
Operational Semantics for SPARQL Update

Ross Horne, Vladimiro Sassone, and Nicholas Gibbins

Electronics and Computer Science
University of Southampton, UK

{rjh06r,vs,nmg}@ecs.soton.ac.uk

Abstract. Concurrent fine grained updates are essential for using RDF stores in
dynamic modern Web applications, where users increasingly contribute content
as often as they read content. SPARQL Update is a language proposed by the
W3C for fine grained updates for RDF stores. In this work we propose an opera-
tional semantics for an update language for RDF, which models core features of
SPARQL Update. Firstly, an abstract syntax for RDF and updates is presented.
Secondly, the operational semantics is defined using relations over the abstract
syntax. The operational semantics specifies all possible operational behaviours
of updates in the presence of an RDF store. The specification is useful as a com-
mon reference for compiler engineers and as a foundation for the static analysis
of updates.

1 Introduction

An open problem is to provide an operational semantics for the W3C SPARQL Up-
date working draft [9]. SPARQL Update is a development of an earlier proposal from
Hewlett-Packard Labs [18]. The language is introduced to extend the SPARQL Query
language [17] to enable fine grained updates over an RDF store.

The recommended semantics for SPARQL Query are influenced by the work of Pérez
et al. [15], which provides a set-based denotational semantics for queries. In contrast,
the semantics presented here for updates are operational in nature. The difference be-
tween a denotational semantics and an operational semantics is that the former builds
an external model (typically a static set in which behaviours may exist), whereas the
later is defined directly over an abstract syntax for the language.

There are several advantages of operational semantics. An operational semantics
works like an interpreter, so is at an appropriate level for compiler engineering. Op-
erational semantics is also suited to ad-hoc features which appear in real programming
languages, which SPARQL Update intends to be. Furthermore, operational semantics
are suited to specifying the complex long term behaviour of systems, including concur-
rency as required by servers. Denotational semantics for both application driven ad-hoc
features and long term behaviour are notoriously difficult [1]. Thus, operational seman-
tics can easily and insightfully be adapted to queries [12]; but denotational semantics
do not extend easily to updates, since non-standard mathematics would be required.

Consider an analogy. All readers are familiar with the concept of a regular expres-
sion or use tools which involve regular expressions. For instance, the replace tool in
your text editor is appropriate for every day updates in text documents. This update

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 242–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Operational Semantics for SPARQL Update 243

language extends the power of regular expressions generalised appropriately to RDF
triples (instead of characters), with quantifiers to access URIs and literals in triples. For
the sake of clarity, here a core update language, rather than full SPARQL Update, is
presented where only the default RDF graph is updated. The model can be extended
to handle named graphs [6]. Also, the model can accommodate updates with respect to
entailments, such as those defined in RDFS [5].

In Section 2 further motivation is provided to emphasise the importance of an opera-
tional semantics for SPARQL Update. In Section 3 a syntax for RDF Data and Updates
is established. In Section 4 an equivalence is provided over RDF Data. This equiva-
lence defines when two pieces of RDF Data have the same meaning. In Section 5 the
behaviour of Updates is specified using a deductive system which derives relations over
the syntax. The relations indicate how some RDF Data is transformed by a Update into
some other RDF Data. Examples of each feature of Updates are provided along with
the rules of the operational semantics.

2 Background and Motivation

Before defining the operational semantics, some motivation is provided in this section.
The tradition of using operational semantics to specify programming languages is dis-
cussed, highlighting benefits offered to Web standards. A short sketch of the relationship
between this work and the draft specification is also provided, including a preview of
the abstract syntax.

2.1 A Case for an Operational Semantics for SPARQL Update

A structural approach to operational semantics was first introduced in a seminal note
by Plotkin [16]. At the time, the behaviour of languages tended to be specified using
a reference compiler. The correctness of an implementation of a language would be
verified by checking that its behaviour matched the behaviour of the reference com-
piler. Plotkin’s work introduced a methodology for precisely specifying the operational
behaviour of languages directly over an abstract syntax.

Web standards, such as SPARQL Update, require clear specifications of their be-
haviour. Structural operational semantics are designed precisely for this scenario. A
clear operational semantics can be concisely communicated in a document, which can
be used as a reference to ensure that all implementations of a standard have a common
operational behaviour. For this reason, an operational semantics for SPARQL Update is
a valuable contribution to the current standardisation process at the W3C [9].

An operational semantics for a language has further advantages. It allows clarity and
methodology when design decisions are considered. Furthermore, operational seman-
tics can be used as the basis for powerful techniques and tools for the language, such
as a static type checker or algebra for composition and optimisation of updates [12,11].
Such tools cannot be confidently developed without an operational semantics. Further-
more, the distinction between static and dynamic types is not evident until updates are
considered.

244 R. Horne, V. Sassone, and N. Gibbins

2.2 A Comparison of SPARQL Update to This Work

The intention of the update language introduced is to model the core of SPARQL Up-
date. A basic comparison between this update language and SPARQL Update is pro-
vided here.

The following example is adapted from the current working draft [9]. The update
deletes zero or more RDF triples where the literal "Bill" appears and inserts a triple
where "William" appears. The update can only occur if the subject of the triple is of
type person.

Concrete Update:

DELETE { ?person foaf:givenName "Bill" }

INSERT { ?person foaf:givenName "William" }

WHERE { ?person rdf:type foaf:Person }

The above update can be expressed in an abstract syntax as follows.
Abstract Update:

DO SELECT :person {
DELETE { :person foaf:givenName "Bill" }
INSERT { :person foaf:givenName "William" }
WHERE { :person rdf:type foaf:Person }
}

The abstract syntax above is more explicit than the concrete syntax. The select quantifier
explicitly indicates the scope of the bound variable. Also, the abstract syntax of the
update language explicitly indicates that the update may be applied zero or more times.
This makes the definition of the operational semantics cleaner.

3 A Concise Abstract Syntax

This section presents an abstract syntax used to define an operational semantics for
Updates. The abstract syntax is intended for the purpose of compiler engineering (as
opposed to defining an exchange format). Three generators are sufficient to specify this
abstract syntax: one for RDF Data; one for constraints; and a third for Updates.

3.1 Syntactic Conventions

The following namespace prefix bindings are used throughout this document.

dc: http://purl.org/dc/terms/

dc11: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/
eg: http://example.org/

Prefixes abbreviate URIs, for readability in examples. Curly brackets are used to resolve
ambiguity in examples.

http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://example.org/

Operational Semantics for SPARQL Update 245

3.2 A Syntax for RDF Data

The following grammar presents an abstract syntax for RDF. Several concrete syntaxes
have been proposed for RDF, such as Turtle and N3 for the purpose of tersely present-
ing RDF to humans [2,4]. In contrast, the following abstract syntax for RDF Data is
designed for compiler engineering.

object� "literal" a literal
| URI a URI
| ?variable a variable

Data� {} nothing
| {URI URI object } a triple
| Data , Data par
| BNODEURI Data blank node

Two forms of triple represent RDF triples, with either a URI or a literal as the object.
A variable indicates an unknown literal (for pattern matching in queries). Nothing rep-
resents the absence of any RDF triples. The operator ‘par’ composes RDF Data, thus
for instance two triples can be composed using par. The Blank node quantifier binds
a name which can only be refered to locally (as opposed to a URI which is a global
name). For elegance, the same syntax is used to name URIs and blank nodes; they are
distinguished only by quantifiers, which give local names scope. Many examples of
RDF Data are presented throughout this work.

3.3 A Syntax for Constraints

Constraints are defined fully in the SPARQL Query recommendation [17], hence only
an outline grammar for constraints is provided here. The following is enough to suggest
that constraints form a Boolean algebra with built in primitives. Constraints may contain
variables and URIs.

Constraint� true true
| false false
| Constraint && Constraint and
| Constraint || Constraint or
| !Constraint not
| regex(?variable,RegularExpression) regular expression
| . . . etc.

A constraint is satisfied if and only if it evaluates to true. The evaluation of constraints is
detailed in the SPARQL Query recommendation [17]. Examples of constraints include
regular expressions parametrised on a variable and inequality tests on numbers.

3.4 A Syntax for Updates

The following grammar proposes an abstract syntax for updates. The language is in-
spired by core features of SPARQL Update. A successful update results in an atomic
change to an RDF store. This abstract syntax allows constructs to be nested. Nesting is
useful for expressiveness and optimisation purposes.

246 R. Horne, V. Sassone, and N. Gibbins

Update� DELETEData delete a term
| INSERTData insert a term
| FILTERConstraint impose a constraint
| Update CHOOSE Update choose a branch
| Update JOIN Update synchronise updates
| SELECTURI Update select a URI
| SELECT?variable Update select a literal
| DOUpdate iteratively apply an update

Delete removes the indicated RDF Data from the store. Insert introduces some RDF
Data to the store. Filter imposes a constraint on an update. Choose offers the choice of
either a left or right update. Join ensures that two updates happen in the same atomic
update. Select parametrises an update on either a URI or a literal which is not known in
advance. (Note that in this abstract syntax, URIs and literals are distinguished in Selects
for clarity.) Iteration (DO) performs an update zero, one, two or more times, in the same
atomic update. Without iteration an update is applied once.

Examples of each construct are provided along with the operational semantics for
the construct in Section 5.

3.5 Abbreviations for Common Updates

A number of common updates can be defined using the basic updates above. The use
of abbreviations avoids redundancy in the operational semantics. Identifying redundant
operators is useful for compiler engineering, since the number of operators to imple-
ment directly is reduced.

An optional update gives the choice of performing an update or not performing an
update. The optional update can be defined by a choice between an update and the true
constraint which always holds, as follows. (This avoids a left outer join operator, which
is used to provide the semantics of ‘optional’ in SPARQL Query [15].)

OPTIONALUpdate � Update CHOOSE FILTERtrue optional update

Successive select queries are can be combined. The combined variables are listed in a
single select quantifier, as follows.

SELECT?variable0 ?variable1

Update
�
SELECT?variable0

SELECT?variable1

Update
multiple selects

In this paper queries are encoded naı̈vely, using the keyword WHERE . The effect of a
query can be achieved by joined insert and delete, as follows.

WHERETerm � DELETETerm JOIN INSERTTerm queries

The joined delete and insert has the effect of a querying for a term: The term deleted
must exist for the delete to be applied, but the insert immediately replaces the deleted
term in the same atomic step. Queries could alternatively be defined as primitives of the
language, as in [12].

Operational Semantics for SPARQL Update 247

4 An Equivalence over RDF Terms

This section identifies equivalent syntax. A syntactic equivalence imposes less con-
straints on RDF than any requirement that collections of triples are sets. Instead, obvi-
ously equivalent syntax is considered to serve the same purpose, as defined by a struc-
tural congruence.

4.1 A Structural Congruence

A structural congruence, written = below, is a relation between RDF Terms. A congru-
ence is an equivalence relation (reflexive, symmetric and transitive) which holds in all
contexts. The structural congruence satisfies the following equations — associativity,
unit and commutativity.

Associativity: Data0 , {Data1 , Data2} = {Data0 , Data1} , Data2

Unit: Data , {} = Data Commutativity: Data0 , Data1 = Data1 , Data0

The structural congruence can be applied at any point, when evaluating the operational
semantics in Section 5.

Example of Applying the Structural Congruence. The following RDF Data can be
used interchangeably. If the RDF on the left appears in a rule in the next section, then it
can be replaced by the RDF on the right.

{ eg:book1 eg:price "£10" } ,
{} ,
{
{ eg:book2 dc:title "Linked Data" } ,
{ eg:book1 dc:title "Web of Data" }
}

{
{ eg:book1 dc:title "Web of Data" } ,
{ eg:book1 eg:price "£10" }
} ,
{ eg:book2 dc:title "Linked Data" }

Brackets are used similarly for Group Graph Patterns in SPARQL Query [17]. Associa-
tivity of par allows most brackets to be omitted for readability.

Alpha Conversion. The standard notion of alpha conversion can be applied to blank
node quantifiers. Alpha conversion allows a bound name to be replaced by a fresh name,
to avoid name clashes. For instance the following RDF Data is equivalent.

BNODE :a {
{ :a foaf:familyName "Carrol" } ,
{ :a foaf:knows eg:Klyne }
}

BNODE :b {
{ :b foaf:familyName "Carrol" } ,
{ :b foaf:knows eg:Klyne }
}

Alpha conversion captures the isomorphisms in the RDF specification [13].

248 R. Horne, V. Sassone, and N. Gibbins

5 A Commitment Relation for Updates

The commitment relation specifies atomic changes which can be made to an RDF store.
Atomicity focuses on the local effect of an update. The RDF Data which is required to
perform an atomic update is accounted for. An advantage of this approach is that the
data indicated by a commitment relation can be locked to ensure that an update occurs
atomically.

A commitment relation consists of the RDF Data before an update, an Update and
the resulting RDF Data after the update. Thus commitment relations are relations of the
following form.

Before: Data Update: Update After: Data

Commitment relations can also be derived from rules. The premises of a rule are one
or more commitment relations and the conclusion is a single commitment relation. The
conclusion holds only if all the premises hold. The axioms and rules which specify
operational semantics for Updates are defined throughout this section.

5.1 The Delete Axiom

The Delete Axiom removes some RDF Data from the store. The committed RDF Data,
Data, and committed delete update, DELETEData, interact. After the interaction both
the Data is removed from the store. This results in the empty process.

Before: Data Update: DELETEData After: {}

Example of the Delete Axiom. The following triple can be removed by the follow-
ing update due to the following commitment relation. This commitment relation is an
instance of the Delete Axiom.

Before: { eg:book1 dc:title "The Semantic Web" }
Update: DELETE { eg:book1 dc:title "The Semantic Web" }

After: {}

5.2 The Insert Axiom

The Insert Axiom adds some designated RDF Data to the store. The designated RDF
Data is indicated by the INSERT keyword. The result of this update is to make the
designated RDF Data available after the commitment.

Before: {} Update: INSERTData After: Data

Example of the Insert Axiom. The two triples below can be inserted into anything
(since nothing is required), due to the following commitment relation. This commitment
relation is an instance of the Insert Axiom.

Before: {}
Update: INSERT { eg:book1 dc:title "The Web of Linked Data" }

After: { eg:book1 dc:title "The Web of Linked Data" }

Operational Semantics for SPARQL Update 249

5.3 The Join Rule

The Delete Axiom and the Insert Axiom allow basic updates to take place where either
the exact RDF Data to be deleted is known, or the exact RDF Data to be inserted is
known, respectively. For more substantial updates, rules are required to build commit-
ment relations. The first of these rules is the Join Rule.

The Join Rule ensures that two updates occur atomically, in the same commitment
relation. If one update has one effect and another update has another effect, then the
join of the updates is their combined effect. The rule ensures that both updates act
simultaneously on separate RDF Data. Suppose that the following commitment relation
holds.

Before: Data0 Update: Update0 After: Data2

Also, suppose that the following commitment relation holds.

Before: Data1 Update: Update1 After: Data3

The two commitment relations above can be combined to produce the following com-
mitment relation.

Before: Data0 , Data1 Update: Update0 JOIN Update1 After: Data2 , Data3

Example of Joined Updates. The update below demonstrates two joined updates. The
update combines the examples of Sec. 5.1 and Sec. 5.2 using the join rule. Thus the
combined update removes a triple and adds a new triple atomically.

Before: { eg:book3 dc:title "The Semantic Web" }
Update: DELETE { eg:book3 dc:title "The Semantic Web" }

JOIN

INSERT { eg:book3 dc:title "The Web of Linked Data" }
After: { eg:book3 dc:title "The Web of Linked Data" }

Notice that the rules ensure that join is commutative (this is not sequential composi-
tion). Also, from here onwards, the join keyword is omitted from examples. This makes
examples more readable and closer to the SPARQL Update syntax.

5.4 The Select Literal Rule and Select URI Rule

The Select Literal Rule is parametrised on a variable. The variable is bound to the update
indicated (so cannot be refered to from outside the select). The Select Rule allows any
literal which enables a commitment to be substituted for the variable. The result of
the commitment with the variable substituted for a literal, becomes the result of the
commitment with the variable bound by a Select. Note that substitution is indicated by
square brackets where the literal on the left replaces the variable on the right. Suppose
that the following commitment relation holds.

Before: Data0 Update: Update["literal"/?variable] After: Data1

250 R. Horne, V. Sassone, and N. Gibbins

Given the commitment relation above the following commitment relation holds.

Before: Data0 Update: SELECT?variable Update After: Data1

The Select URI Rule has the same shape. In the case of URIs, a correct URI to input
is substituted for the temporary URI which is bound in the Select expression. Thus two
URIs replace both the variable and literal in the Select Literal Rule.

Example of the Select Literal Rule. The following example demonstrates how Select
can be used to delete some RDF Data which involves a literal not known in advance.
The update deletes a triple in which the variable ?title appears. The variable can be in-
stantiated with the literal "SPARQL Tutorial". Thus the delete matches the committed
triple. Therefore the following commitment is valid.

Before: { eg:book4 dc:title "SPARQL Tutorial" }
Update: SELECT?title {

DELETE { eg:book4 dc:title ?title }
}

After: {}

5.5 The Choose Left Rule and Choose Right Rule

The Choose Rules allow one of two updates to be committed. The choose rule has a
left and right form, where respectively the left or right update is applied. The result of
a choice is the result of the update chosen. Consider the Choose Left Rule and suppose
that the following commitment relation holds.

Before: Data0 Update: Update0 After: Data1

Given the above commitment relation, the following commitment relation holds.

Before: Data0 Update: Update0 CHOOSE Update1 After: Data1

The rule above chooses the left update. The Choose Right Rule is the symmetric rule
which chooses the right branch instead.

Example of a Choice of Updates. The following demonstrates an update where either
the first delete or second delete may be triggered. The two branches use different ver-
sions of the Dublin Core metadata vocabulary. In this case, the committed RDF Data
matches the right branch. The result is that the committed triple is deleted.

Before: { eg:book5 dc11:title "SPARQL Protocol Tutorial" }
Update: SELECT?title {

DELETE { eg:book5 dc:title ?title }
CHOOSE

DELETE { eg:book5 dc11:title ?title }
}

After: {}

Operational Semantics for SPARQL Update 251

Note that if both branches are satisfied then one branch is chosen non-deterministically.
If the update is iterated then two copies of the update can be posed where each copy
chooses a different branch. This is different from forcing both branches to be performed
simultaneously, which would be expressed as a join of updates rather than as a choice
between updates.

5.6 The Filter Axiom

The Filter Axiom imposes a constraint on an update. The constraint is disposed only
if the constraint evaluates to true. If the constraint does not evaluate to true then the
update is blocked. The procedure for deciding whether a constraint holds is specified in
the SPARQL Query Recommendation [17]. Given that the constraint evaluates to true
the following commitment relation holds.

Before: {} Update: FILTERConstraint After: {}

An Example of a Filtered Update. The following commitment relation holds. The up-
date deletes the title of a book, where the title and the book are discovered using Select.
The filter imposes the constraint that the title must also satisfy a regular expression. The
literal in the committed triple does match the regular expression. The triple is deleted.

Before: { eg:book4 dc:title "SPARQL Tutorial" }
Update: SELECT :a, ?title {

DELETE { :a dc:title ?title }
FILTERregex (?title, "ˆSPARQL")
}

After: {}

5.7 The Rules for Iterated Updates

All updates above are applied exactly once. Often the update should be applied wher-
ever possible in an RDF store. This is achieved by iteration. The rules for iteration are
similar to those for a Kleene star in a regular expression. Regular expressions are com-
monly used to update text files. This work is a generalisation of this common technique
to RDF stores. Generalisations of regular expression date back to the commutative reg-
ular algebras of J. H. Conway [8], and remain a prominent area of research [14,10].

Updates can be applied any number of times. Iteration is used when the number
of times to apply an update is not known. The Weekening Axiom allows an interated
update to be applied zero times, if there is no term which matches the update. The
Weakening Axiom terminates an iterated update with no effect.

Before: {} Update: DOUpdate After: {}

The Dereliction Rule allows an iterated update to be applied once. Assume that an update
can be committed in the presence of some term resulting in some process. Dereliction

252 R. Horne, V. Sassone, and N. Gibbins

allows the same update but iterated to be committed in the presence of the same term
with the same resulting process. Suppose that the following commitment relation holds.

Before: Data0 Update: Update After: Data1

Given the above commitment relation, the following commitment relation holds.

Before: Data0 Update: DOUpdate After: Data1

The Contraction Rule allows two copies of an iterated update to be simultaneously com-
mitted. Contraction can be applied repeatedly, along with the Join Rule and Dereliction
Rule, to simultaneously commit any number of copies of an iterated update. Suppose
that the following commitment relation holds.

Before: Data0 Update: DOUpdate JOIN DOUpdate After: Data1

Given the commitment relation above, the following commitment relation holds.

Before: Data0 Update: DOUpdate After: Data1

The combination of the Weakening, Dereliction and Contraction rules allow zero, one,
two, or more copies of an iterated update to be atomically committed. The use of Join
in the Contraction Rule ensures that disjoint RDF Data is used for each copy of the
update.

An Example of an Iterated Update. The following demonstrates an iterated update.
The update replaces occurrence of the predicate dc11:title with the predicate dc:title.
The iteration of this update means that the update can be applied twice. The result is
that two triples are committed and replaced by two new triples.

Before: { eg:book5 dc11:title "Query Tutorial" } ,
{ eg:book6 dc11:title "Update Tutorial" }

Update: DO SELECT :a ?x {
DELETE { :a dc11:title ?x }
INSERT { :a dc:title ?x }
}

After: { eg:book5 dc:title "Query Tutorial" } ,
{ eg:book6 dc:title "Update Tutorial" }

5.8 The Context Rule for Unused Data

The Context Rule allows some data to not be used in an update. This is important
when considering updates in the context of an RDF store. The rule composes the same
unchanged data before and after the update. Assume that the following commitment
holds.

Before: Process0 Update: Update After: Process1

Operational Semantics for SPARQL Update 253

Given the above commitment, the following commitmnet holds.

Before: Process2 , Process0 Update: Update After: Process2 , Process1

The context rule is demonstrated in the example in the next section, where one of the
two triples is not updated.

5.9 The Blank Node Rule for Updating Local Names

The Blank Node Rule is used for updates which involve blank nodes. The trick is to treat
the blank node as a temporary URI in the premise of the rule. The temporary URI must
not appear free in the conclusion of the rule, thus an extra side-condition is required.
Suppose that the following commitment holds.

Before: Data0 , Data1 Update: Update After: Data2 , Data3

Given that the above commitment holds, such that :a is not free in Data0 or Data2, then
the following commitment holds.

Before: Data0 , BNODE :a Data1 Update: Update After: Data2 , BNODE :b Data3

An Example of the Blank Node Rule. The following example demonstrates a blank
node updated. A temporary URI can represent :a in the premise of the Blank Node Rule.
This allows the update to be considered as if :a is not bound. One triple is deleted by
a commitment relation, which discovers the temporary URI. However, the conclusion
of the Blank Node Rule still binds :a. This has the effect of discovering the blank node
and using it in an update.

Before:

Before: BNODE :a {
{ :a foaf:name "Alice" } ,
{ :a foaf:mbox mailto:alice@example.org }
}

Update: SELECT :b {
DELETE { :b foaf:mbox mailto:alice@example.org }
INSERT { :b foaf:mbox mailto:alice@new.org }
}

After: BNODE :a {
{ :a foaf:name "Alice" } ,
{ :a foaf:mbox mailto:alice@new.org }
}

5.10 An Example of a Nested Update

This example, firstly, demonstrates most of the constructs combined to answer a larger
update. Secondly, it demonstrates a common scenario which is enabled by nested se-
lects and nested explicit iteration, which is impossible to express as an atomic update

254 R. Horne, V. Sassone, and N. Gibbins

in initial proposals for SPARQL Update [18,9]. Consider the following commitment,
which removes all foaf:knows links to people younger than 18.

Before: { eg:youth0 eg:dob ‘01-01-2010’ } ,
{ eg:youth1 eg:dob ‘01-02-2010’ } ,
{ eg:person foaf:knows eg:youth0 } ,
{ eg:person foaf:knows eg:youth1 } ,
{ eg:youth0 foaf:knows eg:youth1 }

Update: DO SELECT :a ?dob {
WHERE { :a eg:dob ?dob }
FILTER (current-year− year(?dob) < 18)
DO SELECT :b {
DELETE { :b foaf:knows :a }
}
}

After: { eg:youth0 eg:dob ‘01-01-2010’ } ,
{ eg:youth1 eg:dob ‘01-02-2010’ }

Without the nested iteration and selects, the effect of the above update could only be
achieved using two updates. This means that the update would not be atomic. The above
update is correct and atomic. This example highlights a common problem which also
appears in the first SPARQL Query recommendation [17]. This illustrates an improve-
ment made by this work to the expressiveness of the language.

6 Related Work

Updates for RDF have been considered before using the RUL language [7]. The work on
RUL focusses on the effect of updates in the presence of RDFS entailment. The effect
of RDFS entailments and the operational semantics of the core of SPARQL Update
are perpendicular issues. Thus, this update language can be extended to accommodate
RDFS entailment as considered in RUL.

This language only claims to model a core of SPARQL Update. A feature missing
is the handling of named graphs [6]. Named graphs can be achieved naı̈vely by allow-
ing quads as well as triples, in the data format. However, further subtleties may arise
depending on design decisions of the working group.

An operational semantics for updates enables further formal investigations. This op-
erational semantics can be used to derive equivalences over updates, where two equiva-
lent updates are operationally indistinguishable. This equivalence can be used to verify
an algebra for rewriting updates without changing their operational behaviour. An al-
gebra over updates is useful for the optimisation of updates. This line of work has been
investigated for queries by the authors [12]. The same results also hold for updates; for
instance iteration, join, choice, true and false form a commutative Kleene algebra with
tests and quantifiers [14]. Kleene algebras are a common and useful algebra in computer
science, a prominent example being the equations of regular expressions.

An operational semantics also allows a type system for updates to be specified. A
simple static type system checks that literals are of the correct type to evaluate any

Operational Semantics for SPARQL Update 255

constraints in which they appear. The operational semantics are then essential to verify
that the static properties guaranteed by the type system are preserved by the behaviour
of updates. A type system can be realised through type reconstruction, meaning that
a programmer does not need to program using types for the type system to be useful.
More powerful type systems inspired by RDFS can also ensure that URIs are used
consistently, as investigated by the first author [11].

7 Conclusion

This work introduces a language with an operational semantics for fine grained updates
over RDF. A fine grained update language is important for enabling a Read–Write Web
of Data [3], where contributing content is as important as consuming content. SPARQL
Update is currently being developed by the W3C as a standardised fine grained update
language for RDF, for which an operational semantics is beneficial [9]. This work pro-
vides the first such operational semantics in the established tradition of Plotkin [16].

A specification with an operational semantics has many benefits. This operational
semantics can be used as the basis of tools for compiler verification, type checking and
optimisation [12,11]. It can also be used to evaluate the proposed language to tackle
issues including: redundant operations, ambiguous definitions, rigid syntax, inadequate
expressiveness, and incomplete specifications, as described below.

The operational semantics exposes redundant operations, which could instead be ex-
pressed using a combination of operators. Redundancies reduce the number of operators
which must be directly implemented. For instance, it is shown in Sec. 3.5 that it is a myth
that operator OPTIONAL is primitive.

Ambiguous definitions are clarified by the operational semantics. For instance, it is not
clear in the original proposal [18] whether queries occur sequentially before or in parallel
to an update. In this operational semantics queries occur in parallel, which allows more
concise updates and avoids concurrency issues.

The abstract syntax (Sec. 3.4) is more explicit than the concrete syntax. For instance,
the quantifiers of the abstract syntax clearly delimit the scope of a variable; whereas in
the original proposal it is not obvious which variables share the same scope. Furthermore
the abstract syntax is compositional, meaning that updates can be written in a modular
fashion then combined, enabling interesting programming techniques and optimisations.

Some modest improvements to the expressive power of the language can be sug-
gested. For instance, the CHOOSE operator (Sec. 5.5) can be extended to the entire lan-
guage, instead of only queries. Similarly, Example 5.10 cannot be expressed without
explicit iteration. Such improvements enable some common scenarios to be expressed.

The operational semantics presented here, goes considerably further than the formal
model sketched in the current working draft. For instance, this operational semantics
precisely specifies how blank nodes are updated (Sec. 5.9). Importantly, the model is
purely operational, unlike the sketched model which combines operational and denota-
tional approaches.

This work has been presented without using any meta-syntax to express the opera-
tional semantics. This can be achieved since an operational semantics is defined directly
over the syntax of a language. The intention is that this style of presentation of opera-
tional semantics is accessible to a diverse audience.

256 R. Horne, V. Sassone, and N. Gibbins

References

1. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t know!
Electronic Notes in Theoretical Computer Science 162, 37–41 (2006);Proceedings of the
Workshop Essays on Algebraic Process Calculi

2. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple Language. Team submission, W3C
(2008)

3. Berners-Lee, T.: Read-Write Linked Data, personal view (December 2010),
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html

4. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3logic: A logical frame-
work for the World Wide Web. Theory and Practice of Logic Programming 8(3), 249–269
(2008)

5. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF Schema. Recom-
mendation REC-rdf-schema-20040210, W3C (2004)

6. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web Semantics 3(4),
247–267 (2005)

7. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A Declarative Update
Language for RDF. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 506–521. Springer, Heidelberg (2005)

8. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
9. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. Working draft WD-sparql11-

update-20110512, W3C (May 2011)
10. Hoare, C., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra. In: Bravetti,

M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414. Springer, Heidel-
berg (2009)

11. Horne, R.: Programming Languages and Principles for Read–Write Linked Data. Ph.D. the-
sis, University of Southampton (2011)

12. Horne, R., Sassone, V.: A verified algebra for Linked Data. In: FOCLASA 2011, Aachen, Au-
gust 10. Electronic Proceedings in Theoretical Computer Science, vol. 58, pp. 20–33 (2011)

13. Klyne, G., Carroll, J.: Resource Description Framework: Concepts and abstract syntax. Rec-
ommendation REC-rdf-concepts-20040210, W3C (2004)

14. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programing Languages and
Systems 19, 427–443 (1997)

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transac-
tions on Database Systems 34(3), 1–45 (2009)

16. Plotkin, G.D.: A structural approach to operational semantics. internal notes. Aarhus Univer-
sity (1981)

17. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Recommendation
REC-rdf-sparql-query-20080115, W3C (2008)

18. Seaborne, A., Manjunath, G.: SPARQL/Update: A language for updating RDF graphs. Ex-
ternal HPL-2007-102, HP Labs Bristol (2007)

Appendix: Summary of the Operation Semantics

For a concise summary of the operational semantics, some meta-syntax is introduced.
Commitments are written in the body of the paper as follows.

Before: Data0 Update: Update After: Data1

http://www.w3.org/DesignIssues/ReadWriteLinkedData.html

Operational Semantics for SPARQL Update 257

In this summary commitments are instead written as follows.

Data0 , Update −→ Data1

Rules which are explained in English in the body of this work are presented in the style
of natural deduction, as conventional for operational semantics [16]. The horizontal
line separate the premises on the top from the conclusion on the bottom. Some rules
have side conditions. The axioms and rules of the core update language are therefore
summarised as follows.

Delete: Data , DELETEData −→ {} Insert: {} , INSERTData −→ Data

Filter: {} , FILTERConstraint −→ {} only if Constraint = true

Join:
Data0 , Update0 −→ Data2 Data1 , Update1 −→ Data3

Data0 , Data1 , Update0 JOIN Update1 −→ Data2 , Data3

Select literal:
Data0 , Update["literal"/?variable] −→ Data1

Data0 , SELECT?variable Update −→ Data1

Select URI:
Data0 , Update[:b/:a] −→ Data1

Data0 , SELECT :a Update −→ Data1

Choose left:
Data0 , Update0 −→ Data1

Data0 , Update0 CHOOSE Update1 −→ Data1

Choose right:
Data0 , Update1 −→ Data1

Data0 , Update0 CHOOSE Update1 −→ Data1

Weakening: {} , DOUpdate −→ {} Dereliction:
Data0 , Update −→ Data1

Data0 , DOUpdate −→ Data1

Contraction:
Data0 , DOUpdate JOIN DOUpdate −→ Data1

Data0 , DOUpdate −→ Data1

Structure:
Data0 = Data2 Data0 , Update −→ Data1 Data1 = Data3

Data2 , Update −→ Data3

Context:
Data0 , Update −→ Data1

Data0 , Data2 , Update −→ Data1 , Data2

Blank node:
Data0 , Data1 , Update −→ Data2 , Data3

Data0 , BNODE :a Data1 , Update −→ Data2 , BNODE :a Data3

only if :a does not appear free in Data0 or Data2

Any commitment which can be derived using the above axioms and rules is a valid
commitment. Valid commitments include all examples in the body of this work.

	Operational Semantics for SPARQL Update
	Introduction
	Background and Motivation
	A Case for an Operational Semantics for SPARQL Update
	A Comparison of SPARQL Update to This Work

	A Concise Abstract Syntax
	Syntactic Conventions
	A Syntax for RDF Data
	A Syntax for Constraints
	A Syntax for Updates
	Abbreviations for Common Updates

	An Equivalence over RDF Terms
	A Structural Congruence

	A Commitment Relation for Updates
	The Delete Axiom
	The Insert Axiom
	The Join Rule
	The Select Literal Rule and Select URI Rule
	The Choose Left Rule and Choose Right Rule
	The Filter Axiom
	The Rules for Iterated Updates
	The Context Rule for Unused Data
	The Blank Node Rule for Updating Local Names
	An Example of a Nested Update

	Related Work
	Conclusion
	References

