.org/
9 https://github.com/tolsen/limestone

10 https://launchpad.net/pyopenssl

http://catacomb.tigris.org/
https://github.com/tolsen/limestone
https://launchpad.net/pyopenssl
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Fig. 7.5 Conceptual links between components in a Grid-based data fabric to support re-
searchers in distributed environments. The system provides for decentralised access to geo-
graphically distributed data repositories, while enabling administrators to only expose local
storage through service front-ends as required.

mounted WebDAV) may only access the data content along with some rudimentary
system meta-data (time stamp, size, etc.).

In a scenario like this data and its meta-data can be managed in the distributed
environment through DataFinder. Seamless integration when working with other
Grid resources is unproblematic: All systems share the same type of credentials, and
data can be transferred between Grid systems directly through GridFTP without the
need of being routed through the user’s workstation.

7.4 Results

The following describes the application of the previously discussed technologies to
implement the provenance enabled electronic laboratory notebook. For this also the
data management system DataFinder requires customisation (through Python script
extensions) to suit the users’ needs. It is enhanced with features to trace documen-
tation.

First the development of the provenance model for good laboratory practice by
means of the PrIMe methodology is described in Sect. 7.4.1. Required modifications
applied in the DataFinder code are outlined in Sect. 7.4.2. Sect. 7.4.3 evaluates the
integration of DataFinder for the purpose of use as an electronic laboratory notebook
in a final system. More information on this evaluation can be found in [16]. Lastly,
Sect. 7.4.4 gives an outlook on improving DataFinder in its role as an electronic
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laboratory notebook, as well as on deploying such an infrastructure fully to Grid
environments.

7.4.1 Developing a Provenance Model for Good Laboratory
Practice

Munroe et al. [15] developed the PrIMe methodology to identify parameters for
“provenance enabling” applications. These parameters then can be used to answer
provenance questions. A provenance question usually identifies a scenario, in which
provenance information is needed. Questions relevant for the analysis, are for ex-
ample: “Who inserted data item X?”, “What data items belong to a report X?” and
“ What is the logical successor of data item X?”.

This approach was modified (in [23]), as it used the older p-assertion protocol
(p. 15 in [23] and p. 2 in [15]) instead of the now more common Open Provenance
Model (OPM) [13]. The p-assertion protocol is similar in use to OPM, so the ap-
proach can easily be adapted. The following list describes the three phases of the
adapted PrIMe version in correspondence to the PrIMe structure from Fig. 7.6:

Fig. 7.6 Structure of PrIMe approach [15].
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Phase 1: “In phase 1 of PrIMe, the kinds of provenance related questions to be
answered about the application must be identified” [15] (p. 7). First, provenance
questions are determined. Then, corresponding data items/artifacts that are rele-
vant to the the answer, are investigated.

Phase 2: Sub-processes, actors and interactions are identified in phase 2. The sub-
processes are part of the adaptation (Step 2.1). Actors generate data items or
control the process. Relations between sub-processes and data items are defined
as interactions (Step 2.2). Actors, processes and interactions are modeled with
OPM.

Phase 3: The last phase finally adapts a system to the provenance model. In this
phase, the provenance store is populated with information from the application.
In the discussed scenario, this is accomplished via REST requests to the storing
system.

Some exemplary questions that could be relevant in the sample use case have
already been given in Sect. 7.1.1. After analysing the questions, participating pro-
cesses need to be identified. A scientific experiment for which documentation is
provided can be divided into five sub-processes:

1. Preparation of the experiment, generating a study plan.
2. Execution of the experiment according to a study plan, generating raw data.
3. Evaluation of raw data, making them processable for interpretation.
4. Interpretation of data, publishing it or processing the data further.
5. Preservation of the data according to regularities.

The very generic nature of these sub-processes is mandated by the OECD prin-
ciples of good laboratory practice [8]. Obviously, researchers can augment each of
these with further internal sub-processes as required by the project or studies under-
taken.

These sub-processes are modeled with the Open Provenance Model (OPM).
Fig. 7.7 shows the model in OPM notation for good laboratory practice. The five
rectangles in the figure symbolise the above mentioned sub-processes. Data item-
s/artifacts are indicated by circles: These are managed by the DataFinder. Lastly, the
octagons represent the actors controlling the processes.

Provenance information is gathered in the data management system on data im-
port and modification. Then – according to the provenance model – this information
is sent to a provenance storage system (as described in Sect. 7.2).

7.4.2 Adjustments for Good Laboratory Practice in the
DataFinder

To use the DataFinder as a supportive tool for good laboratory practice, a new data
model and Python extensions were developed. The main part of the data model is
presented in Fig. 7.8.
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Fig. 7.7 OPM for scientific experiment documentation.

The model is derived through requirements analysis in [8]. It divides the data
into the five major categories according to Sect. 7.4.1: Preparation, execution, eval-
uation, interpretation and archiving. All experiments pass through theses categories
in their five processes. Each process needs or generates different types of data. Data
is aggregated in (nested) collections, the data repository equivalent of directories
in a file system. Collections representing these processes aggregate data items be-
longing to that process. Each collection or element can mandate attached meta-data
(such as type or dates). The data model also provides structural elements at a higher
level of the hierarchy to differentiate between different studies and experiments. Pro-
cesses and data items are reflecting the model structure in Fig. 7.7. The DataFinder
repository structure is defined through its underlying data model11 (implemented
according to the OPM model).

In the screen shot of Fig. 7.1 at the beginning of this chapter, a user is connected
to a shared repository (left side) operating on the described data model. The user
now is required to organise data accumulated according to this model. For example,

11 The complete data model is described in XML and available on
https://wiki.sistec.dlr.de/ DataFinderOpenSource/
LaboratoryNotebook

https://wiki.sistec.dlr.de/ DataFinderOpenSource/ LaboratoryNotebook
https://wiki.sistec.dlr.de/ DataFinderOpenSource/ LaboratoryNotebook
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Fig. 7.8 Laboratory notebook data model used for the DataFinder.

a new collection of manuals may only be created within a parent collection of the
“preparation” type. A “preparation” collection can then be either part of a “study”
or “experiment.”

Three further extensions to DataFinder have been developed. They are needed to
support good laboratory practice in DataFinder:

• The most important extension is an observer mechanism, listening on import
events into the DataFinder. Upon the import of a new document, it reacts by
prompting with a dialog asking for input items within the system that have in-
fluenced the data item/artifact. After analysing the corresponding process, the
information is recorded in the provenance store.
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• A second extension supports evidential archiving. For this the user can send an
archive to an archiving service, to analyses the credibility of the archive.12 To
provide sufficient information, the user can activate a specific script extension,
which generates an archive composed of information relevant to the data from
information in the provenance store. The user selects a study report, and the
provenance store is queried for all data items influencing the report for each step.

• Lastly, a digital signing mechanism was implemented through an extension, aim-
ing at increasing credibility of data items through non-repudiation.

7.4.3 Integration Evaluation of an Electronic Laboratory
Notebook

Tab. 7.1 evaluates the DataFinder concepts on the requirements defined in Chap. 3.1
of [16]. It explains how each requirement is integrated into the DataFinder system.13

The table shows that almost all requirements are either already currently met, are
implemented through extensions as described here, or otherwise currently imple-
mented. As a result, DataFinder can be used as laboratory notebook, supporting the
concepts of good laboratory practice, and is therefore supportive to scientific work-
ing methods.

7.4.4 Outlook: Improving DataFinder-Based Laboratory
Notebook

Of course the systems discussed in this chapter themselves are still research in
progress and under constant development. On the one hand we can already envision
a list of laboratory notebook features for desired improvements. On the other hand,
this DataFinder-based laboratory notebook can be deployed to Grid environments.

7.4.4.1 Improving Laboratory Notebook Features

After the implementation, the next step is to deploy and integrate the system not only
as a data management system, but as laboratory notebook to suit the needs of differ-
ent organisations. For every deployment, customisation through automation scripts
and specialised GUI dialogues need to be performed. Particularly for the purpose of
electronic laboratory notebooks, some generic and easy integrated note editor wid-
get would be much appreciable for free form note taking (instead of using external
editors and importing the resulting data files). One a much more specialised level the
following future features are considered to be beneficial to further improve the lab-
oratory notebook functionality of DataFinder, and therefore meet the requirements
of other deployment scenarios:

12 This is not further discussed, because it is a separate project in Germany.
13 The table and its description is adapted from [16]
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Table 7.1 Implementation of the laboratory notebook requirements into the DataFinder

Requirement Implemented? Details

• Chain of events yes
with extensions
described here

provenance for modeling the use case
and storing the information

• Durability yes with extension from this application,
but also through former solutions

• Immediate
documentation

under development a web portal is implemented

• Genuineness yes
customisation issue

combination of work flow integration
in the DataFinder and the provenance
service

• Protocol style yes
original

can be added as files to the system

• Short notes yes
original

as extra files or meta data to a data item

• Verifying results yes (rudimentary) signing concept and implementation as
extension

• Accessibility yes
original

open source software

• Collaboration yes
original

same shared repository for each user,
with similar information

• Device integration yes
customisation issue

integration via script API

• Enabling
environmental
specialisation

yes
customisation issue

can be customised with scripts and data
model

• Flexible Infrastructure yes
original

client: platform independent Python
application server;
meta data: WebDAV or SVN
(extensible);
data: several (extensible)

• Individual Sorting partly
under development

customising the view of the
repositories is possible (but saving the
settings is in planning)

• Rights/privilege
management

yes
under construction

the server supports it on the client side,
the integration into DataFinder is
currently developed

• Variety of data formats yes
original

any data format can be integrated,
opening them depends on the users
system

• Searchability yes
original

full text and meta data search

• Versioning yes SVN as storage back-end is developed
to enable versioned meta data and data
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Mobile version of DataFinder: A mobile version of the data management system
client could ease the scientist’s documentation efforts when working on-site,
away from the established (office, lab) environment. This way the scientist could
augment data items through notes or add/edit meta-data and data on-the-fly. Re-
quirement of immediate documentation could be met through this extension.

Automatic generation of reports: For many project leaders it is interesting or im-
portant to be kept up-to-date on the current status of a project or what their team
members are currently doing. For this they can currently only access the data
directly. A feature summarising current reports and gives an intermediate report,
could simplify the check up. This feature was found in the evaluated laboratory
notebook mbllab [2].

Integrated standard procedures: In GLP, a standard procedures defines workflows
for specific machines. In the laboratory notebook mbllab [2] these are integrated
and give the user a guideline for actions.

More elaborate signing and documenting features: Scientists discuss results of
colleagues. For more collaborative work situations, DataFinder needs to be en-
hanced with better features for user interactions. On the one hand a discussion/-
commenting mechanism on data items could be supported, on the other hand a
scientist can sign data and leave some kind of digital identity card. This could
be used to reference a list of other items signed or projects worked on. In the
evaluated laboratory software NoteBookMaker [4], a witness principle with li-
brary card is integrated. Each notebook page contains an area, where a scientist
can witness (authenticate) an entry. After witnessing the data, the information
of the witnessing person’s identity is displayed on the corresponding page. This
witnessing information is then connected to a library card listing personal infor-
mation and projects.

A graphical representation: A graphical representation of the provenance infor-
mation on the server or in the DataFinder can help to make provenance informa-
tion visually more accessible. This integration of provenance data in DataFinder
assists a user in understanding correlations between items.

Configuration options: Selecting a specific provenance or archiving system
should be possible. This could be handled through a new option in the data store’s
configuration. Additionally a dialog prompting for this information needs to be
implemented.

7.4.4.2 Migrating the Laboratory Notebook to the Grid

Sect. 7.3.2 already explains how a data management system suitable for the Grid can
be constructed. The laboratory notebook system is “resting” on top of that particu-
lar data storage system, under support of a provenance store to enable provenance
enabled working schemes. Therefore, the two aspects of an underlying Grid-based
data storage system and of a Grid-enabled provenance store need to be discussed.

While MongoDB with GridFS is a mature product ready to deploy, the overlaying
service infrastructure for a Grid-enabled data service is not quite as matured. Cur-
rently the Griffin GridFTP server [25] is in productive deployment both in the Aus-
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tralian as well as the New Zealand eScience infrastructures. However the GridFS
storage back-end already works, but is still only available in a beta version and needs
a little further completion and testing. The situation is similar with the MataNui
RESTful Web Service front end, which still needs implementation of further query
functionality. Current tests of the two systems have showed that throughput bottle
necks to both services currently seems mostly limited by the throughput of the un-
derlying disk (RAID) storage system or network interface (giga-bit ethernet), while
the database and service layer implementation is easily holding up even on a mod-
erately equipped system (CPU and memory).

To access this MataNui infrastructure with the DataFinder at least one of two
things still has to be implemented: The GridFTP data store back-end needs to be
ported from the 1.x line of DataFinder versions, or a MataNui data store back-end
needs to be implemented for the current version. For best results preferably the lat-
ter has got priority on the list of further implementations to reach this goal. Due to
the nature of the service as well as the persistence abstraction in the 2.x DataFinder
versions, this should be relatively straight forward. This enables DataFinder to com-
pletely retire WebDAV or Subversion as a centralised data server for data content as
well as meta-data, relocating this information completely onto a Grid infrastructure.

In such a setup, DataFinder accesses the MataNui service natively, while all man-
aged (payload) data can be accessed through GridFTP (Griffin server) for the pur-
pose of compatibility with other Grid environments. This supports common usage
for example using file staging for Grid job submission. Storage server side repli-
cation ensures seamless usage in geographically distributed research teams while
retaining high throughput and low latencies through the geographically closest stor-
age server.

The provenance store prOOst currently does not yet support access of its REST
service through Grid authenticated means. Once this is implemented for the newly
releases provenance store, every required service for a Grid-enabled data service
with provenance capabilities, can be accessed using the same credentials and com-
mon Grid access protocols.

7.5 Conclusion

This chapter sketches a scenario of using provenance tracking with DataFinder to
support good laboratory practice and to track relations between stored documents.
In this scenario DataFinder is used in a distributed system together with a central
provenance store. This makes it possible to access and update data from virtually
anywhere with a network connection, while keeping track of all interactions with
data items through recorded provenance information at any time. When implement-
ing the laboratory notebook, stored provenance information can be queried to enable
the extraction of additional valuable meta-data information on data items. As a re-
sult, provenance is successfully used to trace typical scientific workflows compris-
ing of preparation, execution, evaluation, interpretation and archiving of research
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data. The reliability – and therefore credibility – of research results is increased,
and assistance to help understand involved processes is provided for the researcher.

Such a system can be implemented on top of a Grid data infrastructure, as the
described MataNui system. The MataNui service is mostly functioning already, but
still needs integration into DataFinder as a full-featured storage back-end for data as
well as meta-data. Additionally, it is already possible to expose the data repository to
Grid environments directly using the GridFTP protocol. GridFTP is commonly used
for scripts, automation and compatibility with other Grid enabled tools. The overall
MataNui concept has been designed to be capable of handling files large in number
and size, as well as manage arbitrary amounts of meta-data associated with each data
item. It is usable in distributed projects with a self-replicating, federated data infras-
tructure. This federation can drastically improve data access latency and throughput
by connecting to a geographically close service. Through support for server side
queries, meta-data searches can be processed very efficiently by avoiding transfers
of potentially large numbers of data sets to a client. Lastly, the implementation of
MataNui has been undertaken with the vision of it being robust as well as easy to
deploy and use.

References

1. Gremlin graph traversal language Web Site,
https://github.com/tinkerpop/gremlin/wiki

2. mbllab–Das elektronische Laborbuch,
http://elektronisches-laborbuch.de/

3. Neo4j Graph Database Web Site, http://neo4j.org/
4. Note Book Maker for PC and Mac, The World Leader in Virtual NoteBooks,

http://www.notebookmaker.com
5. Buneman, P., Khanna, S., Tan, W.C.: Why and Where: A Characterization of Data Prove-

nance. Tech. rep., University of Pennsylvania (2001),
http://repository.upenn.edu/cis_papers/210/

6. Groth, P., Miles, S., Tan, V., Moreau, L.: Architecture for Provenance Systems (2005),
http://eprints.ecs.soton.ac.uk/11310/

7. Holland, D.A., Braun, U., Maclean, D., Muniswamy-Reddy, K.K., Seltzer, M.I.: Choos-
ing a Data Model and Query Language for Provenance. In: Proceedings of the 4th Inter-
national Provenance and Annotation Workshop, IPAW (2008), doi:10.1.1.152.3820

8. Inter-Organization Programme for the Sound Management of Chemicals (IOMC): No
1: OECD Principles on Good Laboratory Practice (1998), http://www.oecd.org/
document/63/0,2340,en 2649 34381 2346175 1 1 1 37465,00.html

9. Kloss, G.K.: MataNui Project, http://launchpad.net/matanui (last accessed
June 2011)

10. Kloss, G.K.: MataNui – Building a Grid Data Infrastructure that “doesn’t suck!”. In:
Proceedings of the 1st New Zealand eResearch Symposium, Auckland, New Zealand
(2010)

11. Merriam Webster, I. (ed.): Merriam-Webster Online Dictionary. Merriam-Webster, In-
corporated (2010)

12. Moreau, L.: The Foundations for Provenance on the Web. Foundations and Trends in
Web Science 2(2-3), 99–241 (2010),
http://eprints.ecs.soton.ac.uk/21691/

https://github.com/tinkerpop/gremlin/wiki
http://elektronisches-laborbuch.de/
http://neo4j.org/
http://www.notebookmaker.com
http://repository.upenn.edu/cis_papers/210/
http://eprints.ecs.soton.ac.uk/11310/
http://www.oecd.org/document/63/0,2340,en_2649_34381_2346175_1_1_1_37465,00.html
http://www.oecd.org/document/63/0,2340,en_2649_34381_2346175_1_1_1_37465,00.html
http://launchpad.net/matanui
http://eprints.ecs.soton.ac.uk/21691/


180 M. Ney, G.K. Kloss and A. Schreiber

13. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Bussche, J.V.:
The Open Provenance Model core specification (v1.1). Future Generation Computer Sys-
tems 27(6), 743–756 (2010), http://openprovenance.org/,
doi:10.1016/j.future.2010.07.005

14. Moreau, L., Clifford, B., Freire, J., Gil, Y., Groth, P., Futrelle, J., Kwasnikowska, N.,
Miles, S., Missier, P., Myers, J., Simmhan, Y., Stephan, E., den Bussche, J.V.: The
Open Provenance Model—Core Specification (v1.1). Future Generation Computer Sys-
tems 27, 743–756 (2010), http://eprints.ecs.soton.ac.uk/21449/,
doi:10.1016/j.future.2010.07.005

15. Munroe, S., Miles, S., Groth, P., Jiang, S., Tan, V., Moreau, L., Ibbotson, J., Vazquez-
Salceda, J.: PrIMe: A Methodology for Developing Provenance-Aware Applications.
Tech. rep., Grid-Provenance Project, Southampton, UK (2006),
http://eprints.ecs.soton.ac.uk/13215/

16. Ney, M.: Enabling a data management system to support the good laboratory practice.
Master’s thesis, Free University of Berlin (2011),
https://wiki.sistec.dlr.de/DataFinderOpenSource/
LaboratoryNotebook

17. Schlauch, T., Schreiber, A.: DataFinder – A Scientific Data Management Solution. In:
Proceedings of Symposium for Ensuring Long-Term Preservation and Adding Value to
Scientific and Technical Data 2007 (PV), Oberpfaffenhofen, Germany (2007)

18. Simmhan, Y., Groth, P., Moreau, L.: Special Section: The third provenance challenge
on using the open provenance model for interoperability. Future Generation Com-
puter Systems 27(6), 737–742 (2011), http://www.sciencedirect.com/
science/article/pii/S0167739X100%02402,
doi:10.1016/j.future.2010.11.020

19. Simmhan, Y.L., Plale, B., Gannon, D.: A Survey of Data Provenance Techniques. Tech.
rep., Computer Science Department, Indiana University, Bloomington, IN, USA (2005),
doi:10.1.1.70.6294

20. The Data Finder Team: DataFinder Project,
http://launchpad.net/datafinder (last accessed June 2011)

21. Tylissanakis, G., Cotronis, Y.: Data Provenance and Reproducibility in Grid Based Sci-
entific Workflows. In: Workshops at the Grid and Pervasive Computing Conference, pp.
42–49 (2009), doi:10.1109/GPC.2009.16

22. Wehmeier, S. (ed.): Oxford Advanced Learners Dictionary, 6th edn. Oxford University
Press (2000)

23. Wendel, H.: Using Provenance to Trace Software Development Processes. Master’s the-
sis, University of Bonn, Bonn, Germany (2010), http://elib.dlr.de/64835/

24. Zhang, S., Coddington, P., Wendelborn, A.: Connecting arbitrary data resources to the
Grid. In: Proceedings of the 11th International Conference on Grid Computing (Grid
2010). ACM/IEEE, Brussels (2010)

25. Zhang, S., Kloss, G.K., Behnke, L.: Griffin Project (2011),
https://projects.arcs.org.au/trac/griffin
(last accessed March 2011)

http://openprovenance.org/
http://eprints.ecs.soton.ac.uk/21449/
http://eprints.ecs.soton.ac.uk/13215/
https://wiki.sistec.dlr.de/DataFinderOpenSource/LaboratoryNotebook
https://wiki.sistec.dlr.de/DataFinderOpenSource/LaboratoryNotebook
http://www.sciencedirect.com/science/article/pii/S0167739X100%02402
http://www.sciencedirect.com/science/article/pii/S0167739X100%02402
http://launchpad.net/datafinder
http://elib.dlr.de/64835/
https://projects.arcs.org.au/trac/griffin


Author Index

Aktas, Mehmet S. 59

Biem, Alain 129

Chen, Shiping 109
Curcin, Vasa 3

Danger, Roxana 3

Elmegreen, Bruce 129
Ensor, Andrew 129

Gehani, Ashish 85
Gulyaev, Sergei 129

Kloss, Guy K. 157
Kuchinke, Wolfgang 3

Leake, David 59
Levy, David 109
Liu, Qing 109
Ludwig, Simone A. 35

Mahmoud, Mahmoud S. 129
Malik, Tanu 85
Miles, Simon 3
Mukhi, Nirmal K. 59

Naseri, Mahsa 35
Ney, Miriam 157

Ohmann, Christian 3

Plale, Beth 59

Schreiber, Andreas 157

Tariq, Dawood 85
Taweel, Adel 3

Wang, Chen 109

Yao, Jinhui 109

Zaffar, Fareed 85
Zhang, Jingyu 109


	Title
	Preface
	Contents
	Part I Provenance in eScience: Representation and Use
	Provenance Model for Randomized Controlled Trials
	Introduction
	Process Flow of Clinical Trials
	Trial Planning and Development
	Conduct of the Clinical Trial Process (Trial Management)
	Trial Ending
	Trial Metadata Analysis
	ICH GCP and Other Models

	Provenance
	Provenance in Healthcare
	Open Provenance Model
	Profiles

	OPM RCT Profile Proposal
	RCT Controlled Vocabulary
	Profile Expansion Rules
	Examples

	Storage and Analysis of Provenance Data
	Summary
	References

	Evaluating Workflow Trust Using Hidden Markov Modeling and Provenance Data
	Introduction
	Motivation and Requirements
	Architecture
	Hidden Markov Modeling for the Evaluation ofWorkflow Trust
	Methodology
	Trust Model Assessment
	Cases with Dynamic or Parallel Sections

	Implementation
	Verification of the Model

	Case Study
	Investigation of the Stationary Assumption

	Conclusion and Future Work
	References

	Unmanaged Workflows: Their Provenance and Use
	Introduction
	Provenance Creation
	Overview
	Application in the Karma Tool

	Provenance Representation
	Representation in Karma

	Provenance Use
	Using Provenance to Aid Workflow Construction
	Using Data Provenance Traces to Reconstruct Process Traces 
	Using Provenance for Analysis of Workflow Traces

	RelatedWork
	Current and Future Challenges
	References


	Part II Data Provenance and Data Management Systems
	Sketching Distributed Data Provenance
	Introduction
	RelatedWork
	Tracking System-Level Provenance with SPADE
	Intra-host Dependencies
	Inter-host Dependencies

	Querying Provenance
	Provenance Sketches
	Matrix Filter
	SPADE’s Use of Matrix Filters

	Experimental Results
	Reduction in Network Latency
	Sketch Robustness

	Conclusion
	References

	A Mobile Cloud with Trusted Data Provenance Services for Bioinformatics Research
	Introduction
	The Application Scenario
	A Mobile Cloud System for Bioinformatics Research
	Overall Architecture of the Mobile Cloud
	Workflow Design through Abstract Description Script

	Accountability for Trusted Data Provenance
	Accountability for Trustworthiness
	Logging Provenance Data at Trusted Provenance Unit
	Architectural Design of Trusted Provenance Unit

	Prototype Implementation
	RelatedWork
	Conclusions and Future Work
	References

	Data Provenance and Management in Radio Astronomy: A Stream Computing Approach
	Introduction
	IBM InfoSphere Streams and the Stream-Computing Paradigm
	InfoSphere Streams Terminology and Concepts
	Data Streaming Applications with SPADE
	Deploying SPADE Applications and Performance Optimization

	Utilizing InfoSphere Streams to Address Large Antennae Array Software Architecture
	Data Provenance and Management Capabilities
	Some Applications of Streams in Radio Astronomy
	Implementing a Stream-Centric Autocorrelation DataPipeline & Utilizing Hardware Accelerators
	Autocorrelation and the Power Spectral Density in Radio Astronomy
	Implementing a PSD Pipeline as a Stream Based Application
	Using Accelerators (Heterogeneous Computing)
	Testing the SPADE PSD Application
	Performance and Scalability


	Conclusion
	Appendix
	References

	Using Provenance to Support Good Laboratory Practice in Grid Environments
	Introduction
	A Sample Use Case
	Data Management with the DataFinder
	Overview

	Provenance Management
	OPM – Open Provenance Model
	Provenance Storage with prOOst

	Distributed, Scientific Data Management
	Integration of Existing Storage Servers
	Designing an Alternative Storage Concept – MataNui

	Results
	Developing a Provenance Model for Good Laboratory Practice
	Adjustments for Good Laboratory Practice in the DataFinder
	Integration Evaluation of an Electronic Laboratory Notebook
	Outlook: Improving DataFinder-Based Laboratory Notebook

	Conclusion
	References


	Author Index



