

Lecture Notes in Computer Science 7185
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jeff Z. Pan Huajun Chen Hong-Gee Kim
Juanzi Li Zhe Wu Ian Horrocks
Riichiro Mizoguchi Zhaohui Wu (Eds.)

The Semantic Web
Joint International Semantic Technology Conference
JIST 2011
Hangzhou, China, December 4-7, 2011
Proceedings

13

Volume Editors

Jeff Z. Pan
University of Aberdeen, UK; jeff.z.pan@abdn.ac.uk

Huajun Chen
Zhaohui Wu
Zhejiang University, Hangzhou, China; huajunsir@msn.com, wzh@zju.edu.cn

Hong-Gee Kim
Seoul National University, Korea; hgkim@snu.ac.kr

Juanzi Li
Tsinghua University, Beijing, China; lijuanzi2008@gmail.com

Zhe Wu
Oracle Corporation, Redwood Shores, CA, USA; alan.wu@oracle.com

Ian Horrocks
Oxford University, UK; ian.horrocks@comlab.ox.ac.uk

Riichiro Mizoguchi
Osaka University, Japan; miz@ei.sanken.osaka-u.ac.jp

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29922-3 e-ISBN 978-3-642-29923-0
DOI 10.1007/978-3-642-29923-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012936366

CR Subject Classification (1998): I.2.4, H.3.5, I.2.6, C.2, H.3.3, H.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Joint International Semantic Technology Conference (JIST) is a joint event
for regional Semantic Web-related conferences. This year’s JIST brought to-
gether two regional conferences: ASWC 2011 (The Asian Semantic Web Confer-
ence 2011) and CSWC 2011 (The 5th Chinese Semantic Web Conference). This
year’s conference was held in Hangzhou, China. This volume contains the main
proceedings of JIST 2011, including both full papers and short papers.

JIST 2011 received a total of 82 submissions to the research paper track.
A rigorous review process was conducted by the Program Committee of recog-
nised experts in the field of semantic technology from around the world. Each
submission received at least three reviews. Final decisions were made during a
meeting of the Program Committee Chairs, with 21 full papers eventually being
accepted (a 25% acceptance rate). In addition, 12 short papers were accepted
for the poster/demonstration program.

This year’s technical program also included three invited talks given by lead-
ing figures from both the academic and business world. This year’s talks were
given by Ian Horrocks of Oxford University; Abraham Bernstein of the University
of Zurich; and Mark Greaves of Vulcan, Inc. Furthermore, JIST 2011 included a
full-day of tutorials prior to the technical program. Tutorial presenters included
Jesse Wang, Ning Hu and Mark Greaves from Vulcan Inc; Jeff Z. Pan from
the University of Aberdeen; and Shonali Krishnaswamy and Yuan-Fang Li from
Monash University.

The hard work and close cooperation of a number of people have contributed
to the success of this conference. We would like to thank the members of the
Organizing Committee and Program Committee for their support; the support-
ing staff and students from Zhejiang University for their assistance with the
management of the conference; and the authors and participants who are the
primary reason for the success of this conference.

December 2011 Jeff Z. Pan
Huajun Chen

Hong-Gee Kim
Juanzi Li
Zhe Wu

Ian Horrocks
Riichiro Mizoguchi

Zhaohui Wu

Organization

Program Committee

Witold Abramowicz The Poznan University of Economics, Poland
Franz Baader TU Dresden, Germany
Enhong Chen University of Science & Technology of China,

China
Liming Chen University of Ulster, UK
Gong Cheng Nanjing University, China
Philippe Cudre-Mauroux University of Fribourg, Switzerland
Bernardo Cuenca Grau University of Oxford, UK
Claudia D’Amato University of Bari, Italy
Mathieu D’Aquin Knowledge Media Institute, The Open

University, UK
Aba-Sah Dadzie The University of Sheffield, UK
Mike Dean Raytheon BBN Technologies, USA
Paola Di Maio University of Strathclyde, UK
Zhongli Ding Google, USA
Dejing Dou University of Oregon, USA
Jianfeng Du Guangdong University of Foreign Studies,

China
Achille Fokoue IBM Research
Zhiqiang Gao Southeast University, China
Alexander Garcia University of Bremen, Germany
Birte Glimm The University of Oxford, UK
Peiqin Gu Zhejiang University, China
Sung-Kook Han Won Kwang University, South Korea
Siegfried Handschuh Digital Enterprise Research Institute (DERI),

National University of Ireland,
Galway, Ireland

Tom Heath Talis Systems Ltd.
Kaoru Hiramatsu NTT
Pascal Hitzler Kno.e.sis Center, Wright State University, USA
Aidan Hogan Digital Enterprise Research Institute (DERI),

National University of Ireland,
Galway, Ireland

Laura Hollink Delft University of Technology,
The Netherlands

Masahiro Hori Kansai University, Japan
Wei Hu Nanjing University, China

VIII Organization

Zhisheng Huang Vrije University Amsterdam, The Netherlands
Rajaraman Kanagasabai Institute for Infocomm Research, Singapore
Takahiro Kawamura Toshiba Corp., Japan
Eunghee Kim Seoul National University, Korea
Yoshinobu Kitamura I.S.I.R., Osaka University, Japan
Yuan Fang Li National University of Singapore, Singapore
Dan Liu Google, USA
Diana Maynard University of Sheffield, UK
Jing Mei IBM China Research Lab, China
Ralf Möller TUHH, Germany
Hyun Namgoong Electronics and Telecommunications Research

Institute, South Korea
Ekawit Nantajeewarawat Sirindhorn Intl. Inst. of Tech., Thammasat

University, Thailand
Peter Patel-Schneider Bell Labs Research
Dimitris Plexousakis Institute of Computer Science, FORTH, Greece
Guilin Qi Southeast University, China
Yuzhong Qu Nanjing University, China
Jinghai Rao Nokia
Marco Ronchetti University of Trento, Italy
Matthew Rowe Knowledge Media Institute, UK
Manuel Salvadores University of Southampton, UK
Stefan Schlobach Vrije Universiteit Amsterdam, The Netherlands
Murat Sensoy University of Aberdeen, UK
Yi-Dong Shen Institute of Software, The Chinese Academy of

Sciences, China
Michael Sintek DFKI GmbH, Germany
Kavitha Srinivas IBM Research
Giorgos Stoilos Oxford University Computing Laboratory, UK
Umberto Straccia ISTI-CNR, Italy
Hideaki Takeda National Institute of Informatics and

The University of Tokyo, Japan
Kerry Taylor CSIRO ICT Centre
Jilei Tian Nokia Research Center
Vassilis Tzouvaras National Technical University of Athens,

Greece
Denny Vrandecic KIT, Germany
Haofen Wang Shanghai Jiao Tong University, China
Jesse Jiaxin Wang Vulcan Inc.
Kewen Wang Griffith University, Australia
Shenghui Wang Wageningen UR, The Netherlands
Yimin Wang Lilly Singapore Centre for Drug Discovery,

Singapore
Zhe Wu Oracle
Guotong Xie IBM China

Organization IX

Bin Xu DCST, Tsinghua University, China
Takahira Yamaguchi Keio University, Japan
Yong Yu Shanghai Jiao Tong University, China
Suckchan Yun Daum Corperation
Guo-qiang Zhang Case Western Reserve University, USA
Jun Zhao University of Oxford, UK
Yuting Zhao University of Aberdeen, UK
Hai-Tao Zheng Tsinghua University, China
Yi Zhou University of Western Sydney, Australia

Additional Reviewers

Abela, Charlie
Carral Mart́ınez, David
Daskalaki, Evangelia
Davis, Brian
Deng, Jun
Dragan, Laura
Du, Liang
Ell, Basil
Feng, Yuzhang
Gong, Saisai
Han, Sung-Kook
Hong, Liang
Ichise, Ryutaro
Ji, Qiu
Joshi, Amit Krishna
Kharlamov, Evgeny
Kondylakis, Haridimos
Kritikos, Kyriakos

Käfer, Tobias
Li, Xuan
Ma, Yuanchao
Ma, Yue
Martiny, Karsten
Morita, Takeshi
Mutharaju, Raghava
Novacek, Vit
Oezcep, Oezguer Luetfue
Peñaloza, Rafael
Ren, Yuan
Sen, Luo
Tudorache, Tania
Wang, Jian
Wieloch, Karol
Wu, Huiyao
Wu, Yuchen
Zeng, Cheng

Table of Contents

A Method of Contrastive Reasoning with Inconsistent Ontologies 1
Jun Fang, Zhisheng Huang, and Frank van Harmelen

Parallel ABox Reasoning of EL Ontologies . 17
Yuan Ren, Jeff Z. Pan, and Kevin Lee

RP-Filter: A Path-Based Triple Filtering Method for Efficient SPARQL
Query Processing . 33

Kisung Kim, Bongki Moon, and Hyoung-Joo Kim

Constructing Virtual Documents for Ontology Matching Using
MapReduce . 48

Hang Zhang, Wei Hu, and Yuzhong Qu

Semantic Flow Networks: Semantic Interoperability in Networks of
Ontologies . 64

Valeria Fionda and Giuseppe Pirró

Building a Large Scale Knowledge Base from Chinese Wiki
Encyclopedia . 80

Zhichun Wang, Zhigang Wang, Juanzi Li, and Jeff Z. Pan

Dynamic Is-a Hierarchy Generation System Based on User’s
Viewpoint . 96

Kouji Kozaki, Keisuke Hihara, and Riiciro Mizoguchi

Mid-Ontology Learning from Linked Data . 112
Lihua Zhao and Ryutaro Ichise

An Ontological Formulation and an OPM Profile for Causality in
Planning Applications . 128

Irene Celino and Daniele Dell’Aglio

A New Matchmaking Approach Based on Abductive Conjunctive
Query Answering . 144

Jianfeng Du, Shuai Wang, Guilin Qi, Jeff Z. Pan, and Yong Hu

GeniUS: Generic User Modeling Library for the Social Semantic Web . . . 160
Qi Gao, Fabian Abel, and Geert-Jan Houben

Enhancing Source Selection for Live Queries over Linked Data via
Query Log Mining . 176

Yuan Tian, Jürgen Umbrich, and Yong Yu

XII Table of Contents

Semantic Caching for Semantic Web Applications . 192
Mengdong Yang and Gang Wu

Evaluating Graph Traversal Algorithms for Distributed SPARQL
Query Optimization . 210

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 226
Gong Cheng, Feng Ji, Shengmei Luo, Weiyi Ge, and Yuzhong Qu

Operational Semantics for SPARQL Update . 242
Ross Horne, Vladimiro Sassone, and Nicholas Gibbins

Knowledge-Driven Diagnostic System for Traditional Chinese
Medicine . 258

Peiqin Gu and Huajun Chen

LODDO: Using Linked Open Data Description Overlap to Measure
Semantic Relatedness between Named Entities . 268

Wenlei Zhou, Haofen Wang, Jiansong Chao, Weinan Zhang, and
Yong Yu

What Should I Link to? Identifying Relevant Sources and Classes for
Data Linking . 284

Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta

Interacting with Linked Data via Semantically Annotated Widgets 300
Armin Haller, Tudor Groza, and Florian Rosenberg

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 318
Xi Bai, Ewan Klein, and Dave Robertson

GoRelations: An Intuitive Query System for DBpedia 334
Lushan Han, Tim Finin, and Anupam Joshi

Proposed SKOS Extensions for BioPortal Terminology Services 342
Cui Tao, Natalya F. Noy, Harold R. Solbrig, Nigam H. Shah,
Mark A. Musen, and Christopher G. Chute

Learning Complex Mappings between Ontologies . 350
Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu

Discovering and Ranking New Links for Linked Data Supplier 358
Nansu Zong, Sungkwon Yang, Hyun Namgoong, and Hong-Gee Kim

Probabilistic Multi-Context Systems . 366
Marco Sotomayor, Kewen Wang, Yidong Shen, and John Thornton

Web Schema Construction Based on Web Ontology Usage Analysis 376
Jamshaid Ashraf and Maja Hadzic

Table of Contents XIII

Building Linked Open University Data: Tsinghua University Open
Data as a Showcase . 385

Yuanchao Ma, Bin Xu, Yin Bai, and Zonghui Li

An Abductive CQA Based Matchmaking System for Finding Renting
Houses . 394

Jianfeng Du, Shuai Wang, Guilin Qi, Jeff Z. Pan, and Che Qiu

An Ontological Approach to Oracle BPM . 402
Jean Prater, Ralf Mueller, and Bill Beauregard

Shining Light on Complex RDF Data through Advanced Data
Visualization . 411

Francois Bertault, Wendy Feng, Austris Krastins,
Liangrong Yi, and Arturs Verza

OntoRevision: A Plug-in System for Ontology Revision in Protégé 417
Nathan Cobby, Kewen Wang, Zhe Wang, and Marco Sotomayor

An Efficient Approach to Debugging Ontologies Based on Patterns 425
Qiu Ji, Zhiqiang Gao, Zhisheng Huang, and Man Zhu

Author Index . 435

A Method of Contrastive Reasoning

with Inconsistent Ontologies

Jun Fang1, Zhisheng Huang2, and Frank van Harmelen2

1 School of Automation, Northwestern Polytechnical University, China
junfang@nwpu.edu.cn

2 Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
{huang,Frank.van.Harmelen}@cs.vu.nl

Abstract. Contrastive reasoning is the reasoning with contrasts which
are expressed as contrary conjunctions like the word ”but” in natural lan-
guage. Contrastive answers are more informative for reasoning with in-
consistent ontologies, as compared with the usual simple Boolean answer,
i.e., either ”yes” or ”no”. In this paper, we propose a method of com-
puting contrastive answers from inconsistent ontologies. The proposed
approach has been implemented in the system CRION (Contrastive Rea-
soning with Inconsistent ONtologies) as a reasoning plug-in in the LarKC
(Large Knowledge Collider) platform. We report several experiments in
which we apply the CRION system to some realistic ontologies. This
evaluation shows that contrastive reasoning is a useful extension to the
existing approaches of reasoning with inconsistent ontologies.

1 Introduction

1.1 Motivation

Contrastive reasoning is the reasoning with contrasts which are expressed as con-
trary conjunctions like the word ”but” in natural language [1,2,3]. For instance,
in real life, one would say that “all cars are polluting, but hybrid cars are not
polluting”; or one would say that “The conference will be held in Holland, but
not in Amsterdam”. The first example expresses an exception that contradicts
a general rule; the second example is contrary to a general expectation that one
may have (namely that conferences in Holland are generally held in Amsterdam).

There exist some previous works on contrastive reasoning [1,2,3]. These pre-
vious works consider contrastive reasoning as a supplement for non-monotonic
reasoning: they use non-monotonic reasoning to compute the all implications,
and then determine the contrasts among them. Compared with normal Boolean
query answering, contrastive reasoning gives users not only an answer to the
original query, but also some contrastive answers.

Such contrastive reasoning has two main goals:

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 1–16, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 J. Fang, Z. Huang, and F. van Harmelen

– Avoidance of misleading information by extending the answer. Contrastive
answers provide not only an answer to the original query, but also some
relevant contrasting answers. In our introductory example, the simple answer
that all cars are polluting is misleading because hybrid cars are an exception
to this rule.

– Effective influence with surprising answers. A psychologically effective influ-
ence can be achieved by providing an additional answer that is unexpected.
In our introductory conference example, the contrastive answer that the con-
ference is not in Amsterdam is surprising against the background expectation
that all conferences in Holland will be in Amsterdam.

Contrastive reasoning exposes the contradiction that exists either between a
knowledge base and external expectations (as in the conference example), or
contradictions between different parts of the knowledge base (as in the pollut-
ing cars example). Because of this, contrastive reasoning is also very useful for
reasoning with inconsistent ontologies, because it does not simply respond to
queries with a Boolean answer of either “yes” or “no”, but also provides an
informative answer with some “surprising” information.

Reasoning with inconsistent ontologies is a particularly important research
topic in the Semantic Web for several reasons: i) Integration of existing ontologies
easily leads to an inconsistency. ii) It may be ineffective or even impossible to
repair inconsistencies before reasoning as the inconsistent ontologies may be
too large or we may not have the right to repair inconsistencies in imported
ontologies. iii) Ontologies may change at a high frequency and hence do not allow
for any meaningful repair. In this paper, we will therefore focus on reasoning with
inconsistent ontologies.

1.2 Simple Example

We consider a fragment of the well known MadCow ontology shown in Table 11,
in which MadCow is defined as a Cow which eats brains of Sheep and Cow is
defined as a V egetarian, which leads to an inconsistency in the ontology.

Table 1. Fragment of the MadCow ontology

Cow � V egetarian MadCow(the MadCow)
MadCow � Cow � ∃eat.((∃partof.Sheep)� Brain)
Sheep � Animal V egetarian � ∀eat.¬Animal
V egetarian � Animal � ∀eat.¬(∃partof.Animal)

When we ask “Is Cow a Vegetarian?”, the current methods will answer “yes”.
However, using contrastive reasoning, the answer “yes, but MadCow is not a
Vegetarian” is more informative. The latter answer has a touch of contrast (or
surprise), which would provide more instructive information for users.

1 We add MadCow(the MadCow) to expose the inconsistency.

A Method of Contrastive Reasoning with Inconsistent Ontologies 3

1.3 Structure and Contributions of This Paper

We have presented the initial framework of contrastive reasoning in [4]. In this
paper, we propose a method of computing contrastive answers from inconsistent
ontologies. We introduce contrastive reasoning in the general setting of First-
order Logic (FOL). The proposed approach has been implemented in the system
CRION as a reasoning plug-in in the LarKC platform2. We will report our ex-
periments of applying the proposed approach to some realistic ontologies. The
experiments show that contrastive reasoning is a useful form of reasoning with
inconsistent ontologies.

Summarizing, the main contributions of this paper are (1) a general approach
of contrastive reasoning; (2) a method of computing contrastive answers; (3)
the implementation of the CRION system that computes contrastive answers;
and (4) evaluation of CRION, using human subjects to score the effectiveness of
contrastive answers to queries.

This paper is organized as follows: Section 2 presents a general approach of
contrastive reasoning with inconsistent ontologies. Section 3 explores how to
compute contrastive answers in FOL. Section 4 discusses the implementation of
CRION, reports the experiments of CRION with several inconsistent ontologies
and presents the evaluation of CRION. After a discussion of related work in
Section 5, the last section includes conclusions and future work.

2 Formalization of Contrastive Reasoning

2.1 Nonstandard Entailment for Inconsistent ontologies

The classical entailment in logics is explosive: any formula is a logical consequence
of a contradiction. Therefore, conclusions drawn from an inconsistent knowledge
base by classical inference may be completely meaningless. The general task of
any system that reasons with inconsistent ontologies is: given an inconsistent
ontology, return meaningful answers to queries. In [5], a general framework of
reasoning with inconsistent ontologies has been developed. In that framework,
an answer is “meaningful” if it is supported by a selected consistent subset of
the inconsistent ontology, while its negation is not supported by the selected
subset. PION is a system for reasoning with inconsistent ontologies, which can
return such meaningful answers [5]. In the following, we will use the notation |=
to denote the standard entailment, and the notation |≈ to denote a nonstandard
entailment.

Definition 1 (Nonstandard Entailment |≈ [5]). A nonstandard entailment
|≈ satisfies the following two requirements:

1. Soundness. A nonstandard entailment |≈ is sound if the formulas that follow
from an inconsistent ontology O follow from a consistent subset of O using
classical reasoning: O |≈ α⇒ ∃(O′ ⊆ O)(O′

� ⊥ and O′ � α).
2 http://www.larkc.eu

http://www.larkc.eu

4 J. Fang, Z. Huang, and F. van Harmelen

2. Meaningfulness. An answer given by an inconsistency reasoner is meaningful
iff it is consistent and sound. Namely, it requires not only the soundness
condition, but also O |≈ α⇒ O �|≈ ¬α. A nonstandard entailment |≈ is said
to be meaningful iff all of the answers are meaningful.

Properties of |≈ are similar to those of the standard entailment |=. However,
there is an important exception. Given an inconsistent O and two formulas α
and β with O |≈ α and O |≈ β, we cannot always conclude O |≈ α ∧ β. One
reason for it is that the selected subset that supports O |≈ α may differ from the
selected subset that supports O |≈ β, while the union of the two subsets may be
inconsistent; another reason is that α ∧ β may be a contradiction.

2.2 Contrastive Answers

Using the previous definition of nonstandard entailment, we can now define our
central notion of contrastive answers. Informally, a contrastive answer contains
three parts:

– Original formula. A formula which answers the original query3;

– Contrastive formula. A formula which contrasts with the original answer
formula;

– Clarification formula A formula that explains the reason why the contra-
diction occurs. The clarification formula need not (but may) be implied by
the ontology. In some application scenarios, the clarification formulas may
be omitted in the query answer if the user does not require an explanation
of contrastive answers.

In the MadCow example, when considering the query “Is Cow a Vegetarian?”,
“Cow is a Vegetarian” is the original answer to the query, “MadCow is not
a Vegetarian” is a contrastive formula, while “the MadCow is a MadCow and
MadCow is a Cow” is a clarification formula which explains why “Cow is a
Vegetarian” and “MadCow is not a Vegetarian” are contrastive. This leads us
to the formal definition of contrastive answers4:

Definition 2 (Contrastive Answer). Given an inconsistent ontology O, a
contrastive answer O|≈α but γ although β contains the following parts: an
original formula α, a contrastive formula γ, and a clarification formula β, such

3 Note that formulas in this paper mean First-order Logic formulas. Our work is built
on FOL. Without loss of generality, a Description Logic axiom can be transformed
into a (conjunctive) FOL formula. Thus, in the following, we will consider only a
single formula.

4 In this paper, we focus on the approach of reasoning with inconsistent ontologies, in
which a clarification formula is derivable from the ontology. We leave the cases of
the clarification formula as an expectation (like that in the conference example) for
future work.

A Method of Contrastive Reasoning with Inconsistent Ontologies 5

that: O |≈ α, O |≈ β and O |≈ γ, α ∧ β is not a contradiction, γ ∧ β is not a
contradiction, but α ∧ β ∧ γ is a contradiction5.

Sometimes it is not necessary to state the clarification formula explicitely in a
contrastive answer. That leads to the following definition.

Definition 3 (Contrastive Answer without Explanation). Given an in-
consistent ontology O, O |≈ α but γ is a contrastive answer without explanation
if there exists a formula β such that O |≈ α but γ although β is a contrastive
answer.

The definitions above imply that contrastive answers have a nice exchange prop-
erty. Namely, more contrastive answers can be obtained by exchanging the orig-
inal formula, the contrastive formula and the clarification formula.

For instance, in the MadCow example, “Cow is a Vegetarian”, but “Mad-
Cow is not a Vegetarian”, although “the MadCow is a MadCow and MadCow
is a Cow” is a contrastive answer. It is easy to observe that the symmetric
answers such as “Madcows is not a vegetarian”, but “the MadCow is a Mad-
Cow and MadCow is a Cow”, although “Cow is a vegetarian” are contrastive
answers.

Proposition 1 (Exchange Property of Contrastive Answers). For an
inconsistent ontology O and three formulas α, β, γ, the following hold:

– Exchange: O |≈ α but γ although β ⇒ O |≈ γ but α although β
– Conditional Lifting: O |≈ α but γ although β and α∧γ is not a contradic-

tion ⇒ O |≈ β but γ although α
– Conditional Shifting: O |≈ α but γ although β and α ∧ γ is not a contra-

diction ⇒ O |≈ α but β although γ

Proof. It can be easily proved by using the definition of contrastive answer. 1)If
O |≈ α but γ although β, then O |≈ α and O |≈ β and O |≈ γ and α ∧ β is not
a contradiction and γ ∧β is not a contradiction and α∧β ∧ γ is a contradiction,
according to definition 2, O |≈ γ but α although β. Conditional symmetry
properties are proved in a similar way.

These exchange properties do not mean that α, β and γ do no differ in any
way. Although they can be formally interchanged in the above way, such an
interchange implies a change in the epistemological status of the formula: The
original formula α is the answer to the original query. Thus, it is considered to
be the most important one. The contrastive formula γ is an additional answer.
The clarification formula β provides some information to explain the reason
why the contradiction occurs, which may be ignored if an explanation is not
necessary.

5 A formula is a contradiction iff there does not exist a model which can satisfy the
formula, an ontology is inconsistent iff there does not exist a model which can satisfy
all formulas in the ontology.

6 J. Fang, Z. Huang, and F. van Harmelen

Besides the exchange property above, contrastive answers also have the ex-
pansion property: the formula α in the contrastive answer can be expanded with
other formula α′ if the conjunction α ∧ α′ is an answer of |≈.

Proposition 2 (Expansion Property of Contrastive Answers). For an
inconsistent ontology O, and three formulas α, β, γ, the following hold:

– O |≈ α but γ although β and α∧α′∧β is not a contradiction and O |≈ α∧α′

⇒ O |≈ α ∧ α′ but γ although β
– O |≈ α but γ although β and α∧β∧β′ is not a contradiction and β∧β′∧γ

is not a contradiction and O |≈ β ∧ β′ ⇒ O |≈ α but γ although β ∧ β′

– O |≈ α but γ although β and β∧γ∧γ′ is not a contradiction and O |≈ γ∧γ′
⇒ O |≈ α but γ ∧ γ′ although β

Proof 1. If O |≈ α but γ although β, then O |≈ α and O |≈ β and O |≈ γ and
α∧β∧γ is a contradiction, so α∧α′∧β∧γ is also a contradiction. Furthermore,
α ∧ α′ ∧ β is not contradictions. Since O |≈ α ∧ α′, according to Definition 2,
O |≈ α ∧ α′ but γ although β. Other situations can be proved similarly.

3 Computing Contrastive Answers

In this section, we will propose a method of obtaining contrastive answers. Given
an inconsistent ontology O and a closed FOL formula α, if O |≈ α, how can we
obtain related contrastive answers O |≈ α but γ although β.

Our approach of computing contrastive answers is an extension to the method
for reasoning with inconsistent ontologies proposed in [5]. To make this paper self
contained, we will first give a brief overview of the general approach of reasoning
with inconsistent ontologies, which is developed in [5, 6].

3.1 The PION Approach

Selection functions are central in the PION approach of reasoning with inconsis-
tent ontologies. It is used to determine which consistent subsets of an inconsistent
ontology should be considered during the reasoning process. The selection func-
tion can either be syntactic, e.g. using a syntactic relevance measure, or can be
based on semantic relevance, such as using the co-occurrence of terms in search
engines like Google [7].

Given an ontology (i.e., a formula set) O and a query α, a selection function
s returns a subset of O at each step k > 0. Let L be the ontology language,
which is denoted as a formula set. A selection function s is then a mapping
s : P(L)× L×N → P(L) such that s(O, α, k) ⊆ O.

A formula φ is syntactic relevant to a formula set Σ iff there exists a formula
ψ ∈ Σ such that φ and ψ are directly relevant. We can use the relevance relation
above to define a selection function as follows:

A Method of Contrastive Reasoning with Inconsistent Ontologies 7

– s(Σ, φ, 0) = ∅
– s(Σ, φ, 1) = {ψ ∈ Σ|φ and ψ directly relevant}
– s(Σ, φ, k) = {ψ ∈ Σ|ψ is directly relevant to s(Σ, φ, k − 1)} for k > 1

In this paper, we use the syntactic method [5] to measure relevance between
formulas. Two formula φ and ψ are directly syntactically relevant iff there
is a common name which appears in both formulas. Although the syntactic-
relevance-based selection function is specific and seems to be simple, the exper-
iments show that even this simple selection function can obtain intuitive results
in most cases for reasoning with inconsistent ontologies [5]. Furthermore, our
approach of contrastive reasoning is independent of any specific selection func-
tion, because the syntactic-relevance-based selection function can be replaced
with any other kinds of selection functions, like one with Normalized Google
Distance [7].

The general strategy for reasoning with inconsistent ontologies is: given the
syntactic selection function, we select a consistent subset from an inconsistent
ontology. Then we apply standard reasoning on the selected subset to find mean-
ingful answers. If a satisfying answer cannot be found, we use the selection func-
tion to extend the selected set for further reasoning. If an inconsistent subset
is selected, we apply “over-determined processing” (ODP) [5]. One of the ODP
strategies is to find a maximal consistent subset of the selected set. If the (firstly
selected) maximal consistent subset entails the query, the algorithm will return
‘yes’, otherwise it will return ‘no’. A linear extension strategy with ODP for the
evaluation of a query ‘O |≈ α?’ is described in Algorithm 1.

Algorithm 1. Linear extension strategy for evaluating O |≈ α

1: Ω := ∅
2: k := 0
3: repeat
4: k := k + 1
5: Ω′ := s(O, α, k)
6: if Ω′ ⊆ Ω then
7: return O �|≈ α
8: end if
9: if Ω′ inconsistent then
10: Ω′′ := maximal consistent subontology(Ω)
11: if Ω′′ |= α then
12: return O |≈ α
13: else
14: return O �|≈ α
15: end if
16: end if
17: Ω := Ω′

18: until Ω′ |= α
19: return O |≈ α

8 J. Fang, Z. Huang, and F. van Harmelen

3.2 The CRION Approach

In the following, we propose an algorithm for obtaining contrastive answers,
based on the PION approach described above. From the definition of contrastive
answers, the conjunction of the original formula α, the contrastive formula γ, and
the clarification formula β must lead to a contradiction, i.e., {α, β, γ} |= ⊥. That
means that, given an original answer α which is obtained by using the PION
approach, we can try to obtain the contrastive formula and the clarification
formula, by considering a minimal inconsistent set which contains α. A minimal
inconsistent set is a minimal formula set that explains the inconsistency of an
inconsistent ontology.

Definition 4 (Minimal Inconsistent Set(MIS)). Given an inconsistent on-
tology O, a formula set O′ is a minimal inconsistent set (MIS) of O iff it satisfies
the conditions: i) O′ ⊆ O, ii) O′ |= ⊥, and iii) ∀O′′(O′′ ⊂ O′ ⇒ O′′ �|= ⊥).

A minimal consistent set is akin to a justification [8], which is a minimal for-
mula set to explain the entailment. In [9], the justification method [8] is used
to compute minimal consistent sets in inconsistent ontologies. In this paper, we
are interested in computing one MIS which includes one specified formula, i.e.
the original formula which needs to be included in the minimal inconsistent set
of the inconsistent ontology.

Algorithm 2 describes the process for computing such a specific MIS. The
algorithm is taken from algorithm 2 in [10] with a few modifications, it applies
binary search to quickly find a MIS. The algorithm partitions the ontology into
two halves, and checks whether one of them is inconsistent. If yes, it goes to the
recursion on that half, throwing away half of the axioms in one step. Otherwise,
essential axioms are in both halves. In this case, the algorithm goes on the
recursion on each half, using the other half as the support set.

The main idea of the CRION approach is to extend the linear extension
strategy of the PION approach until the selected set Ω ∪ {α} is inconsistent.
We have then obtained a minimal inconsistent set which includes α by using
algorithm 2. Then we pick up a clarification formula β in the MIS and construct
a contrastive formula γ from the MIS. A straightforward approach to construct
the formula γ is to take the conjunction of some subset of the MIS. We call that
approach Contrastive Answer by Conjunction (CAC).

Given an original answerO |≈ α which is obtained as the selected set s(O, α, k)
at step k, the CAC algorithm for obtaining contrastive answers is described in
Algorithm 3. In the algorithm, we use Sc to denote the set of returned contrastive
answers. If the Sc is ∅, then that means that there are no contrastive answers
for the query.

The algorithm consists of the three main steps: i) extend the selected set until
it becomes inconsistent, ii) find a minimal inconsistent set which includes α, and
iii) construct the clarification formula β and the contrastive formula γ. It is not
hard to prove the following proposition.

Proposition 3 (Soundness of the CAC Algorithm). The contrastive
answers obtained in Algorithm 3 are sound.

A Method of Contrastive Reasoning with Inconsistent Ontologies 9

Algorithm 2. mis binarySearch(S,O, α)
Assume: |O| > 1 in the initial step
1: if |O| == 1 then
2: return O
3: end if
4: S1, S2 := halve(O)
5: if S ∪ S1 is inconsistent then
6: return mis binarySearch(S,S1, α)
7: else if S ∪ S2 is inconsistent then
8: return mis binarySearch(S,S2, α)
9: end if
10: S′

1 := mis binarySearch(S ∪ S2, S1, α)
11: S′

2 := mis binarySearch(S ∪ S′
1, S2, α)

12: if α ∈ S′
1 ∪ S′

2 then
13: return S′

1 ∪ S′
2

14: end if
15: return ∅

Algorithm 3. Contrastive Answers by Conjunction (CAC)

1: Sc := ∅
2: j := k
3: Ω := s(O, α, j)
4: while Ω ∪ {α} consistent do
5: j := j + 1
6: if s(O, α, j) ⊆ Ω then
7: return ∅
8: end if
9: Ω := s(O, α, j)
10: end while
11: Ω′ := mis binarySearch(∅,Ω ∪ {α}, α)
12: for ρ ∈ Ω′ do
13: if {α, ρ} consistent then
14: β := ρ
15: γ :=

∧
(Ω′ − {α, β})

16: if {β, γ} consistent and O |≈ γ then
17: Sc = Sc ∪ {O |≈ α but γ although β}
18: end if
19: end if
20: end for
21: return Sc

10 J. Fang, Z. Huang, and F. van Harmelen

Proof. If the algorithm returns an answer O |≈ α but γ although β in Sc,
we want to prove that α but γ although β is indeed a contrastive answer.
From the given condition, we already have that O |≈ α. Since any formula is
considered to be always the most (syntactically or semantically) relevant to itself,
we have O |≈ ρ for any formula ρ such that ρ ∈ O and ¬ρ �∈ O6. Thus, we have
O |≈ β. From the algorithm, we have O |≈ γ. It is easy to see that α ∧ β is not
a contradiction and β ∧ γ is not a contradiction, because {α, β} is consistent
and {β, γ} is consistent. Furthermore, from the algorithm, we know that α ∧
β ∧ γ is a contradiction because of the inconsistency of Ω′. Thus, we have the
conclusion.

It is easy to see that the CAC algorithm can always terminate and that its
computational cost is not significantly increased, compared with the complexity
of the existing approaches in reasoning with inconsistent ontologies.

In the CAC algorithm, the contrastive formula is a conjunction of formulas
selected from the ontology. We are more interested in contrastive formulas which
are implied by a consistent subset of the minimal inconsistent set, rather than its
subformulas which are contained by the ontology explicitly. Those contrastive
answers may be obtained through the CAC approach by using the exchange
property in Proposition 1.

A more general approach to obtaining those contrastive answers is to consider
a contrastive formula γ which is a non-trivial consequence of the selected set,
i.e., γ ∈ Cn(Ω′ − {α, β}) − Cn(∅) in the algorithm7. We call that approach
Contrastive Answer by Logical Consequence (CALC). The CALC algorithm is a
revision of the CAC algorithm by constructing a formula γ which satisfies the
condition above and inserting a step of contradiction checking for α∧β∧γ before
Step 16 in Algorithm 3. There are various strategies to construct a contrastive
formula γ for the CALC approach (e.g., depth-first search, breadth-first search,
and best-first search). We will leave the investigation of variant CALC algorithms
for future work.

4 Implementation and Evaluation

4.1 Implementation

We have implemented the prototype of CRION8 as a reasoning plug-in in the
LarKC Platform. by using Pellet9 and OWLAPI10. Given a query answer in

6 In this paper we consider only the ontology O in which there exists no a formula ρ
such that ρ ∈ O and ¬ρ ∈ O. Namely, the inconsistency in O is not explicit. This
condition is generally satisfied in practice.

7 Cn is a consequence operator such that Cn(O) = {ϕ|O |= ϕ}. Cn(∅) is the tautology
set, which is considered to be trivial.

8 https://larkc.svn.sourceforge.net/svnroot/larkc/branches/Release 1.1

candidate/ plugins/reason/CRION/
9 http://clarkparsia.com/pellet/

10 http://owlapi.sourceforge.net/

https://larkc.svn.sourceforge.net/svnroot/larkc/branches/Release_1.1_candidate/ plugins/reason/CRION/
https://larkc.svn.sourceforge.net/svnroot/larkc/branches/Release_1.1_candidate/ plugins/reason/CRION/
http://clarkparsia.com/pellet/
http://owlapi.sourceforge.net/

A Method of Contrastive Reasoning with Inconsistent Ontologies 11

an inconsistent Description Logic (DL) ontology, CRION calculates contrastive
answers based on the CAC approach. CRION uses PION11 to compute the non-
standard entailment in an inconsistent ontology. Syntax-based selection function
defined in [5] is used in PION.

4.2 Evaluation

We have tested the CRION prototype by applying it to inconsistent ontologies.
For that test, we selected two group of ontologies. The first group are several
ontologies from the TONES ontology repository12. Those ontologies are selected,
because i) they are inconsistent, ii) Pellet supports them, and iii) we are familiar
with the domains of those ontologies.

In order to test the run-time performance of our method in large scale on-
tologies, we construct the second group of ontologies by modifying from the
LUBM13 benchmark ontology by inserting a specified number of conflicts using
the Injector tool described in [11], where a conflict is a set of axioms violating
a functional role restriction or a disjointness constraint. By LUBM-Liten+m we
mean an LUBM-Lite ontology with assertional axioms of n universities and with
m inserted conflicts. The profiles of the selected ontologies are shown in Table 2.

Table 2. Information about ontologies

Ontology Syntax #Cons #Roles #Inds #Axioms #MISs

MadCow ALCHOIN (D) 54 16 67 143 1

Pizza SHION 101 8 106 818 2

Economy ALCH(D) 338 45 818 1,947 51

Transportation ALCH(D) 446 89 629 1,786 62

LUBM-Lite1+20

SHIF(D) 100 39

17,190 100,869 20
LUBM-Lite2+40 38,377 230,408 30
LUBM-Lite4+80 78,653 478,740 80
LUBM-Lite8+160 163,690 1,002,095 160
LUBM-Lite16+320 341,557 2,096,008 320

As the original formulas in a contrastive answer is related to a minimal incon-
sistent set, for each inconsistent ontology, we select the testing queries from the
union of all minimal inconsistent sets calculated by using the explanation method
in Pellet14. We evaluate the approach of contrastive reasoning with respect to
the following three aspects:

11 http://wasp.cs.vu.nl/sekt/pion/
12 http://owl.cs.manchester.ac.uk/repository/, we expose their inconsistencies by

adding a concept assertion for every named concept, i.e., Con(the Con).
13 http://swat.cse.lehigh.edu/projects/lubm/
14 It uses the method of org.mindswap.pellet.owlapi.Reasoner. getExplanation().

http://wasp.cs.vu.nl/sekt/pion/
http://owl.cs.manchester.ac.uk/repository/
http://swat.cse.lehigh.edu/projects/lubm/

12 J. Fang, Z. Huang, and F. van Harmelen

– Frequency: Given an inconsistent ontology, how often can we obtain a
contrastive answer? We measure the frequency by counting the amount of
contrastive answers.

– Usability: Does the contrastive reasoning really achieve the main goals? Is
it really useful or not? We evaluate the usability by examining the results
with respect to the two main criteria: i) does it help avoiding misleading
information and ii) does it improve the effective influence of the answer?
Of course these criteria are necessarily “soft” in nature: they cannot be
measured by any formal means, but must be subjected to human judgment.

– Performance: Is the contrastive reasoning computationally expensive or
not? We evaluate the performance by examining the run-time performance
of computing contrastive answers.

Frequency. Columns 2, 3 and 4 of Table 3 show that contrastive answers (CAs)
occur frequently for inconsistent ontologies. For the MadCow ontology in which
there is only one minimal inconsistent set, we have at least 25 contrastive answers
for 5 queries. The total numbers of contrastive answers rise to hundreds (408) for
the inconsistent ontologies which have dozens (51) of minimal inconsistent sets.
For the second group of ontologies, the average numbers of contrastive answers
are stable (around 3). There appear to be a reasonable number, and reasonably
constant number, of contrastive answers per query across the tested ontologies
(1-5). Moreover, note that the total number of contrastive answers will be at
least doubled at by using the exchange and expansion property.

Table 3. Evaluation of number of contrastive answers by using CAC

Ontology Number of queries Total number of CAs Average Number of CAs

MadCow 5 25 5.0

Pizza 8 33 4.1

Economy 160 408 2.55

Transportation 159 200 1.25

LUBM-Lite1+20 57 171 3.0

LUBM-Lite2+40 115 359 3.12

LUBM-Lite4+80 207 631 3.05

LUBM-Lite8+160 387 1157 3.04

LUBM-Lite16+320 703 2126 3.02

Usability. Five researchers score the computed contrastive answers of ontolo-
gies in the group one, based on the two main goals, which are discussed in Section
1, namely, avoiding misleading information and improving effective influence of
the answer. Those two criteria are marked based on a five point scale: 0=value-
less, 1=little value, 2=some value, 3=average value, 4=high value, and 5=perfect
value. The average scores are listed in the second column and the third column of

A Method of Contrastive Reasoning with Inconsistent Ontologies 13

Table 4. For the degree of avoiding misleading information, the scores range from
3.4 (= “average value”) to 4.2 (= “high value”). That means that the contrastive
answers are considered to be somewhat useful to avoid misleading information
for the four ontologies in our test. For the degree of improving effective influence,
they have a very similar range, showing the answers to be somewhat useful for
improving effective influence. The fact that all the scores in our small experiment
are > 3 indicates that the approach of contrastive reasoning might indeed be
useful for reasoning with inconsistent ontologies.

Table 4. Evaluation of value of contrastive answers

Ontology
Average value on

avoiding misleading information improving effective influence

MadCow 4.2 4.0

Pizza 3.6 3.8

Economy 3.4 3.5

Transportation 3.7 3.5

Run-Time Performance. All the experiments are carried out on an ordinary
PC (with a 2.60 GHz Pentium-4 processor and 2GB of physical memory, where
the maximum Java heap size was set to 1280MB for applying Pellet). The max-
imal, minimal and average computation time (in seconds) for a query by using
the CAC approach are shown in columns 2, 3 and 4 of Table 5.

The experimental results show that for all test ontologies in the first group, the
CAC computation time for computing contrastive answers for a query is limited
to a small number of seconds. The maximal computation time is just a few
seconds (1.1s), the minimal computation time goes even to several milliseconds
(0.007s), and the average computation time is less than one second (0.26s). For
the large ontologies in the second group, the minimal computation time is only
one second, the maximal computation time is less than several minutes when
there are millions of axioms in the ontologies, and the average computation time
is less than dozens of seconds.

It shows that the calculation of contrastive answers by using the CAC ap-
proach does not significantly increase the computational cost. Thus, it is an
efficient extension to the existing reasoners with inconsistent ontologies.

4.3 Discussion

Contrastive answers are related with minimal inconsistent sets. One contrastive
reasoning method is to calculate all minimal inconsistent sets in the inconsistent
ontology (offline) firstly, then compute contrastive answers from these minimal
inconsistent sets. In this paper, we use the CAC method for several reasons: i)
the calculation of all minimal inconsistent sets is very difficult for a large scale

14 J. Fang, Z. Huang, and F. van Harmelen

Table 5. Evaluation of the run-time performance of CAC

Ontology Max run time Min run time Average run time

MadCow 0.22s 0.033s 0.12s

Pizza 1.10s 0.015s 0.26s

Economy 0.44s 0.016s 0.08s

Transportation 0.51s 0.007s 0.11s

LUBM-Lite1+20 1.17s 0.50s 0.58s

LUBM-Lite2+40 16.36s 1.00s 1.77s

LUBM-Lite4+80 37.32s 1.00s 3.27s

LUBM-Lite8+160 100.22s 1.00s 7.44s

LUBM-Lite16+320 440.19s 1.00s 19.92s

ontology, as demonstrated in [9, 12], ii) ontologies may be dynamical, especially
in the Web setting, which may make an offline computation meaningless, iii) the
CAC method can obtain a large amount of contrastive answers with a little cost,
as shown in the experiments.

It is worth pointing out that algorithm 2 is an incomplete method, i.e., it
may not find a MIS which includes the specific α although the MIS exists in
the inconsistent set. The reason why we use it instead of a complete method lies
in the complexity of the complete one. Generally, the complete method needs
to compute all MIS s gradually until finding the required one, which is an NP-
hard problem. In fact, we have already carried out some experiments to perform
contrastive reasoning by using a complete MIS calculation method, the results
show that the subprogram for calculating the specific MIS would not termi-
nate in several hours for some queries with the Economy and Transportation
ontologies. Hence, it is impractical.

Contrastive reasoning with DL ontologies can be extended by considering an-
other kind of inconsistency (incoherence [13]), i.e., there exists an unsatisfiable
named concept in the ontology. Incoherence is very important as many classi-
cal inconsistencies are caused by it, e.g., concept assertions of an unsatisfiable
concept. In order to deal with incoherence, we need to consider it as well as
the classical inconsistency when checking inconsistency in contrastive reasoning
with DL ontologies.

5 Related Work

McGill and Klein address the differences in the use of covariation information
implied by contrastive reasoning, which involves comparing the target episode
to contrasting background instances [3]. Francez proposes the notion of bilogic
as a logical treatment of a contrastive conjunction such as ‘but’, and argues
that ordinary logics are not sufficient to express the contrastive nature of ‘but’,
because of the neutral conjunction (‘and’) in classical logics [2]. Based on the
contrastive operators proposed by Francez, a modal approach to contrastive logic
is presented in [1].Their contrastive logic is actually a simple modal logic which
is an extension to the well-known S5 logic with Francez’s contrastive operator.

A Method of Contrastive Reasoning with Inconsistent Ontologies 15

Default reasoning [14] is somehow similar to contrastive reasoning. It can be con-
sidered as a kind of reasoning service where the consequences may be derived only
due to lacking evidence of the contrary. However, contrastive reasoning is different
from default reasoning, because our approach is based on reasoning with inconsis-
tent ontologies, whereas default reasoning is based on a non-monotonic logic.

6 Conclusions and Future Work

We have presented a general approach for answering queries over inconsistent
ontologies by using contrastive reasoning. It is more practical for reasoning with
inconsistent ontologies, as it provides not only an original answer, but also more
relevant and maybe surprising answers. We have proved that obtaining con-
trastive answers can be achieved by a slight extension to the existing approach for
reasoning with inconsistent ontologies. Furthermore, this extension does not sig-
nificantly increase the computational cost. Our proposal has been implemented
in the system CRION. We have reported several experiments with CRION and
have presented an initial evaluation. The tests show that contrastive reasoning
is useful and promising for reasoning with inconsistent ontologies.

There is a lot of the future research to be done. Here are just some of them:

– Contrastive Answer by Logical Consequence. As discussed in Section 3, var-
ious strategies for obtaining contrastive answers of the CALC approach will
be very interesting to gain more useful answers.

– Reasoning with contrastive ontologies. In this paper, we have provided con-
trastive answers only at the query language level. We have not yet allowed
to express contrastive conjunctions in the ontology level. Thus, one of the
interesting future works is to reason with inconsistent ontologies that contain
contrastive conjunction axioms such as “but”.

Acknowledgment. This work is supported by the European Commission un-
der the 7th framework programme, Large Knowledge Collider (LarKC) Project
(FP7-215535).

References

[1] Meyer, J.J.C., van der Hoek, W.: A modal contrastive logic: The logic of ’but’.
Annals of Mathematics and Arlificial Intelligence 17, 291–313 (1996)

[2] Francez, N.: Contrastive logic. Logic Journal of the IGPL 3(5), 725–744 (1995)
[3] McGill, A.L., Klein, J.G.: Counterfactual and contrastive reasoning in causal judg-

ment. Journal of Personality and Social Psychology (64), 897–905 (1993)
[4] Fang, J., Huang, Z., van Frank, H.: Contrastive reasoning with inconsistent on-

tologies. In: Proceedings of 2011 IEEE/WIC/ACM International Conference on
Web Intelligence (WI 2011), pp. 191–194 (2011)

[5] Huang, Z., van Harmelen, F., ten Teije, A.: Reasoning with inconsistent ontologies.
In: Proceedings of IJCAI 2005, pp. 454–459 (2005)

16 J. Fang, Z. Huang, and F. van Harmelen

[6] Haase, P., van Harmelen, F., Huang, Z., Stuckenschmidt, H., Sure, Y.: A Frame-
work for Handling Inconsistency in Changing Ontologies. In: Gil, Y., Motta,
E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 353–
367. Springer, Heidelberg (2005)

[7] Huang, Z., van Harmelen, F.: Using Semantic Distances for Reasoning with Incon-
sistent Ontologies. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 178–194.
Springer, Heidelberg (2008)

[8] Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all Justifications of
OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

[9] Horridge, M., Parsia, B., Sattler, U.: Explaining Inconsistencies in OWL Ontolo-
gies. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 124–137.
Springer, Heidelberg (2009)

[10] Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: KR-MED 2008. CEUR-WS, vol. 410 (2008)

[11] Du, J., Shen, Y.D.: Computing minimum cost diagnoses to repair populated dl-
based ontologies. In: WWW, pp. 565–574 (2008)

[12] Du, J., Qi, G.: Decomposition-Based Optimization for Debugging of Inconsis-
tent OWL DL Ontologies. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS,
vol. 6291, pp. 88–100. Springer, Heidelberg (2010)

[13] Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies,
negations and changes in ontologies. In: Proc. of AAAI 2006, pp. 1295–1300 (2006)

[14] Brewka, G.: Preferred subtheories: An extended logical framework for default
reasoning. In: Proceedings of IJCAI 1989, pp. 1043–1048 (1989)

Parallel ABox Reasoning of EL Ontologies

Yuan Ren1, Jeff Z. Pan1, and Kevin Lee2

1 University of Aberdeen, Aberdeen, UK
2 NICTA, Australia

Abstract. In order to support the vision of the Semantic Web, ontology reason-
ing needs to be highly scalable and efficient. A natural way to achieve scalabil-
ity and efficiency is to develop parallel ABox reasoning algorithms for tractable
OWL 2 profiles to distribute the load between different computation units within
a reasoning system. So far there have been some work on parallel ABox reasoning
algorithms for the pD* fragment of OWL 2 RL. However, there is still no work
on parallel ABox reasoning algorithm for OWL 2 EL, which is the language for
many influential ontologies (such as the SNOMED CT ontology). In this paper,
we extend a parallel TBox reasoning algorithm [5] for ELHR+ to parallel ABox
reasoning algorithms for ELH⊥,R+, which also supports the bottom concept so
as to model disjointness and inconsistency. In design of algorithms, we exploit
the characteristic of ABox reasonings to improve parallelisation and reduce un-
necessary resource cost. Our evaluation shows that a naive implementation of
our approach can compute all ABox entailments of a Not-Galen− ontology with
about 1 million individuals and 9 million axioms in about 3 minutes.

1 Introduction

Ontologies are the knowledge infrastructures of the Semantic Web and many intelligent
systems. In order to support the vision of the Semantic Web, ontology reasoning ser-
vices need to be highly scalable and efficient. The modern ontology language standard,
the W3C OWL Recommendation, is based on (different) description logics (DLs). In
the last decades, DL reasoning technologies have been developed to support inference
with ontologies. Well-optimised DL reasoning systems, such as FaCT++1, HermiT2,
Pellet3, CEL4, CB5 and TrOWL6, have been implemented with different reasoning tech-
nologies. So far, these systems are designed for a single computation core. Reasoning
is performed sequentially and can not be parallelised.

A natural way to achieve scalability and efficiency is to develop parallel ABox rea-
soning algorithms for tractable OWL 2 profiles, such as OWL 2 EL and OWL 2 RL, that
can distribute the load between different computation units within a reasoning system:

1 http://owl.man.ac.uk/factplusplus/
2 http://hermit-reasoner.com/
3 http://clarkparsia.com/pellet/
4 http://lat.inf.tu-dresden.de/systems/cel/
5 http://code.google.com/p/cb-reasoner/
6 http://trowl.eu/

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 17–32, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://owl.man.ac.uk/factplusplus/
http://hermit-reasoner.com/
http://clarkparsia.com/pellet/
http://lat.inf.tu-dresden.de/systems/cel/
http://code.google.com/p/cb-reasoner/
http://trowl.eu/

18 Y. Ren, J.Z. Pan, and K. Lee

One direction is to perform parallel reasoning with a cluster of multiple computer
nodes (or simply, peers). In Marvin [9], peers use a divide-conquer-swap strategy for
RDFS inference. Weaver and Handler propose a parallel RDFS inference engine [18];
peers use an ABox partitioning approach to RDFS inference. In SAOR [4], peers use
optimised template rules for join-free inference in pD* [15]. In DRAGO [12], peers
performs OWL DL reasoning under the setting of Distributed Description Logics [2],
which support local reasoning at the price of sacrificing expressiveness in the links be-
tween local models. A distributed resolution algorithm for ALC was proposed in [10].
Different from the aforementioned work where each peer has the same capability, in this
algorithm each peer is responsible for inferences for different types of literals, making
certain peer(s) become potential bottleneck and a single-point-of-failure. This issue is
addressed by the authors when they extend their algorithm forALCHIQ [11]. MapRe-
duce [3] has also been adopted to support ABox reasoning in RDFS [17], pD* [16] as
well as justifications in pD* [19], and TBox reasoning in EL+ [7] (there is no imple-
mentation for the EL+ case yet).

Another direction is to perform parallel reasoning with multiple computation cores
(or simply, workers) in a single computer. Soma and Prasanna [13] propose to use
data-partitioning and rule-partitioning in their parallel algorithms for pD*. Liebig and
Müller [6] exploit the non-determinism introduced by disjunctions or number restric-
tions in the SHN tableau algorithm so that multiple workers can apply expansion rules
on independent alternatives. Similarly, Meissner [8] proposes parallel expansions of
independent branchings in an ALC tableau and experimented with 3 different strate-
gies. Aslani and Haarslev [1] propose a parallel algorithm for OWL DL classification.
Recently, Kazakov et al. [5] presented a lock-free parallel completion-based TBox clas-
sification algorithm for ELHR+.

As discussed above, there have been work on parallel ABox reasoning for the pD*
fragment of OWL 2 RL. However, there is still no work on parallel ABox reasoning al-
gorithm for OWL 2 EL, in which many influential ontologies (such as the SNOMED CT
ontology) are written. In this paper, we extend a parallel TBox reasoning algorithm [5]
for ELHR+ to a parallel and lock-free ABox reasoning algorithm for ELH⊥,R+, which
also supports the bottom concept so as to model disjointness and inconsistency. We ex-
ploit the different characteristic of ABox reasoning from TBox reasoning and optimise
the design of completion rules and algorithms accordingly to improve parallelisation
and reduce unnecessary resource cost. Particularly, we parallelise the initialisation of
algorithms, separate TBox and ABox saturation, and streamline the processing of each
axiom in each worker. Our evaluation shows that a naive implementation of our ap-
proach can handle combined complex TBox and large ABox efficiently.

The remainder of the paper is organised as follows: In Sec. 2 we introduce back-
ground knowledge of DLs ELHR+ and ELH⊥,R+, and the parallel ELHR+ TBox
classification algorithm in [5]. In Sec. 3 we explain the technical challenges , before
presenting the completion rules and parallel ABox reasoning algorithms for ELH⊥,R+

in Sec. 4. We present an implementation of our approach and our evaluation in Sec.5,
before we conclude the paper in Sec. 6.

The proof of all lemmas and theorems are included in our online tech report at
http://www.box.net/shared/mpqxgxydhhl2bpuus5f7.

Parallel ABox Reasoning of EL Ontologies 19

2 Preliminary

2.1 The ELHR+ and ELH⊥,R+ DLs

A signature of an ontologyO is a tripleΣO = (CNO,RNO, INO) consisting of three
mutually disjoint finite sets of atomic concepts CNO, atomic rolesRNO and individu-
als INO . Given a signature, complex concepts in ELH⊥,R+ can be defined inductively
using the ELH⊥,R+ constructors as in Table 1. ELHR+ supports all ELH⊥,R+ con-
structors except⊥. Two concepts C andD are equivalent if they mutually include each
other, denoted byC ≡ D. An ontologyO = (T ,A) consists of a TBox T and an ABox

Table 1. ELH⊥,R+ Syntax and Semantics

Concepts:
atomic concept A AI

top � ΔI

bottom ⊥ ∅
conjunction C �D CI ∩DI

existential restriction ∃r.C {x|∃y.〈x, y〉 ∈ rI and y ∈ CI}
Roles:

atomic role r rI

TBox Axioms:
general concept inclusion (GCI): C � D CI ⊆ DI

role inclusion (RI): r � s rI � sI

role transitivity: Trans(t) tI × tI ⊆ tI

ABox Axioms:
class assertion: A(a) aI ∈ AI

role assertion: r(a, b) 〈aI , bI〉 ∈ rI

individual equality: a
.
= b aI = bI

individual inequality: a ˙�=b aI �= bI

A, which are finite sets of TBox axioms and ABox axioms, respectively. ELH⊥,R+ al-
lows all axioms listed in Table 1. ELHR+ allows all except individual inequalities.

An interpretation I is a pair (ΔI , �I) where ΔI is a non-empty set and �I is a
function that maps each atomic concept A to a subset AI ⊆ ΔI , each atomic role
r to a binary relation rI ⊆ ΔI × ΔI and each individual a to an object aI ∈ ΔI .
Interpretation function �I can be extended to complex concept as shown in Table 1.

An interpretation I is a model of an ontology O, written I |= O, if it satisfies all
axioms of O as shown in the lower part of Table 1. An axiom α is entailed by an
ontology O, written O |= α, iff all models of O satisfy α. A concept C is satisfiable
w.r.t. an ontology O if there exists some model I of O such that CI �= ∅. Given an
ontologyO, we use �∗

O to represent the relfexive transitive closure of RIs. It is easy to
see that in an ELHR+/ ELH⊥,R+ ontology, all of such �∗

O relations can be computed
in polynomial time w.r.t. the size of O.

In ABox reasoning, we are particularly interested in finding all atomic types and
relations of all individuals, i.e. finding all A(a) s.t. a ∈ INO , A ∈ CNO , O |= A(a)

20 Y. Ren, J.Z. Pan, and K. Lee

and all r(a, b) s.t. a, b ∈ INO , r ∈ RNO and O |= r(a, b). We call such a reasoning
task ABox classification. Computing and maintaining ABox classification results can be
very useful for efficient on-line instance retrieval and/or query answering.

2.2 Parallel TBox Classification of ELHR+ Ontologies

Given an ontology O, TBox classification is a reasoning task that computes all inclu-
sions over atomic concepts in O. Kazakov et. al [5] proposed an approach to paral-
lel TBox classification for ELHR+. They devise a set of completion rules as follows,
where D → E is used to denote the special form of GCIs where D and E are both
existential restrictions. Given an ELHR+ ontology O that has no ABox, these rules
infer C � D iff O |= C � D for all C and D such that C � C ∈ S and D occurs in
O (Theorem 1 of [5]), where S is the set of axioms closed under the following inference
rules.

R�
C � D

C � E
: D � E ∈ O

R−
�

C � D1 �D2

C � D1;C � D2

R−
∃
C � ∃R.D
D � D

R+
	
C � C

C � � : � occurs in O

R+
�
C � D1, C � D2

C � D1 �D2
: D1 �D2 occurs in O

R+
∃

C � D

∃s.C → ∃s.D : ∃s.D occurs in O

RH
D � ∃r.C, ∃s.C → E

D � E
: r �∗

O s

RT
D � ∃r.C, ∃s.C → E

∃t.D → E
: r �∗

O t �∗
O s, T rans(t) ∈ O

The completion rules are designed in a way that all premises of each rule have a com-
mon concept (the conceptC in each rule), which is called a context of the corresponding
premise axioms. Each context maintains a queue of axioms called scheduled, on which
some completion rule can be applied, and a set of axioms called processed, on which
some completion rule has already been applied. An axiom can only be included in the
scheduled queues and/or processed sets of its own contexts. To ensure that multiple
workers can share the queues and sets without locking them, they further devised a con-
currency mechanism in which: (i) each worker will process a single context at a time
and vice versa; (ii) the processing of all axioms in the scheduled queue of a context
requires no axioms from the processed sets of other contexts. To realise all these, all
contexts with non-empty schedules are arranged in a queue called activeContexts. A
context can be added into the activeContexts queue only if it is not already in the queue.

Here are the key steps of the parallel TBox algorithm:

Parallel ABox Reasoning of EL Ontologies 21

1. Tautology axiom A � A for each A ∈ CNO is added to the scheduled queues of
A. All active contexts are added into the queue of activeContexts.

2. Every idle worker always looks for the next context in the activeContexts queue
and processes axioms in its scheduled queue.
(a) Pop an axiom from the scheduled queue, add it into the processed set of the

context.
(b) Apply completion rules to derive conclusions.
(c) Add each derived conclusion into the scheduled queue of its corresponding

contexts, which will be activated if possible.

Before we extend the parallel TBox reasoning algorithm to support ABox reasoning in
Sec. 4, we first discuss the challenges to dealt with in parallel ABox reasoning.

3 Technical Challenges: Parallel ABox Reasoning

When we design parallel ABox classification algorithms, we need to consider the char-
acteristic of ABox classification that distinguish it from TBox classification — the num-
ber of individuals is often much larger than the number of concepts and roles.

A naive way of doing ABox classification is to internalise the entire ABox into TBox
(i.e., by converting assertions of the form C(a) into {a} � C and R(a, b) into {a} �
∃R.{b}) and treat the internalised “nominals” as ordinary atomic concepts with the
TBox classification algorithm. This is inefficient due to redundant computations. For
example, axiom {a} � ∃r.C has two contexts {a} andC. Thus this axiom will be added
into the scheduled queues of both {a} andC. In contextC, this axiom will be saved into
the processed set of C and further retrived as the left premise of Rule RH and/or RT ,
for some future right premise ∃s.C → E. However our target language ELH⊥,R+ does
not support nominals. Therefore it is unnecessary to maintain {a} � ∃r.C in context
C because any corresponding right premise ∃s.C → E will not contain any nominal,
hence it can always be computed independently from (or before) the derivation of {a} �
∃r.C. This provides means to optimise reasoning because the concept hierarchies and
RI closures will be static when doing ABox reasoning (cf. Sec 4.2).

Furthermore, it is important to optimise the seemingly trivial parts, which could be-
come non-trivial due to the large number of individuals, of the algorithm in order to
speed up the reasoning. Particularly:

1. Instead of initialising the contexts in a sequential manner one should parallelise this
process in order to gain further efficiency (cf. Sec 4.3).

2. When applying completion rules to derive conclusions, as described by steps 2 at
the end of the last section, a reasoner usually needs to check the forms of input ax-
ioms, decide the applicable rules, check the forms of conclusion axioms, etc. Some
of the checking could be skipped, as they are all dependent thus can be stream-
lined (cf. Sec 4.4).

3. After derivation, the conclusions are maintained in a set, and then immediately
retrieved to get contexts. All retrieved contexts are also maintained in a set, and then
immediately retrieved for activation. One should be able to skip such save/retrieve
steps and directly use the conclusions and their contexts given that the forms of
conclusions are known to the reasoner (cf. Sec 4.4).

22 Y. Ren, J.Z. Pan, and K. Lee

4. When an axiom is added into the scheduled queue of a context, the worker needs
to activate this context for further processing. However if the context is the context
currently under processing of the worker, such activation can be skipped. We only
need to activate a context if we do not know it is the same as the current context
(cf. Sec 4.4).

4 Approach

In this section we present parallel TBox and ABox classification algorithms for
ELH⊥,R+. We first present the new completion rules and then the algorithms.

4.1 TBox Completion Rules

We first extend the ELHR+ TBox completion rules to support the bottom concept with
the following rule for the ⊥ concept:

R⊥
D � ∃r.C, C � ⊥

D � ⊥

In what follows, we call the set containing the above rule and the ELHR+ rules in
Sec. 2.2 the R rule set, which is sound and complete for ELH⊥,R+ classification:

Lemma 1. Let S be any set of TBox axioms closed under the R rule set, then C � D
iff C � ⊥ ∈ S or C � D ∈ S for any C and D such that C � C ∈ S, D occurs in O
and ⊥ � ⊥ ∈ S if ⊥ occurs in O.

With the R rules we can perform TBox reasoning:

Definition 1. (TBox Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontology,
its TBox completion closure, denoted by ST , is the smallest set of axioms closed under
the rule set R such that:

1. for all A ∈ CNO, A � A ∈ ST ;
2. ⊥ � ⊥ ∈ ST if ⊥ occurs in O.

According to Lemma 1, we haveA � C ∈ ST orA � ⊥ ∈ ST for anyA and C where
A is an atomic concept and C occurs in T . This realises TBox classification.

4.2 ABox Completion Rules

Now we present the ABox completion rules for ELH⊥,R+. Although ELH⊥,R+ does
not support nominals ({a}), we still denote individuals with nominals since this helps
simplify the presentation: (i) ABox rules are more readable, as they have similar syn-
tactic forms to the TBox ones, and (ii) some of the ABox rules can be unified. More
precisely, we establish the following mappings as syntactic sugar:

C(a)⇔ {a} � C
a
.
= b⇔ {a} ≡ {b}
a ˙�=b⇔ {a} � {b} � ⊥

r(a, b)⇔ {a} � ∃r.{b}

Parallel ABox Reasoning of EL Ontologies 23

Obviously, these mappings are semantically equivalent. In the rest of the paper, without
further explanation, we treat the LHS and RHS of each of the above mappings as a
syntactic variation of one another. Together with the mapping, all ABox axioms in the
originalO can be represented in a similar form of TBox axioms. Note that, axioms such
as C � {b} and C � ∃r.{b} will not be in the ontology since they are invalid ABox
axioms in ELH⊥,R+.

We present the ABox completion rules as follows — we call them the AR rules,
which should be applied after a complete closure ST is constructed from the R rules.
In contrast to the R rules, the AR rules contain concepts D(i) and E that can take
multiple forms including nominals. Thus the mapping between ABox and TBox ax-
ioms allows us to describe the rules in a more compact manner which would otherwise
require additional rules to achieve the same purpose.

AR�
{a} � D

{a} � E
: D � E ∈ ST ∪ A

AR∗
H
{a} � ∃r.D
{a} � E

: ∃s.D → E ∈ ST , r �∗
O s

AR∗
T

{a} � ∃r.D
∃t.{a} → E

: ∃s.D → E ∈ ST , r �∗
O t �∗

O s, T rans(t) ∈ O

AR−
�

{a} � D1 �D2

{a} � D1; {a} � D2

AR+
�
{a} � D1, {a} � D2

{a} � D1 �D2
: D1 �D2 occurs in O

AR+
∃

{a} � D

∃s.{a} → ∃s.D : r �∗
O s, ∃r.D occurs in O

AR⊥
{b} � ∃r.{a}, {a} � ⊥

{b} � ⊥

AR∗
⊥
{a} � ∃r.D
{a} � ⊥ : D � ⊥ ∈ ST

ARH
{b} � ∃r.{a}, ∃s.{a} → E

{b} � E
: r �∗

O s

ART
{b} � ∃r.{a}, ∃s.{a} → E

∃t.{b} → E
: r �∗

O t �∗
O s, T rans(t) ∈ O

ARR
H
{b} � ∃r.{a}
{b} � ∃s.{c} : r �∗

O s, a = c or {a} � {c} ∈ A

The AR rules deserve some explanations:

– There are clear correspondences between the R rules and AR rules. For example,
AR� is an ABox counterpart of R� except that the context is explicitly a nominal,
and TBox results are used as side conditions. The last rule RR

H is an additional rule
to handle relations.

24 Y. Ren, J.Z. Pan, and K. Lee

– Note that directly applying the R rules together with the AR rules could intro-
duce unnecessary performance overheads such as axiom scheduling, processing
and maintenance as we discussed in Sec. 3. In our approach, we separate TBox
reasoning from ABox reasoning, and use TBox reasoning results as side conditions
in ABox rules. This helps reduce memory usage and computation time.

Now we show below with an example on how the two-stage ABox reasoning works in
operation. Suppose we have the following ontology:

PlanarStructure � PhysicalStructure (1)

PhysicalStructure � GeneralisedStructure � ∃hasCountability.discrete (2)

PlanarStructure ≡ ∃hasShape.(∃hasAS.Laminar � Shape) (3)

{a} � ∃hasShape.{b} (4)

{b} � ∃hasAS.{c} (5)

{c} � Laminar (6)

{b} � Shape (7)

We can see that (1)-(3) are TBox axioms and (4)-(7) are ABox axioms. Note that the in-
put contains the assertions hasShape(a, b), hasAS(b, c), Laminar(c) and Shape(b),
corresponding to (4)-(7) respectively. This conversion is expected to be performed be-
fore execution of the completion rules.

In the first stage, we compute the saturation of the TBox axioms (i.e., (1)-(3)) by
applying the R rules. As an example, we illustrate how the axiom below is derived:

∃hasShape.(∃hasAS.Laminar � Shape) � GeneralisedStructure (8)

To begin, we apply R� on (1) and (3) to get (9), then again on (2) and (9) to get (10):

∃hasShape.(∃hasAS.Laminar � Shape) � PhysicalStructure (9)

∃hasShape.(∃hasAS.Laminar � Shape) � GeneralisedStructure

� ∃hasCountability.discrete (10)

Lastly, we apply the R−
� -rule to (10) to get (8). Similarly, we infer all other TBox

axioms by applying the completion rules repeatedly. Once saturation of the TBox rules
is completed and the closure ST is constructed, we use the output ST from the first
stage as part of input to the second stage to compute the saturation of the ABox axioms.
Below, we demonstate how the ABox axiom {a} � GeneralisedStructure is inferred
through the ABox rules. We start by applying AR+

∃ on (6) and we get:

∃hasAS.{c} → ∃hasAS.Laminar (11)

From (5) and (11) we apply the ARH-rule to infer:

{b} � ∃hasAS.Laminar (12)

Parallel ABox Reasoning of EL Ontologies 25

We then apply AR+
� on (12) and (7) to obtain the following:

{b} � ∃hasAS.Laminar � Shape (13)

Similarly, we apply AR+
∃ on (13), followed by ARH on (4)-(14):

∃hasShape.{b} → ∃hasShape.(∃hasAS.Laminar � Shape) (14)

{a} � ∃hasShape.(∃hasAS.Laminar � Shape) (15)

Finally, we use the AR�-rule on (15) and (10) to get {a} � GeneralisedStructure.
It can be converted back into assertion form GeneralisedStructure(a).

Definition 2. (Ontology Completion Closure) LetO = (T ,A) be an ELH⊥,R+ ontol-
ogy, its ontology completion closure, denoted by S, is the smallest set of axioms closed
under the AR rule set such that:

1. ST ⊆ S;
2. A ⊆ S (axioms mapped as elaborated at the beginning of this section);
3. for all a ∈ INO , {a} � {a} ∈ XO , and {a} � � if � occurs in O;

Similar to the R rules, the above rules are also complete, sound and tractable. The
soundness and tractability of rules are quite obvious. The completeness on ABox clas-
sification can be shown by the following Theorem:

Theorem 1. For any ELH⊥,R+ ontology O = (T ,A), we have either there is some
{x} � ⊥ ∈ S, or

1. O |= D(a) only if {a} � D ∈ S for D occurs in O;
2. O |= r(a, b) only if {a} � ∃r.{b} ∈ S for r ∈ RNO.

As we can see, the AR rules also preserve the feature that all premises of each rule
have a same common part as context. Therefore, they still enjoy the lock-free feature in
reasoning. In later sections, we will further elaborate this point.

4.3 Parallel Algorithms

In this section, we present the parallel algorithms corresponding to the ELH⊥,R+ com-
pletion rules. We reuse some notions such as context, activeContexts queue, scheduled
queue and processed set from the original TBox algorithm for ELHR+ presented in [5]
to realise the lock-free property. Most importantly, we need to make refinements to tai-
lor the algorithm for ELH⊥,R+ ABox reasoning. Here is a summary on how to deal
with the challenges mentioned in Sec. 3 :

1. In our algorithm, reasoning is separated into two stages: the first stage is sat-
urate(TBoxInput), where contexts are ELH⊥,R+ concepts and the R rules are
applied. The second is saturate(ABoxInput), where contexts are the (mapped) nom-
inals and the AR rules are applied. See Algorithm 1 for details of the saturate()
method.

26 Y. Ren, J.Z. Pan, and K. Lee

2. Different from the TBox saturate algorithm in [5], in our algorithm, we parallelise
the initialisation (line 3-8 of Algorithm 1) to improve efficiency. As mentioned in
Sec. 3, initialisation could become non-trivial due to the large number of individu-
als. The introduction of parallelisation could help speed up these parts.

The revised saturation algorithm (Algorithm 1) is presented as follows. The saturation
of an ontology is realised by first performing saturation of the TBox, the output of
which (i.e., ST) is then used in the saturation of the ABox. The saturation of the ABox
yields S which satisfies Theorem 1. All necessary tautology axioms must be added to
the input prior to saturation. For TBox, we add axioms of the form C � C into ST for
all concepts C such that C ∈ CNO ∪{⊥}. Similarly, for ABox we add {a} � {a} into
S for all individuals a ∈ INO.

Algorithm 1. saturate(input): saturation of axioms under inference rules

Input: input (the set of input axioms)
Result: the saturation of input is computed in context.processed

1 activeContexts ← ∅;
2 axiomQueue.addAll(input);
3 loop
4 axiom ← axiomQueue.pop();
5 if axiom = null then break;
6 for context ∈ getContexts(axiom) do
7 context.scheduled.add(axiom);
8 activeContexts.activate(context);

9 loop
10 context ← activeContexts.pop();
11 if context = null then break;
12 loop
13 axiom ← context.scheduled.pop();
14 if axiom = null then break;
15 process (axiom);

16 context.isActive ← false;
17 if context.scheduled �= ∅ then activeContexts.activate(context);

In the saturation (Algorithm 1), the activeContexts queue is initialised with an
empty set (line 1), and then all input axioms are added into an axiomQueue (line 2).
After that, two main loops (lines 3-8 and lines 9-17) are sequentially parallelised.
In the first main loop, multiple workers independently retrieve axioms from the ax-
iomQueue (line 4), then get the contexts of the axioms (line 6), add the axioms into
corresponding scheduled queues (line 7) and activate the contexts.

In the first loop of Algorithm 1 we need to get contexts of a given axiom (line 6),
by calling the getContexts() method (Algorithm 2). As explained earlier, for TBox and
ABox reasoning, the contexts are different. In ABox reasoning, only “nominals” can
be contexts. Note that the getContexts() method is only used in Algorithm 1 during

Parallel ABox Reasoning of EL Ontologies 27

Algorithm 2. getContext(axiom)
Input: an axiom
Result: the set of contexts that needs to be activated for the input axiom

1 result ← ∅;
2 if axiom contains no nominal then // contexts for R rules
3 if axiom match C � D then result.add(C);
4 if axiom match D � ∃r.C then result.add(C);
5 if axiom match ∃s.C → E then result.add(C);

6 else // contexts for AR rules
7 if axiom match {a} � C then result.add ({a});
8 if axiom match C � ∃r.{a} then result.add ({a});

9 return result;

initialisation. The process() method (line 15 in Algorithm 1, to be discussed in Sec. 4.4),
does not call the getContexts() method but directly get the contexts based on the form
of input axiom. This is also different from the parallel TBox algorithm for ELHR+

presented in [5].
The activation of a context (Algorithm 3) is the same as in the TBox algorithm for

ELHR+ [5]: an atomic boolean value isActive is associated with each context to indi-
cate whether the context is already active. A context is added into the activeContexts
queue only if this value is false, which will be changed to true at the time of activation.
This procedure continues until the axiomQueue is empty.

Algorithm 3. activeContexts.activate(context)
Input: the context to be activated

1 if context.isActive.compareAndSwap(false, true) then
2 activeContexts.put(context);

In the second main loop of Algorithm 1, multiple workers independently retrieve
contexts from the activeContexts queue (line 10) and process its scheduled axioms (line
15). Once context.scheduled is empty, context.isActive is set to false (line 16). A
re-activation checking is performed (line 17) in case other workers have added new
axioms into context.scheduled while the last axiom is being processed (between line
14 and line 16). This procedure will continue until the activeContexts queue is empty.

4.4 Cascading Processing

In this subsection, we describe the details of the process() method, which covers items
2.(a), 2.(b), 2.(c) at the end of Sec. 2.2. As mentioned in Sec. 3, it is important to
optimise the seemingly trivial parts, which could become non-trivial due to the large
number of individuals. To address many of the issues mentioned in Sec. 3, we present a
cascading processing procedure (Algorithm 4).

28 Y. Ren, J.Z. Pan, and K. Lee

Algorithm 4. process(axiom) for context {a}
Input: the axiom to be processed

1 if axiom match {a} � D then
2 if D ∈ {a}.subsumptions then break;
3 {a}.subsumptions.add (D);

// For rule AR�
4 for E ∈ (D.subsumptions ∪D.originalTypes) do
5 if E �∈ {a}.subsumptions then
6 {a}.scheduled.add({a} � E);
7 if E match ∃r.{b} then
8 {b}.scheduled.add({a} � E);
9 activeContexts.activate({b});

// similarly for rules AR∗
H, AR∗

T, AR−
�, AR+

�, AR+
∃ ,

AR∗
⊥ and AR⊥ right premise

10 if axiom match {b} � ∃r.{a} then
11 if 〈r, {b}〉 ∈ {a}.predecessors then break;
12 {a}.predecessors.add(〈r, {b}〉);
13 if ⊥ ∈ {a}.subsumptions \ {b}.subsumptions then
14 {b}.scheduled.add({b} � ⊥);
15 activeContexts.activate({b});

// similarly for rules ARH, left premise, ART, left
premise and ARR

H

16 if axiom match ∃s.{a} → E then
17 if 〈s, E〉 ∈ {a}.implications then break;
18 {a}.implications.add(〈s, E〉);
19 for r ∈ ({a}.predecessors.keySet() ∩ s.subRoles) do
20 for {b} ∈ {a}.predecessors.get(r) do
21 if E �∈ {b}.subsumptions then
22 {b}.scheduled.add ({b}� E);

// similar as line 7-9

// similarly for rules ART, right premise

23 return result;

We match the form of input axiom once (line 1) and check whether it has been pro-
cessed before (line 2); if not it will be added into the processed set (line 3). Based on
the form of axiom, applicable completion rules can be determined. Meanwhile, check-
ing if the conclusion is already in corresponding context’s processed set can be per-
formed (line 5). Once a completion rule has been applied, the conclusion axioms and
their forms are determined. Once a conclusion is derived, its contexts and whether they
are definitely the same as the current context are determined. The conclusion axioms
can directly be added into corresponding scheduled queues (line 6 and 8). For the

Parallel ABox Reasoning of EL Ontologies 29

brevity of the paper, we only present the processing of some ABox axioms. Processing
of TBox axioms and the other forms of ABox axioms can be done in a similar manner.

In Algorithm 4 certain axioms are maintained by several indexes to facilitate more
efficient access. Most of them are the same as in the parallel TBox algorithm for
ELHR+ [5]. The additional one is D.originalT ypes, which is used to maintain origi-
nal ABox axioms:

D.originalT ypes = {E|D � E ∈ A},
r.subRoles = {s|s �∗

O r},
C.subsumptions = {D|C � D ∈ processed},
C.predecessors = {〈r,D〉|D � ∃r.C ∈ processed},
C.implications = {〈r, E〉|∃r.C → E ∈ processed},

5 Evaluation

We implemented our algorithms in our PEL reasoner (written in JAVA). Inspired by the
ELK reasoner [5] , we also use thread-safe datatypes ConcurrentLinkedQueue
for all the queues, including activeContexts, axiomQueue and scheduled. And we
use AtomicBoolean for the isActive value of a context thus its compareAndSwap
operation is atomic and thread-safe. The indexes we used in Algorithm 4 are imple-
mented with normal HashSet and HashMap. We use OWL API to parse ontologies.

To compare our system against sequential reasoners we use the Amazon Elastic Com-
puter Cloud (EC2) High-CPU Extra Large Instance 7. It has 7 GB of memory and 8 cores
with 2.5 EC2 compute units each, where each EC2 unit “ provides the equivalent CPU ca-
pacity of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor”. The OS is 64-bit Linux
platform and running JVM version 1.6.0 20 with 7 GB memory. We run our implemen-
tation with sequential reasoners Pellet 2.2.2, FaCT++ 1.5.2, HermiT 1.3.2 and (the OWL
2 EL reasoner in) TrOWL 0.8 because they (except HermiT) implemented the EL algo-
rithm and support ABox reasoning. Other reasoners, including dedicated EL reasoners
such as the OWL API-compliant CEL, jCEL and Snorocket, etc. and consequence-driven
reasoner CB and ELK, do not fully support ABox reasoning yet.

Our test cases include a slightly simplified real world ontology VICODI, and a real
world TBox NotGalen with generated ABox 8. The VICODI 9 ontology is developed
to represent the history of Europe. It has a simple TBox and moderate number of in-
dividuals. NotGalen− is extracted from an earlier version of Galen 10 by removing
functional role assertions. It contains a moderate-size TBox and no ABox. To populate
the ontology we use the SyGENiA system [14] to generate ABoxes for a small part of
the Galen ontology and we combined the generated ABoxes of different sizes with the
NotGalen− TBox and aligned the namespaces to make reasoning more complicated; in
this way, we have test ontologies NG-1, NG-2, NG-5 etc. Such ABoxes are not com-
pletely random because, as generated by SyGENiA, they cover axioms that can lead to

7 http://aws.amazon.com/ec2/instance-types/
8 Our test ontologies can be found at,
http://www.box.net/shared/qok98u39s9lrmy3ie2n1

9 http://www.vicodi.org/about.htm
10 http://www.opengalen.org/

http://aws.amazon.com/ec2/instance-types/
http://www.box.net/shared/qok98u39s9lrmy3ie2n1
http://www.vicodi.org/about.htm
http://www.opengalen.org/

30 Y. Ren, J.Z. Pan, and K. Lee

all possible sources of incompleteness w.r.t. a TBox and certain query. Being able to
handle such ABoxes means that the reasoner won’t miss any result when dealing with
any real-world ABoxes. The stats of our ontologies are illustrated in the Table 2.

For each ontology, we perform ABox classification, i.e. to compute the atomic types
of all the individuals and the atomic relations between all pairs of individuals. If such
assertion are not “pre-computable” when a reasoner classifies the ontology, we use the
reasoner API functions to retrieve these results to make sure they are computed. The
time shown in our evaluation is the overall computation time. Results of sequential
reasoners reasoners are presented in Table 2. Results of our implementation PEL are
presented in Table 3. The timeout is one hour. Time unit is second.

Table 2. Ontologies and Results of Sequential Reasoners (in sec)

Ontology |CN | |RN| |IN | |A| TrOWL Pellet HermiT FaCT++

VICODI 184 10 29614 114164 2.014 9.971 13.138 timeout
NG-1

2748 413

4236 8008 4.284 210.945 307.93 timeout
NG-2 12161 23976 9.342 757.379 timeout timeout
NG-5 47756 118458 28.947 timeout timeout timeout
NG-8 78899 278365 63.833 timeout timeout timeout
NG-13 97995 665304 143.288 timeout timeout timeout

Table 3. Results of PEL (in sec)

Ontology 1 worker 2 workers 4 workers 6 workers

VICODI 1.136 1.05 1.054 1.059
NG-1 2.339 1.361 1.169 1.069
NG-2 3.025 2.939 2.848 2.77
NG-5 6.427 6.004 5.114 5.125
NG-8 12.604 10.474 9.449 9.75

NG-13 23.609 20.853 16.877 17.539

From the comparison between Table 2 and 3 we can see that PEL is in general faster
than sequential reasoners, especially when more workers are used. PEL is also good
when dealing with combination of complex TBox and large ABox. For example, in the
relatively simpler VICODI ontology, PEL is about 2 times faster than TrOWL, which
is also highly optimised for EL reasoning. While in the more complex NotGalen− on-
tologies with a large ABox, PEL is up to 6 times faster than TrOWL with one worker,
and up to about 8-9 times faster with multiple workers.

To further evaluate the scalability of PEL, we generated a different set of NotGalen−

ontologies with larger numbers of individuals, denoted by NGS-1, NGS-5, NGS-10, etc.
And we use PEL to reason with these ontologies on a EC2 High-Memory Quadruple
Extra Large Instance which has 8 virtual cores with 3.25 EC2 units each and 60 G
memory allocated to JVM. Results are shown in Table 4.

From the comparison between different numbers of workers in Table 3 and Table 4
we can see that multiple parallel workers can indeed improve the reasoning perfor-
mance, even when the ontology contains complex TBox and very large number of indi-
viduals. In general, the improvement is most profound from 1 worker to 2 workers, and

Parallel ABox Reasoning of EL Ontologies 31

Table 4. Results of PEL (in sec) for Scalability Tests

Ontology |IN | |A| 1 worker 2 workers 4 workers 6 workers

NGS-1 4031 8001 1.396 0.977 0.757 0.676
NGS-5 62572 119832 3.81 2.885 2.376 2.341

NGS-10 211408 437637 10.282 8.007 7.04 6.493
NGS-20 596007 1642876 52.753 40.208 40.228 34.507
NGS-30 866136 3542257 108.252 90.72 81.877 77.453
NGS-40 971222 6036910 172.743 146.411 131.536 129.827
NGS-50 995985 9025426 270.806 234.905 189.706 190.303

start to decrease when more workers are involved. With more than 4 workers, the per-
formance may even decrease. We believe one of the potential reasons is that although
the CPU cores can work in parallel, the RAM bandwidth is limited and RAM access is
still sequential. In relatively “light-weight” ABox reasoning with large ABox, the RAM
access will be enormous and very often so that multiple workers will have to compete
for RAM access. This makes memory I/O a potential bottleneck of parallelisation and
wastes CPU cycles. In our algorithm, especially the cascading processing, we have al-
ready tried to reduce unnecessary memory I/O. A better management of memory will
be an important direction of our future work.

6 Conclusion

In this paper we extended early related work to present a parallel ABox reasoning ap-
proach to ELH⊥,R+ ontologies. We have proposed new completion rules and show
that they are complete and sound for ABox reasoning. We have revised the lock-free
saturation procedure with optimisations that take the features of ABox reasoning into
account. Particularly, we separate TBox and ABox reasoning to simplify derivation and
parallise many seemingly trivial steps to improve efficiency and reduce memory access.
Our evaluation shows that ABox reasoning can benefit from parallisation. Even with our
naive implementation, we can outperform highly optimised EL reasoners.

The evaluation results suggested that improving performance with more than 4 work-
ers becomes difficult, which is also observed in [5]. In our future work we will further
investigate its reason and pay special attention on the management of memory.

Acknowledgement. This work is partially funded by the K-Drive and ITA projects. We
would also like to thank reviewers for their very constructive and helpful comments.

References

1. Aslani, M., Haarslev, V.: Parallel tbox classification in description logics –first experimental
results. In: Proceeding of the 2010 Conference on ECAI 2010: 19th European Conference
on Artificial Intelligence, pp. 485–490. IOS Press, Amsterdam (2010)

2. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I.
LNCS, vol. 2800, pp. 153–184. Springer, Heidelberg (2003)

32 Y. Ren, J.Z. Pan, and K. Lee

3. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Commun.
ACM 51, 107–113 (2008)

4. Hogan, A., Pan, J.Z., Polleres, A., Decker, S.: Saor: Template Rule Optimisations for
Distributed Reasoning over 1 Billion Linked Data Triples. In: Patel-Schneider, P.F., Pan,
Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part
I. LNCS, vol. 6496, pp. 337–353. Springer, Heidelberg (2010)

5. Kazakov, Y., Krötzsch, M., Simančı́k, F.: Concurrent Classification of EL Ontologies. In:
Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E.
(eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 305–320. Springer, Heidelberg (2011)

6. Liebig, T., Müller, F.: Parallelizing Tableaux-Based Description Logic Reasoning. In: Meers-
man, R., Tari, Z. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1135–1144. Springer,
Heidelberg (2007)

7. Maier, R.M.F., Hitzler, P.: A mapreduce algorithm for el+. In: Proc. of International Worshop
of Description Logic (DL 2010) (2010)

8. Meissner, A.: Experimental analysis of some computation rules in a simple parallel reasoning
system for the ALC description logic. Applied Mathematics and Computer Science 21(1),
83–95 (2011)

9. Oren, E., Kotoulas, S., Anadiotis, G., Siebes, R., ten Teije, A., van Harmelen, F.: Marvin:
Distributed reasoning over large-scale semantic web data. Web Semant. 7, 305–316 (2009)

10. Schlicht, A., Stuckenschmidt, H.: Distributed resolution for alc. In: Description Logics Work-
shop (2008)

11. Schlicht, A., Stuckenschmidt, H.: Distributed Resolution for Expressive Ontology Networks.
In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 87–101. Springer, Heidelberg
(2009)

12. Serafini, L., Tamilin, A.: DRAGO: Distributed Reasoning Architecture for the Semantic
Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 361–376.
Springer, Heidelberg (2005)

13. Soma, R., Prasanna, V.K.: Parallel inferencing for owl knowledge bases. In: Proceedings of
the 2008 37th International Conference on Parallel Processing, ICPP 2008, pp. 75–82. IEEE
Computer Society, Washington, DC, USA (2008)

14. Stoilos, G., Grau, B.C., Horrocks, I.: How incomplete is your semantic web reasoner? In:
Proc. of AAAI 2010, pp. 1431–1436. AAAI Publications (2010)

15. ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema and
a semantic extension involving the owl vocabulary. J. Web Sem. 3(2-3), 79–115 (2005)

16. Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., Bal, H.: Owl Reasoning with Webpie:
Calculating the Closure of 100 Billion Triples. In: Aroyo, L., Antoniou, G., Hyvönen, E.,
ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS,
vol. 6088, pp. 213–227. Springer, Heidelberg (2010)

17. Urbani, J., Kotoulas, S., Oren, E., van Harmelen, F.: Scalable Distributed Reasoning using
Mapreduce. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 634–649. Springer, Heidelberg
(2009)

18. Weaver, J., Hendler, J.A.: Parallel Materialization of the Finite RDFS Closure for Hundreds
of Millions of Triples. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 682–697. Springer,
Heidelberg (2009)

19. Wu, G., Qi, G., Du, J.: Finding all justifications of owl entailments using tms and mapre-
ducec. In: The ACM Conference on Information and Knowledge Management (2011)

RP-Filter: A Path-Based Triple Filtering

Method for Efficient SPARQL Query Processing

Kisung Kim1, Bongki Moon2, and Hyoung-Joo Kim1

1 Seoul National University, Seoul, Korea
kskim@idb.snu.ac.kr, hjk@snu.ac.kr
2 University of Arizona, Tucson, U.S.A

bkmoon@cs.arizona.edu

Abstract. With the rapid increase of RDF data, the SPARQL query
processing has received much attention. Currently, most RDF databases
store RDF data in a relational table called triple table and carry out
several join operations on the triple tables for SPARQL query process-
ing. However, the execution plans with many joins might be inefficient
due to a large amount of intermediate data being passed between join
operations. In this paper, we propose a triple filtering method called
RP-Filter to reduce the amount of intermediate data. RP-Filter exploits
the path information in the query graphs and filters the triples which
would not be included in final results in advance of joins. We also sug-
gest an efficient relational operator RFLT which filters triples by means
of RP-Filter. Experimental results on synthetic and real-life RDF data
show that RP-Filter can reduce the intermediate results effectively and
accelerate the SPARQL query processing.

Keywords: RDF store, SPARQL query processing, triple filtering, in-
termediate results.

1 Introduction

RDF(Resource Description Framework)[1] is the standard data model recom-
mended by W3C for the sake of describing data in the semantic web. RDF data
is a set of triples(subject, predicate, object) which describe the relationship be-
tween two resources(subject and object). The RDF data forms a graph called
RDF graph which consists of the resources and their relationships. SPARQL[2] is
the standard query language for RDF data and expresses the user’s data needs
as graph patterns. The SPARQL query processing can be viewed as the sub-
graph pattern matching problem for the RDF graph[3]. RDF features flexibility
with little schema restriction and expressive power which can represent graph-
structured data. By virtue of these features, RDF is widely used in many areas.
For example, RDF has been used for the purpose of integrating heterogeneous
databases or publishing data on the web in many areas, e.g. life science[4,5],
open government[6], social networking[7] and multimedia[8].

With the fast growth of RDF data, there has been a lot of research on storing
and querying of RDF data[9,10,11,12]. Most state-of-the-art RDF engines employ

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 33–47, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 K. Kim, B. Moon, and H.-J. Kim

the relational model to store and manipulate RDF data. They store RDF data in
a relation with three columns(S,P,O) which is called a triple table and evalutate
SPARQL queries through a sequence of joins on the triple table. Let us consider
the following SPARQL query.

SELECT ?n1 ?n2 ?n3 ?n4

WHERE {?n1 <p1> ?n2.

?n2 <p2> ?n3.

?n3 <p3> ?n4.}

The above SPARQL query consists of three triple patterns, which form a graph
pattern. The evaluation of the SPARQL query is to find all subgraphs in the
RDF graph matching with the query graph pattern. Fig. 1(a) shows a possible
execution plan for the SPARQL query, which have three scan operators(one
for each triple pattern) and two join operators. Each operator in the execution
plans makes the partially matching fragments for the query graph pattern. For
example, Join1 in Fig. 1(a) produces all the matching fragments for the graph
pattern which consists of the second and the third triple pattern of the SPARQL
query.

This form of the execution plan is widely adopted by many RDF engines
but has a problem that it might generate many useless intermediate results. The
useless intermediate results are the results which are generated by some operators
but not included in the final results of the query. Assume that the numbers in
Table 1 are the result cardinalities for the subgraph patterns included in the
query graph pattern. Join1 in Fig. 1 (a) generates all the matching fragments
for the graph pattern in the third row of Table. 1 and the number of the result
rows is 500,000. However, the number of the final results(the first row in Table.
1) is only 1,000. Consequently, at least 499,000 rows of 500,000 rows become
the useless intermediate results. The cost which are consumed for generating
and processing them is wasted because the useless intermediate results do not
contribute to the query results. And in large-scale RDF dataset, the size of
the intermediate results intends to increase and the overhead for the useless
intermediare results becomes more serious.

(a) (b)

Fig. 1. Execution Plan

RP-Filter: A Path-Based Triple Filtering Method 35

Table 1. Cardinalities of Intermediate Results

Graph Pattern Cardinality

1,000

1,000,000

500,000

Most RDF engines try to reduce these intermediate results by choosing an
execution plan with the optimal join order when compiling the query. For ex-
ample, Fig. 1(b) shows another execution plan whose results are the same with
the Fig. 1(a) but whose join order is different from that of the execution plan
inFig. 1(a). The query optimizer prefers the execution plan in Fig. 1(a) to the
execution plan in Fig. 1(b) because the latter would generate 500,000 more rows
than the former plan. However, as we can see in this example, the execution
plan with the optimal join order could not remove all the useless intermediate
results.

In this paper, we propose a novel triple filtering method called RP-Filter(RDF
Path Filter) to reduce the useless intermediate results effectively and efficiently
using graph-structural informaion of RDF data. RP-Filter provides the list of the
nodes in the RDF graph which are reached by paths with a specific path pattern.
For example, we can obtain the list of nodes which can be reached by paths which
are matching for a path pattern {(?n1, p1, ?n2), (?n2, p2, ?n3)} from RP-Filter.
This node list can be used as filter data to filter the result triples of Scan2 or
Scan3 in Fig. 1(a) and then we can prune the triples which would not be joined
in Join2 in advance. As a result, we can reduce the number of intermediate
results using the path pattern information. Through these node lists, we can
reduce the useless intermediate results effectively for complex SPARQL queries.

RP-Filter utilizes some properties of RDF engines, one of which is that they
store the triples in a sorted order and the scanned triples are also sorted. Many
RDF engines store their triples as sorted because it give many optimization
opportunities. The filtering process of RP-Filter is very efficient and incurs little
overhead to the normal query processing because it utilizes this ordering property
of scanned triples.

We propose the definition of RP-Filter and an relational operator called
RPFLT which filters the input triples using RP-Filter. We also propose a method
to generate an execution plan with the RPFLT operators using heuristic method.
We carried out with several queries on large real-life and benchmark RDF
datasets to evaluate RP-Filter. These results demonstrate that RP-Filter effec-
tively and efficiently reduces the useless intermediate results and consequently
accelerates the SPARQL query evaluation.

36 K. Kim, B. Moon, and H.-J. Kim

2 Related Work

Early RDF systems provide storage systems which use row-oriented RDBMSs
as their back-end storages :e.g like Jena[10] and Sesame[9] (currently, Jena and
Sesame provide also native storage systems which do not use RDBMSs). These
RDBMS-based RDF systems store RDF triples in a triple table and utilize the
query processing modules of RDBMSs when processing RDF queries. However,
RDBMSs are not optimized to store and query the graph-structured RDF data
and have several scalability problems.

SW-Store[11] uses a column-oriented store as its underlying store and propose
the vertical partitioning method. SW-Store partitions the triple table by the
predicate column and shows that the partitioning of the triple table have many
advantages, like reduced I/O costs and the compact storage size. In addition, the
triples are stored as sorted in a column-oriented store so that fast merge joins
can be used when processing a query.

Currently the fastest RDF engine according to the published numbers is RDF-
3X[12]. It stores triples in six clustered indexes redundantly as sorted by six
different orderings(SPO,SOP,PSO,POS,OSP,OPS). RDF-3X can read matching
triples for any type of triple patterns sorted by any ordering using the six in-
dexes. Also RDF-3X uses a block compression techniques which store only deltas
between triples rather than writing actual values. The compression technique re-
duces the size of storage and the number of disk I/O requests needed for reading
triples. RDF-3X generates an execution plan which consists of mainly scan oper-
ators and join operators for a SPARQL query. Each scan operator in an execution
plan scans one of the six indexes and the ordering of scanned triples depends on
which index is used. There are two types of join operators: merge join and hash
join. RDF-3X uses a merge join when the orderings of two input relations are
the same with join variable. Otherwise RDF-3X uses a hash join.

In order to reduce the useless intermediate results, the authors of RDF-3X pro-
pose an RDF-specific sideway information passing technique called U-SIP[13].
It builds a sort of filters while processing an operator of an execution plan and
passes the filters to other operators to avoid generating the useless intermediate
results. U-SIP exploits the pipelined data flow of an execution plan to pass the
filter information. However, it cannot transfer the filter information reversely to
the data flow of the execution plan. As a result, the cases where U-SIP can be
applied are limited by the pipeline-blocking operator like a hash join. Especially,
the execution plan for long path patterns would use many hash joins and U-SIP
could not be very effective in these cases.

3 Preliminary

In this section, we describe RDF data model and SPARQL query model. We
do not cover the entire RDF and SPARQL specification. Rather we deal with a
core fragment of RDF and SPARQL. We do not consider blank nodes, literals
and data types in RDF. For SPARQL, we concentrate on the graph pattern

RP-Filter: A Path-Based Triple Filtering Method 37

(a) RDF Database Graph (b) SPARQL Query Graph

Fig. 2. RDF Database Graph and SPARQL Query Graph

matching of SPARQL, more specifically basic graph patterns[2] which consists
of only conjunctive triple patterns. We also do not consider a join with predicate
or a triple pattern having a variable predicate, as they are rarely used.

We assume the existence of two pairwise disjoint sets: a set U of URIs and
a set VAR of variables. A variable symbol starts with ? to distinguish with
URIs. A triple, t ∈ U × U × U is called an RDF triple, and a triple, tp ∈
(U∪VAR)× (U∪VAR) × (U∪VAR) is called a triple pattern.

An RDF databaseD is a finite set of triples, and a SPARQL queryQ is a finite
set of triple patterns. We define three subsets of U such that S = {s|s ∈ U ∧
∃t(s, p, o) ∈ D}, P = {p|p ∈ U∧∃t(s, p, o) ∈ D}, O = {o|o ∈ U∧∃t(s, p, o) ∈ D}.

We map RDF database D into a graph GD = (ND, ED, LD) which consists
of a node set ND, a edge set ED and a label set LD, where ND = S ∪O, ED =
{(s, p, o)|t(s, p, o) ∈ D} and LD = P . A SPARQL query Q is also mapped into a
graph GQ = (NQ, EQ, LQ), where NQ ⊆ S ∪O∪VAR, EQ = {(s, p, o)|t(s, p, o) ∈
Q} and LQ ⊆ P . Both GD and GQ are edge labeled directed graphs. Fig. 2(a)
shows an example RDF database graph and Fig. 2(b) shows an example SPARQL
query graph.

A path on a graph G = (N,E,L) is a sequence of connected edges in the
graph. If the terminal node of a path is n, the path is an incoming path of n.
For example, for the SPARQL query graph in Fig. 2(b), pa = 〈(?n1, p1, ?n2),
(?n2, p2, ?n3)〉 is an incoming path of ?n3.

We define a predicate path as a sequence of predicates. The predicate path
of a given path in G = (N,E,L) is a sequence of edge labels of the path. For
example, the predicate path of pa is 〈p1, p2〉.

We use the notations PPath(p) and |PPath(p)| to denote the predicate path
of a path p and its length, respectively. We also use InPPath(n) to denote a
set of all incoming predicate paths of n ∈ N . When the maximal path length l
is given, a variant of the notation, InPPath(n, l), is used to denote a subset of
InPPath(n) such that InPPath(n, l)={ppath|ppath ∈InPPath(n)∧|ppath| ≤ l}.

Example 1 (Incoming Predicate Path). For the SPARQL query graph in Fig.
2(b), the incoming path set of ?n4 with the maximum length 2 is InPPath(?n4, 2)
= {〈p3〉, 〈p1, p3〉 〈p2, p3〉}.

38 K. Kim, B. Moon, and H.-J. Kim

4 RP-Filter

In this section, we present the definition of RP-Filter and the physical storage
model of RP-Filter. To begin with, we discuss the requirement of RDF stores to
use RP-filter.

4.1 Requirements of RP-Filter

In order to apply the RP-Filter technique into an RDF engine, the RDF engine
should meet the following requirements.

1. URIs are mapped into integer IDs and the triples are stored using the IDs
in a triple table with three column, S,P and O.

2. The execution plan has one scan operator for each triple pattern in the
SPARQL query, which reads triples matching with the triple pattern from
disks.

3. The scan operators read triples as sorted by the S or the O column.

Several RDF engines including RDF-3X utilize storage and query processing
techniques which meet three conditions above for efficient query processing. Es-
pecially, the third condition is relatively strict. However, the condition is satis-
fied by several RDF store, e.g. RDF-3X and SW-store. This is because that the
sorted materialization of triples provides a lot of efficiency, like the fast retrieval
of matching triples and the usage of fast merge join. Therefore, RP-Filters can
be adopted by various RDF engines including RDF-3X and SW-store.

4.2 Definition of RP-Filter

The RP-Filter for an RDF database is a set of node lists. A node list for a
predicate path contains all the node IDs which have the predicate path as its
incoming predicate path.

Definition 1 (Node List of ppath N-List(ppath)). The node list for a pred-
icate path ppath is a sorted list of IDs of nodes n which satisfy that ppath ∈
InPPath(n). We denote the node list of a predicate path ppath as N-List(ppath).

By reading the node list for a predicate path, we can easily get all the node IDs
which are reached by the path pattern which is described by the predicate path.
Note that the node lists are sorted by the node IDs. The RP-Filter for an RDF
database is defined as follows.

Definition 2 (RP-Filter of RDF database D with the maximum length
MaxL). Given an RDF database D and the maximum length MaxL, the RP-
Filter of D is a set of all pairs 〈ppath, N-List(ppath)〉, for all ppaths which exist
in D and whose lengths are less than or equal to MaxL. RP-Filter(D,MaxL) =

{〈ppath,N-List(ppath)〉|ppath ∈
⋃maxL

i=1 P i ∧ppath exists in D}.

RP-Filter: A Path-Based Triple Filtering Method 39

Fig. 3. RP-Filter (MaxL=3)

We say that a predicate path ppath exists in D if and only if there exists a
path whose predicate path is ppath in D. We introduce MaxL to limit the size
of RP-Filters. As MaxL increases, the number of predicate paths increases. As
a result, the applicable RP-Filters also increase and the quality of RP-Filter
improves but the size of RP-Filter also increases. In other words, there exists a
tradeoff between the quality of RP-Filter and the space overhead of RP-Filter.
We can control the tradeoff using the MaxL value.

Example 2 (RPFilter). Fig. 3 show RP-Filter(D,3) for the RDF database D in
Fig. 2(a). The figure shows predicate paths and their node lists. There are 11
node lists in RP-Filter(D,3). And we can see that each node list is sorted by the
node IDs.

4.3 Storage Model of RP-Filter

Each node list is stored in disk as sorted by node IDs so that the node list can be
read in the sorted order while processing triple filtering. We use the delta based
block compression technique used in RDF-3X [12] to alleviate the size overhead
of RP-Filter and the disk I/O overhead for reading the node lists. In this method,
the difference between two adjacent node IDs are stored. According to the size
of the delta, the size of bytes for the writing of the delta is determined. We can
use this compression method because the node IDs are sorted.

We organize the predicate paths in a trie(or prefix tree) called RP-Trie in
order to search the node lists for a predicate path efficiently. RP-Trie is a trie
built with all the predicate paths in RP-Filter. Each node in level l in RP-Trie
has a pointer to the node list for its associated length-l predicate path. Fig. 4
shows RP-Trie for RP-Filter(D, 3) in Fig. 3. We can find the location in disk
of the node list for a predicate path by traversing RP-Trie using the predicate
path. If there is no node for a predicate path whose length ≤ MaxL, we can
conclude that there exists no path which is matched to the predicate path in
RDF database.

RP-Trie has the worst case space complexity,O(
∑MaxL

i=1 |P |i) and can grow
exponentially to MaxL. But as we can see in section 6, for the real-life data sets
and small MaxL value, the size of RP-Trie is relatively of small size and the
RP-Trie can be resident in the main memory.

40 K. Kim, B. Moon, and H.-J. Kim

Fig. 4. RP-Trie for RP-Filter(D, 3)

The structure of RP-Filter resembles the inverted index structure which is
widely used in the information retrieval area. Each predicate path in RP-Filter
can be considered a lexicon of an inverted index, while the node list is pretty
much like a posting list. Just as a posting list of an inverted index keeps document
IDs in sorted order, the node list keeps the node IDs in the sorted order. Note
that the predicate paths are organized into RP-Trie to assist in locating the node
list for a predicate path and finding relevant node IDs quickly.

5 Query Evaluation Using RP-Filter

In this section, we introduce a filtering operator RPFLT and then we discuss the
query plan generation with the RPFLT operator.

5.1 RPFLT Operator

RP-Filter is used to filter the triples from scan operators in an execution plan. In
order to use RP-Filter, the query compiler adds an operator called RPFLT to an
execution plan. The RPFLT operator is a relational operator which gets triples
from its child scan operator and outputs only the triples passing RP-Filter. An
RPFLT operator is added to an execution plan as a parent operator of a scan
operator.

Predicate Path Set of RPFLT. An RPFLT operator has a set of predicate
paths called PPS (Predicate Path Set) assigned by the query compiler. To explain
which predicate paths can be included in the PPS of an RPFLT, we define a
property of a scan operator called sortkey as follows. The result triples of a scan
operator are ordered by the S or the O column (not by the predicate column
because we do not consider the predicate variable and the predicate join). We
call the column by which the result triples are sorted a sortkey column of the
scan operator. The sortkey column has a corresponding node in the mapped
query graph. We also use the term sortkey node to indicate the sortkey column’s

RP-Filter: A Path-Based Triple Filtering Method 41

(a) Execution Plan of RDF-3X (b) Execution Plan with RPFLT

Fig. 5. Application of RPFLT Operators

corresponding node in the query graph. Scani.sortkey is used to denote the
sortkey column or the sortkey node of Scani depending on context.

Fig. 5(a) shows an example execution plan of RDF-3X for the query graph in
Fig. 2(b). The last item in each scan operator is the type of index to be used.
For example, Scan1 scans the POS index and so the scanned triples are ordered
by (P,O,S). Since all the triples have the same predicate values ‘p2’, they are
actually sorted by the O column. In the same way, the results of Scan2 are
ordered by the S column. Therefore, the sortkey column of Scan1 is ‘O’ and the
sortkey column of Scan2 is ‘S’. And the sortkey nodes of Scan1 and Scan2 are
both node ?n3 in Fig. 2(a), i.e., Scan1.sortkey = Scan2.sortkey =?n3.

The PPS of the RPFLT for Scani should be a subset of InPPath(Scani.
sortkey,MaxL). For example, 〈p1, p2〉 can be included in the PPS of the RPFLT
for Scan1 because Scan1.sortkey =?n3 and 〈p1, p2〉 is in InPPath(?n3, 3). Fig.
5(b) shows an execution plan which uses two RPFLT operators. The last item
of an RPFLT operator lists the predicate paths in its PPS. The RPFLT op-
erators for Scan1 and Scan2 have the same PPS because the sortkey for the
two scan operators are same. The PPS is {〈p1, p2〉, 〈p1〉} but InPPath(?n3, 3)
is {〈p1, p2〉, 〈p1〉, 〈p2〉}. The reason why only two of three predicate paths are
included in the PPS is described in section 5.2. Scan3 operator does not have
an RPFLT operator because its sortkey node has no incoming predicate path.

Filtering Process of RPFLT. An RPFLT operator outputs the triples whose
values of the sortkey column are include in all N-Lists for the predicate paths in
its PPS. Fig. 6 illustrates the filtering process of Scan1 in Fig. 5(b). The filtering
process merges the input triples with all assigned N-Lists. In this example, Scan1

outputs four triples but three of them are filtered out by RPFLT1. RPFLT1
outputs only one triple whose object is ‘r3’ because ‘r3’is in both N-List(〈p1, p2〉)
and N-List(〈p1〉).

42 K. Kim, B. Moon, and H.-J. Kim

Fig. 6. Filtering in RPFLT Operator

The ?n3 node(Scan1.sortkey) in the query graph has the two predicate paths
in its InPPath. So the matching data nodes for ?n3 must have the two incoming
predicate paths, too. The intersection of the two N-Lists gives us the matching
data nodes which have both of the two incoming predicate paths. If the three
filtered triples were not filtered out, they would be carried over to the next
join operations - a MergeJoin and a HashJoin - and slow down the overall
query processing without contributing to the final query result. In this manner,
we attempt to filter triples out at the earliest possible stage, if they would not
be included in the final results. Note that the filtering process involves reading
the node lists and merging them with the input triples. We can filter the input
triples simply by merging the node lists and the input triples because they share
the same orderings. Also the N-Lists are usually of small length. Consequently,
the reading and merging of the N-Lists incur little overhead and the RPFLT
operator is very efficient and light operator.

Analysis of RPFLT. If we consider an node list as a table with the single
column ID, the output of RPFLT can be described formally as following.

RPFLT (Scani,PPS) =

⎛
⎝ ⋂

ppath∈PPS

N-List(ppath)

⎞
⎠�ID=Scani.sortkey Scani

(1)

We use Scani to denote the result relation of Scani, which have three columns
and the Scani.sortkey to denote the sortkey column of Scani. Note that we use
the relational algebra only to describe the output of RPFLT not to describe the
evaluation order of RPFLT.

The cost of RPFLT (Scani, PPS) is B×
∑

ppath∈PPS ‖N-List(ppath)‖+C×(∑
ppath∈PPS |N-List(ppath)|+ |Scani|

)
, where B is the cost of disk block I/O,

C is the cpu cost for the merging, |N-List(ppath)| and ‖N-List(ppath)‖ are the
number of nodes in N-List(ppath) and the number of blocks of N-List(ppath),
respectively.

RP-Filter: A Path-Based Triple Filtering Method 43

5.2 Generating an Execution Plan with RPFLT Operators

We use the 2-phase query optimization method to make execution plans with
RPFLT operators. In the first phase, the query compiler generates an optimized
execution plan through its normal query optimization process. Then, in the
second phase, the query compiler adds RPFLT operators to the optimized exe-
cution plans. This 2-phase method uses heuristics that the optimized plan with
no RPFLT also tends to be optimal when augmented by the RPFLT operators.

In the second phase, the query compiler examine the incoming predicate paths
of the sortkey node of each scan operator in the execution plan. The query
compiler makes decisions about which predicate paths are included in the PPS
for the RPFLT operator. If the PPS is empty, no RPFLT operator is added to
the scan operator.

When deciding the PPS, the query compiler should be careful not to choose
redundant predicate paths. If a predicate path ppath1 is a suffix of another pred-
icate path ppath2, N-List(ppath1) ⊃N-List(ppath2). Therefore, it is of no use to
include both ppath1 and ppath2 in PPS. The query compiler should include only
ppath2 in PPS because N-List(ppath2) has less node IDs than N-List(ppath1)
and is more effective filter. For example, let us take a look at Fig. 5 again. There
exist three predicate paths in InPPath(?n3, 3) = {〈p1, p2〉, 〈p1〉, 〈p2〉}. However,
we do not include 〈p2〉 in the PPS of Scan1(or Scan2), because 〈p2〉 is a suffix
of 〈p1, p2〉.

For another case of redundant predicate paths, if the triple pattern of Scani

is 〈?s, pn, ?o〉, we need not to include 〈pn〉 in the PPS even though 〈pn〉 is in
InPPath. The reason is because N-List(〈pn〉) could not filter any triple from
Scani.

Note that the execution plan generated by this 2-phase method might not
optimal. It is because RPFLT operators can change the cardinalities of the in-
termediate results. The join order of the original execution plan might be not
optimal for the changed cardinalities of the intermediate results. To solve this
problem, we should be able to decide the optimal join order for the execution
plan with RPFLT. However, this requires a method to estimate the cardinalities
of the filtered triples. Also, the additional costs of RPFLT operators could make
the execution plan more expensive than the original execution plan. However,
we leave this issue as future work and here we use this heuristic method.

6 Experimental Results

We implemented RP-Filter on the open-source system RDF-3X(0.3.5 version).
The system was implemented with C++ and compiled by g++ with -O3 flag.
We conducted all the experiments on an IBM machine having 8 3.0GHz Intel
Xeon cores, 16GB memory and running 64bit 2.6.31-23 Linux Kernel. We used
two datasets: YAGO2[14] as a small real-life dataset and LUBM[15] as a large
synthetic dataset. We generated the LUBM dataset with 10,000 universities1.

1 http://swat.cse.lehigh.edu/projects/lubm/

http://swat.cse.lehigh.edu/projects/lubm/

44 K. Kim, B. Moon, and H.-J. Kim

Table 2. Statistics about Datasets

predicate triples RDF-3X size

YAGO2 94 195,048,649 7.6 GB

LUBM 18 1,334,681,192 70 GB

Table 2 shows statistics about the datasets. Note that YAGO2 has 94 predi-
cates but LUBM has only 18 predicates. That is because YAGO2 is a combina-
tion of heterogeneous datasets(Wordnet and Wikipedia), while LUBM is about
relatively homogeneous domain(university).

6.1 RP-Filter Size

For two datasets we built RP-Filters with MaxL=3. Table 3 shows the number
of N-Lists and the total size of RP-Filters. As we can see, the size of RP-Filters
for two datasets are much smaller than the input dataset sizes. The number
of N-Lists for YAGO2 is higher than that of LUBM, although the data size of
YAGO2 is smaller than the size of LUBM. This is because YAGO2 has more
predicates that LUBM, there exists more distinct predicate paths in YAGO2.

6.2 Query Execution Time

To evaluate the performance of RP-Filter, we compared the query execution time
of RDF-3X using RP-Filter with the original RDF-3X system. We measured
the executions in the wall-clock time. RDF-3X converts node IDs in the final
results into URIs to display the query results in the final stage of the query
evaluation. The converting process is very time-consuming when there are large
number of final results. Because the converting process is not relevant to the
performance evaluation of RP-Filter, we excluded it from the execution time.
We also counted the number of intermediate results for each evaluation. The
number of intermediate results is the summation of the number of results of
all the operators in the execution plan except the final operator. We exclude it
because the number of final results is not changed by the filtering.

YAGO2 Dataset. For YAGO2 dataset, we generated several random path
queries. We chose 15 predicates and made 3∼7-length path queries using the cho-
sen predicates. Each path queries has a single path and similar to the SPARQL
query in Section 1.

Table 3. RP-Filter Size(MaxL=3)

N-Lists total size avg. length

YAGO2 39,635 836MB 16,305

LUBM 122 1.3GB 2,571,504

RP-Filter: A Path-Based Triple Filtering Method 45

 0

 200

 400

 600

 800

 1000

 3 4 5 6 7

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e(

m
s)

Path Length

RP-Filter
RDF-3X

(a) Execution Time

 0

 5e+006

 1e+007

 1.5e+007

 2e+007

 2.5e+007

 3e+007

 3 4 5 6 7

N
um

be
r

of
 In

te
rm

ed
ia

te
 R

es
ul

ts

Path Length

RP-Filter
RDF-3X

(b) Number of Intermediate Results

Fig. 7. Evaluation Results:YAGO

Fig. 7 shows the average execution time and the average number of the in-
termediate results. The average execution time of RP-Filter is lower than that
of RDF-3X. Also the number of the total intermediate results is lower than
that of RDF-3X. The growth rate of the execution time and the number of the
intermediate results for RP-Filter is slower than those of RDF-3X.

LUBM Dataset. For LUBM datasets, we used two queries from 14 queries of
the LUBM benchmark. We chose two of them because other queries have very
simple structure and short paths in them. The queries we chose are Q2 and
Q9. They have a 3-length path and complex structures. Q2 and Q9 are listed
in Appendix. In order to execute the queries, we had to change the query Q9
slightly. In fact, LUBM is a benchmark for the RDF engines with the reasoning
capability. However, currently RDF-3X does not support RDF reasoning. RDF-
3X gives no answer for the query Q9 because the query asks about the instances
of an inferred class. Therefore, we changed the class name so that no inference
is needed, while leaving the structure of the queries unchanged.

Table 4 shows the execution time and the number of intermediate results for
each query. For cold cache, the file system caches were dropped by /bin/sync and
echo 3 > /proc/sys/vm/drop caches commands. We evaluated the queries
with U-SIP technique in RDF-3X. The results show that U-SIP is not very
effective for the queries we used. The reason is that the execution plans involve
many hash joins so the effect of U-SIP is limited. For RP-Filter, Q2 and Q9
showed different results. Q2 was improved by a factor of about 3 but for Q9
RP-Filter had little effect. That is because in Q2 there exists very selective path
pattern but there is no such path pattern in Q9. And For Q2 the intermediate
results are significantly reduced but for Q9, the intermediate results are not re-
duced much. For Q9, we can also observe that the query time is slightly longer
when using RP-Filter. That is because the overhead for RP-Filter is more strong
than the benefits of reduced intermediate results.

46 K. Kim, B. Moon, and H.-J. Kim

Table 4. Evaluation Results:LUMB (times in second)

Warm cache Cold cache Intermediate Results

q2 q9 q2 q9 q2 q9

RDF-3X 26.5 37.0 28.7 43.4 424,747,108 659,968,158

NO U-SIP 22.9 31.9 25.0 38.4 424,785,330 662,615,314

NO U-SIP
RP-Filter

7.4 32.7 9.6 40.2 308,143,082 620,276,418

RP-Filter 8.1 36.9 9.3 43.7 233,654,645 617,592,582

7 Conclusions and Future Work

In this paper, we propose a triple filtering method called RP-Filter. Based on
the information about incoming paths of the query graph, RP-Filter prunes the
scanned triples which would not be included in the final results. This triple
filtering helps to reduce the useless intermediate results and reducing the inter-
mediate results improves the query execution performance. Our experimental
results shows that RP-Filter is very effective to reduce the useless intermedi-
ate results. For future work, we plan to explore how to reduce the overhead of
RP-Filters and how to generate plans using RP-Filters based on the cost model.

Acknowledgements. This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea government(MEST) (No.
20110017480) and the Brain Korea 21 Project.

Appendix

LUBM Queries PREFIX rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX lubm:<http://http://www.lehigh.edu#>
Q2
SELECT ?x ?y ?z WHERE {
?x rdf:type lubm:GraduateStudent.
?y rdf:type lubm:University.
?z rdf:type lubm:Department.
?x lubm:memberOf ?z.
?z lubm:subOrganizationOf ?y.
?x lubm:undergraduateDegreeFrom ?y.}
Q9
SELECT ?x ?y ?z WHERE {
?x rdf:type lubm:Student.
?y rdf:type lubm:Faculty.
?z rdf:type lubm:Course.
?x lubm:advisor ?y.
?x lubm:takesCourse ?z.
?y lubm:teacherOf ?z.}

RP-Filter: A Path-Based Triple Filtering Method 47

References

1. Klyne, G., Carroll, J.J.: Resource description framework (rdf): Concepts and ab-
stract syntax. Technical report, W3C Recommendation (2004)

2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical
report, W3C Recommendation (2008)

3. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of sparql. ACM
Trans. Database Syst. 34(3) (2009)

4. Belleau, F., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: to-
wards a mashup to build bioinformatics knowledge systems. Journal of Biomedical
Informatics 41(5), 706–716 (2008)

5. Redaschi, N., Consortium, U.: UniProt in RDF: Tackling Data Integration and
Distributed Annotation with the Semantic Web. In: Nature Precedings (2009)

6. Sheridan, J.: Linking UK government data. In: WWW Workshop on Linked Data,
pp. 1–4 (2010)

7. Mika, P.: Social Networks and the Semantic Web. In: Proceedings of International
Conference on Web Intelligence (WI 2004), pp. 285–291 (2004)

8. Kobilarov, G., Scott, T., Raimond, Y., Oliver, S., Sizemore, C., Smethurst,
M., Bizer, C., Lee, R.: Media Meets Semantic Web — How the BBC uses dbpedia
and Linked Data to make Connections. In: Aroyo, L., Traverso, P., Ciravegna, F.,
Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl,
E. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 723–737. Springer, Heidelberg (2009)

9. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J.
(eds.) ISWC 2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

10. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: implementing the semantic web recommendations. In: Proceedings of the
13th International World Wide Web Conference (WWW 2004), pp. 74–83 (2004)

11. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: SW-Store: a vertically
partitioned DBMS for Semantic Web data management. The VLDB Journal 18(2),
385–406 (2009)

12. Neumann, T., Weikum, G.: Rdf-3x: a risc-style engine for rdf. PVLDB 1(1),
647–659 (2008)

13. Neumann, T., Weikum, G.: Scalable join processing on very large rdf graphs. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD 2009), pp. 627–640 (2009)

14. Hoffart, J., Suchanek, F.M., Berberich, K., Lewis-Kelham, E., de Melo,
G., Weikum, G.: Yago2: Exploring and querying world knowledge in time, space,
context, and many languages. In: Proceedings of the 20th International Conference
on World Wide Web (WWW 2011), pp. 229–232 (2011)

15. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Web Semantics: Science, Services and Agents on the World Wide Web 3(2-3),
158–182 (2005)

Constructing Virtual Documents for Ontology

Matching Using MapReduce

Hang Zhang, Wei Hu, and Yuzhong Qu

State Key Laboratory for Novel Software Technology, Nanjing University, China
hangzhang@smail.nju.edu.cn, {whu,yzqu}@nju.edu.cn

Abstract. Ontology matching is a crucial task for data integration and
management on the Semantic Web. The ontology matching techniques
today can solve many problems from heterogeneity of ontologies to some
extent. However, for matching large ontologies, most ontology match-
ers take too long run time and have strong requirements on running
environment. Based on the MapReduce framework and the virtual doc-
ument technique, in this paper, we propose a 3-stage MapReduce-based
approach called V-Doc+ for matching large ontologies, which signifi-
cantly reduces the run time while keeping good precision and recall.
Firstly, we establish four MapReduce processes to construct virtual doc-
ument for each entity (class, property or instance), which consist of a
simple process for the descriptions of entities, an iterative process for
the descriptions of blank nodes and two processes for exchanging the
descriptions with neighbors. Then, we use a word-weight-based partition
method to calculate similarities between entities in the corresponding re-
ducers. We report our results from two experiments on an OAEI dataset
and a dataset from the biology domain. Its performance is assessed by
comparing with existing ontology matchers. Additionally, we show how
run time is reduced with increasing the size of cluster.

1 Introduction

The Semantic Web is an ongoing effort by the W3C community. To push tradi-
tional knowledge towards a common expression form, a number of data produc-
ers, such as MusicBrainz [12] and FMA [18], have published their data in the
form of ontologies.

The wildly use of ontologies brings a practical problem. Due to the dispersion
of Web data, there are multiple ontologies from different publishers over the
world. Therefore, in the same or related domain, different ontologies may contain
heterogeneous classes, properties and instances (all of them are uniformly called
entities in this paper), which need ontology matching techniques to find those
denoting the same thing in the real world [6,1].

To date, a number of ontology matching tools have been created to solve
the problem of heterogeneity. Referring to the report of OAEI 2010 [4], some
ontology matchers have good performance on real world datasets. However, a
complex matching algorithm often leads to a long run time. According to our

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 48–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Constructing Virtual Documents for Ontology Matching Using MapReduce 49

investigation, most ontology matching tools suffer from unsatisfiable run time in
large ontology matching despite of their high precision and recall. For example, in
medicine and biology domains, two large ontologies (FMA [18,23] and GALEN1)
need to be matched. But most matchers spend hours even weeks on matching
them. The main reason is their complex matching algorithms with limited CPU
and memory environments [17]. Some researchers focused on the solution, such
as ontology partition [8] and early pruning of dissimilar element pairs [15]. But
they all fail to utilize the great power of modern parallel computing devices.

In this paper, we propose a parallel matching approach called V-Doc+ which
is based on virtual document [16] and MapReduce [2]. The architecture of our
approach is outlined in Fig. 1.

Map

Reduce

Preprocessing

Map

Reduce

Constructing
Descriptions

Entities

Blank N
odes

Map

Reduce

Map

Reduce

Obtaining
Information
of Neighbors

Subprocess2

Subprocess1

Map

Reduce

M
atching Virtual
Docum

ents

HDFS

HDFS

HDFS

HDFS

O
utputs

O
nto1

O
nto2

Fig. 1. Overview of the approach

Our approach contains three end-to-end MapReduce stages: constructing de-
scriptions, obtaining information of neighbors and matching virtual documents.
Before all start, in the stage of preprocessing, ontologies are splitted into the files
which fit the requirement of the input format of MapReduce [2]. Based on the
separated entities and RDF statements, the descriptions of entities and blank
nodes will be calculated using several iterative MapReduce processes. Also, we
optimize the description of each entity and blank node by annotating them with
the descriptions of the neighbors. Finally, in the stage of matching virtual doc-
uments, we extract the high-weight words in the descriptions and partition the
entities for reducing calculation space.

1 http://www.opengalen.org/

http://www.opengalen.org/

50 H. Zhang, W. Hu, and Y. Qu

We test V-Doc+ on the Food Ontology from OAEI 2007 and FMA vs. GALEN
in medicine and biology domains. The experimental result shows a good run
time of our approach with moderate precision and recall. The comparison of the
efficiency in the environment with different number of nodes is also specified in
the paper.

The rest of this paper is organized as follows. Sect. 2 presents the foundation
of our approach and introduces the problem and Sect. 3 discusses related works.
In Sect. 4, we give a MapReduce-based approach to construct the descriptions of
entities and blank nodes. Information of neighbors is utilized in Sect. 5. Based on
the virtual documents, similarities are calculated and the method is introduced
in Sect. 6. Experimental results on two datasets are shown in Sect. 7. Finally,
Sect. 8 concludes this paper with future work.

2 Preliminaries

In this work, all stages are established on the MapReduce framework. In the
remainder of this section, we give the problem statement and introduce MapRe-
duce briefly.

2.1 Problem Statement

There are a number of works that present different viewpoints on the ontology
matching problem. In this paper, we define ontology matching as the process
of finding mappings between entities from different ontologies. Each mapping
consists of two entities and their confidence value. The definition is given as
follows:

Definition 1 (Ontology Matching). Let O and O′ be two ontologies. The
objective of ontology matching is to find a set of mappings defined as follows:

M = {O,O′,M} (1)

where M = {m1,m2, ...,mn} denotes a set of mappings. A mapping mi can
be written as mi = (e, e′, sim) where e and e′ are two entities from O and O′

respectively, and sim ∈ (0, 1] denotes the similarity between e and e′.

2.2 MapReduce

MapReduce is the most popular framework for parallel computation on a number
of computing nodes [2]. In MapReduce, the unit of computing process is named
job, where each job consists of two main phases: map and reduce. The map
inputs the data from the sources and splits each record into key/value pairs.
These pairs are partitioned into different reducers according to the keys. Before
a reducer handles the data, partitioned pairs are sorted by their keys and all
values sharing the same key are clustered into the same set. The computation
process is expressed in Fig. 2.

Constructing Virtual Documents for Ontology Matching Using MapReduce 51

Combiner

Map

Reduce

Reduce

Map

Combiner

Partitioner

Partitioner

Input (k, v)

Output(k, v)

Map

Map
Input (k, v)

Output(k, v)

Fig. 2. Data flow in MapReduce

MapReduce also provides programmers with an extensible framework. Based
on the interfaces, programmers are allowed to assign rules on how to partition
key/value pairs and how to sort by keys, and these partitioning rules offers ben-
efits for balancing the workload. Additionally, a combiner can also be rewritten
to perform a local reducer to relieve the workload of the reducers.

MapReduce has the great power of parallel computing which makes used
widely in a number of fields. In the ontology matching problem, one process
which costs much time is to match every two entities. For some similarity-based
matchers, calculating similarity on a large-scale dataset will cost too much time.
As an example, calculating similarity for every pair of a n-size set of entities must

be repeated n∗(n−1)
2 times. Fortunately, MapReduce provides a parallel approach

to partition data. According to the customized rules of partitioning, the n-size
set can be partitioned into several subsets and different subset is calculated in
different computing node. Thus, the run time is largely reduced.

Another usage of MapReduce for ontology matching is to solve the set-join
problem. For example, for class c, finding all rdfs:comment values of c need
to find all RDF statements that satisfy (c, rdfs:comment, l) where l is a literal.
Using MapReduce process can join c with its related RDF statements in a specific
reducer.

3 Related Work

Although plenty of works have been proposed for the ontology matching prob-
lem, few approaches focus on matching large ontologies. In fact, some simple
matching algorithms can deal with large ontologies with a good run time, such
as edit distance [19]. However, the good efficiency of them mostly relies on the
lightweight algorithms, which somtimes cannot achieve high precision and recall.

Rahm [17] summarized works towards large-scale schema and ontology match-
ing. One solution is to reduce search space. Rewriting matching processes [15]
could deal with different types of matching processes and use filter operators to

52 H. Zhang, W. Hu, and Y. Qu

prune dissimilar element pairs. The work in [8] integrated a structure-based par-
titioning algorithm into Falcon-AO. This divide-and-conquer algorithm could
calculate anchors and partition a large ontology into small clusters. Different
from Falcon-AO, the work in [22] used the positive and negative reduction an-
chors but did not partition ontologies. However, these works still do not improved
efficiency enough for a single compute node. Simplifying original algorithms to
solve the ontology matching problem is also an option [11], but may not obtain
a good recall.

There exists an approach that computes set-similarity joins with MapReduce
[20]. This approach proposed both self-join and R-S join cases, and partitioned
data in order to reduce matching space and balance the workload. The experi-
ments showed a surprising run time and a good speedup on large-scale datasets.
But the approach cannot be directly applied to matching ontologies as there are
blank nodes existing.

For matching large ontologies, some researchers investigated and compared
two kinds of parallelization on matching ontologies [7], and intra-matcher par-
allelization has been proved more versatile. The experiment also showed a fea-
sibility of parallel matching. However, this kind of approaches is in essence a
parallelizing matching workflow service consisting of a job queue, which is not
easy to implement.

4 Constructing Descriptions

The construction of descriptions which are described by a collection of words with
weights consists of two MapReduce sub-stages. We first preprocess to transform
ontologies into records which can be sent to mappers directly. To minimize the
network traffic, in all MapReduce processes, the real URIs are not transferred. So
each URI in the RDF statements is replaced with an identifier based on unique
name assumption. For example, we identify a class using a token ci, a property
using a token pi and an RDF statement using si while wi denotes a external
URI involved.

In this section, we focus on how to construct descriptions in the MapReduce
framework.

4.1 Descriptions of Entities

The first sub-stage is for named entities whose descriptions can be obtained by
the local information. For an entity e, the description is defined as follows:

Desc(e) = α1 ∗ collection of words in the local name of e

+ α2 ∗ collection of words in the rdfs:label of e

+ α3 ∗ collection of words in the rdfs:comment of e

+ α4 ∗ collection of words in other annotations of e (2)

where α1,α2,α3 and α4 are fixed rational numbers in [0,1].

Constructing Virtual Documents for Ontology Matching Using MapReduce 53

Fig. 3 presents an example data flow of constructing descriptions for entities.
In the process, we ignore blank nodes. All the information of rdfs:comment and
other annotations come from RDF statements. So the records from input involve
classes, properties and RDF statements.

The map function extracts the identifiers to check if they are RDF statements.
For each record of statement, the map function replaces its identifier with its
subject. But for classes and properties, the keys are directly emitted. For ex-
ample, in the figure, a record of RDF statement (s1, (c2, p1, l1)) is emitted by
changing the key s1 to c2. However, a record of class (c1, class1) is emitted
without any changes.

After aggregating by keys, for each class c or property p, all related RDF state-
ments are partitioned to the same reducer. The reduce function then calculates
Desc(c) or Desc(p) according to Equation (2).

c1
p1
c2

s1
c3
s2

p2
p3
s3

ID
class1

property1
class2

(c2, p1, l1)
class3

(p2, p7, l2)

property2
property3
(p2, p5, l3)

Value

M
ap

M
ap

M
ap

c1
p1
c2

Key
class1

property1
class2

Value

c2
c3
p2

(c2, p1, l1)
class3

(p2, p7, l2)

p2
p3
p2

property2
property3
(p2, p5, l3)

Group by Key

c1
c1
c1

Key
class1

(c1, p2, l4)
(c1, p1, l5)

Value

c2
c2
c2

class2
(c2, p1, l1)
(c2, p2, l7)

p2
p2
p2

property2
(p2, p7, l2)
(p2, p5, l3)

c1
c3
p3

Key
(class1, Desc(c1))
(class3, Desc(c3))

(property3, Desc(p3))

Value

c2
p4
c4

(class2, Desc(c1))
(property4, Desc(p4))

(class4, Desc(c4))

p2
p5
c5

(property2, Desc(p2))
(property5, Desc(p5))

(class5, Desc(c5))

Reduce
Reduce

Reduce

Fig. 3. Example data flow of constructing descriptions for entities

4.2 Descriptions of Blank Nodes

The second sub-stage is constructing descriptions for blank nodes. Having no
local description, blank nodes get their information from neighbors, which may
involve an iterative process. The following iteration equations give a convergence
solution:

Desc1(b) =
∑

subj(s)=b

Desc(pred(s)) +
∑

subj(s)=b
obj(s)/∈B

Desc(obj(s)) (3)

Desck+1(b) = β ∗ (Desc1(b) +
∑

subj(s)=b
obj(s)∈B

Desck(obj(s))) (4)

where subj(s), pred(s) and obj(s) denote subject, predicate and object of an
RDF statement respectively. β is an attenuation coefficient in the [0,1) range.

54 H. Zhang, W. Hu, and Y. Qu

However, MapReduce is not designed to handle the recursive problem. So we
transform each step of above equations into a MapReduce process. Firstly, we
establish a blank node structure to implement WritableComparable interface,
which extends the simple transmission unit for carrying the information of re-
maining nodes. Thus, the record of blank node b is extended from Desc(b) to
(Desc(b), {neb1, neb2, ..., nebn}), where nebi denotes the remaining node waiting
to be calculated.

We build a k-times-repeated MapReduce process to calculate descriptions for
blank nodes. Before map function starts, every remaining nodes set is initialized
with the current blank node. The input of map function derives from the output
of the first sub-stage. Fig. 4 shows an example data flow of constructing descrip-
tions for blank nodes. For each nebi in (Desc(b), {neb1, neb2, ..., nebn}), a map
function generates a new key-value pair where the key is nebi and the value is
(Desc(b), {}). Thus, a record of blank node may be replicated as many times
as the number of remaining nodes. The treatment of RDF statements is similar
with that in the first sub-stage.

The reduce function aggregates a blank node b with the related entities or
RDF statements. For each related entity e, we update the description of blank
node with βk ∗ Desc(e) where k denotes the number of times the process has
be repeated. For statement s whose subject is b, we add the object of s to
the remaining nodes of b. For example, in Fig. 4, the record of blank node b1
has two remaining nodes {b1, c5} and is thus partitioned to the reducers with
(b1, p6, c1) and Desc(c5) respectively. In the reducer which loads (b1, p6, c1), p6
and c1 is added to the remaining nodes of b1. Meanwhile, Desc(b1) is updated
by βk ∗Desc(c5) in another reducer. Notice that there exist duplicated records
in the output. So, a combinator is needed to integrate results.

It also should be noticed that we do not consider the cycle descriptions in this
process. We store the route of nodes which have been calculated and ignore all
new nodes appearing in the route.

The process of constructing descriptions for blank nodes should be repeated
k times. According to our experiments, five times of iteration is usually enough
to converge.

c1
p1
b1

s5
c3
s6

b2
p3
s7

ID
Desc(c1)
Desc(p1)

(Desc(b1), {b1,c5})

(b1, p5, b3)
Desc(c3)

(b1, p6, c1)

(Desc(b2), {b2})
Desc(p3)

(b2, p5, b4)

Value

M
ap

M
ap

M
ap

c1
c5
b1

Key
Desc(c1)

(Desc(b1), {})
(Desc(b1), {})

Value

b1
c3
b1

(b1, p5, b3)
Desc(c3)

(b1, p6, c1)

b2
p3
b2

(Desc(b2), {})
Desc(p3)

(b2, p5, b4)

G
roup by Key

b1
b1
b1

Key
(Desc(b1), {})
(b1, p6, c1)
(b1, p5, b3)

Value

b2
b2
b2

(Desc(b2), {})
(b2, p5, b4)
(b2, p8, b6)

c5
c5
b5

Desc(c5)
(Desc(b1), {})
(b5, p7, c9)

b1
b3
b4

Key
(Desc(b1), {p5, p6, b3, c1})

(Desc(b3), {p10, c12})
(Desc(b4), {p14, c10})

Value

b2
b6
b7

(Desc(b2), {p5, p8, b4, b6})
(Desc(b6), {p19, c4})
(Desc(b7), {p20, c6})

b5
b1
b9

(Desc(b5), {p9, p7, c8, c9})
(Desc(b1), {})
(Desc(b9), {})

Reduce
Reduce

Reduce

Com
bination

Update Blank Nodes

Update Desciption

Tem
porary Storage

Fig. 4. Example data flow of construction of descriptions for blank nodes

Constructing Virtual Documents for Ontology Matching Using MapReduce 55

5 Exchanging Information with Neighbors

The construction of virtual document needs both local descriptions and neighbor
information. This section considers to use information of neighbors to update
the description of each entity for constructing virtual document. The following
two equations give the definition of virtual document:

V D(e) = Desc(e) + γ ∗Neigh(e) (5)

Neigh(e) =
∑

e′∈SN(e)

Desc(e′) +
∑

e′∈PN(e)

Desc(e′) +
∑

e′∈ON(e)

Desc(e′) (6)

where SN(e) denotes the set of predicates and objects in the RDF statements
whose subject is e, PN(e) denotes the set of subjects and objects in the RDF
statements whose predicate is e and ON(e) stands for the set of subjects and
predicates in the RDF statements whose object is e. We define γ as the re-
peat times of the MapReduce process for blank nodes and let γ = 0.1. But for
some cases that most local information consist of trivial serial numbers or other
random tokens, γ should be increased.

The calculation process contains two stages. The first stage is to notice each
node with its neighbors and the second stage exchanges the descriptions between
the neighbors.

Fig. 5 shows an example data flow. For each RDF statement (s, p, o), the
map function of the first stage generates three new key-value pairs: (s, {p, o}),
(p, {s, o}) and (o, {s, p}). After that, for every entity e and blank node b, all neigh-
bors can be obtained in the reduce function. For example, an RDF statement
(b1, p5, b3) is a record from input, after mapping, (b1, {p5, b3}), (p5, {b1, b3})
and (b3, {b1, p5}) are partitioned into three different reducers. In the reducer
loading (b1, {p5, b3}), b1 gets to know that there exist neighbors p5 and b3 and
adds them in a temporary structure. The outputs of reducers are stored in a
temporary storage waiting the map function of the second stage to read.

With the locations of neighbors, every node sends its description in the second
stage. For the output value (Desc(c1), {b2, p4, p1}) in the temporary storage, c1
sends its description Desc(c1) to b2, p4 and p1. Thus, in the reduce function,
every entity gets all the descriptions of the neighbors and updates its own de-
scription.

Because of frequency skew, some reducers may meet an unbalanced workload
so that the whole calculation process is delayed heavily. Consequently, we count
the appearing time of each entity in all RDF statements and find those with
the highest frequency. Then we arrange some specific reducers to calculate the
entities with the top-frequency.

6 Matching Virtual Documents

In the final stage, we calculate the similarities between virtual documents with
the TF/IDF technique [14]. The value of TF can be easily calculated for a specific

56 H. Zhang, W. Hu, and Y. Qu

c1
p1
b1

s5
c3

s11

s12
b2
p3

ID
Desc(c1)
Desc(p1)
Desc(b1)

(b1, p5, b3)
Desc(c3)

(b1, p1, c1)

(b2, p4, c1)
Desc(b2)
Desc(p3)

Value

M
ap

M
ap

c1
p1
b1

Key
Desc(c1)
Desc(p1)
Desc(b1)

Value

b1
p5
b3

(p5, b3)
(b1, b3)
(b1, p5)

b2
p4
c1

(p4, c1)
(b2, c1)
(b2, p4)

G
roup by Key

c1
c1
c2

Key
Desc(c1)
(b2, p4)
Desc(c2)

Value

b1
b1
b2

Desc(b1)
(p5, b3)
(p4, c1)

p1
p1
p1

Desc(p1)
(b1,c1)

(c14, c9)

c1
c2
b4

Key
(Desc(c1), {b2, p4, p1})

(Desc(c2), {c12})
(Desc(b4), {c10, c22})

Value

b2
b1
b7

(Desc(b2), {c1, b4, b6, p4})
(Desc(b1), {p5, b3, b2})

(Desc(b7), {c6, c17})

p1
p5
b9

(Desc(p1), {b1, c1, c9, c14})
(Desc(p5), {c3})

(Desc(b9), {p20, c5})

Reduce
Reduce

Reduce

M
ap

M
ap

M
ap

b2
p4
p1

Key
Desc(c1)
Desc(c1)
Desc(c1)

Value

c1
b4
b6

Desc(b2)
Desc(b2)
Desc(b2)

b1
c1
c9

Desc(p1)
Desc(p1)
Desc(p1)

G
roup by Key

b2
b2
b2

Key
Desc(b2)
Desc(c1)

Desc(c15)

Value

c1
c1
b4

Desc(c1)
Desc(b2)
Desc(b4)

b1
b1
c1

Desc(b1)
Desc(p1)
Desc(c1)

b2
p4
p1

Desc(b2)
Desc(p4)
Desc(p1)

c1
b4
b6

Desc(c1)
Desc(b4)
Desc(b6)

b1
c1
c9

Desc(b1)
Desc(c1)
Desc(c9)

Reduce
Reduce

Reduce

Update Description

Tem
porary Storage

Tem
porary Storage

M
ap

Fig. 5. Example data flow of exchanging information with neighbors

virtual document. To obtain the value of IDF, we build an additional MapReduce
process for calculating the frequency of each word, and the number of virtual
documents can be obtained in the preprocessing by counting the number of
entities. Cosine similarity is used to measure the similarity. Equation (7) gives
the function:

sim(e1, e2) =
V D(e1)× V D(e2)

|V D(e1)| ∗ |V D(e2)|
(7)

Given a threshold θ, we define (e1, e2) be an ontology matching alignment where
sim(e1, e2) > θ.

Consider the objective of ontology matching, in the stage of matching vir-
tual documents, we ignore the instances. However, if we calculate similarity
for every two virtual documents respectively, lots of time would be wasted.
So reducing the calculation space is necessary. In this stage, we propose a
word-partition-based method to filter unnecessary matchings. For each descrip-
tion {(word1, score1),(word2 , score2),...,(wordn , scoren)}, we normalize scores
in [0, 1] and rank (word, score) pairs according to the value of scores. Thus,
score1 ≥ score2 ≥ ... ≥ scoren. We define the important words as the set of
words {word1, word2, ..., wordi}, where i is the minimal integer which satisfy
score1 + score2 + ...+ scorei ≥ δ. δ is a fixed rational number in [0, 1].

Fig. 6 explains the process. Each mapper ranks the words and put the top
words into the keys. For example, we select three words word1, word2, word3 for
entity c1 in the map phase and generate new key-value pairs: (word1, Desc(c1)),
(word2, Desc(c1)) and (word3, Desc(c1)). After partitioning, descriptions of en-
tities c1, c8 and c5 group into the same reduer with key word1. Then we use
Equation (7) to calculate the similarity between each two of them.

Constructing Virtual Documents for Ontology Matching Using MapReduce 57

c1
c2
c3

c5
c6
c7

p1
p2
p3

ID
Desc(c1)
Desc(c2)
Desc(c3)

Desc(c5)
Desc(c6)
Desc(c7)

Desc(p1)
Desc(p2)
Desc(p3)

Value

M
ap

M
ap

M
ap

word1
word2
word3

Key
Desc(c1)
Desc(c1)
Desc(c1)

Value

word2
word1
word5

Desc(c5)
Desc(c5)
Desc(c6)

word1
word6
word7

Desc(p1)
Desc(p1)
Desc(p1)

Group by Key

word1
word1
word1

Key
Desc(c1)
Desc(c8)
Desc(c5)

Value

word5
word5
word5

Desc(c6)
Desc(c9)

Desc(c11)

word2
word2
word2

Desc(c1)
Desc(c5)

Desc(c13)

alg1
alg2
alg3

Key
(c1, c8)

(c14, c5)
(p8, p20)

Value

alg7
alg8
alg9

(c6, c9)
(p13, p23)
(c10, c41)

alg13
alg14
alg15

(c5, c13)
(p43, p28)
(p39, p52)

Reduce
Reduce

Reduce

Com
bination

Alignm
ents Storage

Fig. 6. Example data flow of matching virtual documents

Workload Balance. We load the frequency of words in the memory and con-
struct a customized partitioner to choose the corresponding reducer. The words
should be distributed in each node according to the frequency as average as pos-
sible. But for those with too high frequency, it is very hard to arrange or even
split them. In this case, we assign one or more reducers to compute these high-
frequency words while ignoring other keys. But we also allow them to choose
reducers randomly if the number of computing nodes is too small.

7 Evaluation

We developed a parallel computing system, called V-Doc+, for our approach.
V-Doc+ is based on the Hadoop framework2, which provides an open-source
software for scalable and distributed computing. Every mechanism of MapRe-
duce corresponds to a process in Hadoop implementation. Given rich libraries,
programmers are allowed to implement customized data structure, input/output
record format, map/reduce function, and the way to partition.

In our program, each stage discussed above was implemented in one or more
map/reduce functions. Particularly, some supporting functions, such as word
statistics and combination, were added to the proper places in the whole imple-
mentation.

We ran our experiments on 10-node cluser and a Gigabit Ethernet intercon-
nect. The NameNode equipped with an Intel processor with six 2.80GHz cores
and 12M cache while the storage has 32GB memory and 2TB hard disk. For Job-
Tracker and slave, the CPU is all Intel Quad Core and 2.4GHz/12M cache. The
storage of JobTracker and slave is a little smaller than NameNode, which has
24GB memory and 2T hard disk. For compatibility consideration, we installed
0.21.0-version of Hadoop which is based on JDK v1.6.0 on Redhat Enterpreise
Linux Server 6.0 system. All stage of MapReduce process can be monitored in a
Web browser.

According to experiments with varied parameters and the optimal result gen-
erated, we configured the parameters as follows: for calculating description stage,
we set α1 = 1, α2 = 0.5, α3 = 0.25, α4 = 0 and β = 0.5. For exchanging infor-
mation of neighbors stage and matching virtual documents stage, γ = 0.1 and

2 http://hadoop.apache.org/

http://hadoop.apache.org/

58 H. Zhang, W. Hu, and Y. Qu

δ = 0.75 respectively. In practice, α should be configured differently due to the
fact of datasets. Particularly, if there is no differentiation between local names,
α1 should be lower or even be 0.

Preparation. Before starting experiments, some preprocessing were built.
Firstly, we cached stopwords and entities/words frequency statistics in the mem-
ory. Also, we formatted the file system before each experiment starting and made
sure that there was no other programs running on every computing node. For
distinguishing the source of the record easily, the identifers of entities, blank
nodes and RDF statements were attached with the ontology name.

7.1 Datasets

According to our investigation, we chose two datasets according to their sizes:
the Food Ontology in OAEI 2007 and FMA vs. GALEN. The reasons are as
follows:

1. Our approach is designed to match large ontologies. Due to the network
cost and repeated MapReduce job initialization, for small ontologies, it may
perform worse than other tools. So, large ontologies are more suitable.

2. The last Food Ontology version and the results of the participants were
published in OAEI 2007. So we cannot obtain this dataset after OAEI 2007.

3. Although OAEI publishes the campaign results of all tracks, such as Anatomy
whose size is also suitable, we find no reference mappings for other size-
suitable datasets so that we cannot evaluate their precisions and recalls.

Table 1 shows the statistical data of the Food Ontology which has lots of
multi-lingual texts. It contains two ontologies: NALT and AGROVOC. NALT
is developed by United Nations Food Organization and AGROVOC comes from
Agriculture Organization. After the end of OAEI 2007, the results of the partic-
ipants and the gold standard used to evaluate precision and recall are published
on the OAEI website3. We downloaded them and used the gold standard to
calculate precision, recall and value of F1 method in our experiment.

Table 1. Statistical data of the Food On-
tology

Ontology Classes and Properties Statements
NALT 42,326 174,278
AGROVOC 28,439 319,662

Table 2. Statistical data of FMA vs.
GALEN

Ontology Classes and Properties Statements
FMA 72,659 576,389
GALEN 9,596 59,753

For another dataset, we matched FMA ontology and GALEN ontology. FMA
is more larger than GALEN. Unfortunately, we cannot find other ontology
matching tools publishing their results of FMA vs. GALEN matching. Also,

3 http://oaei.ontologymatching.org/2007/

http://oaei.ontologymatching.org/2007/

Constructing Virtual Documents for Ontology Matching Using MapReduce 59

no gold standard was found. Consequently, for FMA vs. GALEN, we only ran
our experiment program on it and showed the run time and the speedup for
different numbers of compute nodes. The statistical data of FMA vs. GALEN is
showed in Table 2.

7.2 Experimental Results

The goal of our evaluation is threefold. Firstly, it is necessary to test precision,
recall and F-Measure although the strength of V-Doc+ is its good efficiency.
To test it, we investigated several ontology matchers and compared V-Doc+
with their performance. Secondly, we want to show how much the run time
was reduced comparing with the non-parallel matchers. Thirdly, we showed the
speedup on different computing nodes environment and presented the run time
for each stage in our approach.

We evaluated V-Doc+ on precision, recall and F-Measure on the Food On-
tology from OAEI 2007 [5] with some matchers: Falcon-AO, DSSim, RiMOM,
Prior+ and COMA. One is Falcon-AO [8], which integrated three matchers:
I-Sub, V-Doc and GMO, where V-Doc is a virtual-document-based technique
which runs in a non-parallel way and GMO is a graph matching technique based
on structural similarity. To match large ontologies with limited memory, Falcon-
AO also constructed a divide-and-conquer approach which can partition entities
into small clusters. DSSim [21] gave a multi-agent system to solve the ontology
matching problem while considering uncertainty. The main approach of DSSim
was to use different domains for finding ontology mappings. RiMOM [10] in-
tegrated multiple matchers to improve effectiveness by combining both literal
and structure features. Another matcher Prior+ [13] is an adaptive ontology
matching tool which was based on several different techniques, such as IR-based
similarity and neural network. Like Falcon-AO, COMA [3] also considered the
block matching and provided a fragment-based matcher to solve the large on-
tology matching problem. Differently, it partitioned data represented as trees.

F-Measure. We gave the performance of our experiment on the Food Ontology
using F-Measure to assess the results. Firstly, we calculated precision and recall
according to the gold standard that OAEI provides. Then, the value of F-Measure
was calculated using the following equation:

F -Measure =
2 ∗ Precision ∗Recall
Precision+Recall

(8)

Fig. 7 shows the result of comparison between V-Doc+ and other five matchers
on the Food Ontology. From the figure, we observe that the precision, recall
and f1-measure of V-Doc+ is no better than some of matchers. It mostly dues
to the combination of varied algorithms for other tools while one in V-Doc+.
However, they are all lower than Falcon-AO’s. The main reason is that Falcon-
AO combined several matchers, including I-Sub, V-Doc and GMO, where V-Doc
is a non-parallel implementation of the virtual document technique which has
the similar precision and recall with V-Doc+.

60 H. Zhang, W. Hu, and Y. Qu

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Precision Recall F-Measure

VDoc+ Falcon-AO DSSim RiMOM Prior+ COMA

Fig. 7. Precision, recall and F1-Measure on the Food Ontology

Run Time. The strength of our approach is its efficiency. Table 3 shows the run
times for 10-node cluster on the Food Ontology. V-Doc+ only spent ten minutes
on running. Among other matchers, the one cost the least is Prior+ which spent
1.5 hours while DSSim cost one week which is the slowest. Consequently, al-
though V-Doc+ does not achieve the best F-Measure, the parallelization makes
it much faster than others.

Table 3. Run times comparison among V-Doc+, Falcon-AO, DSSim, RiMOM and
Prior+ on the Food Ontology

V-Doc+ Falcon-AO DSSim RiMOM Prior+
Run time 10 min 6 h 1 week 4 h 1.5 h

To analyze each stage of the whole approach, we calculated the run time for
details presented in Fig. 8, where 10-node cluster is used. For both the Food
Ontology and FMA vs. GALEN, constructing descriptions and calculating sim-
ilarities spent the most of time.

In order to evaluate the speedup, we calculated the run time for varied cluster
sizes. For each dataset, we ran our program on 2, 4, 8, 10 nodes environment.
Fig. 9 shows the result. In the figure, we see that the run time keeps reducing
while increasing the number of compute nodes. But we also notice that the
growth trend of efficiency is reducing. Fig. 10 shows the speedup which also
reflects the reducing growth of efficiency with increased cluster size. From 8-node
to 10-node, the speedup tends to be unchanged. An interesting thing is that the
speedup on the Food Ontology is smaller than that on FMA vs. GALEN. The
main reason is that, for any dataset, our approach must repeat the MapReduce
process several times on constructing the descriptions for blank nodes. Although
other MapReduce process stages on the Food Ontology cost less time than that
on FMA vs. GALEN, they share the similar run time on the blank node stage,
which leads to a low speedup.

Constructing Virtual Documents for Ontology Matching Using MapReduce 61

0

100

200

300

400

500

600

700

800

900

1000

Food FMA vs. GALEN

Calculating Similarities
Exchanging Information of Neighbors
Constructing Descriptions
Preprocessing

Tim
e (seconds)

Fig. 8. Run time of each
component on a 10-node
cluster

0

200

400

600

800

1000

1200

1400

1600

1800

2 4 6 8 10

Food Ontology

FMA vs. GALEN

Nodes

Tim
e (seconds)

Fig. 9. Run time on differ-
ent cluster sizes

1

1.2

1.4

1.6

1.8

2

2.2

2 4 6 8 10

Food Ontology

FMA vs. GALEN

Sp
ee

du
p

=
O

ld
 T

im
e

/ N
ew

 T
im

e

Nodes

Fig. 10. Speedup on differ-
ent cluster sizes

Some small scale datasets (less than 1,000 classes and properties and less than
3,000 statements) have also been tested for the run time and the speedup, but
the result is not so good. Due to the network cost and the repeated reading of
files, the whole process cost as much time as other tools.

8 Conclusion

Matching large ontologies is an inevitable obstacle for data fusion and only a few
ontology matchers can finish matching task in a satisfiable run time. MapReduce
is a wildly used computing framework for parallel computation, and it has been
used in a number of fields. However, there is few studies on matching ontologies
using MapReduce. In this paper, we proposed a 3-stage parallelized ontology
matching method, called V-Doc+, using virtual document technique based on
the MapReduce framework, which largely reduces the run time from hours to
minutes.

Each stage of our approach establishes several MapReduce processes. For
blank nodes, the descriptions are updated iteratively by emitting neighbors to the
reducers. For similarities, we calculate the high-weight words in the descriptions
of entities by ranking the frequency and emit the entities to reducers. Also,
we considered the workload balance. The frequency of entities and words in
RDF statements is calculated in the preprocessing. Then the statistical data of
frequency is loaded in the memory to assist automatically partition.

For performance test, we conducted experiment on two large real datasets and
the results showed a good efficiency and moderate precision and recall. For the
Food Ontology from OAEI 2007, V-Doc+ used ten minutes to finish the task
while other tools spent hours even weeks. The speedup with increased computing
nodes is also illustrated.

Currently, a number of matchers obtain good precision and recall by combin-
ing multiple matchers. However, our approach is restricted to a certain linguistic
matching algorithm. In the future work, we look forward to integrating a new
parallelized algorithm based on ontology structures to improve precision and
recall.

62 H. Zhang, W. Hu, and Y. Qu

Acknowledgements. This work is supported in part by the National Natu-
ral Science Foundation of China under Grant Nos. 61003018 and 61021062, in
part by the National Research Foundation for the Doctoral Program of Higher
Education of China under Grant No. 20100091120041, and also in part by the
Natural Science Foundation of Jiangsu Province under Grant No. BK2011189.
We appreciate Jianfeng Chen for conduction on MapReduce programming.

References

1. Bleiholder, J., Naumann, F.: Data Fusion. ACM Computing Surveys 41(1),
1–41 (2008)

2. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. Communications of the ACM 51(1), 107–113 (2008)

3. Do, H., Rahm, E.: Matching Large Schemas: Approaches and Evaluation. Infor-
mation Systems 32(6), 857–885 (2007)

4. Euzenat, J., Ferrara, A., Meilicke, C., Nikolov, A., Pane, J., Scharffe, F., Shvaiko,
P., Stuckenschmidt, H., Šváb-Zamazal, O., Svátek, V., Trojahn, C.: Results of the
Ontology Alignment Evaluation Initiative 2010. In: ISWC Workshop on Ontology
Matching (2010)

5. Euzenat, J., Isaac, A., Meilicke, C., Shvaiko, P., Stuckenschmidt, H., Šváb,
O., Svátek, V., Hage, W., Yatskevich, M.: First Results of the Ontology Alignment
Evaluation Initiative 2007. In: ISWC Workshop on Ontology Matching (2007)

6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
7. Gross, A., Hartung, M., Kirsten, T., Rahm, E.: On Matching Large Life Science On-

tologies in Parallel. In: Lambrix, P., Kemp, G. (eds.) DILS 2010. LNCS, vol. 6254,
pp. 35–49. Springer, Heidelberg (2010)

8. Hu, W., Qu, Y., Cheng, G.: Matching Large Ontologies: A Divide-and-Conquer
Approach. Data & Knowledge Engineering, 140–160 (2008)

9. Jean-Mary, Y., Shironoshita, E., Kabuka, M.: Ontology Matching with Semantic
Verification. Journal of Web Semantics 7(3), 235–251 (2009)

10. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A Dynamic Multistrategy Ontology Align-
ment Framework. IEEE Transactions on Knowledge and Data Engineering 21(8),
1218–1232 (2009)

11. Mork, P., Bernstein, P.: Adapting a Generic Match Algorithm to Align Ontologies
of Human Anatomy. In: Proceedings of the 20th International Conference on Data
Engineering, pp. 787–790 (2004)

12. Moutselakis, E., Karakos, A.: Semantic Web Multimedia Metadata Retrieval: A
Music Approach. In: 13th Panhellenic Conference on Informatics, pp. 43–47 (2009)

13. Mao, M., Peng, Y., Spring, M.: An Adaptive Ontology Mapping Approach with
Neural Network Based Constraint Satisfaction. Web Semantics: Science. Services
and Agents on the World Wide Web 8(1), 14–25 (2010)

14. McGill, M., Salton, G.: Introduction to Modern Information Retrieval. McGraw-
Hill (1983)

15. Peukert, E., Berthold, H., Rahm, E.: Rewrite Techniques for Performance Op-
timization of Schema Matching Processes. In: Proceedings of 13th International
Conference on Extending Database Technology, pp. 453–464. ACM Press, New
York (2010)

16. Qu, Y., Hu, W., Cheng, G.: Constructing Virtual Documents for Ontology Match-
ing. In: 15th International World Wide Web Conference, pp. 23–31. ACM Press,
New York (2006)

Constructing Virtual Documents for Ontology Matching Using MapReduce 63

17. Rahm, E.: Towards Large-Scale Schema and Ontology Matching. Data-Centric
Systems and Applications, Part I, 3–27 (2011)

18. Rosse, C., Mejino, L.: The Foundational Model of Anatomy Ontology. In: Burger,
A., Davidson, D., Baldock, R. (eds.) Anatomy Ontologies for Bioinformatics: Prin-
ciples and Practice, vol. 6, Part I, pp. 59–117. Springer, Heidelberg (2008)

19. Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment.
In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS,
vol. 3729, pp. 624–637. Springer, Heidelberg (2005)

20. Vernica, R., Carey, M., Li, D.: Efficient Parallel Set-Similarity Joins Using MapRe-
duce. In: SIGMOD 2010 Proceedings of the 2010 International Conference on Man-
agement of Data, pp. 495–506. ACM Press, New York (2010)

21. Vargas-Vera, M., Nagy, M.: Towards Intelligent Ontology Alignment Systems for
Question Answering: Challenges and Roadblocks. Journal of Emerging Technolo-
gies in Web Intelligence 2(3), 244–257 (2010)

22. Wang, P., Zhou, Y., Xu, B.: Matching Large Ontologies Based on Reduction An-
chors. In: Proceedings of International Joint Conferences on Artificial Intelligence,
pp. 2343–2348 (2011)

23. Zhang, S., Bodenreider, O.: Hybrid Alignment Strategy for Anatomical Ontologies:
Results of the 2007 Ontology Alignment Contest. In: ISWCWorkshop on Ontology
Matching (2007)

Semantic Flow Networks: Semantic Interoperability
in Networks of Ontologies

Valeria Fionda and Giuseppe Pirró

KRDB, Free University of Bolzano-Bozen
{fionda,pirro}@inf.unibz.it

Abstract. In an open context such as the Semantic Web, information providers
usually rely on different ontologies to semantically characterize contents. In
order to enable interoperability at a semantic level, ontologies underlying infor-
mation sources must be linked by discovering alignments, that is, set of corre-
spondences or mappings. The aim of this paper is to provide a formal model (i.e.,
Semantic Flow Networks) to represent networks of ontologies and alignments
with the aim to investigate the problem of composite mapping discovery. Seman-
tic Flow Networks (SFN) differ from other models of networks of ontologies for
two main aspects. SFN consider constraints over mappings that are necessary to
take into account their dependencies. Moreover, a different notion of mapping,
that is, compound mapping is considered. Complexity results and a CSP formu-
lation for composite mapping discovery are provided.

1 Introduction

The Semantic Web is an extension of the current Web and it is aimed at providing a new
class of services through which software agents can meaningfully access data, interact
and interoperate in order to fulfil complex tasks. The main pillar of this new class of
intelligent services and applications are ontologies. An ontology is a formal representa-
tion of a particular knowledge domain in terms of concepts, relations among concepts
and axioms [8]. Ontologies provide the necessary semantic underpinning for endowing
data with machine-processable annotations. An ontology inherently contains some de-
gree of subjectivity since its definition depends on different factors among which the
purpose of its usage and the background of the ontology engineer. In an open context
such as the Semantic Web, this will inevitably raise issues when applications relying
on different ontologies need to interact. Ontology matching [6] aims at providing, by
ontology alignments (i.e., sets of correspondences or mappings), interpretations of how
a particular piece of knowledge in an ontology can be linked to another one in a differ-
ent ontology. Hence, interoperability among applications will occur at semantic level
since it will be possible to automatically interpret pieces of knowledge in a new and
denser space of semantic links enabled by alignments. Alignments can be exploited for
different purposes as, for instance, ontology merging [13], translating queries among
different information sources or routing queries in Peer-to-Peer networks [10].

Despite the potential huge number of online available ontologies, it is likely that
some of them will emerge and bring a certain level of agreement on particular pieces of
knowledge. This is the case, for instance, of the Friend of a Friend (FOAF) ontology,

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 64–79, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 65

which is largely adopted when there is the need to express information about people, the
links among them and the things they create and do. From an ontology matching per-
spective, discovering alignments with popular ontologies can result in having a higher
interoperability in a network of ontologies. Although ontology matching [6] is a very
relevant problem, there is also the need to study and trace on a more abstract perspective
the boundary of the (re)use of ontology alignments. There exists some initiative in this
direction such as the work by Jiang et al. [9] where the problem of information fluidity
in a network of alignments has been studied. Other initiatives (e.g., [2,19]) consider
network of ontologies and alignments from a logical perspective. In [18] an empirical
study on the precision of mapping composition has been conducted. In a more recent
work [5], an algebra for ontology alignment relations has been defined which, on one
side, introduces a rich set of relations between ontology entities and, on the other side,
also investigates how to compose alignments.

This paper introduces the notion of Semantic Flow Network (SFN). A SFN is used
to formally define network of ontologies interlinked by alignments. SFN differ from
related work for two main aspects. First, we consider constraints over mappings (i.e.,
XOR and AND) that are necessary to take into account their dependencies. Second, we
consider a different notion of mapping, that is, compound mapping. Building up on the
SFN framework, two main discovery tasks, that is Free Mapping and Perfect Mapping,
will be introduced. The former is the task of finding a sequence of mappings so that
entities in a given ontology can be linked to entities in other ontologies. The latter aims
at linking input entities to a specific set of entities in other ontologies. These tasks
introduce two interesting problems in a SFN, that is, mapping existence and mapping
selection. With mapping existence it is intended the process of deciding whether there
exists a solution (i.e., a sequence of mappings) for the Free Mapping (resp., Perfect
Mapping) problem. On the other hand, mapping selection is concerned in finding the
optimal solution to these problems. The contributions of this paper are as follows:

• The idea of Semantic Flow Network is introduced to represent networks of ontology
entities linked by mappings. Besides, Mapping Existence and Mapping Selection
for the tasks of Free Mapping and Perfect Mapping are also introduced.

• The classical representation of a mapping will be generalized to the case in which
input and output are sets of entities.

• Some complexity results for Mapping Existence and Mapping Selection are pro-
vided by considering XOR and AND constraints among mappings.

• A Constraint Satisfaction Problem (CSP) formulation for the existence problems is
provided.

The remainder of this paper is organized as follows. Related work is reviewed in Section
2. Relevant notions along with their formal definitions are introduced in Section 3.
Section 4 introduces the notion of Semantic Flow Network and describes Free Mapping
and Perfect Mapping upon which the problems of mapping existence and selection will
be defined. Some complexity results to these problems are given in Section 5. Section 6
provides a CSP formulation for the mapping existence problems. Section 7 draws some
conclusions and sketches future work.

66 V. Fionda and G. Pirró

2 Related Work

This section reports on some recent work that dealt with networks of ontologies linked
by alignments. In Jiang et al. [9], information fluidity has been tackled as a graph con-
nectivity problem. Authors investigated the total amount of information flowing in a
network of ontologies as a function of the number of alignments in the network. The
NEON1 project investigated some aspects related to networks of ontologies such as
large-scale semantic applications in distributed organizations. In [19] three different
semantics for distributed systems, defined as sets of ontologies interconnected by align-
ments, have been introduced. Upon these three semantics a mapping composition oper-
ator has been defined. Authors distinguish between syntactic composition and semantic
composition, which requires semantic consistency to be preserved when indirectly link-
ing two ontologies. Another interesting model of distributed knowledge-based system
are Distributed Description Logics [2], which consist in ontologies linked by bridge
rules. This approach tackles the problem of preserving the consistency of the distributed
knowledge base by interpreting each ontology within a context. In [5], an algebra for
ontology alignment relations has been introduced with some considerations on how
mapping composition can be performed. In [18], chains of (near) equivalence relations
of length two have been analysed with the aim to investigate if transitivity of these rela-
tions is preserved. An empirical analysis has been conducted in three different domains
(i.e., Biomedicine, Cultural Heritage and Library Subject Headings) where human ex-
perts have been asked to evaluate composite mappings. It has been observed that the
quality of the composition depends on the content of the ontologies and the quality of
the basic mappings upon which the composition is built. Interestingly, in some cases
(e.g., Bioportal) the precision of the composition exceeds the precision of the basic
alignments. In [14], network of ontologies and alignments have been investigated by
considering repositories of ontologies. In particular, the notion of hyperontology has
been introduced, which serves to study (in)consistency propagation in connected align-
ments.The problem of reusing ontology alignments in a Peer-to-Peer network has been
investigate in [10]. Mapping composition [7,12] is a relevant problem in database the-
ory and in particular in schema mapping where it enables data integration and exchange
[11]. In [1] an algorithm for implementing mapping composition has been defined.

The aim of this paper is to propose a formal model (i.e., Semantic Flow Networks) to
represent networks of ontologies and alignments with the aim to investigate the prob-
lem of composite mapping discovery. Our formulation of network of ontologies and
alignments differers from related work for two main aspects. First, we consider con-
straints over mappings (i.e., XOR and AND) that are necessary to take into account their
dependencies. Second, we consider a different notion of mapping, that is, compound
mapping. Compound mapping discovery has received little attention so far, even though
it is a more powerful notion of mapping. Besides, the study of the complexity presented
in this paper, traces the intrinsic difficulty of composite mapping discovery, which on its
turn bounds, in the worst case, the efficiency of algorithms that can be designed. How-
ever, we provided a CSP formulation, which can benefit from the efficiency of existing
solvers.

1 http://www.neon-project.org/

http://www.neon-project.org/

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 67

3 Preliminaries

This section introduces general notions that provide the necessary background to intro-
duce formal definitions and subsequent results.

We consider ontologies expressed in OWL, which is the W3C standard language
for ontologies. In the following the term entity will be used to generically denote an
ontology concept or relation. The generic set of entities defined in an ontology ω will
be denoted by Cω. In order to enable interoperability among ontologies it is neces-
sary to discover alignments i.e., sets of mappings. To cope with this problem several
ontology matching systems have been proposed (e.g., [16,17]). The reader can refer to
Euzenat & Shvaiko 2007 [6] for a comprehensive discussion about the topic. We assume
that alignments already exist and are stored in some repository such as the Alignment
Server [3].

Definition 1 (Atomic mapping). An atomic mapping is a tuple 〈(ci, ωi), (cj , ωj), r , s〉
where ci (resp., cj) is an entity belonging to the ontology ωi (resp., ωj), r is a semantic
relation holding between ci and cj and s ∈ [0, 1] is the confidence value associated to
the relation2 r.

As discussed in Euzenat 2008 [5], r is a subset of relations R ∈ 2Γ , with Γ = {=,
<,>, �,⊥}. The symbols =, <,> express equivalence, more general and less general
relations, respectively. The symbol � expresses an overlap relation between entities,
which has to be interpreted as the case in which some instances are shared but no other
relation can hold. The symbol ⊥ states that two entities are disjoint. Finally, Γ repre-
sents total uncertainty about the relation holding between entities.

Given a set of ontologies Ω, let C =
⋃

ω∈Ω Cω be the set of all entities appearing
in these ontologies. Let Ψ = {(c, ω) | ω ∈ Ω ∧ c ∈ Cω} be the set of entities along
with their ontologies. Given a subset W ⊆ Ψ , W(ωj) denotes the set of elements
{(c, ωj) | (c, ωj) ∈ W}.

Definition 2 (Compound mapping). Let C be a set of entities and ωi, ωj two ontolo-
gies, a compound mappingμ is a tuple 〈I,O,R, s〉 where I ⊆ W(ωi) andO ⊆ W(ωj)
are the set of entities that are taken in input and given as output, respectively. Besides,
R and s have the same meaning as in Definition 1.

Example 3. Let Ω = {ω1, ω2} and C = Cω1 ∪ Cω2 = {c1, c2} ∪ {c3, c4} =
{c1, c2, c3, c4} be the set of ontologies and entities, respectively. The tuple 〈I,O,=, 1〉
with: I = {(c1, ω1), (c2, ω1)} and O = {(c3, ω2), (c4, ω2)}, represents the mapping
between the entities {c1, c2} in ω1 and the entities {c3, c4} in ω2, characterized by an
equivalence semantic relation and 1 as a confidence value.

Note that an atomic mapping is a special case of compound mapping where I and O
contain only one entity. Fig. 1 depicts a mapping, with round nodes representing input
and output entities and the rectangle the relationsR and the confidence score s. Besides,
edges model the direction in which information flows through μ. The mapping depicted
in Fig. 1 expresses the fact that whenever the concept c2 ∈ ω1 is used to interact with
the information source relying on ω2, it is seen as c3 ∈ ω2.

2 The closer the score to 1 the higher the confidence that r holds.

68 V. Fionda and G. Pirró

c1, ω1

c3, ω1 c2, ω1

c1, ω2

c3, ω2 c2, ω2

c4, ω2

Source Ontology
ω1

Target Ontology
ω2

R

s

Correspondence

Fig. 1. Graphical representation of a mapping

In a network of ontologies interlinked by alignments it is also possible to perform
some manipulation over alignments, and then over the mappings defined within, with
the aim to discover new ones. In particular, in [5] the operations of inverse and composi-
tion of alignments have been introduced. The reader can refer to [5] for a comprehensive
discussion about these notions.

3.1 Processing Ontology Mappings

Since a mapping, as previously defined, is just a declarative statement about the rela-
tion holding between entities in different ontologies, it is necessary from an operational
point of view to provided a way to ”process” mappings. Indeed, mapping systems
are used to discover mappings and provide them for subsequent usage, which means
that these declarative statements have to be somehow processed in targeted applica-
tions (e.g., ontology merging, query translation). We consider a function process(μ),
which takes in input a mapping μ = 〈I,O,R, s〉 and processes it, that is, starting
from the input entities I of the mapping, returns the output entities O. The function
process(.) is crucial for exploiting alignments to preform composition since in order
to discover composite mappings it is necessary to process already existing ones.

Definition 4 (Mapping composition). Let M = {μ1, μ2, . . . , μk} be a set of map-
pings. A composition Υ over M (indicated as ΥM) defines the order in which
{μ1, μ2, . . . , μk} are processed by the function process(.).

For example, the composition ΥM = μ2 ◦ μ4 ◦ μ1 ◦ · · · ◦ μk, cor-
responds to process in order the mappings μ2, μ4, μ1, . . . , μk (i.e.,
process(μ2),process(μ4),process(μ1) . . . ,process(μk)).

Given a set {ΥM1 , ..., ΥMl
} of compositions, it possible to assign a score in order to

rank different sets of compositions, by introducing a generic function value. As an ex-
ample, value can take into account the confidence scores and/or the relations in the com-

positions. For instance, it can be: value({ΥM1 , ..., ΥMl
}) = s{M1,...,Ml} =

∑l
i=i sMi

l ,
with sMi being the cumulative confidence score obtained by applying an operator (e.g.,
multiplication) to the confidences scores of the compositions in Mi.

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 69

3.2 Constraints over Mappings

It is unrealistic to assume that mappings in an alignment are all independent from one
another. In general, mappings areOR-constrained, that is, whatever combination of them
can be processed. However, in some circumstances, discussed below, the way mappings
are processed has to respect some criteria. Here, we provide some hints about how
constraints can be imposed for the particular scenario considered in the present work,
that is, networks of ontologies in which new mappings can be deduced starting from
the existing ones. Indeed, an interesting line of future research is to investigate how to
discover constraints in ontology alignments. This is because constraints are something
that is not generally given as a result of executing a matching algorithm but could be
discovered leveraging both alignment information and axioms defined in the ontologies.
For the purposes of this paper, to encode constraints among mappings, the operators
XOR and AND will be used.

Mappings AND-constrained. An AND constraint among a set of mappings
{μ1, μ2, ..., μk} indicated as AND(μ1, μ2, ..., μk) implies that if one mapping is pro-
cessed then all of them have to be processed. This constraint is useful to decompose
compound mappings. In particular, when a mapping has n inputs and m outputs, it can
be decomposed in a set of n × m atomic mappings AND-constrained. In Fig. 2 it is
reported the decomposition for n and m ranging from 1 to 2. The case n = m = 1 is
reported in Fig. 1.

Compound correspondence Compound correspondence decomposed

(c1, ω1
R1

s1

μ1

c2, ω1

c6, ω2

(c1, ω1
R1

s1

μ1

c6, ω2

R1

s1

μ1

c2, ω1

'

AND

(c1, ω1
R1

s1

μ1

c2, ω1

c6, ω2

c9, ω2

(c1, ω1

R1

s1

μ1

R1

s1

μ1

c2, ω1

c6, ω2'

AND

R1

s1

μ1

R1

s1

μ1'

' '

' ' c9, ω2

(c1, ω1
R1

s1

μ1

(c1, ω1

R1

s1

μ1

c6, ω2

R1

μ1'

AND

c6, ω2

c9, ω2

s1
c9, ω2

Fig. 2. Decomposition of a compound mapping

70 V. Fionda and G. Pirró

Mappings XOR-constrained. A XOR constraint over the set of mappings
{μ1, μ2, . . . , μk} indicated as XOR(μ1, μ2, . . . , μk) implies that at most one of them
can be processed. An example of XOR constraint is reported in Fig. 3. XOR constraints
can be discovered, for instance, by looking at disjointness relations (available in OWL)
between concepts in a target ontology (ω2 in Fig. 3). As can be observed, there exist two
mappings both taking as input (c2, ω1) and returning (c9, ω2) and (c6, ω2), respectively.
However, c6 and c9 are defined as disjoint in ω2. In a dynamic scenario, as for instance
when composing alignments, only one of the two mappings should be processed. Note
that, XOR constraints can also be defined over sets of mappings AND-constrained when
dealing with decomposed compound mappings.

OntologyOntology

(c1, ω1

c2, ω1

c3, ω1

ω1

c4, ω2

ω2

c9, ω2

μ1

μ2
c6, ω2

R2

s2

R1

s1 Disjoint
(⊥)

XOR

Fig. 3. An example of XOR constraint

Operations over existing alignments and in particular alignment composition are at
the basis for the subsequent reasoning. In particular, given a network of ontologies
it is interesting to decide whether certain kinds of problems such as: “there exist a
composition, or a sequence of compositions, such that a set of concepts in an ontology
ωi can be mapped into a set of concepts in another ontology ωj? ” can be solved.

4 Semantic Flow Networks

This section introduces the notion of Semantic Flow Network (SFN) that can be seen as
a network of ontologies interconnected via alignments and augmented with constraints
about how mappings contained in an alignment can be processed.

Definition 5 (Semantic Flow Network). A Semantic Flow Network (SFN)F is a tuple
〈C,Ω,M, ϑ〉 where Ω is a set of ontologies and C is the set of entities defined in the
ontologies in Ω. M is a set of mappings over C and Ω, and ϑ is a set of constraints
over the mappings inM.

Note that M contains all the mappings contained in all the alignments in the network
of ontologies.

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 71

OntologyOntologyOntology

(c1, ω1

c2, ω1

c3, ω1

ω1

c4, ω2

ω2

R1

s1

R2

s2

(c4, ω3 (c5, ω3

(c7, ω3

c6, ω3

(c8, ω3

ω3

R3

s3

R4

s4

R5
s5

R6

s6

c6, ω2

c9, ω2

R7

s7

XOR

μ1

μ2

μ3

μ4

μ5

μ6

μ7

(a)

OntologyOntologyOntology

(c1, ω1

c2, ω1

c3, ω1

ω1

c4, ω2

ω2
R1

s1

R2

s2

(c4, ω3

(c5, ω3

(c7, ω3

c6, ω3

(c8, ω3

ω3

R3

s3

R4

s4

R5
s5

R6

s6

c6, ω2

c9, ω2

R7

s7

XOR

μ1

μ2

μ3

μ4

μ5

μ6

μ7

R2

s2

μ2 '

''

AND

R4

s4

μ4'

''

R7

s7

μ7'

''

AND

(b)

Fig. 4. A SFN (a) with compound mappings and (b) with decomposed mappings

Example 6. An example of SFN F = 〈C,Ω,M, ϑ〉 is depicted in Fig. 4(a) where C =
{c1, . . . , c8}, Ω = {ω1, ω2, ω3}, M = {μ1, μ2, . . . , μ7} and ϑ = {XOR(μ6, μ7)}.
SinceF involves compound mappings it can be represented using their decompositions.
This leads toF ′ = 〈C,Ω,M′, ϑ′〉 (see Fig. 4(b)) where the mappingsμ2,μ4 and μ7 are
substituted with their decompositions. Moreover, the new set of mapping constraints is
ϑ′ = {XOR(μ6,AND(μ′

7, μ
′′
7)),AND(μ

′
2, μ

′′
2),AND(μ

′
4, μ

′′
4),AND(μ

′
7, μ

′′
7)}. �

For sake of presentation, in the above example and in the remainder of this paper we
only deal with direct alignments. However, for each alignment it is possible to compute
its inverse, which in practice means including in the network additional edges from
target to source entities.

4.1 Mapping Discovery Strategies in a SFN

The aim of a SFN is to enable interlinking entities in a network of ontologies by discov-
ering new mappings. Note that simple path discovery algorithms are not enough since
SFNs are not mere Directed Graphs as they also include constraints over mappings.

72 V. Fionda and G. Pirró

In a SFN two main discovery strategies have been identified. The first one is about
discovering and composing mappings through which, a given set of entities can be
linked to entities belonging to a given set of target ontologies. This task is useful when,
for instance, there is no a-priori knowledge about the structure of the target ontologies
but there are clues that these ontologies are somehow relevant. This leads to the notion
of Free Mapping.

Definition 7 (Free Mapping). A Free Mapping is a triple FM = 〈F , Cin, Ωout〉, where
F = 〈C,Ω,M, ϑ〉 is a SFN instance, Cin ⊆ Ψ is the set of input entities and Ωout ⊆
Ω is a set of target ontologies. FM encodes the fact that given Cin and Ωout, a set
of mappings M ⊆ M and a set of compositions over them {ΥM1 , . . . , ΥMk

}, with
Mi ⊆ M, ∀i ∈ {1, . . . , k} and M =

⋃
iMi, have to be processed to obtain a set of

entities E ⊆ Ψ , s.t., (c, ωout) ∈ E iff ωout ∈ Ωout.

Another problem we consider concerns the discovery of mappings through which a
given set of entities can be mapped into a specific set of entities in specific target on-
tologies. For instance, let’s consider the FOAF ontology, which is largely adopted to ex-
press relations among people. One can be interested in discovering mappings between
entities in her ontology with some FOAF entities such as Person. This will certainly
enable, via FOAF, to discover additional mappings with other ontologies already linked
to FOAF. Here the notion of Perfect Mapping comes into play.

Definition 8 (Perfect Mapping). A Perfect Mapping is a triple PM = 〈F , Cin, Cout〉,
where F and Cin have the same meaning as in Definition 7 and Cout ⊆ Ψ is the set of
specific target entities. PM encodes the fact that given Cin and Cout a set of mappings
M ⊆M and a set of compositions over them {ΥM1 , . . . , ΥMk

} have to be processed
to obtain entities in Cout.
Given a Free Mapping instance FM (resp., Perfect Mapping instance PM), a relevant
problem is to determine if there exists a solution i.e., a subset of mappingsM⊆M and
a set of compositions over these mappings {ΥM1 , . . . , ΥMk

} able to satisfy the require-
ments of FM (resp., PM). Besides, another relevant problem concerns the selection of
the optimal subset of mappingsM∗ ⊆M and their corresponding set of compositions
{Υ ∗

M∗
1
, . . . , Υ ∗

M∗
k
}. The former problem will be described in detail in Section 4.2, while

the latter will be analyzed in Section 4.3.

4.2 Mapping Existence

Mapping existence is the problem of deciding whether a given Free Mapping instance
or Perfect Mapping instance admits a solution.

Consider the set of mappings M =
⋃

iMi and a set {ΥM1 , ..., ΥMk
} of composi-

tions, and let σM be a processing sequence defining the order in which mappings inM
are processed by the function process(.). Note that to each set of compositions can
correspond more than one processing sequence but it is always possible, starting from
the processing sequence, to construct the corresponding set of compositions.

Let T0 = Cin denote the set of entities at the beginning and μi = 〈Ii,Oi, Ri, si〉
be the i-th mapping in σM. Then, Ti ⊆ Ψ denote the set of entities obtained after
processing μi, that is:

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 73

Ti = (Ti−1 \ Ii) ∪ Oi. (1)

Moreover, let the set Di ⊆ Ψ (with D0 = ∅) denote the set of entities used as input in
some mappings in the previous i-1 steps, that is:

Di = Di−1 ∪ Ii. (2)

The sequence σM = μ1, ..., μk is legal w.r.t. FM (PM, resp.) if:

(i) Ii ⊆ Ti−1 ∪Di−1, ∀ i ∈ {1, ..., k}.
(ii) all the XOR and AND constraints defined in ϑ are satisfied, which means that for

each XOR constraint over a set of mappings, at most one of them is processed (i.e.,
belongs to σM) and for each AND constraint over a set of mappings, none or all of
them are processed (i.e., belongs to σM).

A legal processing sequence σM = μ1, ..., μk is a solution sequence to FM (resp., PM)
iff (c, ω) ∈ Tk ⇒ (ω ∈ Ωout) (resp., Cout ⊆ Tk) holds. A set {ΥM1 , ..., ΥMk

} of
compositions is a solution set to FM (resp., PM) iff there exists at least one solution
sequence over the associatedM.

Definition 9 (Mapping Existence Problem). Given a Free Mapping instance FM (a
Perfect mapping instance PM, resp.), the Mapping Existence Problem (MEP) amounts
at deciding if FM (PM, resp.) is feasible, that is, if a solution sequence (and, conse-
quently, a set of compositions) for FM (PM, resp.) exists.

Example 10. Given the SFN instance F depicted in Fig. 5, consider the Free Mapping
instance FM = 〈F , Cin, ω4〉, with Cin = {(Citizen, ω1)}. Possible solutions to FM
are the sequences:

• σ{μ2,μ5} = μ2, μ5 (and the set of compositions {Υ{μ2,μ5} = μ2 ◦ μ5}).
• σ{μ1,μ2,μ3,μ5} = μ2, μ5, μ1, μ3 (and the set of compositions {Υ{μ2,μ5} = μ2 ◦
μ5, Υ{μ1,μ3} = μ1 ◦ μ3}) �.

A solution sequence σM to a Perfect Mapping instance is said to be exact iff Cout = Tk.

Definition 11 (Exact Mapping Existence Problem). Given a Perfect Mapping in-
stance PM, the Exact Mapping Existence Problem (EMEP) amounts at deciding if PM
is exact-feasible, that is, if an exact solution to PM exists.

Example 12. Given the SFN instance F depicted in Fig. 5, consider the Perfect
Mapping instance PM = 〈F , Cin, Cout〉, with Cin = {(Citizen, ω1)} and Cout =
{(Female, ω4)}. A possible solution to PM is the sequence σ{μ1,μ3} = μ1, μ3 (and the
set of compositions {Υ{μ1,μ3} = μ1 ◦ μ3}). Note that, this sequence is also an exact
solution to PM. �

74 V. Fionda and G. Pirró

Ontology
Ontology

Ontology ω1

ω2

ω3

Citizen, ω1

Person, ω2

Ontology

V oter, ω3

0.8

0.75

ω4)

(Female, ω4

Male, ω4

(Individual, ω4)

>

=

<
0.8

>
0.7

>
0.7

μ1

μ2

μ3

μ4

μ5

XOR

Fig. 5. An example of Semantic Flow Network

4.3 Optimal Mapping Selection

Optimal Mapping Selection is the problem of finding the optimal solution to a
Free Mapping instance FM or a Perfect Mapping instance PM. The optimal solu-
tion to FM aims at finding the set of mappings M∗ ⊆ M and a set of compo-
sitions {Υ ∗

M∗
1
, . . . , Υ ∗

M∗
k
} over M∗, s.t., there does not exist M̂ ⊆ M and a set

of compositions {Υ̂M̂1
, . . . , Υ̂M̂k

} over M̂ for which value({Υ̂M̂1
, . . . , Υ̂M̂k

}) >
value({Υ ∗

M∗
1
, . . . , Υ ∗

M∗
k
}). Even in this case, two relevant problems can be defined.

Definition 13 (Optimal Mapping Selection Problem). Given a FM instance (a PM
instance, resp.,), the Optimal Mapping Selection Problem (OMSP) amounts at finding
the optimal solution set {Υ ∗

M∗
1
, . . . , Υ ∗

M∗
k
}, along with one of the possible solution se-

quences, to FM (resp., PM).

Example 14. If we admit the function value to be the cumulative confidence score over
a mapping composition, by considering the Free Mapping instance FM reported in
Example 10, the solution to the OMSP over FM is σ{μ2,μ5} = μ2, μ5 along with the
solution set {Υ{μ2,μ5} = μ2 ◦ μ5}. This is because this solution set has the maximum
cumulative confidence (i.e., 0.75× 0.8 = 0.6) among all the possible solutions. �

An exact optimal solution for a Perfect Mapping instance PM is an exact solution pro-
viding the maximum value over all the possible exact solutions.

Definition 15 (Exact OMSP). Given a Perfect Mapping instance PM, the Exact Opti-
mal Mapping Selection Problem (EOMSP) amounts at finding the exact optimal solu-
tion set {Υ ∗

M∗
1
, . . . , Υ ∗

M∗
k
}, along with one of its solution sequences, to PM.

Example 16. Consider the Perfect Mapping instance PM reported in Example 12,
the solution of the OMSP and of the EOMSP over PM is σ{μ1,μ3} = μ1, μ3 and
{Υ{μ1,μ3} = μ1 ◦ μ3} having the maximum cumulative confidence (i.e., 0.56). �

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 75

The existence and optimal selection problems are crucial to enable large scale reuse of
alignments and then mappings defined within. Therefore, in Section 5, some complexity
results concerning these problems will be sketched.

5 Some Complexity Results

This section provides some complexity results for the mapping existence and mapping
selection problems.

Theorem 17. MEP and EMEP, built using XOR and AND operators to constraint map-
pings in alignments, belong to the NP class of decision problems.

Proof. The certificate for all the three problems is a processing sequence σM (see
Section 4.2). Mappings in M are a subset of the mappings in the input SFN thus the
size of the certificate is polynomial in the total number of mappings. The satisfaction of
XOR and AND constraints can be checked in polynomial time by scanning the sequence
and it can also be checked in polynomial time (by using formulas 1 and 2) that the
sequence is legal and that at the end of the processing sequence:

• in the case of MEP, only entities of the target ontologies or a superset of the required
entities are obtained;

• in the case of EMEP, exactly the set of required entities is obtained.

Moreover, if we consider the class of SFN instances in which both XOR and AND con-
straints are used, the following results hold:

Theorem 18. MEP and EMEP for the class of FM and PM instances obtained from
SNF instances built using both XOR and AND operators to constraint mappings are
NP-complete.

In the following, hardness results are provided by reductions from the Satisfiability of
Boolean formulas in conjunctive normal form (CNF). In particular, recall that deciding
whether a Boolean formula in CNF is satisfiable is NP-hard [15]. Since we are inter-
ested in the existence of a solution we omit information about semantic relations and
confidence values (we can consider without loss of generality all relations as equiva-
lence and all confidence values as unitary).

Proof. (Sketch)
NP-Hardness. Let φ = c1 ∧ · · · ∧ cm be a generic boolean formula in CNF over the
clauses c1, ..., cm and the variables X1, . . . , Xn. Starting from φ we build the SFN
F = 〈C,Ω,M, ϑ〉 reported in Fig. 6. Note that, in Fig. 6 mappings are represented by
edges. F is build such that:

• Ω = {ω1, ω2, ω3, ω4}.
• C = Cω1 ∪Cω2 ∪Cω3 ∪Cω4 =

⋃
Xi
{xi}∪

⋃
Xi
{xTi , xFi }∪

⋃
cj
{cj}∪{φ}. Thus,

for each variable Xi we consider the three entities xi, xTi , x
F
i ∈ C and for each

clause cj an entity cj ∈ C.
• Each variable Xi in φ is associated to the two mappings 〈{(xi, ω1)}, {(xTi , ω2)}〉

and 〈{(xi, ω1)}, {(xFi , ω2)}〉.

76 V. Fionda and G. Pirró

xn, ω1

(xi, ω1

x1, ω1

XOR

AND

φ, ω4

(cj, ω3

c1, ω3

cm, ω3

(ck, ω3

xT
i , ω2

xF
i , ω2

Fig. 6. Hardness results

• For each variable Xi occurring positively (negatively, resp.) in cj we consider the
mapping 〈{(xTi , ω2)}, {(cj, ω3)}〉 (〈{(xFi , ω2)}, {(cj , ω3)}〉, resp.).

• For each clause cj we add the mapping 〈{(cj , ω3)}, {(φ, ω4)}〉.
• ϑcontains the constraintAND(〈{(c1, ω3)}, {(φ, ω4)}〉, ..., 〈{(cm, ω3)}, {(φ, ω4)}〉).
• For each variableXi, the constraintXOR(〈{(xi,ω1)}, {(xTi ,ω2)}〉,〈{(xi,ω1)}, {(xFi ,
ω2)}〉) is added to ϑ.

The two mappings 〈{(xi, ω1)}, {(xTi , ω2)}〉 and 〈{(xi, ω1)}, {(xFi , ω2)}〉 are meant to
encode the selection of a truth value assignment to the variable Xi. Indeed, they are
composed using a XOR constraint and at most one of them can be selected in any so-
lution. Moreover, since all the mappings in the set

⋃m
j=1{〈{(cj, ω3)}, {(φ, ω4)}〉} are

composed using an AND constraint, all of them must be selected in any solution and,
thus, the required entity φ can be obtained if and only if all the m clauses can be satis-
fied. Upon F we define:

• the Simple Mapping instance: FM(φ) = 〈F ,
⋃

i{(xi, ω1)}, {ω4}〉;
• the Perfect Mapping instance: PM(φ) = 〈F ,

⋃
i{(xi, ω1)}, {(φ, ω4)}〉.

Eventually, one may check that as for MEP it is possible to obtain only entities of the
target ontology ω4 (i.e., the entity φ) iff all the various selections encode an assignment
that satisfies φ. The same reasoning holds for EMEP over PM(φ). Thus, φ is satisfiable
⇔ the MEP or EMEP problems over FM(φ) and PM(φ) has a solution. �

Clearly enough, the hardness results we have derived for the Mapping Existence prob-
lems are inherited by the Mapping Selection ones (i.e., OMSP and EOMSP). This is
because, determining the optimal solution implies to check the existence of at least one
solution.

6 A Constraint Satisfaction Problem Formulation

In this section a CSP formulation is introduced for encoding the existence problems
discussed so far. A constraint satisfaction problem (CSP) consists of a set of n variables

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 77

{x1, ..., xn}; a domain Di of possible values for each variable xi, i ∈ {1, ..., n}; a set
of m constraints {C1, ..., Cm}, where each constraint Ci, i ∈ {1, ...,m} defines the
valid values for the set of variables to which apply [4]. The choice of variables defines
the search space whereas the choice of constraints defines how the search space can be
reduced so that it can be effectively searched using backtracking search. The advantage
in using CSP formulations for our problems is that powerful algorithms that have been
designed to solve CSP can be exploited. In more detail, encoding a problem in CSP
consists in choosing variables, domains and constraints. The formulations of Mapping
Existence (MEP), Perfect Mapping Existence (PMEP) and Exact Perfect Mapping Ex-
istence (EPMEP) Problems described in the following rely on binary variables. This
way both CSP and SAT solvers can be exploited. Therefore, in the following, the sets
used to represent input entities (i.e., Cin), target entities (i.e., Cout), target ontologies
(i.e., Ωout), input I and output O entities of each mapping will be encoded as sets of
binary variables. As an example, the set Cin is represented by the following |C| · |Ω|
binary variables: Cin(c, ω) ∈ {0, 1}, ∀c ∈ C and ∀ω ∈ Ω. In particular, the variable
Cin(c, ω) = 1 iff the pair (c, ω) ∈ Cin.

In each of the three problems (MEP, PMEP and EPMEP) the size of any solution
(in term of solution sequence) is at most equal to the number of mappings in the SFN.
Thus, for each mapping, it has to be decided if it belongs to the solution sequence
and, if so, to which position of the solution sequence it belongs. Let |M| = n be the
number of mappings in the SFN. We introduce a set of binary variables xji ∈ {0, 1},
i, j ∈ {1, ..., n}, where xji = 1 iff the i-th mapping is placed in the position j of the
solution sequence, and xji = 0 otherwise. By setting all these variables we can encode
the fact that both a set of mappings and the order in which they have to be processed,
have been decided. However, many illegal solutions may be obtained and, thus, some
constraints have to be introduced:

• Unary mapping execution constraints. These constraints force each mapping to be
selected at most once,

∑
j x

j
i ≤ 1, ∀i ∈ {1, ..., n}.

• Concurrency constraints. These constraints force that for each position of the solu-
tion sequence at most one mapping is selected,

∑
i x

j
i ≤ 1, ∀j ∈ {1, ..., n}..

• No gap constraints. These constraints enforce that if a mapping has been selected at
position j then a mapping must be selected for all previous j-1 positions,

∨
i x

j
i ≤∨

i x
k
i , ∀k ∈ {1, ..., j-1}.

• Update constraints. These constraints encode the conditions expressed by formu-
las (1) and (2) in Section 4.2. These constraints must hold for each mapping se-
lected at each positionm ∈ {1, ..., n}. For encoding these constraints, the variables
Tm(c, ω) ∈ {0, 1} and Dm(c, ω) ∈ {0, 1},m ∈ {1, ...n}, c ∈ C and ω ∈ Ω are
introduced. Tm(c, ω) = 1 iff the entity c of the ontology ω belongs to the set of en-
tities obtained after processing the mapping selected at position m. Dm(c, ω) = 1
iff the entity (c, ω) has been used as input in some mappings in the previous m-1
steps. Note that T0(c, ω) = Cin(c, ω) and D0(c, ω) = 0, ∀c ∈ C and ω ∈ Ω.
• Tm(c, ω) = (Tm−1(c, ω) ∧ (¬(

∨n
i=1(x

m
i ∧ Ii(c, ω))))) ∨

∨ (
∨n

i=1(x
m
i ∧ Oi(c, ω))).

• Dm(c, ω) =
∨m

j=1

∨n
i=1(x

j
i ∧ Ii(c, ω)).

78 V. Fionda and G. Pirró

• Enough Input constraints. These constraints enforce that the entities in input at
the mapping selected at position m must be available,

∨n
i=1(x

m
i ∧ Ii(c, ω)) ⇒

(Tm−1(c, ω) ∨ Dm−1(c, ω)), ∀c ∈ C, ∀ω ∈ Ω.

Additional binary variables and constraints are necessary to take into account the AND
and XOR constraints imposed over the mappings. We introduce a new binary variable
ak ∈ {0, 1} for each AND constraint in the SFN and also consider the following con-
straints in the CSP formulation:

• AND constraints. These constraints enforce that for each AND-constrained set of
mappings all or none of them are selected. If the i-th mapping belongs to the k set
of AND-constrained mappings, we add the constraint ak =

∨n
j=1 x

j
i

• XOR constraints. These constraints ensure that for each pair of mappings (or, pos-
sibly, sets of AND-constrained mappings) composed using a XOR constraint at most
one of them is selected. If the i-th and q-th mappings are XOR-constrained we add
the constraint (

∨n
j=1 x

j
i = 1) ⇒ (

∨n
j=1 x

j
q = 0). Note that, if the XOR constraint

involve the k-th set of AND-constrained mappings the term
∨n

j=1 x
j
i is substituted

with ak.

Finally, the last set of constraints is necessary to ensure the achievement of the require-
ments at the end of the solution sequence:
• Requirement constraints.

• Tn(c, ω)⇒ Ωout(ω) for the MEP;
• Cout(c, ω)⇒ Tn(c, ω) for the PMEP;
• Cout(c, ω)⇔ Tn(c, ω) for the EPMEP.

To conclude, note that the number of variable is quadratic in the number of mappings
and linear in the number of entities and ontologies involved in the SFN.

7 Conclusions

This paper introduced the notion of Semantic Flow Network, upon which two main
tasks in mapping discovery, that is, Free Mapping and Perfect Mapping have been iden-
tified. The problems of mapping existence, which is concerned to establish if the Free
or Perfect mapping admit a solution, and the mapping selection that, on the other hand,
aims at finding the optimal solution, have also been introduced. Some complexity re-
sults for both the mapping existence and selection problems have been provided. We
plan to investigate classes of instances of these problems for which mapping existence
and selection become tractable. Also checking the logical consistence of the solutions
to the problems we introduced is another interesting line of future research.

References

1. Bernstein, P.A., Green, T.J., Melnik, S., Nash, A.: Implementing Mapping Composition.
VLDB Journal 17(2), 333–353 (2008)

2. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating Information from
Peer Sources. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I.
LNCS, vol. 2800, pp. 153–184. Springer, Heidelberg (2003)

Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies 79

3. David, J., Euzenat, J., Scharffe, F., dos Santos, C.T.: The Alignment API 4.0. Semantic Web
Journal 2 (2011)

4. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
5. Euzenat, J.: Algebras of Ontology Alignment Relations. In: Sheth, A.P., Staab, S., Dean, M.,

Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318,
pp. 387–402. Springer, Heidelberg (2008)

6. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
7. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing Schema Mappings: Second-order

Dependencies to the Rescue. ACM Trans. on Database Systems 30(4), 994–1055 (2005)
8. Guarino, N., Giaretta, P.: Ontologies and Knowledge Bases - Towards a Terminological Clari-

fication. In: Knowledge Building and Knowledge Sharing, pp. 25–32. IOS Press, Amsterdam
(1995)

9. Jiang, G., Cybenko, G., Hendler, J.A.: Semantic Interoperability and Information Fluidity.
Int. Journal of Cooperative Information Systems 15(1), 1–22 (2006)

10. Jung, J.J.: Reusing Ontology Mappings for Query Routing in Semantic Peer-to-Peer Envi-
ronment. Information Sciences 180(17), 3248–3257 (2010)

11. Kolaitis, P.G.: Schema Mappings, Data Exchange, and Metadata Management. In: PODS,
pp. 61–75 (2005)

12. Madhavan, J., Halevy, A.Y.: Composing Mappings among Data Sources. In: VLDB, pp.
572–583 (2003)

13. Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology Merging
and Alignment. In: Seventeenth National Conference on Artificial Intelligence (AAAI 2000),
Austin, Texas (2000)

14. Kutz, O., Normann, I., Mossakowski, T., Walther, D.: Chinese whispers and connected align-
ments. In: Proc. of the 5th International Workshop on Ontology Matching, OM 2010 (2010)

15. Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)
16. Pirrò, G., Talia, D.: LOM: a linguistic ontology matcher based on information retrieval. J.

Information Science 34(6), 845–860 (2008)
17. Pirrò, G., Ruffolo, M., Talia, D.: SECCO: On Building Semantic Links in Peer-to-Peer

Networks. In: Spaccapietra, S. (ed.) Journal on Data Semantics XII. LNCS, vol. 5480, pp.
1–36. Springer, Heidelberg (2009)

18. Tordai, A., Ghazvinian, A., van Ossenbruggen, J., Musen, M.A., Noy, N.F.: Lost in transla-
tion? empirical analysis of mapping compositions for large ontologies. In: Proc. of the 9th
International Workshop on Ontology Matching, OM 2010 (2010)

19. Zimmermann, A., Euzenat, J.: Three Semantics for Distributed Systems and their Relations
with Alignment Composition. In: Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe,
D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 16–29.
Springer, Heidelberg (2006)

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 80–95, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Building a Large Scale Knowledge Base
from Chinese Wiki Encyclopedia

Zhichun Wang1, Zhigang Wang1, Juanzi Li1, and Jeff Z. Pan2

1 Department of Computer Science and Technology, Tsinghua University
{zcwang,wzhigang,ljz}@keg.cs.tsinghua.edu.cn

2 Department of Computer Science, The University of Aberdeen
Jeff.z.pan@abdn.ac.uk

Abstract. DBpedia has been proved to be a successful structured knowledge
base, and large scale Semantic Web data has been built by using DBpedia as the
central interlinking-hubs of the Web of Data in English. But in Chinese, due to
the heavily imbalance in size (no more than one tenth) between English and
Chinese in Wikipedia, there are few Chinese linked data are published and
linked to DBpedia, which hinders the structured knowledge sharing both within
Chinese resources and cross-lingual resources. This paper aims at building large
scale Chinese structured knowledge base from Hudong, which is one of the
largest Chinese Wiki Encyclopedia websites. In this paper, an upper-level
ontology schema in Chinese is first learned based on the category system and
Infobox information in Hudong. Totally, there are 19542 concepts are inferred,
which are organized in hierarchy with maximally 20 levels. 2381 properties
with domain and range information are learned according to the attributes in the
Hudong Infoboxes. Then, 802593 instances are extracted and described using
the concepts and properties in the learned ontology. These extracted instances
cover a wide range of things, including persons, organizations, places and so
on. Among all the instances, 62679 of them are linked to identical instances in
DBpedia. Moreover, the paper provides RDF dump or SPARQL to access the
established Chinese knowledge base. The general upper-level ontology and
wide coverage makes the knowledge base a valuable Chinese semantic
resource. It not only can be used in Chinese linked data building, the
fundamental work for building multi lingual knowledge base across
heterogeneous resources of different languages, but also can largely facilitate
many useful applications of large-scale knowledge base such as knowledge
question-answering and semantic search.

Keywords: Semantic Web, Linked Data, Ontology, Knowledge base.

1 Introduction

The vision of Semantic Web is to build a "web of data" that enables machines to
understand the semantics of information on the Web [1]. In order to achieving the
goal of Semantic Web, datasets in various domains have been published and

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 81

interlinked on the Web, such as DBLP1 in the domain of scientific publication,
Myspace2 in the domain of social networks, Linked MDB3 and Music Brains4 in the
domain of entertainment. Besides these domain dependent datasets, several large-
scale domain independent knowledge bases covering various things have also been
proposed, including YAGO [2, 3], DBpedia [4, 5] and Freebase [6]. These knowledge
bases typically integrate information from different resources, and provide structured
information of various objects. Take DBpedia as an example, it extracts structural
information from Wikipedia, provides approximately 1.2 billion triples of information
and covers various domains such as geographic information, people, companies,
films, music, etc. Because of well-defined ontologies and wide coverage of things,
DBpedia and YAGO have the works as the core of linked data [7], and have been
used in applications such as music recommendation [8], tag disambiguation [9],
information extraction [10, 11].

With various knowledge of different languages are used on the web,
multilinguality of semantic web is increasingly evident. Currently, DBpedia provides
several versions in non-English languages, including German, French and Japanese
etc. However, there is not a Chinese knowledge base with wide coverage in the cloud
of linked data. This is mainly because English Wikipedia has 359 thousand articles
with inter-language links to Chinese Wikipedia that is only no more than one tenth
comparing to 3.64 million English articles in Wikipedia. Also, both DBpedia and
YAGO only builds upper-level ontology in English, there is not a Chinese domain
independent ontology for the linked data. These problems hinder the structured
knowledge sharing both within Chinese resources and cross-lingual resources in
Semantic Web.

In this paper, we aim at building a large-scale domain independent Chinese
knowledge base on an online Chinese Wiki encyclopedia website, Hudong. As a
Chinese encyclopedia, Hudong has much more articles than Chinese Wikipedia; the
categories in Hudong are organized in a hierarchy like a tree, which is more suitable
for building concept taxonomy. Based on our method, the extracted knowledge base
consists of Chinese ontological schema and covers a large number of instances.
Specifically, our work makes the following contributions:

1) We propose a method to learn an ontology from the category system and
Infobox schema in Hudong. Concepts and its hierarchy are extracted from the
category system by eliminating inconsistent relations and too specific
categories. Properties are extracted from the Infoboxes, and their domains and
ranges are properly defined according to their associated concepts. Based on
the proposed method, 52404 concepts are extracted and organized in
hierarchy with maximally 20 levels are extracted from Hudong. At the same
time, 2381 properties with domain and range are learned to describe various
relations between different concepts;

1 http://dblp.rkbexplorer.com/
2 http://dbtune.org/myspace/
3 http://linkedmdb.org/
4 http://dbtune.org/musicbrainz/

82 Z. Wang et al.

2) Based on the extracted ontology, 802,593 instances are extracted from
Hudong. Three kinds of properties including General-properties, Infobox-
properties and Person-Relation-properties are used to describe various
attributes of entities and their relationships, resulting in more than 5.2 million
RDF triples. And among which, 62679 entities are linked to their identical
entities in DBpedia to make our knowledge base linked with others.

3) Both RDF dump and SPARQL endpoint are provided to access our
knowledge base.

The rest of this paper is organized as follows: Section 2 introduces the Hudong which
is the one of the most largest Chinese Wiki encyclopedia websites, Section 3 presents
our approach of ontology extraction from Hudong, Section 4 describes how the
entities are extracted; Section 5 shows the results of established knowledge base;
Section 6 gives the conclusion and future work.

2 Preliminary

This section first gives some related definitions, and then briefly introduces the
Hudong encyclopedia.

2.1 Related Definitions

An knowledge base consist of a ontology which model the schema information, and a
set of instance defined and described under the ontology constitutes the main
information in the knowledge base. We formally introduce some related notions as
follows.

Definition 1. An ontology is a formal specification of a shared conceptualization,
which provides a vocabulary describing a domain of interest [12]. An ontology can be
described as a 4-tuple:

O = {C, P, H C, H P}

where C and P are the sets of concepts and properties, respectively. H C and

H P represents the hierarchical relationships of concepts and properties, respectively.

Definition 2. Let I be a set of instances of concepts in ontology O , the ontology O
together with instances I constitute a Knowledge Base KB = {O, I}.

Definition 3. In an ontology O , properties stating relationships from instances to data
values are called datatype properties; properties describing relationships between
instances are called object properties.

Definition 4. In an ontology O , the concepts that a property P describes, are called
the domain of property P , denote as dom(P) ; the allowed concepts that the value of
an object property P can linked to, are called the range of property P , denote as
rag(P) .

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 83

Definition 5. Given a set of concepts C ={C
1
,C

2
,...,C n }, the Minimum General Set

(MGS) of C is a set of concepts gC that satisfies:

a. For each concept Ci ∈ C , C
i

∈C g or

(means A is a sub-concept of B);

b. For each concept C
i

∈C g , Ci ∈ C ；

c. For each concept C
i

∈C g , ¬∃C
j

∈ C \{C
i
} that .

The MGS in Definition 5 will be used to derive the domains and ranges of properties
in the following Section. Given a set of concept C , Algorithm 1 shows how to
transform it to its Minimum General Set.

Algorithm 1. Minimum General Set Transformation
Input:

- A concept set C = {c1,c2,...,cn}
Output:

- The Minimum General Set Cg of C
Begin:

Cg ← ∅ ;
For each concept ci ∈ C
 If ¬∃cj ∈ Cg that

 EndIf
 For each concept cj ∈ Cg

 If
 Cg ← Cg \ {ci}
 EndIf
 EndFor
EndFor
Return Cg

End

2.2 Hudong

Our knowledge base is built on Hudong5, one of the worlds’s largest Chinese
encyclopedia website. This section gives a brief introduction to Hudong. Hudong is
found in 2005, and it has more than 5 million pages created by 3 million users in May
2011. Basic entries of Hudong are article pages; each describes a specific concept or
thing. Typically, each article page contains the following elements:

• Title: Every article in Hudong has a unique title, which denotes the name of
the article’s subject. We call the title of the article entities in this paper. It is
can be words or phrase.

5 http://www.hudong.com/

84 Z. Wang et al.

• Content: Content of an article is a long text which describes information in
various aspect of the article’s subject.

• Links: An article consists of a hypertext document with hyperlinks to other
pages within or outside Hudong. The hyperlinks guide readers to the pages that
provide related information about the article’s subject.

• Infobox: Infobox offers structured information about the article’s subject in
table format. It summarizes the key aspects of the article’s subject by attribute-
value pairs.

• Category: An article may have category tags that reflect the topic of the
article’s subject. One article may have several or none category tags.

There is a classification tree in Hudong to organize its articles. Nodes in the
classification tree are categories, and articles are associated with their corresponding
categories. There are 12 upper categories under the root of classification tree,
including社会 (Social), 地理 (Geography), 科学 (Science), 人物 (Person), 文化

(Culture), 经济 (Economics), 艺术 (Art), 自然 (Nature), 技术 (Technology), 历史

(History), 体育 (Sport), 生活 (Life). We define the 13th categories of

组织（Organization）in our defined categories which play an important role in

knowledge base.

Fig. 1. Classification Tree in Hudong

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 85

3 Ontology Extraction

We first build an upper level ontology to model the schema information of the
extracted knowledge base. This section presents our approach to automatically build
the ontology from the category system and Infobox templates in Hudong.

3.1 Concept Extraction

A concept in ontology defines a group of instances that belong to the same type and
share some common properties. Concepts can be organized in a hierarchy by
specifying the subclass-of relation between them. The concepts and their hierarchy
comprise the backbone of the ontology, which benefit the sharing and querying
information of the extracted entities.

Here, we explore hudong’s category system and transformed it to a taxonomy of
concepts. Hudong’s category system uses a classification tree to organize its articles.
Articles describing the same type of things are grouped into one category, and
categories have sub-categories and super-categories. For each category, there is a
page in Hudong lists its sub-categories, super-categories, and articles belong to it. The
categories’ names and their hierarchical relations are built by collaborate editions of
large number of users. In general, most hierarchical category relationships defined in
the classification tree of Hudong is consistent and high qualified.

Fig. 2. A snap of the classification tree to illustrate the inconsistency in Hudong category
system

We summarize three problems with Hudong categories for defining a concept
hierarchy. First, there are some inconsistent sub-class links in the tree; some concepts’
sub-classes may also be the super-class of it, or be the brother of its super-classes.
Such as shown in Fig 2, the sub-categories of 国家元首 (Head of State) contains a
node国家元首 (Head of State), which causes a circle in the tree. Second, one

86 Z. Wang et al.

category may have several super-categories. Such as shown in Fig 2, the category

君主 (Sovereign) has two sup-categories, 国家元首 (Head of State) and 领袖

(Leader). Third, some categories are too specific that only contains one or two
articles, these over specific categories cannot represent a group of instances, therefore
is not suitable to be extracted as concepts. In order to build a concept hierarchy, we
first use the following methods to refine the category system of Hudong:

(1) Delete the inconsistent sub-category relations. Enumerate all sub-category
links in the classification tree, delete the links from a category on lower level
to categories on higher level. By this step, the circles in the classification tree
are eliminated without destroying other category relations.

(2) Delete multiple super-categories, keep the super-category closest to the root
category. In this way, only the general definitions of categories are kept.

(3) Delete specific categories that contain less than two entities.

After refining the category system of Hudong, we define concepts and concepts’
hierarchy based on the refined category system. For each category, we define a
concept and assign a unique URI to it. The URI of a concept is created by
concatenating the namespace prefix http://CKB.org/ontology/ and the name of the
category. The hierarchy of concepts is extracted from the sub-category links in
Hudong. If a concept’s corresponding category has sub-categories, then concepts
corresponding to these sub-categories are specified as its sub-concepts. All the
defined concepts and hierarchical relations are recorded using the OWL6 language.
Fig 3 is a snap of our extracted concept hierarchy, all these concepts belongs to the
人物 (Person) concept.

Fig. 3. A snap of the concept hierarchy extracted from Hudong

6 http://www.w3.org/TR/owl-features/

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 87

3.2 Property Extraction

Properties are used to describe the relationships between instances or from instances
to data values. Properties in this paper are divided into two types: datatype properties,
relations between instances of classes and RDF literals and XML Schema datatypes;
object properties, relations between instances of two classes. We define three groups
of properties for Hudong entities: general-properties, Infobox-properties, and person-
relation-properties.

(1) General-properties
The general-properties include label, abstract and url, they are all datatype properties.
These properties describe basic information of instances. The label property specifies
the name of an instance; the abstract property represents the first paragraph of the text
in the instance’s Hudong page; the url property gives the url of the Hudong page of an
instance.

(2) Infobox-properties
Infobox-properties are defined based on the attributes in the Infobox, such as 姓名

(name), 年龄 (age), 籍贯(native place) in a person’s Infobox. All the attributes are

defined as properties with a unique URI. Here, we concatenate the namespace prefix
http://CKB.org/ontology/ and the attribute’s name as the URI of the defined property.
In order to determine the type of properties, i.e. object and datatype, the values of
Infobox attributes need to be processed first. If the values of an attribute are plain
texts, then this attribute can be defined as a datatype property. For example, the
attribute 姓名 (name) can be defined as a datatype property. If the values of an
attribute contain links to other entities’ pages, then this attribute is an object property.

For example, the attribute校长 (president) of a university is usually a link to a person;

therefore the attribute president is defined as a object property, its range is concept
人物 (person).

For each defined property, we also specify its domain and range. For the three general
properties, their domain is the most general concept “Thing”, and their range is
defined as “xsd:string”7. The domains and ranges of Infobox properties are
determined by as follows.

a. Domain
For each Infobox-property P , we enumerate all the wiki pages 1 2{ , ,..., }p kW w w w=

that it appears; record the category tags 1 2{ , ,..., }p mT t t t= in the wiki pages pW . Let

D
p

={C
1
,C

2
,...,C

m
} be the set of defined concepts corresponding to categories

1 2{ , ,..., }p mT t t t= , the MGS of pD is defined as dom(P) .

b. Range
For all the datatype properties, their ranges are defined as “xsd:string.”

For each object property P , enumerate all the wiki pages 1 2{ , ,..., }p kW w w w= that

it appears; record all the wiki pages ' ' '
1 2{ , ,..., }pl mW w w w= that the values of the

88 Z. Wang et al.

property link to; enumerate pages in plW and record the category tags

1 2{ , ,..., }p nT t t t= in these wiki pages. Let R
p

={C
1
,C

2
,...,C

n
} be the set of defined

concepts corresponding to categories 1 2{ , ,..., }p nT t t t= , the MGS of pR is defined as

rag(P) .

(3) Person relation properties
In most Hudong pages belong to person category, there is usually a person relation
graph describing the relations between the person and other persons. For example,
Fig. 4 is an example of person relation of Yao Ming (姚明). The graph shows other
persons that related to 姚明 (Yao Ming), including his father, coach, daughter and so
on. We extract these relations between persons and define object properties from
them. Because all these relations are between persons, the domains and ranges of
person relation properties are all set as人物 (person) concept.

4 Instance Extraction

4.1 Extract Instances and Descriptions

After the ontology being defined, entities in Hudong are extracted as the instances in
the ontology. A unique URI is assigned to each instance, which its namespace prefix
http://CKB.org/ontology/ is connected with the instance’s name. Concept types are
assigned to instances according to their category tags in Hudong. There are three
groups of properties to describe information of instances. General-properties
including title, abstract and url are extracted for every instance. Infobox-properties are
extracted if there is an Infobox in the instance’s Hudong page. For instances
belonging to 人物 (person) concept, if there are person relation graphs in their pages,
person-relation properties will be used to describe the relationships between the
instance and other instances.

When extracting the values of object properties from the Infoboxes, we have to
handle the problem of missing links. A lot of properties’ values should be supposed to
have links to other entities, but sometimes they only have instance’ name without

links. For example, the president of Tsinghua University is “顾秉林” (Binglin Gu),

the text “顾秉林”(Binglin Gu)” is not linked to the page of instance

“顾秉林”(Binglin Gu)”. Therefore, we have to find these missing links so that we

can use object properties to establish RDF links between them. Here we use the
method of name matching to add the missing links. The value of object property is
matched with the names of all the entities. If there is an exactly matched name with
the property value, then the property value is replaced with the link to the matched
instance.

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 89

Fig. 4. Person relation graph of 姚明(Yao Ming)

4.2 Link Entities to DBpedia Entities

In order to make our knowledge base linked with other linked data, we also create the
owl:sameAs links with DBpedia. Indentical instances’ URIs are found by the
following method:

(1) Given an instance e extracted from Hudong, find the entity e'
 in Chinese

Wikipedia with the same title.
(2) Find whether there is an inter-language links between e'

 and an entity e''
in English Wikipedia; if e''

 is exist, get its url.
(3) Search the DBpedia URI of e''

 by looking for the url.
(4) Declare URI(e) owl:sameAs URL(e'').

5 Results

5.1 Dataset

We wrote a web crawler that starts from the root of the classification tree in Hudong,
and downloads all the articles attached to the nodes in the classification tree. Finally,
we are able to download 687 thousand articles. Although the number of extracted
articles is relative small comparing to the total number of articles in Hudong, these

90 Z. Wang et al.

downloaded articles have high quality than the rest of articles. These 687 thousand
articles usually have rich information including Infoboxes, categories, etc. Table 1
shows the number of articles in each upper category. It should be explained that each
Hudong article may appear in multiple upper categories, therefore the total number of
pages of 12 categories is much larger than 687 thousand.

5.2 Extracted Knowledge Base

The extracted ontology contains 19542 concepts, 2079 object properties, 302 data
type properties. There are 13 upper level concepts in the ontology corresponding to
the 13 categories in Hudong, including社会 (Social), 地理 (Geography), 科学

(Science), 人物 (Person), 文化 (Culture), 组织 (Organization), 经济 (Economics),

艺术 (Art), 自然 (Nature), 技术 (Technology), 历史 (History), 体育 (Sport), 生活

(Life). As we noticed, there is not a upper level category 组织 (Organization) in

Hudong category system. The categories belong to organizations appear in all the

other upper level categories, such as 经济组织 (Economic Organization) category

belongs to经济 (Economics), 科研机构 (Scientific Organization) belongs to科学

(Science), etc. Because organization is an important concept, we manually aggregate
all the related categories and build “Organization” concept in our ontology. Table 2
shows the number of concepts, associated properties and hierarchy levels for each
upper level concept.

Table 1. Number of articles in Hudong’s upper categories

Category #Hudong articles Percentage
社会 (Social) 538576 15.45%
地理 (Geography) 520869 14.94%
科学 (Science) 471083 13.52%
人物 (Person) 111899 3.21%
文化 (Culture) 292680 8.40%
生活 (Life) 314047 9.01%

经济 (Economics) 211229 6.06%

艺术 (Art) 261794 7.51%
自然 (Nature) 531240 15.24%

技术 (Technology) 143537 4.12%

历史 (History) 54658 1.57%
体育 (Sport) 33657 0.97%

Total 3485269 100%

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 91

Table 2. Ontology information

Concept #Concepts #Related
properties

#Hierarchy Levels

社会 (Social) 13515 1897 15
地理 (Geography) 11468 1482 18
科学 (Science) 5044 964 19
人物 (Person) 4345 2177 9
生活 (Life) 3379 895 10
文化 (Culture) 1947 963 10

组织 (Organization) 1845 626 10

经济 (Economics) 2346 594 10

艺术 (Art) 1536 816 10

自然 (Nature) 7035 481 17

技术 (Technology) 776 446 11

历史 (History) 1826 672 10

体育 (Sport) 694 588 8
文化 (Culture) 1947 963 10

Based on the extracted ontology, 802593 instances are defined. These instances are
described by various properties resulting in 5237520 RDF triples. Table 3 shows the
number of instances and RDF triples for each upper level concept.

Our knowledge base is recorded in an RDF file, and we also provide a SPARQL
endpoint for querying the knowledge base. Applications can send queries by the
SPARQL protocol to endpoint to get instances’ structured information. Fig 5 shows
the SPARQL query interface of our knowledge base. There is a sample query as
follows:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ckb: <http://cbk.org#>

SELECT ?people ?property ?value
WHERE
 { ?people rdfs:label "姚明".

 ?people ?property ?value }

This query looks up information about a person 姚明 (Yao Ming), a famous NBA
Chinese player. After submitting this query, 38 triples are returned from the
knowledge base. Table 4 shows part of the query results, including Yao Ming’s birth
data, English name, height, etc.

Both the RDF file and SPARQL endpoint can be assessed in our project’s
homepage: http://keg.cs.tsinghua.edu.cn/project/ChineseKB/.

92 Z. Wang et al.

Table 3. Instances Information

 #Instances #RDF tripples
社会 (Social) 326774 2447922
地理 (Geography) 311952 1999392
科学 (Science) 236187 1589840
人物 (Person) 144254 1153841
生活 (Life) 159252 1088034
文化 (Culture) 120965 879674

组织 (Organization) 107103 602378

经济 (Economics) 99927 637539

艺术 (Art) 98219 726341

自然 (Nature) 94672 1043903

技术 (Technology) 51822 294569

历史 (History) 36979 271885

体育 (Sport) 18701 177989

Fig. 5. The SPARQL query interface of our knowledge base

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 93

Table 4. Sample query results from the SPAQRL endpoint

people property value

<http://ckb.org/ontology#姚明> <http://www.w3.org/2000/01/rdf-
schema#label> "姚明"

<http://ckb.org/ontology#姚明> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> <http://ckb.org/ontology#慈善家>

<http://ckb.org/ontology#姚明> <http://ckb.org/ontology#出生年月
> "1980年 9月 12日"

<http://ckb.org/ontology#姚明> <http://ckb.org/ontology#英文名> "Yao Ming"

<http://ckb.org/ontology#姚明> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type>

<http://ckb.org/ontology#球类
>

<http://ckb.org/ontology#姚明> <http://ckb.org/ontology#身高> "226厘米"

<http://ckb.org/ontology#姚明> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> <http://ckb.org/ontology#上海人>

<http://ckb.org/ontology#姚明> <http://ckb.org/ontology#身材> "140公斤"

<http://ckb.org/ontology#姚明> <http://ckb.org/ontology# 名> "小巨人、移 城"

<http://ckb.org/ontology#姚明> <http://www.w3.org/1999/02/22-
rdf-syntax-ns#type> <http://ckb.org/ontology#男演 >

<http://ckb.org/ontology#姚明> <http://ckb.org/ontology#重要事件
>

"2009.7，收 上海 球 ，成
新老板 2009年 火箭 入
季后 第二 1998年入 中国
球明星 "

6 Related Work

In this section, we review some work related to our paper.
YAGO [2] is a large ontology built based on Wikipedia7 and WordNet [13]. It

extracts more than 1.7 million entities and 14 relationships from Wikipedia. The
category system and the redirect pages are used to establish a hierarchy of concepts.
In order to improve the quality of the concepts’ hierarchy, YAGO links leaf
categories of Wikipedia into the WordNet hierarchy. Different from our work, YAGO
does not extract various properties in the Wikipedia’s Infoboxes, instead, we extract
2079 properties to describe the characteristics of the concepts in this paper.

DBpedia [4] is a knowledge base which extracts structured information from
Wikipedia and to make this information available on the Web. DBpeida extracts
entities from Wikipeida and describes entities by a set of general properties and a set
of Infobox-specific properties. The extracted entities are also mapped into four
classification schemata, including DBpedia ontology8, SKOS9, YAGO [2] and
UMBEL10. In our paper, we propose a framework to extract schema ontology and
entities information according to the features of Chinese wiki Encyclopedia Hudong,
and also generate a Chinese structured knowledge base, and 62679 of them are linked
to DBpedia. These links provide the knowledge of English-Chinese languages that
can be used in the application of cross-lingual knowledge base.

7 http://www.wikipedia.org/
8 http://wiki.dbpedia.org/Ontology
9 http://www.w3.org/2004/02/skos/
10 http://www.umbel.org/

94 Z. Wang et al.

Freebase [6] is an open repository of structured data of almost 22 million entities.
Users of Freebase can edit the data in a similar way as they edit Wikipedia articles.
Free-base extracts knowledge from Wikipedia as initial content for their database,
which is then edited by Freebase users. In Chinese, currently there is no such kind of
the information.

Ponzetto et.al [14] proposed an approach for deriving a large-scale taxonomy from
Wikipeida. They took the category system in Wikipedia as a conceptual network, and
created subsumption hierarchy of concepts. In order to determine the isa relation
between concepts, they used methods based on the connectivity of the network and on
applying lexico-syntactic patterns to Wikipedia articles. They mainly focused on
building the subsumption relations between concepts and did not include the instances
and their Infoboxes’ information in the taxonomy.

Melo et.al [15] explored the multilingual nature of Wikipedia, and built a large
multilingual entity taxonomy MENTA, which describes 5.4 million entities in various
languages. They integrated entities from all editions of Wikipedia and WordNet to a
single coherent taxonomic class hierarchy. Categories are extracted as candidates of
classes; categories denoting genuine classes and topic labels are distinguished by the
singular/plural heuristic proposed for YAGO [2]. Only categories denoting genuine
classes are defined as classes. The subclass relations between classes are established by
making use of parent categories, category-WordNet subclass relationships and WordNet
Hyponymy. Instances are extracted based on the Infoboxes and categories in articles.

To summarize the related work, in this paper we propose a framework to extract
schema ontology of knowledge base and generate the structured knowledge base from
one of the largest wiki Encyclopedia website-Hudong. Currently, there is no RDF
DBpedia like knowledge base in Chinese and few Chinese data sets are linked to
DBpedia. Besides, we provide links to DBpedia, which lay the foundation for cross
lingual structured knowledge base sharing by integrating structured knowledge base
across existing wiki Encyclopedia websites of different languages.

7 Conclusion

This paper presents a Chinese knowledge base built from a Chinese Wiki websites,
Hudong. An upper level Chinese ontology is first built based on the category system
and Infobox schema of Hudong. Then more than 800 thousand entities in various
domains are extracted and classified according to the defined ontology. Structured
information of entities is described by the defined properties. As the development of
semantic techniques and applications, our knowledge base can be used as a useful
Chinese semantic resource. Currently, both RDF dump and SPARQL endpoints are
provided to access our knowledge base.

As our future work, we will concentrate on improving the quality of the Chinese
structured knowledge base including the refinement of the schema ontology and the
process of the entities learning. We want to build links from other data sets such as in
news domain and academic domain to this structured knowledge base to build
Chinese linked data. Also, linking Chinese structured knowledge with DBpedia or
other knowledge bases of different languages could fulfill structured knowledge
sharing across heterogeneous knowledge bases of different languages.

 Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia 95

Acknowledgement. The work is supported by the National Natural Science Foundation
of China (No. 6 61035004, 60973102), the National Basic Research Program of China
(973 Program) (No. 2007CB310803), the China Postdoctoral Science Foundation (No.
20110490390), it is also supported by THU-NUS Next research center.

References

[1] Berners-Lee, T.: Semantic Web Road map (1998),
http://www.w3.org/DesignIssues/Semantic.html

[2] Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: A Large Ontology from Wikipedia
and WordNet. Web Semantics: Science. Services and Agents on the World Wide
Web 6(3), 203–217 (2008)

[3] Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In:
Proceedings of the 16th International Conference on World Wide Web 2007,
pp. 697–706. ACM, Banff (2007)

[4] Bizer, C., et al.: DBpedia - A crystallization point for the Web of Data. Web
Semantics: Science. Services and Agents on the World Wide Web 7(3), 154–165
(2009)

[5] Auer, S., et al.: DBpedia: A Nucleus for a Web of Open Data The Semantic Web. In:
Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735.
Springer, Heidelberg (2007)

[6] Bollacker, K., et al.: Freebase: a collaboratively created graph database for structuring
human knowledge. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data 2008, pp. 1247–1250. ACM, Vancouver (2008)

[7] Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - the story so far. International
Journal on Semantic Web and Information Systems 5(3) (2009)

[8] Passant, A.: dbrec - Music Recommendations Using DBpedia. In: Patel-Schneider,
P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.)
ISWC 2010, Part II. LNCS, vol. 6497, pp. 209–224. Springer, Heidelberg (2010)

[9] García-Silva, et al.: Preliminary Results in Tag Disambiguation using DBpedia. In:
First International Workshop Collective Knowledge Capturing and Representation
CKCaR 2009, Redondo Beach, California, USA (2009)

[10] Wu, F., Weld, D.S.: Automatically refining the wikipedia infobox ontology. In:
Proceeding of the 17th International Conference on World Wide Web 2008,
pp. 635–644. ACM, Beijing (2008)

[11] Kasneci, G., et al.: The YAGO-NAGA approach to knowledge discovery. SIGMOD
Record (2008)

[12] Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
[13] Fellbaum, C.: WordNet: An Electronic Lexical Database. In: Fellbaum, C. (ed.)

WordNet: An Electornic Lexical Database. MIT Press (1998)
[14] Ponzetto, S.P., Strube, M.: Deriving a large scale taxonomy from Wikipedia. In:

Proceedings of the 22nd National Conference on Artificial Intelligence, vol. 2,
pp. 1440–1445. AAAI Press, Vancouver (2007)

[15] Melo, G., Weikum, G.: MENTA: inducing multilingual taxonomies from wikipedia.
In: Proceedings of the 19th ACM International Conference on Information and
Knowledge Management, pp. 1099–1108. ACM, Toronto (2010)

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 96–111, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dynamic Is-a Hierarchy Generation System Based
on User's Viewpoint

Kouji Kozaki, Keisuke Hihara, and Riiciro Mizoguchi

The Institute of Scientific and Industrial Research, Osaka University
8-1 Mihogaoka, Ibaraki, Osaka, 567-0047 Japan

{kozaki,hihara,miz}@ei.sanken.osaka-u.ac.jp

Abstract. In ontological theories, is-a hierarchy must represent the essential
property of things and hence should be single-inheritance, since the essential
property of things cannot exist in multiple. However, we cannot avoid multi-
perspective issues when we build an ontology because the user often want to
understand things from their own viewpoints. Especially, in the Semantic Web,
the variety of users causes the variety of viewpoints to capture target domains.
In order to tackle this multi-perspective issue, we adopt an approach of
dynamically generating is-a hierarchies according to the viewpoints of users
from an ontology using single-inheritance. This article discusses a framework
for dynamic is-a hierarchy generation with ontological consideration on is-a
hierarchies generated by it. Then, the author shows its implementation as a new
function of Hozo and its applications to a medical ontology for dynamically
generation of is-a hierarchies of disease. Through the function, users can
understand an ontology from a variety of viewpoints. As a result, it could
contribute to comprehensive understanding of the ontology and its target world.

Keywords: ontology, dynamic is-a hierarchy generation, viewpoint, disease
ontology.

1 Introduction

Ontologies are designed to provide systematized knowledge and machine readable
vocabularies of domains for Semantic Web applications. The competences of
semantic technologies strongly depend on the ontology which they use. Ontology is
defined as “An explicit specification of conceptualization” [1], and it clearly
represents how the target world is captured by people and systems.

Semantics of concepts (classes) are defined clearly through the description of their
relationships between other concepts in an ontology. In particular, the most important
relationship is an is-a (sub-class-of) relationship which represents a relation between a
generalized concept and a specialized concept. Class hierarchies according to is-a
relationships are called is-a hierarchies, and they form the foundation of ontologies.
That is, is-a hierarchies in an ontology reflect how the ontology captures the essential
conceptual structure of the target world.

Therefore, in ontological theories, an is-a hierarchy should be single-inheritance
because the essential property of things cannot exist in multiple. Imagine that objects,

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 97

processes, attributes, all of them have their own unique and essential properties. The use
of multiple-inheritance for organizing things necessarily blurs what the essential
property of things is. This observation is strongly supported by the fact that both of the
well-known upper ontologies: DOLCE and BFO use single-inheritance hierarchies.

Nicola Gunarino criticizes the careless usage of is-a relationships without enough
ontological consideration as is-a overloading [2] and propose an ontology
development methodology, called OntoClean, which defines concepts based on meta-
properties such as rigidity and anti-rigidity. DOLCE is developed based on the
OntoClean methodology using single-inheritance is-a hierarchy. BFO is the upper
ontology used by the OBO Foundry1 which aims to create a suite of orthogonal
interoperable reference ontologies in the biomedical domain. BFO also uses single-
inheritance hierarchy, and it is recommended in the guideline of OBO Foundry to
avoid careless usage of multiple-inheritance.

However, we cannot avoid multi-perspective issues when we build an ontology
across multiple domains. It is because domain experts often want to understand the
target world from their own domain-specific viewpoints. In many cases, their interests
are different even if they are experts in the same domain. In some domains, there are
many ways of categorization of the same kinds of concepts and different taxonomies
are used depending on the purpose and situation.

For example, in the medical domain, a disease is interpreted from various
viewpoints. Consider diabetes as an example. Clinician may pay attention to the body
parts with the abnormalities and classify diabetes as diseases which have abnormality
in blood. On the other hand, certain specialists may pay attention to the main
pathological condition and may classify diabetes as an abnormality in metabolism,
and other specialists may classify diabetes as a lifestyle related disease. Staffs
administering medical care implicitly understand which is-a hierarchy should be used
for disease interpretation in correlation with their respective interpretations. This
suggests that one is-a hierarchy of diseases cannot cope with such a diversity of
viewpoints, since a single-inheritance hierarchy necessarily represents one viewpoint.

Many efforts are under taken to solve these multi-perspective issues. The OBO
Foundry proposes a guideline for ontology development stating that we should build
only one ontology in each domain [3]. This is an effort to exclude the multi-
perspective nature of domains from ontologies. Ontology mapping is used as an
approach to acceptance of multiple ontologies based on the different perspectives in a
domain. It aims to make clear the relationships between different ontologies.
Someone may consider that multiple-inheritance is an easy way to solve these multi-
perspective issues. Because multiple-inheritance causes some ontological problems as
mentioned above, our ontology development tool, named Hozo[4]2, allows the user to
use a multiple-inheritance only when he/she represents clearly from which upper-
concepts the essential property is inherited3. However, if we define every possible is-a
hierarchy using multiple-inheritances, they would be very verbose and the user’s
viewpoints would become implicit.

1 http://www.obofoundry.org/
2 http://www.hozo.jp
3 It is represented by two kinds of is-a relationships: (essential) is-a and (non-essential) IS-A.

98 K. Kozaki, K. Hihara, and R. Mizoguchi

Fig. 1. An example of ontology defined using Hozo

In order to tackle these multi-perspective issues, the authors take an approach
based on ontological viewpoint management. It is dynamically generation of is-a
hierarchies according to the viewpoint of users from an ontology using single-
inheritance. The main strategy is composed of: (1) fixing the conceptual structure of
an ontology using single-inheritance based on ontological theories and (2)
reorganizing some conceptual structures from the ontology on the fly as visualizations
to cope with various viewpoints. Based on this strategy, the authors consider a
framework for dynamic is-a hierarchy generation according to the interests of the user
and implement the framework as an extended function of the ontology development
tool Hozo. In this article, we discuss the framework for dynamic is-a hierarchy
generation and its application to a medical ontology. It would solve the conflicting
requirements of multi-perspective and single-inheritance in a good ontology, and it
could contribute to deep understanding of the ontology.

The rest of this paper is organized as follows: In section 2, we introduce dynamic
is-a hierarchy generation according to viewpoints. Next, we consider ontological
characteristics of the generated is-a hierarchies in section 3. In section 4, we discuss
implementation of the framework as an extended function of Hozo. In Section 5, we
show its application to a medical ontology for dynamic is-a hierarchy generation of
disease. In section 5, we discuss related work. Finally, we present concluding remarks
with future work.

2 Dynamic Is-a Hierarchy Generation According to Viewpoints

2.1 Ontology Representation in Hozo

We implement the dynamic is-a hierarchy generation system as an additional function
of Hozo [4]. Fig.1 shows an example of ontology defined using Hozo. Ontologies are
represented by nodes, slots and links. The nodes represent concepts (classes), is-a
links represent is-a (subclass-of) relations, and slots represents part-of (denoted by
“p/o”) or attribute-of (denoted by “a/o”) relations. A slot consists of its kind (“p/o” or
“a/o”), role concept, class restriction, cardinality. Roughly speaking, a slot
corresponds to property in OWL and its role name represents name of the property.
Its class restriction and cardinality correspond to owl: someValuesFrom and
owl:cardinality respectively. Their restrictions refer to other concepts which are

Node represents a concept
(=rdfs:Class)

p/o slot represents
a part-of relation
(=rdf:Property)

a/o slot represents an
attribute-of relation

(=rdf:Property)

cardinality
(=owl:cardinality)

Role concept
(≒property name)

Is-a link represents
an is-a relation

(=rdfs:subClassOf)

Class restriction
(=owl:someValuesFrom)

Refer to

Refer to

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 99

defined elsewhere. However, semantics of Hozo’s ontology includes some concepts
related to role which are not supported in OWL because it is designed based on an
ontological theory of role [5]. While we have designed three levels of role
representation model in OWL to capture the semantics level-wise [6], we use the
simplest model described above in this paper because it is almost compatible with
OWL. That is, the proposed method for dynamic is-a generation is also applicable to
not only ontologies in Hozo’s format but also ontologies in OWL.

In the target ontologies, concepts (classes) are defined by several slots which
represent properties and restrictions for them. These definitions are inherited from
super-concepts (super-classes) to their sub-concepts (sub-classes) along with is-a
links. Furthermore, in some sub-concepts, some inherited definitions are specialized
according to is-a hierarchies of concepts which are referred to by their restrictions.
For example, bicycle in Fig.1 inherit front-wheel from Two-wheeled vehicle and its
class-restriction could be specialized from Wheel to Bicycle-wheel. This research
focuses on these characteristics of is-a hierarchies and considers an approach to
reorganize is-a hierarchies of concepts based on is-a hierarchies of concepts referred
to by their definitions.

2.2 Dynamic Is-a Hierarchy Generation through Transcription of a
Hierarchical Structure

Fig.2 outlines a framework for dynamic is-a generation. It generates is-a hierarchies by
reorganizing the conceptual structures of the target concept selected by a user according
to the user’s viewpoint. The viewpoint is represented by an aspect and a base hierarchy.
By aspect, we mean something which the user is interested in and selects from the
definition of the target concept to generate an is-a hierarchy. By base hierarchy, we
mean a conceptual structure of concepts which are referred to by the definition selected
as the aspect. Because sub-concepts of the target concept could be defined by
specializing their inherited definitions according to the base hierarchy, we could
reorganize the is-a hierarchy of the target concepts according to the following steps:

Fig. 2. A framework for dynamic is-a generation

Transcription of a base
hierarchical stricture

Reorganization

Original
is-a hierarchy

X

A

Is-a hierarchy

Aspect

X Target concept

Definition of the
target concept

Base hierarchy

Generated is-a hierarchy

Transcriptional
hierarchy

A

P-is-a hierarchy

A

Generated
is-a hierarchy

refer to

Viewpoint

(1)

(2)

(3)

(4)

100 K. Kozaki, K. Hihara, and R. Mizoguchi

Step 1: Selection of an Aspect
The user selects something as an aspect from the definition of the target concept for
dynamic is-a hierarchy generation (see. Fig.2-(1)). Because any concept is defined in
terms of slots each of which consists of a role-concept, a role-holder [5] and a class-
restriction, he/she can select one of them as an aspect. In this paper, we consider only
a case where the user selects a class restriction as an aspect for simplicity.

Step 2: Selection of a Base Hierarchy
The user selects a base hierarchy from hierarchies of concepts which the aspect is
referring to (see. Fig.2-(2)). In Hozo, three kinds of conceptual hierarchies could be
the base hierarchy as follows: the is-a hierarchy of concepts referred to by the aspect,
the p-is-a hierarchy which is generated by the system according to part-whole
relationships of the concepts referred to and dynamically generated is-a hierarchies
using the proposed method. A p-is-a hierarchy is obtained by abstracting parts from a
part-of hierarchy [7]. The detail of the p-is-a hierarchy is discussed in section 2.3.2.

Step 3: Transcription of a Hierarchical Structure
The system defines new sub-concepts of the target concept by specializing the
definition of it according to the class restriction selected as an aspect and base
hierarchy (see. Fig.2-(3)). Then, their concept names are automatically determined by
the system using a template such as “<the target concept name> with <the specialized
aspect> as <the role name of the aspect>”. As a result, an is-a hierarchy which has the
same conceptual structure with the base hierarchy is generated. We call the generated
hierarchy a transcriptional hierarchy and the operations to generate it a transcription
of a hierarchical structure.

The scope of a transcription of the base hierarchy could be managed by specifying
the number of the target layers rather than to use all concepts of the base hierarchy for
transcription.

Step 4: Reorganization of is-a Hierarchy Based on a Transcriptional Hierarchy
The system reorganizes the is-a hierarchy by comparing the original is-a hierarchy
and the transcriptional hierarchy generated in step 3. The system compares the sub-
concepts of the target concept (we call them existing sub-concepts) with the concepts
on the transcriptional hierarchy (we call them generated sub-concepts) according to
the aspect and the base hierarchy. When an existing sub-concept’s definition is
subsumed by the definition of a generated sub-concept, the existing sub-concept
is classified into a sub-concept of the generated sub-concept. If an existing concept is
classified into sub-concepts of multiple generated sub-concepts, the existing concept
is classified into the lowest sub-concepts. As a result, all existing concepts are
classified into sub-concepts of the generated concepts in the transcriptional hierarchy
according to the aspect and the base hierarchy4.

Through the above four steps, the system can dynamically generate is-a hierarchies
by reorganizing existing sub-concepts according to the transcriptional hierarchies of
base hierarchies.

4 The result of reorganization corresponds to the result of classification using DL-reasoner

while it is implemented by procedural ways in Hozo.

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 101

Fig. 3. An example of dynamic is-a generation of disease in the case that is-a hierarchy of
abnormal state is selected as the base hierarchy

Although DL-reasoners can classify classes (concepts) automatically by reasoning,
the result of classification is only an is-a hierarchy which is determined uniquely
according to the definitions of the classes. Therefore, it is different from our dynamic
reorganization according to the users’ view points. DL-reasoners can generate a
different is-a hierarchy only when class definitions in the ontology have changed.

2.3 Examples of Dynamic Is-a Hierarchy Generation

§１ In the Case of that an Is-a Hierarchy is Selected as a Base Hierarchy

As an example, we consider a dynamic is-a hierarchy generation of diseases which is
defined in terms of several slots such as “main pathological state”, “abnormal object”
and so on (see. Fig.3). Here, we suppose the user selects the class-restriction of “main
pathological state” as an aspect (Fig.3-(1)) and the is-a hierarchy of “abnormal state”
as a base hierarchy (Fig.3-(2)).

First, sub-concepts of “disease” such as “disease with vessel abnormality as main
pathological state” and “disease with blood abnormality as main pathological state”
are dynamically generated by specializing the definition of “disease” according to the
class restriction selected as the aspect and the base hierarchy. After repetitions of
generations of sub-concepts, the transcriptional hierarchy of “disease” is obtained
(Fig.3-(3)). Then, existing sub-concepts of “disease”, such as “myocardial infarction”
and “angina pectoris” are classified into sub-concepts of the generated sub-concepts
on the transcriptional hierarchy through comparisons between definitions of them
(Fig.3-(4)). When more than one existing sub-concepts are classified into the same
generated sub-concept, they could be organized according to original is-a
relationships between them. In the case shown in Fig.3-(5), because is-a relationships

disease

heart diseaseAngina Myocardial
infarction

Stroke diabetes

type2 diabetestype1 diabetes

abnormal state

vessel abnormality blood abnormality

infarctionstenosis hyperglycemia

The base hierarchy
(is-a hierarchy of
“abnormal states”)

The transcriptional
hierarchy

Original is-a hierarchy of “disease”
The aspect

Classification into sub concepts
of generated sub concepts

Refer to

Is a relationships defined in the original ontology

Is a relationships generated in the transcription
of the base hierarchy
Is a relationships generated in the reorganization
of is a hierarchy

The legend

(1)

(2)

(3)

(4) (5)

102 K. Kozaki, K. Hihara, and R. Mizoguchi

Fig. 4. An example of dynamic is-a generation of disease in the case that p-is-a hierarchy of
human body is selected as the base hierarchy

between “disease with hyperglycemia as main pathological state” and “type1/type2
diabetes” can be identified by reasoning, “type1/type2 diabetes” are classified into
sub-concepts of diabetes according to the original is-a relationships.

§2 In the Case of that an p-is-a Hierarchy is Selected as a Base Hierarchy

In the next example, we suppose the user selects the class-restriction of “abnormal
object” as the aspect and the p-is-a hierarchy of “human body” as the base hierarchy
for a dynamic is-a generation of disease in the same ontology with the previous
example (Fig.4-(1),(2)).

In the property inheritance mechanism of ordinary is-a relationship, when a super
class and its sub-class have the same slot, the class restriction of the sub-class’s slot
must be a sub-class of the super-class’s one as well. However, in some case, the class
restriction of the sub-class’s slot must be a part of the super-class’s. For example,
when <disease of a pulmonary valve is-a disease of heart>, both “disease of a
pulmonary valve” and “disease of a heart” have a slot of “site of the disease” and the
class restriction of the former must be a part of the latter, that is <pulmonary valve
part-of heart>.

To cope with such cases, on the basis of our latest theory of roles, we introduced
“p-” operator in Hozo which automatically generates a generic concept representing
all the parts of the entity to which the operator is attached. The operator enables parts
to be inherited by ordinary property inheritance mechanism5. In the case of Fig.5, for
example, we write “p-heart” instead of “heart”, and then the slot of its subclass

5 To deal with p-is-a hierarchies in OWL, we can represent them by some design pattern of

ontologies such as SEP triple proposed by Udo Hahn and his group [8].

disease

p human body

p circulatory
system

p nervous
system

p heartp brain p blood

heart disease

Angina Myocardial
infarction

diabetes

type2 diabetestype1 diabetes

Stroke

The base hierarchy
p is a hierarchy of
“human body”

The aspect

The transcriptional
hierarchy

Classification into sub concepts
of generated sub concepts

Original is-a hierarchy of “disease”

Is a relationships defined in the
original ontology
Is a relationships generated in the
transcription of the base hierarchy
Is a relationships generated in the
reorganization of is a hierarchy

The legend

(1)

(2)

(3)

(4)

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 103

Fig. 5. An example of usage of p-operator

inherits not subclass of “heart” but its parts. When p-X is used, Hozo automatically
generates a generic concept representing all of the defined parts of X including all
parts which have X as their ancestor. This is valid because each part is-a subclass of
“X’s parts class” which coincides with p-X. According to mereology, the theory of
parts, p-X includes itself which is not the very X as an entity but X as its part.

Based on this theory, Hozo automatically generates is-a relationships between p-X
such as <p-pulmonary valve is-a p-heart>. As a result, an is-a hierarchy of p-X is
generated according to part-of hierarchy of X. The is-a hierarchy of p-X is called p-is-
a hierarchy and could be selected as a base hierarchy for a dynamic is-a generation.

In the case of Fig.4, since the class restriction of “abnormal object” is “p-human
body”, we can select it as an aspect and p-is-a hierarchy as a base hierarchy for
dynamic is-a hierarchy generation. Then, sub-concepts of “disease” such as “disease
with p-nervous system as abnormal object” and “disease with p-circulatory system as
abnormal object” are dynamically generated according to the aspect and the base
hierarchy. As a result, the transcriptional hierarchy of “disease” based on p-is-a
hierarchy of “p-human body” is obtained (Fig.4-(3)). Then, the existing sub-concepts
of “disease” are classified into the transcriptional hierarchy like Fig.4-(4).

In addition to these examples, we can select is-a hierarchies which are generated
using the proposed method as a base hierarchy to generate another is-a hierarchies.
That is, our dynamic is-a generation could be executed recursively.

The dynamic is-a hierarchy generation is applicable to reorganizations of a portion
of an is-a hierarchy. For example, we can select a middle-level concept (e.g. “disease
of heart” as the target concept for the dynamic is-a generation.

In these ways, we can dynamically generate is-a hierarchies of diseases according
to the selected aspects and base is-a hierarchies from various viewpoints.

3 Ontological Consideration on Generated Is-a Hierarchies

3.1 Three kinds of Is-a Relationship

We need to classify is-a relationships which appear in is-a hierarchies dynamically
generated by the proposed method into the following three kinds according to their
characteristics.

We write “p-heart”
instead of “heart”

104 K. Kozaki, K. Hihara, and R. Mizoguchi

Fig. 6. Three kinds of is-a relationships in a generated is-a hierarchy

(A) Is-a relationships defined in the original ontology
They are is-a relationships which are defined in the original ontology before
reorganizations. They are based on single-inheritance principle, and hence multiple-
inheritance is not allowed following the ontological theory

(B) Is-a relationships generated in a transcription of a base hierarchy
They are automatically generated by the system when transcriptional hierarchies are
generated according to the selected aspect and base hierarchy.

(C) Is-a relationships generated in a reorganization of is-a hierarchy
They are automatically generated by the system between existing sub-concepts and
generated sub-concepts.

Note here that (B) and (C) are automatically generated by the system when dynamic
is-a hierarchy generation is executed, whereas (A) are originally defined in the
ontology by its developer.

For instance, Fig.6 shows these three kinds of is-a relationships in the generated is-
a hierarchy illustrated in section 2.3.1. All the existing sub-concepts (e.g. Angina,
diabetes) have is-a relationships of type (A). Therefore, when the existing concepts
are classified into the generated concepts using is-a relationships of type (C), they
always have multiple-inheritance according to two kinds of relationships of type (A)
and (C). In order to identify from which concept an essential property is inherited to
each generated concept, we have to distinguish these two kinds of is-a relationship in
the generated is-a hierarchy. In the case of OWL, is-a relationships of type (B)
correspond to sub-class-of relationships which are determined through classifications
by reasoning using a DL reasoner. In the case of Hozo, such kind of is-a relationships

disease

heart disease

Angina Myocardial
infarction

Stroke diabetes

type2 diabetestype1 diabetesIs a relationships defined in the
original ontology
Is a links generated in the
transcription of the base hierarchy
Is a links generated in the
reorganization of is a hierarchy

The legend

The transcriptional
hierarchy

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 105

are represented by IS-A relationships6 which allows inheritance of only properties of
super-concepts without identity criterion.

3.2 Consistency of Is-a Relationships

Since is-a links of type (B) and (C) are automatically generated by the system, there
would be a concern about inconsistency of is-a relationships in the new is-a
hierarchy. We investigate whether our method of automatic generation of is-a
hierarchy causes inconsistencies or not.

§1 Consistency of is-a relationships of type (B)
Is-a links of type (B) are automatically generated by the system when generated sub-
concepts are defined by specializing the definition of a target concept according to the
selected aspect and base hierarchy. That is, only the target concept’s definition
specified by the aspect is specialized in the generated sub-concepts according to the
base hierarchy. It also means that all the generated sub-concepts do not have any
inconsistencies with its super-concepts as long as is-a relationships in the base
hierarchy are consistent. Therefore, is-a relationships of type (B) are consistent in the
generated is-a hierarchy as well.

§2 Consistency of is-a relationships of type (C)
Is-a links of type (C) are automatically generated by the system between existing sub-
concepts and generated sub-concepts. Both of existing sub-concepts and generated
sub-concepts inherit all properties of the target concept. Only when an existing sub-
concepts’ definition is subsumed by the definition of a generated sub-concept, the
existing sub-concept is classified into a sub-concept of the generated sub-concept and
an is-a link of type (C) is generated between them. Therefore, there is not any
inconsistency such as inheritances of unintended properties or undefined properties
between them.

The above discussion shows that is-a relationships of type (B) and (C) do not cause
any inconsistency between the original is-a hierarchy and dynamically generated ones
nor any change of definitions of existing sub-concepts while they are automatically
generated by the system. Furthermore, because the proposed method does not
generate is-a links between concepts defined in the original ontology, the original is-a
hierarchy remains after reorganization.

That is, the proposed method enables us to dynamically generate is-a hierarchies
without causing any inconsistency with the original ontology and changes of original
definitions of concepts.

While many redundant concepts could be generated by the method, the user can
manage them by specifying the number of the target layers rather than to use all
concepts of the base hierarchy for transcription.

6 In Hozo, multi-inheritance is represented by distinction between an is-a relationship and IS-A

relationship in order to identify from which concept an essential property is inherited.

106 K. Kozaki, K. Hihara, and R. Mizoguchi

4 Implementation

We implemented a prototype of dynamic is-a hierarchy generation system as an
extended function of Hozo. The system was developed as a Java client application
using HozoCore, which is Java API for ontologies built using Hozo, and Hozo OAT
(Ontology Application Toolkit), which is Java library for GUI of ontology-based
applications, developed using HozoCore.

The new function consists of three modules: is-a hierarchy viewer, viewpoint
setting dialog, and dynamic is-a hierarchy generation module (Fig.7). The is-a
hierarchy viewer shows an is-a hierarchy of an ontology in a tree representation. The
user selects a target concept7 on the is-a hierarchy for a dynamic is-a hierarchy
generation. The definition of the selected target concept is shown on the viewpoint
setting dialog. In the dialog, the user selects a viewpoint for the dynamic is-a
hierarchy generation by choosing class restriction of a slot as an aspect, a kind of base
hierarchy and the number of target layers for a transcription of a base hierarchy
according to his/her interests. The dynamic is-a hierarchy generation module
generates is-a hierarchy according to the specified viewpoint. The generated is-a
hierarchy is shown on the is-a hierarchy viewer and could be saved as an ontology file
if required.

While the target of the system is an ontology in Hozo’s format, it also can support
an ontology in OWL because Hozo can import/export OWL ontologies. When the
generated is-a hierarchy is exported in the OWL format, its generated sub-concepts in
the transcriptional hierarchy are represented by owl:equivalentClass which have

Fig. 7. The architecture of the dynamic is-a hierarchy generation system

7 When the user uses it as the additional function of Hozo, he/she selects a target concept on

several GUIs of HOZO for ontology representations.

Dynamic is a hierarchy generation module

Is a hierarchy viewer

Viewpoint setting dialog

HozoCore

O
W
L
ontology

Hozo
ontology

Hozo
ontology

editor

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 107

Fig. 8. The dynamically generated is-a hierarchy from Pizza Ontology exported in OWL format

restriction on properties selected as the aspect. On the other hand, is-a relationships of
type (C) in the generated is-a hierarchy are not exported because they can be
identified by reasoning using a DL reasoner. For example, Fig.8 shows a dynamically
generated is-a hierarchy from Pizza Ontology8. As shown in the left of the figure, its
transcriptional hierarchy is generated by selecting the restriction on hasTopping
property as the aspect and the is-a hierarchy of PizzaTopping as the base hierarchy.
The existing sub-concepts of Pizza are automatically classified by reasoning using a
DL-reasoner like the right of Fig.8.

5 Application of Dynamic Is-a Generation to a Medical
Ontology

We applied dynamic is-a hierarchy generation system to a medical ontology which
we are developing in a project supported by Japanese government [7, 9]. In our
medical ontology, diseases are defined by specifying typical disorder roles, such as
pathological condition, symptom, played by abnormal state. Fig.9-(a) shows the
framework to define diseases. Its disorder roles are represented as slots with class-
restrictions for constraining slot values. These slots are used as aspects for dynamic
generation of is-a hierarchies of diseases.

For example, when we select the pathological condition of disease as an aspect and
the is-a hierarchy of abnormal state as the base hierarchy, the is-a hierarchy of disease
is generated (Fig.9-(c)). In the generated is-a hierarchy, concepts which have names

8 http://www.co-ode.org/ontologies/pizza/2007/02/12/

The transcriptional
hierarchy

Automatic classification
of existing sub-concepts
by reasoning using a
DL-reasoner

108 K. Kozaki, K. Hihara, and R. Mizoguchi

The generated is-a hierarchyThe original is-a hierarchy of “disease”

(a) The framework to define diseases

(b) The class-restriction selected as an aspect

(c) The generated is-a hierarchy

represented by “disease which has X as pathological condition” (e.g. disease which
has abnormality in the structure as pathological condition) are sub-concepts
generated through the dynamic is-a hierarchy generation. Their concept names are
automatically determined by the system using a template. Exiting sub-concepts are
reorganized as sub-concepts of them. For instance, acute cardiac infarction is
classified into a sub-concept of disease which has cardiac infarction as pathological
condition. From the generated is-a hierarchy, we can understand diseases according to
the classification of pathological conditions.

Fig. 9. Application of dynamic is-a generation to a medical ontology

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 109

On the other hand, when we select the object of pathological condition as an aspect
and p-is-a hierarchy of the human body as a base hierarchy, the system generates the
is-a hierarchy of disease which is similar to the part-whole hierarchy of the human
body. For instance, acute cardiac infarction is classified into a sub-concepts of
disease which has a pathological condition in the myocardium.

Although we use a prototype of the medical ontology which includes about 200
diseases in the above examples, about 6,000 diseases have been defined in the current
version medical ontology by 12 clinicians. We already have applied dynamic is-a
hierarchy generation to the latest version and confirmed it could reorganize is-a
hierarchy of 6,000 diseases. Through dynamic is-a hierarchy generation according to
the users’ viewpoint, they can understands diseases from a variety of perspective. We
believe it could contribute to deeper understanding of them.

Moreover, we have developed a medical information system to consider how the
dynamic is-a hierarchy generation function can be used in other systems [10]. It is
used as an index for semantic navigation in the system. We also performed an
informal evaluation of the implemented system in a workshop 9 and received
favorable comments from medical experts. They especially liked the dynamic is-a
hierarchy reorganization, which is the first solution to the multi-perspective issues of
medical knowledge in the world.

Currently, we are refining the medical ontology based on a new disease model
which captures disease as causal chains of disorders [9]. While the dynamic is-a
hierarchy generation is applicable to the new medical ontology, we need to extend the
proposed framework to cope with more sophisticated is-a hierarchy generation
because we introduce a new kind of is-a relationships in the disease model based on
an ontological consideration of causal chains.

We also plan to make more formal evaluation of the proposed method. Now, we
are collecting several kinds of classification hierarchies of disease, and analyzing
what kinds of viewpoints are considered in these classifications. Then, we are
evaluating whether out method and medical ontology could support all kinds of them.
We also plan applications of the dynamic is-a generation to other ontologies.

6 Related Work

In order to avoid multiple-inheritance, some researchers took an approach that they
developed ontologies using single-inheritance and reorganized them by reasoning
using a DL-reasoner [11]. It corresponds to reorganization of is-a hierarchy based on
a transcriptional hierarchy in step 4 of the proposed method. However, the approach
needs that the transcriptional hierarchy is developed in advance while it is
dynamically generated by the system in the case of the proposed method.

Faceted Classification is used to represent classifications from multiple-
perspectives. In the Semantic Web, some researchers proposed Faceted Search for
semantic portals [12, 13]. They use Faceted Classification according to the user’s

9 The number of participants was about 25. It includes not only the members of the medical

ontology development but also others who work in the medical domain.

110 K. Kozaki, K. Hihara, and R. Mizoguchi

choose of facets from the definition of ontologies to provide user-centric semantic
search. In order to formalize the Faceted Classification, Bene Rodriguez-Castro
proposed an ontology design pattern to represent Faceted Classification in OWL [14].
Although the proposed method use a similar technique to Faceted Classification for
transcription of a hierarchical structure, it is different from Faceted Classification
since we focus on considerations of ontological meaning of generated is-a hierarchies.
Introduction of a p-is-a hierarchy is one of the results of the ontological
investigations.

However, there are some rooms to ontological investigate on a method of dynamic
is-a hierarchy generation. For instance, we need to investigate is-a hierarchies of role-
concepts and role-holders [5] while this paper concentrated on is-a hierarchies of
basic concept (normal type). Dynamic is-a hierarchy generation based on more
complicated viewpoints is also important subject to be considered. For example, we
are considering viewpoints to cope with a new disease model based on an ontological
consideration of causal chains [9]. Because the latest version of our medical ontology
based on the new disease model has more rich definitions than previous one, it would
support more complicated viewpoints for dynamic is-a hierarchy generation based on
causal chains in diseases. We believe these ontological considerations would clarify
the feature of the proposed method.

7 Concluding Remarks

In this paper, we discussed multi-perspective issues of is-a hierarchy construction in
ontologies and proposed a method of dynamic generation of is-a hierarchies. The
main idea is reorganization of is-a hierarchies from the original ontology according to
viewpoints of users. Then, we made ontological consideration on is-a hierarchies
which are developed by the proposed method, and we showed that dynamic is-a
hierarchy generation does not cause any inconsistency between the original ontology
and the generated one. Moreover, we developed a dynamic is-a hierarchy generation
system as new function of Hozo and applied it to a medical ontology. It enables the
users to understand an ontology from various viewpoints according to their intentions.

We plan to investigate further about some issues of the proposed framework for
dynamic is-a hierarchy generation. Although this paper concentrated on is-a
hierarchies of basic concept (normal type), we need to consider is-a hierarchies of
role-concepts and role-holders [5]. Because they can be selected as an aspect for
dynamic is-a hierarchy generation as well, we also have to consider about such cases.
An extension of the proposed frame work to cope with the new disease model based
on an ontological consideration of causal chains is another important topic should be
considered.

Evaluation of the proposed method is also very important thing which we have to
do. We plan to evaluate it through comparison of dynamically generated is-a
hierarchies of disease and existing classification of disease.

The demonstration of the dynamic is-a hierarchy generation is available at
http://www.hozo.jp/demo/. The function is also supported by the latest version of

 Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint 111

Hozo. Currently, we are also developing the dynamic is-a hierarchy generation
system for OWL ontologies using OWL-API while it is partly available through OWL
import/export function of Hozo.

Acknowledgement. A part of this research is supported by the Ministry of Health,
Labor and Welfare, Japan, the Japan Society for the Promotion of Science (JSPS)
through its “Funding Program for World-Leading Innovative R&D on Science and
Technology (FIRST Program)”, Grant-in-Aid for Young Scientists (A) 20680009.

References

1. Gruber, T.: A translation approach to portable ontology specifications. In: Proc. of JKAW
1992, pp. 89–108 (1992)

2. Guarino, N.: Some Ontological Principles for Designing Upper Level Lexical Resources.
In: Proc. of International Conference on Lexical Resources and Evaluation (1998)

3. Smith, B., et al.: The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature Biotechnology 25(11), 1251–1255 (2007)

4. Kozaki, K., Kitamura, Y., Ikeda, M., Mizoguchi, R.: Hozo: An Environment for
Building/Using Ontologies Based on a Fundamental Consideration of Role and Relationship.
In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473,
pp. 213–218. Springer, Heidelberg (2002)

5. Mizoguchi, R., et al.: A Model of Roles within an Ontology Development Tool: Hozo. J.
of Applied Ontology 2(2), 159–179 (2007)

6. Kozaki, K., et al.: Role Representation Model Using OWL and SWRL. In: Proc. of 2nd
Workshop on Roles and Relationships in Object Oriented Programming, Multi-agent
Systems, and Ontologies, Berlin, July 30-31 (2007)

7. Mizoguchi, R., et al.: An Advanced Clinical Ontology. In: Proc. of ICBO, pp. 119–122
(2009)

8. Hahn, U., et al.: Turning Lead into Gold? In: Gómez-Pérez, A., Benjamins, V.R. (eds.)
EKAW 2002. LNCS (LNAI), vol. 2473, pp. 182–196. Springer, Heidelberg (2002)

9. Mizoguchi, R., et al.: River Flow Model of Diseases. In: Proc. of ICBO 2011, pp. 63–70
(2011)

10. Kou, H., Ohta, M., Zhou, J., Kozaki, K., Mizoguchi, R., Imai, T., Ohe, K.: Development of
Fundamental Technologies for Better Understanding of Clinical Medical Ontologies. In:
Proc. of International Conference on Knowledge Engineering and Ontology Development
(KEOD 2010), Valencia, Spain, October 25-28, pp. 235–240 (2010)

11. Adams, N., Cannon, E.O., Murray-Rust, P.: ChemAxiom -An Ontological Framework for
Chemistry in Science. In: Proc. of ICBO, pp. 15–18 (2009)

12. Suominen, O., Viljanen, K., HyvÄnen, E.: User-Centric Faceted Search for Semantic Portals.
In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 356–370.
Springer, Heidelberg (2007)

13. Holi, M.: Crisp, Fuzzy, and Probabilistic Faceted Semantic Search, PhD Thesis, Aalto
University, Finland (2010)

14. Rodriguez-Castro, B., Glaser, H., Carr, L.: How to Reuse a Faceted Classification and Put it
on the Semantic Web. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 663–678.
Springer, Heidelberg (2010)

Mid-Ontology Learning from Linked Data

Lihua Zhao and Ryutaro Ichise

Principles of Informatics Research Division,
National Institute of Informatics, Tokyo, Japan

{lihua,ichise}@nii.ac.jp

Abstract. The Linking Open Data(LOD) cloud is a collection of linked
Resource Description Framework (RDF) data with over 26 billion RDF
triples. Consuming linked data is a challenging task because each data
set in the LOD cloud has specific ontology schema, and familiarity with
ontology schema is required in order to query various linked data sets.
However, manually checking each data set is time-consuming, especially
when many data sets from various domains are used. This difficulty can
be overcome without user interaction by using an automatic method that
integrates different ontology schema. In this paper, we propose a Mid-
Ontology learning approach that can automatically construct a simple
ontology, linking related ontology predicates (class or property) in dif-
ferent data sets. Our Mid-Ontology learning approach consists of three
main phases: data collection, predicate grouping, and Mid-Ontology con-
struction. Experimental results show that our Mid-Ontology learning
approach successfully integrates diverse ontology schema, and effectively
retrieves related information.

Keywords: Mid-Ontology, linked data, semantic web, ontology
learning.

1 Introduction

The Linking Open Data (LOD) cloud1 is a collection of Resource Description
Framework (RDF) data in <subject, predicate, object> triples[12]. The latest
LOD cloud contains 203 data sets mainly categorized into seven domains: cross-
domain, geographic, media, life sciences, government, user-generated content,
and publications. Things are represented using the Uniform Resource Identifier
(URI), and identical or related things are linked with the predicate owl:sameAs,
where OWL is the Web Ontology Language designed to share or publish ontolo-
gies on the Web[2].

Although many applications such as linked data browsers, ontology-driven
semantic search engines, and some domain specific applications have been de-
veloped by consuming linked data sets, integrating ontology schema or data sets
from diverse domains remains a challenging problem[2]. This is because multiple
data sets provide different values for the same predicate of an object or provide
different terms to represent the same predicate[1]. SPARQL query is a power-
ful RDF query language that enables users to access linked data[12]. However,

1 http://lod-cloud.net/

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 112–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://lod-cloud.net/

Mid-Ontology Learning from Linked Data 113

users have to understand ontology schema of data sets to construct SPARQL
queries. Learning all the ontology schema is not feasible and is time-consuming,
because each data set has a specially designed ontology and thousands of distinct
ontology predicates might exist. Querying with one simple ontology that inte-
grates various ontologies can simplify SPARQL queries and help semantic web
application developers to easily understand ontology schema to search on linked
data sets.

In order to solve this problem, an automatic method to create a simple on-
tology that integrates ontology schema from diverse domain data sets needs
to be developed. Ontology learning technology can automate the ontology con-
struction process from structured, semi-structured or unstructured data[7]. An
ontology learning cycle that includes ontology design, ontology learning, and
validation phases is introduced in [18]. However, most of the research on the
ontology learning technology focuses on text files. We designed an automatic
ontology learning approach to adapt to the LOD data sets, which can create an
integrated ontology from diverse data sets.

In this paper, we present an automatic Mid-Ontology learning method, which
includes ontology manipulations such as ontology term extraction, ontology
matching, and ontology integration. Ontology integration is defined as a pro-
cess that generates a single ontology from different existing ontologies[3]. An
automatically constructed ontology is called a Mid-Ontology, which integrates
related ontology predicates from diverse linked data sets.

This paper is organized as follows. In Section 2, we introduce our automatic
Mid-Ontology learning approach that involves data collection, predicate group-
ing, and Mid-Ontology construction. In Section 3, we evaluate our Mid-Ontology
learning approach from four different aspects: effectiveness of data reduction,
quality of Mid-Ontology, effectiveness of information retrieval with SPARQL
query, and characteristics of integrated predicates. In Section 4, we discuss
advantages of our Mid-Ontology learning approach and possible applications.
In Section 5, we list some previous related research and compare this research
with our approach. In Section 6, we present our conclusions and propose future
work.

2 Mid-Ontology Learning Approach

In the LOD cloud, data sets are linked with owl:sameAs at an instance level,
but few links exist at the class or property level. Although the RDF link types
owl:equivalentClass and owl:equivalentProperty are designed to state two classes
or properties actually refer to the same concept, there are only few links at a
class level or property level[12]. Hence, whenever linked data are queried with
SPARQL, the predicates of ontology schema must be manually learnt, which is
not conceivable if there are thousands of distinct predicates.

Our aim is to automatically construct a simple ontology that integrates on-
tology schema from linked data sets. Hence, we focus on instances linked with
owl:sameAs to retrieve related information. For example, Table 1 shows the

114 L. Zhao and R. Ichise

Table 1. Collected data based on the URI: “http://dbpedia.org/resource/Berlin”

Predicate Object

http : //dbpedia.org/property/name Berlin
http : //dbpedia.org/property/population 3439100
http : //dbpedia.org/property/plz 10001-14199
http : //dbpedia.org/ontology/postalCode 10001-14199
http : //dbpedia.org/ontology/populationTotal 3439100
.
http : //www.geonames.org/ontology#alternateName Berlin
http : //www.geonames.org/ontology#alternateName Berlyn@af
http : //www.geonames.org/ontology#population 3426354
.
http : //www.w3.org/2004/02/skos/core#prefLabel Berlin (Germany)
http : //data.nytimes.com/elements/first use 2004-09-12
http : //data.nytimes.com/elements/latest use 2010-06-13

collected <predicate, object> pairs of instances that indicate “Berlin” from DB-
pedia, Geonames, and NYTimes. In Table 1, there are three distinct predicates
that indicate “Berlin” and belong to different data sets. If we can integrate these
related predicates into one predicate, we can query all the data sets with one
single predicate that indicates the name of a place.

In this section, we describe the architecture of our Mid-Ontology learning
approach as shown in Fig. 1. The architecture of our approach includes three
phases: data collection, predicate grouping, and Mid-Ontology construction.

2.1 Data Collection

Although the SameAs (owl:sameAs) link is designed to link identical things, it
also links related or similar things in published linked data sets[11]. Hence, we
can find identical or related information if we investigate instances linked with
owl:sameAs. In this section, we describe our data collection phase in three steps:
extract data linked with owl:sameAs, remove noisy instances of the core data
set, and collect predicates and objects to construct the final data set for our
Mid-Ontology learning.

Extract Data Linked with owl:sameAs
In order to extract data linked with owl:sameAs, we have to select a core data
set, which serves as a hub of several linked data sets. A good core data set should
have inward or outward links to other data sets from diverse domains. Then we
collect all the instances that have the SameAs links with instances in the core
data set.

For instance, suppose we select DBpedia as the core data set, we select all the
DBpedia instances that have SameAs links to other data sets such as Geon-
ames and NYTimes. Table 1 shows an example of the collected data based

Mid-Ontology Learning from Linked Data 115

Fig. 1. Architecture of our Mid-Ontology learning approach

on the DBpedia instance “http://dbpedia.org/resource/Berlin”. Since both the
Geonames instance “http://sws.geonames.org/2950159/” and the NYTimes in-
stance “http://data.nytimes.com/N50987186835223032381” are linked with this
instance, we collect the contents of these two URIs.

Remove Noisy Instances of the Core Data Set
We say an instance is noisy, if none of the triples of the instance contains infor-
mation that can represent the characteristics of the instance. For instance, if all
the triples of an instance are SameAs links, broken links, or types, we cannot
learn any information that can represent the characteristics of an instance. We
remove all the noisy instances of the core data set before collecting predicates
and objects.

Collect Predicates and Objects
Data collection is based on each retrieved instance of the core data set, where
we collect all the <predicate, object> pairs of the instance and of instances
connected with the instance. Hereafter, we use PO to represent a <predicate,
object> pair. The explanation of variables and functions appear in this paper
are illustrated in Table 2. In this PO collection step, we do not collect the triples
with the SameAs links, because we have already collected triples of the linked
instances. Furthermore, for the instances of the core data set, if there is any link
to another instance of the core data set, we also collect triples from the linked
instance. The collected data consists of PO pairs based on each instance of the
core data set, which is used for the predicate grouping phase.

2.2 Predicate Grouping

Grouping related predicates from different ontology schema is critical for Mid-
Ontology construction, because there exist many similar ontology predicates that

116 L. Zhao and R. Ichise

Table 2. Explanation of variables and functions

Variables/Functions Explanation

PO A <predicate, object> pair.
G A group of PO pairs.
T (G) Pre-processed terms of predicates in G.
O(G) Objects stored in G.
P (G) Predicates stored in G.
WNSim(T (Gi), T (Gj)) WordNet-based similarity between T (Gi) and T (Gj).
StrSim(O(Gi), O(Gj)) String-based similarity between O(Gi) and O(Gj).
Sim(Gi, Gj) Similarity between Gi and Gj .

represent the same thing. The predicate grouping phase consists of three main
steps: group predicates by exact matching, prune groups by similarity matching,
and refine groups using extracted relations.

Group Predicates by Exact Matching
The first step in predicate grouping is creating initial groups of predicates that
share the same information or the same object by the exact string matching
method. Collected data set is based on each instance of the selected core data,
which consists of PO pairs. We perform pairwise comparison of POi and POj ,
and create initial groupsG1, G2, . . . , Gk by checking whether they share identical
predicate or object. Here, G is a group of PO pairs as explained in Table 2.

For example, in Table 1, both geo-onto:alternateName2 and db-prop:name3

have the same object “Berlin”, and the predicate geo-onto:alternateName has an-
other object “Berlyn@af”. Hence, these two predicates and objects are grouped
together to create an initial group. After creating initial groups for all the PO
pairs, we create initial groups for each PO pair that has not yet been grouped.
For instance, nyt-prop:first use4 is in an initial group by itself, because no pred-
icate has the same object “2004-09-12” and no identical predicate exists in the
data.

Prune Groups by Similarity Matching
The second step in predicate grouping is pruning initial groups by knowledge-
based similarity matching and string-based similarity matching, which are com-
monly used to match ontologies at the concept level[9]. As we noticed that some
of the same values that are written in different languages or some semantically
identical words such as U.K. and United Kingdom may be ignored in exact
matching, we realized that similarity matching is necessary to group semanti-
cally similar predicates.

In our approach, we adopted nine knowledge-based similarity measures[15],
namely, LCH, RES, HSO, Jiang and Conrath (JCN), LESK, PATH, Wu and

2 geo-onto is the abbreviation of http://www.geonames.org/ontology#
3 db-prop is the abbreviation of http://dbpedia.org/property/
4 nyt-prop is the abbreviation of http://data.nytimes.com/elements/

http://www.geonames.org/ontology#
http://dbpedia.org/property/
http://data.nytimes.com/elements/

Mid-Ontology Learning from Linked Data 117

Table 3. Example of two groups of predicates from Table 1

Group Predicates Corresponding Object

Gi
http://dbpedia.org/property/population 3439100
http://dbpedia.org/ontology/populationTotal

Gj http://www.geonames.org/ontology#population 3426354

Palmer (WUP), LIN, and VECTOR, which are based on WordNet (a large lex-
ical database of English[10]), and four string-based similarity measures, namely,
prefix, suffix, Levenshtein distance, and n-gram, as introduced in [13]. Knowledge-
based similarity measures are applied to compare pre-processed terms of predi-
cates, because the terms of predicates are more likely to have semantic meanings.
On the other hand, string-based similarity measures are applied to compare ob-
jects of predicates, because objects may contain URIs rather than lexical labels.
In the following, the term T (G) indicates the pre-processed terms of predicates in
G, the term O(G) indicates the objects stored in G, and the term P (G) indicates
the predicates stored in G, as shown in Table 2.

In order to extract terms of predicates, we pre-process each predicate of PO
pairs by performing natural language processing (NLP), which includes tokeniz-
ing terms, removing stop words, and stemming terms using the porter stemming
algorithm[16]. NLP is a key method for the data pre-processing phase in which
terms are extracted from ontologies; this method helps to improve the perfor-
mance of ontology building[4].

For initial groups {G1, G2, . . . Gk}, we apply similarity measures on pairwise
initial groups. Sim(Gi, Gj) is the similarity value between Gi and Gj calculated
using the formula:

Sim(Gi, Gj) =
WNSim(T (Gi), T (Gj)) + StrSim(O(Gi), O(Gj))

2

whereWNSim(T (Gi), T (Gj)) is the average of the nine applied WordNet-based
similarity values and StrSim(O(Gi), O(Gj)) is the average of the four string-
based similarity values. For WordNet-based similarity measures, we do not count
values of zero, which indicate that no similarity values have been returned from
WordNet-based similarity measures.

If Sim(Gi, Gj) is higher than a predefined threshold, we consider that two
initial groups share similar predicates, and we merge these two groups. After
comparing all the pairwise initial groups, we remove the initial group Gi, if it
has not been merged during this pruning process and has only one PO pair.

Here, we show how to calculate the similarity between two initial groups Gi

and Gj as listed in Table 3, where these two initial groups are created based
on Table 1. Suppose Gi includes db-prop:population and db-onto: population-
Total5 with the object “3439100”, and group Gj includes the predicate geo-
onto:population with the object “3426354”. T (Gi) includes “population” and
“total”, while T (Gj) includes “population”. Here, O(Gi) is “3439100” andO(Gj)
is “3426354”.
5 db-onto is the abbreviation of http://dbpedia.org/ontology/

http://dbpedia.org/ontology/

118 L. Zhao and R. Ichise

Table 4. Example of WordNet-based similarity measures on pairwise terms

Pairwise Terms LCH RES HSO JCN LESK PATH WUP LIN VECTOR

population, population 1 1 1 1 1 1 1 1 1
population, total 0.4 0 0 0.06 0.03 0.11 0.33 0 0.06

Table 5. Example of String-based similarity measures on pairwise objects

Pairwise Objects prefix suffix Levenshtein distance n-gram

“3439100”, “3426354” 0.29 0 0 0.29

Table 4 shows WordNet-based similarity values of pairwise terms in Gi and
Gj .WNSim(T (Gi), T (Gj)) is 0.5825, which is the average of 15 similarity values
larger than zero, as listed in Table 4. StrSim(O(Gi), O(Gj)) is 0.145, which is
the average of four string-based similarity values, as shown in Table 5. Hence,
the final similarity Sim(Gi, Gj) is 0.36375, which is the average of 0.5825 and
0.145. If this value is higher than the predefined threshold, we merge Gi and Gj .

Refine Groups Using Extracted Relations
The final group refining step is to split the predicates of each pruned group Gi

according to the relations of rdfs:domain or rdfs:range. Because even though the
objects or terms of predicates are similar, the predicates may belong to different
domains or ranges. For further refining, we count the frequency of P (Gi) in all
of the data, and keep the P (Gi) that appears with a frequency that is higher
than the predefined frequency threshold. The final refined groups of predicates
are passed to the next phase, which is Mid-Ontology construction.

2.3 Mid-Ontology Construction

According to the groups of predicates, we construct the Mid-Ontology with au-
tomatically selected terms and a specially designed predicate.

Select Terms for Mid-Ontology
In order to perform automatic term selection, we pre-process all the terms of the
predicates in each group by tokenization, stop words removal, and stemming. We
also keep original terms, because sometimes one single word is ambiguous when it
is used to represent a group of terms. For example, “area” and “areaCode” have
totally different meanings, but may have the same frequency because the former
is extracted from the latter. Hence, when two terms have the same frequency,
we choose the longer one. The predicate mo-onto:Term is designed to represent
a term of a class, where the “Term” is automatically selected.

Construct Relations
We designed a predicate mo-prop:hasMembers to link groups of predicates with
the Mid-Ontology classes. This predicate indicates that a group of integrated
predicates are members of a class of the Mid-Ontology.

Mid-Ontology Learning from Linked Data 119

Construct Mid-Ontology

A Mid-Ontology is automatically created with refined groups of integrated
predicates, automatically selected terms, and a designed predicate mo-
prop:hasMembers, which links groups of predicates and Mid-Ontology classes.

2.4 Implementation

Many semantic web tools are developed to help researchers query through the
linked data, publish linked data, or manage enormous data sets. Virtuoso6 is
a high-performance server that supports storage of a large RDF data, provides
SPARQL endpoint, and supports creation of RDF models [8]. A Virtuoso Jena
RDF Data Provider is also provided, which enables Java applications to directly
query the Virtuoso RDF data through Jena RDF Frameworks.

For knowledge-based similarity matching, we used WordNet::Similarity7 [15],
which is implemented in perl. Several WordNet-based similarity measuring al-
gorithms are implemented in this tool. If two terms are identical, we return 1;
otherwise, we apply WordNet-based similarity measures. The similarity mea-
sures JCN, PATH, WUP, LIN, and VECTOR return normalized values between
zero and one. However, the similarity values of LCH, RES, HSO, and LESK are
not normalized. In order to normalize similarity values of LCH, RES, HSO, and
LESK , we divide the returned value by the maximum value that we can ob-
tain from all the pairwise terms in the collected data. The normalized similarity
Simalg is calculated using the formula:

Simalg =
WordNetalg
Maxalg

where WordNetalg indicates the returned value from WordNet::Similarity tool,
and theMaxalg indicates the maximum value we obtained from theWordNetalg .
The Maxalg of LCH, RES, HSO and LESK are 3.7, 10, 16 and 5.6 respectively.

3 Experimental Evaluation

In this section, we evaluate our Mid-Ontology learning approach from different
aspects after introducing the experimental data. First, we evaluate the effec-
tiveness of data reduction during the data collection phase. Second, we evaluate
the quality of created Mid-Ontology to show the improvements achieved with
and without our approach. Third, we evaluate our approach with a SPARQL
example to demonstrate that we can successfully extract information with single
integrated predicate without understanding all the related predicates. Fourth,
we show that from the characteristics of integrated predicates, we can easily
observe how instances from different data sets are linked together.

6 http://virtuoso.openlinksw.com/
7 http://wn-similarity.sourceforge.net/

http://virtuoso.openlinksw.com/
http://wn-similarity.sourceforge.net/

120 L. Zhao and R. Ichise

Fig. 2. SameAs links between data sets

3.1 Experimental Data

We used the following three data sets in the LOD cloud to evaluate our approach.

DBpedia is a core cross-domain data set that describes over 3.5 million things
including persons, places, music albums, films, video games, organizations,
species, and diseases. DBpedia has more than 232 million RDF triples and
more than 8.9 million distinct URIs.

Geonames is a data set that is categorized in the geographic domain and con-
tains more than 7 million unique URIs that represent geographical informa-
tion on places across the world.

NYTimes data is a small data set that consists of 10,467 subject news, where
4,978 are about people, 1,489 are about organizations, 1,910 are about loca-
tions, and 498 are about descriptors.

Fig. 2 shows the sameAs links connecting the above three data sets, plotted
using Cytoscape [17]. In this figure, the size of a node is determined by the total
number of distinct instances in a data set, in a logarithmic scale. The thickness
of an arc is determined by the number of sameAs links as labeled on each arc,
in a logarithmic scale.

3.2 Evaluation of Data Reduction

We evaluate the effectiveness of data reduction during the data collection phase
by comparing the number of instances in the original data sets with the number
of instances we extracted after performing owl:sameAs retrival process and noisy
data removal process.

DBpedia has served as a hub within the Web of Data, because of the breath of
topical coverage and the wealth of inward and outward links connecting instances
in DBpedia to instances in other data sets[12]. Hence, we select DBpedia as a
core data set, and collect all the instances that have the SameAs links with
instances in DBpedia.

Mid-Ontology Learning from Linked Data 121

Table 6. Number of distinct instances during data collection phase

Data set Before reduction owl:sameAs retrieval Noisy data removal

DBpedia 8,955,728 135,749 88,506
Geonames 7,479,714 128,961 82,054
NYTimes 10,467 9,226 8,535

The instances of DBpedia with no more than three distinct predicates are
defined as “noisy” instances and are removed from collected linked instances.
This is because we observed that these instances contain predicates owl:sameAs,
db-prop:wordnet-type8 and db-prop:hasPhotoCollection which links to a broken
URI. Although these instances have SameAs links, we cannot learn any infor-
mation that can represent the characteristics of a DBpedia instance.

Table 6 illustrates the number of distinct instances that exist before and after
linked data retrieval and noisy data removal are performed during the data
collection process. The retrieved linked sub-data set contains 135,749 DBpedia
instances, 128,961 Geonames instances, and 9,226 NYTimes instances, while our
database contains 8,955,728 DBpedia instances, 7,479,714 Geonames instances,
and 10,467 NYtimes instances, respectively.

Then, we pre-process the extracted sub-data set by removing noisy instances
of DBpedia. After noisy data removal, we obtained 88,506 DBpedia instances,
82,054 Geonames instances, and 8,535 NYTimes instances, which are 65%, 64%
and 92.5% of the number of instances in the extracted linked data, respectively.
DBpedia contains 7,964 distinct predicates, while Geonames and NYTimes con-
tain 26 and 14, respectively, in the collected data set. We only retain 1,229 DBpe-
dia predicates from among the 88,506 DBpedia instances by removing predicates
that have a frequency of less than 100 and by retaining terms that have a length
between 1 and 26.

We dramatically scaled down the data sets by collecting information of linked
instances in the data collection phase to keep instances that share related infor-
mation. Furthermore, we successfully removed noisy instances, which may affect
the quality of created ontology.

3.3 Ontology Evaluation

In order to evaluate the quality of the created Mid-Ontology(MO), we calculate
the accuracy of the Mid-Ontology using the following formula:

ACC(MO) =

∑n
i=1

|Correct Predicates in Ci|
|Ci|

n

where n is the number of classes in the Mid-Ontology, and |Ci| indicates the
number of predicates in class Ci. The ACC(MO) is the average of the accuracy of

8 db-prop is the abbreviation of http://dbpedia.org/property/

http://dbpedia.org/property/

122 L. Zhao and R. Ichise

Table 7. Improvement achieved by our approach

MO Number of
Classes

Number of
Predicates

Cardinality Correct
Groups

Correctly
Labeled

Accuracy

MO no p r 11 300 27.27 3(27.27%) 9(81.81%) 68.78%
MO no p 17 270 15.88 5(29.41%) 13(76.47%) 68.96%
MO no r 26 230 8.85 19(73.08%) 20(76.92%) 89.13%
MO 29 180 6.21 22(75.86%) 24(82.75%) 90.10%

each class in the Mid-Ontology. If all related or identical predicates are correctly
integrated in each class, the accuracy ACC(MO) reaches 1.

Table 7 shows the improvements achieved by our Mid-Ontology approach
through a comparison of the Mid-Ontologies created with and without our ap-
proach. The main features of our approach are group pruning with similarity
measures and group refining by checking the ranges and domains of predicates.
The first column lists four Mid-Ontologies created by different approaches, i.e.,
MO no p r, that without the pruning and refining processes, MO no p, that
denotes without the pruning process, MO no r, that denotes without the refin-
ing process, and MO, that denotes with both pruning and refining processes. We
manually check each group of predicates to determine whether they share identi-
cal or related information, and we examine whether each term can be represented
for predicates in that class without disambiguation.

We can compare the results of MO no p r and MO no p, MO no r and MO
to evaluate the performance of the refining process. Although the refining pro-
cess only slightly improved the accuracy of the Mid-Ontology from 68.78% to
68.96% and from 89.13% to 90.10%, it can divide classes into more specific topics
according to ranges and domains. The performance of the pruning process can
be evaluated by comparing the results of MO no p r and MO no r, MO no p
and MO. The group pruning process significantly improved the accuracy of the
Mid-Ontology, i.e., from 68.78% to 89.13% and from 68.96% to 90.10%.

The last row shows our final Mid-Ontology obtained by applying both the
pruning and refining processes. The accuracy of the Mid-Ontology and percent-
age of correctly grouped classes are significantly improved compared to the values
in the first row, which were obtained when the pruning and refining processes
were not performed. Although the percentage of correctly labelled terms is higher
than in the case of methods that do not involve our approach, the accuracy of
labels is not affected by the pruning and refining processes.

As Table 7 shows, when both pruning and refining are conducted, the number
of correctly grouped classes and the accuracy of the Mid-Ontology can be im-
proved. Furthermore, the total number of integrated predicates from the three
data sets are reduced after applying each process, and the number of classes are
increased. The cardinality is calculated using the formula:

Cardinality =
|Number of Predicates|
|Number of Classes|

Mid-Ontology Learning from Linked Data 123

Table 8. Predicates grouped in mo-onto:population

<rdf:Description rdf:about=“mid-onto:population”>
<mo-prop:hasMembers rdf:resource=“http://dbpedia.org/property/population”/>
<mo-prop:hasMembers rdf:resource=“http://dbpedia.org/property/popLatest”/>
<mo-prop:hasMembers rdf:resource=“http://dbpedia.org/property/populationTotal”/>
<mo-prop:hasMembers rdf:resource=“http://dbpedia.org/ontology/populationTotal”/>
<mo-prop:hasMembers rdf:resource=“http://dbpedia.org/property/einwohner”/>
<mo-prop:hasMembers rdf:resource=“http://www.geonames.org/ontology#population”/>
</rdf:Description>

Table 9. SPARQL Example 1: Find places with a population of more than 10 million

SELECT DISTINCT ?places
WHERE{

mid-onto:population mo-prop:hasMembers ?prop.
?places ?prop ?population. FILTER (xsd:integer(?population) > 10000000). }

where the cardinality indicates the average number of predicates in a class of
the ontology. A low cardinality indicates that we successfully removed redundant
predicates, which may reduce the accuracy of the Mid-Ontology.

The Mid-Ontology integrated 180 predicates from three different data sets and
assigned them to 29 classes, with an average cardinality of 6.21. On the other
hand, other Mid-Ontologies created without pruning or refining process have
higher cardinality values than our Mid-Ontology, but have lower accuracies.

Comparing our Mid-Ontology with the Mid-Ontologies created without our
approach, the total number of integrated predicates decreased by 40%, but the
number of classes increased by a factor of almost 2.6, with a 30% improvement
in accuracy. This means that the average cardinality of classes decreased and
that unrelated predicates were successfully removed to improve the accuracy in
each class. From the results in Table 7, we can conclude that our method can
remove unrelated predicates that cause a low accuracy, and the refining process
can filter out predicates with different ranges and domains.

3.4 Evaluation with a SPARQL Example

We evaluate the effectiveness in information retrieval with the Mid-Ontology
created with our approach, by presenting a SPARQL query example. Table 8
shows one of the 29 groups in the Mid-Ontology, that integrates predicates that
indicate population from DBpedia and Geonames. This group does not contain
any NYTimes predicate, because there is no predicate that indicates population
in the NYTimes data. We observed that NYTimes instances are linked with
other data sets according to the labels of news headings, which are represented
by “http://www.w3.org/2004/02/skos/core#prefLabel”.

The advantage of our approach is that we can retrieve related information with
an automatically integrated Mid-Ontology. Table 9 shows a SPARQL example

124 L. Zhao and R. Ichise

Table 10. Results with each single predicate under the same condition as in Table 9

Single property for population Number of Results

http://dbpedia.org/property/population 177
http://dbpedia.org/property/popLatest 1
http://dbpedia.org/property/populationTotal 107
http://dbpedia.org/ontology/populationTotal 129
http://dbpedia.org/property/einwohner 1
http://www.geonames.org/ontology#population 244

Table 11. Sample classes in the Mid-Ontology

DBpedia DBpedia & Geonames DBpedia & Geonames & NYTimes

mo-onto:birthdate mo-onto:population mo-onto:name
mo-onto:deathdate mo-onto:prominence mo-onto:long
mo-onto:motto mo-onto:postal

in which this mo-onto:population is used to find places that have a population
of more than 10 million. This SPARQL query automatically queries with all the
predicates listed under mo-onto:population as shown in Table 8.

We find 517 places with mo-onto:population, while with the single predicate
listed in Table 10, we can find 177, 1, 107, 129, 1, and 244 places, respectively.
Since the predicates grouped in this class all correctly represent population, the
returned results are all correct. The results queried with mo-onto:population
are a combination of the results retrieved with each predicate in that group.
Furthermore, it is difficult to manually find all the six predicates that indicate
population in different data sets.

As this example shows, our approach simplifies SPARQL queries and returns
all the possible results without user interaction; in contrast, it is time-consuming
to find each single predicate manually through user interaction.

3.5 Characteristics of Integrated Ontology Predicates

We evaluate whether our approach successfully integrates related predicates by
illustrating samples of classes in the Mid-Ontology. Table 11 shows some of the
classes in the Mid-Ontology, which integrated predicates from DBpedia, Geon-
ames, and NYTimes instances. The classes listed in the first column include only
predicates from DBpedia ontology, which indicate the birth date, death date, and
motto of a person. The second column lists classes that integrate predicates from
both DBpedia and Geonames, which indicate the population, prominence, and
postal code of a place. The last column lists classes that integrate predicates
from DBpedia, Geonames, and NYTimes, which indicate the name of a thing
and the longitude of a place.

The class mo-onto:name indicates the name of a person, an event, or a place,
which integrates predicates from all the three data sets. From the characteristics
of integrated classes, we can observe that the linked instances between DBpedia

Mid-Ontology Learning from Linked Data 125

and Geonames are about places, and the instances that link DBpedia, Geonames,
and NYTimes are based on a person or an event happened in a place.

4 Discussion

Experimental results demonstrate that our Mid-Ontology learning approach suc-
cessfully integrates predicates from different data sets. The automatically cre-
ated Mid-Ontology has a high quality, and can be applied in the information
retrieval field. Since the Mid-Ontology integrates the most related predicates,
we can search potential related triples or instances from LOD cloud with a sim-
ple SPARQL query.

Furthermore, our Mid-Ontology learning approach is implemented with the
collected data set that is extracted with owl:sameAs. Hence, our Mid-Ontology
can find missing links that should be linked with owl:sameAs. For example, the
predicate mo-onto:population has predicates of DBpedia and Geonames that
indicate population. Therefore, we can find the same place in DBpedia and
Geonames by searching for places with the same population.

For instance, the DBpedia instance “http://dbpedia.org/resource/Cyclades”
has db-prop:population with a value of “119549”, and the Geonames instance
“http://sws.geonames.org/259819/” also has a predicate that represents popu-
lation, i.e., geo-onto:population with a value of “119549”. Both of DBpedia and
Geonames URIs indicate the place “Cyclades”, but there is no owl:sameAs link
between these two URIs.

Therefore, we can find missing links with our Mid-Ontology if there exist pred-
icates from different domains grouped under the same Mid-Ontology class. In our
constructed Mid-Ontology, we can find missing links according to mo:birthdate,
mo:population , mo:postalcode, etc.

5 Related Work

Some researchers have proposed similar ideas about constructing an intermediate-
layer ontology and reducing data sets. For instance, the authors in [14] automat-
ically generated alignments from linked instances in the Linked Data, especially
geospatial, zoology, and genetics data sources. During data preprocessing, they
only considered linked instances and removed unimportant properties to reduce
search space. Their algorithm discovers equivalent and subsumption relations
and models one Linked Data source through ontology alignment. However, their
approach is limited to specific domains of data sets, while our approach can be
applied to data sets from any domain.

Some researchers have proposed the construction of an intermediate-level on-
tology to connect general ontologies and an upper ontology. The authors in [5]
introduced a method to construct an intermediate-level ontology by mapping an
upper ontology, PROTON, to the concepts of DBpedia, Geonames, and Free-
base described in the FactForge. They enriched the upper ontology by adding 166

126 L. Zhao and R. Ichise

new classes and 73 new properties; the resulting ontology was a large one. The
end-users have to understand the large ontology to construct SPARQL queries.

The authors in [6] analyzed the basic properties of SameAs network, Pay-
Level-Domain network, and Class-Level Similarity network. They analyzed the
Pay-Level-Domain network to examine how data publishers are connected, by
comparing the five most frequent types. However, when only frequent types are
considered, it is not possible to determine exactly how data are connected.

In contrast to the approaches adopted in the related research described above,
our Mid-Ontology learning approach is aimed at constructing a small ontology by
integrating predicates and can be directly applied to semantic web applications.
With our Mid-Ontology, we can easily determine the kinds of things that are
linked together by observing the characteristics of the integrated predicates.
Furthermore, user interaction is not needed for the Mid-Ontology construction,
and our approach is applicable to linked data sets as long as they are connected.

The drawbacks of our approach are that a hub data set is necessary for ex-
tracting linked instances and that related predicates cannot be found if data sets
are not directly connected in the LOD cloud. One possible solution is to investi-
gate on the connected components[6] in the LOD cloud, by applying clustering
technology, and by analyzing the contents of the connected components.

6 Conclusion and Future Work

In this paper, we proposed a Mid-Ontology learning approach that involves the
use of Linked Open Data and can help semantic web application developers to
integrate diverse ontology schema without learning the entire ontology schema.
The main procedures of our approach are data collection process, the ontology
predicate grouping process, and Mid-Ontology construction process. The pred-
icate grouping algorithm applied lexical similarity matching to collect similar
predicates and implemented the relation extraction method to refine predicate
groups. Our approach can automatically extract the most related predicates
between linked data sets, and integrate them in the Mid-Ontology. Experimen-
tal results show that the amount of data can be dramatically reduced in the
data collection phase and that the accuracy of the Mid-Ontology can be signifi-
cantly improved by the group pruning and refining processes. Furthermore, with
the Mid-Ontology, potential information can be effectively retrieved in a simple
SPARQL query.

In future work, we will apply our approach to the Billion Triple Challenge
(BTC) data set, which is collected by crawling real-world linked data. Since our
current approach only considers data sets directly linked with a hub data set,
it cannot extract relations by crawling links at more than one depth. We plan
to extend our approach, so that it can crawl at two or three depths of links to
collect interesting information from the linked data.

Mid-Ontology Learning from Linked Data 127

References

1. Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic
Web 1(1-2), 97–104 (2010)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

3. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. ACM SIGMOD
Record 35, 34–41 (2006)

4. Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation
and Applications. Springer-Verlag New York, Inc. (2006)

5. Damova, M., Kiryakov, A., Simov, K., Petrov, S.: Mapping the central lod on-
tologies to proton upper-level ontology. In: Proceedings of the Fifth International
Workshop on Ontology Matching, pp. 61–72 (2010)

6. Ding, L., Shinavier, J., Shangguan, Z., McGuinness, D.L.: Sameas networks and
beyond: Analyzing deployment status and implications of owl: sameas in linked
data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z.,
Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 145–160.
Springer, Heidelberg (2010)

7. Drumond, L., Girardi, R.: A survey of ontology learning procedures. In: Proceed-
ings of the Third Workshop on Ontologies and their Applications (2008)

8. Erling, O., Mikhailov, I.: Virtuoso: Rdf support in a native rdbms. In: Semantic
Web Information Management, pp. 501–519 (2009)

9. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
10. Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press (1998)
11. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When

owl:sameAs isn’t the same: An analysis of identity in linked data. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer,
Heidelberg (2010)

12. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Morgan & Claypool (2011)

13. Ichise, R.: An analysis of multiple similarity measures for ontology mapping prob-
lem. International Journal of Semantic Computing 4(1), 103–122 (2010)

14. Parundekar, R., Knoblock, C.A., Ambite, J.L.: Linking and building ontologies of
linked data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L.,
Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp.
598–614. Springer, Heidelberg (2010)

15. Pedersen, T., Patwardhan, S., Michelizzi, J.: Wordnet:similarity: Measuring the
relatedness of concepts. In: Proceedings of the Nineteenth National Conference on
Artificial Intelligence, pp. 1024–1025 (2004)

16. Porter, M.F.: An algorithm for suffix stripping. In: Readings in Information Re-
trieval, pp. 313–316 (1997)

17. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,
N., Schwikowski, B., Ideker, T.: Cytoscape: A software environment for inte-
grated models of biomolecular interaction networks. Genome Res. 13(11), 2498–
2504 (2003)

18. Zhou, L.: Ontology learning: state of the art and open issues. Information Tech-
nology and Management 8, 241–252 (2007)

An Ontological Formulation and an OPM Profile

for Causality in Planning Applications

Irene Celino and Daniele Dell’Aglio

CEFRIEL – Politecnico of Milano, via Fucini 2, 20133 Milano, Italy
{irene.celino,daniele.dellaglio}@cefriel.it

Abstract. In this paper, we propose an ontological formulation of the
planning domain and its OWL 2 formalization. The proposed meta-
model conceptualizes planning rules and actions and the causality be-
tween them. We also show that our planning metamodel can be seen as
a relevant scenario of the Open Provenance Model (OPM) and we define
our planning OPM profile.

This ontological representation is then exploited to define automated
means for the verification of correctness and consistency of a planning
domain model. We claim that Semantic Web technologies can provide an
effective solution to this important – and often underestimated – problem
for planning applications.

1 Introduction and Motivations

Planning is a branch of AI dealing with the automated creation of plans, i.e. a
sequence of actions that, starting from an initial state of the “world”, leads to a
state that meets some desired goals. Finding a suitable plan among all possible
sequences of actions is a complex problem that requires a detailed comprehension
of the world, the agents acting in this world, the possible actions, the causal
relationships between those actions, etc. The specification of such knowledge
about the planning problem is usually indicated as domain theory.

When formalizing a domain theory in some representation format, it is there-
fore key to use an enough expressive language and to assure the correct and
consistent representation of the world, so that the planning algorithms can op-
erate and compute the optimal plans. Several approaches and languages have
been proposed in literature to formalize the planning problem, including the
well-known STRIPS [1] and the more recently standardized PDDL language [2].
Those representation formats and languages are also employed to check the con-
sistency of the generated plans (e.g., to recognize an inconsistency in a plan if
two incompatible events are applied simultaneously).

Checking the coherence and rationality of the domain theory itself, on the
other hand, is a task that is usually discarded or delegated to the modeller that
formalize the planning problem. When modelling the actions and their causal
relationships, for example, it is indeed important to validate the model, e.g. by
checking that all modelled states of the world are “reachable” in a sequence of
actions. Especially when the domain theory is large and complex, this kind of
validation becomes of utmost importance.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 128–143, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Ontology and an OPM Profile for Causality in Planning Applications 129

In this paper, we illustrate how the Semantic Web can be successfully em-
ployed to represent and reason upon such planning domain models. We propose
an ontological formalization of a planning metamodel, i.e. a domain-independent
specification of the planning problem, on top of which different domain theories
can be developed to represent different planning situations. In doing so, we also
show that the planning metamodel can be seen as a relevant application case
of the Open Provenance Model (OPM) [3]; we provide an OPM profile by map-
ping the planning metamodel to one of the ontological formulation of OPM,
namely the Open Provenance Model Vocabulary (OPMV) [4]. The ontological
formulation can then be employed to define a set of rules to check the consistency
of a domain theory that uses the planning metamodel; this is aimed at giving
modellers a means to check and support their modelling task.

The remainder of the paper is structured as follows. Section 2 introduces the
ontological formulation of the planning problem, together with its representation
in OWL 2 [5] and the explanation of our modelling choices; Section 3 explains the
planning metamodel as an OPM Profile and its semantics; Section 4 gives some
examples of automated checks of the causality in domain theories defined on the
planning metamodel. We present a complex scenario of Simulation Learning for
Crisis Management in Section 5, in which we apply our metamodel; related work
is illustrated in Section 6 while Section 7 concludes the paper and gives some
hints on possible extensions of this work.

2 The Ontological Formulation of the Planning Problem

Ontologies are generally used to assert statements that are considered true in the
modelled world; in planning application, however, dynamics is the predominant
dimension, e.g., in a planning domain theory we can include definition of actions
that are mutually exclusive and therefore cannot be “asserted” at the same time.
Thus it could be considered unusual on unsuitable to use ontologies to represent
planning knowledge.

However, our investigation does not deal with the search for the optimal plan,
i.e. our formalization does not want to be used within the planning algorithm.
Indeed, our purpose is different: through an ontological representation, we aim
to predicate on the possible states of the planning world and on the causality
of state transitions, i.e. the conditions under which the world state changes.
Within the planning metamodel we want to “statically” represent the possible
“dynamics” of the world.

In this section, we explain our modelling of the planning problem and of
its causality definition. We reuse as much as possible the terminology used in
planning literature [6,1,2]; some part of the vocabulary can specifically refer to
the terminology used in timeline-based planning [7,8].

2.1 Planning Metamodel

As introduced above, a domain theory defines the planning problem, in terms of
the agents, their possible actions and the causality between them. The planning

130 I. Celino and D. Dell’Aglio

problem consists in identifying a set of relevant aspects whose (temporal) evolu-
tions need to be controlled to obtain a desired behaviour or to attain a specific
goal. In the following, we introduce the main primitives of a domain theory.

Components represent logical or physical subsystems whose properties may
vary in time, thus they are the relevant variables to be planned for. Components
evolve over time; events can happen and decisions can be taken on components:
those events and decisions alter the components evolution. Components can
either be intelligent agents, i.e. the characters involved in the planning – both
human and artificial ones –, or other entities, such as buildings, weather, rivers,
which are resources to be controlled in the planning.

We can classify components on the basis of their control. The temporal be-
haviour of controllable components is decided by the planner; those components
define the search space for the planning problem, and their evolution ultimately
represent the problem solution. Conversely, the evolution of uncontrollable com-
ponents is given to the planner as input; those components are imposed over
time thus they can only be observed: they can be seen as additional/external
data and constraints for the planning problem.

Actions are temporally tagged events. They are always related to a compo-
nent and they represent events or decisions that alter the component behaviour,
causing the transition of the component between two possible states. Usually
the term decision is used in relation to an uncontrollable component, while the
term event is preferred to indicate an action determined by the planner that
happens to a controllable component; in the following we will use only the term
action for the sake of simplicity. Actions always refer to some component and
are characterized by some parameters. The conditions under which actions can
occur are regulated by the domain theory.

The domain theory defines actions’ causality, i.e. the combinations of compo-
nents behaviours that are acceptable with respect to actions happening on other
components. We represent such causality by means of planning rules, also called
synchronizations. A planning rules specifies the “consequences” of actions, i.e. it
states the relation between two or more actions. In their generic form, planning
ruless relate how an action (also called reference action) can activate one or more
actions (target actions) if some conditions or constraints on components and/or
on action’s parameters are verified.

Rule conditions are the constraints defined within a planning rule. In their
generic form, rule conditions impose requirements on the actions involved in a
synchronization, thus they can be represented as relations between action param-
eters. A special case of constraint, very relevant for the timeline-based planning
problem, is the temporal condition: it represents a temporal constraint on an
action (e.g., an action must have a duration of 10 minutes) or on the temporal
sequence of two actions (e.g., an action must start only when another action
finishes). Allen’s Interval Algebra [9] is used to formalize temporal conditions.

Let’s consider the following example of planning rule: if an ambulance with
a patient arrives at a hospital and the latter has remaining capacity, then the
patient can be admitted and the number of available beds is decreased by one.

An Ontology and an OPM Profile for Causality in Planning Applications 131

In the example we identify two components, the ambulance and the hospital; a
reference action (the ambulance carrying the patient to the hospital), a target
action (the hospital reserves a bed to the patient) and a condition (there are
available beds in the hospital). It is important to note that a reference action can
enable the activation of one or more actions (if the rule conditions are satisfied).

2.2 An OWL 2 Formulation of the Planning Metamodel

We represent the conceptualization defined in the previous section in
OWL 2 [5]. The complete definition of this ontology is available at
http://swa.cefriel.it/ontologies/tplanning1; in this section, we explain
some of the modelling choices.

Fig. 1. A graphical representation of the main entities in our planning ontology

Figure 1 illustrates the concepts introduced above with the properties that
interrelate them. Actions refer to Components and are described by Parameters;
a PlanningRule puts in relation some causal action (related via the hasRule-

Action property) with some RuleEffect (which, in turn, can include “target”
actions); the causality constraints in a planning rule are defined by Conditions.

With the use of property chain axioms [5], we introduce also some derived
properties. For example, starting from the basic properties defining a planning
rule (indicated by a solid line in Figure 1), we infer other properties that identify
the planning causality (indicated by a dashed line), as follows:

tpl:hasReferenceComponent � tpl:hasRuleAction ◦ tpl:isActionOf
tpl:isRuleEffectActionOf � tpl:hasActionvalue− ◦ tpl:hasRuleEffect−

tpl:actionTriggersAction � tpl:hasRuleAction− ◦ tpl:isRuleEffectActionOf −

tpl:ruleTriggersRule � tpl:isRuleEffectActionOf − ◦ tpl:hasRuleAction−

1 In the following, the tpl prefix (temporal-planning) will be used to indicate terms
from this ontology. We omit the tpl prefix in the figures for sake of readability.

http://swa.cefriel.it/ontologies/tplanning

132 I. Celino and D. Dell’Aglio

The last two properties indicates the causality between actions (an action triggers
another action if there is a planning rule which is activated by the first action
and has the second action as effect of its activation) and the causality between
rules (a rule triggers another rule if there is an action which is an effect of the
first rule and activates the second rule).

2.3 Modelling Conditions in Planning Rules

Most part of the planning causality, however, is usually included in the rule con-
ditions. As introduced above, a condition imposes restrictions on the involved
actions, their components or their parameters. Conditions can be assignments
(in the example above, the hospital capacity is decreased by one), constraints
(e.g., the hospital capacity must be greater or equal to one) or temporal condi-
tions (e.g., the ambulance must arrive at the hospital before the patient can be
admitted). Figure 2 illustrates the different types of rule conditions.

Fig. 2. Modelling of conditions in planning rules and their relation to SPARQL clauses
(FILTER and LET) as modelled in SPIN

In the SPARQL query language [10], FILTER clauses are used to express
constraints on query variables; moreover, even if not part of the official specifi-
cation, some SPARQL extensions also define LET clauses to express assignments
on query variables2. It was therefore natural to us to assimilate planning rule con-
ditions to SPARQL FILTER and LET clauses. For their modelling, we reused
the well-known SPARQL Inferencing Notation [11], also known as SPIN (see
again Figure 2). SPIN allows to model SPARQL queries in RDF, thus enabling
to define query patterns together with the vocabulary or ontology they refer to.
In our case, SPIN allows us to model the conditions that affect planning actions
and their parameters together with the definition of the actions themselves.

SPIN already defines a number of different constraint types, called functions ;
for example, SPIN models Boolean functions (equal, not equal, greater than,
etc.), mathematical functions (addition, subtraction, etc.) and operations on
strings (e.g. regular expressions). Since in planning the time dimension has an
important role in the causality definition, we extended this SPIN modelling of

2 For example, the popular Jena framework implements the LET clause in the ARQ
library.

An Ontology and an OPM Profile for Causality in Planning Applications 133

functions to include temporal relations as defined by Allen [9]. Figure 3 shows
our modelling: we defined a TemporalFunction for each Allen relation (before,
after, temporal-equal, etc.); each function can be further described by one or
more temporal “ranges”, that indicate the intervals characterizing the relation
(e.g. action A starts 5 to 10 minutes after action B ends).

Fig. 3. Extension to the SPIN modelling of functions with Allen’s temporal relations

3 The Planning Causality as an Open Provenance Model

The Open Provenance Model Specification [3] was designed to meet several re-
quirements, among which defining provenance in a technology-agnostic manner,
supporting a digital representation of provenance and defining a core set of rules
that identify the valid inferences that can be made on provenance representa-
tions. The basic nodes and edges in OPM are graphically represented in Figure 4.

Fig. 4. The basic constituents of a provenance graph according to OPM

According to this specification, an OPM profile is a specialisation of OPM
that remains compatible with the semantics of OPM but that defines a best
practice or usage guideline for a specific provenance application. The planning
meta-model introduced in Section 2 can be seen as an OPM profile, in that the

134 I. Celino and D. Dell’Aglio

causality between actions by means of planning rules is a way to represent the
actions “derivation”, “use” and “generation” during the planning process. It is
worth noting that, while OPM is usually employed to trace provenance in past
process executions, in the planning case the actions causality represents a po-
tential future provenance information (indeed, the actions defined in a planning
domain model represent action “templates” rather than “instances” of actions).

In this section, we define our Planning OPM profile and its formalization in
a mapping between our planning metamodel and the Open Provenance Model
Vocabulary [4], one of the ontological formulations of OPM. We also express
the OPM completion rules and inferences, as defined in [3], and we explain
how we relaxed some of the OPM constraints to better capture the concept
of “provenance” in planning. We are aware that the formalization provided in
the following has stronger assertions than those in OPM; still, we confine those
restrictions to our OPM profile, in which they are meaningful and valid, and do
not intend them as of general value outside our profile.

3.1 Mapping the Planning Metamodel to OPMV

Figure 5 graphically shows our planning OPM profile3 (cf. with Figure 1). The
planning rules are our main processes, the components are our agents and the
actions are the artifacts of the planning. Thus, with reference to the OPM nodes
and edges as defined in the OPM Vocabulary [4], in our planning profile we assert
that:

Fig. 5. The planning metamodel as an OPM Profile

3 The complete definition of the planning OPM profile is also available on the Web at
http://swa.cefriel.it/ontologies/causality-provenance

http://swa.cefriel.it/ontologies/causality-provenance

An Ontology and an OPM Profile for Causality in Planning Applications 135

tpl:Component � opmv:Agent
tpl:PlanningRule � opmv:Process

tpl:Action � opmv:Artifact

In fact, in a similar way to what happens in OPM, planning rules are on the
one hand related and influenced by the components, and on the other hand they
refer to actions in input and they “produce” sets of actions as output.

With respect to the definition of properties, we map the planning predicates
to the relations defined in OPM, as follows:

tpl:hasRuleAction � opmv:used
tpl:isRuleEffectActionOf � opmv:wasGeneratedBy

tpl:hasReferenceComponent � opmv:wasControlledBy
tpl:actionTriggersAction � opmv:wasDerivedFrom

tpl:ruleTriggersRule � opmv:wasTriggeredBy

3.2 Completion Rules and Inferences

The definition of the planning OPM profile enables a set of completion rules
and inferences [3], i.e. a set of rules that allows to derive further provenance
relationships between processes and artifacts in a provenance graph. In our case,
applying those rules to our planning OPM profile can help in inferring indirect
or implicit causal relationships between actions and planning rules defined in a
planning domain theory.

The OPM completion rules can be summarized as follows:

opmv:wasTriggeredBy ≡ opmv:used ◦ opmv:wasGeneratedBy
opmv:wasDerivedFrom opmv:wasGeneratedBy ◦ opmv:used

The first line above formalizes the so-called artifact introduction and elimination
completion rule: a process was triggered by another process if and only if an
artifact used by the first process was generated by the second one.

The second line expresses the process introduction completion rule: if an ar-
tifact was derived from another artifact, there must have been a process that
generated the first artifact and used the second one. OPM explicitly states that
in general the converse rule (process elimination) does not hold, because without
any internal knowledge of the process, it is not possible to assert an actual de-
pendency between the two artifacts. However, OPM also offer the possibility to
relax this constraint within a specific OPM profile; in our case, the processes are
always planning rules which – by definition – express the causality dependency
between actions (i.e., artifacts). Thus, in our planning OPM profile, we state
that both the process introduction and the process elimination completion rules
hold, replacing the second line of the axioms above with the following one:

opmv:wasDerivedFrom ≡ opmv:wasGeneratedBy ◦ opmv:used

Thus, because of the mapping we defined above, in our planning OPM profile,
the following completion rules hold:

136 I. Celino and D. Dell’Aglio

tpl:ruleTriggersRule ≡ tpl:hasRuleAction ◦ tpl:isRuleEffectActionOf
tpl:actionTriggersAction ≡ tpl:isRuleEffectActionOf ◦ tpl:hasRuleAction

Those completion rules let us derive the causal relationships between any couple
of actions or processes in a planning domain theory.

Additionally, OPM define multi-step inferences to account for indirect causes
of an artifact or a process as effect of multiple steps. Specifically, OPM de-
fines the multi-step version of wasDerivedFrom, used, wasGeneratedBy and
wasTriggeredBy edges (which all depend on the transitive closure of the was-

DerivedFrom relation). We can express those multi-step inferences as follows:

Transitive(opmv:wasDerivedFrom)
opmv:used � opmv:used ◦ opmv:wasDerivedFrom

opmv:wasGeneratedBy � opmv:wasDerivedFrom ◦ opmv:wasGeneratedBy
opmv:wasTriggeredBy � opmv:used ◦ opmv:wasDerivedFrom

iii ◦ opmv:wasGeneratedBy

Thanks to the mapping between our planning metamodel and the OPMV, the
following multi-step inference rules hold:

Transitive(tpl:actionTriggersAction)
tpl:hasRuleAction � tpl:hasRuleAction ◦ tpl:actionTriggersAction

tpl:isRuleEffectActionOf � tpl:actionTriggersAction ◦ tpl:isRuleEffectActionOf
tpl:ruleTriggersRule � tpl:hasRuleAction ◦ tpl:actionTriggersAction

iii ◦ tpl:isRuleEffectActionOf

Again, those inferences can be employed to derive indirect causal relationships
between actions and processes.

Summing up, the definition of an OPM profile for our planning metamodel
allows us to reuse the provenance primitives to analyse and infer new knowledge
about the causality between actions and planning rules in a domain theory. In
the following section, we will show how the above inferences can help in checking
the planning domain modelling.

4 Automated Checking of Causality in Planning Models

Whereas planning software is supposed to conform to a solution search algo-
rithm, a planning domain model is supposed to capture a piece of reality and so
it requires its own acceptance criteria and tests. Using our ontological formula-
tion of the planning metamodel, we can devise guidelines and tests to capture
different levels of consistency for domain models. We would like to stress that,
while the typical concerns of a planner are efficiency, correctness and complete-
ness of the planning algorithms, here we concentrate on the modeller ’s point of
view, whose concerns include validation, expressive power and maintenance of a
domain model [12].

In this section, we give some examples of controls that are enabled by our
ontological formulation of the planning metamodel and by its mapping to OPM.

An Ontology and an OPM Profile for Causality in Planning Applications 137

Those controls can be successfully employed to support the modeller’s task, i.e.
to verify the correctness and consistency of the planning domain model. Without
claiming to be exhaustive, in the following we formalize some of those controls
and we explain how those checks can be easily implemented via SPARQL 1.1 [10]
queries.

4.1 Model Completeness and Action Reachability

As outlined in [12], usually modellers start from the identification of the rele-
vant objects (planning components), then continue with the definition of their
relations (actions on components), afterwards they analyse the possible world
states and their transitions (planning rules), and so on. When modelling a large
or complex planning domain, the number of introduced entities can be very high
and verifying the consistency and meaningfulness of the whole model can become
complex.

We define a planning domain model as complete when all modelled compo-
nents are involved in some action and all modelled actions are involved in some
planning rule. It is worth noting that “orphan” components or actions does not
make the domain theory inconsistent per se, but they can suggest an unfinished
or lacking modelling. Setting a control to check model completeness is aimed to
support the modeller to identify potential lacks or shortcomings in the domain
definition.

Component and actions making the model incomplete can be defined as:

tpl:OrphanComponent � tpl:Component � ∀ tpl:isActionOf −.⊥
tpl:OrphanAction � tpl:Action � ∀ tpl:isRuleEffectActionOf .⊥

iii � ∀ tpl:hasRuleAction−.⊥

Checking the completeness of the model therefore means that the above defined
classes have no instances in the planning domain model. Conversely, if some
“orphans” are found, those are the domain entities the modeller should look
at to identify potential pitfalls. Assuming a closed world assumption, we can
implement this check simply by querying the planning domain model expressed
in our planning metamodel with the following SPARQL 1.1 [10] queries:

SELECT ?component

WHERE {

?component a tpl:Component .

FILTER NOT EXISTS { ?action tpl:isActionOf ?component . }

}

SELECT ?action

WHERE {

?action a tpl:Action .

?rule a tpl:PlanningRule .

FILTER NOT EXISTS { ?rule tpl:hasRuleAction ?action . }

FILTER NOT EXISTS { ?action tpl:isRuleEffectActionOf ?rule . }

}

138 I. Celino and D. Dell’Aglio

Another property of a domain model a modeller could wish to check is action
reachability. We define an action reachable if there is at least a planning rule
which causes that action, i.e. which has that action as effect. Again, this kind
of control is aimed at supporting the modeller to identify potentially incomplete
entity definition: if an action is introduced in a domain, it is very likely that
the modeller considered it possible to generate that action in some plan. Nev-
ertheless, it also perfectly reasonable that a defined action appears only as the
condition to fire a planning rule and not as its effect. This can happen when the
action refers to an uncontrollable component (cf. Section 2.1): in this case, since
the action activation depends on an agent external to any generated plan, there
is no need for a planning rule to cause that action in the domain model.

An unreachable action can be defined as follows:

tpl:UnreachableAction � tpl:Action � ∀ tpl:isRuleEffectActionOf .⊥
iii � ∀ tpl:isActionOf . tpl:ControllableComponent

Following the definition of the planning OPM profile (cf. Section 3.1), the class
above can be also expressed as follows:

tpl:UnreachableAction � opmv:Artifact � ∀ opmv:wasGeneratedBy .⊥
iii � ∀ opmv:used−. opmv:wasControlledBy .
iiiiiiiiiiiiiiiiiiiiiiiitpl:ControllableComponent

Thanks to OPM multi-step inferences (cf. Section 3.2), this definition includes
all possible provenance paths that connect actions (artifacts) with planning rules
(processes).

Again, checking the action reachability in a domain model means verifying
that the above defined class has no instances in the domain theory. To identify the
unreachable actions, and thus understand the appropriateness of their definition,
a modeller can use the following SPARQL 1.1 query (or the respective one that
makes use of OPMV properties as per the planning OPM profile):

SELECT ?action

WHERE {

?action a tpl:Action.

FILTER NOT EXISTS {

?rule tpl:hasRuleEffect/tpl:hasActionValue ?action .

}

FILTER NOT EXISTS {

?action tpl:isActionOf [a tpl:UncontrollableComponent] .

}

}

4.2 Constraint Checking

As illustrated in Section 2, defining a planning rule includes also the introduction
of a set of conditions, i.e. constraints on the rule activation. It is often the case
that most of the “rational” and complexity of a planning domain theory lies

An Ontology and an OPM Profile for Causality in Planning Applications 139

in its rules’ conditions. Therefore, verifying the consistency of a domain model
means checking the satisfiability of the constraints defined in the planning rules.

For example, let’s say that we want to capture the rules of an educational
institution. A planning rule could say that, when a new student arrives and asks
to join the school, if he/she is above legal age (condition), the school can enrol
him/her. Another planning rule could state that, if a student is hurt and he/she
is below legal age (condition), the school should inform his/her parents. The
previous two rules are both reasonable and the first one is a sort of pre-condition
for the second one (people are considered students only after their enrolment);
still, it is apparent that the second rule will never be triggered, since no student
of this institution can be under legal age. Thus, a modeller has to check all rules’
conditions to understand if they ever apply.

In our planning metamodel, we decided to assimilate rule conditions to
SPARQL FILTER and LET clauses (cf. Section 2.3). This modelling choice
comes of help also for constraint checking: starting from the condition definition,
it is natural to create SPARQL queries with those clauses, in case combining dif-
ferent conditions; executing those queries on the planning domain model helps
the modeller to identify inconsistencies and potential modelling mistakes.

5 Applying Our Approach to Simulation Learning

Simulation Learning is a kind of training aimed to improve soft skills [13]. Sim-
ulation Learning systems generally re-create near-real environments for training
sessions, in which learners are subject to stimuli: they have to learn how to deal
with the simulated situation and how to react to it. Such simulations need to
be effective and engaging, so that the learners do not simply memorise notions,
but they actively and permanently acquire skills, practice and knowledge. In this
context, simulation sessions can be generated using planning technology from a
learning domain model.

The Pandora project4 aims to provide a platform for Crisis Management
simulation learning, providing a near-real training environment at affordable
cost. The Pandora platform [14] makes use of Timeline-based Planning technolo-
gies [7,8] to plan the simulation sessions and it exploits the ontological framework
explained in this paper to represent the actions causality in the crisis simula-
tion scenario. To this end, we specialized the planning ontology introduced in
Section 2.2 with the relevant entities of Crisis Management training, thus speci-
fying the Pandora ontology5 and we set up a Linked Data-empowered Knowledge
Base [15] to manage the domain theory definition.

Modelling a Crisis Management scenario – or any Simulation Learning sce-
nario – means creating the crisis events to stimulate trainees (e.g., a street is
flooded, a hospital electricity becomes scarce for a black-out) and to plan for dif-
ferent storyboard evolutions in response to trainees’ actions (e.g., depending on
the Crisis Managers decisions, the crisis situation becomes more or less critical).

4 Cf. http://www.pandoraproject.eu/
5 Cf. http://swa.cefriel.it/ontologies/pandora

http://www.pandoraproject.eu/
http://swa.cefriel.it/ontologies/pandora

140 I. Celino and D. Dell’Aglio

We applied the approach outlined in Section 4 to support the modeller in
verifying the domain theory: while not substituting the manual intervention,
this method proved to be a useful means to detect potential problems, before
checking the plans generated by the planning algorithms. Indeed, the adoption
of our ontological metamodel and its verification via SPARQL queries (both
the generic completeness and reachability controls from Section 4.1 and some
manually-defined and domain-dependent queries built on top of the Pandora
rules conditions as described in Section 2.3) allowed the modeller to identify
missing definitions and unreachable actions. Though preliminary and qualitative,
this evaluation makes us believe in the usefulness and efficacy of our proposed
approach. We are currently investigating an automated way to generate the
SPARQL queries needed for constraint checking, starting from the planning rule
conditions’ definition.

6 Related Work

Different works in literature dealt with the ontological representation of planning
and scheduling knowledge. Early models like [16] and [17] were aimed at rep-
resenting planning tasks and planning problems; however, they were limited in
scope and did not considered all the relevant entities of the planning world. The
most comprehensive planning ontology so far is described in [18]: it is the first
formalization that includes the temporal dimension and the notion of agents.
Still, that model was aimed at proposing an operational specification of the
planning problem with a set of “executable” definitions.

In contrast, our planning metamodel is not directly oriented to the search for
plans; with our formalization we aim at supporting the modelling of planning
domain theories, by identifying potential problems prior to the execution of the
planning algorithms. Moreover, our metamodel is more detailed than the ontol-
ogy described in [18], because we make the constraints on the planning rules
“first-class citizens” of our conceptualization. This Condition concept not only
allows for the declarative definition of a complete domain theory, but it also
provides a mechanism to reuse and share constraints between different planning
rules. Furthermore, we underscored the temporal aspect of planning by introduc-
ing the TemporalCondition primitive and by modelling the TemporalFunctions
hierarchy.

In the planning community, a dedicated workshop [19] was organized to discuss
“the role of ontologies inPlanning and Scheduling”.The result was that ontological
languages like RDFS and OWL are more expressive than the ones in the planning
field, for example because of the Open World Assumption; however, they cannot
be “directly applied” in planning systems because they are usually employed to
represent static knowledge. While we agree with this statement, our investigation
is orientedprecisely in the possible cooperationbetween ontologies andplanning on
their “boundary”:we can say that ourmetamodel statically captures the dynamics
of planning. Thus we are convinced that ontology-based knowledge representation
can bring benefits to current planning technologies [20].

An Ontology and an OPM Profile for Causality in Planning Applications 141

Finally, a note about the languages used in planning: PDDL [2] is currently
the most popular, even if its iterative standardization did not prevent the spread
of a multitude of different dialects. While a comparison of expressivity between
PDDL and ontological languages is out of scope of this paper6, we would like
to stress again that we propose the use of an ontological formalization outside
the search process to find a solution to the planning problem. Our formalization
and causality checks are complementary to the consistency and validation of the
plans generated in the solution space.

7 Conclusions

In this paper, we presented our approach to formalize the planning primitives
and their relations with an ontology. We believe that this is a good example of
interplay between Semantic Web and Planning technologies [20], since knowledge
representation and reasoning – even in simple forms as we did in this work –
can be of great help during the planning modelling: the automatic checking of
the domain theory characteristics (e.g., completeness and reachability as defined
in this paper) supports the modellers’ job, because it helps them to identify
potential problems in their modelling even before checking the consistency of
the generated plans. Moreover, because of the spread and success of knowledge
sharing on the Web, including the Linked Data movement, planning modelling
can be simplified or reduced by reusing and linking to pre-existing datasets, as
we illustrated in a previous work [15].

To this end, we introduced an OWL 2 representation of this planning meta-
model and its formulation as an Open Provenance Model Profile, through a
mapping between our metamodel and the OPM Vocabulary. The reason why we
chose to adopt OPM is two-fold. On the one hand, the provenance abstractions
are very similar to the ones used in causality models, like those we have in our
planning metamodel. On the other hand, the completion rules and inferences
defined in OPM offer a simple yet powerful means to perform checks; this is why
we leveraged those reasoning means to formulate our model checks.

Our future works are oriented in two directions: extending the causality checks
introduced in this paper and applying analysis and mining on the actual “exe-
cutions” of plans generated on the basis of domain theories represented in our
metamodel. With regards to the former, we will take into account some more
characteristics already modeller in the planning ontology introduced in Section 2
and enhance accordingly the causality controls defined in Section 4.

Regarding the latter, once a domain theory has been modelled and used to
generate plans, those plans can be “executed” in planning applications (e.g., in
the simulation learning scenario introduced in Section 5, when training sessions
take place); the recording of those executions can be seen as “streams” of events,
i.e. assertions that are valid in a specific time-frame. We believe that we can
exploit those time-stamped assertions to refine the causality modelling: e.g.,
comparing the actual streams of happened events in different sessions, we can

6 A discussion of the possible interplay between PDDL and Datalog is offered in [21].

142 I. Celino and D. Dell’Aglio

identify the most frequent patterns of events which have some causality aspect
as well as the least frequent plan options; those can be interesting hints for the
planning modeller to improve the domain theory. Dealing with plan executions
means taking in consideration the temporal dimension, thus we need proper
approaches; to this end, we aim at employing Stream Reasoning technologies [22],
also by following other experiences in ex-post provenance analysis of workflow
executions as in [23].

Acknowledgments. This research is partially funded by the EU PANDORA
project (FP7-ICT-2007-1-225387). We would like to thank the project partner
for their collaboration.

References

1. Fikes, R., Nilsson, N.: STRIPS: a new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2, 189–208 (1971)

2. Gerevini, A., Long, D.: Plan Constraints and Preferences in PDDL3. Technical
report, R.T. 2005-08-47, Dipartimento di Elettronica per l’Automazione, Universitá
degli Studi di Brescia (2005)

3. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., den Buss-
che, J.V.: The Open Provenance Model core specification (v1.1). Future Generation
Computer Systems (2010)

4. Zhao, J.: Open Provenance Model Vocabulary Specification (2010),
http://purl.org/net/opmv/ns

5. Hitzler, P., Kroetzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S.: OWL
2 Web Ontology Language Primer. W3C Recommendation (October 27, 2009),
http://www.w3.org/TR/owl2-primer/

6. Russel, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Educa-
tion Inc. (2003)

7. Cesta, A., Fratini, S.: The timeline representation framework as a planning and
scheduling software development environment. In: 27th Workshop of the UK Plan-
ning and Scheduling SIG (2008)

8. Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an end-to-end plan-
ning application from a timeline representation framework. In: 21st Applications
of Artificial Intelligence Conference (2009)

9. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun.
ACM 26(11), 832–843 (1983)

10. Harris, S., Seaborne, A.: SPARQL 1.1 Query Language. W3C Working Draft
(2011), http://www.w3.org/TR/sparql11-query/

11. Knublauch, H.: SPIN Modeling Vocabulary (October 20, 2009),
http://spinrdf.org/spin.html

12. Mccluskey, T.L., Porteous, J.: Engineering and Compiling Planning Domain Mod-
els to Promote Validity and Efficiency. Artificial Intelligence 95, 1–65 (2000)

13. Aldrich, C.: Simulations and the Future of Learning: An Innovative (and Perhaps
Revolutionary) Approach to e-Learning. Pfeiffer (2003)

http://purl.org/net/opmv/ns
http://www.w3.org/TR/owl2-primer/
http://www.w3.org/TR/sparql11-query/
http://spinrdf.org/spin.html

An Ontology and an OPM Profile for Causality in Planning Applications 143

14. Bernardi, G., Cesta, A., Coraci, L., Cortellessa, G., De Benedictis, R., Mohier,
F., Polutnik, J., Vuk, M.: Only Hope remains in the PANDORA’s.jar – Pervasive
use of planning in a training environment. In: 21st International Conference on
Automated Planning and Scheduling, System Demonstrations and Exhibits, Best
Demo Award (2011)

15. Celino, I., Dell’Aglio, D.: A Linked Knowledge Base for Simulation Learning. In:
Proceedings of the 1st International Workshop on eLearning Approaches for the
Linked Data Age (Linked Learning 2011), co-located with the 8th Extended Se-
mantic Web Conference, ESWC 2011 (2011)

16. Mizoguchi, R., Vanwelkenhuysen, J., Ikeda, M.: Task Ontology for Reuse of Prob-
lem Solving Knowledge. In: Towards Very Large Knowledge Bases, pp. 46–57. IOS
Press (1995)

17. Gil, Y., Blythe, J.: Planet: A sharable and reusable ontology for representing plans.
In: The AAAI - Workshop on Representational Issues for Real-World Planning
Systems, pp. 28–33 (2000)

18. Rajpathak, D., Motta, E.: An ontological formalization of the planning task. In:
International Conference on Formal Ontology in Information Systems (FOIS 2004),
pp. 305–316 (2004)

19. Olivares, J.F., Onaindia, E. (eds.): Workshop on the Role of Ontologies in Planning
and Scheduling, co-located with the 15th International Conference on Automated
Planning and Scheduling, ICAPS 2005 (2005)

20. Celino, I., Dell’Aglio, D., De Benedictis, R., Grilli, S., Cesta, A.: Ontologies, rules
and linked data to support crisis managers training. IEEE Learning Technology
Newsletter, Special Issue Semantic Web Technologies for Technology Enhanced
Learning 13(1) (2011)

21. Thiebaux, S., Hoffmann, J., Nebel, B.: In Defense of PDDL Axioms. In: Proceedings
of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI
2003), pp. 961–968 (2003)

22. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a Streaming World!
Reasoning upon Rapidly Changing Information. IEEE Intelligent Systems 24(6),
83–89 (2009)

23. Miles, S., Wong, S.C., Feng, W., Groth, P., Zauner, K.P., Moreau, L.: Provenance-
based validation of e-science experiments. Journal of Web Semantics 5(1), 28–38
(2007)

A New Matchmaking Approach Based

on Abductive Conjunctive Query Answering

Jianfeng Du1,2, Shuai Wang1, Guilin Qi3, Jeff Z. Pan4, and Yong Hu1

1 Guangdong University of Foreign Studies, Guangzhou 510006, China
jfdu@mail.gdufs.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

3 Southeast University, Nanjing 211189, China
4 The University of Aberdeen, Aberdeen AB243UE, UK

Abstract. To perform matchmaking in Web-based scenarios where data
are often incomplete, we propose an extended conjunctive query answer-
ing (CQA) problem, called abductive CQA problem, in Description Logic
ontologies. Given a consistent ontology and a conjunctive query, the ab-
ductive CQA problem computes all abductive answers to the query in
the ontology. An abductive answer is an answer to the query in some
consistent ontology enlarged from the given one by adding a bounded
number of individual assertions, where the individual assertions that
can be added are confined by user-specified concept or role names. We
also propose a new approach to matchmaking based on the abductive
CQA semantics, in which offer information is expressed as individual
assertions, request information is expressed as conjunctive queries, and
matches for a request are defined as abductive answers to a conjunc-
tive query that expresses the request. We propose a sound and complete
method for computing all abductive answers to a conjunctive query in an
ontology expressed in the Description Logic Program fragment of OWL
2 DL with the Unique Name Assumption. The feasibility of this method
is demonstrated by a real-life application, rental matchmaking, which
handles requests for renting houses.

1 Introduction

Matchmaking is a useful facility for comparing offers with requests. It determines
whether an offer matches a request or whether a request matches an offer, and has
been widely used in Web service discovery [18,3,10], skill matching [6], marriage
matching [2] and product matching in e-marketplaces [14,15,5,16].

Existing approaches tomatchmaking can be divided into two categories, namely
syntactic ones and semantic ones. Syntactic approaches usually exploit keyword-
based search methods to compare offers with requests. These approaches make
little use of the background knowledge and the semantics about offers or requests,
and will easily miss right matches or yield wrong matches. Semantic approaches
usually use ontologies to formalize offers and requests. Since an ontology provides

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 144–159, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A New Matchmaking Approach Based on Abductive CQA 145

the background knowledge and formalizes offers and requests with certain seman-
tics, semantic approaches canmake thematchmaking resultsmore sound and com-
plete than syntactic approaches.

The World Wide Web Consortium (W3C) has proposed the Web Ontology
Language (OWL), for which the newest version is OWL 2 [11], to model ontolo-
gies. OWL is based on a family of formal languages, called Description Logics
(DLs) [1]. In particular, the most expressive and decidable species of OWL 2,
OWL 2 DL, corresponds to the DL SROIQ [13]. The proposal of OWL has
motivated the industry to upgrade many applications to DL-based ones. Recent
semantic approaches to matchmaking are also based on DLs. These approaches
can be roughly divided into two sorts, described below.

The first sort approaches, such as [3,10,18], exploit a DL ontology to compute
semantic distances between offers and requests, where offers and requests are
expressed as DL concept descriptions (simply DL concepts). These approaches
mainly focus on defining a reasonable distance function between two DL con-
cepts. The primary drawback is that they cannot guarantee that the computed
distances adhere to the DL semantics. For example, when an offer matches a
request, i.e., the offer is subsumed by the request under the DL semantics, the
computed distance may not be zero.

The second sort approaches, such as [14,15,5], also express offers and re-
quests as DL concepts, but they exploit DL inference methods to compute dif-
ferent matches. In the approaches proposed in [14,15], a popular DL inference
method, namely concept subsumption checking, is used to compute several kinds
of matches. Two kinds that are most related to this work are respectively the
potential match proposed in [15] and the intersection match proposed in [14],
where a potential match for a request is an offer matching a portion of the re-
quest, while an intersection match for a request is an offer consistent with the
request. In the approach proposed in [5], two non-standard DL inference meth-
ods, namely concept abduction and concept contraction, are used to compute
possible matches. A possible match for a request is an offer that gets subsumed
by the request after adding some information to the offer (i.e. abduction) and
removing some information from the request (i.e. contraction).

All the aforementioned semantic approaches are not easy to scale to real-life
applications that involve a large number of offers and requests, because com-
posing the DL concepts for offers and requests is time consuming and laborious.
A more practical approach should alleviate human efforts to formalize offers
or requests. Hence, we use for reference another approach which is based on
conjunctive query answering (CQA). In this approach, offer information is ex-
pressed as individual assertions in the back-end ontology, request information is
expressed as conjunctive queries posed upon the back-end ontology, and matches
for a request are defined as answers to a conjunctive query that expresses the
request. This approach enables an efficient way to construct a matchmaking sys-
tem. That is, a large portion of the back-end ontology, which stores data about
offers (i.e. offer information), can be automatically extracted from Web sources
using ontology population techniques [4,8], while a very small portion of the

146 J. Du et al.

back-end ontology, which stores background knowledge, can be manually built
using ontology editors. This approach has been used to solve the fuzzy match-
marking problem [16], where the back-end ontology is expressed by a Datalog
program with scoring atoms that calculate the match degrees. It has also been
used to support Semantic Web search [9] for DL back-end ontologies.

However, the CQA based approach is unsuitable in Web-based scenarios where
data of the back-end ontology come from the World Wide Web and are often
incomplete. Since an offer that is not originally an answer to a conjunctive query
can be turned into an answer to after missing data are added, the offer can
also be considered as a match. To capture this idea, we propose an extended
CQA problem, called abductive CQA problem. Given a consistent ontology and
a conjunctive query, the abductive CQA problem computes all abductive answers
to the query in the ontology. An abductive answer is an answer to the query in
a certain consistent ontology enlarged from the given one by adding a bounded
number of individual assertions, where the individual assertions that can be
added are confined by two disjoint sets of concept or role names. The names
in the first set are called abducible predicates. The possibly added individual
assertions can be on abducible predicates only. The names in the second set are
called closed predicates. The possibly added individual assertions cannot make
the enlarged ontology entail any individual assertion that is on closed predicates
and is not entailed by the given ontology.

Based on the abducible CQA semantics, we propose a new semantic approach
to computing all matches for a given request, where these matches are abductive
answers to a conjunctive query that expresses the request. This notion of match
is similar to the notion of potential match [15] and the notion of intersection
match [14] — all of them regard matches for a request as offers satisfying a
certain portion of the request. We also propose a method for computing all
abductive answers to a conjunctive query. The method encodes the abductive
CQA problem into a Prolog program and solves it with Prolog engines. To ensure
that the method is sound and complete, we assume that the given ontology is
expressed in the Description Logic Program (DLP) [12] fragment of OWL 2 DL
and adopts the Unique Name Assumption [1]. The DLP fragment of OWL 2 DL
underpins the OWL 2 RL profile of OWL 2 [11] and is often used in applications
that require efficient reasoning facilities. The Unique Name Assumption, which
explicitly declares that any two different individual names correspond to different
elements in the interpretation domain, is often used with DLs.

We conducted experiments in a real-life application, rental matchmaking,
which handles requests for renting houses in an ontology with more than one
million individual assertions. We carefully designed ten benchmark queries for
this application. Experimental results show that the proposed method is rather
efficient in computing abductive answers to the benchmark queries.

The remainder of the paper is organized as follows. After providing prelim-
inaries in the next section, in Sect. 3 we give more details on the abductive
CQA problem. Then in Sect. 4, we describe the proposed method for computing

A New Matchmaking Approach Based on Abductive CQA 147

all abductive answers to a conjunctive query. Before making a conclusion, we
present our experimental evaluation in Sect. 5.

2 Preliminaries

2.1 OWL 2 and DLP

We assume that the reader is familiar with OWL 2 [11] and briefly introduce the
most expressive and decidable species of OWL 2, OWL 2 DL, which corresponds
to the DL SROIQ [13] with datatypes. An OWL 2 DL ontology consists of an
RBox, a TBox and an ABox. The RBox consists of a finite set of role inclusion
axioms and role assertions. The TBox consists of a finite set of concept inclusion
axioms. The ABox consists of a finite set of individual assertions. OWL 2 DL
(i.e. SROIQ) is a syntactic variant of a fragment of First-order Logic, and the
semantics of a SROIQ ontology O can be defined by translating to a formula
π(O) of First-order Logic with equality, where π is defined in Table 1. We use
the traditional rule form to represent π(O). For example, consider the ontology
(called the rental ontology) used in our experiments, the following two axioms
in the RBox of the rental ontology: Tra(isA) and hasFacility ◦ isA � hasFacility,
and the following two axioms in the TBox: House � Building and Building �
TrafficLine � ⊥, can be translated to the following First-order rules.

R1 = ∀x, y, z : isA(x, y) ∧ isA(y, z)→ isA(x, z)

R2 = ∀x, y, z : hasFacility(x, y) ∧ isA(y, z)→ hasFacility(x, z)

R3 = ∀x : House(x)→ Building(x)

R4 = ∀x : House(x) ∧ TrafficLine(x)→ ⊥

Rule R1 tells that if x is more specific than y and y is more specific than z, then
x is more specific than z. Rule R2 tells that if x has a facility y and y is more
specific than z, then x also has a facility z. Rule R3 tells that if x is a renting
house, then it is also a building. Rule R4 tells if x is a building, then it cannot be
a traffic line, where the symbol ⊥ in rule consequences denotes a contradiction.

A model of an OWL 2 DL ontology O is a model of π(O) under the traditional
First-order semantics.O is said to be consistent if it admits at least one model. An
individual assertionα is said to be entailed byO, denoted byO |= α, ifα is satisfied
by all models of O. The Unique Name Assumption [1] in O is an assumption that
O |= a �≈ b for any two different individual names a and b occurring in O.

The DLP [12] fragment of OWL 2 DL is the intersection of OWL 2 DL and
Horn Logic, another fragment of First-order Logic in which all rules have no
existential quantifiers or disjunctions in the consequence part. We simply call an
ontology DLP ontology if it is expressed in the DLP fragment of OWL 2 DL and
adopts the Unique Name Assumption.

2.2 Conjunctive Query Answering

A conjunctive query is an expression of the form ∃−→y : conj(−→x ,−→y ,−→c), where−→x is
a vector of distinguished variables, −→y a vector of non-distinguished variables and

148 J. Du et al.

Table 1. The semantics of SROIQ by mapping to First-order Logic

Translating SROIQ concepts to First-order Logic

πx(�) = � πx(⊥) = ⊥
πx(A) = A(x) πx(¬C) = ¬πx(C)
πx(C �D) = πx(C) ∧ πx(D) πx(C �D) = πx(C) ∨ πx(D)
πx(∃r.C) = ∃y : ar(r, x, y) ∧ πy(C) πx(∀r.C) = ∀y : ar(r, x, y) → πy(C)
πx(∃r.Self) = ar(r, x, x) πx({a}) = x ≈ a
πx(≥n r.C) = ∃y1, ..., yn :

∧n
i=1(ar(r, x, yi) ∧ πyi(C)) ∧

∧
1≤i<j≤n yi �≈ yj

πx(≤n r.C) = ∀y1, ..., yn+1 :
∧n+1

i=1 (ar(r, x, yi) ∧ πyi(C)) →
∨

1≤i<j≤n+1 yi ≈ yj

Translating axioms to First-order Logic

RBox: π(r1 ◦ . . . ◦ rn � s) = ∀x1, ..., xn+1 :
∧n

i=1 ar(ri, xi, xi+1) → ar(s, x1, xn+1)
π(Tra(r)) = ∀x, y, z : ar(r, x, y) ∧ ar(r, y, z) → ar(r, x, z)
π(Sym(r)) = ∀x, y : ar(r, x, y) → ar(r, y, x) π(Ref(r)) = ∀x : ar(r, x, x)
π(Dis(r, s)) = ∀x, y : ¬ar(r, x, y) ∨ ¬ar(s, x, y) π(Irr(r)) = ∀x : ¬ar(r, x, x)

TBox: π(C � D) = ∀x : πx(C) → πx(D)
ABox: π(C(a)) = πx(C)[x �→ a] π(r(a, b)) = ar(r, a, b)

π(¬r(a, b)) = ¬ar(r, a, b) π(a �≈ b) = a �≈ b

Translating SROIQ ontologies to First-order Logic

π(O) =
∧

α∈O π(α)

Note: A denotes a concept name; ar(r, x, y) denotes s(y, x) if r is an inverse role s−, or
denotes r(x, y) otherwise.

−→c a vector of individuals or constants. conj(−→x ,−→y ,−→c) denotes a conjunction of
atoms of the form A(v) or r(v1, v2), where A is an atomic concept (i.e. a concept
name), r is an atomic role (i.e. a role name) or a built-in predicate, and v, v1
and v2 are variables in −→x and −→y , or individuals or constants in −→c . A Boolean
conjunctive query is a conjunctive query without distinguished variables.

Given an OWL 2 DL ontology O and a Boolean conjunctive query Q = ∃−→y :
conj(−→y ,−→c), a model I of O is said to satisfy Q if there exists a tuple of (possibly
anonymous) individuals or constants whose substitution for the variables in −→y
makes every atom in conj(−→y ,−→c) satisfied by I. Q is said to be entailed by O,
denoted by O |= Q, if every model of O satisfies Q. A tuple

−→
t of individuals

is called an answer to a conjunctive query Q(−→x) = ∃−→y : conj(−→x ,−→y ,−→c) in O
if O |= Q(−→x)[−→x !→ −→

t], where Q(−→x)[−→x !→ −→
t] denotes a Boolean conjunctive

query obtained from Q(−→x) by replacing every variable in −→x with its corre-
sponding individual in

−→
t . The conjunctive query answering (CQA) problem is

to compute all answers to a conjunctive query in an ontology.

3 The Abductive CQA Problem

By expressing offer information as individual assertions and request information
as conjunctive queries, the matchmaking problem can be treated as the CQA
problem. For example, when we want to find all renting houses whose price is
up to 4000 yuan per month, we can pose the following conjunctive query upon
the rental ontology: ∃y : House(x) ∧ rent(x, y) ∧ y ≤ 4000. Then the answers to

A New Matchmaking Approach Based on Abductive CQA 149

this query correspond to renting houses to be found. However, the answers to a
conjunctive query may not provide all choices to a requester. For example, when
the price of a renting house is missing, possibly due to incomplete extraction
from Web sources, this renting house will not be an answer of the aforemen-
tioned query, though its rental price is 3000 yuan per month in reality. Hence
those answers in a certain enlarged ontology may also correspond to offers that
match the request in reality. This enlarged ontology can be seen as the result of
adding missing data about offers to the original ontology. Since offer informa-
tion is expressed as individual assertions, the missing data should be restricted
to individual assertions. Moreover, the number of added assertions should be
bounded by some constant that reflects the incompleteness of the original on-
tology, while the added assertions should be confined by certain concept or role
names according to the actual situation. Hence, we introduce an extended CQA
problem, called abductive CQA problem, defined below.

Definition 1 (Abductive CQA). Given a consistent ontology O, a conjunc-
tive query Q, a non-negative integer k, two disjoint sets of concept or role names
SA and SC , where the concept or role names in SA (resp. SC) are called abducible
predicates (resp. closed predicates), a tuple

−→
t of individuals is called an abduc-

tive answer to Q in O w.r.t. k, SA and SC , if there exists a set A of individual
assertions on the predicates in SA such that |A| ≤ k, O ∪ A |= Q(−→x)[−→x !→ −→

t],
O ∪A is consistent, and O |= α for all individual assertions α on the predicates
in SC such that O ∪ A |= α, where |S| denotes the cardinality of a set S, and
A is said to be attached with

−→
t . The abductive CQA problem is to compute all

abductive answers to Q in O w.r.t. k, SA and SC .

In the above definition, A can be seen as the missing data about a certain
offer. It consists of at most k individual assertions and should be a set such
that the union of it and the given ontology O is consistent. Here, we call A
a candidate complement set if |A| ≤ k and O ∪ A is consistent. The set of
abducible predicates, SA, restricts all concepts or roles appearing in a candidate
complement set to concept or role names in SA. The set of closed predicates,
SC , further restricts that the union of a candidate complement set and the given
ontology does not entail any individual assertion which is on a closed predicate
but is not entailed by the given ontology. In general, a concept or role name can
be set as an abducible predicate if some of its instances are possibly missing; it
can be set as a closed predicate if all individual assertions on it are ensured to
be entailed by the given ontology. However, it is not necessary that a concept or
role name is set to be either abducible or closed.

The abductive CQA problem is similar to the ABox abduction problem pro-
posed in [7], which computes all minimal sets A of individual assertions on a
set S of predicates such that O ∪ A is consistent, A �|= G and O ∪ A |= G, for
a consistent ontology O and a set G of individual assertions. Compared to the
ABox abduction problem, the abductive CQA problem also restricts A to a set
that consists of individual assertions on certain predicates and does not intro-
duce inconsistency. But it computes abductive answers to a conjunctive query

150 J. Du et al.

by considering all possible A instead of computing certain A. Moreover, it in-
troduces the use of the bounded number k and a set of closed predicates. The
bounded number k is used to control the extensiveness of abducible answers,
while the usefulness of closed predicates is described below.

One use of the closed predicates is to simulate the use of disjoint concept
or role axioms, which declare that two concepts or two roles are disjoint. For
example, suppose City(a) is entailed by O and House(a) is not. When O does
not contain the axiom declaring that House and City are disjoint, House(a) can
possibly be entailed by O ∪ A for some candidate complement set A. But we
actually do not expect House(a) to be entailed by O ∪ A as House(a) does not
hold in reality. Hence we can define House as a closed predicate, so that all
candidate complement sets A making O ∪A entail House(a) are not considered
in computing abductive answers. Since disjoint concept or role axioms can easily
be neglected when manually constructing or maintaining ontologies, the closed
predicates are often needed to substitute the use of these axioms. Another use
of the closed predicates is to enable some optimizations in computing abductive
answers; this will be shown in the next section.

It should be mentioned that closed predicates are not predicates in an NBox
(Negation-as-failure Box) [17]. Defining concept or role names in the NBox of an
ontology impacts the semantics of the ontology. For example, defining House as
a concept name in the NBox amounts to adding the axiom House � {a1, ..., an}
to the ontology, where a1, ..., an are all (explicit and implicit) instances of House
in the ontology. In contrast, defining concept or role names as closed predicates
does not impact the semantics of the ontology; it only determines what kind
of candidate complement sets can be considered. In fact, when k = 0, the set
of abductive answers to Q in O w.r.t. k, SA and SC coincides with the set of
answers to Q in O no matter how SA and SC are set.

For the abductive CQA problem, we assume that the given ontology O has
been extensionally reduced by replacing concept assertions C(a) with QC(a) and
role assertions (¬)r−(a, b) with (¬)r(b, a) in the ABox, and by adding QC � C
to the TBox, where C is a concept appearing in the ABox but is neither an
atomic concept nor a negated atomic concept, QC is a new globally unique
atomic concept corresponding to C, and r is an atomic role appearing in the
ABox. Extensionally reducing an ontology does not impact abductive answers
to conjunctive queries in the ontology.

4 A Method for the Abductive CQA Problem

The ABox abduction method proposed in [7] encodes the ABox abduction prob-
lem into a Prolog program and solves it with Prolog engines. We extend this
method to solve the abductive CQA problem in a consistent extensionally re-
duced DLP ontology O. It has been empirically shown in [7] that the ABox
abduction method is feasible only when the translated First-order rules have
no equality in heads. To guarantee this, expressing O in the DLP fragment of
OWL 2 DL is not enough, thus we also assume that O adopts the Unique Name

A New Matchmaking Approach Based on Abductive CQA 151

Assumption so that any translated rule with equational head atoms can be con-
verted to a semantically equivalent one by rewriting equational head atoms to
inequational atoms and moving them to the rule body.

Compared to the ABox abduction method in [7], the proposed method for
abductive CQA has significant extensions. First, the proposed method handles
new parameters that are not considered in [7] (i.e. the bounded number k and
the set SC of closed predicates). Second, the proposed method introduces new
optimizations based on abducible predicates and closed predicates.

Let F (O) denote the set of First-order rules translated from O where there
are no equational head atoms. The proposed method has the following six steps.

In the first step, for the purpose of optimization the unique minimal model
of F (O) is computed and all ground atoms in this model are added to F (O) as
ground facts (i.e. variable-free rules whose consequence part is not ⊥), yielding
F ′(O). We call a concept or role name P an addable predicate if there is a
sequence of rules r1, ..., rn in F (O) (where n ≥ 1) such that P occurs in the head
of r1, some abducible predicates occur in the body of rn, and the body of ri and
the head of ri+1 have common predicates for all i ∈ {1, ..., n−1}. Intuitively, only
individual assertions on addable predicates can possibly be added to the unique
minimal model of F (O) after individual assertions on abducible predicates are
added to O. Consider an arbitrary conjunctive query Q(−→x) = ∃−→y : P (−→x ,−→y ,−→c)
that consists of a single atom P (−→x ,−→y ,−→c) where P is a non-addable or closed
predicate. For an arbitrary set A of individual assertions that will be attached
with some abductive answers of Q in O, there is not any individual assertion α
on P that is entailed by O∪A but not entailed by O, hence the set of abductive
answers of Q in O coincides with the set of answers of Q in O no matter how the
bounded number k and closed predicates are set. Since the answers of Q in O
can be retrieved from the unique minimal model of F (O), the abductive answers
of Q in O can be directly retrieved from the ground facts in F ′(O). Hence, the
use of non-addable or closed predicates can yield a more efficient encoding of the
abductive CQA problem. To achieve this encoding, the following steps consider
F ′(O) instead of F (O).

In what follows, we assume that the predicate House is closed and the predi-
cates House, Building, isA, hasFacility, locatesIn and rent are addable.

In the second step, all ground facts in F ′(O) are encoded into Prolog rules.
For example, the ground fact→ isA(a, b) is encoded into the following two Prolog
rules, where the last rule is written once in the encoded Prolog program for all
ground facts on isA. In Prolog atoms, the prefix “pf ” or “p ” is added to concept
or role names, because in the Prolog syntax only for variables the first letter is
capitalized, while concept or role names are not variables.

pf isA(a, b).

p isA(X,Y, Li, Lo) :− pf isA(X,Y), Lo = Li.

In the third step, all definite rules (i.e. First-order rules whose consequence
part is not ⊥) in F ′(O) that have addable but not closed predicates in heads
and have variables are encoded into Prolog rules. Note that any definite rule in
F ′(O) whose head predicate is non-addable or closed is not encoded, because all

152 J. Du et al.

instances of the head predicate can be directly retrieved from the ground facts in
F ′(O), i.e. retrieved through the Prolog rules generated in the previous step. To
manage individual assertions that can be added to O, every non-built-in atom
in a definite rule in F ′(O) is encoded as a Prolog atom with an extra input
argument and an extra output argument. The input (resp. output) argument is
a list representing the original (resp. updated) set of added assertions if the atom
is on an addable but not closed predicate, or is the empty list otherwise. A list L
is of the form [t1, ..., tn], where ti is of the form (a, “rdf : type”, p A) or (a, p r, b);
it is called empty if it is of the form []. A list L can be decoded into a set
of individual assertions {t′1, ..., t′n}, denoted by decode(L), where t′i is rewritten
from ti by rewriting (a, “rdf : type”, p A) to a concept assertion A(a) and (a, p r, b)
to a role assertion r(a, b). The two extra arguments of a Prolog atom, which is
encoded from an atom on non-addable or closed predicate, are set as empty lists,
because all instances of the predicate can be directly retrieved from the ground
facts in F ′(O). In the encoded Prolog rule, the extra input argument of the head
atom, Li, is the extra input argument of the first body atom on addable but
not closed predicates, whereas the extra output argument of the head atom, Lo,
is the extra output argument of the last body atom on addable but not closed
predicates; if there are no body atoms on addable but not closed predicates, an
Prolog atom Lo = Li is added to the body to define what Lo is. For example, the
rules R1 and R3 in Sect. 2 are encoded into the following two Prolog rules.

p isA(X,Z,Li, Lo) :− p isA(X,Y, Li, L1), p isA(Y, Z, L1, Lo).

p Building(X,Li, Lo) :− p House(X, [], []), Lo = Li.

It should be noted that all constraints (i.e. First-order rules whose consequence
part is ⊥), such as the rule R4 in Sect. 2, are not encoded into Prolog rules.
This is because constraints are only used to determine if the added assertions
are consistent with O. But this consistency checking in a Prolog engine is based
on brute-force like search and is generally less efficient than calling an external
consistency checker, so all constraints in F ′(O) are ignored.

In the fourth step, all Prolog predicates occurring in cycles in the set of
Prolog rules generated in the previous step are declared to be tabled predicates.
Setting a Prolog predicate tabled means that any Prolog atom on this predicate
is prevented from calling multiple times. This is a crucial step for guaranteeing
termination when calling Prolog atoms in the encoded Prolog program. It is
similar to the first step in the ABox abduction method [7], except that Prolog
predicates encoded from non-addable or closed predicates are not set as tabled
predicates, because they cannot be head predicates of Prolog rules generated in
the previous step and will not occur in cycles in the encoded Prolog program.

In the fifth step, the given conjunctive query Q is encoded into a Prolog rule
with a nullary head atom go, where every non-built-in atom in Q is also encoded
as a Prolog atom with an extra input argument and an extra output argument.
Likewise, the input (resp. output) argument is a list representing the original
(resp. updated) set of added assertions if the atom is on an addable but not
closed predicate, or is the empty list otherwise. In order to output all abductive
answers to Q, two Prolog atoms output(X1, ..., Xn, L) and fail are added to the

A New Matchmaking Approach Based on Abductive CQA 153

body of the encoded Prolog rule, where X1, ..., Xn are all distinguished variables
in Q, and L is the extra output argument of the last body atom on addable
but not closed predicates; if there are no body atoms on addable but not closed
predicates, L is set as the empty list. output(X1, ..., Xn, L) directly returns true if
the tuple 〈X1, ..., Xn〉 has been output; otherwise, if L is the empty list, the atom
outputs 〈X1, ..., Xn〉 and returns true; otherwise, if O ∪ decode(L) is consistent
and every ground atom on closed predicates in the unique minimal model of
F (O)∪decode(L) is also in the unique minimal model of F (O) (which is checked
by calling an external consistency checker), the atom outputs 〈X1, ..., Xn〉 and
returns true, else the atom returns fail. In other words, an external consistency
checker is called when and only when the tuple 〈X1, ..., Xn〉 has not been output
and L is not empty. The Prolog atom fail forces the Prolog engine to enumerate
all possible instantiations for variables in the encoded Prolog rule when calling
go, so as to obtain all abductive answers to Q. Suppose we want to find all
renting houses that locate in GZ (Guangzhou) and have a rental price less than
3000 yuan per month, we can express it as the following conjunctive query.

Q(x) = ∃y : House(x) ∧ locatesIn(x,GZ) ∧ rent(x, y) ∧ y < 3000

Then the above query can be encoded into the following Prolog rule.

go :− p House(X, [], []), p locatesIn(X, “GZ”, [], L1), p rent(X,Y, L1, L2),

Y < 3000, output(X,L2), fail.

In the last step, for every abducible predicate in SA, two Prolog rules are added.
The first rule says that the updated set of added assertions is the original one,
if the individual assertion to be added is already in the original set of added
assertions. The second rule says that the updated set of added assertions is
obtained from the original one by inserting an individual assertion on P , if the
number of added assertions in the original set is less than k. For example, suppose
the predicate isA is abducible, then the following two Prolog rules are added,
where the Prolog atom dom(X) ensures X to be an individual or a constant
and returns true, in(t, L) sets t as a member of the list L and returns true if t
can possibly be grounded to a member of L or returns false otherwise, less(L, k)
returns true iff the the number of members in L is less than k, and insert(t, L, L′)
sets L′ as the resulting list obtained by inserting t to L and turns true.

p isA(X,Y, Li, Lo) :− in((X, p isA, Y), Li), Lo = Li.

p isA(X,Y, Li, Lo) :− less(Li, k), dom(X), dom(Y), insert((X, p isA, Y), Li, Lo).

The following theorem shows the correctness of the above encoding method.

Theorem 1. The encoded Prolog program outputs exactly all abductive answers
to Q(−→x) = ∃−→y : conj(−→x ,−→y ,−→c) in O w.r.t. k, SA and SC when calling go.

Proof. (1) Let
−→
t be a tuple of individuals or constants output by the encoded

Prolog program, and A be the set of individual assertions attached with
−→
t

when
−→
t is output. Since backward inference in Prolog is sound, it is clear that

F ′(O) ∪ A |= Q(−→x)[−→x !→ −→
t]. Furthermore, when

−→
t is output (during calling

a Prolog atom on output), it is confirmed that O ∪ A is consistent, and every
individual assertion on closed predicates is not entailed by O ∪ A unless it is

154 J. Du et al.

entailed by O. According to the last step of the encoding method, A should only
consist of individual assertions on abducible predicates and |A| ≤ k. Hence, by
Definition 1,

−→
t is an abductive answer to Q(−→x) in O w.r.t. k, SA and SC .

(2) Let the tuple
−→
t be an abductive answer toQ inO w.r.t. k, SA and SC , then

there exists a set A of individual assertions on abducible predicates such that
|A| ≤ k,O∪A |= Q(−→x)[−→x !→ −→

t],O∪A is consistent andO |= α for all individual
assertions α on closed predicates such that O ∪ A |= α. The unique minimal
model of F (O) ∪ A is equal to the set of ground atoms occurring in the least
fixpoint of Π(n), where Π(0) = ∅ and for n ≥ 1, Π(n) = {Rσ | R ∈ F (O) ∪ A, σ
is a mapping from variables in R to constants in F (O) ∪ A such that all body
atoms of Rσ occur in Π(n−1)}. Let Δn (n ≥ 1) denote the set of ground atoms
occurring in Π(n).

Consider an arbitrary ground atom α in the unique minimal model of F (O)∪
A. Let p(a1, ..., am, Li, Lo) be encoded from α. In case α is on non-addable or
closed predicates, it is clear that calling p(a1, ..., am, [], []) will return true ac-
cording to the Prolog rules generated in the second step of the encoding method.
In other cases, we show by induction on Δn that (*) calling the Prolog atom
p(a1, ..., am, Li, Lo) will return true with decode(Lo) set as a subset ofA when Lo

is given as a variable and Li is given as a specific list such that decode(Li) ⊆ A.
In what follows, we assume that Lo is a variable and decode(Li) ⊆ A. Consider
the case where α ∈ Δ1. If α ∈ A, then according to the Prolog rules generated in
the last step of the encoding method, calling p(a1, ..., am, Li, Lo) will return true
with decode(Lo) ⊆ decode(Li) ∪ {α} ⊆ A; otherwise, according to the Prolog
rules generated in the second step, calling p(a1, ..., am, Li, Lo) will return true
with decode(Lo) = decode(Li) ⊆ A. Suppose the result (*) holds for all ground
atoms in Δk (k ≥ 1). Consider the case where α ∈ Δk+1 \ Δk. There exists a
rule R ∈ F (O) and a mapping σ from variables in R to constants in F (O) ∪ A
such that all body atoms of Rσ belong to Δk. According to the Prolog rules
generated in the third step, there exists an encoded Prolog rule Re whose head
atom is p(a1, ..., am, Li, Lo) and whose body atoms except Lo = Li are encoded
from body atoms of Rσ. By inductive hypothesis, all body atoms of Re except
Lo = Li, when being called, will return true with their extra output parameters
set as some lists L such that decode(L) ⊆ A. Thus, calling p(a1, ..., am, Li, Lo)
will return true with decode(Lo) ⊆ A by triggering Re.

Since O is a DLP ontology, all arguments of ground atoms in the unique
minimal model of F (O)∪A are constants in F (O)∪A. Since O∪A |= Q(−→x)[−→x !→−→
t], there must be a tuple −→s of constants in F (O)∪A such that F (O)∪A |= α
for every ground atom α in Q(−→x)[−→x !→ −→

t ,−→y !→ −→s]. Let α1, ..., αn be all ground
atoms in Q(−→x)[−→x !→ −→

t ,−→y !→ −→s], and βi be a Prolog atom encoded from αi

as follows: If αi is a built-in atom, then βi is encoded as the corresponding
built-in atom in Prolog; else if αi is on non-addable or closed predicates, βi is
encoded to an atom of the form p(a1, ..., am, [], []); else βi is encoded to an atom
of the form p(a1, ..., am, L, L

′), where L is the last parameter of the previous βj
on addable but not closed predicates (if this βj does not exist, L is the empty
list). Consider the Prolog rule for encoding Q which is generated in the fifth

A New Matchmaking Approach Based on Abductive CQA 155

step. β1, ..., βn and output(
−→
t , L) will be called one by one when calling go. By

the results proved in the previous paragraph, calling βi will return true for all
i ∈ {1, ..., n}, and L must be set as a list such that decode(L) ⊆ A before calling
output(

−→
t , L). When output(

−→
t , L) is called, if

−→
t has not been output, then

since decode(L) ⊆ A, L should be the empty list or satisfy that O ∪ decode(L)
is consistent and every ground atom on closed predicates in the unique minimal
model of F (O) ∪ decode(L) is also in the unique minimal model of F (O), hence−→
t should be output. To conclude,

−→
t must be output when calling go. �"

5 Experimental Evaluation

We conducted experiments in a real-life application, rental matchmaking, which
is based on a rental ontology and handles requests for renting houses. The goal of
this application is to provide a suitable rental matchmaking system for residents
in China, under the current circumstances that many families in China cannot
afford a house.

We manually constructed the RBox and the TBox of the rental ontology, which
have 129 logical axioms, 36 concept names and 35 role names, using Protégé
(version 4.1)1, a well-known ontology editor. In addition, we built automatic
tools to extract information from existing Websites, including a rental Website2,
a traffic Website3 and an administrative region Website4. We manually wrote
annotation rules in these tools to convert the extracted data to individual as-
sertions. We also manually added some individual assertions on the role isA to
define that some facilities are more specific than some other facilities. When
adding individual assertions annotated from different Websites to the rental on-
tology, inconsistency occurs because some homonymous entities that belong to
disjoint concepts are treated as the same individual. We resolved the inconsis-
tency by using the method proposed in [8] to remove a cardinality-minimal set
of axioms. Finally, we obtained a consistent ontology5 with 32,954 individuals
and 1,152,336 logical axioms, where the number of renting houses is 9,248. The
ontology is an existentially reduced DLP ontology.

We implemented the proposed method in JAVA and used XSB6 as the back-
end Prolog engine since XSB supports tabled predicates. Considering that the
matchmaking results returned by the proposed method have a formal semantics,
we did not focus on the quality of the matchmaking results but on the efficiency
in computing them, which is a crucial criterion for verifying the feasibility of the
method. All experiments were were conducted on a PC with Pentium Dual Core
2.80GHz CPU and 16GB RAM, running Win 7 (64 bit).

1 http://protege.stanford.edu/
2 http://www.soufun.com/
3 http://www.8684.cn/
4 http://www.chinaquhua.cn/
5 http://jfdu.limewebs.com/papers/rental.zip
6 http://xsb.sourceforge.net/

http://protege.stanford.edu/
http://www.soufun.com/
http://www.8684.cn/
http://www.chinaquhua.cn/
http://jfdu.limewebs.com/papers/rental.zip
http://xsb.sourceforge.net/

156 J. Du et al.

Q1(x) = House(x)

Meaning: Find all renting houses.

Q2(x) = ∃y : House(x) ∧ locatesIn(x, Liwan) ∧ rent(x, y) ∧ y ≥ 1000 ∧ y ≤ 2000

Meaning: Find all renting houses in the Liwan district (a district in Guangzhou)
whose rental price is from 1000 to 2000 yuan per month.

Q3(x) = House(x) ∧ locatesIn(x,Baiyun) ∧ numOfBedrooms(x, 2) ∧
numOfLivingRooms(x, 1) ∧ locatesNear(x,GDUFS)

Meaning: Find all renting houses in the Baiyun district (a district in Guangzhou)
that have two bedrooms and one living-room and locate near GDUFS (Guang-
dong University of Foreign Studies).

Q4(x) = ∃y : House(x) ∧ locatesIn(x, Liwan) ∧ numOfBedrooms(x, y)∧ y ≥ 1 ∧ y ≤
3 ∧ numOfLivingRooms(x, 1) ∧ numOfKitchens(x, 1) ∧ numOfBathrooms(x, 1)

Meaning: Find all renting houses in the Liwan district that have one to three
bedrooms, one living-room, one kitchen and one bathroom.

Q5(x) = House(x) ∧ locatesIn(x,ZhuJiangNewTown) ∧ towards(x,South)

Meaning: Find all southward renting houses in the Zhu Jiang New Town.

Q6(x) = ∃y, z : House(x) ∧ locatesIn(x,Liwan) ∧ locatesNear(x, y) ∧
isOriginalOf(y, z) ∧ Bus(z)

Meaning: Find all renting houses in the Liwan district that locate near the origin
stop of some bus line.

Q7(x) = ∃y1, y2 : House(x) ∧ locatesNear(x, y1) ∧ locatesNear(x, y2) ∧ y1 �= y2 ∧
isLineOf(y1,HEMC GDUFS) ∧ isLineOf(y2,HEMC GDUFS)

Meaning: Find all renting houses locating near two different traffic lines both of
which have a stop called HEMC GDUFS (the section of Guangdong University
of Foreign Studies which is in Higher Education Mega Center).

Q8(x) = House(x) ∧ locatesIn(x, Liwan) ∧ hasFacility(x,Club) ∧
hasFacility(x,SportsArea)

Meaning: Find all renting houses in the Liwan district that have clubs and sports
areas.

Q9(x) = ∃y : House(x) ∧ numOfBedrooms(x, 3) ∧ numOfLivingRooms(x, 2) ∧
rent(x, y) ∧ y ≤ 3000 ∧ hasFacility(x,Club) ∧ hasFacility(x,SportsArea)

Meaning: Find all renting houses that have three bedrooms and two living-rooms,
have a rental price no more than 3000 yuan per month, and have clubs and
sports areas.

Q10(x) = ∃y : House(x)∧locatesIn(x,GZ)∧floorNo(x, y)∧numOfFloors(x, z)∧y �= z

Meaning: Find all renting houses in GZ (Guangzhou) that are not at the top
floor of a building.

Fig. 1. The benchmark queries for testing the proposed method

We carefully designed ten benchmark queries, shown in Fig. 1, to test the
efficiency of the proposed method, where all individuals in these queries are
automatically generated URIs that correspond to names in Chinese, but they
are shown by meaningful names here for readability. The first query is the basic
one which can be directly answered by the original rental Website. The next four

A New Matchmaking Approach Based on Abductive CQA 157

Fig. 2. The statistics for each benchmark query (Note: in the bottom table, row 1
shows the average execution time in milliseconds for computing one abductive answer,
row 2 shows the number of abductive answers, and row 3 shows the number of calls to
an external consistency checker)

queries are complex queries about multiple aspects of renting houses. The 6th
query and the 7th query are complex queries about renting houses and traffic
lines, and they are not supported by the original rental Website. The last three
queries involve more complex reasoning. For example, the 8th query and the 9th
query involve reasoning on the rules R1 and R2 in Sect. 2.

We tested the proposed method on computing all abductive answers to every
benchmark query in the rental ontology w.r.t. k, SA and SC , where k = 1, SA =
{locatesNear, hasFacility, rent, towards, floorNo, numOfFloors} (which consists of
all predicates on which the information may be incomplete) and SC = {House}
(which consists of one predicate on which the information is surely complete).

Our implemented system works in two phases. In the first phase, all informa-
tion except specific conjunctive queries is encoded into a Prolog program, which
is then loaded into XSB. This phase is independent of any given query and is
performed offline. In our experiments, this phase was done in 875 seconds. In the
second phase, every benchmark query is encoded into a Prolog rule. Then this
rule is added to the Prolog program obtained in the first phase and is evaluated
by XSB. The statistics in this phase are shown in Fig. 2. For 7/1/2 benchmark
queries, the first abductive answer was computed in 1/2/13 seconds. For 4/3/3
benchmark queries, all abductive answers were computed in 10/100/300 sec-
onds. For all benchmark queries, each abductive answer was computed in one
second on average. Note that all benchmark queries have abductive answers in
the rental ontology and the evaluation of six benchmark queries needs to call
an external consistency checker. This shows that the system is able to efficiently
handle nontrivial requests for renting houses.

158 J. Du et al.

6 Conclusion and Future Work

We have proposed a new semantic approach to matchmaking based on the abduc-
tive CQA semantics. By considering that data are often incomplete in Web-based
scenarios, this approach defines matches for a request as abductive answers to a
conjunctive query that expresses the request. Furthmore, we proposed a sound
and complete method for computing all abductive answers in a consistent ex-
tensionally reduced DLP ontology. Experimental results on rental matchmaking
demonstrated the feasibility of the proposed method.

For future work, we plan to define reasonable measures for ranking abduc-
tive answers. These measures can be computed according to the minimal sets of
added assertions attached with abductive answers. We also plan to define an-
other extended CQA semantics to perform matchmaking in an inconsistent and
incomplete ontology without rendering the ontology consistent beforehand.

Acknowledgement. Jianfeng Du and Shuai Wang are partly supported by
the NSFC under grant 61005043 and the Undergraduate Innovative Experi-
ment Project in Guangdong University of Foreign Studies. Guilin Qi is partly
supported by Excellent Youth Scholars Program of Southeast University under
grant 4009001011, the NSFC under grant 61003157, Jiangsu Science Foundation
under grant BK2010412, and the Key Laboratory of Computer Network and
Information Integration (Southeast University). Jeff Z. Pan is partly supported
by the EU K-Drive project and the RCUK dot.rural project. Yong Hu is partly
supported by the NSFC under grant 70801020.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Batabyal, A.A., DeAngelo, G.J.: To match or not to match: Aspects of marital
matchmaking under uncertainty. Operations Research Letters 36(1), 94–98 (2008)

3. Bianchini, D., Antonellis, V.D., Melchiori, M.: Flexible semantic-based service
matchmaking and discovery. World Wide Web 11(2), 227–251 (2008)

4. Cimiano, P., Völker, J.: Text2onto - A Framework for Ontology Learning and Data-
Driven Change Discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

5. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: Concept ab-
duction and contraction for semantic-based discovery of matches and negotiation
spaces in an e-marketplace. Electronic Commerce Research and Applications 4(4),
345–361 (2005)

6. Colucci, S., Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M., Mottola, M.:
A formal approach to ontology-based semantic match of skills descriptions. Journal
of Universal Computer Science 9(12), 1437–1454 (2003)

7. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical abox abduction in large OWL
DL ontologies. In: Proc. of the 25th AAAI Conference on Artificial Intelligence
(AAAI), pp. 1160–1165 (2011)

A New Matchmaking Approach Based on Abductive CQA 159

8. Du, J., Shen, Y.: Computing minimum cost diagnoses to repair populated DL-
based ontologies. In: Proc. of the 17th International World Wide Web Conference
(WWW), pp. 265–274 (2008)

9. Fazzinga, B., Gianforme, G., Gottlob, G., Lukasiewicz, T.: Semantic Web Search
Based on Ontological Conjunctive Queries. In: Link, S., Prade, H. (eds.) FoIKS
2010. LNCS, vol. 5956, pp. 153–172. Springer, Heidelberg (2010)

10. Fenza, G., Loia, V., Senatore, S.: A hybrid approach to semantic web services
matchmaking. International Journal of Approximate Reasoning 48(3), 808–828
(2008)

11. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: The next step for OWL. Journal of Web Semantics 6(4), 309–322 (2008)

12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proc. of the 12th International
World Wide Web Conference (WWW), pp. 48–57 (2003)

13. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR), pp. 57–67 (2006)

14. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology. In: Proc. of the 12th International World Wide Web Conference
(WWW), pp. 331–339 (2003)

15. Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A system for principled
matchmaking in an electronic marketplace. In: Proc. of the 12th International
World Wide Web Conference (WWW), pp. 321–330 (2003)

16. Ragone, A., Straccia, U., Noia, T.D., Sciascio, E.D., Donini, F.M.: Fuzzy match-
making in e-marketplaces of peer entities using datalog. Fuzzy Sets and Sys-
tems 160(2), 251–268 (2009)

17. Ren, Y., Pan, J.Z., Zhao, Y.: Closed world reasoning for OWL2 with NBox. Journal
of Tsinghua Science and Technology 15(6), 692–701 (2010)

18. Shu, G., Rana, O.F., Avis, N.J., Chen, D.: Ontology-based semantic matchmaking
approach. Advances in Engineering Software 38(1), 59–67 (2007)

GeniUS: Generic User Modeling Library

for the Social Semantic Web

Qi Gao, Fabian Abel, and Geert-Jan Houben

Web Information Systems, Delft University of Technology
{q.gao,f.abel,g.j.p.m.houben}@tudelft.nl

Abstract. In this paper, we present GeniUS, a generic topic and user
modeling library for the Social Semantic Web that enriches the semantics
of social data and status messages particularly. Given a stream of mes-
sages, it allows for generating topic and user profiles that summarize the
stream according to domain- and application-specific needs which can be
specified by the requesting party. Therefore, GeniUS can be applied in
various application settings. In this paper, we analyze and evaluate Ge-
niUS in six different application domains. Given users’ status messages
from Twitter, we investigate the quality of profiles that are generated by
different GeniUS user modeling strategies for supporting various recom-
mendation tasks ranging from product recommendations to more spe-
cific recommendations as required in book or software product stores.
Our evaluation shows that GeniUS succeeds in inferring the semantic
meaning of Twitter status messages. We prove that it can successfully
adapt to a given domain and application context allowing for tremen-
dous improvements of the recommendation quality when domain-specific
semantic filtering is applied to remove noise from the profiles.

Keywords: user modeling, social web, semantic web, twitter, semantic
enrichment, filtering.

1 Introduction

On Social Web platforms such as Facebook, Google+ or Twitter people post
status messages in which they report about their daily life or share their opinions
on events and topics they are interested in. Exploiting those message streams
promises to be of benefit for applications that need to understand the current
demands and concerns of the people [1,2,3]. However, status messages are usually
unstructured and short which makes it difficult for applications to automatically
understand their semantic meaning. Consequently, it is difficult to exploit these
message streams to understand user interests and demands.

Applications that aim for personalization require profile information about
their users such as the preferences or interests. Different applications may need
specific types of user profiles. For example, an online book store that features a
book recommendation functionality requires information about a user’s interests
in books, a music recommendation platform needs to gather information about

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 160–175, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GeniUS: Generic User Modeling Library for the Social Semantic Web 161

a user’s musical taste and a movie recommendation system has to infer a user’s
preferences in movies. Today, systems typically collect data on their own, i.e.
they base their decisions on the user data people generate within the system
and ignore user data available in other systems (on the Social Web). This may
pose sparsity problems when new users register to the system or in situations
where users infrequently interact with the system. For example, if a new user
signs up to the online book store then the book recommendation functionality
might get problems because it lacks information about the user’s preferences
in books. In such situations where applications suffer from sparse information
about a user, it can be helpful to consider profile information from other sources
on the Social Web [4].

People may reveal interests in books, music or movies in their status messages
on platforms such as Twitter or Facebook. However, filtering out and inferring
user profile information that is appropriate for a given application is difficult be-
cause the semantics of Twitter and Facebook status messages are not explicitly
defined. For example, the online book store, music platform and movie recom-
mendation system would need to infer the semantic meaning of a Twitter mes-
sage such as “Boom! Haddon rules: http://bit.ly/4YG6t8s” and decide whether
it reveals relevant information about the publisher’s preferences in books, music
or movies respectively1. Hence, inferring domain- and application-specific user
profile information from (external) Social Web activities is a difficult task.

In this paper, we propose a generic approach to constructing user profiles
based on textual user-generated content on the Social Web. The main contribu-
tions of our work can be summarized as follows.

– We introduce GeniUS2 – a generic library that can generate customized user
profiles based on text messages people post on the Social Web.

– GeniUS enriches user data with semantic information and allows for the
generation of meaningful RDF-based profiles that are well-connected to the
Linked Open Data cloud and therefore better support interoperability be-
tween applications that aim for personalization.

– We apply the GeniUS library on a big Twitter dataset and demonstrate how
the user profile construction can be customized to serve a given application
domain.

– We evaluate the quality of the generated user profiles in context of different
recommender systems and show that domain-specific profiles constructed by
GeniUS allow for better personalization than generic Social Web profiles.

In the subsequent sections, we will summarize related work (Section 2) and
introduce the GeniUS framework for topic and user modeling on the Social
Semantic Web (Section 3). Analysis and evaluation are presented in Section 4
and Section 5 respectively before we conclude in Section 6.

1 The tweet actually refers to the science fiction novel “Boom!” by Mark Haddon.
2 We make the GeniUS library publicly available via
http://wis.ewi.tudelft.nl/tweetum/

http://wis.ewi.tudelft.nl/tweetum/

162 Q. Gao, F. Abel, and G.-J. Houben

2 Related Work

In the last decade, some research efforts have been done on generic user model-
ing systems [5] and methods for sharing user models across application bound-
aries [6]. Mehta et al. introduced strategies for cross-system user modeling and
personalization [7] while Abel et al. investigated cross-system user modeling
strategies on the Social Web [4]. With the advent of Semantic Web technolo-
gies, the interoperability of user profiles is enhanced. The General User Mod-
eling Ontology (GUMO) provides a uniform representation of distributed user
profiles [8]. Semantic Web vocabularies such as FOAF [9], SIOC [10], and the
Weighted Interest vocabulary [11] further support the re-use of user profiles in
different applications. In this paper, we will make use of these existing standards
to facilitate usage and integration of GeniUS by client applications.

User modeling and personalization on the Social Web have been studied in
the past years as well. Firan et al. defined tag-based profiles [12] to describe
users’ behavior in the context of music recommendations. Sen et al. refer to tag-
based recommender systems as tagommenders and compare different strategies
that infer interests into items via the users’ interests into tags [13]. Cai et al.
exploit interests into tags to personalize search in tagging systems [14]. However,
a shortcoming of those approaches is that the semantics of user profiles are not
explicitly defined as tags suffer from ambiguity and synonymy. Our GeniUS
library disambiguates the meaning of terms that people post in their status
messages and generates semantically well-defined user profiles that can be re-
used in various application contexts.

Understanding the semantics of unstructured content on the Social Web is a
non-trivial task, especially for the short status messages such as Twitter messages
or Facebook status messages. Laniada and Mika defined metrics to characterize
hashtags – words that start with “#” – to help assessing hashtags as strong
representative of Twitter messages (tweets) [15]. Rowe et al. exploit contextual
information to enrich the semantics of tweets by relating tweets to conference
events [16]. In previous work, we proposed methods for understanding the seman-
tics of tweets by discovering correlations between tweets and news articles [17]
and further evaluated the benefits of this enrichment strategy for personalized
news recommendations [3]. In this paper, we go one step further and introduce
a library for semantic enrichment of social data to facilitate topic and user mod-
eling, which is neither limited to a specific data source nor limited to a specific
application context. Instead, the proposed GeniUS library allows for customized
user modeling in different application domains.

3 GeniUS: A Generic Library for Topic and User
Modeling

GeniUS is a generic library for topic and user modeling on the Social Semantic
Web. Given textual user-generated content, GeniUS constructs semantic pro-
files that summarize the content of unstructured user data. With GeniUS, we

GeniUS: Generic User Modeling Library for the Social Semantic Web 163

Social Web

Semantic Web

user data
items enriched items

semantic data

interested in:

music music sports … c sports …s

user profiles

Fig. 1. The architecture of GeniUS Library

aim to (i) provide a flexible and extensible library that is able to serve different
applications; (ii) produce semantically meaningful profiles to enhance the inter-
operability of profiles between applications; and (iii) customize the construction
of user profiles according to the information needs of different applications. In
this section, we first describe the architecture of GeniUS, including its four main
modules, and then demonstrate how GeniUS can be applied to generate domain-
specific user profiles.

3.1 Architecture of GeniUS

The architecture of GeniUS is presented in Figure 1. It is composed of four
sequential modules, which process the given Social Web content to construct
the profile. It consists of the Item Fetcher, Enrichment, Weighting Function,
and RDF Serialization. Moreover, there are means for customizing the profile
construction based on the demands of the application that is using GeniUS to
obtain profiles: Modeling Configuration and Filter.

Item Fetcher. Many Social Web services provide APIs that allow for collecting
data to serve external applications. For example, Twitter exposes its data
through the Twitter Streaming and Search API3. The main function of Item
Fetcher is to collect raw content, either directly from the Social Web or
from a local repository. Topic profiles can be generated if the item fetcher
is configured – using keyword or SPARQL queries – to collect data that
refers to a given topic while user profiles are generated if the fetched posts
were published by te same user. We transform and represent the raw content

3 https://dev.twitter.com/

https://dev.twitter.com/

164 Q. Gao, F. Abel, and G.-J. Houben

based on a structured data model using the Semantically Interlinked Online
Communication (SIOC) ontology [10]. Moreover, client applications can feed
GeniUS with any types of SIOC items ranging from social bookmarking
posts to (micro-)blog posts. The SIOC ontology provides a broad range of
vocabulary concepts to describe information from the Social Web so that the
Item Fetcher is highly flexible regarding the type of content it can handle.
For example, to conduct our analysis and experiments on leveraging Twitter
messages with GeniUS (see Section 4 and Section 5), we adopt sioc:Post to
represent the tweets and sioc:UserAccount to describe the user account via
which the messages were published.

Enrichment. To better understand the semantics of the content collected via
the Item Fetcher, we further extract relevant concepts from the textual con-
tent. This step is accomplished by using existing services. In particular, Ge-
niUS provides adaptors for Zemanta4 and SpotLight5 [18]. In this paper,
we use SpotLight to extract DBpedia concepts from tweets. Each extracted
concept is identified with a unique, resolvable URI so that the meaning of a
concept is well-defined and the semantically enriched Twitter posts as well
as the generated profiles are well-connected to the Linked Open Data cloud6.

Weighting Function. One of the main features of GeniUS is user profile con-
struction for representing users’ preferences and interests. Those types of
profiles are essential for applications that aim for personalization. GeniUS
mainly adopts the Vector Space Model to represent users’ interests, i.e. a user
profile is thus a set of weighted concepts. Therefore, we utilize the Weighted
Interests Vocabulary andWeighting Ontology [11] as data model to represent
user interest profiles.
The GeniUS library allows for different weighting functions to measure the
importance and popularity of concepts in a profile ranging from straightfor-
ward strategies such as concept frequency (count the number of messages
that refer to a concept) to more sophisticated strategies that compute a
weight as a function of time (e.g. recently mentioned concepts are weighted
stronger). Furthermore, client applications can specify their own weighting
functions to customize the profile generation.

RDF Serialization. The constructed user profiles can be outputted as RDF
using FOAF [9] in combination with the Weighted Interest Vocabulary. Pro-
files can also be stored in an RDF repository. Client applications or end-
users can thus retrieve RDF-based profiles from the repository and perform
sophisticated RDF queries over the profiles. At the moment, GeniUS pro-
vides adapters for the Sesame RDF repository7 to store the RDF profiles
and allow for SPARQL queries.

In addition to the four modules mentioned above, which process the raw content
and construct topic and user profiles, GeniUS also provides two configuration

4 http://developer.zemanta.com/
5 http://dbpedia.org/spotlight
6 http://www4.wiwiss.fu-berlin.de/lodcloud/state/
7 http://www.openrdf.org/

http://developer.zemanta.com/
http://dbpedia.org/spotlight
http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://www.openrdf.org/

GeniUS: Generic User Modeling Library for the Social Semantic Web 165

modules to enable a flexible modeling process that is required in order to generate
domain- and application-specific profiles.

Modeling Configuration. The aforementioned four GeniUS modules are ex-
posed as interfaces (in Java) so that developers can easily extend GeniUS
and implement new functions based on their needs. For example, we imple-
mented time-sensitive weighting functions [19] for applications that require
more recent and dynamic characteristics of user profiles. The Modeling Con-
figuration is used to configure which implementation for each module should
be used in a GeniUS modeling process. With different combinations of mod-
ule implementations, GeniUS has a variety of modeling alternatives to adapt
to different applications.

Filter. With the Filter feature, GeniUS is able to filter out irrelevant profile
information and can construct user profiles that represent certain charac-
teristics of a user. We currently have implemented three types of filters: (i)
filtering based on temporal constraints, (ii) keyword-based filtering, and (iii)
semantic filtering. The fist strategy can filter out content collected via the
Item Fetcher or can prevent the Item Fetcher from collecting items that do
not fulfill the given temporal constraints. For example, one can restrict the
Twitter message collection process to tweets that were published within a
certain period of time. The second filtering module can filter out items that
do not contain a given set of keywords or specifically collect items that match
the given keywords. With the enrichment of the user-generated items with
meaningful concepts, GeniUS can also perform semantic filtering to generate
customized profiles that characterize a user in context of a specific domain.
In the subsequent section, we will reveal how we use SPARQL queries as
semantic filters on the semantically enriched items to filter out irrelevant
noise before constructing the actual (weighted interest) profile.

3.2 Domain-Specific User Profile Construction Using GENIUS

By utilizing filtering functionality, the library is able to build flexible user profiles
for different application domains on demand. The constructed user profiles are
represented in RDF with well-defined semantics.

In this paper, we use Twitter as an example to illustrate and evaluate the
domain-specific profile construction. Given a short Twitter post like:

Awesome, love the new Garageband for iPad http://is.gd/SJqVav #apple

we collect the content of this message and additional information such as the
user identifier of the creator and the creation time via the Twitter Streaming
API. Semantic Web vocabularies such as SIOC, Dublin Core and FOAF are
applied to represent the Twitter message. We have also built a parser to process
the content of the message and extract hashtags and URLs that are mentioned
in a tweet. The extracted hashtags are identified using TagDef 8 as depicted in
the following code snippet.

8 http://www.tagdef.com

http://www.tagdef.com

166 Q. Gao, F. Abel, and G.-J. Houben

@prefix sioc: <http://rdfs.org/sioc/spec/> .
@prefix dcterms: <http://purl.org/dc/terms/> .
@prefix tagdef: <http://tagdef.com/> .

<http://twitter.com/bob/status/73748435752333312>
a <sioc:Post> ;
dcterms:created "2011-05-26T15:52:51+00:00" ;
sioc:has_creator <http://twitter.com/bob> ;
sioc:content "Awesome, love the new Garageband for iPad http://is.gd/SJqVav #apple" ;
sioc:links_to <http://is.gd/SJqVav> ;
sioc:has_topic tagdef:apple .

The message is thus represented as sioc:Post and specifies metadata (e.g. dc-
terms:created, sioc:has creator) as well as basic information about the content
(e.g. sioc:content, sioc:links to). sioc:has topic is used to describe the semantic
meaning of the content of the tweet. However, using TagDef does not allow for
disambiguating the semantic meaning of the tweet and hashtag specifically. For
example, apple may refer to the fruit or to the technology company. Hence, fur-
ther semantic enrichment is required to specify the meaning of a Twitter message
more accurately. Therefore, we perform named entity recognition and identify
DBpedia concepts in tweets (using disambiguation functionality provided by
DBpedia spotlight [18]). This allows us to further describe the topic of the tweet
with further RDF statements using again the sioc:has topic property:

@prefix sioc: <http://rdfs.org/sioc/spec/> .
@prefix dcterms: <http://purl.org/dc/terms/>
@prefix tagdef: <http://tagdef.com/> .
@prefix dbpedia: <http://dbpedia.org/resource/> .

<http://twitter.com/bob/status/73748435752333312>
a <sioc:Post> ;
dcterms:created "2011-05-26T15:52:51+00:00" ;
sioc:has_creator <http://twitter.com/bob> ;
sioc:content "Awesome, love the new Garageband for iPad http://is.gd/SJqVav #apple" ;
sioc:links_to <http://is.gd/SJqVav> ;
sioc:has_topic tagdef:apple ;
sioc:has_topic dbpedia:Apple_Inc. ;
sioc:has_topic dbpedia:GarageBand ;
sioc:has_topic dbpedia:IPad .

Given the semantic enrichment and the inferred additional RDF statements,
we can disambiguate the meaning of the Twitter message: it refers to a soft-
ware product (dbpedia:GarageBand) developed by the Apple company (dbpe-
dia:Apple Inc.) that is now available for the iPad device (dbpedia:IPad). By
following the DBpedia URIs, applications can obtain further background infor-
mation such as type information (e.g. dbpedia:GarageBand is of type dbo:Software
and yago:AudioEditors9) or a list of persons that are involved in Apple (e.g.
dbo:keyPerson).

With the enriched concepts, GeniUS constructs profiles using a given weight-
ing scheme. FOAF and the Weighted Interests Vocabulary are applied to describe
the user and her preferences and interests into topics (based on the concepts that
are referenced from the tweets). Since people publish Twitter messages on vari-
ous different subjects, a generic approach, which considers all kinds of concepts

9 Here, dbo and yago refer to the DBpedia ontology (http://dbpedia.org/ontology/)
and Yago ontology (http://dbpedia.org/class/yago/) respectively.

http://dbpedia.org/ontology/
http://dbpedia.org/class/yago/

GeniUS: Generic User Modeling Library for the Social Semantic Web 167

that are referenced from the tweets, produces user profiles that contain a vari-
ety of topics. In the following example, the extract of the complete profile thus
specifies topics of interests from different domains such as the music, software
or movie domain:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix wi: <http://purl.org/ontology/wi/core#> .
@prefix wo: <http://purl.org/ontology/wo/core#> .
@prefix dbpedia: <http://dbpedia.org/resource/> .
@prefix genius: <http://persweb.org/genius#> .
<http://twitter.com/bob>

a foaf:Person;
wi:preference [

a wi:WeightedInterest ;
wi:topic dbpedia:Jazz ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.5889 ;
wo:scale genius:Scale]

] ;
wi:preference [

a wi:WeightedInterest ;
wi:topic dbpedia:Second_Life ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.3114 ;
wo:scale genius:Scale]

] ;
wi:preference [

a wi:WeightedInterest ;
wi:topic dbpedia:Short_film ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.3333 ;
wo:scale genius:Scale]

] ;
wi:preference [

a wi:WeightedInterest ;
wi:topic dbpedia:GarageBand ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.1638 ;
wo:scale genius:Scale]

] ; ...

The above profile depicts that the user is interested in jazz music (dbpe-
dia:Jazz), short movies (dbpedia:Short film) and software products (e.g. dbpe-
dia:Second Life). The higher the weight the higher the inferred interest in a
concept. When applying the constructed profiles for a specific application do-
main, a drawback of such a complete profile is that it lists also concepts that
are possibly not relevant in the application context. For example, if a system
aims to recommend software products to the above user then concepts such
as dbpedia:Jazz or dbpedia:Short Film might not add value to the profile while
statements about the user’s preference into software are more important. Utiliz-
ing the semantic filtering feature of GeniUS, application developers can specify
a SPARQL query that describes what kind of topic-based profile a client appli-
cation is seeking for:

SELECT DISTINCT ?t WHERE {
? <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://dbpedia.org/ontology/Software> }

168 Q. Gao, F. Abel, and G.-J. Houben

Given such a SPARQL query, GeniUS will generate a customized profile where
the concepts that do not belong to the software domain are filtered out
(see below). The weight of the remaining concepts can be re-adjusted as well,
for example, by normalizing the filtered profile.

<http://twitter.com/bob>
a foaf:Person;
wi:preference [

a wi:WeightedInterest ;
wi:topic dbpedia:Second_Life ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.4101 ;
wo:scale genius:Scale
]

] ;
wi:preference [

a wi:WeightedInterest ;
wi:topic dbpedia:GarageBand ;
wo:weight [

a wo:Weight ;
wo:weight_value 0.2158 ;
wo:scale genius:Scale
]

] ; ...

Using semantic filtering, applications can therefore utilize GeniUS to generate
profiles that are well-adapted to their domain of interest. In the next two sec-
tions, we will conduct further analysis and experiments to show the quality of
such customized profiles in the context of recommender systems in different ap-
plication domains.

4 Analysis of Domain-Specific User Profile Construction

To understand the characteristics of user profiles constructed with GeniUS, we
conducted an analysis on a large Twitter dataset. In our analysis, we investigate
the characteristics of (i) complete Twitter-based profiles and (ii) six domain-
specific types of profiles that were filtered using the semantic filtering method
of GeniUS.

4.1 Data Collection

For our analysis, we monitored 73 Twitter users of the Social Handle Archive10

(SoHArc) over a period of more than six months (from January 1st 2011 to July
7th). SoHArc lists profiles of researchers who are active in computer science and
e-learning research in particular. Therefore, we ensured that there were no spam
users in our dataset. Using the Twitter Streaming API via the Item Fetcher
of GeniUS, we collected all public Twitter messages that these users published
during the observation period. Overall, we thereby obtained 40,822 tweets. The
seven most active users posted more than 1000 tweets while two users were al-
most inactive and published less than 10 Twitter messages (see Figure 2). We

10 http://soharc.upb.de/

http://soharc.upb.de/

GeniUS: Generic User Modeling Library for the Social Semantic Web 169

0 10 20 30 40 50 60 70

users

0

10

100

1000

10000

of

 tw
ee

ts
/e

nt
ite

s/
en

tit
y

ty
pe

s

tweets
DBPedia entities
entity types

Fig. 2. Number of tweets, DBpedia entities and entity types per user

processed all Twitter messages with the semantic enrichment component of Ge-
niUS which we configured so that DBpedia Spotlight was used as named entity
recognition service as it allows for higher precision and recall than Alchemy or
Zemanta (Mendes et al. report, for example, on precision of around 80% for
disambiguating entities) [18]. Furthermore, we utilized the concept frequency as
weighting scheme to compute weights for the entities of interest in the corre-
sponding user profiles. Although all users are from the same computer science
community, the topics about which they publish tweets show great variety as
our analysis will reveal.

4.2 Results

In Figure 2, we plot the number of tweets and enriched DBpedia entities for
each user. On average, each user published 567.0 Twitter messages and referred,
according to the entity extraction module, to 1097.1 DBpedia entities. 59 of
the users (82%) published more than 50 tweets during the observation period
and also referred to more than 50 entities. And for each tweet, we extracted on
average 1.9 entities. Each entity is identified by a unique URI. Therefore, we
further retrieved – by resolving the URI – the types of the entities as specified
in the corresponding DBpedia entry. The number of distinct types of entities to
which a user refers to in her tweets is listed in Figure 2 as well. The average
number of distinct types per user profile is 35.0 which indicates that there is
a potential to generate different domain-specific profiles for a given user when
categorizing entities of interest according to their types.

To construct application domain based user profiles, we group the types
of entities based on the DBpedia ontology11 into several domains. In partic-
ular, we select three main domains for the analysis and further experiments:
location, entertainment and product. Based on the hierarchies defined in the
DBpedia ontology, we further derive three sub-domains from the product do-
main: music products, books and software products. In our evaluation, we classify

11 http://wiki.dbpedia.org/Ontology

http://wiki.dbpedia.org/Ontology

170 Q. Gao, F. Abel, and G.-J. Houben

0 10 20 30 40 50 60 70

users

1

10

100

1000

10000

nu
m

be
r

of
 e

nt
iti

es

generic: all domains
domain specific: locations
domain specific: entertainment
domain specific: products

(a) Comparison of generic and domain
specific user profile construction

0 10 20 30 40 50 60 70

users

1

10

100

1000

nu
m

be
r

of
 e

nt
iti

es

domain specific: products
sub-domain specific: music products
sub-domain specific: books
sub-domain specific: software products

(b) Comparison of domain and sub-
domain specific user profile construction

Fig. 3. Comparison of different strategies for user profile construction

items into these domains and test what kind of user profiles do best serve the
domain-specific recommender system (recommender in the entertainment do-
main, book recommender etc.).

Using the semantic filter described in Section 3.2, we construct the (sub-)
domain-specific user profiles. Figure 3 characterizes the corresponding profiles
and shows the number of entities per user profile for the different types of profile
construction strategies. In Figure 3(a), we compare the generic strategy, which
utilizes all kinds of entities (no filtering), and the domain specific strategies which
filter the profiles so that they contain entities related to the location, entertain-
ment and product domain respectively (semantic filtering). On average, there are
358.0 entities per user profile that belong to one of the three domains. Among
them, 12.1% of the entities are categorized as locations (e.g. cities, countries
and other places), 54.8% as being related to entertainment (e.g. sport, cultural
events) and 33.1% as products (e.g. music albums, books, magazines, software).
Some of these profiles are rather sparse. For example, for approximately 30 users,
the location-based and product-related profiles contain less than 10 entities. The
continuous difference between the size of the generic profiles and the domain-
specific profiles indicates that all users reveal interests in different types of do-
mains in their Twitter activities. Similarly, we observe in Figure 3(b) that also
the domain-specific profiles related to products feature variety. When further
filtering these profiles to obtain profiles that specify interests in music products,
books and software products, one still obtains reasonably sized user profiles.
Here, interests into music products can be inferred best. On average, 58% of the
products mentioned by a user can be classified as music products (e.g. albums,
songs) while 18.3% and 23.7% of the products are related to books (including
newspapers and magazines) and software products respectively.

Our analysis thus shows that Twitter-based profiles reveal different types of
interests of a user. Hence, there is potential to adapt Twitter-based profiles
to different application domains. Figure 3 shows that we succeed in generating
domain-specific profiles for the great majority of the users. The more specific the

GeniUS: Generic User Modeling Library for the Social Semantic Web 171

domain the smaller the profiles. Our hypothesis is that the stronger we adapt
profiles to the given application domain – i.e. the more restrictive the filtering of
the profiles – the better the performance of the corresponding application that
consumes the profiles. In the subsequent section, we will investigate whether this
hypothesis holds.

5 Evaluation of Domain-Specific User Profile
Construction for Recommendation Systems

To test our hypothesis and to evaluate the quality of the Twitter-based user
profiles that are created by different user modeling strategies of GeniUS, we
apply the generated user profiles in different domain-specific recommendation
systems and answer the following research questions:

1. Are the domain-specific user modeling strategies provided by GeniUS bene-
ficial for supporting recommendation systems in different domains? For ex-
ample, are the sparse – but more focused – user profiles more appropriate
than the complete, unfiltered profiles?

2. How does the performance vary between the different domains? For example,
for what domains does the Twitter-based user modeling by GeniUS work
best?

5.1 Experimental Setup

In our evaluation, we test the user profiles created by the different GeniUS strate-
gies in context of different tweet recommendation systems. The main goal of a
domain-specific recommender is to recommend tweets to a user that are relevant
to the given (sub-)domain and relevant to the user. As we are mainly interested
in comparing the quality of user profiles constructed via the different user mod-
eling strategies, we implemented a lightweight content-based recommendation
algorithm that we applied in the different application contexts. The algorithm
recommends items based on their cosine similarity with a given user, i.e. the
more similar an item to a user the higher it will appear in the recommendation
ranking.

Given a profile of a user u and a set of candidate items C, we thus trans-
form the list of weighted interests included in the user profile into a vector space
model representation p(u) and represent the candidate items in the same way:
C = {p(c1), ...,p(cn)}. The weight of an entity in p(ci) corresponds to the occur-
rence frequency of an entity within a tweet (usually this is either 1 or 0). Given
the normalized user and item vector representations, the algorithm computes
cosine similarity simcosine(p(u),p(ci)) and orders the items according to their
similarity score.

For our experiments, we consider the last month of our observation period (see
Section 4.1) as the time frame for computing recommendations. For each of the
six domains that we analyzed in Section 4, we deployed a recommendation system

172 Q. Gao, F. Abel, and G.-J. Houben

Table 1. The average number of relevant items and candidate items for different
recommendations

application broad domains product sub-domains
domain entertainment locations products music books software

average number of
1587.0 151.0 1207.0 756.0 237.0 254.0

candidate items
average number of

70.0 13.4 49.6 40.9 16.4 20.3
relevant items

(a) Domain specific recommendation (b) Sub-domain specific recommendation

Fig. 4. Results of recommendation experiment

that used the algorithm described above as basis. Hence, the recommendation
quality is solely influenced by the user modeling strategy for constructing p(u).
The ground truth of tweets which we consider as relevant to a specific user u in
a particular application domain is given by those messages that were actually
posted by u during the recommendation period and also contain at least one
concept that belongs to the specified application domain. Hence, we remove all
user information from the candidate tweets and try to assign the tweets to the
right users by utilizing the user profiles that are constructed based on the tweets
a user posted before the start of the recommendation period. The quality of
recommendations is measured by means of MRR (Mean Reciprocal Rank) which
indicates at what rank the first item relevant to the user occurs on average.

The set of candidate items are those tweets that were published during the
recommendation period and refer to at least one concept of the application
domain of the recommendation system. The average number of relevant items
per user and the number of candidate items in each application domain are listed
in Table 1. For example, for the broader domains one can infer that the product
domain is most challenging: the probability of randomly selecting a relevant
item is 0.041 (= 49.6 / 1207.0) in contrast to 0.045 and 0.089 for the domains
of entertainment and location respectively.

5.2 Results

The results of the recommendation experiments in the six different domains are
summarized in Figure 4 and answer the research question raised at the beginning

GeniUS: Generic User Modeling Library for the Social Semantic Web 173

of this section. Figure 4(a) shows the quality of the recommendations in terms
of MRR for the three broader domains: locations, entertainment and products.
We compare the recommendation performances that were achieved based on the
generic user modeling strategy, which does not make use of the semantic filtering
functionality of GeniUS, and the domain-specific user modeling strategy, which
filters out concepts from the profiles that are not related to the actual domain.

The domain-specific strategy consistently performs much better than the
generic strategy. While the domain-specific strategy achieves, on average, an
MRR of 0.13 across the three different domains, the generic strategy performs
poorly with 0.01. The domain-specific strategy produces with 0.16 regarding
MRR the best results in context of the location-related recommendation system
which is according to the proportion of relevant items per user the least challeng-
ing domain (see Table 1). In contrast, the generic strategy achieves only an MRR
of 0.006. Within the context of product recommendations, the domain-specific
profile construction method results in a ten times higher MRR and therefore
outperforms the generic strategy clearly.

Similar results can be observed in the more narrow domains of music, book
and software product recommendation systems. For the music and book domain,
one can see that the recommendation quality increases the more specific the
profiles are. In the music recommendation setting, the generic strategy fails with
0.004 regarding MRR, the product-specific profile improves the recommendation
slightly (MRR: 0.01) and the profiles, which are specifically filtered for the music
domain (sub-domain-specific), perform best and allow for an MRR of 0.12. The
low performance of the generic user modeling strategy can be explained by noise
that is introduced by entities that co-occur in tweets. For example, given that
a user u tweets “Heading to Italy”, GeniUS will infer that u has some interest
into the concept dbpedia:Italy. The domain-specific strategy will filter out this
interest when recommendations are computed in the music domain while the
generic strategy will keep the information. Hence, given a candidate tweet such
as “Justin Bieber concert in Italy #music”, the domain-specific user modeling
strategy will not cause this item to be recommended to u unless u showed interest
into music of Justin Bieber in some of her other tweets that she published before
the recommendation period. The generic user modeling strategy however will
indicate to the recommender system that the given tweet might be of interest
to the user because it mentions the concept Italy in which the user proved
to be concerned with in the past. For the software domain this effect caused
by the noise in the generic user profiles seems to be lower. However, again we
observe that the sub-domain-specific user modeling strategy outperforms the
other strategies clearly and allows for an MRR of 0.22.

Hence, regarding the research questions raised above, we can conclude that
(1) domain-specific user modeling strategies provided by GeniUS allow for a
tremendous improvement of the recommendation quality. Semantic filtering of
the user profiles seems to remove noise and therefore allows us to adapt and
optimize the user profile construction to the target domain. Moreover, we see
that (2) the performance improvements are consistent throughout the different

174 Q. Gao, F. Abel, and G.-J. Houben

domains. The user modeling quality varies only slightly between the different
domains. Furthermore, the performance does not seem to be influenced strongly
by the size of the user profiles as a comparison of Figure 3 and Figure 4 reveals.
With GeniUS, we thus succeed in generating domain-specific user profiles that
allow for optimizing recommendation performance across different domains.

6 Conclusion

In this paper, we introduced GeniUS, a generic topic and user modeling library
for the Social Semantic Web. Given (status) messages from services such as
Facebook or Twitter, GeniUS creates RDF-based representations that describe
the semantic meaning of these messages. Based on the semantically enriched user
data, GeniUS provides different strategies for the creation of user interest profiles
and provides means to semantically filter those profiles so that they adapt to a
given application domain.

Our analysis based on Twitter status messages published by users during
a period of several months showed that we succeed in generating profiles for
different domains. To test the quality of the Twitter-based user profiles, we
conducted recommendation experiments in six different domains and revealed
that the domain-specific user modeling strategies, which filter user profiles and
limit the concepts in the profiles to concepts related to the given application
domain, allow clearly for the best performance.

In future work, we would like to apply GeniUS also on other datasets different
from Twitter. This will allow us to investigate what type of Social Web services
are most valuable for creating profiles for different types of applications.

Acknowledgements. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant agreement No. ICT 257831 (ImREAL project) and the Marie Curie
action IRSES under grant agreement No. 24761 (Net2 project).

References

1. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time
event detection by social sensors. In: Proceedings of the 19th International Con-
ference on World Wide Web, pp. 851–860. ACM, Raleigh (2010)

2. Chen, J., Nairn, R., Chi, E.H.: Speak Little and Well: Recommending Conversa-
tions in Online Social Streams. In: Proceedings of the 29th International Confer-
ence on Human Factors in Computing Systems, CHI 2011, pp. 217–226. ACM,
Vancouver (2011)

3. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Analyzing User Modeling on Twitter for
Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L.,
Oliver, N. (eds.) UMAP 2011. LNCS, vol. 6787, pp. 1–12. Springer, Heidelberg
(2011)

GeniUS: Generic User Modeling Library for the Social Semantic Web 175

4. Abel, F., Herder, E., Houben, G.J., Henze, N., Krause, D.: Cross-system User Mod-
eling and Personalization on the Social Web. User Modeling and User-Adapted In-
teraction (UMUAI), Special Issue on Personalization in Social Web Systems (to ap-
pear), http://wis.ewi.tudelft.nl/papers/2011-umuai-cross-system-um.pdf

5. Kobsa, A.: Generic user modeling systems. User Modeling and User-Adapted In-
teraction 11(1-2), 49–63 (2001)

6. Berkovsky, S., Kuflik, T., Ricci, F.: Cross-Domain Mediation in Collaborative Fil-
tering. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI),
vol. 4511, pp. 355–359. Springer, Heidelberg (2007)

7. Mehta, B., Niederee, C., Stewart, A.: Towards cross-system personalization. In:
International Conference on Universal Access in Human-Computer Interaction,
Las Vegas, Nevada, USA (UAHCI 2005). Lawrence Erlbaum Associates (2005)

8. Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., von Wilamowitz-
Moellendorff, M.: Gumo - The General user Model Ontology. In: Ardissono, L.,
Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 428–432.
Springer, Heidelberg (2005)

9. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91. Namespace docu-
ment, FOAF Project (November 2007), http://xmlns.com/foaf/0.1/

10. Bojars, U., Breslin, J.G.: SIOC Core Ontology Specification. Namespace document,
DERI, NUI Galway (January 2009), http://rdfs.org/sioc/spec/

11. Brickley, D., Miller, L., Inkster, T., Zeng, Y., Wang, Y., Damljanovic, D., Huang,
Z., Kinsella, S., Breslin, J., Ferris, B.: The Weighted Interests Vocabulary 0.5.
Namespace document, Sourceforge (September 2010)

12. Firan, C.S., Nejdl, W., Paiu, R.: The Benefit of Using Tag-based Profiles. In:
Proceedings of the 2007 Latin American Web Conference (LA-WEB 2007),
pp. 32–41. IEEE Computer Society, Washington, DC, USA (2007)

13. Sen, S., Vig, J., Riedl, J.: Tagommenders: connecting users to items through tags.
In: Proceedings of the 18th International Conference on World Wide Web, WWW
2009, pp. 671–680. ACM, Madrid (2009)

14. Cai, Y., Li, Q.: Personalized search by tag-based user profile and resource profile
in collaborative tagging systems. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, CIKM 2010, pp. 969–978.
ACM, Toronto (2010)

15. Laniado, D., Mika, P.: Making Sense of Twitter. In: Patel-Schneider, P.F., Pan,
Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC
2010, Part I. LNCS, vol. 6496, pp. 470–485. Springer, Heidelberg (2010)

16. Rowe, M., Stankovic, M., Laublet, P.: Mapping Tweets to Conference Talks: A
Goldmine for Semantics. In: Social Data on the Web Workshop at the 9th In-
ternational Semantic Web Conference (ISWC), Shanghai, China, vol. 664 (2010),
CEUR-WS.org

17. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic Enrichment of Twitter Posts
for user Profile Construction on the Social Web. In: Antoniou, G., Grobelnik, M.,
Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC
201. LNCS, vol. 6644, pp. 375–389. Springer, Heidelberg (2011)

18. Mendes, P.N., Jakob, M., Garćıa-Silva, A., Bizer, C.: Dbpedia spotlight: Shedding
light on the web of documents. In: Proceedings of the 7th International Conference
on Semantic Systems (I-Semantics), Graz, Austria, pp. 1–8 (September 2011)

19. Gao, Q., Abel, F., Houben, G.J., Tao, K.: Interweaving trend and user modeling
for personalized news recommendations. In: Proceeding of the 2011 Internation
Conference on Web Intelligence Web (WI 2011), pp. 100–103. IEEE Press, Lyon
(2011)

http://wis.ewi.tudelft.nl/papers/2011-umuai-cross-system-um.pdf
http://xmlns.com/foaf/0.1/
http://rdfs.org/sioc/spec/
CEUR-WS.org

Enhancing Source Selection for Live Queries

over Linked Data via Query Log Mining�

Yuan Tian1, Jürgen Umbrich2, and Yong Yu1

1 Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai, China
{tian,yyu}@apex.sjtu.edu.cn

2 Digital Enterprise Research Institute, National University of Ireland, Galway
juergen.umbrich@deri.org

Abstract. Traditionally, Linked Data query engines execute SPARQL
queries over a materialised repository which on the one hand, guarantees
fast query answering but on the other hand requires time and resource
consuming preprocessing steps. In addition, the materialised reposito-
ries have to deal with the ongoing challenge of maintaining the index
which is – given the size of the Web – practically unfeasible. Thus, the
results for a given SPARQL query are potentially out-dated. Recent ap-
proaches address the result freshness problem by answering a given query
directly over dereferenced query relevant Web documents. Our work in-
vestigate the problem of an efficient selection of query relevant sources
under this context. As a part of query optimization, source selection
tries to estimate the minimum number of sources accessed in order to
answer a query. We propose to summarize and index sources based on
frequently appearing query graph patterns mined from query logs. We
verify the applicability of our approach and empirically show that our
approach significantly reduces the number of relevant sources estimated
while keeping the overhead low.

1 Introduction

Data published according to the Linked Data principles can be seen as one dis-
tributed and decentralised Web database. The four Linked Data principles [1]
guarantee that 1) all data items are represent with unique identifiers in form of
URIs, 2) the URIs are dereferenceable HTTP URIs and 3) an HTTP Get oper-
ation returns more information represented in RDF [13]. The fourth principle,
reuse of and links to identifiers, connects the decentralised published informa-
tion into a global and open information network. However, Linked Data poses a
series of unprecedented challenges for processing queries over the Web content.
Typically, the results for a query are aggregated from hundreds of sources pub-
lished by autonomous data providers. Further, a majority of the sources offer no
abilities of executing complex queries and the serve just as a container for the
data (e.g., a document). Typical SPARQL query engines operating over these

� The work presented in this paper has been funded in part by Science Foundation
Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 176–191, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Enhancing Source Selection for Live Queries over Linked Data 177

decentralized cross-domains can be categorized into the following three possible
implementations [4,5].

– Centralized repository or data warehousing approaches collect data directly
from the Web by means of crawling or downloading RDF dumps. The col-
lected data can be preprocessed and is eventually indexed with optimised
data structures for fast and efficient query answering.

– SPARQL endpoint mediation decomposes the query into subqueries that can
be dispatched to respective SPARQL endpoints of the data sources. After
the results are returned, they are assembled and processed by the federator.

– Online query processing or dynamic query processing approaches evaluate
the queries directly over the dereferenced Web content by exploiting the
Linked Data principles or in addition with source selection index structures.
These index structures typically contain a summary about the source content
as opposed to centralized repositories which store the detailed content.

The drawback of centralize approaches is that the full materialized data has to be
crawled and saved beforehand which is a time and resource consuming complex
task. These materialized approaches aim to serve a broad spectrum of users and
scenarios. However, for dedicated applications or a limited number of users, much
unnecessary data is collected. Another disadvantage is that a large part of the data
such as sensor readings or microblog posts are constantly at change [18] and in-
dex maintenance becomes a very challenging task. Hence, querying against local
snapshots defies the possibility of retrieving latest results. The configuration of
SPARQL endpoint mediation requires data sources offering a SPARQL endpoints.
However, at current stage,most data sources do not have a full SPARQLprocessing
capability. Moreover, one goal of Linked Data is to alleviate the burden of build-
ing sophisticated query engines for publishing semantic data. The last group of ap-
proaches is a compromise of thefirst two. It simultaneously supports dynamicquery
processing and requires no complicated query capability from the data source.

The scope of this paper is to investigate an adaptive source selection approach
for the last scenario. We propose to store information about a source based on
frequent query patterns mined from query logs. This dynamic approach adap-
tively tailors the indexed information to the previous user queries as opposed to
state-of-the-art source selection approaches which neglect the query history and
index information based on fixed heuristics or on characteristics of the data set.
In detail, we contribute to this line of research in the following aspects:

1. We consider the problem of source selection from a different angle. Starting
from query logs, we mine frequent BGPs that potentially increase the overall
performance gain.

2. Compared to previous work [5,6], we extend the index capability from triple
patterns and one-join patterns to tree-shape BGPs, which results in a further
reduced number of relevant sources.

3. We include a detailed empirical study on the efficacy of our approach. We
show summaries of mined BGPs considerably reduced the relevant sources
estimated. Furthermore, it demonstrated better effectiveness over complex
queries.

178 Y. Tian, J. Umbrich, and Y. Yu

This paper is structured as follows. First, we give an overview of our approach
and explain the concepts in Section 2. Following that, in Section 3 we propose a
framework for summarizing source information. And in Section 4 we discuss how
frequent patterns can be mined. Section 5 introduces our source selection algo-
rithm. Empirical studies and analysis are given in Section 6. Finally, Section 7
reviews related work and Section 8 concludes our work.

2 Overview of Source Selection

This section introduces our approach for an efficient execution of SPARQL
queries over (online) Web data with an adaptive source selection index based
on frequently appearing graph pattern. In our approach, we exclusively focus on
the evaluation of SPARQL queries consisting of only basic graph pattern. Consid-
ering that SPARQL query language is based on graph pattern matching, more
complex SPARQL graph patterns can be decomposed into 5 types of smaller
graph patterns: Basic Graph Patterns, Group Graph Patterns, Optional Graph
Patterns, Alternative Graph Pattern and Patterns on Named Graphs [16]. As
the fundamental building block of these pattern types is the Basic Graph Pat-
tern (BGP) and extending our approach to full SPARQL queries is left as future
work. As in Definition 1, a BGP is basically a set of connected triple patterns
to which a solution binds a statement.

Definition 1 (Triple Pattern & Basic Graph Pattern). A triple pat-
tern tp is an RDF triple (s,p,o) with each component being a variable, a
resource or a literal. A basic graph pattern bgp is a set of triple patterns
(bgp = {tp1, tp2, tp3, ..., tpn}).

Query answering over a set of BGP is straight forward by combining the solution
bindings for the BGPs to give the final results. In most of the SPARQL query
engines, graph pattern matching problems are solved by joining the triple bind-
ings. The same strategy applies to live SPARQL query engines in a distributed
scenario except that bindings are evaluated over the dereferenced content of
selected source. The bottle neck of these query engines lies in network band-
width and latency. This signifies the importance of source selection as it reduces
network round-trips and hence the cost of query execution.

A prevalent way to discard irrelevant sources is to generate data summaries [5].
When data is crawled from its sources, source information is calculated and
saved. In this paper, we propose a more sophisticated approach which maintains
source summaries for a set of mined frequent subgraph patterns from query logs
that later could be taken to enhance source selection.

2.1 Query Relevant Sources

The evaluation of SPARQL queries over the Web requires to evaluate the queries
directly over the retrieved content of Web sources. Ideally, one would like to

Enhancing Source Selection for Live Queries over Linked Data 179

PREFIX foaf:<http://xmlns.com/foaf/0.1/>
PREFIX identica:<http://identi.ca/>
PREFIX sioc:<http://rdfs.org/sioc/ns\#>

SELECT ?x ?y
WHERE {

?y foaf:accountProfilePage identica:robmyers .
?y foaf:accountName "robmyers" .
?x sioc:follows ?y .

}

Query 1.1. People following robmyers

foaf:
accountProfilePage

sioc:follows

foaf:
accountName

Identica:robmyers

?y

robmyers

?x

Fig. 1. Visualization of Query1.1

retrieve only sources which directly contribute query solutions. Thus, query rele-
vant sources for a BGP is defined as the set of sources which can answer the given
query. Next, we formally define the set of query relevant sources with solution
bindings as defined in [16].

Definition 2 (Relevant Sources). Denote the binding of triple pattern tpi
under solution μ : g !→ G as μ(tpi) where G is the set of all statements in
data graph. Sg(μ) =

⋃
tpi∈g s(μ(tpi)) is called the relevant sources of solution

μ with s(·) denoting the sources where bindings can be retrieved. Furthermore,
S(g) =

⋃
μi|=g Sg(μi) where μi |= g means μi is a solution to g.

2.2 Source Selection

The source selection task is to select for a given query the query relevant sources.
More formally, the source selection for a BGP g is the process of estimating
S(g). There exist various approaches and methods to estimate the set of query
relevant sources. Basically, the source selection task can be done before the query
execution and/or during the query execution (e.g., source selection for triple
patterns). The former method is the preferred ones since the query relevant
sources can be fetched efficiently in a parallel manner and sources containing
redundant information can be eliminated. A straight forward solution is to use an
approach that materializes and stores RDF statements and their corresponding
sources. However, as we have already pointed out, these approaches required a
significant amount of disk space given the size of the Web (number of sources)
and the infinite set of BGPs. In addition, given the dynamic nature of Web
documents, the materialized source selection approach has to face against the
problem of index maintenance. Further, the source selection can falsely select
query relevant sources if the index is not up-to-date. Solutions trying to overcome
the resource requirements and the maintenance problems store only a proportion
which require much less storage resources and are easier to maintain. However,
in this way source selection potentially increases the number of false positives
but we seek to reduce them.

Example 1. Let us consider Query 1.1 – a BGP query generated from our dataset
– and its query graph as shown in Fig. 1. The query asks for the people who follow
a person with an account name of ”robmyers” and an identica profile page. Let us

180 Y. Tian, J. Umbrich, and Y. Yu

Table 1. Solution bindings for example query Query 1.1

?x ?y S(μi)

http://identi.ca/robmyers/foaf
μ1 user:47287 user:1108

http://identi.ca/jargon/foaf

http://identi.ca/robmyers/foaf
μ2 user:9577 user:1108

http://identi.ca/mattl/foaf

assume that the execution of the query results in two answers {μ1,μ2} as shown in
Table 1. In addition, Table 1 contains the URIs of the query relevant documents
for the two answers (cf. column S(μi)). We have three documents which are query
relevant. The first solution comes from http://identi.ca/jargon/foaf and
http://identi.ca/robmyers/foaf while http://identi.ca/mattl/foaf and
http://identi.ca/robmyers/foaf form the second solution. An ideal source
selection would only estimate the three as source relevant.

3 Summarizing Source Information

Our source selection approach operates over an approximated index of graph pat-
terns and their list of relevant sources. In addition, our index structure adaptively
optimizes the accuracy and required space of the source selection by consider-
ing frequent query patterns and disregarding rare patterns. Initially, we start
to summarise and index sources by simple triple patterns. The purpose of this
approach is to overcome the cold start problem and we do not require any knowl-
edge about complex index graph patterns. However, performing source selection
only with triple patterns introduces a significant amount of false positives. With
our adaptive mining approach we decrease the false positive selection ratio and
further reduce the number of estimated query relevant sources significantly by
summarizing sources based on patterns consisting of more than a single triple
pattern. We get these complex query patterns from a frequent subgraph mining
process over a set of known and/or executed queries. Our approach can be classi-
fied as an adaptive self-tuning approach. The source selection index self tunes its
index patterns based on the query load of the past and thus adapts to the most
frequent executed query types which is in most scenarios cannot be estimated.

We do not focus on the best possible data structure to index and search the
query patterns. In contrary, we focus entirely on the mining parts of pattern
and optimisation of the source selection. Thus, the only requirement for the
underlying index structure is to support the following atomic operations:

– lookup : Given a BGP g, return its relevant sources S(g);
– put : Add an entry pair (g,S(g)) to the index. If key g exists, it will be

overwritten with the new entry;
– remove : Remove an entry in the index.

These operation are the basic operation for a key/value store. The lookup op-
eration is a basic requirement enabling to retrieve pre-calculated summaries.

Enhancing Source Selection for Live Queries over Linked Data 181

Leveraging this operation, our approach also supports the approximation of other
BGPs whose entries do not exist as information of related patterns is needed.
The detailed algorithm will be introduced shortly afterwards in Section 5. The
put operation adds new entries to the index or overrides the values for existing
keys. The remove operation is necessary to delete stale information from the
index.

We use string values as the key values for the index structure. Each key is
a mapping of a basic graph pattern p to a unique minimum depth-first-search
(DFS) code by applying a mapping function h(p). These mapping function h(p)
regards two isomorphic query graphs the same due to their identical semantics.
Our concrete implementation of the function is based on the graph encoding
technique proposed in gSpan [19] called DFS lexicographic order.

Generate DFS Subscripting. Following the path each node is visited in the
depth-first search algorithm, a DFS tree can be constructed. We denote the
node assigned with subscription i denoting the order it is for the first time
discovered as vi. vi is discovered before vj if i < j. The process slightly differs
from [19] that we make the search following the edge directions due to the
fact that SPARQL BGPs are directed graphs.

Identify Forward and Backward Edges. The triple pattern that connects
nodes vi and vj with i < j is denoted as (i, ·, j). If i < j, it is called a
forward edge. Otherwise, it is a backward edge.

Assign an Linear Order ≺ to Edges. For two triple patterns tp1 = (i1, ·, j1)
and tp2 = (i2, ·, j2), the order satisfies the following conditions: (a) if i1 = i2
and j1 < j2, e1 ≺ e2; (b) if i1 < j1 and j1 = i2, e1 ≺ e2; (c) if e1 ≺ e2 and
e2 ≺ e3, e1 ≺ e3.

DFS Code. We rank all triple patterns in the given BGP by order ≺ and build
the sequence (tpi), i.e. all triple patterns in (tpi) subject to tpi ≺ tpi+1.
Each DFS tree t of a BGP g has a different such sequence so we denote it as
DFSC(g, t). Each element (i, ·, j) in DFSC(g, t) can be written as a 5-tuple
(i, j, li, p(i,j), lj), where li and lj are the resource, variable or literal of nodes
vi and vj and p(i,j) is the predicate of the corresponding triple pattern. All
resources, literals and variables are represented as their string format in [13].

DFS Lexicographic Order. The DFS Lexicographic Order builds an linear
order between two DFS codes DFSC(gx, tx) = (x1, x2, ..., xn) and DFSC
(gy, ty) = (y1, y2, ..., ym). Assume the forward edge set and backward edge set
for tx and ty areEx,f ,Ex,b, Ey,f andEy,b. In this order,DFSC(gx, tx)≺DFSL

DFSC(gy, ty) iff either of the followings holds true.
1. there exists t, 0 ≤ t ≤ min{m,n}, we have xk = yk for k < t, and
xt <c yt;

2. xk = yk for 0 ≤ k ≤ m and n ≥ m.
The order <c above is a relationship between two elements in DFS code
sequence x = (ix, jx, lix , l(ix,jx), ljx) and y = (iy, jy, liy , l(iy,jy), ljy). One of
the following conditions holds if x <c y.

182 Y. Tian, J. Umbrich, and Y. Yu

1. x ∈ Ex,b, and y ∈ Ey,f .
2. x ∈ Ex,b, y ∈ Ey,b, and jx < jy.
3. x ∈ Ex,b, y ∈ Ey,b, jx = jy , and l(ix,jx) < l(iy,jy).
4. x ∈ Ex,f , y ∈ Ey,f , and iy < ix.
5. x ∈ Ex,f , y ∈ Ey,f , ix = jy, and lix < liy .
6. x ∈ Ex,f , y ∈ Ey,f , ix = jy, lix = liy , and l(ix,jx) < l(iy,jy)
7. x ∈ Ex,f , y ∈ Ey,f , ix = jy, lix = liy , l(ix,jx) < l(iy,jy) and ljx < ljy .

The test of graph isomorphism is proven to be an NP problem [11]. If we can
further restrict the patterns mined as tree-shape BGPs, the complexity can be
reduced. The encoding of labeled tree into string is thoroughly investigated by
many works [17,14,3] and it can be done in O(n) time.

With the function mentioned above, we can employ any existing dictionary
structures as our index. It can be shown that they satisfy the requirements above.
We only consider an inverted-index in our implementation. The inverted index
can be viewed as a function I mapping from a string to a set of sources. The
result of I(h(p)) = S(g) represents all relevant sources for BGP p.

Ideally, the index should contain all summaries for all BGPs allowing a precise
estimation of the minimum set of query relevant sources. Unfortunately, on a
Web scale and given the openness it is infeasible to pre-calculate and store for
all BGPs. Thus, we apply a frequent subgraph mining algorithm to detect the
most frequent appearing query graph pattern. Thus, the required disk space can
be kept to a minimum and the system is adaptively optimised based on the
posed and expected user queries.

4 Mining Frequent BGPs from Query Logs

We employ existing work in frequent pattern mining (FPM) to find promising
patterns to summarize the information of sources. Our assumption is that the
summary of sources based on BGPs —that are frequently contained as subgraphs
in queries— allows an efficient selection of a set of query relevant sources. We
adaptively mine the frequent appearing BGPs directly from the query logs and
thus tailor the source summary for the prominent user queries. We model the
query log as a set Q = {g1, g2, ..., gn} of BGPs. Further, we assume that complex
queries can be decomposed into several BGPs in Q. Frequency is represented in
terms of support(g), the number of graphs in a set that contain g as a subgraph.

We extend the gSpan algorithm by using a different breadth-first search (BFS)
strategy. The skeleton of gSpan is shown in [19]. It tries to output all frequent
patterns with a minimum support min freq from query set Q. Algorithm 1
shows the details of our extended algorithm. The underlying assumption is that
a sub-pattern g′ of frequent pattern g is also frequent and thus, search algorithms
can be used to derive frequent patterns from already known ones. Starting from
triple patterns, the algorithm iteratively extends the set of frequent patterns E
by either adding a new triple pattern or substituting a variable with a resource
that binds to it. The for-loop on Line 9 performs the former operation while

Enhancing Source Selection for Live Queries over Linked Data 183

Line 12 performs the latter. Though our search strategy differs from gSpan, we
use the same DFS lexicographic order detailed in Section 3 to perform graph
isomorphism tests.

Algorithm 1. Mining Frequent Query Pattern

input : min freq : minimum support; Q : query log in the form of a BGP set
output: The set of frequent BGPs

1 E ← ∅
2 H ← empty heap
3 forall the q ∈ Q do
4 forall the tp ∈ q do
5 if support({tp}) ≥ min freq and g′ = {tp} �∈ E then
6 E ← E ∪ {g′}; Insert g′ into H

7 while H is not empty do
8 g ← pop H
9 if g has a smaller number of nodes than maxsize then

10 forall the g′ = g ∪ {tpi} not in E with support(g′) ≥ min freq do
11 E ← E ∪ {g′}; Insert g′ into H

12 forall the variable x that appears in g do
13 g′ ← substitute a variable x in g with a possible binding
14 forall the support(g′) ≥ min freq do
15 E ← E ∪ {g′}; Insert g′ into H

16 return E

If we further assume the distribution of frequent patterns changes over time,
this process should be done online. The entries of stale BGPs should be removed
and fresh entries should be added. Performing FPM on data streams has also
been investigated in [15,12]. The problem of FPM over data streams is subject
to further studies but we will not cover this in this paper.

5 Selecting Sources from Summaries

In dynamic query engines, the atomic access to a data source is a deference
to a URI, which yields a set of statements. The statements which bind to a
triple in the queried BGP are joined to form the final result set. Let us denote
Sg(g′) =

⋃
μi|=g Sg′(μi). It suffices to calculate all relevant sources of all triple

patterns under g’s solution, i.e. Sg(tpi) for all tpi ∈ g.
Given that summaries of relevant sources are generated and indexed, they can

be used in source selection. Here we define sub-BGP as follows.

Definition 3. g1 is called a sub-BGP of g2 if any of the following conditions
satisfies:

184 Y. Tian, J. Umbrich, and Y. Yu

1. g1 is isomorphic to a graph g′ and g′ is a subgraph of g2;
2. g1 can be transformed to g2 by replacing some resources or literals with vari-

ables;
3. There exists a g′ such that g1 is a sub-BGP of g′ and g′ is a sub-BGP of g2.

We denote this sub-BGP relation as g1 � g2.

sioc:follows

foaf:
accountName

?y

robmyers

?x

sioc:follows

?p

?y

?o

?x

(a) BGP ga (b) BGP gb

Fig. 2. An example of sub-BGP

An example of sub-BGPs is given in Fig. 2. Both BGPs ga and gb are sub-BGPs of
our example query shown in Fig. 1, denoted as gc. We can check ga is isomorphic
to a subgraph in gc, which demonstrates how condition 1 in Definition 3 is
applied. ga can be transformed to gb by replacing foaf:accountName with ?p
and “robmyers” with ?o so according to condition 3, ga is a sub-BGP of gb.
Finally, according to condition 3, ga � gb and gc � ga gives gc � gb.

Based upon the following theorem, relevant sources of the triples in a BGP
can be reduced using summaries of its sub-BGPs.

Theorem 1. If g′ � g, it holds that Sg(g′) ⊆ S(g′).

Proof. We first prove that if g′ � g it holds μi |= g′ for any μi |= g. In plain
text, this means g’s solution will also be a solution to g′. For a solution μ of g,
all tpi ∈ g′ are in μ’s domain and mapped to a statement. μ is consequently also
a solution of g′. So that we have

Sg(g′) =
⋃

μi|=g

Sg′(μi) =
⋃

μi|=g

⋃
tpi∈g′

s(μ(tpi))

⊆
⋃

μi|=g′

⋃
tpi∈g′

s(μ(tpi)) =
⋃

μi|=g′
Sg′(μi) = S(g′)

According to Theorem 1, the solution bindings of a triple pattern in a BGP only
exist in the relevant sources of its super-BGPs. When calculating relevant sources
for p, all summaries of its sub BGPs can be leveraged to reduce the target set
size. Following this idea, our algorithm of generating candidate sources is shown
in Algorithm 2.

Enhancing Source Selection for Live Queries over Linked Data 185

Algorithm 2. Approximate Relevant Sources

input : g :target BGP
output: The estimation of S(g)

1 Q ← all triple patterns in g
2 E ← {}
3 while Q is not empty do
4 p ← pop head of Q
5 forall the p′ that extends p with an additional triple (?s, ?p, ?o) and p′ � g

do
6 if p′ �∈ E and p′ is indexed then
7 push p′ to Q’s tail; E ← E ∪ {p′}

8 forall the p′ that substitute a variable in p with a resource, a literal do
9 if p′ �∈ E and p′ is indexed then

10 push p′ to Q’s tail; E ← E ∪ {p′}

11 forall the tpi ∈ g do
12 C[tpi] ← S({tpi})
13 forall the g′ ∈ Q do
14 forall the tpi ∈ g′ do
15 C[tpi] ← C[tpi] ∩ S(g′)

16 return
⋃

tpi
C[tpi]

The algorithm first finds all sub-BGPs of the specified BGP g. This process
can be done by a Breadth-First-Search (BFS) starting from triple patterns of g
that iteratively extends existing BGPs to its super-BGPs. All sub-BGPs that are
indexed can be used in estimating g’s sources. Theorem 1 shows that statements
that binds to a triple pattern in g’s solution must also exist in g’s sub-patterns.
The C[tpi] in Algorithm 2 is an upper bound of sources that contribute bindings
to tpi in g’s solution. If a source in C[tpi] is found absent in S(p) where p is a
sub-BGP of g, we can safely remove it from C[tpi]. We will show this process
with an example.

Take the BGP in Fig. 3 for example, which represents a source sum-
mary of Fig. 1. Our query consists of three triples, tp1 =?x sioc:follows

?y, tp2 =?y foaf:accountProfilePage identica:robmyers and tp3 =?y

foaf:accountName "robmyers" If we only consider summaries for triple pat-
terns we calculate the set of query relevant sources as follows: S(g) =

⋃
tpi
S(tpi).

The summary of S(tp1) contains all sources that states the “follow”
relationship. Sources that are not a part of the final solution such as
http://identi.ca/joshuagay/foaf and http://identi.ca/berkes/foaf

will be also considered as relevant. A typical phenome observed for source
selection over triple pattern is that certain predicates (e.g. sioc:follows)
appear in millions of data sources from which many are actually query
irrelevant. But if the summary of the BGP g1 in Fig 1 is available, only
sources with statements conforming to (?x, sioc:follows, user:1108) are

186 Y. Tian, J. Umbrich, and Y. Yu

returned as variable ?y binds to user:1108 in all solutions. Hence S(g1) =
{http://identi.ca/robmyers/foaf, http://identi.ca/jargon/foaf,
http://identi.ca/mattl/foaf} and the final calculation will be
S(g) = (

⋃
tpi
S(tpi)) ∩ S(g) which is the same as S(g). Irrelevant sources

like http://identi.ca/joshuagay/foaf will be abandoned, which in turn
reduces the number of sources accessed.

foaf:
accountProfilePage

sioc:follows

foaf:
accountName

Identica:robmyers

?y

robmyers

?x
tp1

tp2
tp3

g1

Fig. 3. An example of source summary

6 Evaluation

We design benchmarks to evaluate our approach based on a real world data set
crawled from the Web and 5k automatically generated queries. We measure how
different query pattern shapes and summaries improve the effectiveness of the
source selection and query processing.

6.1 Experimental Setup

Our experiment is conducted on a 2.4GHz dual core personal computer running
64-bit Sun Java 6 and Ubuntu Server Linux with 4GB of memory allocated.

The dataset applied in our experiment was crawled from the Web using the
LDSpider [9] framework. It consists of 10,147,442 triples with 1,547,628 re-
sources from 11,250 RDF/XML sources. Its original size in N-Quads [2] format
is 2,126 MB. This dataset represents a typical portion of data interconnected
using Linked Data principles. All experiments are performed on this dump and
queries are also generated based on it.

We perform our experiments on a set of 7054 synthetic BGP queries. These
queries are generated using a breadth-first-search (BFS) query generator. The
generated queries are further separated into four query sets Q(3,2,1), Q(4,3,1)
and Q(4,3,2) respectively with 1193, 1546 and 4315 queries, where Q(x,y,z)
represents a set of queries with x nodes, z of which are resources and x − z
variables, and y edges. Query sets Q(4,3,1) and Q(4,3,2) contain both path and
star queries.

Enhancing Source Selection for Live Queries over Linked Data 187

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

baseline cmplx1 cmplx2 cmplx4 cmplx6 cmplx8

%
Q
ue

rie
s

T>20%

T>40%

T>60%

T>80%

T=100%

Fig. 4. Distribution of T vs. Query sample size

Initially, we build an summary index containing only a mapping of simple
triple patterns and the relevant sources. As a baseline measure , we execute all
our queries using the initial triple pattern index. Concretely, we measure the
precision of the source selection. In the next rounds, we mine frequent appear-
ing query patterns from 20%, 40%, 60%, and 80% of all queries and build the
respective summary indices cmplx2, cmplx4, cmplx6 and cmplx8. We run again
all queries over these indices and measure the fraction of correct estimated query
relevant sources. We show in the following subsection that these additional en-
tries significantly improve source selection in terms of relevant source number.

6.2 Results and Analysis

We mined the most frequent sub queries with a fixed minimum frequency thresh-
old of 0.005 for the FPM algorithms in the first experiment and used different
thresholds for the second experiment. The threshold here represents the low-
est ratio of support(g) over |Q| where Q is the sampled query set for g to be
considered frequent. Thus, the first experiment shows the improvement of the
source selection with increase size of the mined query patterns and the second
experiment shows how different thresholds of the mining algorithm influence the
correctness of the source selection. We measure in both experiments for each
benchmark round the fraction of correctly selected sources as query relevant
(true positives). Hence, we define T = E

R as the true positive ration, where E is
the number of relevant sources estimated using Algorithm 2 and R is cardinality
of S(g), which is the actual number of related sources. A value of “1” denotes
the desirable behaviour in which all selected sources contribute solution bindings
to the given query.

The results of the first experiment are presented in detail for each query
class in Fig. 5 and the aggregated values over all queries in Fig. 4. In detail,
Fig. 4 depicts on the x-axis the different summary indexes and on the y-axis
the percentage of queries with a T value greater than a certain threshold. The
curve with label T>20% shows the percentage of queries whose T value is greater
than 20 and the one with T >80% the percentage of queries with T > 80%, etc.
We show the benchmarks for each query class and over all queries, respectively.

188 Y. Tian, J. Umbrich, and Y. Yu

In addition, Fig. 5 shows the average T value on the y-axis over each query sets
on various query log sizes.

From Fig. 4, we see that slightly more than half of queries have the desired
accurate source estimation in the baseline index and improves to up to 70% if we
use 80% of all queries for our mining task. In addition, we can see by comparing
the curves in Fig. 5 of different query set that queries with higher expressivity
benefit more from our approach than queries with lower complexity.

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

baseline cmplx1 cmplx2 cmplx4 cmplx6 cmplx8

T

Q(3,2,1)

Q(4,3,1)

Q(4,3,2)

Overall

Fig. 5. T vs. Query sample size

The figure shows T draws close to 1 as the percentage of queries sampled
increases. From Fig. 5, we see only slightly more than half queries have accurate
source estimation in the baseline index. This number climbs to more than 70%
after 80% of the queries are used in FPM. The average T increases 33% for
query set Q(4,3,1), 25% for query set Q(4,3,2) and 18% for query set Q(3,2,1).
It proved our hypothesis that queries with higher expressivity benefit more from
our approach.

Table 2 shows, in addition, the on disk size of our different summary indices.
We can see that the additional space requirement is small compared to the
improvement in the source selection of the query processing.

Table 2. Index Size for different size of query logs

baseline cmplx 1 cmplx 2 cmplx 4 cmplx 6 cmplx 8

Index Size (MB) 801 814 906.5 989 1040 1098

The second experiment evaluates how the threshold for the frequent subgraph
mining algorithm influences the accuracy of the source selection and the space
requirements of the summary index. We fix the sample rate to 50% of all gen-
erated queries and build different indices based on the patterns mined with the
following thresholds: f50 = 0.005, f20 = 0.002, f10 = 0.001, f5 = 0.0005 , f2 =
0.0002 and finally f1 = 0.0001. A lower thresholds relates to a lower frequency of
patterns and thus, selects more candidates for the frequent pattern mining which
potentially leads to more mined patterns. Whereas, a higher value normally leads
to the mining of less patterns.

Enhancing Source Selection for Live Queries over Linked Data 189

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

baseline f50 f20 f10 f5 f2 f1

T

Q(3,2,1)

Q(4,3,1)

Q(4,3,2)

Overall

Fig. 6. T vs. FPM threshold

Table 3. Index Size for different mining thresholds

baseline f50 f20 f10 f5 f2 f1

Index Size (MB) 801 813 910 949 975 1027 1047

Fig. 6 shows the aggregated result of our benchmark. The x-axis again shows
the different index versions and the y-axis the average success selection ratio T for
the different query classes. We can observe some interesting results. A threshold
of 0.0005 (cf. f5 in Fig. 6) shows for practically all query classes the best source
selection accuracy (beside the query class Q(4,3,2)). We measures a decrease in
the accuracy of the source selection for values either smaller or higher than this
particular threshold. Higher threshold is biased towards complex patterns which
contributes to a less number of queries though being more accurate for a single
query.

Table 3 shows the required space consumption for the summary index for
different mining thresholds. Clearly, the size grows as the threshold value de-
creases and more patterns are indexed. Compared with the T values in Fig. 6,
we show that larger index size and more indexed patterns does not necessarily
imply better results for source selection, which emphasizes the importance of a
sophisticated strategy to mine those patterns that can better help the source
estimation.

7 Related Work

Traditional query execution over Linked Data considers the data sources in the
Web of Data fixed and known beforehand. O. Hartig et al [7,6] proposed a
new query execution paradigm which assumes data sources are dynamic and
unknown. In this paradigm, queries are locally processed in contrast to the tra-
ditional paradigm where queries are decomposed and dispatched.

O. Hartig [8] also discussed the application of hash tables to index relevant
information in main memory. It is served to support link traversals in their new

190 Y. Tian, J. Umbrich, and Y. Yu

query execution paradigm. Our work use a similar data structure as the index.
But we extend the capability of the index to support complex BGPs which can
further reduce the number of relevant sources.

Following this line of thought, A. Harth et al. [5] proposed to use Q-tree as the
index structure to store and index approximate descriptions about data sources.
The problem of source selection are reduced to spatial queries over the Q-tree.
Their approach aims at source selection for triple patterns and joined patterns.
There exist two disadvantages. Firstly, the performance of this approach is sen-
sitive to sparsity of data points which is highly correlated to the design of the
hash function. However, the authors give no details about the hash function
used. Secondly, selectivity of joined patterns with two or more steps are not
considered to reduce the number of sources. We will come to this point later.

G. Ladwig [10] compared the two approaches above and categorized the former
as Bottom-Up Query Evaluation and the latter as Top-Down Query Evaluation.
It is reported in empirical results that the top-down evaluation demonstrated
better performance over the bottom-up approach. The performance gain never-
theless needs prior knowledge of relevant sources. Our approach focuses on the
top-down approach.

8 Conclusion and Future Work

We presented an approach of selecting relevant sources for query evaluation over
Linked Data leveraging query log to enhance query performance. Frequent BGPs
are mined from query log to guide building source summaries. We showed by
empirical result our approach improves source selection by reducing the number
of access to data sources close to the minimum value. We also analyzed the effect
of FPM threshold over the size of estimated sources. Our experiment results also
reveal that complex queries with higher expressivity benefit more significantly
than simple queries.

There also lefts large space of extending our approach and analyzing related
aspects. Ranking of relevant sources can be considered to reduce the time retriev-
ing top-k results. Management of updates to index entries should be analyzed
to embrace changes of data sources. Mining query streams dynamically further
assumes possible changes in query patterns. These related topics are valuable
future work.

References

1. Berners-Lee, T.: Linked Data - Design Issues,
http://www.w3.org/DesignIssues/LinkedData.html

2. Cyganiak, R., Harth, A., Hogan, A.: N-Quads: Extending N-Triples with Context
(2009), http://sw.deri.org/2008/07/n-quads/

3. Deo, N., Micikevicius, P.: A new encoding for labeled trees employing a stack and
a queue. Bulletin of the Institute of Combinatorics and its (2002)

http://www.w3.org/DesignIssues/LinkedData.html
http://sw.deri.org/2008/07/n-quads/

Enhancing Source Selection for Live Queries over Linked Data 191

4. Haase, P., Mathaß, T., Ziller, M.: An evaluation of approaches to federated query
processing over linked data. In: Proceedings of the 6th International Conference
on Semantic Systems, pp. 1–9. ACM (2010)

5. Harth, A., Hose, K., Karnstedt, M., Polleres, A., Sattler, K., Umbrich, J.: Data
summaries for on-demand queries over linked data. In: Proceedings of the 19th In-
ternational Conference on World Wide Web, pp. 411–420. ACM, New York (2010)

6. Hartig, O.: Zero-Knowledge Query Planning for an Iterator Implementation of Link
Traversal Based Query Execution. In: Antoniou, G., Grobelnik, M., Simperl, E.,
Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I.
LNCS, vol. 6643, pp. 154–169. Springer, Heidelberg (2011)

7. Hartig, O., Bizer, C., Freytag, J.: Executing SPARQL Queries over the Web of
Linked Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard,
D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309.
Springer, Heidelberg (2009)

8. Hartig, O., Huber, F.: A main memory index structure to query linked data. In:
Proc. of the 4th Int. Linked Data on the Web (2011)

9. Isele, R., Umbrich, J., Bizer, C.: Ldspider: An open-source crawling framework for
the web of linked data. In: Internaitional Semantic Web Conference 2010, pp. 6–9
(2010)

10. Ladwig, G., Tran, T.: Linked Data Query Processing Strategies. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer,
Heidelberg (2010)

11. Lubiw, A.: Some NP-complete problems similar to graph isomorphism. SIAM Jour-
nal on Computing (1981)

12. Manku, G., Motwani, R.: Approximate frequency counts over data streams. In:
Conference on Very Large Data Bases (2002)

13. Manola, F., Miller, E.: RDF Primer, http://www.w3.org/TR/rdf-syntax/
14. Neville, E.: The codifying of tree-structure. Proceedings of Cambridge Philosoph-

ical, 381–385 (November 1953)
15. Ng, W., Dash, M.: Discovery of Frequent Patterns in Transactional Data Streams.

Transaction on Large-Scale Data-and Knowledge-Centered Systems, 1–30 (2010)
16. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF,

http://www.w3.org/TR/rdf-sparql-query/

17. Prüfer, H.: Neuer beweis eines satzes über permutationen. Archiv für Mathematik
und Physik (1918)

18. Umbrich, J., Hausenblas, M., Hogan, A., Polleres, A., Decker, S.: Towards dataset
dynamics: Change frequency of linked open data sources. In: 3rd International
Workshop on Linked Data on the Web (LDOW 2010), in Conjunction with 19th
International World Wide Web Conference, CEUR (2010)

19. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. Order a Journal
on the Theory of Ordered Sets and its Applications (2002)

http://www.w3.org/TR/rdf-syntax/
http://www.w3.org/TR/rdf-sparql-query/

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 192–209, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Semantic Caching for Semantic Web Applications*

Mengdong Yang1 and Gang Wu2

1 Southeast University
mdyang@seu.edu.cn
2 Northeastern University

wugang@ise.neu.edu.cn

Abstract. Data caching is one of the directions for improving the performance
of data management systems with reasonable space overhead based on the
spatial/temporal locality principle. The intrinsic rich semantics in the Semantic
Web applications makes it possible to design meaningful semantic level
caching schemes beyond low level individual triples caching and specific
application objects caching. In this paper, we propose a caching scheme that
captures the semantics originated from both SPARQL query and RDF data. The
scheme applies two caching approaches: the SPARQL algebra expression tree
based caching and the entity caching. It can efficiently improve the
performance of query evaluations that have massive join operations and
identical sub-queries between successive queries. Evaluation results on three
mainstream RDF benchmarks and one comparison system are provided to
illustrate the effectiveness and efficiency of our approach.

Keywords: RDF, AET based Caching, Entity Caching.

1 Introduction

The Semantic Web has become a Data Web by specifying explicit semantics to
information so as to make the data understandable by both human and software
agents. Resource Description Framework (RDF) is the model that defines the syntax
for data interchange in the Semantic Web. It has a more flexible expressiveness than
the relational data model while increasing the complexity of data processing,
especially in large scale. There already has been billions (B) of RDF triples on the
Semantic Web, and many of them are frequently accessed (e.g. UniProt 1 has
approximately 1.5B triples). Therefore, efficiently processing large scale RDF data
becomes an urgent task in the field of Semantic Web data management.

* Gang Wu is partially supported by the National Natural Science Foundation of China under

grants 60903010, 61025007 and 60933001, the National Basic Research Program of China
under grant 2011CB302206, the Natural Science Foundation of Jiangsu Province under grant
BK2009268, and the Key Laboratory of Advanced Information Science and Network
Technology of Beijing under grant XDXX1011.

1 http://www.uniprot.org/

 Semantic Caching for Semantic Web Applications 193

RDF data can be seen as entity-relation (E-R) graphs with directed labeled edges
corresponding to <subject, predicate, object> triples (a.k.a. <subject,property, value>
triples). For example, the fact that product1 with label “label1” is produced by
producer1 could be expressed as two triples <product1,label, “label1”> and
<product, producer, producer1>, where product1 and producer1 are URIs that
identify unique entities, and “label1” is the literal representing the label. If someone
wants to query products and their corresponding labels and producers, she/he can
write a query by specifying a graph pattern like following with SPARQL query
language:

Query 1. Select the products, their labels and producers.
SELECT ?product ?p ?l
WHERE{ ?product producer ?p .

?product label ?l }

Here, a graph pattern consists of one or more triple patterns, which are delimited by
period delimiter “.”. Identifiers starting with question mark “?” are variables, the
values of which are to be determined during query evaluation. A join on
?product=?product is required in order to find out triples with variable “?product”
appearing as subject in both triple patterns <?product, producer, ?producer> and
<?product, label, ?label>. In practice, a SPARQL query may contain many more
triple patterns, hence a considerable number of joins needs to be issued during the
evaluation, which makes it a hard work. In order to speed up query processing, typical
DB techniques like index structures, query optimizations, and parallelization are well
studied and utilized in mainstream RDF data management systems (e.g. Sesame [1],
Jena [2, 3], Virtuoso [4], RDF-3X [5], YARS2 [6], Oracle’s RDF_MATCH [7]).

As we know, data caching scheme is another direction for improving the
performance of data management systems with reasonable space expense based on the
spatial/temporal locality principle. It has been widely developed in the field of DB
and DB-based Web 2.0 applications. There are three kinds of caching granularity
[15], i.e. page level, tuple level, and semantic caching. Since data are usually
organized to pages on the disk, designing a page level caching is intuitive but may be
insensitive to the physical distribution of the data. Although the finest granularity
level, tuples caching, can avoid bad data clustering problem, it will produce more join
operations. Semantic caching is believed to have better performance than the others
[15, 16], which embeds semantic information about the queries and data.

Related Work

Few of the above RDF data management systems concentrate on RDF data caching
design. As for Semantic Web applications, there are only a few researches on the very
similar topic. In [10], an approach is proposed to materialize path expressions like
<book, author, someone>, <someone, wasBorn, ’1860’> to a form like
book.author:wasBorn=’1860’. Oracle’s RDF_MATCH system[7] implements generic

194 M. Yang and G. Wu

materialized join views to avoid self-join of triple table. RDF_MATCH also applies
subject-property matrix materialized join views to minimize the query processing
overheads that are inherent in the canonical triple based RDF representation. Roger
Castillo implemented RDFMatView [13] that materialized frequent join patterns
based on analysis of SPARQL queries. However, materialized join view isn’t a
caching scheme after all because it doesn’t have a replacement principle.

To the best of our knowledge, the most relevant work in the Semantic Web is [9]
where Michael Martin et al. introduced a proxy cache layer between web application
and RDF repository. Both triple level query result caching and application object
caching are employed. The caching scheme gets a good result on Berlin SPARQL
Benchmark (BSBM). Considering the intrinsic rich semantics in the Semantic Web
applications, it is possible to design more meaningful semantic level caching schemes
beyond low level individual triples caching and specific application objects caching.

Contributions

In this work, we propose a caching scheme that effectively improves the query
evaluation performance of complex SPARQL queries over very large RDF graphs. In
order to better serve SPARQL query evaluations, the caching scheme is designed to
have a semantic level granularity which can capture the semantics originated from
both SPARQL query and RDF data. The contributions of this paper include:

i. We developed a robust and efficient approach that caches intermediate query
results based on the SPARQL Algebra Expression Tree. Query identification
and intermediate result serialization methods are described to explain how
such kind of query caching speeds up the evaluation of SPARQL queries
with similar sub-queries.

ii. We also propose an entity caching approach, which aggregates triples of the
same entity according to the ontology. This approach reduces star-shaped
joins during query evaluation phase and brings significant performance
improvement.

iii. We implement these caching schemes on Sesame RDF framework.
Benchmark evaluation results are provided to illustrate the effectiveness and
efficiency. Comparisons with prior related work are made as well.

The rest of this paper is organized as follows. In section 2, we present necessary
concept definitions. Section 3 delivers the mechanism of our caching schemes (both
SPARQL Algebra Expression Tree based caching and entity caching). In section 4,
details of the system implementation are given. In section 5, we present the evaluation
result of query performance on LUBM, SP2Bench and BSBM. Analysis is given as
well to illustrate the feasibility and effectiveness of our system. Finally, we conclude
this paper and give some possibilities of the future work.

 Semantic Caching for Semantic Web Applications 195

2 Preliminaries

2.1 Notions and Definitions

RDF is a data model proposed for the Semantic Web where data are graph-structured.
An RDF graph is a directed graph with labeled nodes and edges, in which the basic
unit is RDF triple. Definition 1 gives the formal definition.

Definition 1. Assume U is the set of URIs, B the set of blank nodes and L the set of
literals. Triple (, , (((is called an RDF triple.

Here, s (subject) represents an entity, while p (predicate) specifies a property of the
entity and o (object) the property value. All subjects and objects constitute the
vertices of an RDF graph and predicates the edges.

SPARQL is a pattern matching-based RDF query language recommended by W3C.
Definitions of triple pattern and basic graph pattern are provided as follows.

Fig. 1. AET of Query 1

Definition 2. Assume V is an infinite set of variables disjoint from U, B, and L. Then
a triple (, , (((is a triple
pattern.

Definition 3. Assume , , … , (1 are all triple patterns, then set , , … , is a Basic Graph Pattern.
In a basic graph pattern (BGP) SPARQL query, one or more triple patterns are

given to specify the graph pattern. During the evaluation phase, a query engine
searches the RDF graph for sub graphs that match the graph pattern and returns them
as query results. Besides triple selection, BGP also issues Join and Projection.

Definition 4. Assume and are two triple patterns in one graph pattern, then a
Join (, , occurs if and only if a variable v appears in both
and (as any of s, p and o).

Definition 5. Given a set of binding names N, then the Projection of a binding B with
binding names N on binding names Np is , | .

Definition 6. Given a SPARQL query Q, then an expression E = (P, O) is the Algebra
Expression (AE) for evaluating Q, where P is the set of triple patterns and O the set
of operations to be executed during query evaluation. In a basic graph pattern
SPARQL query Qb, the corresponding AE is (, , where J is the set of
join operations and Pr the set of projection operations.

196 M. Yang and G. Wu

For instance, Query 1 has the corresponding AE: ((? , , , ? , Name, ? , ? , ?
Obviously, AE can be organized in a tree shaped structure. Hence, we also call

such a tree corresponding to the AE an Algebra Expression Tree (AET). The AET of
Query 1 is shown in Fig. 1.

Leaf nodes (identified by rectangle) in an AET are always triple selection operation
nodes, where a triple selection is performed with the specified triple pattern. Non-leaf
nodes (identified by ellipse) are other operations including join. As projection is
always performed automatically after a node evaluation finish, projections are omitted
in AET. An AET can represent the evaluation process of a SPARQL query. In this
study, we consider only AETs of basic graph pattern SPARQL queries. So AETs
in this paper contain only joins, projections, and triple selections.

2.2 SPARQL Query Evaluation

The evaluation of a SPARQL query is similar to that of a SQL selection-projection-
join query. To evaluate Query 1, an AET shown in Fig. 1 may be generated at query
evaluation phase by query engines e.g. Sesame.

The join order may vary due to the optimization strategy selected and statistics
information provided. For complex basic graph pattern queries, there could be much
more triple patterns specified, which brings more join operations and makes optimal
join ordering a challenge. The tree shown in Fig. 1 is only an example that helps us
describe our caching scheme. Those complex query optimization techniques beyond
the scope of basic graph pattern will not be discussed in this paper.

Once a SPARQL query is translated into an AET, the query engine will perform a
post-order traverse in the tree to ensure that all the sub-AET trees of a node have been
evaluated before evaluating the node itself. Apparently, the output from the root node
is the evaluation result of the query. Such an evaluation process is usually
implemented as a recursion expansion which will not stop until the engine reaches
leaf nodes. The recursion expansion is a top-down process, while recursion reduction
is a bottom-up one.

Since SPARQL queries can be very complex, the recursive evaluation of AET may
be very deep and involving a lot of join nodes in its AET. In real-world Semantic
Web applications, such queries are quite common. As join operations usually have
heavy computation loads and consume a large amount of memory, they are the
temporal/spatial bottleneck of the performance of RDF data management systems,
especially for those dealing with large-scale RDF data.

3 Principles and Mechanism

The advantage of efficiency and flexibility of semantic caching schemes relies on the
semantic description of data and queries maintained [15].The intrinsic expressiveness
of RDF data and SPARQL query language makes it possible to express rich semantics
in Semantic Web applications, and hence to develop reasonable semantic caching

 Semantic Caching for Semantic Web Applications 197

schemes. In this work, our scheme maintains the semantics from two aspects: caching
with the SPARQL algebra expression tree; caching with ontology information.

3.1 AET Based Caching

For Semantic Web data management systems that expose SPARQL endpoints, they
are more likely to face the scenario described as in Berlin SPARQL Benchmark
(BSBM), where a sequence of queries mixed to form a typical query use case.
Therefore, in one query mix, different queries share the partial/whole semantics. By
maintaining the related result of previous queries, a semantic cache has the ability to
speed up the query evaluation of semantically related queries. In this section, we
present an AET query plan based caching scheme that caches intermediate join results
for possible reuse in future SPARQL queries.

To illustrate our approach, we provide a scenario that consists of two successively
issued SPARQL queries that both derived from Query 1.

Query 2.
SELECT ?product ?l ?p ?c
WHERE { ?product label ?l.
 ?product producer ?p.
 ?product comment ?c }

Query 3.
SELECT ?product ?l ?p ?prop
WHERE {?product label ?l.
 ?product producer ?p.
 ?product productProperty ?prop }

Obviously, there are redundant evaluations of triple queries <?product,
producer, ?p> and <?product, label, ?l>, and the join <?product,
producer, ?p> ?product=?product<?product, label, ?l>. It can be easily discovered if we
translate

Fig. 2. AETs of Query 2 and Query 3

198 M. Yang and G. Wu

the queries into AETs. Assume that the two queries have the corresponding AETs
shown in Fig. 2. Apparently, they have a common sub tree as annotated by the line.
The evaluation result of the sub AET is an intermediate query result. If the sub AET
can be detected and its result cached, it will avoid the redundancy.

As can be deduced from the example, more complex queries will lead to more
complex AETs and more sub AET evaluation results to be cached.

The cached sub AET results can be reused if there are identical sub AETs to be
evaluated again. Once the cache is hit, the result of matched sub AET can be directly
accessed, and hence repeated issuing of join can be avoided to saves time. In fact,
queries having common sub AET in their corresponding AETs are very common in
Semantic Web applications. Intuitively, caching the result of common sub AETs can
speed up the evaluation process, thus reduce the temporal and spatial expense of the
application.

Identifying AETs

As we know, there may be several logically equivalent algebraic expressions for a
given query. On one hand, it makes providing query optimization feasible in a query
engine; on the other hand, it makes our caching scheme confront the challenge of
identifying an AET so that the query engine can recognize the identical AET and
reuse the cached result corresponding to it. To solve this problem, we need first define
the equality of two AETs:

Definition 7. Assume RA and RB are the root nodes of two AETs TA and TB. Then we
have:

TA = TB ⇔

 (TA.subj = TB.subj) ∧ (TA.pred = TB.pred)∧(TA.obj = TB.obj)

when (TA is a leaf node) ∧ (TB is a leaf node)

 (TA.leftChild = TB.leftChild) ∧ (TA.rightChild = TB.rightChild)

 when (TA is a join node) ∧ (TB is a join node)
false otherwise

As the equality relation has a recursive definition, we thus obtain a recursive rule that
helps to generate an identifier for each unique AET. The rule can be defined as shown
below:

Definition 8. Given the root node R of an AET T, then we have
ID(T) = “<” T.subj “,” T.pred “,” T.obj “>”

when T is a leaf node
 “J(” ID(T.leftChild) “,” ID(R.rightChild) “)”
 when T is a join node

There is still one case left to be considered. Suppose that we use ?c instead of ?corp
for corporations in Query 2. The new query is lexically different from Query 2,

 Semantic Caching for Semantic Web Applications 199

though the two queries have the same logic, and hence identical AETs. To solve the
problem, a variable naming normalization is performed on the AET. The generated ID
from the normalized AET can be used to identify AETs with the same query
semantics. The normalization is implemented as a variable labeling method during the
pre-order traverse of the AET. Each time the ID generator meets a triple pattern p, it
assigns an ID id to each variable v in p.It first looks up the name n of v in a global
map m which contains <name, ID> pairs. If a pair <n, id> exists in m, the generator
assigns the found id to v. Otherwise the generator generates a new ID id, and add pair
<n, id> to m after assigning id to v.

The output of the normalization phase is a new AET with expression <?v1,
locatedIn, mtview> ?v1=?v1<?v1, hasName, ?v2>. Therefore the ID of such a
normalized AET is J(<?v1, locatedIn, mtview>, <?v1, hasName, ?v2>) according to
rule defined in Definition 8. The generated ID can then be used to identify an AET
with unique query semantics.

Replacement

AET-based caching employs a conventional version of the LRU replacement
algorithm. When a cache item addition to the cache repository is required when it is
full, the least frequently used cache item is deleted from cache repository to yield
storage space for the new item.

Cache Update

AET-based caching caches output result of sub-AETs, which contains the execution
result of the join operations in the sub-AETs, so it is complex to compute an updated
version of a cache item when it is affected by triple addition/removal operations to the
triple repository. Besides, AET-based caching takes effect in a relatively small query
context (a query is cached, and the next coming query’s AET has an identical sub-
AET to the previous one). So considering cache update in AET-based caching is
costly and not worthwhile. In our AET-based caching scheme, all cache items
immediately become invalid on triple repository update (triple addition/removal to
triple repository).

SPARQL Query Evaluation with AET Caching

In order to utilize the caching scheme to improve the performance of SPARQL query
evaluation, it needs some modifications to the traditional query evaluation algorithm.
A cache lookup operation is inserted before evaluating a sub AET; a cache writing
operation is performed before returning the result of a sub AET to its parent node in
case of cache miss. With our caching scheme, a SPARQL query engine works as
shown in Algorithm 1.

200 M. Yang and G. Wu

Algorithm 1. AET Evaluation Algorithm with Caching
Input: A normalized AET Tn
Output: Evaluation result R of input
Global Variable:

current_node (the node whose result is being evaluated by the query engine)
Initialization:

current_node root node Nr of Tn

Function evaluate(T) Returns R
1 RT the root node of Tn
2 If RT is leaf
3 Issue triple selection RT, result as Rt

4 Return Rt

5 Else
6 Compute ID of T as id
7 If cache item <id, content> exists in cache repository
8 Access cache item, content as Rc

9 Return Rc
10 Else
11 Sc {N1, N2, … Nn}, where N1, N2, … Nn are direct child nodes of T
12 Scr {evaluate(N1), evaluate(N2), … evaluate(Nn)} = {R1, R2, … Rn}
13 Execute operation on current_node with Scr, result as Rc

14 If cache repository is full
15 delete an item from cache repository with LRU
16 Add cache item <id, Rc> to cache repository

17 Return Rc
End Function
Algorithm:

R = evaluate(Tn)

The algorithm is recursive. The recursion expands at line 12 where the evaluation
of a node depends on the results of all its children. Before the recursion, we add the
cache lookup (line 7-9) operation: the query engine first computes the ID of the
current sub AET that takes current_node as its root node; then it performs a lookup in
the cache repository with the ID. The evaluation result will be directly accessed and
returned to the parent node if there is a matched cache item, thus the evaluation from
current_node down is avoided. Otherwise (line 10-17) the engine evaluates the result
of the current sub AET, and returns the result to the parent node after storing it in the
cache repository.

3.2 Entity Caching

AET based caching improves the performance of evaluating SPARQL queries with
identical sub AET structure. However, for queries with same semantics but different
join ordering, AET based query caching won’t work well since the corresponding

 Semantic Caching for Semantic Web Applications 201

Fig. 3. Queries with Different Join Orders

AETs have different structures. Take AETs shown in Fig. 3 as an example, caching
the output of n1 will be not helpful for the evaluation of Query 2 because Query 1 and
Query 2 have different join orders due to the query optimization strategies chosen.

Moreover, selecting n properties of an entity means requiring n-1 joins in the
corresponding AET. In relational database, a join operation only occurs when there is
an inter-relational condition restriction. While no join operation is required when
selecting properties within a relation. This inspired us to materialize those triples
related to the same entity as a view to avoid join operations when retrieving the
information of the entity. Fortunately, RDF data model simplify the materialization.
We can extract and aggregate triples having the same subject into a tuple containing
all properties of the specific entity. A table storing such tuples is shown in Table 1.

Table 1. Sparse Table Storing Aggregated RDF Triples

We use a horizontal table [17] to store tuples based on the following two reasons.

1) Flexible ontology representations are allowed with this kind of table schema.
First, for an entity, the value of any possible property can be null. Second, an entity
can have multiple types and hierarchical structured types.

2) An intra-entity selection can be completed via one single access to the
corresponding row in the table avoiding star-shaped joins.

ID type feature label producer description
product1 {product} {feature1,

feature2}
{“p1”} {producer1} -

feature1 {productFeature} - {“pf1”} - {“description1”}
feature2 {productFeature} - {“pf2”} - {“description2”}
Producer1 {producer} - {“pp1”} - -

202 M. Yang and G. Wu

Cache Construction

This subsection explains how cache items are constructed and filled into the cache
repository on the cache miss. The cache repository is initially to be empty. On
evaluating a query, triple patterns specified in the basic graph pattern are grouped
according to subjects. For example, Query 2 in BSBM specifies a set of basic graph
patterns and groups as follows (see Table 2).

Table 2. Grouped Triple Patterns and Graph Representation

ID Triple Patterns
product1 product1 rdfs:label ?label .

product1 rdfs:comment ?comment .
product1 bsbm:producer ?p .
product1 bsbm:productFeature ?f .
product1 bsbm:productPropertyTextual1 ?propertyTextual1 .
product1 bsbm:productPropertyTextual2 ?propertyTextual2 .
product1 bsbm:productPropertyTextual3 ?propertyTextual3 .
product1 bsbm:productPropertyNumeric1 ?propertyNumeric1 .
product1 bsbm:productPropertyNumeric2 ?propertyNumeric2 .

?p ?p rdfs:label ?producer .
?f ?f rdfs:label ?productFeature .

Each group contains the triple patterns selecting multiple properties of an entity.

Relations are also specified between corresponding groups. After grouping, joins are
categorized into two types: intra-entity (group) and inter-entity (group). Consequently,
a query evaluation is divided into two phases. 1) Entity selection: each group are
issued independently; 2) inter-entity joins are performed to generate the final result of
the basic graph pattern. After phase 1), each group will have multiple entities selected
corresponding to the triple pattern specified in the group. Each entity corresponds to a
tuple that includes the entity’s URI and all its properties. The tuples are then added to
the table for possible future reuse.

Query Expansion and Triple Reducing

Entity caching effectively solves the problem of selecting multiple properties of an
entity, but brings some other affections at the same time. An entity may be cached
partially rather than totally. For instance, a product has the following properties: type,
label, comment, producer, productFeature, and productProperty. Suppose query 1
select type, label, comment and producer of product1, then there will be only one
tuple <product1, type:product, label:”product1”, comment:”comment1”,
producer:producer1> in the cache after query 1 is answered. Values of
productFeature and productProperty are both null in the cached tuple. At this time, if
there is a query 2 selecting producer, productFeature, productProperty of product1, it
will still require accesses to both the entity cache and the triple store. This will
apparently affect the evaluation performance.

 Semantic Caching for Semantic Web Applications 203

To solve the problem, we have to expand a triple pattern group to include all
property values of an entity in the cache once the object is accessed. In this way, a
single access to the entity cache item can complete entity selection whatever
properties the selection includes. Since the entire entity description exists in the entity
cache, there is no need to store those triples in triple store as long as the cache holds
the entity. With the query expansion, all triples describing the entity are removed
from the triple store to reduce the store size. And a triple write-back is performed
when the entity is obsolete from the cache repository. Detailed experiment results are
provided in Section 4 to show the performance improvement.

0

0.2

0.4

0.6

0.8

1

LRU with semantics
LRU

Warm cacheWarm-up
Cache hit rate

Time

Fig. 4. Comparison of LRU with semantics and LRU

Cache Update

The latest SPARQL draft supports update operations on RDF graphs. Before the draft,
updates to the RDF graph are converted atomic triple operations: triple addition, triple
removal and triple lookup. Cache update is what to be concerned when triple
addition/removal occurs. Our update strategy to the entity caching is quite simple.
Suppose the current triple to be added/removed is <s, p, o>, then when 1) entity s is in
the triple store, the addition/removal operation of <s, p, o> is performed on the triple
store; 2) entity s is in the entity cache, then the addition/removal operation of property
p:o is performed on the cache repository.

Replacement Strategy

The LRU algorithm and its variations have been proved to be effective and efficient
in the cache replacement. In this paper, we enhance LRU with semantics. In our
replacement approach, if a cache item is hit, then the cache item itself and all its
referring items are moved to the head of the LRU list. For example, if item (product1,
hasFeature:{feature1,feature2}, producer:{producer1}) is hit, then item (feature1, …),
(feature2, …), (producer1, …) should all be moved to the head of the LRU list. The
principle behind this strategy is the locality of data access. In practical applications,
adjacent operations usually have some relation in semantics (e.g. search for products
that fulfill specified restrictions, and then view product details of some of them). So
the data semantically related to the currently accessed data are more likely to be
accessed in the near future. Compared to plain LRU, LRU with semantics has higher
cache hit rate during warm cache phase (See Fig. 4).

204 M. Yang and G. Wu

4 Implementation

We implement our caching schemes on Sesame [1], an Java RDF framework.
The system architecture is shown in Fig. 5. Both of AET based caching and entity

caching employ a two-level storage. The main memory stores the most frequently
access cache items. Swapped out items are stored on the disk for future possible use.

After parsing, SPARQL queries are translated into AETs and sent to AET cache
manager, a lookup in the AET cache repository is performed. On cache hit, the result
is directly returned to its requester. Otherwise the AET is passed to entity cache
manager, where AET are processed and an entity cache lookup is performed in the
entity cache repository. On cache hit, the results are directly sent to its requester, and
AET cache repository is updated. Otherwise the AET is passed to AET evaluator and
is evaluated in a conventional way. Results are returned to all requesters with both
AET cache repository and entity cache repository updated.

Fig. 5. Architecture of the System

AET based Caching stores cache items in a custom designed binary format. It
uses a deflation compression algorithm to reduce the space consumption.

Entity Caching stores cached tuples as a key-value object in the main memory.
For tuple persistence, MySQL database is used. Tuples are serialized in JSON format
and indexed with Lucene.

5 Evaluation

We employ LUBM [11], SP2Bench [12] and BSBM [13] as benchmarks for
evaluating our caching scheme. Before presenting the evaluation result, we first
introduce metrics used.

5.1 Evaluation Metrics

Temporal Improvement. Three values are compared in this metric: 1) time
consumption of query evaluation with conventional means without our caching
scheme; 2) time consumption of query evaluation with our cache scheme at cache
warm-up phase, when few cache hits happen; 3) time consumption of query

 Semantic Caching for Semantic Web Applications 205

evaluation with our cache scheme at warm cache phase, when cache hits happen
relatively more frequently and the time consumption tends to be stable.
Cache Hit. Cache Hit evaluates that to what extent the cached items is utilized.
Eliminated Join Operations. This metric evaluates how many joins are eliminated.

5.2 Experiment Setup

Datasets
LUBM: We test our caching scheme on three LUBM datasets: LUBM(10) (1.3M
triples), LUBM(100) (13.8M triples) and LUBM(1000) (138M triples).
SP2Bench: We use SP2Bench datasets of 3 different scales: 2.5M triples, 10M
triples and 40M triples.
BSBM: We use 3 different BSBM datasets: BSBM(1,000) (0.35M triples),
BSBM(10,000) (3.5M triples) and BSBM(100,000) (35M triples).

Evaluation Process
For i from 1 to 10
 Construct condition C
 Issue query mix Q, which costs time period Ti
Next i
Output average value T of T1, T2, …T10
Where:

1) In the evaluation of no cache query evaluation performance,
C = Cn = Disable our caching scheme and use original Sesame implementation;
In the evaluation of query evaluation performance at cache warm-up phase,
C = Cu = Enable our caching scheme and clear up memory/disk cache repository;
In the evaluation of query evaluation performance at warm cache phase,
C = Cw = We have already finished evaluation under Cu. Now go on without

clearing up memory/disk cache repository.
2) In the evaluation on LUBM, Q = QL = 14 queries are provided by LUBM;
In the evaluation on SP2Bench, Q = QS = 17 queries are provided by SP2Bench;
In the evaluation on BSBM, Q = QB = 25 queries are provided by BSBM.

Runtime Resource
The evaluation was performed on a HP dx2390 workstation with Q8400 CPU
(2.66GHz, quadruple core), 4GB RAM and 320GB hard disk drive, running Windows
Server 2008 R2 Enterprise Edition. JVM version is JDK 1.6.0 Update 12 for x64
architecture. Java programs are run with –Xmx1024M command argument.

5.3 Evaluation Result

Temporal Improvement
Experimental results of temporal improvement on LUBM and SP2Bench datasets are
shown in Table 3. Query evaluation at cache warm-up time costs more time than
running without our caching scheme. This can be explained as follows: 1) there are
few cache hits during cache warm-up time, so most queries are evaluated in a
conventional way like how they are evaluated in the original Sesame implementation.

206 M. Yang and G. Wu

2) Besides query evaluation time, there is still another expense: when the processing
of a request is completed, a cache item will be added into the cache repository. This
latter part of time consumption makes query evaluation at cache warm-up time a bit
slower than that is in the original Sesame implementation without caching scheme.

Obviously AET based Caching contributes most to performance improvement on
LUBM and SP2Bench. The reason is that LUBM and SP2Bench provide static query
mixes, and hence they have the same queries included respectively.

But for BSBM, AET based Caching contributes little, while Entity Caching
contributes most to performance improvement. That is because BSBM generates
queries dynamically, which makes queries have little in common, and hence AET
based Caching has few cache hits. While entity caching caches entities with similar
semantics and indexes them on appropriate properties. This helps a lot in reducing the
workload of BSBM query evaluation.

Table 3. Benchmark Test Result (Time in second)

Dataset {1,2,3}={LUBM(1000), D2=SP2Bench(40M), D3=BSBM(100k)}
TpQm=Time per Query Mix, CHpQm=Cache Hits per Query mix

AC=AET based Caching, EC=Entity Caching
 Dataset 1 Dataset 2 Dataset 3

No Cache TpQm(ms) 36635.12 485.49 108.40

AC
Warm-up

TpQm(ms) 40828.61 509.31 124.52
CHpQm 2 4 5

Warm
TpQm(ms) 712.56 153.61 106.35

CHpQm 14 10 7

AC+EC
Warm-up

TpQm(ms) 45135.86 523.71 132.65
CHpQm 5 6 17

Warm
TpQm(ms) 679.51 119.86 18.77
CHpQm 14 10 43

0.1

1

10

100

1000

10000

100000

LUBM(10) LUBM(100) LUBM(1000)

No Cache
AC
AC+EC
TQC
TQC+OC

TpQm (s)

SP2B(2.5M) SP2B(10M) SP2B(40M) BSBM(1k) BSBM(10k) BSBM(100k)

Fig. 6. Comparison with Existing Approaches

 Semantic Caching for Semantic Web Applications 207

1

6

1

4

1
0

3
4

5

1 1

3

1
0

2

9

1

6
5

4

7

11

6

2

0 0

5
6

0

4

14

6

10

6

1

13

9

0

6

0

8

1 2 3 4 5 6 7 8 9
10 11 12 13 14

1 2 3 4 5a 5b
6 7 8 9

10 11 12
a

12
b

12
c 1 2 3 4 5 6 7 8 9

10 11 12

Joins
Eliminated AC
Eliminated AC+EC

LUBM Queries SP2Bench Queries BSBM Queries

Number of Joins

Fig. 7. Eliminated Join Operations

Cache Hit
1. LUBM and SP2Bench. As LUBM and SP2Bench provide static query mixes that
contain fixed queries, all the three caching approaches have good cache hit rate on
both of the benchmarks.
2. BSBM. AET based Caching has a low hit rate because BSBM generates dynamic
SPARQL queries and few of these queries having whole or a part of their
corresponding AETs in common. AET based Caching in warm cache phase has a
reasonable hit rate.

Comparison with Existing Approaches

Fig. 6 shows the comparison with the caching approaches in [9]. TQC implements the
triple-based query caching in [9], and OC implements the application object caching
in [9]. For LUBM and SP2Bench, TQC caches triples, where join operations have to
be reissued on cache hit, so TQC doesn’t work well on LUBM and SP2Bench. OC is
designed for applications, where adjacent queries usually have sub-queries in
common. But LUBM and SP2Bench mainly focus on testing the throughput limit of
RDF databases via SPARQL queries with complex semantics. These two benchmarks
don’t provide queries in which adjacent ones have a common sub-query. So OC won’t
work well on LUBM and SP2Bench either. For BSBM things become a little
different: TQC doesn’t perform well, while OC improves performance at a
considerable degree (about 50%). BSBM is a benchmark simulating the application
context of an e-store. So test queries in BSBM are intentionally designed to have
coherent semantics in a small query context. So OC is applicable in helping improve
performance on BSBM.

Fig. 6 also tells the scalability of our caching scheme. In all the 9 dataset at warm
cache phase, the system with both of our caching schemes (AC+EC) has the best
performance at warm cache phase. Our cache scheme effectively speeds up the
processing capacity of Sesame RDF framework. Processing capacity on larger scale
RDF datasets (LUBM(1000), SP2Bench(40M), BSBM(100k)) is promoted more than
that on datasets of smaller scale. This ensures that RDF stores with our caching
scheme have higher upper-bound in data scale.

208 M. Yang and G. Wu

Eliminated Join Operations

Our caching scheme speeds up query evaluation via elimination of join operations.
According to Fig. 7, join operations in LUBM and SP2Bench are mainly eliminated
by AET based caching because the test queries in these two benchmarks are static.
For BSBM, queries are generated dynamically, thus AET based caching doesn’t work
well on join elimination. However, entity caching provides a more flexible caching
effect, and as is shown, it is able to eliminate most join operations for BSBM test
queries. This join elimination ensures the speedup in BSBM query evaluation.

6 Conclusion and Future Work

In this paper, we present a semantic caching scheme that exploit the semantics
originated from both SPARQL query and RDF data.

AET based Caching caches intermediate result of SPARQL queries. Cache items
are identified by the sub-AET structure, which ensures the identification ability of
query semantics. AET based caching effectively improves the evaluation of SPARQL
queries with identical sub-query. This caching scheme has a good performance on
query context with similar adjacent queries.

Entity Caching extracts basic graph pattern (BGP) from SPARQL queries and
groups triple patterns included in the BGP by the subject URIs/variables of the triple
patterns. Triple pattern groups are extended to fully select the property values of the
object specified by the subject URI. Entity caching is adaptive and efficient. It works
well on almost all query contexts.

Future Work

This work is the first step of research work that focuses on improving performance of
large-scale Semantic Web applications. Further work includes:

1) Distributed Caching. Distributed caching has been widely applied in mainstream
web 2.0 applications. As the Semantic Web develops, centralized local caching will
not work on very large-scale Semantic Web data. Distributed semantic caching will
therefore become a must in distributed Semantic Web data infrastructure.
2) Storage and Indexing Technique. The entity caching speedup query evaluation
via a new storage and indexing scheme of Semantic Web objects. This is applicable
on the design of storage and indexing of an RDF database.

References

1. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for
Storing and Querying RDF and RDF Schema. In: Horrocks, I., Hendler, J. (eds.) ISWC
2002. LNCS, vol. 2342, pp. 54–68. Springer, Heidelberg (2002)

2. Wilkinson, K., et al.: Efficient RDFStorage and Retrieval in Jena2 (2003)
3. Owens, A., Seaborne, A., Gibbins, N., Schraefel, M.: Clustered TDB: A Clustered Triple

Store for Jena (2008),
http://eprints.ecs.soton.ac.uk/16974/1/www2009fixedref.pdf

 Semantic Caching for Semantic Web Applications 209

4. Erling, O., Mikhailov, I.: RDF Support in the Virtuoso DBMS. In: Conference on Social
Semantic Web, pp. 59–68 (2007)

5. Neumann, T., Weikum, G.: RDF-3X: ARISC-Style Engine for RDF. Proc. VLDB
Endow 1(1), 647–659 (2008)

6. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: A Federated Repository for
Querying Graph Structured Data from the Web. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 211–224. Springer, Heidelberg (2007)

7. Chong, E.I., et al.: An Efficient SQL-based RDF Querying Scheme. In: VLDB (2005)
8. Altinel, M., Luo, Q., Krishnamurthy, S., Mohan, C., Pirahesh, H., Lindsay, B.G., Woo,

H.: DBCache: Database Caching for Web Application Servers. In: Proceedings of the 2002
ACM SIGMOD International Conference on Management of Data (2002)

9. Martin, M., Unbehauen, J., Auer, S.: Improving the performance of Semantic Web Applications
with SPARQL Query Caching. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010. LNCS, vol. 6089, pp. 304–
318. Springer, Heidelberg (2010)

10. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data
Management Using Vertical Partitioning. In: VLDB (2007)

11. Guo, Y., Pan, Z., Heflin, J.: LUBM: A Benchmark for OWL Knowledge Base Systems.
Journal of Web Semantics 3(2-3), 158–182 (2005)

12. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2bench: A SPARQL Performance
Benchmark (June 2008)

13. Castillo, R.: RDFMatView: Indexing RDF Data for SPARQL Queries. In: ISWC (2010)
14. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal on Semantic

Web and Information Systems (2009)
15. Dar, S., Franklin, M.J., Jónsson, B.T., Srivastava, D., Tan, M.: Semantic Data Caching and

Replacement. In: Proceedings of the 22th International Conference on Very Large Data
Bases (VLDB 1996), pp. 330–341. Morgan Kaufmann Publishers Inc., San Francisco (1996)

16. Li, L., König-Ries, B., Pissinou, N., Makki, K.: Strategies for Semantic Caching. In: Mayr,
H.C., Lazanský, J., Quirchmayr, G., Vogel, P. (eds.) DEXA 2001. LNCS, vol. 2113,
pp. 284–298. Springer, Heidelberg (2001)

17. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD
Rec. 38(4), 23–28 (2010)

Evaluating Graph Traversal Algorithms

for Distributed SPARQL Query Optimization

Xin Wang, Thanassis Tiropanis, and Hugh C. Davis

Electronics and Computer Science
University of Southampton

{xw4g08,tt2,hcd}@ecs.soton.ac.uk

http://www.ecs.soton.ac.uk/

Abstract. Distributed SPARQL queries enable users to retrieve
information by exploiting the increasing amount of linked data being
published. However, industrial-strength distributed SPARQL query pro-
cessing is still at its early stage for efficiently answering queries. Previous
research shows that it is possible to apply methods from graph theory
to optimize the performance of distributed SPARQL. In this paper we
describe a framework that can simulate arbitrary RDF data networks to
evaluate different approaches of distributed SPARQL query processing.
Using this framework we further explore the graph traversal algorithms
for distributed SPARQL optimization. We present an implementation of
a Minimum-Spanning-Tree-based (MST-based) algorithm for distributed
SPARQL processing, the performance of which is compared to other ap-
proaches using this evaluation framework. The contribution of this paper
is to show that a MST-based approach seems to perform much better
than other non graph-traversal-based approaches, and to provide an eval-
uation framework for evaluating distributed SPARQL processing.

Keywords: SPARQL, Linked Date, distributed query processing, graph
theory.

1 Introduction

Linked Data is interlinked RDF data that enables users to retrieve quality in-
formation from cross-domain data sources. With the emergence of the Semantic
Web, a large volume of Linked Data is published by an increasing number of
providers [2]. Meanwhile, frameworks for storing and querying Linked Data [28]
are available for developers and users. As Linked Data is distributed in nature, it
is inevitable to involve multiple RDF data sources when querying Linked Data.
Linked Data can be queried using SPARQL1, which is the standard query lan-
guage of RDF having the capability of matching graph patterns [20]. SPARQL
supports queries over multiple RDF graphs. However, it requires downloading
all the data to a local storage which is not feasible for a number of reasons.
For example, the total data size may be too large; it may be difficult to keep

1 http://www.w3.org/TR/rdf-sparql-query/

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 210–225, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ecs.soton.ac.uk/
http://www.w3.org/TR/rdf-sparql-query/

Graph Traversal Algorithms for Distributed SPARQL 211

the downloaded data up-to-date; the access to data may be restricted, and etc.
[21]. In addition, the increasing scale of the Linked Data cloud poses further
challenges to distributed SPARQL queries, for instance, the cost and latency of
transferring data are considerably high, and also localisation of particular data is
difficult. Therefore, it is necessary to investigate distributed SPARQL processing
and explore optimization techniques to improve its performance.

Several approaches of distributed SPARQL query optimization have been pro-
posed, including query rewriting [11], selectivity-based triple pattern reorder-
ing [1,25], scalable indexing strategy [7,14] and general methods for SPARQL
optimization [24], and on distributed SPARQL query such as [26,21,15,27]. In
spite of the approaches mentioned above, optimization techniques of distributed
SPARQL queries are still at the early stage on both scalability and efficiency
[8,10]. The problem of distributed query processing has also been well studied in
the distributed database systems field [17,12]. It is not straightforward to apply
optimization techniques of distributed database systems to distributed SPARQL
because of the differences between the data representation (i.e. relations and
triples) and the query languages (i.e. SPARQL and SQL) [6]. However, dis-
tributed SPARQL’s particular characteristics, such as its graph structure, make
it possible to benefit from other techniques such as graph traversal algorithms.
The authors in [27] consider using graph-traversing algorithms, which are used
to search minimum-weight path to traverse a graph, to construct the optimal
execution plan of distributed SPARQL queries. In their approach, each Basic
Graph Pattern (BGP) is regarded as a directed graph, in which subjects and
objects in the BGP are nodes and predicates are edges. The weight of each edge
is the cost of evaluating the corresponding triple pattern. The optimal query
plan corresponds to the minimum spanning tree (MST) of this graph which is
generated by graph-traversing algorithms.

The authors of [27] provide a brief idea of applying graph traversal algo-
rithms for distributed SPARQL optimization. In this paper, we further explore
the applicability of graph traversal algorithms for distributed SPARQL opti-
mization. To achieve this goal, we implement a distributed SPARQL engine
using a graph traversal algorithm and compare its performance with existing
approaches. To perform the comparison and potentially other comparisons in
the future, an evaluation environment for distributed SPARQL is required. Al-
though several benchmarks have been proposed for SPARQL such as SP2Bench
[23,22] and Berlin SPARQL Benchmark (BSBM) [3], only one [10] is designed for
a distributed environment and it solely provides information of software aspects.
Therefore, we also proposed and implemented an evaluation framework for our
comparison purpose.

In summary, our contribution is in:

– Describing and deploying an evaluation framework which is capable of sim-
ulating a distributed environment of RDF datasets having different distri-
bution, and measuring relevant costs.

– Implementing a distributed SPARQL engine building on the approach pro-
posed in [27] using Prim’s algorithms [19] to find the MST.

212 X. Wang, T. Tiropanis, and H.C. Davis

– Comparing our SPARQL engine with DARQ [21] using the evaluation frame-
work. The result shows that graph traversal algorithms can significantly im-
prove the performance of distributed SPARQL processing.

The remainder of this article is organized as follows. We introduce the design
of the evaluation framework in section 2, followed by the implementation of our
SPARQL engine in section 3. The comparison between our SPARQL engine and
DARQ are described and analysed in section 4. Finally, we provide our conclusion
and future plan in section 5.

2 The Evaluation Framework

Although several benchmarks, such as SP2Bench [22] and BSBM [3], have been
proposed for evaluation of centralized SPARQL query performance, there is no
satisfied methods to evaluate approaches of distributed SPARQL queries. In
this section we present a general evaluation framework2 which is capable of the
following:

– Generating different sized data that obey particular distributions (e.g. nor-
mal distribution or the current distribution of data in Linked Data cloud).

– Simulating networks containing an arbitrary number of SPARQL endpoints
that hold the generated datasets.

– Autonomously evaluating distributed SPARQL engines.
– Producing unified and comprehensive evaluation reports.

BSBM is a widely used benchmark for SPARQL which provides several sophisti-
cated metrics, a set of queries, benchmark specification and tools that help run
evaluation. In order to increase interoperability, our evaluation framework uses
part of the BSBM metrics, datasets, and queries. In addition, several metrics
that cover hardware aspects are contained. Besides metrics, the framework con-
tains components to simulate RDF networks and evaluate distributed SPARQL
engines. Furthermore, virtual machines are used instead of real machines to gain
the ability of simulating arbitrary sized RDF networks. Evaluation reports gen-
erated by the framework follow the BSBM specification3.

2.1 Design of the Evaluation Framework

The evaluation framework contains five components: data generator, data split-
ter, statistics collector, data distributor and testdriver. The structure of the
evaluation framework is shown in figure 1 and the components are described
below.

2 Source code is available at
http://code.google.com/p/dis-sparql-evaluation-framework/

3 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/

http://code.google.com/p/dis-sparql-evaluation-framework/
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/

Graph Traversal Algorithms for Distributed SPARQL 213

Fig. 1. Solid arrows denote local data flow while dotted arrows denote remote data
flow. The data splitter splits data from either the data generator or the Linked Data
cloud according to a given distribution. Then the data distributor uploads data to
SPARQL endpoints. After the endpoints are ready, the testdriver reads queries from
a file and calls the distributed SPARQL engine to process these queries. The engine
processes the queries and returns results to the testdriver. The testdriver records the
time of query processing and generates a performance report. Meanwhile the system
monitor records the memory and CPU usage and the network flow.

214 X. Wang, T. Tiropanis, and H.C. Davis

Data Generator. The BSBM benchmark provides a data generator which can
generate arbitrary sized datasets according to an abstract data model and data
production rules. Using this data generator in our framework provides the ability
to generate data in a controlledmanner. Also, as we follow the BSBMspecification,
data generated by this data generator can be easily evaluated by the testdriver of
the framework, which can evaluate the performance of SPARQL endpoints.

Data Splitter. The data splitter accepts any RDF data file and splits it into
certain number of data files according to particular distributions. The supported
distributions include uniform distribution, normal distribution and the current
distribution of data in the Linked Data cloud in terms of dataset size; other
considerations such as the distribution of referenced URIs were not taken into
account as this stage.

Data Distributor. After the data is split, the data distributor is used to dis-
patch data to remote datasets. It accepts a list of pairs, each of which contains
the address of a dataset and the path of data going to that dataset.

Statistics Collector. The statistics collector reads local RDF data files or
accesses remote RDF datasets and then reports basic statistics of them. The
statistics contain the number of triples and the number of each predicate in a
data file/dataset. The statistics collector can be used to check the distribution
of a RDF network and to provide statistics to distributed SPARQL engines.

Testdriver. The BSBM also provides a testdriver which can evaluate query per-
formance of SPARQL endpoints. Since most approaches of distributed SPARQL
processing are not implemented as SPARQL endpoints, we modify the testdriver
to support issuing queries to and processing results from distributed SPARQL en-
gines. Performance reports of query executing are automatically generated by the
testdriver. Along with the testdriver, system and networks monitors are included
in the framework to provide information of system and network performance.

Metrics. The first two which are part of BSBM’s fundamental metrics4 are used
to measure the speed of query execution. Meanwhile the evaluation framework
considers the system loads of query evaluation. CPU usage is one important
aspect of measuring system load. Besides, memory usage and networks data flow
are considerable for distributed query processing [16,17]. Therefore CPU usage,
memory usage and networks traffic are contained in our evaluation framework.
The metrics we use are:

– Queries per Second (QpS).
The average number of queries that can be executed per second.

– Overall Runtime (oaRT).
The overall time to execute a certain amount of queries.

4 http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/

BenchmarkRules/

http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/BenchmarkRules/
http://www4.wiwiss.fu-berlin.de/bizer/BerlinSPARQLBenchmark/spec/BenchmarkRules/

Graph Traversal Algorithms for Distributed SPARQL 215

– Memory Usage (MU).
The memory usage of the engine during the evaluation.

– CPU Usage (CU).
The CPU usage of the engine during the evaluation.

– Network Flow (NF).
Uploading and downloading data of the engine during the evaluation.

When we use the framework to evaluate an approach of distributed SPARQL,
firstly the RDF data is obtained from the Linked Data cloud or generated by
the data generator. Once the data is ready, it is split into pieces by the data
splitter according to a certain distribution, and also basic statistics of each piece
of data can be collected by the statistics collector. After that, the data distributor
dispatches each piece of data to certain remote datasets. Then the distributed
SPARQL approach can be evaluated by the testdriver against those remote
datasets.

3 Graph Traversal Algorithm for Distributed SPARQL
Query Optimization

BGP is the basic block of SPARQL queries. As a BGP can be represented as
a graph, evaluating a BGP can be regarded as the same process as traversing
its graph representation. Therefore distributed SPARQL optimization process
equals to constructing the MST, which is the spanning tree of a graph with the
minimum weight, of a BGP graph (refer to [27] for details). In this section, we
briefly discuss several graph traversal algorithms. And then we discuss the eval-
uation strategy and decomposition strategy of distributed SPARQL processing
in general. Finally we present the design and implementation of a Distributed
SPARQL engine using Prim’s algorithm, which is called DSP engine for conve-
nience.

3.1 Graph Traversing Algorithms

There are several algorithms for constructing MST, such as Boru̇vka’s algorithm,
Prim-Jarńık’s algorithm, and Kruskal’s algorithm. The MST grows from one or
several disconnected components during construction. An edge with exactly one
endpoint in a MST component is called a frontier edge of this component, and
all of the three algorithms construct MST by adding the minimum frontier edge
to the component(s) to which it belongs: Boru̇vka’s algorithm grows the MST
from several components and adds all minimum frontier edges simultaneously;
Prim-Jarńık’s algorithm grows the MST from a single component and therefore
adds one minimum frontier edge at a time; and Kruskal’s algorithm grows the
MST (probably) from multiple components and adds minimum frontier edges
one by one in increasing weight order.

216 X. Wang, T. Tiropanis, and H.C. Davis

Prim-Jarńık’s algorithm traverses a graph one node after another from a single
node, which result in evaluating triple patterns as a chain (i.e. the triple patterns
in every two adjacent steps have at least one part in common). In this case
bind join [9] can be adopted to reduce intermediate results. On the contrary,
Kruskal’s algorithm can not be used with bind join as it may not evaluate triple
patterns as a chain. Boru̇vka’s algorithm is capable of executing several triple
patterns simultaneously to reduce query execution time, however intermediate
results may be increased which can lead to an increase in network traffic. In our
implementation we focus on reducing network flow, and therefore we combine
Prim’s algorithm and bind join together to achieve this purpose.

3.2 Distributed SPARQL Processing Evaluation Strategy

Intuitively, distributed SPARQL processing is equivalent to the union of indi-
vidual SPARQL queries over multiple remote RDF datasets. A similar idea can
be found in [13]. It regards SPARQL query processing over a set of Linked Data
sources as evaluating the queries on the graph which is the union of graphs from
all data sources. If we consider the fact that duplication may exist in different
data sources, naturally we will ask whether the union between data sources is
bag union (allows duplication) or set union (does not allow duplication)? In [4]
the graph containing all the triples from involved datasets is constructed using
RDF merge, which is a set union, and this satisfies the definition of RDF graph
(a set of triples). However, most existing distributed SPARQL approaches such
as [21,27,13] do not eliminate results from duplicate data. Furthermore, allowing
results from duplicate data has the following advantages:

– It retains statistical information of certain triples.
– Eliminating duplications is simple after query execution.
– It makes implementation of distributed SPARQL engines easier.

Therefore, in this article definition 1 is applied for evaluation of a distributed
SPARQL query. We use

⋃B to denote bag union.

Definition 1. Evaluation of a distributed SPARQL query Q over a set of data
sources G, denoted by [[Q]]G, is defined as [[Q]]G = [[Q]]G, where G =

⋃B
gi∈G gi,

i is the URI of graph gi.

3.3 Decomposition Strategy

We assume that individual dataset cannot provide all the data that a distributed
SPARQL query needs. This assumption implies that sending a whole query to
any single dataset probably returns no result. Therefore the major purpose of
query decomposition is to decompose the original query into sub-queries 5 which
has the chance to have one or more datasets that can provide data they require.

5 A sub-query may contain only one triple pattern.

Graph Traversal Algorithms for Distributed SPARQL 217

Furthermore, by query decomposition there is a possibility to reduce query pro-
cessing time, cost of sending out queries, and cost of transferring intermediate
data. The reduction can be achieved by sending as many sub-queries as pos-
sible together to one dataset, which is adopted in most existing approaches of
distributed SPARQL processing. However, the possibility of doing that is low.
According to [18] we have:

Lemma 1. The evaluation of two joined sub-queries denoted by (q1 AND q2)
over two datasets d1, d2 denoted by [[q1 AND q2]]d1∪d2 is ([[q1]]d1 ∪ [[q1]]d2) ��
([[q2]]d1 ∪ [[q2]]d2).

For convenience, we call a join that merges results from different datasets (e.g.
[[q1]]d2 �� [[q2]]d1 �� [[q3]]d1) a cross-dataset join. From lemma 1 we can have:

Proposition 1. Sending n sub-queries q1...qn together to m datasets d1...dm
does not affect the results iff all cross-dataset joins, denoted by ��i∈[1,n] [[qi]]dji

for ji ∈ [1,m] and not all ji have the same value, are empty.

Proposition 1 implies that if a sub-query can be evaluated against more than one
dataset, it cannot be sent with other sub-queries6. For instance, in [21] each triple
pattern that can be answered by more then one data source are sent to those
data sources separately. Furthermore, sending several triple patterns together to
a data source does not guarantee reducing the intermediate results, because the
intermediate results are produced by joining the results of each triple pattern.
These two reasons (especially the former one) make it unfeasible to send more
than one triple pattern together to a dataset. Therefore, the importance of query
decomposition falls on reducing the number of datasets that a triple pattern is
sent to. In addition, query optimization should take per triple pattern as the
basic unit.

3.4 Implementation

The DSP engine7 is based on Prim’s algorithm. A similar conceptual pseudo-code
is presented in [27]. However, several issues exist in the proposed pseudo-code,
such as the sequence of popping out a new triple pattern, pruning filler edges and
retrieving new binding will not produce the right result8, and also it is not aware
of keeping separate data copies for different iterations. Our algorithm (shown in
algorithm 1) adopts the evaluation and decomposition strategy discussed above
and addresses the issues of the pseudo-code proposed in [27].

The algorithm accepts triple patterns and returns a set of bindings, each of
which is a mapping from variables to their values (i.e. a solution mapping). Edges

6 In some cases sub-queries that can be evaluated against more than one dataset may
be able to be sent together, however these cases are complex for computation.

7 Source code of our implementation can be found at
http://code.google.com/p/gdsparal/

8 Pruning should be done after retrieving new binding and before popping out a new
triple.

http://code.google.com/p/gdsparal/

218 X. Wang, T. Tiropanis, and H.C. Davis

containing both visited and unvisited nodes are called frontier edges. All frontier
edges are kept in a min-heap (i.e. whose root is the minimum node) (line 13). In
each iteration, the frontier triple pattern having the minimum cost is selected and
then evaluated (line 6). A binding which is produced in previous iterations is kept
for following iterations. Bind join is adopted, and therefore the triple pattern is
firstly bound with the current binding (i.e. replacing variables in the triple pattern
by corresponding values in the current binding), and then evaluated in remote
repositories (line 9). The cost of new frontier edges connecting with the current
edge e is calculated using the actual number of bindings of e (line 10 to line 12). In
each iteration, the binding is extended to contain new results, and separate data
copies are maintained for the following iterations (line 18). If a triple pattern in
the heap has all its variables bound by current binding, the bound triple pattern is
evaluated as anASK query to verify the binding. The iteration is terminated if the
binding fails verification, otherwise the triple pattern is removed (line 1). Contrary
to the pseudo-code presented in [27], our pruning process is after retrieving new
binding and before popping out a new triple, which guarantees that the newly
popped triple is not bound by the current binding. The current binding is added
to the final solution set once the heap is empty.

Our algorithm optimizes the evaluation of BGPs, and therefore it is appli-
cable for any kind of query with all operators (e.g. UNION, OPTIONAL etc.).
The query interface of the DSP engine is the same as DARQ’s, which accepts
SPARQL query strings and returns the results as a table. The testdriver is mod-
ified accordingly, which enables us to evaluate the DSP engine and DARQ as
evaluating normal SPARQL endpoints.

4 Evaluation

In order to explore the potential of the DSP engine, we compare it with DARQ
which is the only implementation available among relevant research. The com-
parison is carried out in an environment that contains a small scale network,
and moderate sized data and queries. Initially we use all 12 queries of BSBM to
test DARQ and the DSP engine. However, we find that DARQ does not always
return correct results for queries with OPTIONAL and UNION clauses while
DSP engine does. Query 1 and query 10 are the only queries of BSBM for which
we can confirm the accuracy of results of both engines. Furthermore, DARQ does
not return result for query 10 after a large amount of time, therefore we present
detailed results of query 1 and brief results of query 10. The comparison of the
DSP engine and DARQ was carried out in the evaluation framework shown in
figure 1 on page 213. The following sections detail the evaluation and results.

4.1 Configuration of the Evaluation Environment

In the evaluation environment, 6 SPARQL endpoints (Sesame 2.3.29) are hosted
on 5 VMs, containing 104046, 93071, 74205, 53556, 34045 and 19356 triples

9 http://www.openrdf.org/

http://www.openrdf.org/

Graph Traversal Algorithms for Distributed SPARQL 219

Algorithm 1. Pseudo-code of the DSP engine

input : unvisited stores unvisited triple patterns
input : heap stores all the frontier edges
input : binding stores a solution mapping of several variables
input : bindingNum stores nodes and corresponding number of bindings
output: solutions stores all valid bindings
prune(heap);1

// remove all bound triple patterns in heap

if heap.isEmpty() then2

solutions.add(binding);3

return;4

end5

minTriple ← heap.pop();6

preNode ← minTriple.getBoundNode();7

// the subject or object that is bound in current triple pattern

currentNode ← minTriple.getFreeNode();8

currentBindings ← execSel(minTriple, binding);9

// evaluate minTriple according to existing binding

bindingNum ← (currentNode,10

currentBindings.size()*bindingNum.get(preNode));
for each triple pattern t connected with currentNode do11

t.setCost(bindingNum.get(currentNode)*t.getWeight());12

heap.insert(t);13

unvisited.remove(t);14

end15

for each binding b in currentBindings do16

nextHeap ← heap.clone();17

// keep separate copies for each iteration

nextBinding ← binding.add(b).clone();18

nextUnvisited ← unvisited.clone();19

this(nextHeap, nextBinding, bindingNum, nextUnvisited);20

// recurs

end21

return;22

220 X. Wang, T. Tiropanis, and H.C. Davis

Table 1. The queries for testing

Query 1

SELECT ?product ?label
WHERE {
?product rdfs:label ?label .
?product a bsbm:Product .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productPropertyNumeric1 ?value1 .
FILTER (?value1 > %x%)
}
ORDER BY ?label
LIMIT 10

Query 10

SELECT DISTINCT ?offer ?price
WHERE {
?offer bsbm:product %ProductXYZ% .
?offer bsbm:vendor ?vendor .
?offer dc:publisher ?vendor .
?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> .
?offer bsbm:deliveryDays ?deliveryDays .
FILTER (?deliveryDays <= 3)
?offer bsbm:price ?price .
?offer bsbm:validTo ?date .
FILTER (?date > %currentDate%)
}
ORDER BY xsd:double(str(?price))
LIMIT 10

respectively, which obey normal distribution. The two distributed SPARQL en-
gines under testing are run on a machine having an Intel Xeon W3520 processor,
12 GB memory and 1Gbps LAN.

The queries in table 1 are used for testing. The values enclosed by “%” are
generated randomly during testing. The evaluation framework is configured to
perform 5 warm up runs and 50 testing runs. Query results of the last 50 runs
(i.e. the testing runs) are recorded, and system resource load and networks traffic
are recorded for all the 55 runs.

4.2 Evaluation Results

The evaluation result of query 1 is shown in table 2. Details of CPU and memory
usage is shown in figures 2 and 3.

Query 10 takes both engines quite a long time to process. On average, the DSP
engine spends 220 seconds to process one instance of query 10, while DARQ does
not finish processing within 400 seconds and it times out. Meanwhile, DARQ’s
cost on CPU, memory and network bandwidth overruns DSP engine.

Graph Traversal Algorithms for Distributed SPARQL 221

Table 2. Evaluation result

DARQ DSP engine

Overall runtime (s) 606.273 41.826
Queries per Second 0.08 1.20
Min/Max query runtime (s) 6.7576/26.3826 0.0148/3.3272
Average result count 15.82 15.82
CPU usage (%) 15 5
Memory usage (MB) 20 - 60 9
Up/Down network flow (MB) 39.32/14.09 0.88/0.42

Fig. 2. CPU load

4.3 Analysis

From the above results it can be concluded that the DSP engine performs much
better than DARQ on both query processing time and system resource usage for
both BSBM queries 1 and 10, for which a comparison with DSP was possible.

222 X. Wang, T. Tiropanis, and H.C. Davis

Fig. 3. Memory load

One probable reason is that our decomposition strategy does not group triple
patterns, therefore all triple patterns together rather than sub-groups of triple
patterns are considered during optimization. In addition, the use of bind join
and the pruning mechanism (line 1 of algorithm 1) together can eliminate invalid
results at an early stage during the evaluation. The high system load of DARQ
may be due to the fact that it generates all possible query execution plans and
then searches for the optimal one. On the contrary, our engine computes the
optimal query plan using Prim’s algorithm rather than enumerating all possible
query plans. Both DARQ and our implementation show that the outgoing data
is more than the incoming data under current testing environment. This implies
that reducing the number of sub-queries is also an important aspect to decrease
the traffic, and availability of more accurate service descriptions will be useful
for reducing sub-queries.

Graph Traversal Algorithms for Distributed SPARQL 223

5 Discussion and Future Work

This work aims to address performance in environments of varying scale and
data distribution and to provide an framework on which different approaches
can be evaluated. In this paper, we have presented an evaluation framework
which can be used to analyze and compare various approaches of distributed
SPARQL processing, the design and implementation of DSP engine which is
a distributed SPARQL engine using Prim’s algorithm, and a comparison be-
tween DARQ and DSP engine which shows the potential of MST algorithms for
distributed SPARQL processing. Our comparison shows encouraging results to
support that graph traversal algorithms are applicable for distributed SPARQL
query optimization. However there are still several aspects that require further
investigation. The lack of accurate service descriptions and cost models is one
drawback of algorithm performance.

In addition, the algorithms themselves have limitations. MST algorithms such
as Prim’s algorithm traverses a graph node by node, which implies the lower
bound of query processing time is the sum of each triple patterns in the query.
Unfortunately, we observed that executing triple patterns in remote datasets
is the most time consuming process. Therefore the execution time may be un-
acceptable when executing a complex query having many triple patterns. One
possible solution is to explore mechanisms that enable executing multiple triple
patterns in parallel.

Another challenge is from co-reference phenomenon. In the Linked Data cloud
a particular URI identifies one unique resource, however, one resource can be
identified by multiple URIs. The more data are published in Linked Data cloud,
the more common co-reference is [5]. There is an urgent requirement to develop
solutions that do support queries with co-references. As future work, we plan
to explore graph traversal algorithms to optimize distributed SPARQL queries
having co-references and to explore parallel query execution.

References

1. Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL Optimization Ap-
proach based on Triple Pattern Selectivity Estimation (2007)

2. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International
Journal on Semantic Web and Information Systems 5(3), 1–22 (2009)

3. Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. International Journal On
Semantic Web and Information Systems-Special Issue on Scalability and Perfor-
mance of Semantic Web Systems (2009)

4. Bouquet, P., Ghidini, C., Serafini, L.: Querying the Web of Data: A Formal Ap-
proach. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926,
pp. 291–305. Springer, Heidelberg (2009)

5. Correndo, G., Salvadores, M., Millard, I., Glaser, H., Shadbolt, N.: SPARQL query
rewriting for implementing data integration over linked data. In: Proceedings of
the 2010 EDBT Workshops, pp. 1–11. ACM (2010)

6. Cyganiak, R.: A relational algebra for SPARQL. Digital Media Systems Laboratory,
HP Laboratories Bristol, pp. 2005–170 (2005)

224 X. Wang, T. Tiropanis, and H.C. Davis

7. Fletcher, G., Beck, P.: Scalable indexing of RDF graphs for efficient join process-
ing. In: Proceeding of the 18th ACM Conference on Information and Knowledge
Management, pp. 1513–1516. ACM (2009)

8. Gray, A., Gray, N., Ounis, I.: Can RDB2RDF Tools Feasibily Expose Large Science
Archives for Data Integration? In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano,
P., Heath, T., Hyvönen, E., Mizoguchi, R., Oren, E., Sabou, M., Simperl, E. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 491–505. Springer, Heidelberg (2009)

9. Haas, L., Kossmann, D., Wimmers, E., Yang, J.: Optimizing queries across diverse
data sources. In: Proceedings of The International Conference on Very Large Data
Bases, pp. 276–285. Citeseer (1997)

10. Haase, P., Mathäß, T.: An evaluation of approaches to federated query processing
over linked data. In: Proceedings of the 6th International Conference on Semantic
Systems, pp. 1–9. ACM (2010)

11. Hartig, O., Heese, R.: The SPARQL Query Graph Model for Query Optimization.
In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp.
564–578. Springer, Heidelberg (2007)

12. Kossmann, D.: The state of the art in distributed query processing. ACM Com-
puting Surveys (CSUR) 32(4), 422–469 (2000)

13. Ladwig, G., Tran, T.: Linked Data Query Processing Strategies. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 453–469. Springer,
Heidelberg (2010)

14. McGlothlin, J., Khan, L.: RDFJoin: A Scalable Data Model for Persistence and
Efficient Querying of RDF Datasets. Database (2009)

15. Obermeier, L., Nixon, L.: A Cost Model for Querying Distributed RDF-
Repositories with SPARQL. In: Proceedings of the Workshop on Advancing Rea-
soning on the Web: Scalability and Commonsense Tenerife. Citeseer (2008)

16. Özsu, M.: Distributed and parallel database systems. ACM Computing Surveys
(CSUR), 1–21 (1996)

17. Özsu, M., Valduriez, P.: Principles of distributed database systems. Prentice Hall
(1999)

18. Pérez, J., Arenas, M.: Semantics and Complexity of SPARQL. ACM Transactions
on Database Systems, TODS (2009)

19. Prim, R.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36(6), 1389–1401 (1957)

20. Prud’Hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2008)
21. Quilitz, B.: Querying Distributed RDF Data Sources with SPARQL. In: Bech-

hofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS,
vol. 5021, pp. 524–538. Springer, Heidelberg (2008)

22. Schmidt, M., Hornung, T., Küchlin, N., Lausen, G., Pinkel, C.: An Experimental
Comparison of RDF Data Management Approaches in a SPARQL Benchmark
Scenario. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin,
T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 82–97. Springer,
Heidelberg (2008)

23. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Perfor-
mance Benchmark. In: IEEE 25th International Conference on Data Engineering,
ICDE 2009, pp. 222–233. IEEE (2009)

24. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization.
In: Proceedings of the 13th International Conference on Database Theory, pp. 4–33.
ACM (2010)

Graph Traversal Algorithms for Distributed SPARQL 225

25. Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL basic
graph pattern optimization using selectivity estimation. In: Proceeding of the 17th
International Conference on World Wide Web, pp. 595–604. ACM (2008)

26. Stuckenschmidt, H., Vdovjak, R., Houben, G., Broekstra, J.: Index structures and
algorithms for querying distributed RDF repositories. In: Proceedings of the 13th
International Conference on World Wide Web, pp. 631–639. ACM (2004)

27. Vandervalk, B.P., McCarthy, E.L., Wilkinson, M.D.: Optimization of Distributed
SPARQL Queries Using Edmonds’ Algorithm and Prim’s Algorithm. In: Interna-
tional Conference on Computational Science and Engineering, CSE 2009, vol. 1,
pp. 330–337. IEEE (2009)

28. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D., et al.: Efficient RDF storage
and retrieval in Jena2. In: Proceedings of SWDB, vol. 3, pp. 7–8 (2003)

BipRank: Ranking and Summarizing RDF

Vocabulary Descriptions

Gong Cheng1, Feng Ji2, Shengmei Luo2, Weiyi Ge1, and Yuzhong Qu1

1 State Key Laboratory for Novel Software Technology, Nanjing University, China
2 Communication Services R&D Institute, ZTE Corporation, China
{gcheng,yzqu}@nju.edu.cn, {ji.feng,luo.shengmei}@zte.com.cn,

geweiyi@gmail.com

Abstract. When searching for RDF vocabularies, users often feel hin-
dered by the lengthy description of a retrieved vocabulary from judging
its relevance. A natural strategy for dealing with this issue is to generate
a summary of the vocabulary description that compactly carries its main
theme and reveals its relevance to the user’s information need. In this
paper, we present a new solution to this problem of vocabulary summa-
rization, which has been defined as ranking and selecting RDF sentences
in our previous work. Firstly, we propose a novel bipartite graph repre-
sentation of vocabulary description, on which we carry out a stochastic
analysis of a random surfer’s behavior, from which we derive a new cen-
trality measure for RDF sentences called BipRank. Further, we improve
it by investigating the patterns of RDF sentences and employing their
statistical features. Then, we combine BipRank with query relevance and
cohesion metrics into an aggregate objective function to be optimized for
the selection of RDF sentences. Our experiments on real-world vocabu-
laries demonstrate the superiority of our approach to the baseline, and
also validate its scalability in practice.

Keywords: Cohesion, query relevance, random surfer model, ranking,
vocabulary summarization.

1 Introduction

An RDF vocabulary defines a collection of terms, namely classes and properties,
which convey data semantics between Web applications. Application developers
are encouraged to reuse existing vocabularies for achieving better interoperabil-
ity. However, when they interact with a vocabulary repository, e.g. browsing the
results of a vocabulary search, they are often overloaded with many candidates
and their lengthy descriptions, and can hardly make appropriate selections in
an effective yet efficient manner. By comparison, concise vocabulary summaries
could facilitate vocabulary understanding and then support decision making.
Existing approaches mainly operate on two kinds of unit of vocabulary. On the
one hand, fruitful research has been carried out into ranking and selecting key
terms from a vocabulary as a summary [9,11,15,17]. This paradigm is followed by

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 226–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 227

some major search engines such as Swoogle1 and Watson.2 On the other hand,
vocabulary description — represented as an RDF graph — is partitioned into
a collection of so-called “RDF sentences”, from which salient ones are selected
as a summary [10,16] that aims at reflecting the main theme of the vocabulary
with central components. Although having not been extensively investigated,
the latter is preferred in this study because it captures not only terms but also
relationships between them.

Following this line of research, we (1) propose BipRank, a new variant of the
random surfer model for characterizing the centrality (as a kind of salience) of
RDF sentence, based on a novel bipartite graph representation of vocabulary
description. Different from our previous work [16] which examines the syntactic
roles of terms in RDF sentences/triples (i.e. as subject, predicate or object),
this new model differentiates between intensional and extensional descriptions
of terms, and further exploits the patterns of RDF sentences. In the evaluation,
we observe a strong positive correlation between the salience given by our mea-
sure and handcrafted gold standards. Then, for supporting vocabulary search,
we (2) devise an approach to vocabulary summarization that combines BipRank
with two other metrics, namely query relevance and cohesion. In a search-based
evaluation comprising real-world vocabularies and users, the summaries gener-
ated by our approach are favored by more participants. We have incorporated
the approach into a practical vocabulary search engine.3

This work is an extension of our poster presentation [2]. In the remainder
of this paper, Sect. 2 gives the problem statement. Section 3 introduces our
salience measure. Section 4 describes our approach to vocabulary summarization.
Section 5 presents experimental results. Section 6 discusses related work. Finally,
Sect. 7 concludes the paper with future work.

2 Problem Statement

An RDF vocabulary v defines a set of terms, denoted by Terms(v). All their de-
scriptions are collectively characterized as an RDF graph, denoted by Graph(v).
An RDF graph, as a set of RDF triples, has a unique finest partition satisfy-
ing that RDF triples sharing common blank nodes are in the same part [13,16],
which corresponds to an equivalence relation. Each part, being an RDF graph by
itself, is called an RDF sentence [16], a.k.a. minimum self-contained graph [13].
Let Sents(v) be such partition of Graph(v), which is a set of RDF sentences and
can be computed by traversing Graph(v) only once. For a toy vocabulary vin,
Graph(vin) and Sents(vin) are illustrated in Fig. 1.

Following [16], a summary of a vocabulary v, denoted by S, is defined as a
subset of Sents(v). Summaries are usually under some length constraint. Here,
the number of RDF sentences is a natural but inappropriate constraint, because
one single RDF sentence may comprise one or many RDF triples, as shown in

1 http://swoogle.umbc.edu/
2 http://watson.kmi.open.ac.uk/
3 http://ws.nju.edu.cn/falcons/ontologysearch/

http://swoogle.umbc.edu/
http://watson.kmi.open.ac.uk/
http://ws.nju.edu.cn/falcons/ontologysearch/

228 G. Cheng et al.

(a) An RDF graph. (b) Four RDF sentences.

Fig. 1. An RDF graph and the corresponding RDF sentences

Fig. 1(b). Instead, we impose constraints on the total number of RDF triples
involved, i.e. |

⋃
S| ≤ k, given k a positive integer. In addition, we are also

aware of that from the point of view of presentation, RDF triples may not
appear equally long because literals and labels of terms may be of different
lexical lengths. However, this issue will not be addressed in this work.

3 Salience Measurement

In this section, firstly we review centrality-based salience measurement for sum-
marization tasks. Then, we present a novel bipartite graph representation of
vocabulary description, and study centrality within this graph via simulating a
random surfer’s behavior. Finally, we extend the solution with an investigation
into the patterns of RDF sentences.

3.1 Centrality-Based Salience

Centrality indicates the importance of a node within a graph. To apply centrality-
based methods to measure salience of data units for a summarization task, a
graph needs to be constructed where nodes correspond to data units and edges
represent their similarity or relatedness. This idea, after being successfully tested
on text summarization [5], has also been exploited for summarizing vocabular-
ies [16]. To be specific, given a vocabulary v, each RDF sentence in Sents(v)
is mapped to a node within a so-called “RDF sentence graph”, and two RDF
sentences are connected by an edge if they contain common RDF resources, in
particular common URIs in this context. A weight is assigned to each edge based
on the syntactic roles of these common URIs, i.e. as subject, predicate or object
of the RDF triples involved. Then, many different kinds of centrality such as
degree, betweenness and eigenvector (e.g. PageRank) could be computed.

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 229

However, we observe that the weakness of this approach is threefold. (1) Since
the construction of this graph employs merely the RDF syntax, e.g. determining
edges and their weights only based on the syntactic roles of URIs, the resulting re-
lationships captured by the graph seem too general and ambiguous. (2) Whereas
terms are the first-class citizens of a vocabulary, they are not directly modeled
in this graph, but only contribute to the weights of the edges, thereby failing to
make the principle behind the model explicit. (3) Whereas the approach focuses
on the relationships between RDF sentences, little attention is paid to their
internal structure, which may have an effect on the salience measurement.

To remedy the first and second flaws, in the following we will study centrality
within a bipartite graph that models a specific kind of relationship between RDF
sentence and term. After that, we will investigate the patterns of RDF sentences
for refining the model and remedying the third flaw.

3.2 BipRank: Centrality within a Bipartite Graph

To measure the salience of an RDF sentence s ∈ Sents(v), we choose to look
at how likely it is that s will be visited when v is under investigation. To this
end, we simulate a hypothetical surfer’s behavior of exploring v’s description, i.e.
Sents(v), which has two types. On the one hand, when the surfer has just visited
an RDF sentence (e.g. s1 in Fig. 1(b)), she might focus on a term described
there (e.g. vin:Wine). Then, she intends to explore its description (s1 and s4).
To start with, she chooses one (e.g. s4) from these RDF sentences. As a result,
the surfer turns from one RDF sentence (s1) to another (s4). On the other hand,
the surfer might directly choose another RDF sentence from Sents(v) at random
(e.g. s2) for further exploration (after visiting s1).

Such characterization of a surfer’s behavior is quite similar to the one un-
der the well-known PageRank algorithm. However, since two kinds of units are
discussed here, it inspires us to consider a bipartite graph representation.

Before that, we notice that in the first type of behavior, not all the terms oc-
curring in an RDF sentence will equally have a chance of being focused on. For
instance, given s1 in Fig. 1(b), it is most unlikely that the description of rdfs:
subClassOf will be looked up. That is, we should not assume a homogeneous
relationship between RDF sentence and term. In fact, here rdfs:subClassOf is
only used but not essentially described. To convey this message, we differentiate
between intensional and extensional descriptions. An RDF sentence s is an ex-
tensional description of a term u if there is an RDF triple t ∈ s satisfying that its
predicate is rdf:type and its object is u, or its predicate is u. In other cases of
occurrence, u is intensionally described in s. For instance, s4 in Fig. 1(b) is an in-
tensional description of vin:Wine, vin:locatedIn and vin:Region, but is an ex-
tensional description of rdfs:subClassOf,owl:Property, owl:someValuesFrom,
rdf:type and owl:Restriction. We only consider intensional description when
characterizing a surfer’s behavior.

Then, we propose to represent a vocabulary v’s description as a bipartite graph
called sentence-term graph, denoted by STG(v), whose nodes comprise Sents(v)
and a set of terms T having some s ∈ Sents(v) as an intensional description,

230 G. Cheng et al.

Fig. 2. A sentence-term graph

and whose edges E connect terms with their intensional descriptions. For our
toy vocabulary vin, Fig. 2 illustrates STG(vin) corresponding to Fig. 1(b).

Operating on this bipartite graph, we present a stochastic analysis of a surfer’s
behavior as characterized previously, called BipRank. Let d be the probability
of choosing the first type of behavior and thus 1− d the probability of choosing
the second type, since we assume only two types. For the first type, for each
edge 〈s, u〉 ∈ E connecting an RDF sentence s with a term u, let p(u|s) be the
probability of focusing on u at s, and let p(s|u) be the probability of exploring
s at u. They must satisfy the following normalization constraints:

∀s ∈ Sents(v),
∑

〈s,u〉∈E

p(u|s) = 1 , and

∀u ∈ T,
∑

〈s,u〉∈E

p(s|u) = 1 .
(1)

For the second type, we simply assume the surfer chooses with uniform prob-
ability which RDF sentence to explore. Then, let BRr(v, s) be the probability
that the surfer visits s ∈ Sents(v) at step r, which satisfies:

∑
s∈Sents(v)

BRr(v, s) = 1 . (2)

By taking all the possibilities of the surfer’s behavior into account, BRr+1(v, s)
is iteratively updated as follows:

BRr+1(v, s) =d
∑

〈s,u〉∈E

p(s|u)
∑

〈s′,u〉∈E

p(u|s′) BRr(v, s
′)

+ (1− d)
∑

s′∈Sents(v)

1

| Sents(v)| BRr(v, s
′) .

(3)

In fact, BipRank can be regarded as a specific case of a general probabilistic
framework for random walks [3], in which it has been proved that BRr(v, s)
will converge to a constant BR∗(v, s) that does not depend on any initial val-
ues of BR if 1−d �= 0. Similar to PageRank, BR∗ also characterizes a certain kind

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 231

of centrality, and in this context, it indicates the salience of RDF sentence in a
vocabulary description.

Before applying BipRank, some parameters require specification. Whereas d
is usually tuned based on experience or experimental results, in this work we
simply assume p(u|s) to follow a uniform distribution. We could make a similar
assumption on p(s|u), and we refer to the resulting salience measure as BipRank-
U. However, in the next, we will discuss other ways of estimating p(s|u).

3.3 Patterns of RDF Sentences

So far, BipRank only models the relationship between term and intensional de-
scription (i.e. RDF sentence). We argue that the schema underlying an inten-
sional description should also contribute to its salience, because different surfers
may favor different kinds of descriptions, e.g. subclass/superclass, domain/range
or label/comment. That is, p(s|u) may not follow a uniform distribution, but
depend on from which aspect s describes u, i.e. the pattern of s.

To represent the pattern of an RDF sentence, we substitute placeholders for
the terms intensionally described. Blank nodes are suitable placeholders since
they are treated as existential variables in RDF semantics. More formally, the
pattern of an RDF sentence s, denoted by Pattern(s), is an RDF graph derived
from s by substituting a fresh blank node for each occurrence of a literal or URI
that is not a term extensionally described. For instance, Fig. 3 illustrates the
patterns of the four RDF sentences in Fig. 1(b).

Fig. 3. Four patterns of RDF sentences

Rather than relying on surfer-specific preference for pattern, we intend to
develop a generic method for estimating p(s|u) that can serve a broad range of
needs. Therefore, we refer to the statistical properties of patterns for clues.

Firstly, given a vocabulary v, if a pattern is observed in many RDF sentences
in Sents(v), it is believed to capture a key structural characteristic of v, and thus
all the RDF sentences in Sents(v) that have this pattern are supposed to have a
high centrality. More formally, we have:

p(s|u) ∝ |{s′ ∈ Sents(v)| Pattern(s) % Pattern(s′)}| , (4)

232 G. Cheng et al.

where Pattern(s) % Pattern(s′) means that Pattern(s) is isomorphic to a sub-
graph of Pattern(s′). That is, not only pattern equivalence (which amounts to
equivalence between RDF graphs) but also pattern inclusion (i.e. subgraph iso-
morphism) are considered in our analysis. This extension of BipRank employs
the frequency of each pattern within a vocabulary, and we call it BipRank-F.

Secondly, given a vocabulary repository V , if a pattern is observed in RDF
sentences distributed in many vocabularies, i.e. being favored by many vocab-
ulary publishers, we consider that it may also be favored by many surfers, and
thus all the RDF sentences having this pattern should have a high centrality.
Then we have:

p(s|u) ∝ |{v ∈ V | ∃s′ ∈ Sents(v) : Pattern(s) % Pattern(s′)}| . (5)

This extension of BipRank leverages the popularity of each pattern, and we call
it BipRank-P.

To sum up, we have presented three implementations of our BipRank model,
functioning as different salience measures. In the next, we will apply BipRank
to summarizing vocabularies, and also compare these measures empirically.

4 Vocabulary Summarization

This section addresses the problem of vocabulary summarization. We firstly
discuss how to characterize a good summary, then we present our metrics, and
finally discuss implementation.

4.1 Goodness of a Vocabulary Summary

As introduced in Sect. 2, we have defined a summary of a vocabulary v as a
subset of Sents(v) with an upper limit k on the total number of RDF triples
involved. There could be many summary candidates under this constraint, and
the criterion for accessing their “goodness” really depends on the application.
In this work, we aim at supporting vocabulary search. A good summary in this
context (a.k.a. snippet) is expected to facilitate effective and efficient human
judgment on the relevance of the corresponding search result (i.e. a vocabulary)
to the information need expressed in the query. Inspired by the studies of text
summarization [12], we propose to measure three dimensions of goodness:

Salience. Summarization should extract the most salient units that capture the
main theme of the original data. In our problem, since vocabulary description
is given in a structured manner, it boils down to identifying those RDF
sentences that have a high centrality within graphical representation.

Query relevance. Query-oriented summaries have been widely used in infor-
mation retrieval. Similarly, for supporting vocabulary search, the selection of
RDF sentences should be biased towards the query for effectively reflecting
the relevance of the underlying vocabulary to the information need.

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 233

Cohesion. Text summarization considers a summary more than a collection of
separate sentences, but requiring exhibiting user-perceived unity grounded
on lexical and grammatical relationships between sentences that hold the
text together. Analogously, a good vocabulary summary should present in-
terconnections between its constituent RDF sentences.

Since all these dimensions may or may not be optimized simultaneously, we
formalize vocabulary summarization as a multi-objective optimization problem,
and solve it by constructing a single aggregate objective function:

Goodness(v, S,Q) = (1− α− β) Sal(v, S) + αRel(S,Q) + β Coh(S) , (6)

where v is the vocabulary to be summarized, S ⊆ Sents(v) a summary candidate,
Q a set of query keywords, and α, β, α+β ∈ [0, 1] are weighting coefficients. The
three constituent objective functions will be discussed in the following.

4.2 Metrics

Salience. In Sect. 3, we have described three variants of our BipRank model,
any of which could be employed to measure the salience of RDF sentences in a
vocabulary description (i.e. BR∗). Accordingly, we have

Sal(v, S) =
∑
s∈S

BR∗(v, s) . (7)

Query Relevance. Vocabulary description involves not only structure but also
text. The lexical feature of a summary S can be characterized by a vector,
denoted by KW(S). Each dimension corresponds to a separate keyword, whose
value is given by the total frequency of the keyword in the local name of each
term intensionally described in S and the lexical form of each literal occurring in
S. Analogously, a keyword query Q can also be represented by a keyword vector.
Then, the relevance of S to Q is defined as their cosine similarity:

Rel(S,Q) = Cosine(KW(S), Q) . (8)

Cohesion. The cohesion of a summary is mainly embodied in the common topics
shared by its units. In vocabulary summarization, these amount to the common
terms intensionally described in the selected RDF sentences. Accordingly, given
ITerms(s) the set of terms intensionally described in s, we have

Coh(S) =
∑

si,sj∈S
si �=sj

| ITerms(si) ∩ ITerms(sj)| . (9)

4.3 Notes on Implementation

We would like to briefly discuss two trade-offs we make in the implementation.

234 G. Cheng et al.

Firstly, the optimization problem defined by (6) is at least NP-complete, be-
cause the salience part boils down to the 0-1 knapsack problem. Therefore, we
employ a greedy strategy to find a locally optimal solution, which starts with an
empty summary, and iteratively adds one RDF sentence that leads to the highest
goodness until no more can be added without violating the length constraint.

Secondly, even though salience measurement can be carried out offline, we
observe that subgraph isomorphism testing in (4) and (5) is NP-complete and
needs to be performed many times. Hence we simplify this task by representing
each pattern as the set of all the URIs occurring in it, and then testing subgraph
isomorphism is approximately reduced to testing set inclusion.

5 Experiments

Our experiments were based on a real-world repository indexing 2,029 vocabu-
laries crawled by the Falcons search engine4 from February to September 2010,
collectively containing 381,317 terms and 2,328,091 RDF sentences derived from
2,478,085 RDF triples.

5.1 Evaluation of Salience Measures

In the first experiment, we compare the salience of RDF sentences given by our
BipRank measures and a baseline measure with handcrafted gold standards.

We identified 312 moderate-sized vocabularies from our repository, each con-
taining 20–50 RDF sentences describing 5–20 terms, which are neither too small
to be significant for a summarization task nor too large for manual investigation.
Then, nine of them were randomly selected as test cases, as shown in Table 1.
We invited six human experts to independently rate each RDF sentence in each
vocabulary with a 10-point scale indicating its salience to the main theme of
the vocabulary. We observed that the Pearson product-moment correlation co-
efficients (ρ) between their ratings ranged from 0.29 to 0.82, and averaged 0.57,
showing a strong (i.e. |ρ| > 0.5) agreement (i.e. ρ > 0) between their opinions.

In the literature, only [16] has proposed several salience measures for RDF
sentence as described in Sect. 3.1, from which the one based on the PageRank
centrality (denoted by Cp) was implemented as a baseline, since it was em-
pirically among the best according to [16]. In the implementation of the three
variants of our BipRank model (i.e. BipRank-U, BipRank-F and BipRank-P), d
in (3) was set to 0.85, a widely used empirical value in related research, and all
the iterative computation would stop after 20 steps.

In each test case, since we received a gold standard from each expert, we
compared computed salience with each of them and then took the average ρ
value. The results are presented in Table 1, where the highest value(s) in each
case are highlighted. We observe that, on the one hand, our basic BipRank-U
measure consistently and considerably outperformed Cp in all the cases, leading

4 http://ws.nju.edu.cn/falcons/

http://ws.nju.edu.cn/falcons/

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 235

Table 1. ρ between computed salience of RDF sentences and gold standards

Cp
BipRank

-U -F -P

v1 http://data.ordnancesurvey.co.uk/ontology/

spatialrelations/

-0.07 0.20 -0.58 -0.19

v2 http://ebiquity.umbc.edu/ontology/news.owl 0.49 0.61 0.47 0.56
v3 http://metadata.net/WildNET/Geography.owl -0.02 0.71 0.63 0.71
v4 http://sw.deri.org/2005/08/conf/cfp.owl -0.13 0.66 0.46 0.71
v5 http://www.csc.ncsu.edu/faculty/mpsingh/books/

SOC/lst/description/life.owl

-0.28 0.80 0.62 0.86

v6 http://www.cse.sc.edu/research/cit/projects/

DAML/Guo.daml

-0.18 0.62 0.62 0.61

v7 http://www.daml.org/researchers-ont -0.23 0.37 0.30 0.35
v8 http://www.ling.helsinki.fi/kit/2004k/

ctl310semw/GATE/Exporter.daml

0.05 0.90 0.90 0.90

v9 http://www.mindswap.org/2004/multipleOnt/

FactoredOntologies/FactoredPeoplePets/

FactoredVehicle.owl

-0.15 0.75 0.55 0.76

Average -0.06 0.62 0.44 0.59

by 0.12–1.08 or averaging 0.68. That is, our combination of sentence-term graph
and BipRank is a much more appropriate model than RDF sentence graph and
PageRank proposed in [16] for characterizing the salience of RDF sentence. On
the other hand, when further employing pattern of RDF sentence, the results
varied from case to case. Generally, we didn’t obtain better results with BipRank-
F. One illustrative case is v4, where a pattern about “term status” is used many
times, which nevertheless was not deemed that important by the experts. By
comparison, BipRank-P exactly showed its usefulness in this case, which assigned
relatively low salience to the RDF sentences having this unpopular pattern.
However, both BipRank-F and BipRank-P met opposite ratings in v1, where the
experts preferred the RDF sentences declaring reflexive/transitive/symmetric
properties to those more general declarations of object properties, despite the
relatively infrequent and unpopular patterns of the former. This finding inspires
us to study a trade-off between “informativeness” and frequency/popularity of
pattern in future work. To sum up, our BipRank measure has exhibited a definite
advantage over the state of the art, whereas the employment of pattern of RDF
sentence still needs further investigation.

5.2 Evaluation of Vocabulary Summaries

In the second experiment, we generate summaries by using several variants of
our approach and a baseline approach, and compare their usefulness in search
applications based on human ratings.

236 G. Cheng et al.

We developed a keyword search interface based on our vocabulary repository
(excluding 17 huge vocabularies containing more than 10,000 RDF sentences),
which retrieves all the vocabularies in the repository whose contents can match
all the query keywords, and returns one of them that is selected at random. For
the returned vocabulary, each of the approach settings to be evaluated was em-
ployed to generate a summary under the same constraint of k = 5. Accordingly,
tests on different values of k were outside the scope of this work. These sum-
maries were listed in random order, and their underlying approach settings were
not given to users. Each summary was presented as a merge of its constituent
RDF sentences — amounting to a single RDF graph, and was visualized as a
node-link diagram by using Graphviz.5

We invited 18 human experts (P1–P18) to this experiment, each carrying out
at least 10 searches with different keyword queries. For each search, the expert
was asked to think about an arbitrary domain (e.g. sports or news), describe it
by using some keywords which compose a keyword query, and judge — based
on the expert’s own opinion and each of the presented summaries — how well
it is characterized by the returned vocabulary (if any). However, we were not
interested in and thus did not ask for the judgment itself. Instead, the expert
needed to rate each summary with a 10-point scale indicating its usefulness in
assisting in making the judgment.

In the literature, we found that [16] and [10] are comparable to our approach
since they also treat the RDF sentence as the unit of vocabulary summary.
In [16], a generic (i.e. not query-biased) approach to vocabulary summarization
(denoted by Generic) is proposed, which firstly ranks RDF sentences by Cp and
then performs a diversity-oriented re-ranking. Whereas we implemented Generic
as a baseline approach, we did not choose the query-biased approach presented
in [10] because we were not sure how to adapt it appropriately for our problem
definition (i.e. ranking and selecting RDF sentences). In fact, it would firstly
produce a clustering of RDF sentences, and then compute a ranking of RDF
sentences within each cluster. However, a reasonable way to select RDF sentences
that collectively contain not more than k RDF triples from such kind of result is
not explicit. We also implemented three variants of our approach by setting the
parameters in (6) to different values: (1) QR that considers only query relevance
(α = 1, β = 0), (2) QR+S that considers query relevance and salience (α = 0.5,
β = 0, using BipRank-P), and (3) QR+C that considers query relevance and
cohesion (α = β = 0.5).

We received 190 valid searches, each returning a vocabulary of which all the
summaries generated by each approach were associated with human ratings.
Table 2 summarizes these ratings given by each expert to each approach, av-
eraged over all the searches performed by the expert. Firstly, between Generic
and QR, all the 18 experts except P5 (94%) gave higher ratings to the sum-
maries generated by our approach with only the query relevance metric enabled
than to the baseline approach, leading by 2.37 on average on a 10-point scale,
which suggested that our query-biased vocabulary summarization considerably

5 http://www.graphviz.org/

http://www.graphviz.org/

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 237

outperforms a state-of-the-art generic approach. Secondly, between QR and
QR+S, 9 experts (50%) believed that simultaneously using our salience met-
ric is superior to only using query relevance, whereas only 6 (33%) believed
the opposite. Finally, between QR and QR+C, the superiority of incorporating
our cohesion metric was largely supported by 14 experts (78%). Overall, QR+C
was also the best-performing approach in this evaluation. To sum up, when our
query-biased summaries have proven to be more useful in vocabulary search
than the baseline, they could be further enhanced by our salience and cohesion
metrics. However, more parameter combinations deserve to be tested in future
work.

Table 2. Usefulness of computed summaries in search rated by each expert

Generic QR QR+S QR+C Generic QR QR+S QR+C

P1 1.80 5.90 6.70 6.20 P10 5.40 6.70 7.10 6.90
P2 1.58 6.89 7.00 7.47 P11 2.09 4.82 4.82 4.36
P3 3.80 9.10 9.10 9.00 P12 4.20 5.50 5.70 5.70
P4 5.30 7.50 7.80 7.70 P13 4.10 6.20 6.00 5.70
P5 7.10 5.70 6.10 7.80 P14 2.20 7.40 7.40 7.60
P6 5.80 6.90 6.30 8.80 P15 3.00 6.30 5.90 7.30
P7 3.60 6.00 6.50 6.30 P16 5.40 6.60 6.00 7.10
P8 5.45 5.91 5.55 6.09 P17 2.08 5.00 5.50 5.92
P9 1.36 4.09 3.82 3.82 P18 4.91 5.27 5.55 5.55

Average 3.84 6.21 6.27 6.63

Figure 4 summarizes all the human ratings in a different way, to show the
relationship between the usefulness of a summary and the number of keywords
contained in a query. Whereas the three variants of our approach performed
robustly in different settings, the rating received by the baseline approach con-
sistently decreased when increasing the number of query keywords. One expla-
nation could be that a query containing more keywords usually indicates a more
specific information need, thereby expecting more indications of query relevance
from the summaries, which failed to be achieved by a generic approach. When
our approach under all the three parameter combinations largely outperformed
the baseline approach, QR+C seemed to be the best among them, in particular
for queries comprising single keyword. That is, when users aimed at exploring
an unfamiliar domain without specific needs, they were more biased towards
starting from a cohering portion of a vocabulary than from those separate —
even if salient — particles.

5.3 Performance Testing

When being used in vocabulary search, the efficiency of a summarization ap-
proach becomes a critical issue since a high latency would badly hurt user ex-
perience. In this third experiment, we test the performance of our approach in
real-world settings.

238 G. Cheng et al.

Fig. 4. Human-rated usefulness of com-
puted summaries in search with queries
comprising different numbers of key-
words

Fig. 5. A contour map view of the run-
time of our approach applied to vocab-
ularies containing different numbers of
RDF sentences (on a log scale) under dif-
ferent k values (on a linear scale)

Our implementation was written in Java and ran on a 64-bit server with two
4-core Xeon 2.4G and 4GB memory for JVM. In particular, at each iteration
of our greedy implementation as described in Sect. 4.3, we employed 20 threads
to concurrently look for a locally optimal solution. On each vocabulary in our
repository, we run our approach 5 times (after a warm-up run) under each k ∈
[1, 20], each time with a query comprising up to 10 keywords picked at random
from the vocabulary. The contour map shown in Fig. 5 presents the average
runtime of one single execution of our approach under different k values and
different numbers of RDF sentences contained in a vocabulary. Under k = 6
— a practical setting adopted by our vocabulary search engine, our approach
could scale to 1,743 RDF sentences (covering 98.3% of all the vocabularies in our
repository) within 100 milliseconds, to 19,420 (covering 99.3%) within 1 second
and to 608,235 (covering all) within 45 seconds. That is, our approach could
deal with almost all the real-world vocabularies in our repository in real time,
except for only a few very large ones, which require developing more efficient
solutions in the future. From another point of view, given 206 RDF sentences —
covering 80% of all our vocabularies, our approach costed 142 milliseconds under
k = 10 and 272 milliseconds under k = 20. That is, even for larger k values, our
approach still scaled well to most real-world cases. In fact, the runtime basically
increased linearly when increasing k or increasing the number of RDF sentences.

6 Related Work

6.1 Vocabulary Summarization: Extracting RDF Sentences

Vocabulary (or ontology) summarization was firstly conceived as the problem
of ranking RDF sentences in our previous work [16]. We defined two kinds
of weighted links between RDF sentences based on the RDF resources iden-
tified by URIs they have in common and their syntactic roles in RDF triple.

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 239

This leads to an RDF sentence graph, on which various centrality measures such
as degree, betweenness and PageRank were leveraged to induce a ranking of
RDF sentences. We further developed a re-ranking strategy for generating more
coherent and diverse summaries, also operating on the two kinds of links.

After that, [10] extended [16] by deriving a topic graph from an RDF sen-
tence graph contracted on similar nodes. The similarity between RDF sentences
is measured by the common textual information they have in common. Then,
query-relevant topics are ranked according to their in-degree centralities within
the topic graph, and top-ranked topics are selected as a summary. In each topic,
only top-ranked RDF sentences are retained, and the ranking is based on the
in-degree centrality within the RDF sentence graph.

This paper follows this line of approach. However, we extend the state of the
art in several directions. Firstly, we propose a new graphical representation for
characterizing the relationship between RDF sentences via terms, namely the
notion of sentence-term graph, which is a bipartite graph grounded on not the
ambiguous syntactic roles of terms but the more principled intensional descrip-
tion relationship between RDF sentence and term. Secondly, besides measuring
the centralities of RDF sentences by using a variant of the random surfer model,
we also discuss the impact of their patterns from two angles: frequency and
popularity. Thirdly, we are the first to formalize vocabulary summarization (i.e.
ranking and selecting RDF sentences) as a multi-objective optimization problem,
in which salience, query relevance and cohesion are investigated.

6.2 Vocabulary Summarization: Identifying Key Terms

Another form of vocabulary summary is a set of key terms selected, which has
been adopted by several search engines including Swoogle and Watson. Ap-
proaches thus far operate on various kinds of graphical representation of vocab-
ulary description such as class hierarchy [11], class-property graph [15] and term
dependence graph [17], and ranking criteria range from degree-based centrality
measures such as density [11] and betweenness [14] to sophisticated measures
based on different variants of the random surfer model [15,17]. Some other ap-
proaches such as [4,6] also consider the popularity of terms on the Web.

Choosing the term or the RDF sentence as the unit of summary are two
different types of extractive vocabulary summarization. In fact, an empirical
analysis [8] reveals that the two sides may generate quite close results in terms
of the terms involved. We choose the latter because a subset of RDF sentences
could slice off not only terms but also their semantic relationships, which could
be leveraged by users to make more accurate relevance judgments in search
applications.

6.3 Keyword Search on Graphs

Keyword search on graphs firstly attracted interests from the database commu-
nity [1], and later was studied on RDF graphs [7]. The basic idea is to map query
keywords to graph elements (i.e. nodes and edges) and then search for and rank

240 G. Cheng et al.

subgraphs that can connect these elements. When being applied to vocabularies
in search applications, such a resulting subgraph could also be regarded as a
vocabulary summary.

However, these approaches are designed for serving query answering, where a
resulting subgraph is supposed to carry an answer to the question underlying a
keyword query, which is different from the goal pursued in vocabulary search,
namely to support efficient human inspection and relevance judgment. Accord-
ingly, vocabulary summarization usually specifies a length constraint, whereas
keyword search on graphs mainly requires every resulting subgraph to be con-
nected.

7 Conclusions and Future Work

We have proposed the notion of sentence-term graph to characterize the inten-
sional description relationship between RDF sentence and term in a vocabulary.
On this graph, a variant of the random surfer model called BipRank is designed
for measuring the centrality of RDF sentence as a proxy for salience, which is
much closer to the gold standards given by human experts than a state-of-the-
art approach. Further, the effect of pattern of RDF sentence on this model has
been empirically analyzed, which is positive in some cases but generally still has
room for being exploited in more appropriate ways. With BipRank and other
two metrics for query relevance and cohesion, we have developed a new solution
to vocabulary summarization, which is formalized as a multi-objective optimiza-
tion problem. The results of a search-based evaluation show that the summaries
generated by our approach are more useful than those computed by a base-
line approach, and all the three metrics considered are effective. We have also
demonstrated the scalability of our approach in real-world settings.

The evaluation results have suggested other factors such as informativeness
that could be employed to weight patterns of RDF sentences in BipRank, which
will be our primary work in the future. Besides, it would be interesting to inves-
tigate whether BipRank can be adapted for ranking not only RDF sentences but
also terms. As to vocabulary summarization, we are also interested in extending
this problem to the more generalized case of multiple vocabularies.

Acknowledgments. This work was supported in part by the NSFC under
Grant 60973024 and 61100040, and in part by ZTE Corp. (R&Dcon1105160003).
We thank Dr. Xiang Zhang for his invaluable advice on this work, thank Saisai
Gong for his time and effort in supporting the experiments, and thank all the
students that participated in the experiments.

References

1. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan, S.: Keyword
Searching and Browsing in Databases Using BANKS. In: 18th International Con-
ference on Data Engineering, pp. 431–440. IEEE Computer Society, Washington,
DC (2002)

BipRank: Ranking and Summarizing RDF Vocabulary Descriptions 241

2. Cheng, G., Ge, W., Qu, Y.: Generating Summaries for Ontology Search. In: 20th
International Conference Companion on World Wide Web, pp. 27–28. ACM, New
York (2011)

3. Diligenti, M., Gori, M., Maggini, M.: A Unified Probabilistic Framework for Web
Page Scoring Systems. IEEE Trans. Knowl. Data Eng. 16(1), 4–16 (2004)

4. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking
Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)

5. Erkan, G., Radev, D.R.: LexRank: Graph-based Centrality as Salience in Text
Summarization. J. Artif. Intell. Res. 22, 457–479 (2004)

6. Harth, A., Kinsella, S., Decker, S.: Using Naming Authority to Rank Data and
Ontologies for Web Search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum,
L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 277–292. Springer, Heidelberg (2009)

7. Ladwig, G., Tran, T.: Combining Query Translation with Query Answering for
Efficient Keyword Search. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS,
vol. 6089, pp. 288–303. Springer, Heidelberg (2010)

8. Li, N., Motta, E.: Evaluations of User-Driven Ontology Summarization. In: Cimi-
ano, P., Pinto, H.S. (eds.) EKAW 2010. LNCS, vol. 6317, pp. 544–553. Springer,
Heidelberg (2010)

9. Li, N., Motta, E., d’Aquin, M.: Ontology Summarization: An Analysis and An
Evaluation. In: Proceedings of the International Workshop on Evaluation of Se-
mantic Technologies, CEUR (2010)

10. Penin, T., Wang, H., Tran, T., Yu, Y.: Snippet Generation for Semantic Web Search
Engines. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367,
pp. 493–507. Springer, Heidelberg (2008)

11. Peroni, S., Motta, E., d’Aquin, M.: Identifying Key Concepts in an Ontology,
through the Integration of Cognitive Principles with Statistical and Topological
Measures. In: Domingue, J., Anutariya, C. (eds.) ASWC 2008. LNCS, vol. 5367,
pp. 242–256. Springer, Heidelberg (2008)

12. Spärck Jones, K.: Automatic Summarising: The State of the Art. Inf. Process.
Manag. 43(6), 1449–1481 (2007)

13. Tummarello, G., Morbidoni, C., Bachmann-Gmür, R., Erling, O.: RDFSync: Effi-
cient Remote Synchronization of RDF Models. In: Aberer, K., Choi, K.-S., Noy,
N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D.,
Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 537–551. Springer, Heidelberg (2007)

14. Tzitzikas, Y., Kotzinos, D., Theoharis, Y.: On Ranking RDF Schema Elements
(and its Application in Visualization). J. Univers. Comput. Sci. 13(12), 1854–1880
(2007)

15. Wu, G., Li, J., Feng, L., Wang, K.: Identifying Potentially Important Concepts
and Relations in an Ontology. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp.
33–49. Springer, Heidelberg (2008)

16. Zhang, X., Cheng, G., Qu, Y.: Ontology Summarization Based on RDF Sentence
Graph. In: 16th International Conference on World Wide Web, pp. 707–716. ACM,
New York (2007)

17. Zhang, X., Li, H., Qu, Y.: Finding Important Vocabulary Within Ontology. In:
Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185,
pp. 106–112. Springer, Heidelberg (2006)

Operational Semantics for SPARQL Update

Ross Horne, Vladimiro Sassone, and Nicholas Gibbins

Electronics and Computer Science
University of Southampton, UK

{rjh06r,vs,nmg}@ecs.soton.ac.uk

Abstract. Concurrent fine grained updates are essential for using RDF stores in
dynamic modern Web applications, where users increasingly contribute content
as often as they read content. SPARQL Update is a language proposed by the
W3C for fine grained updates for RDF stores. In this work we propose an opera-
tional semantics for an update language for RDF, which models core features of
SPARQL Update. Firstly, an abstract syntax for RDF and updates is presented.
Secondly, the operational semantics is defined using relations over the abstract
syntax. The operational semantics specifies all possible operational behaviours
of updates in the presence of an RDF store. The specification is useful as a com-
mon reference for compiler engineers and as a foundation for the static analysis
of updates.

1 Introduction

An open problem is to provide an operational semantics for the W3C SPARQL Up-
date working draft [9]. SPARQL Update is a development of an earlier proposal from
Hewlett-Packard Labs [18]. The language is introduced to extend the SPARQL Query
language [17] to enable fine grained updates over an RDF store.

The recommended semantics for SPARQL Query are influenced by the work of Pérez
et al. [15], which provides a set-based denotational semantics for queries. In contrast,
the semantics presented here for updates are operational in nature. The difference be-
tween a denotational semantics and an operational semantics is that the former builds
an external model (typically a static set in which behaviours may exist), whereas the
later is defined directly over an abstract syntax for the language.

There are several advantages of operational semantics. An operational semantics
works like an interpreter, so is at an appropriate level for compiler engineering. Op-
erational semantics is also suited to ad-hoc features which appear in real programming
languages, which SPARQL Update intends to be. Furthermore, operational semantics
are suited to specifying the complex long term behaviour of systems, including concur-
rency as required by servers. Denotational semantics for both application driven ad-hoc
features and long term behaviour are notoriously difficult [1]. Thus, operational seman-
tics can easily and insightfully be adapted to queries [12]; but denotational semantics
do not extend easily to updates, since non-standard mathematics would be required.

Consider an analogy. All readers are familiar with the concept of a regular expres-
sion or use tools which involve regular expressions. For instance, the replace tool in
your text editor is appropriate for every day updates in text documents. This update

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 242–257, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Operational Semantics for SPARQL Update 243

language extends the power of regular expressions generalised appropriately to RDF
triples (instead of characters), with quantifiers to access URIs and literals in triples. For
the sake of clarity, here a core update language, rather than full SPARQL Update, is
presented where only the default RDF graph is updated. The model can be extended
to handle named graphs [6]. Also, the model can accommodate updates with respect to
entailments, such as those defined in RDFS [5].

In Section 2 further motivation is provided to emphasise the importance of an opera-
tional semantics for SPARQL Update. In Section 3 a syntax for RDF Data and Updates
is established. In Section 4 an equivalence is provided over RDF Data. This equiva-
lence defines when two pieces of RDF Data have the same meaning. In Section 5 the
behaviour of Updates is specified using a deductive system which derives relations over
the syntax. The relations indicate how some RDF Data is transformed by a Update into
some other RDF Data. Examples of each feature of Updates are provided along with
the rules of the operational semantics.

2 Background and Motivation

Before defining the operational semantics, some motivation is provided in this section.
The tradition of using operational semantics to specify programming languages is dis-
cussed, highlighting benefits offered to Web standards. A short sketch of the relationship
between this work and the draft specification is also provided, including a preview of
the abstract syntax.

2.1 A Case for an Operational Semantics for SPARQL Update

A structural approach to operational semantics was first introduced in a seminal note
by Plotkin [16]. At the time, the behaviour of languages tended to be specified using
a reference compiler. The correctness of an implementation of a language would be
verified by checking that its behaviour matched the behaviour of the reference com-
piler. Plotkin’s work introduced a methodology for precisely specifying the operational
behaviour of languages directly over an abstract syntax.

Web standards, such as SPARQL Update, require clear specifications of their be-
haviour. Structural operational semantics are designed precisely for this scenario. A
clear operational semantics can be concisely communicated in a document, which can
be used as a reference to ensure that all implementations of a standard have a common
operational behaviour. For this reason, an operational semantics for SPARQL Update is
a valuable contribution to the current standardisation process at the W3C [9].

An operational semantics for a language has further advantages. It allows clarity and
methodology when design decisions are considered. Furthermore, operational seman-
tics can be used as the basis for powerful techniques and tools for the language, such
as a static type checker or algebra for composition and optimisation of updates [12,11].
Such tools cannot be confidently developed without an operational semantics. Further-
more, the distinction between static and dynamic types is not evident until updates are
considered.

244 R. Horne, V. Sassone, and N. Gibbins

2.2 A Comparison of SPARQL Update to This Work

The intention of the update language introduced is to model the core of SPARQL Up-
date. A basic comparison between this update language and SPARQL Update is pro-
vided here.

The following example is adapted from the current working draft [9]. The update
deletes zero or more RDF triples where the literal "Bill" appears and inserts a triple
where "William" appears. The update can only occur if the subject of the triple is of
type person.

Concrete Update:

DELETE { ?person foaf:givenName "Bill" }

INSERT { ?person foaf:givenName "William" }

WHERE { ?person rdf:type foaf:Person }

The above update can be expressed in an abstract syntax as follows.
Abstract Update:

DO SELECT :person {
DELETE { :person foaf:givenName "Bill" }
INSERT { :person foaf:givenName "William" }
WHERE { :person rdf:type foaf:Person }
}

The abstract syntax above is more explicit than the concrete syntax. The select quantifier
explicitly indicates the scope of the bound variable. Also, the abstract syntax of the
update language explicitly indicates that the update may be applied zero or more times.
This makes the definition of the operational semantics cleaner.

3 A Concise Abstract Syntax

This section presents an abstract syntax used to define an operational semantics for
Updates. The abstract syntax is intended for the purpose of compiler engineering (as
opposed to defining an exchange format). Three generators are sufficient to specify this
abstract syntax: one for RDF Data; one for constraints; and a third for Updates.

3.1 Syntactic Conventions

The following namespace prefix bindings are used throughout this document.

dc: http://purl.org/dc/terms/

dc11: http://purl.org/dc/elements/1.1/
foaf: http://xmlns.com/foaf/0.1/
eg: http://example.org/

Prefixes abbreviate URIs, for readability in examples. Curly brackets are used to resolve
ambiguity in examples.

http://purl.org/dc/terms/
http://purl.org/dc/elements/1.1/
http://xmlns.com/foaf/0.1/
http://example.org/

Operational Semantics for SPARQL Update 245

3.2 A Syntax for RDF Data

The following grammar presents an abstract syntax for RDF. Several concrete syntaxes
have been proposed for RDF, such as Turtle and N3 for the purpose of tersely present-
ing RDF to humans [2,4]. In contrast, the following abstract syntax for RDF Data is
designed for compiler engineering.

object� "literal" a literal
| URI a URI
| ?variable a variable

Data� {} nothing
| {URI URI object } a triple
| Data , Data par
| BNODEURI Data blank node

Two forms of triple represent RDF triples, with either a URI or a literal as the object.
A variable indicates an unknown literal (for pattern matching in queries). Nothing rep-
resents the absence of any RDF triples. The operator ‘par’ composes RDF Data, thus
for instance two triples can be composed using par. The Blank node quantifier binds
a name which can only be refered to locally (as opposed to a URI which is a global
name). For elegance, the same syntax is used to name URIs and blank nodes; they are
distinguished only by quantifiers, which give local names scope. Many examples of
RDF Data are presented throughout this work.

3.3 A Syntax for Constraints

Constraints are defined fully in the SPARQL Query recommendation [17], hence only
an outline grammar for constraints is provided here. The following is enough to suggest
that constraints form a Boolean algebra with built in primitives. Constraints may contain
variables and URIs.

Constraint� true true
| false false
| Constraint && Constraint and
| Constraint || Constraint or
| !Constraint not
| regex(?variable,RegularExpression) regular expression
| . . . etc.

A constraint is satisfied if and only if it evaluates to true. The evaluation of constraints is
detailed in the SPARQL Query recommendation [17]. Examples of constraints include
regular expressions parametrised on a variable and inequality tests on numbers.

3.4 A Syntax for Updates

The following grammar proposes an abstract syntax for updates. The language is in-
spired by core features of SPARQL Update. A successful update results in an atomic
change to an RDF store. This abstract syntax allows constructs to be nested. Nesting is
useful for expressiveness and optimisation purposes.

246 R. Horne, V. Sassone, and N. Gibbins

Update� DELETEData delete a term
| INSERTData insert a term
| FILTERConstraint impose a constraint
| Update CHOOSE Update choose a branch
| Update JOIN Update synchronise updates
| SELECTURI Update select a URI
| SELECT?variable Update select a literal
| DOUpdate iteratively apply an update

Delete removes the indicated RDF Data from the store. Insert introduces some RDF
Data to the store. Filter imposes a constraint on an update. Choose offers the choice of
either a left or right update. Join ensures that two updates happen in the same atomic
update. Select parametrises an update on either a URI or a literal which is not known in
advance. (Note that in this abstract syntax, URIs and literals are distinguished in Selects
for clarity.) Iteration (DO) performs an update zero, one, two or more times, in the same
atomic update. Without iteration an update is applied once.

Examples of each construct are provided along with the operational semantics for
the construct in Section 5.

3.5 Abbreviations for Common Updates

A number of common updates can be defined using the basic updates above. The use
of abbreviations avoids redundancy in the operational semantics. Identifying redundant
operators is useful for compiler engineering, since the number of operators to imple-
ment directly is reduced.

An optional update gives the choice of performing an update or not performing an
update. The optional update can be defined by a choice between an update and the true
constraint which always holds, as follows. (This avoids a left outer join operator, which
is used to provide the semantics of ‘optional’ in SPARQL Query [15].)

OPTIONALUpdate � Update CHOOSE FILTERtrue optional update

Successive select queries are can be combined. The combined variables are listed in a
single select quantifier, as follows.

SELECT?variable0 ?variable1

Update
�
SELECT?variable0

SELECT?variable1

Update
multiple selects

In this paper queries are encoded naı̈vely, using the keyword WHERE . The effect of a
query can be achieved by joined insert and delete, as follows.

WHERETerm � DELETETerm JOIN INSERTTerm queries

The joined delete and insert has the effect of a querying for a term: The term deleted
must exist for the delete to be applied, but the insert immediately replaces the deleted
term in the same atomic step. Queries could alternatively be defined as primitives of the
language, as in [12].

Operational Semantics for SPARQL Update 247

4 An Equivalence over RDF Terms

This section identifies equivalent syntax. A syntactic equivalence imposes less con-
straints on RDF than any requirement that collections of triples are sets. Instead, obvi-
ously equivalent syntax is considered to serve the same purpose, as defined by a struc-
tural congruence.

4.1 A Structural Congruence

A structural congruence, written = below, is a relation between RDF Terms. A congru-
ence is an equivalence relation (reflexive, symmetric and transitive) which holds in all
contexts. The structural congruence satisfies the following equations — associativity,
unit and commutativity.

Associativity: Data0 , {Data1 , Data2} = {Data0 , Data1} , Data2

Unit: Data , {} = Data Commutativity: Data0 , Data1 = Data1 , Data0

The structural congruence can be applied at any point, when evaluating the operational
semantics in Section 5.

Example of Applying the Structural Congruence. The following RDF Data can be
used interchangeably. If the RDF on the left appears in a rule in the next section, then it
can be replaced by the RDF on the right.

{ eg:book1 eg:price "£10" } ,
{} ,
{
{ eg:book2 dc:title "Linked Data" } ,
{ eg:book1 dc:title "Web of Data" }
}

{
{ eg:book1 dc:title "Web of Data" } ,
{ eg:book1 eg:price "£10" }
} ,
{ eg:book2 dc:title "Linked Data" }

Brackets are used similarly for Group Graph Patterns in SPARQL Query [17]. Associa-
tivity of par allows most brackets to be omitted for readability.

Alpha Conversion. The standard notion of alpha conversion can be applied to blank
node quantifiers. Alpha conversion allows a bound name to be replaced by a fresh name,
to avoid name clashes. For instance the following RDF Data is equivalent.

BNODE :a {
{ :a foaf:familyName "Carrol" } ,
{ :a foaf:knows eg:Klyne }
}

BNODE :b {
{ :b foaf:familyName "Carrol" } ,
{ :b foaf:knows eg:Klyne }
}

Alpha conversion captures the isomorphisms in the RDF specification [13].

248 R. Horne, V. Sassone, and N. Gibbins

5 A Commitment Relation for Updates

The commitment relation specifies atomic changes which can be made to an RDF store.
Atomicity focuses on the local effect of an update. The RDF Data which is required to
perform an atomic update is accounted for. An advantage of this approach is that the
data indicated by a commitment relation can be locked to ensure that an update occurs
atomically.

A commitment relation consists of the RDF Data before an update, an Update and
the resulting RDF Data after the update. Thus commitment relations are relations of the
following form.

Before: Data Update: Update After: Data

Commitment relations can also be derived from rules. The premises of a rule are one
or more commitment relations and the conclusion is a single commitment relation. The
conclusion holds only if all the premises hold. The axioms and rules which specify
operational semantics for Updates are defined throughout this section.

5.1 The Delete Axiom

The Delete Axiom removes some RDF Data from the store. The committed RDF Data,
Data, and committed delete update, DELETEData, interact. After the interaction both
the Data is removed from the store. This results in the empty process.

Before: Data Update: DELETEData After: {}

Example of the Delete Axiom. The following triple can be removed by the follow-
ing update due to the following commitment relation. This commitment relation is an
instance of the Delete Axiom.

Before: { eg:book1 dc:title "The Semantic Web" }
Update: DELETE { eg:book1 dc:title "The Semantic Web" }

After: {}

5.2 The Insert Axiom

The Insert Axiom adds some designated RDF Data to the store. The designated RDF
Data is indicated by the INSERT keyword. The result of this update is to make the
designated RDF Data available after the commitment.

Before: {} Update: INSERTData After: Data

Example of the Insert Axiom. The two triples below can be inserted into anything
(since nothing is required), due to the following commitment relation. This commitment
relation is an instance of the Insert Axiom.

Before: {}
Update: INSERT { eg:book1 dc:title "The Web of Linked Data" }

After: { eg:book1 dc:title "The Web of Linked Data" }

Operational Semantics for SPARQL Update 249

5.3 The Join Rule

The Delete Axiom and the Insert Axiom allow basic updates to take place where either
the exact RDF Data to be deleted is known, or the exact RDF Data to be inserted is
known, respectively. For more substantial updates, rules are required to build commit-
ment relations. The first of these rules is the Join Rule.

The Join Rule ensures that two updates occur atomically, in the same commitment
relation. If one update has one effect and another update has another effect, then the
join of the updates is their combined effect. The rule ensures that both updates act
simultaneously on separate RDF Data. Suppose that the following commitment relation
holds.

Before: Data0 Update: Update0 After: Data2

Also, suppose that the following commitment relation holds.

Before: Data1 Update: Update1 After: Data3

The two commitment relations above can be combined to produce the following com-
mitment relation.

Before: Data0 , Data1 Update: Update0 JOIN Update1 After: Data2 , Data3

Example of Joined Updates. The update below demonstrates two joined updates. The
update combines the examples of Sec. 5.1 and Sec. 5.2 using the join rule. Thus the
combined update removes a triple and adds a new triple atomically.

Before: { eg:book3 dc:title "The Semantic Web" }
Update: DELETE { eg:book3 dc:title "The Semantic Web" }

JOIN

INSERT { eg:book3 dc:title "The Web of Linked Data" }
After: { eg:book3 dc:title "The Web of Linked Data" }

Notice that the rules ensure that join is commutative (this is not sequential composi-
tion). Also, from here onwards, the join keyword is omitted from examples. This makes
examples more readable and closer to the SPARQL Update syntax.

5.4 The Select Literal Rule and Select URI Rule

The Select Literal Rule is parametrised on a variable. The variable is bound to the update
indicated (so cannot be refered to from outside the select). The Select Rule allows any
literal which enables a commitment to be substituted for the variable. The result of
the commitment with the variable substituted for a literal, becomes the result of the
commitment with the variable bound by a Select. Note that substitution is indicated by
square brackets where the literal on the left replaces the variable on the right. Suppose
that the following commitment relation holds.

Before: Data0 Update: Update["literal"/?variable] After: Data1

250 R. Horne, V. Sassone, and N. Gibbins

Given the commitment relation above the following commitment relation holds.

Before: Data0 Update: SELECT?variable Update After: Data1

The Select URI Rule has the same shape. In the case of URIs, a correct URI to input
is substituted for the temporary URI which is bound in the Select expression. Thus two
URIs replace both the variable and literal in the Select Literal Rule.

Example of the Select Literal Rule. The following example demonstrates how Select
can be used to delete some RDF Data which involves a literal not known in advance.
The update deletes a triple in which the variable ?title appears. The variable can be in-
stantiated with the literal "SPARQL Tutorial". Thus the delete matches the committed
triple. Therefore the following commitment is valid.

Before: { eg:book4 dc:title "SPARQL Tutorial" }
Update: SELECT?title {

DELETE { eg:book4 dc:title ?title }
}

After: {}

5.5 The Choose Left Rule and Choose Right Rule

The Choose Rules allow one of two updates to be committed. The choose rule has a
left and right form, where respectively the left or right update is applied. The result of
a choice is the result of the update chosen. Consider the Choose Left Rule and suppose
that the following commitment relation holds.

Before: Data0 Update: Update0 After: Data1

Given the above commitment relation, the following commitment relation holds.

Before: Data0 Update: Update0 CHOOSE Update1 After: Data1

The rule above chooses the left update. The Choose Right Rule is the symmetric rule
which chooses the right branch instead.

Example of a Choice of Updates. The following demonstrates an update where either
the first delete or second delete may be triggered. The two branches use different ver-
sions of the Dublin Core metadata vocabulary. In this case, the committed RDF Data
matches the right branch. The result is that the committed triple is deleted.

Before: { eg:book5 dc11:title "SPARQL Protocol Tutorial" }
Update: SELECT?title {

DELETE { eg:book5 dc:title ?title }
CHOOSE

DELETE { eg:book5 dc11:title ?title }
}

After: {}

Operational Semantics for SPARQL Update 251

Note that if both branches are satisfied then one branch is chosen non-deterministically.
If the update is iterated then two copies of the update can be posed where each copy
chooses a different branch. This is different from forcing both branches to be performed
simultaneously, which would be expressed as a join of updates rather than as a choice
between updates.

5.6 The Filter Axiom

The Filter Axiom imposes a constraint on an update. The constraint is disposed only
if the constraint evaluates to true. If the constraint does not evaluate to true then the
update is blocked. The procedure for deciding whether a constraint holds is specified in
the SPARQL Query Recommendation [17]. Given that the constraint evaluates to true
the following commitment relation holds.

Before: {} Update: FILTERConstraint After: {}

An Example of a Filtered Update. The following commitment relation holds. The up-
date deletes the title of a book, where the title and the book are discovered using Select.
The filter imposes the constraint that the title must also satisfy a regular expression. The
literal in the committed triple does match the regular expression. The triple is deleted.

Before: { eg:book4 dc:title "SPARQL Tutorial" }
Update: SELECT :a, ?title {

DELETE { :a dc:title ?title }
FILTERregex (?title, "ˆSPARQL")
}

After: {}

5.7 The Rules for Iterated Updates

All updates above are applied exactly once. Often the update should be applied wher-
ever possible in an RDF store. This is achieved by iteration. The rules for iteration are
similar to those for a Kleene star in a regular expression. Regular expressions are com-
monly used to update text files. This work is a generalisation of this common technique
to RDF stores. Generalisations of regular expression date back to the commutative reg-
ular algebras of J. H. Conway [8], and remain a prominent area of research [14,10].

Updates can be applied any number of times. Iteration is used when the number
of times to apply an update is not known. The Weekening Axiom allows an interated
update to be applied zero times, if there is no term which matches the update. The
Weakening Axiom terminates an iterated update with no effect.

Before: {} Update: DOUpdate After: {}

The Dereliction Rule allows an iterated update to be applied once. Assume that an update
can be committed in the presence of some term resulting in some process. Dereliction

252 R. Horne, V. Sassone, and N. Gibbins

allows the same update but iterated to be committed in the presence of the same term
with the same resulting process. Suppose that the following commitment relation holds.

Before: Data0 Update: Update After: Data1

Given the above commitment relation, the following commitment relation holds.

Before: Data0 Update: DOUpdate After: Data1

The Contraction Rule allows two copies of an iterated update to be simultaneously com-
mitted. Contraction can be applied repeatedly, along with the Join Rule and Dereliction
Rule, to simultaneously commit any number of copies of an iterated update. Suppose
that the following commitment relation holds.

Before: Data0 Update: DOUpdate JOIN DOUpdate After: Data1

Given the commitment relation above, the following commitment relation holds.

Before: Data0 Update: DOUpdate After: Data1

The combination of the Weakening, Dereliction and Contraction rules allow zero, one,
two, or more copies of an iterated update to be atomically committed. The use of Join
in the Contraction Rule ensures that disjoint RDF Data is used for each copy of the
update.

An Example of an Iterated Update. The following demonstrates an iterated update.
The update replaces occurrence of the predicate dc11:title with the predicate dc:title.
The iteration of this update means that the update can be applied twice. The result is
that two triples are committed and replaced by two new triples.

Before: { eg:book5 dc11:title "Query Tutorial" } ,
{ eg:book6 dc11:title "Update Tutorial" }

Update: DO SELECT :a ?x {
DELETE { :a dc11:title ?x }
INSERT { :a dc:title ?x }
}

After: { eg:book5 dc:title "Query Tutorial" } ,
{ eg:book6 dc:title "Update Tutorial" }

5.8 The Context Rule for Unused Data

The Context Rule allows some data to not be used in an update. This is important
when considering updates in the context of an RDF store. The rule composes the same
unchanged data before and after the update. Assume that the following commitment
holds.

Before: Process0 Update: Update After: Process1

Operational Semantics for SPARQL Update 253

Given the above commitment, the following commitmnet holds.

Before: Process2 , Process0 Update: Update After: Process2 , Process1

The context rule is demonstrated in the example in the next section, where one of the
two triples is not updated.

5.9 The Blank Node Rule for Updating Local Names

The Blank Node Rule is used for updates which involve blank nodes. The trick is to treat
the blank node as a temporary URI in the premise of the rule. The temporary URI must
not appear free in the conclusion of the rule, thus an extra side-condition is required.
Suppose that the following commitment holds.

Before: Data0 , Data1 Update: Update After: Data2 , Data3

Given that the above commitment holds, such that :a is not free in Data0 or Data2, then
the following commitment holds.

Before: Data0 , BNODE :a Data1 Update: Update After: Data2 , BNODE :b Data3

An Example of the Blank Node Rule. The following example demonstrates a blank
node updated. A temporary URI can represent :a in the premise of the Blank Node Rule.
This allows the update to be considered as if :a is not bound. One triple is deleted by
a commitment relation, which discovers the temporary URI. However, the conclusion
of the Blank Node Rule still binds :a. This has the effect of discovering the blank node
and using it in an update.

Before:

Before: BNODE :a {
{ :a foaf:name "Alice" } ,
{ :a foaf:mbox mailto:alice@example.org }
}

Update: SELECT :b {
DELETE { :b foaf:mbox mailto:alice@example.org }
INSERT { :b foaf:mbox mailto:alice@new.org }
}

After: BNODE :a {
{ :a foaf:name "Alice" } ,
{ :a foaf:mbox mailto:alice@new.org }
}

5.10 An Example of a Nested Update

This example, firstly, demonstrates most of the constructs combined to answer a larger
update. Secondly, it demonstrates a common scenario which is enabled by nested se-
lects and nested explicit iteration, which is impossible to express as an atomic update

254 R. Horne, V. Sassone, and N. Gibbins

in initial proposals for SPARQL Update [18,9]. Consider the following commitment,
which removes all foaf:knows links to people younger than 18.

Before: { eg:youth0 eg:dob ‘01-01-2010’ } ,
{ eg:youth1 eg:dob ‘01-02-2010’ } ,
{ eg:person foaf:knows eg:youth0 } ,
{ eg:person foaf:knows eg:youth1 } ,
{ eg:youth0 foaf:knows eg:youth1 }

Update: DO SELECT :a ?dob {
WHERE { :a eg:dob ?dob }
FILTER (current-year− year(?dob) < 18)
DO SELECT :b {
DELETE { :b foaf:knows :a }
}
}

After: { eg:youth0 eg:dob ‘01-01-2010’ } ,
{ eg:youth1 eg:dob ‘01-02-2010’ }

Without the nested iteration and selects, the effect of the above update could only be
achieved using two updates. This means that the update would not be atomic. The above
update is correct and atomic. This example highlights a common problem which also
appears in the first SPARQL Query recommendation [17]. This illustrates an improve-
ment made by this work to the expressiveness of the language.

6 Related Work

Updates for RDF have been considered before using the RUL language [7]. The work on
RUL focusses on the effect of updates in the presence of RDFS entailment. The effect
of RDFS entailments and the operational semantics of the core of SPARQL Update
are perpendicular issues. Thus, this update language can be extended to accommodate
RDFS entailment as considered in RUL.

This language only claims to model a core of SPARQL Update. A feature missing
is the handling of named graphs [6]. Named graphs can be achieved naı̈vely by allow-
ing quads as well as triples, in the data format. However, further subtleties may arise
depending on design decisions of the working group.

An operational semantics for updates enables further formal investigations. This op-
erational semantics can be used to derive equivalences over updates, where two equiva-
lent updates are operationally indistinguishable. This equivalence can be used to verify
an algebra for rewriting updates without changing their operational behaviour. An al-
gebra over updates is useful for the optimisation of updates. This line of work has been
investigated for queries by the authors [12]. The same results also hold for updates; for
instance iteration, join, choice, true and false form a commutative Kleene algebra with
tests and quantifiers [14]. Kleene algebras are a common and useful algebra in computer
science, a prominent example being the equations of regular expressions.

An operational semantics also allows a type system for updates to be specified. A
simple static type system checks that literals are of the correct type to evaluate any

Operational Semantics for SPARQL Update 255

constraints in which they appear. The operational semantics are then essential to verify
that the static properties guaranteed by the type system are preserved by the behaviour
of updates. A type system can be realised through type reconstruction, meaning that
a programmer does not need to program using types for the type system to be useful.
More powerful type systems inspired by RDFS can also ensure that URIs are used
consistently, as investigated by the first author [11].

7 Conclusion

This work introduces a language with an operational semantics for fine grained updates
over RDF. A fine grained update language is important for enabling a Read–Write Web
of Data [3], where contributing content is as important as consuming content. SPARQL
Update is currently being developed by the W3C as a standardised fine grained update
language for RDF, for which an operational semantics is beneficial [9]. This work pro-
vides the first such operational semantics in the established tradition of Plotkin [16].

A specification with an operational semantics has many benefits. This operational
semantics can be used as the basis of tools for compiler verification, type checking and
optimisation [12,11]. It can also be used to evaluate the proposed language to tackle
issues including: redundant operations, ambiguous definitions, rigid syntax, inadequate
expressiveness, and incomplete specifications, as described below.

The operational semantics exposes redundant operations, which could instead be ex-
pressed using a combination of operators. Redundancies reduce the number of operators
which must be directly implemented. For instance, it is shown in Sec. 3.5 that it is a myth
that operator OPTIONAL is primitive.

Ambiguous definitions are clarified by the operational semantics. For instance, it is not
clear in the original proposal [18] whether queries occur sequentially before or in parallel
to an update. In this operational semantics queries occur in parallel, which allows more
concise updates and avoids concurrency issues.

The abstract syntax (Sec. 3.4) is more explicit than the concrete syntax. For instance,
the quantifiers of the abstract syntax clearly delimit the scope of a variable; whereas in
the original proposal it is not obvious which variables share the same scope. Furthermore
the abstract syntax is compositional, meaning that updates can be written in a modular
fashion then combined, enabling interesting programming techniques and optimisations.

Some modest improvements to the expressive power of the language can be sug-
gested. For instance, the CHOOSE operator (Sec. 5.5) can be extended to the entire lan-
guage, instead of only queries. Similarly, Example 5.10 cannot be expressed without
explicit iteration. Such improvements enable some common scenarios to be expressed.

The operational semantics presented here, goes considerably further than the formal
model sketched in the current working draft. For instance, this operational semantics
precisely specifies how blank nodes are updated (Sec. 5.9). Importantly, the model is
purely operational, unlike the sketched model which combines operational and denota-
tional approaches.

This work has been presented without using any meta-syntax to express the opera-
tional semantics. This can be achieved since an operational semantics is defined directly
over the syntax of a language. The intention is that this style of presentation of opera-
tional semantics is accessible to a diverse audience.

256 R. Horne, V. Sassone, and N. Gibbins

References

1. Abramsky, S.: What are the fundamental structures of concurrency? We still don’t know!
Electronic Notes in Theoretical Computer Science 162, 37–41 (2006);Proceedings of the
Workshop Essays on Algebraic Process Calculi

2. Beckett, D., Berners-Lee, T.: Turtle - Terse RDF Triple Language. Team submission, W3C
(2008)

3. Berners-Lee, T.: Read-Write Linked Data, personal view (December 2010),
http://www.w3.org/DesignIssues/ReadWriteLinkedData.html

4. Berners-Lee, T., Connolly, D., Kagal, L., Scharf, Y., Hendler, J.: N3logic: A logical frame-
work for the World Wide Web. Theory and Practice of Logic Programming 8(3), 249–269
(2008)

5. Brickley, D., Guha, R.: RDF vocabulary description language 1.0: RDF Schema. Recom-
mendation REC-rdf-schema-20040210, W3C (2004)

6. Carroll, J.J., Bizer, C., Hayes, P., Stickler, P.: Named graphs. Journal of Web Semantics 3(4),
247–267 (2005)

7. Magiridou, M., Sahtouris, S., Christophides, V., Koubarakis, M.: RUL: A Declarative Update
Language for RDF. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005.
LNCS, vol. 3729, pp. 506–521. Springer, Heidelberg (2005)

8. Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall (1971)
9. Gearon, P., Passant, A., Polleres, A.: SPARQL 1.1 Update. Working draft WD-sparql11-

update-20110512, W3C (May 2011)
10. Hoare, C., Möller, B., Struth, G., Wehrman, I.: Concurrent Kleene Algebra. In: Bravetti,

M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 399–414. Springer, Heidel-
berg (2009)

11. Horne, R.: Programming Languages and Principles for Read–Write Linked Data. Ph.D. the-
sis, University of Southampton (2011)

12. Horne, R., Sassone, V.: A verified algebra for Linked Data. In: FOCLASA 2011, Aachen, Au-
gust 10. Electronic Proceedings in Theoretical Computer Science, vol. 58, pp. 20–33 (2011)

13. Klyne, G., Carroll, J.: Resource Description Framework: Concepts and abstract syntax. Rec-
ommendation REC-rdf-concepts-20040210, W3C (2004)

14. Kozen, D.: Kleene algebra with tests. ACM Transactions on Programing Languages and
Systems 19, 427–443 (1997)

15. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Transac-
tions on Database Systems 34(3), 1–45 (2009)

16. Plotkin, G.D.: A structural approach to operational semantics. internal notes. Aarhus Univer-
sity (1981)

17. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Recommendation
REC-rdf-sparql-query-20080115, W3C (2008)

18. Seaborne, A., Manjunath, G.: SPARQL/Update: A language for updating RDF graphs. Ex-
ternal HPL-2007-102, HP Labs Bristol (2007)

Appendix: Summary of the Operation Semantics

For a concise summary of the operational semantics, some meta-syntax is introduced.
Commitments are written in the body of the paper as follows.

Before: Data0 Update: Update After: Data1

http://www.w3.org/DesignIssues/ReadWriteLinkedData.html

Operational Semantics for SPARQL Update 257

In this summary commitments are instead written as follows.

Data0 , Update −→ Data1

Rules which are explained in English in the body of this work are presented in the style
of natural deduction, as conventional for operational semantics [16]. The horizontal
line separate the premises on the top from the conclusion on the bottom. Some rules
have side conditions. The axioms and rules of the core update language are therefore
summarised as follows.

Delete: Data , DELETEData −→ {} Insert: {} , INSERTData −→ Data

Filter: {} , FILTERConstraint −→ {} only if Constraint = true

Join:
Data0 , Update0 −→ Data2 Data1 , Update1 −→ Data3

Data0 , Data1 , Update0 JOIN Update1 −→ Data2 , Data3

Select literal:
Data0 , Update["literal"/?variable] −→ Data1

Data0 , SELECT?variable Update −→ Data1

Select URI:
Data0 , Update[:b/:a] −→ Data1

Data0 , SELECT :a Update −→ Data1

Choose left:
Data0 , Update0 −→ Data1

Data0 , Update0 CHOOSE Update1 −→ Data1

Choose right:
Data0 , Update1 −→ Data1

Data0 , Update0 CHOOSE Update1 −→ Data1

Weakening: {} , DOUpdate −→ {} Dereliction:
Data0 , Update −→ Data1

Data0 , DOUpdate −→ Data1

Contraction:
Data0 , DOUpdate JOIN DOUpdate −→ Data1

Data0 , DOUpdate −→ Data1

Structure:
Data0 = Data2 Data0 , Update −→ Data1 Data1 = Data3

Data2 , Update −→ Data3

Context:
Data0 , Update −→ Data1

Data0 , Data2 , Update −→ Data1 , Data2

Blank node:
Data0 , Data1 , Update −→ Data2 , Data3

Data0 , BNODE :a Data1 , Update −→ Data2 , BNODE :a Data3

only if :a does not appear free in Data0 or Data2

Any commitment which can be derived using the above axioms and rules is a valid
commitment. Valid commitments include all examples in the body of this work.

Knowledge-Driven Diagnostic System
for Traditional Chinese Medicine

Peiqin Gu and Huajun Chen

Zhejiang University, Hangzhou 310027, P.R. China
{gupeiqin,huajunsir}@zju.edu.cn

Abstract. Recognizing diseases from theoretical perspective can help ordinary
people have a general understanding of medicine. The usual process of
identifying syndromes or diseases in Traditional Chinese Medicine (TCM) is by
confirming the frequently symptom patterns. Semantic Web and ontologies intro-
duce well-structured controlled vocabularies for biomedical science. The direct
correspondence between symptoms and syndromes can be formatted to semantic
inference rules as a additional knowledge upon a medical ontology.

In this paper, we present a simplified rule-based diagnostic system for febrile
disease theory in TCM, which make use of the capability of semantic inference
based on medical ontology. Actually the method is rather general for logic-based
medical diagnosis, and we show that without interpreting clinical data, the medi-
cal knowledge itself can be applied to do basic clinical diagnosis.

Keywords: Semantic Web, Domain ontology, Bioinformation.

1 Introduction

In the Semantic Web, resources and relations between them are annotated with semantic
markups which are defined in Web Ontology Language OWL [5] and Resource Descrip-
tion Framework (RDF) [4]. Knowledge defined as semantic ontology can be processed
to obtain novel information through inference technologies.

Biological knowledge [1] is inherently complex and so cannot readily be integrated
into existing databases of sequential data. Building domain ontology is a formal way
of representing knowledge in which concepts and relationships are both based on logic.
Unique identifiers that are associated with each concept in biological ontologies can be
used for linking to and querying other knowledge sources, such as other ontologies and
medical databases.

Traditional Chinese Medicine (TCM) is a complete medical system that covers basic
theories, diagnostics, diseases, therapeutics, and medical treatments as well as West-
ern Medicine. However, unlike Western Medicine, the basic theory of TCM is based
on the ancient ideas of Chinese natural philosophy, such as the essential Qi theory, the
Yin-Yang theory, and the Five Phase theory. Ancient Chinese philosophers were greatly
interested in the relationship and patterns that occurred between human body and the
nature. They viewed the world as a harmonious and integrated entity, instead of a set
of disparate and isolated things. Influenced by these ideas, TCM is characterized by
holism, regarding the human body as an organic whole constantly interacted with the

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 258–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Knowledge-Driven Diagnostic System for Traditional Chinese Medicine 259

external environment, rather than an anatomical organism. In TCM, a disease or syn-
drome is viewed as a holistic morbid pattern resulting from the interactions between
local pathological and maladjustments of the body.

The existence of ontology knowledge modeling inherited from the Semantic Web is
crucial to bring structural and logical elements to medicine knowledge management.
In this paper, we define a shared domain ontology WenBing, which is supported by
formal knowledge representation languages known as World Wide Web Consortium
standards. Among them, the RDF [4] is a standard model for representing information
on the Web. As an extension of RDF model, OWL [5] has been designed to present the
explicit meaning of various domains as an ontology model, which can be used to define
classes, properties, equalities, property characteristics, and etc.

Once the medicine ontology has been built or partially built by domain experts, it
can be used to conduct the medical diagnostic process, because now computers are able
to recognize the semantics of the texts. As mentioned above, TCM clinical diagnosis
embodies the philosophical concepts or rule patterns in nature. Thus, the relationships
between concepts and fact assertions between individuals are taken as variables, atom
assertions separately, making up the body and head of OWL rules. Our diagnostic sys-
tem take these rules as patterns to compare with user inputs of symptoms, then output
the most likely syndrome as the diagnostic suggestion.

2 Medical Ontology Modeling

Medical diagnostic decision making have long been great interest among AI researchers
for dozens of years. Especially TCM is recognized to have unique characteristics such
as vagueness, linguistic uncertainty, hesitation, measurements imprecision, natural di-
versity, subjectivity. The entirely expertise-dependent characteristics of diagnosis and
vagueness of medical terms in TCM are great challenges to knowledge acquisition,
which has been known as the bottleneck of diagnosis systems in TCM. Many classi-
cal methods for representing and matching ontological knowledge such as description
logics, frame-based representations and semantic nets have gained their significance in
artificial intelligence. Semantic ontologies provide a useful way to make a description
model for real world application and research domains. The core component of the Se-
mantic Web is web ontology which represents the relationships between web resources.
Semantic Web ontologies are described in a RDF-based standard Web ontology lan-
guage OWL which has its logical foundation on DL (Description Logic).

Due to the accuracy limitation of data analysis especially for medicine, the demand
for building trustable theoretical model and knowledge-driven application is growing.
Among these technologies, semantic rules upon ontologies hold various facts outside
the knowledge model itself rather than a large directed labeled graph.

The medical community has long been recognized the need of modeling its knowl-
edge and of making its terminologies explicit, shared and linkable. Therefore, there
exists several terminological or ontological resources in medical domain: GALEN [6],
MENELAS [10], ON9 Library [2], SNOMED RT [7], UMLS [3], which are all ontolo-
gies or thesauri that model a sub topic of the medical domain.

260 P. Gu and H. Chen

As a pioneer of engineering TCM knowledge, the team from China spent several
years building the unified traditional Chinese medical language system [9] to study the
terminology standardization, knowledge acquisition and integration in TCM. Based on
these previous work, several small ontologies for part of TCM domain are built as well
as the WenBing.

Semantic Ontology is a technology for knowledge representation which describes
some concepts and relationships between them. By inferring Web ontologies and se-
mantic markups in ontologies and Web documents, meaningful information and re-
sources can be retrieved.

3 WenBing Domain Ontology

In this paper, we introduce the WenBing, a domain ontology that models the TCM clini-
cal reasoning by representing the basic concepts, theories, rules and principles in formal
languages. In computer science, a domain ontology is defined as a formal, explicit spec-
ification of a shared conceptualization.

We implement the ontology WenBing using the Semantic Web, a Web-based knowl-
edge representation and integration technology. The Semantic Web provides formal
languages, such as Resource Description Framework (RDF), RDF Schema (RDFS),
and Web Ontology Language (OWL), to express domain ontologies that any intelligent
agents can understand.

We engineer the ontology WenBing with the following process:

– Conduct a systematic analysis of TCM literature and extract a set of concise state-
ments about the TCM clinical logic.

– Codify the meaning of TCM concepts, and define the semantic relationships be-
tween these concepts.

– Represent TCM domain knowledge as formal statements and rules.

The resulting domain ontology covers such categories as basic theories, diagnostics,
diseases, therapeutics, and medical treatments. The WenBing formalizes the basic con-
cepts, theories, rules, and principles in clinical reasoning, such as syndrome classifi-
cation and differentiation, therapeutic principles, and herbal formula combination. The
experimental WenBing contains 167 concepts, 14 object properties, 151 class assertions
and 68 object property assertions. WenBing concepts are not only hierarchically defined,
but also inter-related by binary relationships. We develop the domain ontology to store
the facts of the febrile disease theory in TCM. Automated reasoning methods can then
be used to infer consequences of the ontology. The WenBing can be utilized to represent
such resources as medical rules, and facilitate such applications as clinical intelligence,
and knowledge management and sharing.

The WenBing formalizes the basic concepts, theories, rules, and principles in clinical
reasoning, such as syndrome classification and differentiation, therapeutic principles,
and herbal formula combination, thus the WenBing can facilitate such applications as
information integration and exchange, clinical intelligence, and knowledge manage-
ment and sharing.

Knowledge-Driven Diagnostic System for Traditional Chinese Medicine 261

3.1 Basic Theory of Febrile Disease

As a important branch of TCM, febrile diseases are often related to abnormally high
body temperature. Fever is a common symptom of many medical conditions such as
infectious disease, various skin inflammations, tissue destruction, and etc. In all febrile
diseases with a hot, dry skin, hot breath, and thirst, the sedative influence of cold is
strongly indicated. It may be applied by means of cool fresh air inhaled into the lungs,
which in general proves grateful and refreshing.

Febrile disease is usually very common, its occurrence has obvious seasonal, most
rapid onset, rapid mass change, and mostly have varying degrees of contagious and
epidemic.

To distinguish between infectious and epidemic, febrile diseases infectious and pan-
demic with a strong characteristic are called plague disease, febrile diseases which
cause small or non-epidemic disease are characterized as normal febrile disease. In
recent years, H1N1 and SARS both take fever as clinical manifestation, and they can be
classified into febrile disease. To prevent from wide range of major disease outbreak, it
is important to study the incidence and treatment of febrile disease.

3.2 Terminology and Assertions

As a Semantic Web ontology, the WenBing mainly contains two parts:

– The TBox is a box of terminology. The TBox defines a system of controlled vocab-
ularies consisting of (1) classes (such as Drug, Herb, and Disease) that defines
types of things, (2) properties (such as treats, consists of, and
interacts with) that defines binary relationships between things, and (3) in-
dividuals (such as qi, yin, and wood) that define things that exist in the domain,
which are associated with each other through properties, and which are grouped
into classes.

– The ABox is a box of assertions. ABox are TBox-compliant statements that capture
the knowledge content of TCM domain.

The Semantic Web is based on the idea of using global identifiers (Uniform Resource
Identifiers, or URIs) to identify any things, including physical objects (such as drug
or an organ), conceptual entities (such as febrile disease), events (such as therapy and
diagnosis), and generalized concepts (such as semantic relations and classes).

For example, a treatment method Clearing qi, cooling nutrient and detoxify can be
identified as:

<http://www.semanticweb.org/wenbing/cqnd>.

A resource is defined as anything that is identified by a URI. Since the syntax of URIs
is rather verbose and difficult to read, we use abbreviated URIs: once a prefix such
as @prefix wb:<http://www.semanticweb.org/wenbing> is defined,
the qualified name wb:cqnd becomes a shorthand for the URI. In addition, we use
http://www.semanticweb.org/wenbingas the default namespace, therefore,
wb:cqnd can be further abbreviated as cqnd. In RDF and OWL, a set of such triple
(s, p, o) intuitively means that a relation denoted by p exists between s and o, where s, p,

262 P. Gu and H. Chen

OWL:ThingOWL:Thing

wb:Treatmentwb:Treatment wb:Causewb:Cause wb:Symptomswb:Symptoms wb:Syndromeswb:Syndromeswb:Affect wayswb:Affect ways

wb:Clearing
nutrient level and

cooling blood

wb:Clearing
nutrient level and

cooling blood

wb:Clearing
both qi and

nutrient

wb:Clearing
both qi and

nutrient

wb:Wen Xiewb:Wen Xie wb:Skin touchwb:Skin touch wb:Tonguewb:Tongue

wb:Tongue
coating

wb:Tongue
coating

b:Mosquito
bites

wb:Mosquito
bitesb:Heatwb:Heat

wb:Clearing qi,
cooling nutrient

and detoxifyff

wb:Clearing qi,
cooling nutrient

and detoxify
wb:Yellow

tongue
wb:Yellow

tongue

b:Triple
energizer
syndrome

wb:Triple
energizer
syndrome

wb:Middle
energizer
syndrome

wb:Middle
energizer
syndrome

wb:Heat in
Yangming

wb:Heat in
Yangming

Fig. 1. The class subsumption graph of WenBing ontology

and o are all resources identified by URIs. The object relations we concern in building
WenBing ontology is given in Table 1. The following triple asserts that the treatment
method cqnd is made according to the specific syndrome Qi and nutrient burnt:

<http://www.semanticweb.org/wenbing/cqnd>
<http://www.semanticweb.org/wenbing/according to>
<http://www.semanticweb.org/wenbing/qi nutrient burnt>.

and the medication for the treatment method cqnd is usually the prescription Qingwen
Baidu Yin:

<http://www.semanticweb.org/wenbing/cqnd>
<http://www.semanticweb.org/wenbing/apply>
<http://www.semanticweb.org/wenbing/qingwen baidu yin>.

RDF provides a standard way of representing terminological vocabularies in the knowl-
edge domain, thus can be used to capture the semantic relations between resources or
vocabularies. This WenBing stands for a sound knowledge base for TCM available for
further reasoning and querying.

3.3 Modeling Syndrome Classification

TCM practitioners typically characterize patients with TCM syndromes (zheng), which
are integrated patterns of human morbidity indicating the hidden cause of observable
symptoms. A syndrome type is a common syndrome mode with a standard name. Each

Knowledge-Driven Diagnostic System for Traditional Chinese Medicine 263

Table 1. Semantic relations in WenBing

Relation Definition Domain Range
according to The decision of treatment measures is based on syndrome. treatment syndrome
invasion The ways of clinical invasion. pathogeny invasion ways
cause Lead to. pathogeny febrile disease
invalid Not directly associated. prescription symptoms
valid Directly associated. prescription health care
has symptom The patient gets some symptom. patient symptom
has syndrome The patient gets some syndrome. patient syndrome
compose Constitutes something as a part. drug prescription
display Show as an appearance. febrile disease symptom
differentiate To see or decide a difference between things. symptom syndrome
apply To use a particular prescription for treatment. treatment prescription
prevent Prevent. prevention febrile disease

syndrome type is defined as a composite concept in terms of yin-yang, five phases,
viscera and bowels, etc. The physician determines the specific syndrome for patient by
the identification of symptoms, and constructs a logical justification for a decision of
intervention based on therapeutical principles. For example, a physician identifies that
a patient has the syndrome Heat In YangMing, which usually happen during summer
when the heat turns into invading power by recognizing a set of symptoms such as
thirsty, rapid pulse, etc. The physician reasons that an intervention is needed to purge
the heat and clear the qi inside the body.

Terminology hierarchy in the medical ontology is not enough for knowledge infer-
ence. An OWL ontology contains a sequence of axioms and facts as we defined using
RDF and OWL description lanaguages. Due to the limited capability of representing
knowledge, the usage of rules is imported as an extension for the ontology. The rules
are abstract deduction relations extracted from clinical principles. A rule axiom consists
of an antecedent and a consequent, each of which consists of a set of atoms:

rule:={antecedent, consequent}
antecedent:=atom
consequent:=atom
atom:={i-object}
i-object:=i-variable|individual

Informally, a rule means that if the antecedent holds, then the consequent must also
hold. We express clinical facts such as the correspondence between symptoms and syn-
dromes as a set of rules between them.

Take the syndrome Heat In YangMing in the domain ontology WenBing for example,
we formalize the usual diagnostic pattern of symptoms in to a rule stating that:

rule:={{?X has symptom high fever,
?X has symptom much sweating,
?X has symptom thirsty,
?X has symptom upset,
?X has symptom headache,

264 P. Gu and H. Chen

?X has symptom dizzy,
?X has symptom breathless,
?X has symptom slight chill,
?X has symptom red tongue,
?X has symptom yellow tongue surface,
?X has symptom dry tongue,
?X has symptom flood pulse,
?X has symptom rapid pulse,},
?X has syndrome Heat In YangMing,}

In particular, the syndrome Heat In YangMing indicates that the summer heat invades
the human body, one of the syndrome as a subclass of Middle Energinzer Syndrome
(Heat In YangMing subclass Middle Energinzer Syndrome). However, its
meaning becomes more clear when it is associated with causing sweating, dry tongue
and flood pulse, etc. The syndromes in the syndrome hierarchy as shown in Figure 1
appear to be disjoint, but the set of symptoms connected to each syndromes may have
intersections.

4 TCM Diagnostics

In TCM diagnostic theory, a pathologic condition of a patient is diagnosed according to
abnormal data collected through two ways [8]: classical diagnosis based on four con-
ventional examinations, and patient’ own report. According to observed symptoms and
patient’s own report, TCM practitioners will perform diagnosis about patient’s patho-
logical conditions in terms of syndromes. Functional imbalance and specific manifesta-
tions of disease are differentiated as syndrome and corresponding intervenes for treat-
ment will be taken subsequently. Hence, the concept of syndrome differentiation is of
great importance in the diagnostics of TCM.

In medicine, a syndrome is the association of several clinically recognizable fea-
tures, signs (observed by a physician), symptoms (reported by the patient), phenomena
or characteristics that often occur together. It may includes a long list of possible symp-
toms and combinations of symptoms, and most of these symptoms are subjective.

In TCM diagnostics, we have to solve the problem of symptom matching in order to
behave efficient syndrome differentiation. We assume the diagnostic system accepts a
list of symptoms both observed by doctors and the user himself from the specific user
interface, and finally it outputs a proper diagnosis based on domain knowledge stored
as an ontology.

Definition 1. The input for our TCM diagnosis system S = {s1, s2, . . . , sn} stands for
a user specified collection of abnormal symptoms.

Definition 2. Let C = {C1, C2, . . . , CM} be a set of M diagnoses possible in the con-
text of the febrile disease theory. C would be: a single disease name plus a combination
of syndromes, etc.

The problem of medical diagnosis can be formalized as follows: given a set of symp-
toms S = {s1, s2, . . . , sn} and a group of rules R = {r1, r2, . . . , rp} where each r is

Knowledge-Driven Diagnostic System for Traditional Chinese Medicine 265

Algorithm 1. Symptom Matching Algorithm
Input: S = {s1, s2, . . . , sn}, R = {r1, r2, . . . , rp}
Output: C = {C1, C2, . . . , CM}
index = 0;
count = 0;
for i = 0;i < R.size;i++ do

hash = R.get(i);
for j = 0;j < S.size;j++ do

if (hash.contains(S.get(j))) then
temp++;

end
end
if (temp > count) then

count = temp;
index = i;

end
return R.get(index);

end

composed of symptoms and a syndrome, determine a set of diagnosesC = {C1, C2, . . . ,
CM}. The symptom matching algorithm is a process of calculating the text similarity for
each input symptoms, in order to obtain a most likely answer related to defined rules.
It keeps the theoretical accuracy assuming that the symptoms are disjoint, and indepen-
dent. This method returns the text-closest answer, yet may get rid of some semantic
similarities between syndromes or symptoms, which is for our next step to promote the
accuracy of actual medical diagnosis.

5 Medical Scenario

We have built a Web-based diagnostic platform to facilitate the knowledge-driven clin-
ical diagnosis for febrile disease in TCM, which allows both the common people and
TCM practitioners to explore the performance of diagnostics. This platform contains
the following components: (1) As shown in Figure 2, a graphical user interface (GUI)
is provided to view the description of knowledge model in WenBing. (2) As shown in
Figure 3, a diagnostic panel is created online to enable Web users submit any combina-
tion of symptoms, then the diagnostic system give processed suggestion of syndromes,
treatment method and prescription. The WenBing ontology is stored and managed in a
back-end knowledge base, and is also accessible to client programs via a Web-based
programmable interface.

266 P. Gu and H. Chen

Fig. 2. The model view of WenBing ontology, which indicates the relationships between concepts

Fig. 3. The user interface of the diagnostic panel

6 Conclusions

A shared conceptualization of the clinical logic in Traditional Chinese Medicine (TCM)
is fundamental to the preservation, investigation, utilization, and further development
of this cultural heritage. The characteristics of TCM clinical logic, such as ancientness,
fuzziness, diversity, and complexity, require advanced knowledge modeling techniques.
To deal with these issues, we model the TCM clinical logic as a domain ontology, and
use the Semantic Web technologies to implement the ontology. The modeling process
includes: (1) constructing a formal terminology that codifies the meaning of complex

Knowledge-Driven Diagnostic System for Traditional Chinese Medicine 267

TCM concepts; and (2) constructing semantic graphs that represent semantic relation-
ships between these concepts. The resulting domain ontology, namely WenBing, is a
standard codification of the febrile disease theory in TCM. WenBing provides a knowl-
edge model to foster the understanding of TCM clinical reasoning, and to facilitate the
decision making in clinical studies of integrated medicine.

In TCM, syndrome differentiation is the most important part in diagnostics. In order
to behave knowledge-driven inference, diagnostic principles are formalized as asser-
tions and rules, which are also conceptual reflection of TCM clinical logic. The corre-
spondent relationships are represented as logic rules, and the diagnostic system take the
collection of such rules and user inputs of symptoms as an input, check text similarities
one by one for each user-specified symptom to get the most likely syndrome according
to rules.

References

1. Bard, J.B.L., Rhee, S.Y.: Ontologies in biology: Design, applications and future challenges.
Nature Reviews Genetics 5, 213–222 (2004)

2. Gangemi, A., Pisanelli, D.M., Steve, G.: Ontology integration: Experiences with medical ter-
minologies. In: International Conference on Formal Ontology in Information Systems (1998)

3. Humphreys, B.L., Lindberg, D.A.B.: The unified medical language system. Methods of In-
formation in Medicine (1993)

4. Manola, F., Miller, E.: Rdf primer: W3c recommendation. Decision Support Systems (2004)
5. Mcguinness, D.L., Harmelen, F.V.: Owl web ontology language overview. In: World Wide

Web (2004)
6. Rector, A., Gangemi, A., Galeazzi, E., Glowinski, A., Rossi-Mori, A.: The galen core model

schemata for anatomy: Towards a re-usable application-independent model of medical con-
cepts. In: Medical Informatics Europe (1994)

7. Spackman, K.A., Campbell, K.E., Cote, R.A.: Snomed rt: A reference terminology for health
care. In: Proceedings of the 1997 AMIA Annual Symposium, pp. 640–644 (1997)

8. Wang, X., Qu, H., Liu, P., Cheng, Y.: A self-learning expert system for diagnosis in traditional
chinese medicine. Expert Systems with Applications 26, 557–566 (2004)

9. Zhou, X., Wu, Z., Yin, A., Wu, L., Fan, W., Zhang, R.: Ontology development for unified
traditional chinese medicine language system. Artifical Intelligence in Medicine 32, 15–27
(2004)

10. Zweigenbaum, P.: Menelas: coding and information retrieval from natural language patient
discharge summaries. Advances in Health Telematics (1995)

LODDO: Using Linked Open Data Description

Overlap to Measure Semantic Relatedness
between Named Entities

Wenlei Zhou, Haofen Wang, Jiansong Chao,
Weinan Zhang, and Yong Yu

APEX Data & Knowledge Management Lab
Department of Computer Science Engineering

Shanghai Jiao Tong University, Shanghai, China
{wenlei.zhouwl,whfcarter,jiansong.chao,wnzhang,yyu}@apex.sjtu.edu.cn

Abstract. Measuring semantic relatedness plays an important role in
information retrieval and Natural Language Processing. However, lit-
tle attention has been paid to measuring semantic relatedness between
named entities, which is also very significant. As the existing knowledge
based approaches have the entity coverage issue and the statistical based
approaches have unreliable result to low frequent entities, we propose a
more comprehensive approach by leveraging Linked Open Data (LOD)
to solve these problems. LOD consists of lots of data sources from differ-
ent domains and provides rich a priori knowledge about the entities in
the world. By exploiting the semantic associations in LOD, we propose
a novel algorithm, called LODDO, to measure the semantic relatedness
between named entities. The experimental results show the high perfor-
mance and robustness of our approach.

Keywords: Named Entity, Semantic Relatedness, Linked Open Data.

1 Introduction

Semantic relatedness measuring plays an important role in the area of natu-
ral language processing (e.g., word sense disambiguation [14]) and information
retrieval. With the advance of Semantic Web, more and more documents are an-
notated with real world entities. Hence, measuring semantic relatedness between
these named entities can be regarded as an effective mean to capture semantic
associations between documents, which can be further used for semantic search.

In recent years, there are abundant research studies on measuring semantic
relatedness between words. They tried to solve the following two challenges:

– Word Ambiguity. A word might refer to different meanings or can represent
different entities.

– Different Representations of a Single Entity. Even for a unique entity, it may
have different representations, which requires us to collect all synonyms of a
given word.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 268–283, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LODDO: A Named Entities Semantic Relatedness Measuring Approach 269

The existing work can be divided into two types: knowledge based approaches
and statistical based approaches. The former ones basically leverage a high-
quality knowledge source like WordNet [12] or Wikipedia1. The main limitation
of this kind of work is the coverage issue. While Wikipedia is the world largest
domain independent knowledge base, it misses a number of entities in some
specific domain. On the other hand, statistical based approaches mainly exploit
the Web for this task. However, they fail to provide reliable semantic relatedness
between words of low frequencies.

In this paper, we propose a novel approach to overcome the previous problems
by leveraging Linked Open Data [1] (LOD). LOD is an abundant Web of data
which contains a vast number of named entities. It is constructed by linking
diverse data sources. While the openness of the Web might involve data noise, we
assume LOD as high-quality data sources since they are published from existing
structural or qualified databases. As the data sources cover many domains, given
a named entity, it is highly possible that there is some description about it in
LOD. Thus entity coverage problem can be eased by using LOD. On the other
hand, while the statistical based approaches regard named entities which have
the same name in all documents as the same entity, LOD represents them as
different entities. As a result, each entity in LOD has its own description and it
is distinguished from other entities of the same name.

The contributions of this paper are threefold. First, we build an efficient LOD
index mechanism to solve the two challenges: word ambiguity and different rep-
resentations of a single entity. Second, we propose a novel approach LODDO
to accurately measure the semantic relatedness between named entities by ex-
ploiting the semantic associations in LOD. Third, the experiments result shows
that our approach outperforms the existing semantic relatedness measuring ap-
proaches by at least 39.6%.

The remainder of the paper is organized as follows. In section 2 we discuss
previous work related to named entities semantic relatedness measuring. The
methodology is presented in section 3. The conducted experiments and the
benchmark dataset with the evaluation results are presented in section 4. In
section 5 we conclude the paper and discuss the future work.

2 Related Work

The existing semantic relatedness measuring approaches can be grouped into
two types according to the sources they use: knowledge based approaches and
statistical based approaches. The knowledge based approaches take advantage
of a high-quality knowledge source such as WordNet, Roget or Wikipedia. The
statistical based approaches calculate the statistical information of words by
using Web corpus as their source.

Regarding the knowledge source as a graph of concepts connected with oth-
ers, a straightforward approach to calculate semantic relatedness between two
words (concepts) is to find the length of the path connecting the two words in

1 http://www.wikipedia.org/

270 W. Zhou et al.

the graph [17,10,9,22]. Based on the intuition that the relatedness of two words
(concepts) can be measured by the amount of information they share, Strube
and Ponzetto [20,16] applied intrinsic information content to Wikipedia cate-
gory graph. Resnik [18] used information content based on WordNet to measure
semantic similarity. Hypothesizing that the higher word overlap in two concepts’
glosses, the stronger semantic relatedness of these two concepts, Lesk [11] and
Banerjee [3] introduced a measure based on the amount of word overlap in the
glosses of two concepts. Strube [20] regarded the first paragraph of the concept’s
Wikipedia article as the concept’s glosses. Patwardhan [15] calculated the cosine
of the second-order gloss vectors which represented the corresponding words by
using WordNet glosses. Gabrilovich [7] introduced ESA which constructed con-
cept vectors from Wikipedia articles where each vector element represented an
article. Milne [13] constructed the vectors by using the interlink articles.

For abstract concepts semantic relatedness measuring, single domain indepen-
dent knowledge source may be enough to cover all the concepts. However, when
dealing with hundreds of millions named entities in our real life, the coverage
problem arises. Research [23] has also shown that the accuracy differs depending
on the choice of the knowledge sources, and there is no conclusion which knowl-
edge source is superior to others. It seems that different knowledge source may
have its own preference in describing data, and thus it is unreliable to just use
single knowledge source when measuring semantic relatedness.

The statistical based approaches calculate the statistical information of words
by usingWeb corpus as their source. Bollegala [5] used four popular co-occurrence
measures to calculate page-count-based similarity metrics for the pairs of sin-
gle words and automatically extracts lexico-syntactic patterns about the pairs
of single words based on the title, snippet and URL of the Web search results.
Spanakis [19] modified Bollegala’s method by adding consideration of the “Bag
of Words” representation to the Web search results text for each single word.
Since a named entity usually contains more than one word, the lexico-syntactic
patterns extraction cannot be used directly. Gracia [8] proposed a transformation
of the Normalized Google Distance [6] into a word relatedness measure based on
Web search engine.

Some shortcomings of statistical based approaches are as follows. Without
the help of human knowledge, the statistical based approaches actually regard
the words in all documents as the same meaning when calculating one word’s
statistical information. This will lead to the ineffectiveness when measuring two
low frequent words’ semantic relatedness. In addition, these approaches also
depend on the effectiveness and efficiency of the Web search engine.

3 Methodology

In recent years, the amount of structured data available on the Web has been
increasing rapidly, making it possible to propose new ways to address complex
information needs by combining data from different sources. LOD is aimed to
link the existing data sources using RDF, and by September 2010, 203 data
sources in different domains consisting of over 25 billion RDF triples have been

LODDO: A Named Entities Semantic Relatedness Measuring Approach 271

added into LOD cloud. This gives us an inspiration to measure named entities
semantic relatedness based on LOD. As LOD consists of lots of data sources
from different domains, by leveraging LOD, the named entity coverage problem
can be overcome. And it gives us a possible solution to synthesize multi-sources.
While the statistical based approaches regard named entities which have the
same name in all documents as the same entity, LOD represents them as different
entities. So even the low frequent entity can have its own description, which can
be distinguished from other entities of the same name.

Figure 1 shows the architecture of our approach LODDO, which measures
named entities semantic relatedness based on LOD. There are two components
in the architecture: offline and online components. The offline component is
aimed to build an index from the various LOD sources which can be used to
find the entities corresponding to a specific entity name fleetly. For the online
component, the Description Retrieval can retrieve all the description informa-
tion of a given entity name from data sources by leveraging LOD Index. The
Description Overlap Measuring uses the description information of two named
entities to calculate the semantic relatedness between them.

Fig. 1. The Architecture of LODDO

3.1 LOD Index Builder

LOD uses RDF, which is a generic, graph based data framework that represents
information based on triples of the form (subject, predicate,object), to organize
the data. An entity can be either a subject or an object of any RDF triple.
LOD identifies an entity via a HTTP scheme based Uniform Resource Identifier
(URI). The URI does not only serve as a unique global identifier but it also
provides access to a structured data representation of the identified entity.

It is not trivial to find the entities which have a specific name directly. For exam-
ple, two data sources, even the same data source, may represent one target entity
by different uris. So it becomes very important to find all the uris which mean the
same entity. Moreover, some name variants may correspond to one entity, which

272 W. Zhou et al.

is ineffectively solved just by leveraging the string similarity. To solve these prob-
lems, we leverage the name properties, uri format and certain relationships in LOD
to enumerate all possible name variants and uris to an entity, which can be repre-
sented as an entity triple (entity id, uri set, name set). Here, entity id is an auto-
matic generated University Unique Identifier (UUID) of an entity.

3.1.1 Name Extraction for URI
Thanks to the broad coverage of LOD, most name variants of an entity can
be discovered by mining the diverse data sources. In this subsection, we focus
on the name extraction for each uri. Unfortunately, different data sources may
have different representation for names of an entity. A predicate may be used in
different ways in different sources. For example, in RDF schema, the predicate
rdfs2:label is defined to provide a human-readable version of a resource’s name.
However, DBpedia uses it in a different way. Here is an example of rdfs:label in
DBpedia:

(dbpedia3:The World Health Organization, rdfs:label, “The”).

Obviously it is not right to regard “The” as the name. Therefore, we need to
analyze the LOD data sources respectively and identify the ways that may de-
scribe the name information. In such a way, we can get all the name variants of
a uri and by automatically generating unique entity id corresponding to the uri,
we get the initial entity triple space Γ .

Γ = {(entity id, uri, name set) | uri ∈ LOD} (1)

Here we present the name schema of several data sources: DBpedia, Musicbrainz
[21] (DBtune), and Freebase [4].

– For DBpedia, we find that there’s no exact predicate which can show the
name of a DBpedia uri. As a solution, we extract the name by deleting “ ”
and “()” components from the tail of the uri. For example:

dbpedia:James Sikes has the name “James Sikes”.
dbpedia:Think Again (band) has the name “Think Again”.

– Musicbrainz (DBtune) represents a uri’s name by predicate: foaf4:name,
mo5:title and skos6:altLabel.

– Freebase uses fb7:type.object.name as the predicate of a uri’s name.

3.1.2 Integrate Entity Triples
We have mentioned that different data sources, even the same data source, may
represent one target entity by different uris in LOD. However, there exist some

2 http://www.w3.org/2000/01/rdf-schema#
3 The dbpedia: stands for the prefix for URI from DBpedia.
4 http://xmlns.com/foaf/0.1/
5 http://purl.org/ontology/mo/
6 http://www.w3.org/2004/02/skos/core#
7 http://rdf.freebase.com/ns/

LODDO: A Named Entities Semantic Relatedness Measuring Approach 273

relationships connecting uris which are actually telling the same entity. We have
identified three such relationships and make use of them to integrate the entity
triples.

DBpedia:disambiguates Relationship. Disambiguation in DBpedia is the
process of resolving the conflicts that arise when a name is ambiguous—when
it refers to more than one topic covered by DBpedia. A disambiguation uri is
linked with other different uris which have the same name. For example, there
are two disambiguation triples in DBpedia:

(dbpedia:Bell, dbpedia:disambiguates, dbpedia:Bell Island)
(dbpedia:Bell, dbpedia:disambiguates, dbpedia:Bell Labs)

which means dbpedia:Bell Island has “Bell” and “Bell Island” as its name vari-
ants. And dbpedia:Bell Labs has “Bell” and “Bell Labs” as its name variants.

Algorithm 1. Entity Triples Integration

Input: Initial entity triple (entity id, uri set, name set) space Γ got from subsection
“Name Extraction for URI”; LOD triple (subject, predicate, object) space Σ.

Output: Entity triple space Γ .
1: for all x in Σ do
2: if x is a dbpedia:disambiguates or dbpedia:redirect triple then
3: et1 ← entity triple whose uri set contains x.subject
4: et2 ← entity triple whose uri set contains x.object
5: et2.name set = et1.name set ∪ et2.name set
6: end if
7: end for
8: for all x in Σ do
9: if x is a dbpedia:disambiguates or dbpedia:redirect triple then
10: et ← entity triple whose uri set contains x.subject
11: Γ = Γ − et
12: else if x is a owl:sameAs triple then
13: et1 ← entity triple whose uri set contains x.subject
14: et2 ← entity triple whose uri set contains x.object
15: entity id ← UUID Generation()
16: Γ = Γ ∪ {(entity id, et1.uri set∪ et2.uri set, et1.name set∪ et2.name set)}
17: Γ = Γ − et1
18: Γ = Γ − et2
19: end if
20: end for

DBpedia:redirect Relationship. DBpedia may use a redirect relationship to
link one uri, which has no description, to another uri which has a description. The
reasons for creating and maintaining such a schema include: alternative names,
alternative spellings or punctuation, abbreviations, etc [2]. If uri1 redirects to
uri2, the uri2 should also have the name of uri1 as its name variant. For example,
we have such a triple in DBpedia:

(dbpedia:UK, dbpedia:redirect, dbpedia:United Kingdom)

274 W. Zhou et al.

which means dbpedia:United Kingdom has “UK” and “United Kingdom” as its
name variants.

Owl:sameAs Relationship. By common agreement, Linked Data publishers
use the link type owl8:sameAs to state that two URI aliases refer to the same
resource. Therefore, if uri1 owl:sameAs uri2, their entity triples should be inte-
grated.

If two uris have an owl : sameAs relationship, their uris and names will be
integrated to the same entity id. For dbpedia : disambiguates and dbpedia :
redirects relationships, we just integrate their names excluding uris. The detail
algorithm of Entity Triples Integration is shown in Algorithm 1. And the time
complexity is O(|Σ|).

3.1.3 Index Storage
After getting all the entity triples, we need a mechanism to store and index
them in order to guarantee the efficient retrieval for online semantic relatedness
measuring. Considering the existence of one word’s different formats, such as
apple and Apples which may indicate to the same entity, we need to normalize
the names at first. The rules are as follows: (1) convert the names to lowercase;
(2) perform word stemming on the names; (3) remove any articles from names.

Then, the inverted list is utilized to store such information. The storage mech-
anism is shown in Figure 2 and corresponding notation description is in Table 1.

After Entity Triple Integration, all the name variants and uris of an entity are
extracted which means that the challenge, different representations of a single
entity, has been solved. By using the LOD Index, we can find all the entities
of a given name, which means that the word ambiguity challenge also has been
solved.

Fig. 2. LOD Index mechanism

3.2 Semantic Relatedness Measuring

Given an entity name, normalization of the name should be processed at first.
Then we can retrieve all the entities with such a normalized name variant by
leveraging the LOD Index. As there is a large variety of description about an en-
tity in LOD, the heuristics arises that the more common description two entities
have, the stronger semantic relatedness they have. In the following section, we
will describe Description Retrieval and Description Overlap Measuring in detail.

8 http://www.w3.org/2002/07/owl#

LODDO: A Named Entities Semantic Relatedness Measuring Approach 275

Table 1. Notations for (Figure 2)

Notation Description

Ni name string
Si
j jth entity with a name variant of Ni

ui
jk kth uri which indicates to the Si

j entity
n the whole number of name strings

p(i) number of entities with Ni as its name variant
q(ij) number of uris corresponding to entity Si

j

3.2.1 Description Retrieval
Since an entity is represented as a set of uris, the description of the entity can
be constructed by accumulating the description of the uris in the uri set. The
description of a uri is defined as a vector of subjects and objects which forms
RDF triples with the uri. In a LOD triple, if urii is the subject, then the object
should be inserted into the description of urii. Otherwise, if urii is the object, the
subject should be inserted into urii’s description. In LOD, an entity uri may have
types in all probability. However, there exist some type assertions which are too
loose. For example, almost every entity uri in DBpedia has a type of owl:Thing.
So for avoiding such noise in LOD, we ignore the type assertion when generating
the description.

3.2.2 Description Overlap Measuring
Having the heuristics that two related named entities may have many common
related things, we leverage the LOD Description Overlap, named as LODDO, to
calculate the semantic relatedness between two named entities.

In the real world, there exists such a situation: entity p has many related
entities including entity q which leads to a weak semantic relatedness between
p and q, however q only has few related entities including p which leads to a
stronger semantic relatedness. So, it becomes an issue about how to determine
the final semantic relatedness between p and q. Having such a puzzle, we use the
following two strategies to determine the final semantic relatedness.

(1) LODJaccard: Consider equally to both named entities when measuring the
semantic relatedness. It is defined as follows:

CommonDescription(p, q) = |Description(p) ∩Description(q)|
Denominator(p, q) = |Description(p)|+ |Description(q)|

− |Description(p) ∩Description(q)|

LODJaccard(p, q) =
CommonDescription(p, q)

Denominator(p, q)

(2)

(2) LODOverlap: Have a bias towards the less description named entity when
measuring the semantic relatedness. It is defined as follows:

276 W. Zhou et al.

CommonDescription(p, q) = |Description(p) ∩Description(q)|
Denominator(p, q) =min(|Description(p)| , |Description(q)|)

LODOverlap(p, q) =
CommonDescription(p, q)

Denominator(p, q)

(3)

where Description(p) means the description of entity p.

Table 2. Four strategies to measure LOD Description Overlap

label strategy name description

1 LODJaccard L
Choose LODJaccard to determine semantic
relatedness. And choose largest LODJaccard

to deal with multi-pairs problem.

2 LODOverlap L
Choose LODOverlap to determine semantic
relatedness. And choose largest LODOverlap

to deal with multi-pairs problem.

3 LODJaccard LC
Choose LODJaccard to determine semantic

relatedness. And choose largest CommonDescription
to deal with multi-pairs problem.

4 LODOverlap LC
Choose LODOverlap to determine semantic

relatedness. And choose largest CommonDescription
to deal with multi-pairs problem.

As there may be several entities which have the same name variant, given two
entity names, multi-pairs may be generated. So we should determine which two
entities should be chosen to calculate the semantic relatedness. Because of the
lack of context around the given entity names, we should choose the entities pair
which is mostly in agreement with usual human sense. There are two strate-
gies: (1) Largest LODJaccard or LODOverlap: Choose the pair which has the
strongest semantic relatedness. This strategy has been adopted by many se-
mantic relatedness measuring approaches, such as [10,18]. (2) Largest Common-
Description: Choose the pair which has the most abundant related things in
common. If several pairs have the same largest CommonDescription, the small-
est Denominator will be chosen.

Assume m means the entity number of p, n means the entity number of q, ap
means the average size of p’s description, aq means the average size of q’s de-
scription. Then the time complexity of Description Overlap Measuring is O(m×
n×(ap+aq)). (ap+aq) means the time complexity of CommonDescription(p, q).

All in all, four strategies can be used to deal with the semantic relatedness
between two named entities. They are described detailedly in Table 2. An ex-
perimental study is provided in Section 4 to compare the four strategies.

4 Experiments

In this section, we conducted some experiments to demonstrate the effectiveness
of our proposed approach in named entities semantic relatedness measuring. The

LODDO: A Named Entities Semantic Relatedness Measuring Approach 277

experiments results showed that our approach greatly outperformed the previous
semantic relatedness measuring approaches. Extensive experiments were also
carried out to prove the robustness of our approach.

4.1 Experimental Setup

4.1.1 LOD Data Sources
In our work, we randomly select two cross-domain data sources: DBpedia, Free-
base, and a specific-domain data source: Musicbrainz (DBtune). In our future
work, we will consider other domains and do more comprehensive experiments.
we have generated a LOD Index which includes DBpedia, Musicbrianz (DBtune)
and Freebase. The scale statistics are shown in Table 3.

Table 3. LOD scale statistics

Data Source DBpedia Musicbrainz (DBtune) Freebase

Entity Number (million) 3.9 23.2 29

From Table 3 we find that the entity number of Musicbrainz (DBtune) and
Freebase exceeds DBpedia greatly. As DBpedia is extracted from Wikipedia,
and Wikipedia has a larger coverage than WordNet, we can conclude that LOD
does enlarge entity coverage tremendously than Wikipedia and WordNet. So
by leveraging LOD, the entity coverage problem, which appears in traditional
knowledge based approaches, can be solved.

4.1.2 Evaluation Measure
There are two different correlation measures which have been used for evaluat-
ing semantic relatedness measuring. The Pearson product-moment correlation
coefficient γ is to correlate the scores computed by a semantic relatedness mea-
suring approach with the numeric judgements of semantic relatedness provided
by humans. The Spearman rank order correlation coefficient ρ is to correlate
named entities pair rankings. Zesch [23] compared these two measures and rec-
ommended to use Spearman rank correlation to evaluate semantic relatedness
measuring. So in our experiments we just leverage Spearman rank correlation ρ
as the evaluation measure.

4.1.3 Dataset
Unfortunately, there is no benchmark data set for named entities semantic re-
latedness measuring. In our experiment, we make our own data set and offer it
as a standard for testing named entities semantic relatedness. In our work, we
have generated a LOD index which includes DBpedia, Musicbrianz (DBtune)
and Freebase. Musicbrainz (DBtune) mainly focuses on the music domain while
DBpedia and Freebase are cross-domain data sources. we randomly select 60
music related entities pairs from last.fm9 and 60 other domains entities pairs
from Wikipedia, giving a total of 120 pairs of named entities.

9 http://www.last.fm/

278 W. Zhou et al.

In the evaluation work, the semantic relatedness of each pair is rated by six
subjects with the following instructions:

Indicate how strongly these named entities are related using integers from 0
to 4. The description and an example corresponding to each number are given as
follows, and if you think some pairs fall in between two of these categories you
must push it up or down (no halves or decimals).

0: not at all related; “Linux” and “Beijing”
1: vaguely related; “China” and “Tokyo”
2: indirectly related; “Backstreet Boys” and “Britney Spears”
3: strongly related; “Backstreet Boys” and “As Long as You Love Me”
4: inseparably related; “Gate of Heavenly Peace” and “Tiananmen”

The named entities pairs were sorted in descending order by average score, and
100 pairs were selected in order to balance the rate distribution from 0 to 4.
The average Spearman rank correlation ρ among these six subjects is 0.9617,
which means the rate result is objective. Moreover, 0.9617 can also be used as
the upper bound of the performance.

0.4978

0.5933

0.7458 0.8114

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LODJaccard_L LODOverlap_L LODJaccard_LC LODOverlap_LC

Sp
ea

rm
an

 co
rr

el
at

io
n

Description Overlap Measuring Strategy

Fig. 3. Four Description Overlap Measuring strategies’ performance; Spearman rank
correlation ρ with humans

4.2 Description Overlap Strategy Comparison

In this section, we compare the performance of the four strategies in Description
Overlap Measuring. The results are shown in Figure 3.

From Figure 3, we can see that LODOverlap L outperforms LODJaccard L,
LODOverlap LC outperforms LODJaccard LC. This tells us that when dealing
with the semantic relatedness between named entities, it is more reasonable to

LODDO: A Named Entities Semantic Relatedness Measuring Approach 279

focus on the less description named entity. From the results, we also find that
LODOverlap LC is better than LODOverlap L, LODJaccard LC is better than
LODJaccard L. It is mainly caused by the noise in LOD when handling multi-
pairs problem. In LOD, there exist some obsolete and incomplete uris. They
have little and even wrong description which will lead to high overlap between
two unrelated named entities and thus reduce the performance. Leveraging the
largest common description pair has two advantages: (1) The largest common de-
scription pair is probably well described in LOD, which can reduce the influence
of noise in LOD; (2) It is more likely to have an objective semantic relatedness
which conforms to the human sense.

In the following experiments, we choose LODOverlap LC as the strategy of
our approach LODDO. Table 4 shows some result examples of LODDO.

Table 4. Result examples of LODDO

Named Entities pair LOD Description Overlap

“Gate of Heavenly Peace” and “Tiananmen” 1

“Backstreet Boys” and “As Long as You Love Me” 0.3758

“Backstreet Boys” and “Britney Spears” 0.1538

“China” and “Tokyo” 0.0556

“Linux” and “Beijing” 0.0047

4.3 Semantic Relatedness Measuring Performance

Six previous semantic relatedness approaches are used to compare with our pro-
posed approach.

– Rad [17] regards WordNet as a graph: concepts as vertexes and all types
of relationships as edges. Given two concepts, the semantic relatedness is
represented by the shortest path length between them, the larger path length,
the weaker semantic relatedness between them.

– GlossOverlap [20] calculates the text overlap of two concepts’ glosses, which
are the first paragraph of their Wikipedia articles, to measure the semantic
relatedness. GlossOverlap is defined as follows:

GlossOverlap(p, q) = tanh

(
overlap(Gloss(p), Gloss(q))

length(Gloss(p)) + length(Gloss(q))

)
(4)

– Intrinsic Information Content (IIC) [16] applies an intrinsic information con-
tent measure relying on the hierarchical structure of the Wikipedia category
tree. It’s defined as follows:

IIC(p, q) = 1− log(hypo(lcs(p, q)) + 1)

log(C)
(5)

where lcs(p, q) means the least common subsumer of p and q in Wikipedia
category tree. hypo(lcs(p, q)) is the number of hyponyms of node lcs(p, q)
and C equals the total number of conceptual nodes in the hierarchy.

280 W. Zhou et al.

– ESA [7] firstly constructs weighted vector of Wikipedia concepts to each
input text. Then to compute semantic relatedness of this pair of text, it
compares their vectors using the cosine metric.

– WebJaccard and WebOverlap [5] are two popular co-occurrence measures to
compute semantic similarity using page counts. They are defined as follows:

WebJaccard(p, q) =
H(p ∩ q)

H(p) +H(q)−H(p ∩ q) (6)

WebOverlap(p, q) =
H(p ∩ q)

min(H(p), H(q))
(7)

Here H(p) denotes the page counts for the query p in a search engine. In our
experiment, we choose Google10 to get page counts.

Figure 4 shows the results of these approaches on the test dataset.

0.0755

0.4705

0.3616

0.5815

-0.0106

0.5757

0.8114

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Rad GlossOverlap IIC ESA WebJaccard WebOverlap LODDO

Sp
ea

rm
an

 co
rr

el
at

io
n

Semantic relatedness measuring method

Fig. 4. Different approaches’ performance; Spearman rank correlation ρ with humans

From Figure 4, we can find that our proposed approach significantly improves
the performance of named entities semantic relatedness measuring. Even com-
pared with ESA, the second best performance, we get an improvement of 39.6%.
As WordNet has limited entity coverage and 75 pairs in the test dataset cannot
be measured because of the miss-hit in WordNet, Rad achieves a low Spear-
man rank correlation. ESA, GlossOverlap and IIC obtain a better performance
than Rad, because Wikipedia has a larger coverage and richer description than
WordNet. In Wikipedia, only 6 pairs in the test dataset is miss-hit. However,
ESA considers the words in a name independently, thus may misunderstand the
meaning of the name. GlossOverlap regards the uncritical words equally to the
critical words in the gloss, thus the effectiveness may be reduced by the uncritical
words. Since IIC only takes into account the category hierarchy relation without
considering other meaningful relations, the performance is limited. WebJaccard

10 http://www.google.com

LODDO: A Named Entities Semantic Relatedness Measuring Approach 281

and WebOverlap use the Google search statistical information to measure the
semantic relatedness between named entities. As they regard a name in all docu-
ments as the same meaning, the effectiveness can be reduced. Since WebJaccard
considers the two named entities equally, the larger hit entity brings more noise
which influences the accuracy greatly. Furthermore, WebOverlap provides a bet-
ter performance than WebJaccard, which proves the heuristics that the semantic
relatedness should bias the less description entity.

4.4 LOD Data Source Selection

In this section, the influence of selecting different LOD data source is figured
out. What will the performance change if we merge the data sources rather than
use them singly. Table 5 gives the results of using different data sources.

Table 5. Performance of selecting different data sources

Data Source
average description

number
missed pairs number

Spearman rank
correlation ρ
with humans

Musicbrainz (DBtune) 35.79 26 0.0128

Freebase 10468.4 16 0.4217

DBpedia 11658.5 6 0.7668

Musicbrainz (DBtune) &
Freebase & Dbpedia

26076.1 0 0.8114

It is noted that the Spearman rank correlation is calculated without the con-
sideration of the pairs which can’t be found in corresponding data sources. There
are two reasons why Musicbrainz (DBtune) gets such a low performance: (1) The
description of an entity is insufficient (only 35.79 descriptions on average), com-
pared with other data sources (more than 10k descriptions on average); (2) The
entity corresponding to a name in Musicbrainz (DBtune) sometimes is not the
sense in our daily experience, for example “Ferrari” is a song in Musicbrainz
(DBtune) rather than automotive in common sense. From the column “missed
pairs number” we can know that the use of single data source also leads to entity
coverage problem, however, by merging the data sources together, the coverage
problem can be relieved. Although the average description number of Freebase
and DBpedia are similar, their performances are different. So we can conclude
that different data sources may have different constructions and qualities, which
contributes to the different semantic relatedness measuring performances. In ad-
dition, having more description is likely to lead to better performance. It verifies
that with more data sources, the performance can be improved steadily, which
proves the robustness of our approach.

282 W. Zhou et al.

5 Conclusion

In this paper, we target on the task of named entities semantic relatedness
measuring. As the existing knowledge based approaches have the entity coverage
issue and the statistical based approaches have unreliable result to low frequent
entities, we propose a more comprehensive approach by leveraging LOD to solve
these problems. By exploiting the semantic associations in LOD, we propose a
novel algorithm, called LODDO, to measure the semantic relatedness between
named entities. Specifically, we first propose a mechanism to index the various
LOD sources which can be used to find the entities corresponding to a specific
entity name fleetly. Then, we bring forward LOD Description Overlap to measure
the named entities semantic relatedness. The experimental results show that
our approach greatly outperforms the previous semantic relatedness measuring
approaches. And it is robust to leverage more data sources in LOD and provide
better performance.

In the future, we plan to investigate more data sources from LOD in order
to extend the coverage and promote the performance. We will investigate the
quality of LOD and see how it will influence the performance of semantic re-
latedness measuring between named entities. We will also try to find a uniform
approach to measure the semantic relatedness between abstract concepts and
named entities.

References

1. Linked open data, http://linkeddata.org
2. Wikipedia:redirect, http://en.wikipedia.org/wiki/Wikipedia:Redirect
3. Banerjee, S., Pedersen, T.: An Adapted Lesk Algorithm for Word Sense Disam-

biguation using Wordnet. In: Gelbukh, A. (ed.) CICLing 2002. LNCS, vol. 2276,
pp. 136–145. Springer, Heidelberg (2002)

4. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collab-
oratively created graph database for structuring human knowledge. In: The 2008
ACM SIGMOD International Conference on Management of Data, New York, USA,
pp. 1247–1250 (2008)

5. Bollegala, D., Yutaka, M., Ishizuka, M.: Measuring semantic similarity between
words using web search engines. In: The 16th International Conference on World
Wide Web, New York, NY, USA, pp. 757–766 (2007)

6. Cilibrasi, R., Vitanyi, P.M.B.: The google similarity distance. IEEE Trans. Knowl-
edge and Data Engineering (3), 370–383 (2007)

7. Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-
based explicit semantic analysis. In: The 20th International Joint Conference on
Artificial Intelligence (IJCAI), Hyderabad, India, pp. 1606–1611 (2007)

8. Gracia, J., Mena, E.: Web-Based Measure of Semantic Relatedness. In: Bailey,
J., Maier, D., Schewe, K.-D., Thalheim, B., Wang, X.S. (eds.) WISE 2008. LNCS,
vol. 5175, pp. 136–150. Springer, Heidelberg (2008)

9. Hirst, G., St-Onge, D.: Lexical chains as representation of context for the detec-
tion and correction malapropisms. In: WordNet: An Electronic Lexical Database
(Language, Speech, and Communication), pp. 305–332. MIT Press (1998)

http://linkeddata.org
http://en.wikipedia.org/wiki/Wikipedia:Redirect

LODDO: A Named Entities Semantic Relatedness Measuring Approach 283

10. Jarmasz, M., Szpakowicz, S.: Roget’s thesaurus and semantic similarity. In: Recent
Advances in Natural Language Processing, pp. 212–219 (2003)

11. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries:
how to tell a pine cone from an ice cream cone. In: The 5th Annual International
Conference on Systems Documentation, Toronto, Canada, pp. 24–26 (1986)

12. Miller, G.A.: Wordnet: A lexical database for english. Communications of the
ACM (11), 39–41 (1995)

13. Milne, D., Witten, I.H.: An effective, low-cost measure of semantic relatedness
obtained from wikipedia links. In: The AAAI 2008 Workshop on Wikipedia and
Artificial Intelligence (WIKIAI 2008), Chicago, IL (2008)

14. Patwardhan, S., Banerjee, S., Pedersen, T.: Using Measures of Semantic Related-
ness for Word Sense Disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS,
vol. 2588, pp. 241–257. Springer, Heidelberg (2003)

15. Patwardhan, S., Pedersen, T.: Using wordnet based context vectors to estimate
the semantic relatedness of concepts. In: The EACL 2006 Workshop Making Sense
of Sense - Bringing Computational Linguistics and Psycholinguistics Together,
Trento, Italy, pp. 1–8 (2006)

16. Ponzetto, S.P., Strube, M.: Knowledge derived from wikipedia for computing se-
mantic relatedness. Journal of Artificial Intelligence Research, 181–212 (2007)

17. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a
metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics (1),
17–30 (1989)

18. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: The 14th International Joint Conference on Artificial Intelligence, San
Francisco, CA, USA, pp. 448–453 (1995)

19. Spanakis, G., Siolas, G., Stafylopatis, A.: A hybrid web-based measure for com-
puting semantic relatedness between words. In: The 2009 21st IEEE International
Conference on Tools with Artificial Intelligence, Washington, DC, pp. 441–448
(2009)

20. Strube, M., Ponzetto, S.P.: Wikirelate! computing semantic relatedness using
wikipedia. In: The 21st National Conference on Artificial Intelligence, Boston, MA,
pp. 1419–1424 (2006)

21. Swartz, A.: Musicbrainz: A semantic web service. IEEE Intelligent Systems (1),
76–77 (2002)

22. Wubben, S., van den, B.: semantic relatedness metric based on free link structure.
In: The Eighth International Conference on Computational Semantics, Tilburg,
The Netherlands, pp. 355–358 (2009)

23. Zesch, T., Gurevych, I.: Wisdom of crowds versus wisdom of linguists measuring
the semantic relatedness of words. Natural Language Engineering (1), 25–59 (2010)

What Should I Link to? Identifying Relevant

Sources and Classes for Data Linking

Andriy Nikolov, Mathieu d’Aquin, and Enrico Motta

Knowledge Media Institute, The Open University, Milton Keynes, UK
{a.nikolov,m.daquin,e.motta}@open.ac.uk

Abstract. With more data repositories constantly being published on
the Web, choosing appropriate data sources to interlink with newly pub-
lished datasets becomes a non-trivial problem. It is necessary to choose
both the repositories to link to and the relevant subsets of these repos-
itories, which contain potentially matching individuals. In order to do
this, detailed information about the content and structure of semantic
repositories is often required. However, retrieving and processing such
information for a potentially large number of datasets is practically un-
feasible. In this paper, we propose an approach which utilises an existing
semantic web index in order to identify potentially relevant datasets for
interlinking and rank them. Furthermore, we adapt instance-based ontol-
ogy schema matching to extract relevant subsets of selected data source
and, in this way, pre-configure data linking tools.

1 Introduction

The principles of Linked Data1 recommend data publishers to reuse exiting URIs
for their entities, where possible, or to provide links to them. In this way, more
information can be obtained by following the links. In order to achieve that,
data publishers face two non-trivial problems. First, they must be able to find
existing data sources which can be reused or linked to. For this, they must be
aware of the content of existing repositories describing relevant domains and be
able to assess their suitability. Second, they must configure and run data linking
tools which would discover mappings between individuals in their dataset and
the chosen external ones.

With the growing number of repositories published based on the Linked Data
principles, identifying relevant datasets and resources can become problematic.
As a result, data publishers usually only link their datasets to the popular repos-
itories (such as DBPedia2 and Geonames3). This may not always be the optimal
solution in some cases, for example:

– If the data domain is highly specialised and not covered by popular reposi-
tories in sufficient details.

1 http://www.w3.org/DesignIssues/LinkedData
2 http://dbpedia.org
3 http://www.geonames.org/

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 284–299, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.w3.org/DesignIssues/LinkedData
http://dbpedia.org
http://www.geonames.org/

What Should I Link to? Identifying Relevant Sources and Classes 285

– If different parts of the dataset are covered by several external reposito-
ries: e.g., when a repository contains references to scientific publications
both on computer science (described by DBLP4) and medicine (described
by PubMed5).

To support assessment of different sources, catalogs of Linked Data reposito-
ries are maintained (e.g., in CKAN6), and meta-level descriptors of reposito-
ries are provided using the VoiD vocabulary7. However, these sources can still
be insufficient as they do not take into account the distribution of instances
in repositories. For example, several repositories contain information about aca-
demic researchers, however, they use different criteria to include individuals: e.g.,
DBPedia only mentions the most famous ones, DBLP only includes Computer
Science researchers, and RAE8 deals with researchers working in UK institu-
tions. In order to be able to choose the most appropriate repositories to link to,
one must have access to complete instance-level data stored in them. Obtaining
these data directly from the data sources and analysing them is often not feasible
due to the size of datasets which need to be downloaded.

Once the dataset is chosen, the second challenge is to configure the data
linking tool which would discover actual links between individuals in two repos-
itories. The configuration typically includes choosing the selection criterion for
determining potential matching candidates and the matching function, which
would determine whether a pair of matching candidates actually represent the
same entity. Both choices heavily depend on the structure of data in the external
data repository.

In this paper we describe an approach which helps to solve these tasks with-
out the need to process complete external datasets. The approach involves two
methods, which we consider our contribution:

– Identifying and ranking relevant candidate data repositories for linking. To
achieve this, the method utilises keyword-based search over existing an se-
mantic web index, integrates search results, and analyses them.

– Identifying relevant classes containing potentially matching individuals in
chosen external sources. To this end, the method adapts and extends instance-
based ontology matching techniques. We define the task of finding the best
matching class in an external dataset and evaluate the suitability of different
instance-based similarity metrics to the task.

The rest of the paper is organized as follows. Section 2 outlines the use case which
provided the main motivation for this work. Section 3 describes the method
for selecting and ranking the data sources. Section 4 focuses on application of
instance-based ontology matching techniques in order to determine a relevant

4 http://dblp.l3s.de/
5 http://www.ncbi.nlm.nih.gov/pubmed/
6 http://ckan.net/ see http://ckan.net/group/lodcloud
7 http://semanticweb.org/wiki/VoiD
8 http://rae2001.rkbexplorer.com/

http://dblp.l3s.de/
http://www.ncbi.nlm.nih.gov/pubmed/
http://ckan.net/
http://ckan.net/group/lodcloud
http://semanticweb.org/wiki/VoiD
http://rae2001.rkbexplorer.com/

286 A. Nikolov, M. d’Aquin, and E. Motta

subset of the chosen data source. Section 5 discusses the results of the exper-
iments we performed to test our algorithms. Finally, section 7 concludes the
paper.

2 Motivation

The problem of determining a set of relevant repositories is a generic one and can
occur in different contexts. Our work was primarily motivated by two use cases:
the SmartProducts project and development of the data.open.ac.uk repository.

2.1 Scenarios and Requirements

One of the tasks within the SmartProducts project9 involves reusing the data
from external semantic repositories to build knowledge bases for smart consumer
devices: e.g., to extend the core domain knowledge base of food recipes for a
smart kitchen with nutritional data, alternative recipes, health profiles of food
products, etc. In order to extend the core domain knowledge base, the developer
has to be able to find relevant repositories on the Web of Data and interlink
them with this core knowledge base [2].

In another scenario, the data.open.ac.uk repository10 aims at publishing var-
ious data related to the activities of The Open University (OU)11 according to
Linked Data principles. These datasets include, among others, the publications
originated by OU researchers, courses provided by the university, etc. Many en-
tities referenced in these datasets are also mentioned in other public repositories.
Thus, in order to facilitate data integration, it makes sense to create links from
instances used in the data.open.ac.uk datasets to external semantic data stores.
Given the range of categories to which data instances belong, it is difficult to
select a single external source to link to: e.g., publication venues can be linked
to different subsets of RKBExplorer, DBLP, PubMed, DBPedia, or Freebase12.
Moreover, the repository is constantly extended with more instance data for ex-
isting topics (e.g., as more research output is published with time) as well as
with more topics (as more internal datasets are released online). Selecting rele-
vant sources for linking and selecting specific individuals to link to within these
sources becomes a time-consuming procedure, which needs to be automated as
much as possible.

There are several factors which can guide the selection of the repository for
linking, in particular:

– Degree of coverage. In order to maximise the possibility to reuse external
descriptions, the sources which contains more references to the entities stored
in the newly published repository are preferable.

9 http://www.smartproducts-project.eu
10 http://data.open.ac.uk
11 http://www.open.ac.uk
12 http://www.freebase.com/

http://www.smartproducts-project.eu
http://data.open.ac.uk
http://www.open.ac.uk
http://www.freebase.com/

What Should I Link to? Identifying Relevant Sources and Classes 287

– Additional information provided by the source. When selecting a source to
link to, it is important to take into account how much additional information
about entities is provided by each external source: i.e., what properties and
relations are used to describe these entities.

– Popularity of the source. Linking to URIs defined in a popular data source
or reusing them makes it easier for external developers to find the published
data and use them.

Among these factors, only the degree of coverage heavily relies on instance-level
data stored in external repositories. The level of detail of instance descriptions
can be obtained from the domain ontology used by the external dataset and,
possibly, a few example instances, while the popularity of the source can be
estimated based on VoiD linkset descriptors. Therefore, when designing our al-
gorithm, we primarily focused on estimating the degree of coverage between
the internal dataset prepared for publishing and potentially relevant external
datasets.

2.2 Overview of the Approach

The task of finding relevant repositories assumes that there is a dataset to be
published Ds = {Os, Is} containing a set of individuals Is structured using the
ontology Os. We will refer to this dataset as the source dataset. Each individual
belongs to at least one class cλ defined in Os: I = {ij |cλ(ij), cλ ∈ Os}. On
the Web there is a set of Linked Data repositories {D1, . . . , Dn} such that Dj =
{Oj , Ij}. There is a subset of these repositories {D1, . . . , Dm} which overlap with
Ds, i.e., ∀(j ≤ m)∃(IOj ⊆ Ij) : IOj = {ik|equiv(ik, is), ij ∈ Ij , is ∈ Is}, where
equiv denotes the relation of equivalence between individuals. The meaning of
the equivalence relation here depends on the identity criterion chosen by the
data publisher: e.g., owl:sameAs links or direct reuse of URIs assume that URIs
must be strictly interchangeable (see [4] for the analysis of different types of
identity). The goal is to identify the subset of relevant repositories {D1, . . . , Dm}
and to rank them according to the degree of coverage |IOj |/|Is|. Given that the
publisher may want to select different repositories to link for different categories
of instances in Ds, then for each class cλ ∈ Os a separate ranking should be
produced based on the degree of coverage for instances of this class |IOjλ|, where
IOjλ = {ik|equiv(ik, is), is ∈ Is, cλ(is)} ⊆ IOj .

Since the actual discovery of links is usually performed by an automated tool
(such as Silk [14] or KnoFuss [10]), another important task is to restrict the search
space for this tool by identifying in each dataset Dj a set of relevant classes cjk
which contain potentially overlapping individuals with cλ. Then the tool can be
configured to select only individuals of these classes as candidates for linking. The
main obstacle with these tasks is the need to identify the overlapping subset of in-
stances |IOj | from each external dataset. Downloading whole datasets or applying
data linking tools to their complete sets of instances is often unfeasible due to their
size and required computational time, network load, and local disk space.

288 A. Nikolov, M. d’Aquin, and E. Motta

In order to minimize the amount of data from external repositories which
must be processed locally, we adopted a two-stage approach. At the first stage,
a semantic web index which supports keyword-based search for data instances
is utilised to propose and rank relevant sources as well as potentially relevant
classes. This solution, which extends the earlier version of the algorithm pre-
sented in [8], is described in section 3. Once a source is selected, the second
stage involves finding the relevant classes which would facilitate the data linking
process. At this stage, partial information is retrieved from the selected source,
in particular, labels of instances of the candidate classes (see section 4).

3 Selecting Relevant Data Sources Using Keyword
Search Services

We assume that a semantic keyword search service takes as its input a set of
keywords K = {k1, . . . , ki}. As output, it returns a set of potentially relevant in-
dividuals which may belong to different repositories: Ires = Ires1 ∪Ires2 ∪. . .∪Iresm ,
where Iresj ⊆ Ij . For returned individuals ijk ∈ Iresj , their types {cjkλ|cjkλ(ijk)}
are also available in the search results. An example of the search service which
satisfies this assumption is Sig.ma [12], which uses Sindice as its search index.

Fig. 1. Keyword-based search for relevant individuals

3.1 Finding Potentially Relevant Sources

In order to find potentially relevant individuals from the source dataset Ds,
we query the search service using the labels of individuals (values of rdfs:label,

What Should I Link to? Identifying Relevant Sources and Classes 289

foaf:name, dc:title, etc.) as keywords. Then, these query results are aggregated to
estimate the degree of coverage of different data sources (Fig. 1). The procedure
consists of the following steps:

1. Randomly selecting a subset of individuals I∗s from Ds belonging to a class
cs. This is done in order to reduce the number of queries to the search service
in case where the complete extension set of individuals is too large. On the
other hand, the subset must be large enough to produce reliable ranking of
sources.

2. Querying the search service (Sig.ma) for labels of each individual in the
selected subset. The results of each search are returned as an RDF document,
which includes the references to individuals, their sources, and the classes
they belong to.

3. Aggregation of the search results. RDF documents returned by Sig.ma are
loaded into a common repository, and the individuals ijk are grouped ac-
cording to their sources Dj.

4. Data sources are ranked according to the number of their individuals re-
turned by the search service |{ijk|ijk ∈ Dj}|.

In our approach we assume that the relevance function used by the search ser-
vice to select query answers serves as an approximation of the identity function
equiv(). In the general case, this is in not true due to ambiguity of labels and
the fact that search services may not always achieve 100% precision. Taking a
sufficiently large subset of individuals to search makes it possible to reduce the
impact of ‘false positives’ returned by the search engine.

After applying these steps to our test scenarios (see section 5), we found that
the rankings obtained using this procedure are still likely to be imprecise for two
main reasons:

– Inclusion of irrelevant sources. For individuals belonging to classes with
highly ambiguous labels, many ‘false positives’ in the set of answers can re-
sult in irrelevant repositories achieving high ranking positions. For instance,
when searching for specific subcategories of people, any source mentioning
sufficiently large number of people would be considered relevant: e.g., Twit-
ter and DBLP were highly ranked when searching for music contributors.

– Inclusion of irrelevant classes. Resulting sets often contained classes which
would not allow selecting appropriate candidate individuals by a matching
tool. Sometimes a generic superclass was ranked higher than the correct
class: e.g., dbpedia:Person was ranked higher than a more relevant dbpe-
dia:MusicalArtist. In other cases, completely irrelevant classes were included:
e.g., for scientific journals the class akt:Publication-Reference describing spe-
cific volumes of journals was ranked higher than akt:Journal.

In order to overcome these issues, our approach includes the second stage: filter-
ing of search results using ontology matching techniques.

290 A. Nikolov, M. d’Aquin, and E. Motta

3.2 Using Ontology Matching Techniques to Filter Out Irrelevant
Results

In order to filter out irrelevant search results, our approach can utilise mappings
between classes provided by existing schema matching tools (Fig. 2). In our
experiments we utilised ontology mappings produced by two algorithms:

Fig. 2. Using ontology matching to refine search results

– CIDER [3] which takes as input two ontologies in RDF format and two URIs
defining ontological terms from these ontologies and produces as output the
similarity score between these terms. CIDER utilises evidence defined at the
level of ontological schema: string similarity between class labels, semantic
relations defined in WordNet and positions of classes in class hierarchies.

– Instance-based matching algorithm described in [9], which generated schema
mappings between classes on the Web of Data based on their overlapping sets
of instances. Overlapping sets of instances were inferred based on existing
owl:sameAs relations between them published in the Billion Triple Challenge
2009 (BTC) dataset13. Resulting mappings represent subsumption relations
of the form cA � cB , where cA and cB belong to different ontologies.

As the first step of the filtering procedure, CIDER is applied to measure similar-
ity between the class cs in Ds, for which overlapping sources have to be found,
and each of the classes cjkλ appearing in the aggregated search results. Then,
a threshold is applied to filter out classes with low similarity scores. Remaining
classes from the search results constitute the set of ‘confirmed’ classes Cconfirmed.
At the next stage, this set of ‘confirmed’ classes is enriched using the mappings
obtained using instance-based matching. For each class ci ∈ Cconfirmed, all map-
pings from the BTC-based set where cA � ci are selected, and all cA are added
into Cconfirmed. After the filtering stage, the datasets for which there is at least
one ‘confirmed’ class are moved in the ranking above those for which no classes
were confirmed.

13 http://vmlion25.deri.ie/

http://vmlion25.deri.ie/

What Should I Link to? Identifying Relevant Sources and Classes 291

In our tests described in section 5, the filtering stage led to improved precision
in the resulting ranking of data sources. However, the approach was found insuf-
ficient to deal with the actual task of finding relevant classes in target reposito-
ries. While the main problem with unfiltered results was the choice of too generic
classes, the filtering procedure left out many relevant classes or chose too specific
classes in the hierarchy. Because of this, the special method was implemented to
identify the best-matching classes in the ontology of a given dataset.

4 Identifying Relevant Classes in the Dataset

Identifying a relevant repository for interlinking represents only the first stage
of the process. In order to configure the data linking method and minimize the
possible errors, it is important to select the relevant subset of instance containing
potentially coreferent individuals. Selecting too broad subset can substantially
increase the computational time required to compare irrelevant individuals and
can also lead to many spurious mappings, thus reducing precision. Selecting too
small subset, on the other hand, can lead to missing mappings and reduced
recall. Given that the instances in semantic repositories are organised using
ontological class hierarchies, selecting a relevant subset of data for interlinking
requires selecting the best fitting class in the target ontology.

Definition 1: Let Is represent a set of individuals from the source repository Ds.
A subset of these individuals IOs has matching individuals in the target repository
Dt: ∀is ∈ IOs ∃it ∈ IOt : is ≡ it. Then the best fitting class for Is is such a

class cfitt ∈ Dt that it contains all individuals from IOt and there is no subclass

cx � cfitt that ∀it ∈ IOt : it ∈ cx.

Assuming that all instances is ∈ Is belong to the same class cs, the task of
choosing a best-fitting class represents a special case of the ontology matching
problem. However, it has several specific features [11]:

– It is possible that not all instances of the source class have matching coun-
terparts in the target repository. Thus, the goal is to find a fuzzy ‘overlap’
relation between classes rather than strict logical equivalence or subsump-
tion.

– Class definitions in the ontology can be insufficient to capture the intended
meaning: e.g., the class Actor in LinkedMDB refers to any person participat-
ing in a movie, while Actor in DBPedia refers to professional actors (both
film and stage).

Because of this, instance-based ontology matching techniques, which determine
relations between classes based on the overlap between their instance sets, appear
especially suitable for the task. However, these techniques cannot be directly
reused: in the absence of mappings between individuals in two repositories, it is
impossible to determine the overlap between their instance sets. Thus, applying
instance-based ontology matching to the task of determining the most relevant
class in the hierarchy requires dealing with two challenges:

292 A. Nikolov, M. d’Aquin, and E. Motta

– Approximating the power of the overlapping set of instances for two classes
in the absence of actual instance mappings.

– Selecting a suitable set-based similarity measure, which can determine the
degree of relevance of a particular class cj for a set of instances Is.

In order to estimate the power of the overlap relation between two classes, we use
the same evidence as for the source ranking: keywords extracted from instance
labels. The algorithm takes as its input the selected subset of individuals from
the source dataset as well as the output of the source selection algorithm: the
target repository Dt and the initial class ctopt . As our tests have shown, the class
ctopt returned by the source selection procedure is usually too generic. The goal

of the algorithm is to find the ‘best-fitting’ subclass cfitt � ctopt . The procedure
consists of the following steps:

1. Create profiles of all instances itj ∈ ctopt . A profile P (itj) of the instance itj
includes all keywords extracted from the label of itj.

2. Randomly select a subset of individuals I∗s from Is.
3. For each individual is ∈ I∗s , find the ‘best matching’ individual i+tj using

the cosine similarity between individual profiles: i+tj = argmax(cosim(P (is),

P (itj))). For each class cti such that i+tj ∈ cti, increase the score s(ci).

4. For each subclass cti � ctopt , its score s(cti) serves as an estimation of the
overlap |cs ∩ cti|. Based on this overlap estimation, the similarity between
classes is calculated simi(|cs ∩ cti|) ≈ simi(s(cti)). The class cti with the

highest similarity degree is assigned as cfitt .

Obtaining the best matching target individual is implemented using a stan-
dard keyword-based search mechanism using an in-memory Lucene index. This
procedure cannot be used as a replacement for the actual instance matching
tools due to its low accuracy, but, given a sufficient sample size, it can approxi-
mate instance equivalence in order to produce schema-level links. At this stage,
the sample from the first step of the algorithm (search for potentially relevant
sources) can be reused.

In order to measure the actual similarity between two classes with overlapping
sets of instances, several metrics have been used, in particular:

– The Jaccard index is defined as JC(I1, I2) =
|I1∩I2|
|I1∪I2| . In [5] a modified version

was proposed to give advantage to classes with large number of instances.

This corrected Jaccard index is defined as JCcorr =

√
|I1∩I2|×(|I1∩I2|−0.8)

|I1∪I2| .

– Overlap coefficient is another set similarity metrics defined asOverlap(I1, I2) =
|I1∩I2|

min(|I1|,|I2|) . It can reduce the impact of situations in which classes of one

dataset contain substantially less individuals than in the other one. However,
it is often incapable of ranking several alternative mappings with the same
size of the overlap.

– Pointwise Mutual Information determines the reduction of uncertainty pro-
vided by the assignment of an instance to one class to the assignment to the

other: PMI(I1, I2) = log2
|I1∩I2|×N
|I1|×|I2| .

What Should I Link to? Identifying Relevant Sources and Classes 293

– Log likelihood ratio represents a statistical test used to compare the fit of two
hypotheses. The null hypothesis states that the probability p(i ∈ I1) that
an instance belongs to I1 does not depend on whether it already belongs to

I2, i.e., p0 = p(i ∈ I1|i ∈ I2) = p(i ∈ I1|¬i ∈ I2) = |I1|
N , where N is a total

number of instances in both datasets. The alternative hypothesis states that

p1 = p(i ∈ I1|i ∈ I2) = |I1∩I2|
|I2| and p2 = p(i ∈ I1|¬i ∈ I2) = |I1|−|I1∩I2|

N−|I2| .

The log likelihood ratio is defined as −2(logL(p0, k1, n1)+ logL(p0, k2, n2)−
logL(p1, k1, n1)−logL(p2, k2, n2)), where logL(p, k, n) = klnp+(n−k)ln(1−
p), k1 = |I1 ∩ I2|, k2 = |I1| − |I1 ∩ I2|, n1 = |I2|, and n2 = N − |I2|.

– Information Gain measures the reduction of entropy of assigning an instance
to one set, if it has already been assigned to another set. IG = e1−e2, where
e1 = − |I2|

N log2
|I2|
N and e2 = − |I1∩I2|

|I1| log2
|I1∩I2|
|I1| .

An empirical study [5] found the Jaccard index to be the most suitable simi-
larity measure for instance-based ontology matching. However, this study was
primarily aimed at identifying equivalence mappings, and the experiments were
performed with the ontologies which actually had overlapping sets of instances.
Because of this, we decided to perform experiments to evaluate the suitability
of different similarity metrics for determining the best-fitting classes.

5 Experiments

We performed two sets of experiments. First, we tested the dataset selection
algorithm in three different scenarios (section 5.1). Second, we performed exper-
iments with the algorithm identifying best matching classes in order to choose
the instance-based similarity measure best suited to the task.

5.1 Dataset Search

In our tests, we have applied the approach described in section 3 to the following
datasets:

– ORO journals. A set of 3110 journals mentioned in the ORO repository
constituting a part of data.open.ac.uk. Each individual belongs to the class
bibo:Journal14.

– LinkedMDB films. A subset of 400 randomly selected instances of the class
movie:film15 representing movies in the LinkedMDB repository.

– LinkedMDB music contributors. A subset of 400 randomly selected instances
of the classmovie:music contributor representing music contributors for films
in the LinkedMDB repository.

For each individual in these sets, we queried Sig.ma using their labels as key-
words. The search results containing potentially relevant instances were aggre-
gated, and individuals were grouped by data source and ontological class. These

14 http://purl.org/ontology/bibo/Journal
15 http://data.linkedmdb.org/movie/film

http://purl.org/ontology/bibo/Journal
http://data.linkedmdb.org/movie/film

294 A. Nikolov, M. d’Aquin, and E. Motta

grouped results were used to produce the ranking of sources as described in
section 3.1. Among the top-10 ranked data sources, we counted the number of
actually relevant ones. Then, we applied the filtering mechanism using ontology
schema matching results and checked the relevance of remaining sources. The
results we obtained are presented in Table 1: for each dataset it shows the list
of top ranked sources as well as our judgement whether these sources were ac-
tually relevant (column “+/-”). In the table, “(RKB)” denotes the datasets
from RKBExplorer and “open EAN” corresponds to openean.kaufkauf.net. For
both LinkedMDB datasets, we did not consider the LinkedMDB repository it-
self when it was returned in the search results. As we can see from the results,
the initial search-based ranking managed to discover relevant datasets for the
sets of individuals in question. Top-ranked sources in the Journals and Films
categories contained relevant individuals which could be linked to the individ-
uals in Ds, and their sets of individuals are to a large degree overlapping. For
music contributors, the proportion of irrelevant sources was substantially larger
due to higher ambiguity of human names. The filtering stage in all cases re-
sulted in improving the ranking precision: only relevant sources were confirmed.
However, if we look at the ranking of ontological classes (Table 2), we can see
that correctly identifying classes presents a number of issues. The table shows
the highest ranking classes returned after each stage of the algorithm (only one
highest-ranking class from each ontology is shown). Top-ranked classes produced

Table 1. Test results: ranking of data sources

Dataset
Before filtering After filtering

Top-ranked +/- Top-ranked +/-

Journals

rae2001(RKB) + rae2001(RKB) +
dotac(RKB) + DBPedia +
DBPedia + dblp.l3s.de +
oai(RKB) + Freebase +
dblp.l3s.de + DBLP(RKB) +
wordnet(RKB) - eprints(RKB) +
www.bibsonomy.org -
eprints(RKB) +
Freebase +
www.examiner.com -

Films

DBPedia + DBPedia +
open EAN + Freebase +
bestbuy.com +
Freebase +
www.answers.com -
bitmunk.com -
wordnet -
www.examiner.com -
it.bestshopping.com +
www.songkick.com -

Musicians

DBPedia + Freebase +
www.realpageslive.com - DBPedia +
twitter.com -
BBC +
www.songkick.com +
Freebase -
Open EAN +
LinkedIn -
dblp.l3s.de -
Yahoo!Movies +

What Should I Link to? Identifying Relevant Sources and Classes 295

Table 2. Test results: ranking of ontological classes

Dataset Before filtering After filtering Best-fitting classes

Journals

akt:Publication-Reference akt:Journal dc:BibliographicResource
dc:BibliographicResource yago:Periodical akt:Publication-Reference
foaf:Document swrc:Journal akt:Journal
swrc:Publication dbpedia:Work yago:Periodical
vcard:VCard freebase:book.periodical dbpedia:Work
yago:Periodical freebase:book.periodical
geo:SpatialThing
wn:Word
rss:item
swap:SocialEntity

Films

dbpedia:Work dbpedia:Film dbpedia:Film
goodrelations: yago:Movie goodrelations:
ProductOrServiceModel ProductOrServiceModel
yago:Movie freebase:film.film yago:Movie
icalendar:Vevent freebase:film.film
foaf:Person searchmonkey:Product
vcard:VCard
searchmonkey:Product
skos:Concept
geo:SpatialThing
freebase:common.topic

Musicians

vcard:VCard freebase:film. freebase:film.
music contributor music contributor

geo:SpatialThing yago:American mo:MusicArtist
TelevisionComposers

swap:Person dbpedia:Artist
foaf:Person yago:Composer
dc:Agent
mo:MusicArtist
icalendar:vcalendar
dbpedia:Person
goodrelations:ProductOrService
frbr:ResponsibleEntity

from the search results usually represent high-level concepts and correspond to
superclasses of the original class: e.g., foaf:Document or dc:BibliographicResource
for journals, dbpedia:Work for movies, and foaf:Person for musicians. The fil-
tering stage largely removed these problems so that only classes with a stronger
degree of semantic similarity were confirmed. However, it also reduced the recall
in cases where a directly corresponding class was not present in the external
ontology: e.g., individuals from dotac.rkbexplorer.com and oai.rkbexplorer.com,
which only used the generic class dc:BibliographicResource were not consid-
ered as relevant sources for linking journals. Similarly, many relevant classes
were filtered out because they were not considered as exact matches or sub-
classes of the class movie:music contributor (e.g., mo:MusicArtist and dbpe-
dia:MusicalArtist). In other cases, the algorithm selected too specific class, such
as yago:AmericanTelevisionComposers. Applying the best-fitting class selection
procedure in these cases (column 4) provided more adequate results.

296 A. Nikolov, M. d’Aquin, and E. Motta

5.2 Finding the Best-Fitting Class

In order to evaluate different set similarity metrics for the best-fitting class, we
needed a set of multiple test cases. Each test case required the availability of gold
standard mappings between instances as well as ontologies with detailed class
hierarchies. To generate sufficient number of such test cases, we have chosen two
large-scale datasets which has already been linked: DBPedia and Freebase. Pairs
of classes for tests were selected from the YAGO ontology and the Freebase
schema. We selected such pairs of classes (cy; cf) from YAGO and Freebase
respectively that:

– There is a set of owl:sameAs mappings Mi = {(iy, if)} such that ∀iy, if :
iy ∈ cy, if ∈ cf .

– There is a pair of classes (ctopy ; ctopf) such that cy � ctopy , cf � ctopf , and

ctopy ≡ ctopf .
– There is no such class cx such that |cx| < |cy| and, given Mi = {(iy, if)}, all
iy would belong to cx. The same holds for cf and if , respectively.

We selected medium-size classes from Freebase and DBPedia (having between
400 and 20000 individuals) with at least 400 mappings between them, coming
from two different domains: people and organisations. After eliminating classes
which did not satisfy the criteria or semantically irrelevant ones, the test set
contained 111 pairs of classes. For each test, we randomly selected n individuals
for which owl:sameAs mappings existed, and used them as Iasts . For these in-
dividuals, we ran the procedure described in section 4 using different simi and
the sample size n. If the procedure returned the actual target class as the best
fitting one, the result was considered correct. The test results are summarised
in Table 3 (numbers show the proportion of correctly identified target classes).
As can be seen, the log likelihood ratio clearly outperforms other metrics both
in terms of absolute performance and robustness. The PMI, IG, and Over
measures were found to be unsuitable for the task. While they usually return
semantically correct class mappings, they tend to select too specific classes in
the hierarchy.

Table 3. Test results: finding the best fitting classes

N simi n = 50 n = 100 n = 200 n=400

1 Jaccard index, JC 0.25 0.46 0.61 0.74

2 Corrected Jaccard index, JCcorr 0.41 0.51 0.65 0.74

3 Log likelihood ratio, LogL 0.93 0.96 0.97 0.98

4 Pointwise mutual information, PMI 0.12 0.07 0.06 0.05

5 Information gain, IG 0.0 0.0 0.0 0.0

6 Overlap coefficient, Over 0.0 0.0 0.0 0.0

What Should I Link to? Identifying Relevant Sources and Classes 297

6 Related Work

Although both the problem of search in semantic datasets and the task of data
interlinking are actively studied in the Semantic Web community, there has been
relatively little research dedicated to the task of search for relevant datasets. One
recent approach [7] also discusses the problem of integrating a dataset with ex-
ternal semantic resources. As a use case, the authors consider the Google Refine
application16 scenario: enriching data from tabular sources. The authors describe
an extension to this application capable of linking these tabular data to external
semantic repositories and discuss applicable linking techniques (e.g., SPARQL
extension and reuse of Sindice and Silk services). However, their experiments only
compare these techniques on the task of linking to pre-defined data sources, and
do not focus on the actual search for relevant sources. The OKKAM project17

took a radical centralised approach, in which a global repository of entities exists
and provides lookup services for other datasets to retrieve canonical URIs for
their data instances.

To deal with the task of identifying matching classes, instance-based match-
ing techniques are actively researched in the ontology matching community [1]
and incorporated in several schema matching tools (e.g., ILIADS [13] and Ri-
MOM [6]). In particular, in [15] the authors use the ‘bag of words’ approach
adapted from the natural language processing: classes are annotated with the
sets of string tokens extracted from properties of their instances, and similarity
between classes is measured using the cosine similarity. However, this technique
loses the information about distribution of words in different instances and is
not suitable for estimation of the overlap between instance sets. As mentioned
in section 4, the comparative study reported in [5] evaluated the suitability of
different similarity metrics, although the focus of their task and their conclusions
differ from ours.

7 Conclusion

The Linked Data cloud is constantly growing, and in order to make its use
widespread, data owners must be able to publish their datasets without exten-
sive knowledge about the state of the Web of Data or assistance from the research
community. Interlinking is an important part of the publishing process and the
one which can require substantial exploratory work with external data. Thus,
this process has to become straightforward for data publishers and, preferably,
require minimal human involvement. A specific feature of this problem is the
fact that the amount of necessary information about the Web of Data which is
immediately available on the client (data publisher) side is limited, and gath-
ering this information is a time-consuming process for the user. The proposed
solution provides the data publisher with a ranked set of potentially relevant
data sources and, in addition, a partial configuration of the data linking tool

16 http://code.google.com/p/google-refine/
17 http://www.okkam.org

http://code.google.com/p/google-refine/
http://www.okkam.org

298 A. Nikolov, M. d’Aquin, and E. Motta

(classes containing relevant sets of instances). In this way, it can substantially
reduce the need to perform exploratory search. One direction of the continuation
work, which we are currently pursuing, involves developing algorithms which are
able to suggest to the user suitable instance matching algorithms for the data
linking tool depending on the task at hand.

Another potentially interesting research direction is related to the develop-
ment of semantic indexes. Search for relevant data repositories can become a
novel interesting use case in addition to the more common search for entities
and documents. In order to support it, new types of search services can be
valuable: for example, batch search for a large array of resource labels instead
of multiple queries for small sets of keywords, which increase number of server
requests and overall processing time.

Acknowledgements. This research has been partially funded under the EC 7th
Framework Programme, in the context of the SmartProducts project (231204).

References

1. Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)
2. Fernandez, M., Zhang, Z., Lopez, V., Uren, V., Motta, E.: Ontology augmentation:

combining semantic web and text resources. In: 6th International Conference on
Knowledge Capture, K-CAP 2011 (2011)

3. Gracia, J., Mena, E.: Matching with CIDER: Evaluation report for the OAEI 2008.
In: 3rd Ontology Matching Workshop (OM 2008) at the 7th International Semantic
Web Conference (ISWC 2008), Karlsruhe, Germany (2008)

4. Halpin, H., Hayes, P.J., McCusker, J.P., McGuinness, D.L., Thompson, H.S.: When
owl:sameAs isn’t the same: An analysis of identity in linked data. In: Patel-
Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks,
I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 305–320. Springer,
Heidelberg (2010)

5. Isaac, A., van der Meij, L., Schlobach, S., Wang, S.: An Empirical Study of Instance-
Based Ontology Matching. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
253–266. Springer, Heidelberg (2007)

6. Li, J., Tang, J., Li, Y., Luo, Q.: RiMOM: A dynamic multistrategy ontology align-
ment framework. IEEE Transactions on Knowledge and Data Engineering 21(8),
1218–1232 (2009)

7. Maali, F., Cyganiak, R., Peristeras, V.: Re-using cool URIs: Entity reconciliation
against LOD hubs. In: Workshop on Linked Data on the Web (LDOW 2011),
WWW 2011, Hyderabad, India (2011)

8. Nikolov, A., d’Aquin, M.: Identifying relevant sources for data linking using a
semantic web index. In: Workshop on Linked Data on the Web (LDOW 2011),
WWW 2011, Hyderabad, India (2011)

9. Nikolov, A., Motta, E.: Capturing emerging relations between schema ontologies
on the web of data. In: Workshop on Consuming Linked Data (COLD 2010), ISWC
2010, Shanghai, China (2010)

What Should I Link to? Identifying Relevant Sources and Classes 299

10. Nikolov, A., Uren, V.S., Motta, E., De Roeck, A.: Integration of Semantically
Annotated Data by the KnoFuss Architecture. In: Gangemi, A., Euzenat, J. (eds.)
EKAW 2008. LNCS (LNAI), vol. 5268, pp. 265–274. Springer, Heidelberg (2008)

11. Nikolov, A., Uren, V., Motta, E., de Roeck, A.: Overcoming Schema Hetero-
geneity between Linked Semantic Repositories to Improve Coreference Resolu-
tion. In: Gómez-Pérez, A., Yu, Y., Ding, Y. (eds.) ASWC 2009. LNCS, vol. 5926,
pp. 332–346. Springer, Heidelberg (2009)

12. Tummarello, G., Cyganiak, R., Catasta, M., Danielczyk, S., Delbru, R., Decker, S.:
Sig.ma: Live views on the Web of Data. Journal of Web Semantics 8(4), 355–364
(2010)

13. Udrea, O., Getoor, L., Miller, R.J.: Leveraging data and structure in ontology
integration. In: SIGMOD 2007, Beijing, China, pp. 449–460 (2007)

14. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and Maintaining Links
on the Web of Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 650–665. Springer, Heidelberg (2009)

15. Wang, S., Englebienne, G., Schlobach, S.: Learning Concept Mappings from In-
stance Similarity. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard,
D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 339–355.
Springer, Heidelberg (2008)

Interacting with Linked Data via Semantically

Annotated Widgets

Armin Haller1, Tudor Groza2, and Florian Rosenberg3

1 CSIRO ICT Centre
armin.haller@csiro.au

2 University of Queensland
tudor.groza@uq.edu.au

3 IBM T.J. Watson Research Center
rosenberg@us.ibm.com

Abstract. The continuous growth of the Linked Data Web brings us
closer to the original vision of the Web as an interconnected network
of machine-readable resources. There is, however, an essential aspect in
principle still missing from this vision, i.e., the ability for the Web user
to interact directly with the Linked Data in a read/write manner. In
this paper we introduce a lifecycle and associated mechanism to enable a
domain-agnostic read/write interaction with Linked Data in the context
of a single data provider. Our solution uses an ontology to build a binding
front-end for a given RDF model, in addition to RDFa to maintain the
semantics of the resulting form/widget components. On the processing
side, a RESTful Web service is provided to seamlessly manage semantic
widgets and their associated data, and hence enable the read/write data
interaction mechanism. The evaluation shows that the generation process
presents no performance issues, while the content overhead required for
the actual form-data binding is kept to a minimum.

1 Introduction

Over the course of the last five years, the progressive use of Semantic Web
technologies in conjunction with the Linked Data principles [3] has led to an
explosion of datasets being openly published on the Web. The emergence of this
Linked Data Web [6] was foreseen in the very early conception of the World
Wide Web itself. The original vision had, however, a second part that regarded
the Web as a bi-directional communication channel between content producers
and consumers [5]. In other terms, as opposed to today’s read-only Web, which
allows us only to act as simple viewers with respect to the published content
or data, the read/write Web enables a direct interaction, as part of a common
creative process.

From the pure textual created/consumed content perspective, social media
environments such as Facebook, Twitter, blogs or wikis are close to fulfilling
the vision. However, interacting with the large diversity of existing Linked Data
in a read/write fashion over a typical Web application is still an open research

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 300–317, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Interacting with Linked Data via Semantically Annotated Widgets 301

topic. Some work has already been done in the area (e.g., [16,4,13]), in gen-
eral by creating (HTML) forms as a medium between RDF data and humans.
While this bridging concept represents probably the best solution, the under-
lying technical aspects of current approaches share a common drawback: they
either require manual mappings between domain concepts and form components,
or are specifically tailored for a particular domain (i.e., forms generated for a
specific schema/ontology describing a dataset).

This paper presents a novel solution aimed to bring us a step closer to the
original vision, by providing a lifecycle and associated mechanism to enable
read/write interactions with Linked Data exposed by a single producer, via Web
forms embedded in a widget. We use widgets as a manifestation paradigm be-
cause of their versatility and seamless integration possibility within diverse Web
environments. The interaction takes place in a local dataset context (i.e., the
context of a dataset exposed by the producer). However, subject to the user’s
knowledge, it also takes advantage of the global Linked Data Web context. The
proposed lifecycle is applicable to arbitrary RDF graphs (hence being domain-
agnostic) and comprises three phases, described in the following via the direct
contributions of this paper:

Widget generation. We propose a markup ontology that describes the struc-
ture of a Web form, the RDFa User Interface Language [12] (RaUL), for
semantically defining Web widgets. We use RDFa to maintain the semantics
of a widget in XHTML and for binding input data in Web forms/widgets
to an RDF graph. A RaUL widget provides a binding to RDF data simi-
lar to what popular traditional web application frameworks (e.g. Ruby on
Rails [19], GWT [10], Apache Struts [21] etc.) provide for a relational model.
The data submitted through a semantically annotated widget is processed
by our proposed ActiveRaUL client-side JavaScript (JS) API and send to
the ActiveRaUL Web service where it is stored as RDF triples in the under-
lying database. If the same data is used by multiple Web widgets, it can be
bound to the underlying widget elements by querying for the same uniquely
defined resource. These relations (triples) can exists locally, or in the Linked
Data Web.

Widget deployment. We developed ActiveRaUL, a RESTful Web service to
seamlessly deploy, manage and retrieve semantically annotated widgets. Ac-
tiveRaUL maps the four common HTTP methods, POST, GET, PUT, DELETE
to corresponding CRUD operations (i.e., CREATE, READ, UPDATE, DELETE) on
an RDF model in the backend. This approach relieves the Web developer
from defining SPARQL queries to be executed when data is submitted in
a Web widget. Depending on the desired operation on the model, only the
appropriate method in our Web service has to be called.

Widget usage. The Web user is able to transparently manipulate the underly-
ing RDF data via traditional Web forms in a browser, while being unaware of
the underlying data binding mechanism. Using a non-ambiguous RDF model

302 A. Haller, T. Groza, and F. Rosenberg

Fig. 1. Examples of simplified forms used in a typical trading platform

as binding mechanism in RaUL forms allows the ActiveRaUL client-side
JS API to retrieve data that already exists in the Linked Data Web (e.g.,
personal information about a user which is stored and published elsewhere)
and pre-populate the form elements.

Following this lifecycle, a developer only needs to deploy the backend service1

and to deal with the usual form styling elements, unless s/he explicitly opts for
manually creating the widget model. In this case, knowledge about the RaUL
ontology is required, however, even so, the widget model once created can be
shared with and immediately adopted by others.

The remainder of the paper is structured as follows: Sect. 2 introduces a
motivating/running example used in Sect. 3 to showcase the phases of the pro-
posed lifecycle. Sect. 4 presents the ActiveRaUL service, its architecture and the
client-side JS API. In Sect. 5 we benchmark the overhead introduced by RaUL
annotations and test the performance of the ActiveRaUL service, and before
concluding in Sect. 7 we discuss existing related work in Sect. 6.

2 Running Example

To illustrate our approach, we introduce a running example inspired by a typical
e-Commerce interaction. Trading platforms are ideal candidates for exposing
their product datasets on the Linked Data Web. Pioneering examples already
exist, such as http://www.bestbuy.com or http://www.sears.com , which use
RDFa and the Good Relations ontology [14] to publish its product information
as Linked Data. In addition, due to the very nature of the domain, one can truly
exploit the benefits of the Linked Data Web, as product instances in one site
may have slightly different or extra information on other sites. Hence, being able
to link the different instances brings an added value for the end-user.

Our example simulates a second-hand goods trading platform at which regis-
tered users can sell and buy second-hand goods2. For demonstration purposes,

1 The service is packaged as a Web archive and available for download at:
http://w3c.org.au/raul/

2 The example can be tested online at http://w3c.org.au/raul/demo.html

http://www.bestbuy.com
http://www.sears.com
http://w3c.org.au/raul/
http://w3c.org.au/raul/demo.html

Interacting with Linked Data via Semantically Annotated Widgets 303

Widget
Element

ListboxTextbox

Page

Checkbox

Button

Listitem

Group

Radiobutton

Widget

READ
Operation

UPDATE
Operation

CREATE
Operation

DELETE
Operation

CRUD
Operation

group

item

widgets

widgetElements

Fig. 2. The RaUL form model

and later for understanding the value provided by our approach, we consider a
scenario in which a typical user performs three basic (yet common) operations:
registration, selling a product and buying a product. Fig. 1 depicts these three
operations by means of simplified widgets generated by our solution from the
underlying RDF data supposedly used by the trading platform. Some additional
details on the three operations are presented as follows:

User Registration. A new seller/buyer has to register a new user account
on the e-Commerce website. The user requests the registration form, which
offers him the standard fields to fill in his data (Fig. 1, part A). One option
would be to directly use the FOAF [7] profile.

Product Advertisement. A user, once registered, may add products to be
sold (Fig. 1, part B). The associated form/widget consists of examples of
common fields used to describe a product. Similar to the first operation, the
user could re-use an existing description of the product on the Linked Data
Web by entering the product’s URI.

Bid on a Product. Finally, the user may want to purchase an advertised prod-
uct. The product can be easily found by filling in the form/widget depicted
in Fig. 1, part C.

In the remainder of the paper we show how by starting from the underlying
RDF representation of the product and using RaUL, we are able to generate
semantically annotated front-end widgets to uniformly identify the data input,
and to link it to the Linked Data Web. At the same time, we show how to manip-
ulate the data stored in the trading platform’s triple store over the ActiveRaUL
RESTful service interface.

304 A. Haller, T. Groza, and F. Rosenberg

3 A Framework for Data Publishing in RDFa

In this section we detail the three phases of our proposed lifecycle, i.e., widget
generation, deployment and usage, all using as back-end the ActiveRaUL service
presented in Sect. 4.

3.1 Widget Generation

The first step of the lifecycle creates a widget model in RDF, using the RaUL on-
tology. The widget generation task is performed by the developer, who, subject
to the chosen option (i.e., manual or semi-automatic), may need to be familiar
with the RaUL ontology. However, this is done once for the lifetime of the site
and can be compared with the creation of a form (widget) in HTML or a tem-
plate in Web application frameworks like Ruby on Rails [19], GWT [10], Apache
Struts [21] etc. However, in contrast to HTML forms that are usually custom-
build for every website, RaUL-based widget models are reusable RDF graphs
which are assigned a URI by ActiveRaUL. As such, they can be reused and can
become standardised widget models for certain tasks themselves. Using the Ac-
tiveRaUL framework, there are two options to create a widget: (i) manually, by
posting a handcrafted RaUL-based widget model (in RDF/XML, RDF/JSON
or RDF/N3) to the ActiveRaUL service; or (ii) (semi)-automatically, by posting
an arbitrary RDF graph to the ActiveRaUL service from which a RaUL-based
widget model will be created.

The RaUL ontology3 (defining the widget model) consists of two parts: (i)
Form controls describing the structure of the widget, and their associated oper-
ations (i.e., READ, UPDATE, CREATE or DELETE), and (ii) a Data model defining
the structure of the exchanged data as RDF statements which are referenced
from the form model via a data binding mechanism. The model gives meaning
to the data used in the form controls by uniquely referencing standard ontologies
on the Semantic Web.

Form Controls. A form control in RaUL is an element that acts as a direct
point of user interaction and provides access to the triples describing the data
model. Fig. 2 depicts a high-level overview of the RaUL form model defining
a set of form controls. As most of the concepts have a self-explanatory name
we refer the interested reader to our earlier publications [12,11] for more detail
on the ontology itself. It is worth mentioning, however, that the controls have
corresponding XHTML elements which are used when generating the widget for
rendering and interaction purposes. Fig. 3 shows the RaUL representation of
a Listbox and its corresponding XHTML created by the ActiveRaUL service,
part of the Product Advertisement widget introduced in our running example in
Sect. 2.

Data Model. In contrast to untyped key/value pairs used in traditional XHTML
forms, data in RaUL widgets is submitted in a structured way, as RDF data ac-
cording to a certain schema. Hence, the data model is de-coupled from the form

3 RaUL can be found at http://purl.org/NET/raul#

http://purl.org/NET/raul#

Interacting with Linked Data via Semantically Annotated Widgets 305

<!DOCTYPE rdf:RDF [
<!ENTITY product
”http://w3c.org.au/raul/service/public/forms/addproduct”>]>

<rdf:Description rdf:about=”@product#currency”>
<rdf:type rdf:resource=”http://purl.org/NET/raul#Listbox”/>
<id xmlns=”http://purl.org/NET/raul#”>transaction type</id>
<value xmlns=”http://purl.org/NET/raul#”>@product#value currency
</value>
<list xmlns=”http://purl.org/NET/raul#”>@product#currency list

</list>
</rdf:Description>

<rdf:Description rdf:about=”@product#currency list”>
<rdf:type rdf:resource=”http://www.w3.org/1999/02/22−rdf−syntax−ns

#Seq”/>
<rdf: 1 xmlns=”http://purl.org/NET/raul#”
rdf:resource=”@product#currency 1”/>

<rdf: 2 xmlns=”http://purl.org/NET/raul#”
rdf:resource=”@product#currency 2”/>

</rdf:Description>
<rdf:Description rdf:about=”@product#currency 1”>
<rdf:type rdf:resource=”http://purl.org/NET/raul#Listitem”/>
<label xmlns=”http://purl.org/NET/raul#”>USD</label>
<value xmlns=”http://purl.org/NET/raul#”>USD</value>

</rdf:Description>
<rdf:Description rdf:about=”@product#currency 2”>
<rdf:type rdf:resource=”http://purl.org/NET/raul#Listitem”/>
<label xmlns=”http://purl.org/NET/raul#”>EUR</label>
<value xmlns=”http://purl.org/NET/raul#”>EUR</value>

</rdf:Description>

<!DOCTYPE html PUBLIC ”−//W3C//DTD HTML 4.0//EN” [
<!ENTITY product
”http://w3c.org.au/raul/service/public/forms/addproduct”>]>

<div about=”@product#currency” typeof=”raul:Listbox”>

</div>
<select id=”currency” name=”currency”>
<option value=”USD”>USD</option>
<option value=”EUR”>EUR</option>

</select>
<ol style=”display:none;” about=”@product#currency options”>
<li rel=”rdf: 1” resource=”@product#currency 1”>
<li rel=”rdf: 2” resource=”@product#currency 2”>

<div about=”@product#currency 1” typeof=”raul:Listitem”>

</div>
<div about=”@product#currency 2” typeof=”raul:Listitem”>

</div>

Fig. 3. A RaUL Listbox in RDF/XML (left) and the generated XHTML+RDFa (right)

controls. Handcrafting the form–data mapping provides the dataset developers
with full flexibility in defining the structure of the model. Every form control
in the widget maps to (a set of) triples that describe the input. For exam-
ple, the form controls composing the User Registration widget in our running
example (Fig. 1 part A in Sect. 2) could be mapped using the FOAF ontol-
ogy and the W3C Time ontology [15] as follows: (i) FOAF URI – foaf:Person

(ii) First name – foaf:givenName (iii) Last name – foaf:familyName (iv) Email
– foaf:mbox (v) Birth day – time:day (vi) Birth month – time:month (vii) Birth
year – time:year . Similarly, the mappings behind the other two widgets could
be handcrafted, using for example the GoodRelations ontology [14].

The actual binding of the form controls to the underlying data struc-
ture is realised via reification within the RDFa embedded in the re-
sulting XHTML representation of the form controls. Fig. 4 shows, for
example, how the firstname Textbox in the RaUL User Registration widget
references the RDF triple representing the corresponding underlying data el-
ement (i.e., <http://...><foaf:firstName> <’’>). The rdf:subject triple ref-
erences the URI assigned by the ActiveRaUL service for the instance graph,
the rdf:predicate triple is a reference to the URI of a standard Web ontology
property, and the rdf:object triple is a reference to the value that can be edited
by the respective form control. Empty rdf:object fields serve as place-holders
and are filled at runtime by the ActiveRaUL client-side JS API with the user
input.

Semi-automatic Widget Generation. To assist the developer/ontology engi-
neer in the creation of a RaUL widget model, we propose a mapping framework to
semi-automatically derive semiotics according to our RaUL user interface model
from arbitrary RDF graphs. Although it can be foreseen that such user interface
(widget) models become part of the Linked Data Web, there are no standard

306 A. Haller, T. Groza, and F. Rosenberg

/� Defined Reification Mapping �/

Fig. 4. RDFa reified triple for a foaf:givenName object

models available yet. Thus, the ActiveRaUL service includes a generation algo-
rithm that creates a best-effort widget model generation on any deployed RDF
graph. Figure 5 briefly outlines our algorithm. The RaUL-generation function
takes as input the URI (U) created by the ActiveRaUL controller for the new
widget model (see Sect. 4.1) and a ground RDF graph G with no blank nodes
(if blank nodes exist, they are discarded). The algorithm iterates through all
unique subject URIs and creates a corresponding RaUL Widget (line 6-8). The
trim-fragment() function creates a fragment from any input URI and ensures
that there are no duplicates. Then, for every predicate in G, where the subject
is a URI reference, a RaUL WidgetElement is created. The actual type of the
WidgetElement is determined as follows: if the predicate px exists only once in
G and if the object is a Literal and the XSD datatype is not boolean then a
RaUL Textbox is created (line 11-14). Also the associated reified triple referenced
through the value property (line 12) is created with the create-reified-triple()
function (line 13). The value of the object ox in G is inserted as the value for
the object of the reified triple. If the datatype of the object ox is boolean then
a RaUL Group (17-19) is created and two RaUL Radiobuttons are created (line
20-24). If a predicate px occurs more than once in G and if the object ox is a
Literal, a RaUL Listbox is created (line 26-31), a RDF sequence with the num-
ber of predicates px (line 32) is inserted and for each predicate a RaUL Listitem
with the value of the object literal in G is created. If the object ox is a Literal

then a raul:label with the value of ox is created (line 38-39), if the object is a
URI reference and if the URI reference is in the local graph, we follow it and
check for the existence of a triple with a predicate rdfs:label. If it exists we use
the object oy of this triple for the raul:label property of the Listitem (line 42-43),
otherwise, we use the URI reference (line 44-45). For every WidgetContainer we
create a RaUL submit Button (line 51).

The resulting RaUL widget model is currently meant for assisting the devel-
oper, but in most cases he will need to refine the model which can be retrieved
via its URI assigned at generation time by ActiveRaUL. However, additionally
to the best-effort generation of form controls, a correct data binding between
the form controls and data model is ensured, significantly easing the effort of
the developer in defining/refining the widget model.

3.2 Widget Deployment

The ActiveRaUL service offers an endpoint to deploy a widget with a POST

request to its /public/forms resource. The developer has two options for the
payload when deploying a widget depending on the chosen generation path:

Interacting with Linked Data via Semantically Annotated Widgets 307

--
0: RaUL-generation(U , G)

Where U is the URI assigned to the new widget model by the ActiveRaUL controller
Where G is a ground RDF graph (no blank nodes) containing a set of triples (s,p,o) with
s ∈ URIs , p ∈ URIs, o ∈ URIs ∪ Literals, where
s is the subject, p the property and o the object of the triple and, where
G(su) is the set of unique subjects in G.

1: Create empty widget model W
W(G) = I

2: OPEN.enqueue((sl, pl, ol), ..., (sm, pm, om))
3: WHILE OPEN �= ∅
4: (sx, px, ox) = OPEN.dequeue()
5: IF (sx, px, ox) == END, report success and return W
6: FOR each sx in G(su)
7: Uwc = U . trim-fragment(sx)
8: W(G) = W(G) ∪ (Uwc,rdf:type,raul:WidgetContainer)
9: IF | px | in G == 1 AND if ox ∪ Literals AND literal-type(ox) is not boolean

10: Utb = U . trim-fragment(px)
11: W(G) = W(G) ∪ (Utb,rdf:type,raul:Textbox)
12: W(G) = W(G) ∪ (Utb,raul:value,value-reference(ox))
13: W(G) = W(G) ∪ (create-reified-triple(value-reference(ox)),px,ox)
14: W(G) = W(G) ∪ (Utb,raul:label,trim-fragment(px))
15: ELSEIF | px | in G == 1 AND if ox ∪ Literals AND literal-type(ox) is boolean
16: Ugr = U . trim-fragment(px)
17: W(G) = W(G) ∪ (Ugr ,rdf:type,raul:Group)
18: W(G) = W(G) ∪ (Ugr ,raul:value,value-reference(px))
19: W(G) = W(G) ∪ (create-reified-triple(value-reference(px)),px,ox)
20: Urbt1 = U . trim-fragment(Ugr).”1”
21: Urbt2 = U . trim-fragment(Ugr).”2”
22: W(G) = W(G) ∪ (Urbt1,rdf:type,raul:Radiobutton) ... same for Urbt2

23: W(G) = W(G) ∪ (Urbt1,raul:group,Ugr) ... same for Urbt2

24: W(G) = W(G) ∪ (Urbt1,raul:label,trim-fragment(px))... same for Urbt2

25: ELSEIF | px | in G > 1 AND if ox ∪ Literals
26: Ulb = U . trim-fragment(px)
27: W(G) = W(G) ∪ (Ulb,rdf:type,raul:Listbox)
28: W(G) = W(G) ∪ (Ulb,raul:value,value-reference(px))
29: Ull = U . create-listuri(Ulb)
30: W(G) = W(G) ∪ (Ulb,raul:list,Ull))
31: W(G) = W(G) ∪ (create-reified-triple(value-reference(px)),px,ox)
32: FOR each px

33: i++
34: Ui = U . trim-fragment(Ulb).i
35: W(G) = W(G) ∪ (Ull,create-rdf-seq-element(px),Ui)
36: W(G) = W(G) ∪ (Ui,rdf:type,raul:Listitem)
37: W(G) = W(G) ∪ (Ui,raul:value,ox)
38: IF ox ∈ Literals
39: W(G) = W(G) ∪ (Ui,raul:label,ox)
40: ELSE
41: IF ox in G(su)
42: IF exists py in G where s == su AND py == "rdfs:label"
43: W(G) = W(G) ∪ (Ui,raul:label,oy)
44: ELSE
45: W(G) = W(G) ∪ (Ui,raul:label,ox)
46: ENDIF
47: ENDIF
48: ENDIF
49: ENDFOR
50: ENDIF
51: W(G) = W(G) ∪ (U ,rdf:type,raul:Button)
52: ENDFOR
53: ENDWHILE
54: RETURN Failure
--

Fig. 5. RaUL widget model generation algorithm

308 A. Haller, T. Groza, and F. Rosenberg

(i) a handcrafted RaUL-based widget model that can be deployed within
the public namespace /public/forms of the ActiveRaUL service backend (to
support the re-use of generic form models in other Semantic Web applications
and enable the emergence of standard widget models – e.g. a user registration
form shared between many sites), and (ii) an Arbitrary RDF graph, which
sent to the same endpoint will trigger the ActiveRaUL service to perform a
best-effort generation of a widget according to the process described above.

The ActiveRaUL service supports different data representations, such as RD-
F/XML, RDF/JSON or RDF/N3. If the POST request is successful, the service
will return the URL of the newly created widget in the HTTP Location header
of the response, for example, /public/forms/addproduct. The resource name
addproduct is automatically generated from the URI of the widget class in RDF.

3.3 Widget Usage

Once a widget has been deployed with ActiveRaUL by the developer, a Web
user can access and use it through a browser. The browser issues an HTTP
GET request to the URL that was created in the widget deployment phase to
retrieve the widget. It depends on the HTTP Accept header in the GET request
to determine what content type is sent back to the client. In the case of accessing
the URL through a browser the response content type is XHTML.

Whenever the Web user fills in the form or changes already existing data in a
form, the ActiveRaUL client-side JS API processes the form at submission time
(details in Sect. 4.2) and sends the appropriate HTTP message (derived by in-
terpreting the type of CRUDOperation in the RaUL widget model) to the Ac-
tiveRaUL service. The client-side JS API distinguishes several cases when updat-
ing the rdf:object in the reified value triple depending on the type of the form
control. For example, the values provided in Textboxes are directly written to the
rdf:object in the value triple. Listboxes, on the other hand, are more complex.
After the submission of a Listbox form control the client-side JS API creates a
checked relation for all selected Listitems. Additionally, it writes the reference to
the object describing the Listitem into the rdf:object of the value triple. If the
Listbox is a multi select one, defined by its multiple property, the referenced rei-
fied triple in the value property must be an RDF collection, whereby all selected
Listitem references are written to the value triple.

In our running example, when a Web user fills in the Product Advertisement
widget and submits it, the ActiveRaUL client-side JS API issues a POST request
to the resource /public/forms/addproduct/, with a payload consisting of the
RDF triples that are parsed from the RDFa annotations and the user input data.
The ActiveRaUL service processes the request, inserts the data in the RDF triple
store, and sends the URI of the newly created resource for the submitted data,
e.g., /public/forms/addproduct/101 in the HTTP Location header back to
the client. This uniquely identified data can then be accessed with different wid-
gets, as long as the data binding uses similar URI references for the predicates
in the value triple. For example, when a user posts a certain product for sale,
this data can also be retrieved in the widget that displays a product for sale.

Interacting with Linked Data via Semantically Annotated Widgets 309

3.4 Data Reuse

An important feature in this lifecycle is the reuse of existing data. Often, the
data to be provided in a widget is already present on the Linked Data Web (e.g.,
a FOAF file describing a person) which usually includes many of the properties
required by a registration form. The relation-based data binding implemented by
RaUL form controls via standardised ontologies (e.g., foaf:givenName), enables
a direct re-use of such Linked Data. The user can hence point, for example, to an
existing FOAF file and ActiveRaUL will automatically fill in the corresponding
widget controls.

All widget controls designed to reference an owl:sameAs relation are treated
as reference to external data. From the XHTML rendering perspective, these
widgets are mapped to Textboxes with an associated update button. At runtime,
the Web user can directly provide a URL to an existing Linked Data resource in
the Textbox which is used by the client-side JS API to retrieve the RDF graph
and pre-fill the form controls in the widget if the data exists in the resource
graph. Alternatively, the user can type in a search term which the client-side JS
API uses for a call to the Sindice API [18] which in turn returns an RDF graph
that is again used to pre-fill the remaining form controls. In either case, if a URI
to an external resource is provided, the underlying owl:sameAs relations for this
form control asserts that the graph representing the user’s input data and its
URI assigned by ActiveRaUL is the same individual with a different URI in the
Linked Data Web.

An illustrative example of the use of form controls that reference external
data is shown in the User Registration widget (Fig. 1 part A in Sect. 2), where
the FOAF URI control was mapped to a foaf:Person, which enables the form
to auto-fill the rest of the controls according to the given schema. Similarly, in
the Product Advertisement widget (Fig. 1 part B in Sect. 2) the Product URI
could be mapped to a GoodRelations gr:Offering object.

4 The ActiveRaUL System

The lifecycle introduced in Sect. 3 relies, particularly for the deployment and
usage phases, on the ActiveRaUL backend4 described in this section. The back-
end consists of two main parts, as depicted in Fig. 6: (i) a RESTful Web service,
and (ii) a client-side JS API. In the following, we detail the technical details of
both the RESTful Web service, as well as the client-side JS API.

4.1 ActiveRaUL RESTful Web Service

The RESTful Web service provides a uniform way to manage widgets and the
data that is processed by a widget. It abstracts from specific low-level details,
such as storing and querying RDF data by interacting with an RDF triple store.
This enables Web developers to use and integrate the ActiveRaUL framework

4 ActiveRaUL is available at http://w3c.org.au/raul/service

http://w3c.org.au/raul/service

310 A. Haller, T. Groza, and F. Rosenberg

Fig. 6. Architecture of ActiveRaUL

without requiring a deep understanding of the core Semantic Web technologies
(e.g., SPARQL, triple stores, etc.). Additionally, the service provides a mech-
anism to produce and render widgets via RDFa annotated XHTML forms. As
shown in Fig. 6, the ActiveRaUL service architecture implements a Model-View-
Controller (MVC) pattern [20].

Model. The form controls and their associated data model constitute the model
part of the ActiveRaUL system. The service uses the RaUL ontology for defining
widgets. However, its implementation is generic and can accommodate diverse
models, as only the plugable rendering part is depending on the RaUL ontology.
ActiveRaUL currently uses OpenRDF Sesame5 as a triple store to persist all
RDF data. However, any other triple store can be plugged into the backend
with little modifications.

View. The view in MVC is the part that the user sees. In ActiveRaUL, the model
can be queried using different representations, e.g., RDF/XML, RDF/JSON,
RDF/N3 and XHTML+RDFa. The first three representations are not meant
for human consumption and as such, do not require the generation of a view.
For those, ActiveRaUL provides serialisations according to the content type
requested in the HTTP header.

Only the XHTML+RDFa representation is meant for human consumption. Its
rendering as a widget depends on the underlying widget model, in our case RaUL.
However, to keep this view generic, the GenericViewProcessor component is
provided as a Java interface that defines method signatures for the rendering
functionality specific to a particular widget model. For RaUL, we provide an
ActiveRaULProcessor that implements the view generation based on the RaUL
model. The view generation is triggered once a client requests a view via the
controller (using an HTTP GET request with the Accept header MIME type set

5 http://www.openrdf.org/

http://www.openrdf.org/

Interacting with Linked Data via Semantically Annotated Widgets 311

to application/xhtml+xml). The view generation then traverses all the form
controls and generates the necessary XHTML+RDFa (see Section 3). The widget
layout is built via CSS references.

Controller. The controller is responsible for creating, updating and deleting
widget definitions and associated data required to be processed and stored as
part of a form submission. The controller also assigns URIs to the submitted
resources and returns the URL in the HTTP Location header of the response,
for example, /public/forms/addproduct. To deal with duplicate names, unique
numbers are appended at deployment time, e.g., addproduct1. For the instance
data submitted for a widget, the ActiveRaUL service dynamically assigns a URI,
such as the /public/forms/addproduct/101 we mentioned above.

Errors are handled by returning the status code 500 (Internal Server Error)
if an unexpected error happens. For errors related to wrong or incorrect input
(payload), the service returns a status code 400 (Bad Request). Incorrect URL
parameters will result in a 404 (Not Found).

User Authentication. In the URL scheme of the ActiveRaUL service the
/public/part of the resource identifier is essentially a reference to a user id. As the
name implies, public represents an open access space to upload forms and data.
Any other {userid} parameter in the /{userid}/forms resource represents the
user id that has access to the forms under this specific forms resource. Access to
any {userid}, but the /public/ identifier, is only granted if the necessary HTTP
authentication credentials are present in the corresponding HTTP requests.

4.2 ActiveRaUL Client-Side JS API Processing

The current implementation of the ActiveRaUL client-side JS API uses the
rdfquery6 library as an RDFa parser and jQuery for handling and querying the
XHTML DOM tree. The actual processing consists of two main steps: (i) data
binding, and (ii) RDFa parsing and server communication.

The data binding is performed immediately prior to parsing the RDFa. If
data is retrieved from the Linked Data Web as described in Section 3.4, the
data fetched from the external RDF Graph is treated as if it was provided by
the user through the form. The update of the form controls is done by querying
the received RDF for the object values of the predicates defined in the reified
triple of the widget, which are then replaced with each successful query result.
The processing of the data binding is done directly over the XHTML DOM tree
using the jQuery library. For each form element the reified triple is identified by
its URI and the respective object is replaced with the user input value.

After the data binding operations, the document is parsed to extract the
RDF triples from the XHTML+RDFa representation and the full RDF graph
is sent to the ActiveRaUL service. To determine which operation to invoke in
the ActiveRaUL service, the client extracts the invocation URL and the HTTP
method (from the type of the CRUDOperation defined in the RDFa annotations).

6 http://code.google.com/p/rdfquery/

http://code.google.com/p/rdfquery/

312 A. Haller, T. Groza, and F. Rosenberg

Table 1. Added overhead by RDFa markup for a HTTP GET response for a form
request

Form Element XHTML XHTML+RDFa # triples Overhead in %
min max min max min max min max

Widget 72 115 251 376 3 6 248% 226%
Textbox 41 100 88 377 2 7 114% 277%
Listbox 49 125 228 459 5 9 365% 367%
Button 48 81 98 415 2 8 104% 412%

Table 2. Added overhead by RDFa markup in HTTP POST/PUT requests for a form
submission/update

Form Element XHTML RDF/XML # triples Overhead in %
min max min max min max min max

Widget 278 321 525 617 3 6 88.84% 92.21%
Textbox 239 298 454 613 2 7 89.95% 105.7%
Listbox 274 323 656 758 5 9 139.41% 134.67%
Button 245 278 459 720 2 8 87.34% 158.99%

5 Evaluation

Since Web forms/widgets are the de facto data interaction mechanism on the
Web and their superiority over direct RDF editing is indisputable, we chose to
perform a quantitative evaluation to analyse possible performance issues of our
novel data binding mechanism. The performance of the ActiveRaUL framework
is influenced by two factors: (i) the overhead introduced by the RDFa annota-
tions, and (ii) the performance of the widget/model generation.

RDFa Overhead. The first aspect, i.e., the RDFa overhead, can be investigated
by looking into two factors: (i) the time required for upload/download of the gen-
erated widgets, and (ii) the efficiency of the client-side JS API. For an accurate
measuring of the overhead, we need to distinguish between the four different
HTTP methods (GET, PUT, POST, DELETE) and their associated payloads. From
the evaluation perspective, only the GET response and the POST/PUT requests are
interesting because these operations are responsible for the data transfer. The
rest have no payload attached. We have measured the additional data transfer
for HTTP requests and responses for each individual annotated form control and
compared it to the size of plain XHTML form controls.

Table 1 shows the overhead of the HTTP GET requests grouped by widget com-
ponents. The first column (XHTML) shows the size of the equivalent XHTML
element rendered without annotations (in bytes), while the second column
(XHTML+RDFa) shows the size of the XHTML+RDFa element (in bytes). The
minimal (min) and maximal (max) values denote the size of the RaUL model
required to generate the simplest or the richest (i.e., using all possible properties)
widget. The third column shows the number of triples required in the backend
and encoded in the resulting widget as annotations. Finally, the last column
shows the overhead in percentages.

Interacting with Linked Data via Semantically Annotated Widgets 313

The evaluation results show that the Widget element adds around 2.5 times
the overhead to a pure form container in XHTML. Since only one Widget is
required for every form, the bytes presented in the table are in most cases only
added once per page. An annotated Textbox takes about twice the size of the
pure XHTML form and minimally requires two triples in the form model. Adding
all properties (in total 7 RDF statements) to a Textbox causes an overhead of
about 277%. The Listbox form control rendered in RDFa adds more than 3.5
times the size of the pure XHTML form. This is due to the fact that there is
at least one Listitem associated with a Listbox which includes the reference to
the value triple. As such, a Listbox needs at least five statements. Similar to the
Textbox an annotated Button takes about twice the size of the pure XHTML
control element and minimally requires two triples in the widget model. Again,
adding all properties to a Button adds a considerable amount of space (more than
four times the pure XHTML element) to the page due to the Group class which
can be used to associate multiple buttons together. However, it also includes 8
triples in the annotation.

Table 2 shows the results of measuring the overhead of a POST/PUT request
for each RaUL form control. We compare a standard form submission using
the application/x-www-form-urlencodedMIME type (first column) to a RD-
F/XML submission (second column) via an Ajax request from the client-side JS
API. Due to its stateless behaviour, in the case of a POST or PUT request, the client-
side JS API always sends the entire form, as it is not aware of which elements need
to be updated on the server. Since the representation of the payload can vary (as
discussed in Sect. 3.1), the time required for the transaction will also vary. Among
the three representations (RDF/XML, RDF/JSON and N3), we have evaluated
only the RDF/XML representation as it is the most verbose one.

The results show that the serialisation of form elements in RDF/XML causes
an overhead of minimal 87% and maximal 159%, depending on the element.
The RDF/XML sent to the ActiveRaUL Web service is generated from the
RDFa annotations by the client-side JS API. Although the overhead seems to
be significant in size when all properties of a form control element are used, for
the minimally required annotations the size of the POST or PUT request is less
than double (except in the case of the Listbox) the size of a pure application-
/x-www-form-urlencoded request.

The second factor we have investigated in the RDFa overhead was the effi-
ciency of the ActiveRaUL client-side JS API. For evaluation purposes we have
measured the time required to parse the RDFa out of the XHTML via the Black-
bird7 JavaScript library for profiling. Table 3 lists the average parse time from
10 runs for the form elements and our demo form pages. We can see that it takes
less than 20 ms to parse the RDFa out of the XHTML for each type of form
control. Evaluating the parsing time of our motivating example documents, the
most expensive parsing is the user registration form due to the long listboxes
containing items for the birthdate input.

7 http://www.gscottolson.com/blackbirdjs/

http://www.gscottolson.com/blackbirdjs/

314 A. Haller, T. Groza, and F. Rosenberg

Table 3. ActiveRaUL client-
side JS API performance

RaUL Element Parsing (ms)
min max

Widget 16 19
Textbox 15 18
Listbox 16 20
Button 16 19

Demo Page Parsing (ms)

Add User 465
Add Product 97
Buy Product 90

Table 4. ActiveRaULProcessor performance

Widget/Model Generation Performance. In order to analyse the perfor-
mance of the server-side widget/model generation we have measured the time
required to generate an increasing number of widgets and widget elements. Fig. 4
shows the behaviour (time in ms. as average over 10 runs) of the service for 1, 10
and 100 generated widgets and widget elements (i.e., Textbox, Button, Radiobut-
ton, Checkbutton, Listbox and Listitem). In the case of the Listbox, the number
of generated Listitems per Listbox were 1, 10 and 100. The result shows, as
expected, a linear scalability of all widget elements except for two cases: (i) the
widget itself, which has a constant behaviour (as it does not have any variable
elements in its construction), and (ii) the Listbox and Listitems, which also have
a linear scalability, but with a much higher factor, due to the increased number
of triples required in the model. In reality, reaching such numbers is highly im-
probable because they would produce an unusable user interface. Hence, from
the usability perspective, the interesting range of values is between 10 and 30
widget elements. Here, the service performs very well (under 0.1 sec. to generate
any element), with Listitems being the only element that pose some performance
issues.

Discussion. We have shown that the content overhead required for the actual
form–data binding is kept to a minimum and is, in principle, a result of using
RDFa for the annotation of the semantic forms/widgets. As there are potentially
many form controls that could be used in a widget, the user has the trade-off
between the depth of the annotations and the size and bandwidth they con-
sume. The more triples are used for a form control the richer its annotations. It
also has to be noted that while the ActiveRaUL processor automatically adds
RDFa annotations to XHTML pages, the practice of manually adding RDFa or
Microformat annotations to XHTML pages is already a common and accepted

Interacting with Linked Data via Semantically Annotated Widgets 315

practice (despite its additional size). The additional size of RDFa annotations,
as shown in our benchmarks, is acceptable in most cases. Further, adding the
structure of the widget as semantic relations (i.e., RDF statements) yields the
following benefits: (a) support for full machine understandable structured form
data; (b) structured form data is encoded directly in the Web page and usable to
any Semantic Web application; (c) the reuse of existing schemas in the modelling
of the form data; (d) the automatic retrieval of form data from the Linked Data
Web; and (e) the approach is fully browser agnostic via its rendering in XHTML
+ RDFa.

6 Related Work

Automatically generating forms from RDF ontologies, with the goal of interact-
ing with Linked Data is a relatively new research topic. We are aware of some
earlier attempts concerning form-based editing of RDF data [2], as well as map-
ping between RDF and forms [16]. None of these approaches propose a generic
RESTful Web service to seamlessly combine data binding with the processing
and generation of semantic annotations in Web applications.

In [22,4] the authors proposed a read/write-enabled Web of Data through
utilising RDForms [13]. It provides a way for a Web browser to communicate
structured updates to a SPARQL endpoint. RDForms consists of an XHTML
form, annotated with the RDForms vocabulary in RDFa [1], and an RDForms
processor that gleans the triples from the form to create a SPARQL Update [23]
statement, which is then sent to a SPARQL endpoint. The difference to our ap-
proach is that RDForms does not propose an ontology for form controls and it is
bound to a domain-agnostic model – that is, it describes the fields as key/value
pairs – requiring a mapping from the domain ontology (FOAF, DC, SIOC, etc.).
Dietzold [8] propose a JavaScript library, which provides a way for viewing and
editing RDFa semantic content independently from the rest of the application.
Further, they propose update and synchronisation methods based on automatic
client requests. Their model is restricted to a fixed environment (the Wiki), and
they only present the client in-memory modification of the model, but the execu-
tion of these atomic add/delete actions as performed in our case by ActiveRaUL
is not discussed. Furthermore, there are other approaches such as SWEET [17],
which deals with semantic annotations of Web APIs. Fresnel [9] provides a vo-
cabulary to customise the rendering of RDF data in specific browser. At time of
writing there are implementations for five browsers available.

Finally, the FAST gadget ontology (FGO)8 could provide an alternative to,
or could be complemented by the RaUL ontology for modelling widgets and
their underlying components. Currently it offers a high-level description of the
organisation and information flow of gadgets in respect to screens and resources,
the finest granularity mentioned being a Form element. In practice the FGO:Form
and Form element can be specialised to the classes introduced by the RaUL
ontology, thus providing a more comprehensive model of the domain.

8 http://kantenwerk.org/ontology/fast_gadget_content/fgo2011-02-11.html

http://kantenwerk.org/ontology/fast_gadget_content/fgo2011-02-11.html

316 A. Haller, T. Groza, and F. Rosenberg

7 Conclusion and Future Work

In this paper we have proposed a novel approach for interacting with Linked
Open Data in a read/write manner. The approach uses the RaUL ontology for
creating and managing semantic widgets and provides a RESTful Web service,
ActiveRaUL, that is used to deploy, generate and retrieve RDFa annotated Web
forms. The data – expressed as RDFa triples – is referenced from the RaUL
form model via a data binding mechanism. The form model and data model
parts make RaUL widgets more tractable and give meaning to the input values
in form controls by referencing relations defined in standard Web ontologies. It
also eases reuse of forms, since the underlying essential part of a form is no longer
irretrievably bound to the page it is used in. We have developed a client-side JS
API that parses RaUL annotated XHTML forms and performs a data binding
based on the user input or data referenced in the Linked Data Web. The client-
side JS API interacts with the ActiveRaUL service, a generic RESTful Web
service enabling developers to deploy and manage their Web forms and the data
model associated with these forms.

For future work we will focus on extending our approach to allow the modeling
of complex page flows including validation and navigation and their automatic
rendering in ActiveRaUL. Currently this process is defined in widget specific
JavaScript, however, we intend to include it explicitly in the RDF model. In
addition, we aim to improve the model generation algorithm, and evaluate it
against a gold standard defined by ontology experts. Finally, we plan to develop
algorithms to determine the type of form field to be used with object properties.
Currently, object properties are handled by manually typing their URI in Textbox
form controls which is arguably not intuitive enough.

References

1. Adida, B., et al.: RDFa in XHTML: Syntax and Processing. W3C Rec. W3C Se-
mantic Web Deployment WG (October 14, 2008)

2. Baker, M.: RDF Forms (2003), http://www.markbaker.ca/2003/05/RDF-Forms/
3. Berners-Lee, T.: Linked Data. Design issues for the World Wide Web, W3C (2006),

http://www.w3.org/DesignIssues/LinkedData.XHTML

4. Berners-Lee, T., et al.: On Integration Issues of Site-specific APIs into the Web Of
Data. Tech. rep., DERI (2009)

5. Berners-Lee, T., Fischetti, M.: Weaving theWeb: The Original Design and Ultimate
Destiny of the World Wide Web by Its Inventor. Texere (2000)

6. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data – The Story So Far. Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS) 5(3) (2009)

7. Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.91. Namespace document
(November 2007), http://xmlns.com/foaf/spec/

8. Dietzold, S., Hellmann, S., Peklo, M.: Using JavaScript RDFa Widgets for Mod-
el/View Separation inside Read/Write Websites. In: Proceedings of the Scripting
and Development for the Semantic Web Workshop (SFSW) (2008)

9. Fresnel, Display Vocabulary for RDF (2005),
http://www.w3.org/2005/04/fresnel-info/

http://www.markbaker.ca/2003/05/RDF-Forms/
http://www.w3.org/DesignIssues/LinkedData.XHTML
http://xmlns.com/foaf/spec/
http://www.w3.org/2005/04/fresnel-info/

Interacting with Linked Data via Semantically Annotated Widgets 317

10. GWT – Google Web Toolkit (2010), http://code.google.com/webtoolkit/
11. Haller, A., Rosenberg, F.: A Semantic Web Enabled form model and restful service

implementation. In: Proceedings of the Service-Oriented Computing and Applica-
tions Conference (SOCA) (2010)

12. Haller, A., Umbrich, J., Hausenblas, M.: RaUL: RDFa User Interface Language – A
Data Processing Model for Web Applications. In: Chen, L., Triantafillou, P., Suel,
T. (eds.) WISE 2010. LNCS, vol. 6488, pp. 400–410. Springer, Heidelberg (2010)

13. Hausenblas, M.: RDForms Vocabulary (2010),
http://rdfs.org/ns/rdforms/XHTML

14. Hepp, M.: Web Ontology for e-Commerce (2010),
http://purl.org/goodrelations/

15. Hobbs, J.R., Pan, F.: Time Ontology in OWL. W3C Working Draft (2006),
http://www.w3.org/2006/timezone

16. de hOra, B.: Automated mapping between RDF and forms (2005),
http://www.dehora.net/journal/2005/08/automated mapping between rdf

and forms part i.XHTML

17. Maleshkova, M., Pedrinaci, C., Domingue, J.: Semantic Annotation of Web APIs
with SWEET. In: Proceedings of the Scripting and Development for the Semantic
Web Workshop (SFSW) (2010)

18. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Tummarello, G.: Sindice.com:
A document-oriented lookup index for open linked data. International Journal of
Metadata, Semantics and Ontologies 3(1), 37–52 (2008)

19. Ruby on Rails (2010), http://rubyonrails.org/
20. Reenskaug, T.: The original mvc reports. Tech. rep. (February 2007)
21. Apache Struts (2010), http://struts.apache.org/
22. Ureche, O., Iqbal, A., Cyganiak, R., Hausenblas, M.: On Integration Issues of Site-

Specific APIs into the Web of Data. In: Proceedings of the Semantics for the Rest
of Us Workshop (SemRUs), Washington DC, USA (2009)

23. W3C: SPARQL 1.1 Update (2010), http://www.w3.org/TR/sparql11-update/

Working Draft

http://code.google.com/webtoolkit/
http://rdfs.org/ns/rdforms/XHTML
http://purl.org/goodrelations/
http://www.w3.org/2006/timezone
http://www.dehora.net/journal/2005/08/automated_mapping_between_rdf_and_forms_part_i.XHTML
http://www.dehora.net/journal/2005/08/automated_mapping_between_rdf_and_forms_part_i.XHTML
http://rubyonrails.org/
http://struts.apache.org/
http://www.w3.org/TR/sparql11-update/

RDFa2: Lightweight Semantic Enrichment

for Hypertext Content

Xi Bai, Ewan Klein, and Dave Robertson

School of Informatics, University of Edinburgh, UK
xi.bai@ed.ac.uk,

{ewan,dr}@inf.ed.ac.uk

Abstract. RDFa is a syntactic format that allows RDF triples to be
integrated into hypertext content of HTML/XHTML documents. Al-
though a growing number of methods or tools have been designed at-
tempting at generating or digesting RDFa, comparatively little work has
been carried out on finding a generic solution for publishing existing
RDF data sets with the RDFa serialisation format. This paper proposes
a generic and lightweight approach to generating semantically-enriched
hypertext content by embedding RDF triples derived from diverse prove-
nances in terms of a concept of topic nodes which will be automatically
recommended by our discovery algorithm. RDFa2 is a proof-of-concept
implementation for our approach and works as an online platform as-
sisting Web content publishers in semi-automatically generating, per-
sonalising and curating pages with RDFa. RDFa2 has been introduced
and employed by students in a master level course and the experimen-
tal results as well as additional case studies indicate the validity of this
approach to generating triple-embedded Web documents such as online
profiles and vocabularies with little user intervention.

1 Introduction

The Semantic Web have been proposed as an extension of the Document Web
where human-readable hypertext documents currently dominate. As part of the
Semantic Web initiative to promote machine-readability of Web documents,
RDFa (a W3C recommendation for more than two years) has been designed
so that “authors can markup human-readable data with machine-readable indi-
cators for browsers and other programs to interpret” [1]. An increasing number
of tools for processing RDFa have been developed which leverage the existing
range of techniques for processing standard RDF. Hundreds of thousands of
FOAF1 documents have been created (semi-)automatically or manually but due
to the lack of human readability of RDF triples, many of RDF documents are
hidden in repositories or behind SPARQL endpoints which are not accessible to
users without expertise. On the other hand, a growing number of ready-to-reuse
Linked Data sets have been published nowadays and a fully-fledged Linked Data
application is likely to make use of data from more than one source. Automatic

1 http://xmlns.com/foaf/spec

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 318–333, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://xmlns.com/foaf/spec

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 319

information processing and integration hence require Web content to be not
only human-readable but also machine-readable. Although content publishers
can publish a plain HTML page and point it via meta to an RDF document,
since they are separate documents the availability of both documents may not
be achieved at the same time and it is also difficult to avoid data duplication.
While RDFa makes it easy for Web authors to manually add small amounts of se-
mantic markups to XHTML documents, RDFa also offers the potential to trans-
form pre-existing machine-readable data into human-readable format. So far,
this has received relatively little attention. We propose a generic and lightweight
approach to semi-automatically generating semantically-enriched hypertext con-
tent from existing RDF documents2. A key ingredient, which we will describe
in more detail below, involves the identification of one or more “topic nodes” in
the RDF context(s) to guide the injection of RDFa into an XHTML template. A
proof-of-concept of this approach has been implemented under the name RDFa2

(RDFa annotator), and has been available as an online service3. RDFa2 runs
within standard Web browsers, and allows users to customise its output in two
ways: either by modifying the generated data in an edit window (with on-the-fly
preview) or by revising the generated XHTML template, which can be saved to
local storage for future use.

The remainder of this paper is organised as follows. Section 2 reviews re-
lated work on processing RDFa. Section 3 describes the preprocessing of “RDF
contexts” required by our approach. Section 4 proposes a hybrid topic-node
discovery method based on weighted occurrences of nodes as well as heuristic
properties and details how our approach can assist users in creating, customising
and reusing Web content with RDFa. How RDFa2-assisted data integration is
compliant with the standard RDF data model as well as the Linked Data [8]
principles is also discussed in this section. Section 5 evaluates this approach by
introducing our prototype to students in a master level course as well as case
studies on republishing online vocabularies. Section 6 draws conclusions and
indicates future work.

2 Related Work

SPARQLScript4 supports output templating which allows users to embed SPAR-
QL query results into the dynamic generated Web pages via place holders. It
could be used for dynamically embedding triples and users however need to
learn this PHP-like script language and SPARQL. Fresnel [16] is a declarative
language for rendering RDF content in specific browsers (as of writing this pa-
per, it supports five browsers) but requires users to learn how to write lenses and
formats which are two foundational concepts employed in this language. Tal4Rdf
(T4R)5 is a template language for presenting RDF data into other formats such

2 Here and in the rest of the paper, we take “RDF document” to subsume any docu-
ments containing (or embedding) RDF triples.

3 http://demos.inf.ed.ac.uk:8836/rdfasquare
4 https://github.com/semsol/arc2/wiki/SPARQLScript
5 http://liris.cnrs.fr/~pchampin/t4r/

http://demos.inf.ed.ac.uk:8836/rdfasquare
https://github.com/semsol/arc2/wiki/SPARQLScript
http://liris.cnrs.fr/~pchampin/t4r/

320 X. Bai, E. Klein, and D. Robertson

as HTML, SVG, JSON, Atom and so on. However, it currently does not sup-
port the XHTML+RDFa representation of existing RDF data so it is difficult
if not impossible for other users or developers to repurpose (e.g. mashup) the
reformatted data on the generated Web pages. Therefore, although the above de-
signed languages dedicated to RDF-embedded page generation are self-adaptive
to updating of triples, the cost of creating an appropriate intermediate format
(e.g., templates or lenses) is not much less than the cost of manually creating an
XHTML+RDFa page.

FOAFr6 allows users to convert their FOAF documents into XHTML pages
with RDFa automatically and it is however focused on the FOAF vocabulary7

only. Likewise, FOAF.Vix 8 is a visualiser and relation explorer for FOAF doc-
uments. It provides RDF documents serialised in RDF/XML and Web pages
containing RDFa with visualisations in which there is no embedded meta infor-
mation. GoodRelations [13] provides a GoodRelations Annotator9 as well as a
Rich Snippet Generator10, both of which assist users in creating RDFa snippets
for their businesses or products using the particular GoodRelations vocabulary.
By filling slots in a provided template, a user will get an RDFa snippet generated
using XSLT. Our approach is not domain specific and allows users to generate
RDFa snippets using any vocabularies in the RDF data model.

RDF2RDFa [14] also allows users to copy and paste RDFa snippets generated
from input RDF documents. This copy-and-paste method makes the original
RDF content transparent to users so it is difficult if not impossible that users
can reuse human-readable content from the original RDF documents. Drupal
7 allows developers to generate templates for associating RDFa with Drupal
elements such as content types and fields [10]. It has, however, not offered a
fine-grained solution for content publishers to easily associate RDFa with more
open content lacking a generalised template. Our RDFa2 provides users with the
free-editing functionality and on-the-fly previews after content change so they
can get the real WYSIWYG experience when starting the transformation.

3 Topic Nodes and Topic Trees

Our algorithm for transforming RDF documents to XHTML+RDFa pages is
based on automatically generated templates. These templates are schematic
XHTML documents, and have a tree structure. By contrast, the RDF data
model is a graph, and cannot be converted to a single tree without duplicat-
ing re-entrant nodes. In order to overcome this problem, the conversion from
RDF requires users to select a specific node in the RDF graph which then forms
the root of a tree of RDF statements. Which node should the user choose? In
practice, this seems to follow straightforwardly from the user’s goals, namely to

6 http://sw.joanneum.at:8080/foafr
7 http://xmlns.com/foaf/spec
8 http://foaf-visualizer.org
9 http://www.ebusiness-unibw.org/tools/goodrelations-annotator/en

10 http://www.stalsoft.com/grsnippetgen

http://sw.joanneum.at:8080/foafr
http://xmlns.com/foaf/spec
http://foaf-visualizer.org
http://www.ebusiness-unibw.org/tools/goodrelations-annotator/en
http://www.stalsoft.com/grsnippetgen

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 321

focus on the resource which is his or her main topic of interest in the resulting
XHTML page. For example, in the case of a FOAF file, the obvious resource to
choose is the value of the maker or primaryTopic property.

The node that is targeted in this way is called the topic node. The RDF
document from which the topic node is derived is called the RDF context, and
relative to a context C, a set of RDF statements rooted in a topic node is called
a topic C-tree. We distinguish between two kinds of topic trees, depending on
the position (the subject or the object) of the topic node inside a specific triple.
Given a resource r, context C, and RDF statement (s, p, o), the subject (topic)
C-tree based on r is defined as {(s, p, o) ∈ C | s = r}, and similarly for the object
(topic) C-tree based on r.

The notion of a topic tree for a topic node is essentially the same as a bounded
description of a resource; that is, where “a sub-graph can be extracted from a
data set which contains all of relevant properties and relationships associated
with a resource” [11]. For the sake of clarity, a topic node is not necessarily the
global topic of an RDF document; rather, it corresponds to a resource in the
document which the user regards as interesting enough to represent in XHTML.
Figure 1 illustrates the selection of a subject topic tree from an RDF context.

knows

workplaceHomepage

name

name

name

topic node

Fig. 1. Subject (topic) C-tree of a FOAF document

In this figure, for the sake of brevity, we have omitted the name spaces (hence-
forth abbreviated as NS) of all properties here. In this figure, circles denote
resources and squares denote literals. The node coloured in dark grey is the
current topic node while the sub-graph surrounded by the dashed line is the
subject topic tree for this node. The labelling information about the resources
in the subject position are also included in the topic tree in order to make the
resources themselves human-readable on the RDF-embedded page.

Although the most straightforward use case for our approach creates a stan-
dalone XHTML page from an RDF document, we also want to accommodate

322 X. Bai, E. Klein, and D. Robertson

cases where the output of this approach is inserted as a snippet into a larger
(X)HTML document. Taking Sir Tim Berners-Lee’s Twitter profile as an exam-
ple, Figure 2 illustrates RDFa2 generated an RDFa snippet from the triples
obtained via SemanticTweet APIs11 (it is needless to mention FOAF docu-
ments can be fed into this tool directly as snippet-generation seeds [3]). In the
copy&paste way, this snippet is ready to be inserted into the <body> section of
the homepage or exported as a separate Web page and notably, it can be further
customised by publishers through adding more human-readable content.

Fig. 2. Personalise the raw page generated by RDFa2

4 Embedded-Annotation Generation

Our approach to assisting users (e.g., Web content publishers) in generating an-
notations embedded in their hypertext content is detailed in this section. This
approach has the ability to automatically discover a candidate set of topic nodes
(from existing RDF contexts) which can be offered to the user thereafter and
also supports federated integration in the sense that users can embed multiple
topic nodes from multiple RDF contexts into a single Web page. Within the pub-
lishing process, publishers can revise suggested annotated blocks or raw pages in
terms of their individual requirements. Moreover, templates are also provided via
our approach and customised by publishers (and also stored, loaded and reused)
if needed. Algorithm 1 describes the annotation generation process (generating
the partial snippet for the subject topic tree) and will be further discussed in
the following subsections. Likewise, the snippet generation corresponding to the
object topic tree is not described here due to the space limitation but can be
achieved by revising this algorithm and moving the topic node from the subject

11 http://semantictweet.com/

http://semantictweet.com/

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 323

Algorithm 1. RDFa Snippet Generation Algorithm (subject (topic)
C-tree)

Input: topic uri, the URI of the topic node and model, the model containing
triples in the current context.

Output: rdfa snippet, the RDFa snippet representing the information about
the inputted topic node.

begin
def rdfa snippet = getDIVHead(topic uri);
def sub topic tree = model.getStantementsBySubject(topic uri);
def properties = model.getUniquePropertiesBySubject(topic uri);
for each property in properties do

def objects = sub topic tree.getObjectsByProperty(property);
def prop local name = property.getLocalName();
def prop node name = (property.getNameSpace() + ” ” +
prop local name + ”rel”).replace(” ”, ”dash”);
def prop curie name = model.getPrefix(property.getNameSpace()) +
”:” + prop local name;
for each object in objects do

if object.isListeral() then
rdfa snippet += ”<#if topic.” + prop node name + ”??>” +
”<#list topic.” + prop node name + ”?keys as key>” +
getLiteralStyle(prop local name, property.getURI()) + ... ;

else
def snippet = ””;
if object.isURIResource() && object.getURI().indexOf(”.”) ! =
-1 then

def obj uri = object.getURI();
def expansion =
obj uri.subString(obj uri.lastIndexOf(”.”));
snippet += getSnnipetByExpansion(prop curie name,
prop node name);

else
snippet += ”<a rel=’” + prop curie name + ”’
href=’${topic.” + prop node name + ”[key].uri}’
onclick=’return false;’>${topic” + prop node name +
”[key].uri}
”;

rdfa snippet += ”<#if topic.” + prop node name + ”??>” +
”<#list topic.” + prop node name + ”?keys as key>” + ”<#
if topic.” + prop node name + ”[key].uri??>” +
getResourceStyle(prop local name, property.getURI(), true) +
snippet + ”<#if><#list><#if>”;

return rdfa snippet;
end

position to the object position. For the mashup purpose, the embedded RDF
triples can be harvested and serialised in several formats such as Notation3
(N3) [7], RDF/XML [6], N-Triples [12] and Turtle [5].

4.1 Topic-Node Discovery

In the preceding section, we assumed that topic nodes will be selected by the user.
However, this requires the user to understand the basic syntax of the RDF

324 X. Bai, E. Klein, and D. Robertson

context inside which these node are represented. One way of automatically iden-
tifying topic nodes in a given RDF context is to query the document for URIs
with properties that are diagnostic of topic-hood, such as foaf:primaryTopic or
foaf:maker in FOAF files. However, not all RDF documents contain such prop-
erties, and even in FOAF files which do employ them, they do not always take
semantically appropriate values. Consequently, topic nodes cannot reliably be de-
tected just in terms of the semantics of statements in the RDF context itself. Xi-
ang et al. compared five measurements from three categories (degree centrality,
shortest-path-based centrality and eigenvector centrality) for automatically sum-
marising ontologies in a topic-independentmanner and their interesting evaluation
showed that weighted in-degree centrality measures and several eigenvector cen-
tralities all have good performance on ontology summarisation [17]. As analysed
in [4], for the case that the target RDF documents mix up ontology-related triples
and individual-related triples, the above topic-free measurements may be affected
by unforeseen noise nodes. Moreover, each property could have a corresponding
inverse property so it is difficult if not impossible to draw a conclusion that an
RDF node’s in-degree (or out-degree) prioritises its out-degree (or in-degree). In
this paper, we propose an improved algorithm for semi-automatically discovering
and recommending topic nodes. Since the RDF data model is a directed graph and
nodes are connected to one another throughdirected edges, one solution for discov-
ering the topic node is based on node connectivity. In other words, the more edges
(outgoing or incoming) a node has, the more important it is likely to be. In order to
maximise the accuracy of this heuristic, our algorithm selects the topnmost highly
connected URIs and offers them to users for subsequent confirmation12. Perhaps
not surprisingly, this algorithm works especially well for RDF documents such as
FOAF files that usually do have a central topic.

When a user inputs the URI of a resource that she wants to integrate into
her Web page, together with an RDF context, RDFa2 will query this context
with the selected URI for all statements in which the URI is either subject or
object. From this set, a subject (respectively, object) topic tree will automati-
cally be selected if it exists. Its root will be the topic node and its corresponding
properties and values will be stored in other nodes or leaves. Then the user
can refer to any information about this topic node using the path structure
root.predicate.values[key].[resource]or root.predicate.values[key].
[literal] in the template which will be discussed in Subsection 4.3. Here, root
denotes the resource currently being integrated; predicate denotes a specific
property with which this resource is associated; and values is a list that stores
the values of a property (since some properties may have multiple values). The
screenshot in Figure 3 illustrates how topic nodes derived from an RDF context
(Sir Tim Berners-Lee’s twitter profile in RDF) were discovered and the most
important URI in this context was shown at the top of the recommendation list.

12 The value of n can be any reasonable integer. AlthoughRDFa2 takesn to 10, by default
it only just shows the top three URIs to users. It is also worth noting that blank nodes
are filtered out from the set of candidates.

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 325

Fig. 3. Screenshot for discovering the topic node from an RDF context

4.2 Federated-Annotation Generation

We do not want to exclude the possibility of the user selecting more than one
topic node from a given RDF context. For example, a user may wish to render
the FOAF document vocabulary (i.e., encoded as a set of RDF statements) as
XHTML, and in this use case, all of the nodes foaf:Person, foaf:Agent and
foaf:Document, for example, should be treated as topics. We can use multiple
templates to help the user achieve this goal. Once a user selects a temporary topic
node, a hash tree, a template and an XHTML+RDFa page will be generated
based on node occurrences. Meanwhile, the relevant NSs are also grouped and
displayed on the final page. Thereafter, the generated XHTML+RDFa snippets
will be automatically combined into a single snippet.

It is not uncommon that users publish an XHTML+RDFa page using triples
from different RDF sources (or in our terminology, from different contexts).
We can accommodate this in a way similar to our approach to dealing with
multiple topic nodes. Our approach supports federated integration by managing
the NSs derived from different RDF documents separately and combining them
at the final stage. However, it should be noted that different vocabularies do not
necessarily employ the same QName prefix for a given NS. prefix.cc (PCC)13

alleviates the issue that RDF documents involve different prefixes indicating the
same NS or the same prefix indicating more than one NS by allowing users to
look up the collected NSs on PCC and vote for their favourite ones. Nevertheless,
it is difficult if not impossible to stop people from using ambiguous prefixes.
Our approach can automatically detect if a prefix is ambiguous across a set of
contexts, and will synthesise new prefixes to ensure disambiguation by generating
different prefixes as substitutions. Moreover, many of the NSs in the original RDF
context set are unused in the final XHTML+RDFa Web pages. In order to avoid
an unnecessary burden on browsers rendering the page, the NSs which are not
used in the user’s RDF-embedded Web page will be automatically excluded. It is
notable that RDFa 1.1 harnesses @profile to come over the lengthy declaration

13 http://prefix.cc

http://prefix.cc

326 X. Bai, E. Klein, and D. Robertson

Fig. 4. Screenshot for generating annotation from multiple contexts

RDF Triples

Context

RDF Triples

Context

U
R

L
s

T
o

p
ic

N
o

d
e

s

RDF Contexts

R
D

F
a

P
a
g

e
s

HTTP
Requests

RDF
Files

RDF File

RDF Triples

Context

Fig. 5. Context-based federated integration

of NS prefixes recommended in RDFa 1.0 and this can be also used for avoiding
possible ambiguous prefixes to some extent. Figure 4 illustrates the generation
of a triple-embedded Web page by combining triples derived from three different
Twitter profiles (contexts).

Figure 5 illustrates how our approach assists users in creating Web pages
annotated with RDF triples derived from different data sources. Users inform
RDFa2 of the target in one or more RDF contexts by providing one or more
URLs. These documents will be retrieved on the fly and each of them forms an
RDF context. After the topic nodes are selected, triples related to them will be
extracted. Finally, the page with RDFa annotation will be sent back to users.

4.3 Customisation and Template Reuse

One of the primary functions of our approach is to automatically carry out a
template-based transformation of RDF to XHTML+RDFa. However, the result
of the transformation will almost certainly not be in the precise form required
by users, and consequently it is important to allow users to further edit the out-
put. The RDFa2 interface provides the user with both a rendered preview and
the source code of the generated XHTML+RDFa. Users without expertise in

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 327

RDF(a) can modify the output by clicking and editing elements on the preview
page or editing the content in the WYSIWYG way as shown in Figure 2. More
experienced users can edit the page source and check its preview but it is recom-
mended that revisions are limited to the text nodes of the page since manually
edited RDFa needs revalidation.

When users deal with a great number of RDF documents of the same type
(e.g., all of them are FOAF documents), they may have to carry similar or even
identical manual revisions for each document processed by RDFa2. To avoid
this unnecessary effort, we provide users with another way of personalising the
RDFa-embedded web pages by letting them revise the templates. Each transfor-
mation will generate a template and this template will be returned before being
applied to the RDF context. A basic template is generated using placeholders of
the kind standardly offered by template tools (e.g., FreeMarker14 applied here).
Each placeholder indicates a piece of information which will be extracted during
the transformation process (e.g., personal.firstname and personal.lastname

are two placeholders which will be replaced with the first name and the last name
of a particular person, respectively). As long as a template is generated, a hash
tree that stores the data about the topic nodes is also generated, based on the
RDF context: we call this an intermediate tree. The structure of the intermediate
tree evolved from the structure of the topic tree but is more friendly to templat-
ing. Figure 6 shows the excerpt of a generated template that will be used for
displaying all the people connected to the selected topic node via foaf:knows.

The triples taking the topic node as subjects or objects may take literals or
other resources as their objects. Both of these two cases have to be taken into
consideration before the template is generated. If the object is a literal, it will be
enclosed within an HTML tag with @property (@ATTRIBUTE is used hereafter for
denoting a tag’s attribute in terms of the XPath syntax) indicating the predicate
attached with this object. If the object is a resource, it will be enclosed within by
an HTML tag with @resource taking this object as its value and @rel indicating
the predicate attached to this object. As mentioned in Section 3, the text value

Fig. 6. Excerpt of a generated template for displaying known people

14 http://freemarker.org

http://freemarker.org

328 X. Bai, E. Klein, and D. Robertson

of this tag node will be the preferred label (if exists) of the resource rather than
its URI. This complies with the modelling pattern introduced in [11] as well.

4.4 Self-adaptability and Reflections on RDF Features

Our approach queries the RDF context using SPARQL with the topic node
either given by the user or discovered by the topic recommender semiautomat-
ically, which has been discussed above. The result will be used for replacing
the pre-generated placeholders insides templates. In a specific RDF vocabulary,
some properties may be defined as functional properties (e.g., foaf:gender and
foaf:primaryTopic in FOAF). Each of them only takes one object or one lit-
eral as its value. Other properties (e.g., foaf:maker and foaf:member) may take
more than one object or literal as their values. The SPARQL query results are
grouped in terms of properties. With respect to the evolution of an RDF vocab-
ulary, new classes or properties may be involved and some classes or properties
may be deprecated. Since templates are created and applied on the fly and al-
ways based on the given vocabularies (RDF contexts), the above evolution will be
transparent to users. For some of them who want to reuse their templates, their
existing templates can be merged with the newly generated ones. A few manual
reconciling work on these two kinds of templates might be involved within this
process.

According to [1], @resource and @href can be used for hooking the object of
an RDF triple. The value of the former is a URI which is ”not intended to be
clickable” and normally denotes a non-information resource while the value of the
latter is a URI which normally denotes a information resource. The minters of
non-clickable URIs need to provide relevant information resources as these URIs’
representations [15]. RDFa2 currently assumes each non-information resource has
an informational representation and by clicking it, users will be redirected to an-
other information resource associated with it. Thus, either information resources
or non-information resources will be wrapped in <a> tags and attached to @href

rather than @resource here. Since @href supports only URIs, the object of each
RDF triple will not be expressed in CURIE (a generic, abbreviated syntax for
expressing URIs) syntax in the final page. With respect to BNodes, the labelling
property (if exists) and corresponding value surrounding a specific BNode in the
original RDF context will be used as the representation. Nevertheless, users are
recommended not to use BNodes when publishing Linked Data on the Web [9].

4.5 Linking Annotations to the LOD Cloud

There is one step to go before RDF triples are injected into Web pages be-
cause these embedded triples may otherwise cause provenance and trust issues.
RDF statements are focused on describing who said what but statements them-
selves may or may not be true. Additionally, the licence is another thing that
should not be ignored especially when users attempt to reuse data by other
data providers. Therefore, the enriched documents need to be associated with

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 329

provenance information and linked to the Linked Open Data (LOD) Cloud15.
Here, we use the Vocabulary of Interlinked Datasets (voiD) [2] to describe the
relationships between the annotations and the RDF contexts from which the
harnessed triples are derived. This vocabulary has been used here due to its
simplicity and concision but alternative linked dataset vocabularies could be ap-
plied here for the same purpose. Suppose the URI of the topic node is denoted
by Turi and the URI of the RDF context (provenance) is denoted by Curi. An
XHTML+RDFa snippet will be automatically generated to describe the prove-
nance of Turi as follows:

<div about="Turi" xmlns:void="http://rdfs.org/ns/void#"
xmlns:dcterms="http://purl.org/dc/terms/">

</div>

5 Experiment and Use-Case Analysis

We experiment with our approach and show the preliminary performance of
RDFa2 , which has been deployed on the Apache Tomcat server installed on a
PC with a Pentium�D 3.00GHz × 2 CPU and 1 GB RAM.

Online profiles have been widely used by various Web sites for managing user
identification. FOAF is currently one of the most widely used profile vocab-
ulary for RDF on the Web. RDFa2 can help users inject their FOAF triples
into their online profile documents such as homepages. Our experiment first in-
volved asking students who participated in a masters level course on Semantic
Web technologies to use RDFa2 to publish their own profiles (FOAF documents)
along with information about their favourite actors/actresses denoted by URIs
minted and curated on DBPedia16 and submit URLs of these documents to
Sindice17. Fresnel and SPARQLScript were also introduced during the course
as alternatives. In total, 64 students participated in this experiment and 60
of them successfully submitted their reports. On a public server, each student
has been allocated personal space to store his or her own documents (e.g., the
homepage). By searching documents of type XHTML+RDFa on Sindice with
the domain name of the above homepage server as well as students’ matricula-
tion numbers, we found that 58 out of 60 students finally published their RDFa
profiles and also successfully managed to make Sindice index them. 93.33% of
students chose the first topic nodes (at the top of the generated topic-node lists)
recommended by our topic-node discovery algorithm as their priority within the

15 http://linkeddata.org
16 http://dbpedia.org/
17 http://www.sindice.com/main/submit

http://linkeddata.org
http://dbpedia.org/
http://www.sindice.com/main/submit

330 X. Bai, E. Klein, and D. Robertson

process of RDFa snippet generation while two students chose the second topic
nodes as their priority. Based on their feedback, RDFa2 made straightforward
the process for generating triple-embedded Web pages from existing RDF data
sets and Fresnel as well as SPARQLScript are however more flexible for users
with expertise on specific languages as well as RDFa itself to customise pages.

We also collected 324 FOAF documents (without considering dead links de-
clared already on the homepage) from FOAFBulletinBoard (FBB)18 and 146
FOAF documents from W3C RDF Harvester Starting Point (WRDFHSP)19

respectively. These two sites are separate Wikis for bootstrapping a commu-
nity in which any users are allowed to contribute FOAF documents collabora-
tively. Finally we got 149 and 63 valid FOAF documents in total from FBB and
WRDFHSP respectively and republished them with RDFa2 thereafter. Table 1
shows the results of retrievals of FOAF documents collected from the above two
sites.

Table 1. FOAF document retrieval on FBB and WRDFHSP

Dataset 403 404 406 503 invalid UC UKH OOM valid

FBB
N 6 72 9 1 59 9 18 1 149
P 2.74%22.60%1.37%.68%12.33%6.16%8.90%2.05%43.15%

WRDFHSP
N 4 33 2 1 18 9 13 3 63
P 1.85%22.22%2.78%.31%18.21%2.78%5.56% .31% 45.99%

In this table, by “invalid”, we mean these URLs indicate FOAF documents
published in an unrecommended way (e.g., FOAF documents have syntax errors
or involve deprecated syntax which can not be accepted by the up-to-date RDF
parser). Besides, 403, 404, 406 and 503 denotes the numbers of retrievals that
caused HTTP 403, 404, 406 and 503 errors respectively. UC denotes the numbers
of retrievals that caused unconnected errors and UKH denotes the ones caused
unknown-host errors. A few FOAF documents contain too many triples to be
loaded into our parser and the number of these documents is denoted by OOM.
N and P denote the number of retrievals and the corresponding percentage
respectively. We see in this table that 54.01% of documents on FBB and 56.85%
of documents onWRDFHSP do not contain valid FOAF information. Due to the
space limitation, the time costs of these transformations dedicated to the above
two sites are not listed here (see in [3]). On average, 98.58% of valid documents
on both sites can be transformed via RDFa2 within 3 seconds.

Besides online profiles, our approach can be also used for republishing RDF
vocabularies on normal Web pages. Since there is no central repository of vocab-
ularies on the Semantic Web20, we collected RDF vocabularies in terms of NSs
collected from Ping The Semantic Web (PTSW)21 and PCC respectively. At the
time of writing this paper, there were 825 NSs recorded by PTSW. Since URLs
of corresponding vocabularies can not be inferred with the NS URIs(publishers

18 http://wiki.foaf-project.org/w/FOAFBulletinBoard
19 http://esw.w3.org/AnRdfHarvesterStartingPoint
20 http://vocamp.org/wiki/Where_to_find_vocabularies
21 http://pingthesemanticweb.com/

http://wiki.foaf-project.org/w/FOAFBulletinBoard
http://esw.w3.org/AnRdfHarvesterStartingPoint
http://vocamp.org/wiki/Where_to_find_vocabularies
http://pingthesemanticweb.com/

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 331

may use rewriting rules to manage the URI of the NS and the URL of the vocab-
ulary document separately), we can only use these NS URIs to do the vocabulary
retrievals via HTTP requests as well as content negotiations. Finally we got 249
vocabularies in total and republished them with RDFa2 afterward. We did the
same experiment on PCC as well and 349 NS URIs were obtained at the time
of writing. We got 165 vocabularies in total and republished them with RDFa2.
Table 2 shows the results of retrievals of RDF vocabularies in terms of names
spaces from PTSW and PCC.

Table 2. RDF vocabulary retrieval in terms of name spaces from PTSW and PCC

Dataset 400 401 403 404 406 408 500 503

PTSW
N 1 8 8 180 14 1 2 33
P .12% .97% .97% 21.82% 1.70% .12%.24%4.00%

PCC
N - - 3 35 26 - - -
P - - .86% 10.03% 7.45% - - -

Dataset invalid UC UKH OOM valid - - -

PTSW
N 258 29 39 3 249 - - -
P 31.27%3.52%4.73% .36% 30.18% - - -

PCC N 108 4 7 1 165 - - -
P 30.95%1.15%2.01% .29% 47.28% - - -

In Table 2, by “invalid”, we mean these NS URIs were not valid HTTP URIs
or moved temporarily/permanently or indicate vocabularies which were actu-
ally not published in the RDF data model or serialised in syntaxes apart from
RDF/XML which we just took into consideration in our experiment or published
in an unrecommended way (e.g., RDF codes were attached in the comment sec-
tion of the HTML document or have the error or deprecated syntax which can
not be accepted by the RDF parser). Besides, this table contains more columns
than Table 1 because more types of HTTP errors occurred within the process
of retrieving vocabularies from these two sites. Within the retrieving process,
69.82% vocabularies on PTSW and 52.72% vocabularies on PCC can not be
retrieved by dereferencing their NS URIs.

Figure 7 depicts the costs of time on republishing RDF vocabularies collected
in terms of NS URIs from PTSW and PCC respectively on XHTML pages
with embedded RDFa. From this figure, 20 out of 249 vocabularies on PTSW
as well as 5 out of 165 vocabularies on PCC cost around 16ms and there were
no results generated after the running of the program. The reason for this is
because these 25 vocabularies in total do not contain any class or property
declarations. On average, 93.96% of successfully retrieved vocabularies can be
transformed via RDFa2 within 3 seconds. RDFa2’s performance on dealing with
documents containing a large number of triples is related to the employed third
party RDF parser and the memory allocated for running the RDFa snippet
generation program. It is however not recommended to use RDFa2 to process
large RDF documents since this may lead to Web pages with massive content in
the end, which will affect the readability and bring the overhead onto browsers
when being rendered.

332 X. Bai, E. Klein, and D. Robertson

 0

 2000

 4000

 6000

 8000

 10000

 0 50 100 150 200

co
st

 o
f t

im
e

(m
s)

name spaces

Republishing vocabularies from PTSW

(a) PTSW

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 20 40 60 80 100 120 140 160

co
st

 o
f t

im
e

(m
s)

name spaces

Republishing vocabularies from PCC

(b) PCC

Fig. 7. Republishing RDF vocabularies on PTSW and PCC

6 Conclusions

A generic and lightweight approach is proposed to assisting content publishers
in generating semantically-enriched hypertext content with triples derived from
existing distributed RDF (or RDFa) documents (repositories). The experiment
and the use-case analysis show that this approach can help publishers republish
their triples in the RDFa serialisation with little human intervention. Nowadays,
more and more Linked Data applications have come up and began to employ data
from more than one source (or contexts in this paper) and RDFa2 helps users
harness resources from different contexts and potential conflict NSs declarations
will be automatically handled. A property of a specific triple could be a topic
node as well and a method needs to be carefully designed to synthesise related
triples and topic trees. The support in this will be further investigated and
integrated in the next step. For other hypertext-friendly formats of embedded
metadata such as Microformats22 or Microdata23, our approach can be employed
as well for generating Web pages with those formats from existing RDF data
sets. At the time of writing, XHTML+RDFa 1.124 and HTML+RDFa 1.125 W3C
working drafts were released and have been improved in progress, our goal is to
make our approach harness new features compatible with the up-coming W3C
recommendations.

References

1. Adida, B., Birbeck, M., McCarron, S., Pemberton, S.: RDFa in XHTML: Syntax
and processing. W3C recommendation (2008),
http://www.w3.org/TR/rdfa-syntax

22 http://microformats.org/about
23 http://www.w3.org/TR/microdata
24 http://www.w3.org/TR/2010/WD-xhtml-rdfa-20101109
25 http://www.w3.org/TR/rdfa-in-html

http://www.w3.org/TR/rdfa-syntax
http://microformats.org/about
http://www.w3.org/TR/microdata
http://www.w3.org/TR/2010/WD-xhtml-rdfa-20101109
http://www.w3.org/TR/rdfa-in-html

RDFa2: Lightweight Semantic Enrichment for Hypertext Content 333

2. Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing linked datasets
- on the design and usage of voiD, the ‘vocabulary of interlinked datasets’. In: Proc.
WWW Workshop on LDOW 2009 (2009)

3. Bai, X.: Addressing the RDFa Publishing Bottleneck. In: Proc. WWW (Companion
Volume) 2011, pp. 331–336. ACM Press (2011)

4. Bai, X., Delbru, R., Tummarello, G.: RDF Snippets for Semantic Web Search
Engines. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1304–
1318. Springer, Heidelberg (2008)

5. Beckett, D., Berners-Lee, T.: Turtle - terse RDF triple language, W3C team sub-
mission (2008), http://www.w3.org/TeamSubmission/turtle

6. Beckett, D., McBride, B.: RDF/XML syntax specification (revised), W3C recom-
mendation (2004), http://www.w3.org/TR/REC-rdf-syntax

7. Berners-Lee, T.: Notation 3 specification, W3C design issues (1998),
http://www.w3.org/DesignIssues/Notation3.html

8. Berners-Lee, T.: Linked Data (2006),
http://www.w3.org/DesignIssues/LinkedData.html

9. Bizer, C., Cyganiak, R., Heath, T.: How to publish Linked Data on the Web (2007),
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial

10. Corlosquet, S., Delbru, R., Polleres, A., Decker, S.: Produce and Consume Linked
Data with Drupal! In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L.,
Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823,
pp. 763–778. Springer, Heidelberg (2009)

11. Dodds, L., Davis, I.: Linked Data patterns - a pattern cata-
logue for modelling, publishing, and consuming Linked Data (2010),
http://patterns.dataincubator.org/book

12. Grant, J., Beckett, D., McBride, B.: RDF test cases, W3C recommendation (2004),
http://www.w3.org/TR/rdf-testcases

13. Hepp, M.: GoodRelations: An Ontology for Describing Products and Services Of-
fers on the Web. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI),
vol. 5268, pp. 329–346. Springer, Heidelberg (2008)

14. Hepp, M., Garćıa, R., Radinger, A.: RDF2RDFa: Turning RDF into snippets for
copy-and-paste. In: Proc. Posters and Demonstrations Track on ISWC 2009 (2009)

15. Lewis, R.: Dereferencing HTTP URIs (2007),
http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html

16. Pietriga, E., Bizer, C., Karger, D.R., Lee, R.: Fresnel: A Browser-Independent
Presentation Vocabulary for RDF. In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 158–171. Springer, Heidelberg (2006)

17. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence
graph. In: Proc. WWW 2007, pp. 707–716. ACM Press (2007)

http://www.w3.org/TeamSubmission/turtle
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial
http://patterns.dataincubator.org/book
http://www.w3.org/TR/rdf-testcases
http://www.w3.org/2001/tag/doc/httpRange-14/HttpRange-14.html

GoRelations: An Intuitive

Query System for DBpedia�

Lushan Han, Tim Finin, and Anupam Joshi

University of Maryland, Baltimore County, USA
{lushan1,finin,joshi}@umbc.edu

Abstract. Although a formal query language, SPARQL, is available for
accessing DBpedia, it remains challenging for users to query the knowl-
edge unless they are familiar with the syntax of SPARQL and the un-
derlying ontology. We have developed both an intuitive semantic graph
notation or interface allowing one to pose a query by annotating a graph
with natural language terms denoting entities and relations and a sys-
tem that automatically translates the query into SPARQL to produce an
answer. Our key contributions are the robust techniques, combining sta-
tistical association and semantic similarity, that map user terms to the
most appropriate classes and properties used in the DBpedia Ontology.

Keywords: Intuitive Query, Ontology Mapping, Statistical Association.

1 Introduction

The growth of Linked Open Data (LOD) has made large amounts of Seman-
tic Web data available. DBpedia [1] is an important example, since it is a key
LOD integrating component serving as a microcosm for larger, evolving LOD
collections. Most of DBpedia data is extracted from Wikipedia infoboxes, which
are designed by different communities and edited by individuals, making infobox
names and attributes largely heterogeneous. DBpedia addressed this problem by
manually mapping infoboxes describing the same type of thing to the same DB-
pedia ontology class and synonymous attributes to the same ontology property,
resulting in 272 classes and 1,300 properties as of DBpedia 3.6. However, hetero-
geneity remains a problem, especially for properties due to their large number
and the difficulty of dealing with context-dependent mappings.

Although SPARQL is available for querying DBpedia, it remains difficult for
typical Web users to query its knowledge base (KB). They must simultaneously
master SPARQL, explore the large number of ontology terms, and deal with
term heterogeneity. To simplify access, systems like True Knowledge and Pow-
erAqua [2] provide natural language interfaces (NLIs) receiving users’ queries
and automatically finding answers in their underlying KBs. While they are good
at answering simple questions (Who were Richard Nixon’s children? and Who

� This research was supported in part by a gift from Microsoft, NSF award IIS-0326460
and the Human Language Technology Center of Excellence.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 334–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

GoRelations: An Intuitive Query System for DBpedia 335

did Julie Nixon marry?) they often fail at slightly more complex ones (Who did
President Nixon’s children marry?) due to difficulties in understanding complex
natural language (NL) questions.

GoRelations (Graph of Relations) is an open domain, intuitive query system
that is easy to learn and use. It has two components: a semantic graph interface
(SGI) allowing users to ask queries with complex relations and an effective and
efficient automatic translator mapping the semantic graph into a correspond-
ing SPARQL query to produce an answer. While our approach is tailored to
DBpedia, the idea is generic and can be adapted to other LOD collections.

2 Semantic Graph Interface

Our interface uses an intuitive concept we call a semantic graph (SG) as a repre-
sentation allowing a user to express a question or description. A semantic graph
consists of nodes denoting entities and links representing binary relations be-
tween them. Each entity is described by two unrestricted terms: its name or
value and its concept in the query context. Figure 1 shows an example of a se-
mantic graph that comprises three entities: a place, person and book, which are
linked by two relations, born in and author. Users flag entities they want to see
in the results with a ’?’ and those they do not with a ’*’.

Terms for concepts can be nouns (book) or simple noun phrases (soccer club)
and relations can be references as verbs (wrote), prepositions (in), nouns (author)
or simple phrases (born in). Users are free to name concepts and relations in their
own ways as in composing a NL question with a current constraint that concept
names should be at most two words and relation names three. One reason for
the constraint is that most class and property names in the underlying DBpedia
Ontology are no longer than two words and three words, respectively. A more
fundamental reason is to encourage users to decompose their queries into simple
entity and relation terms rather than use complex linguistic descriptions.

The value of entities can be something other than a name, for example, a
number or date. If the value of an entity is a number, “Number” should be used
as the entity’s concept. Numerical attributes such as population, area, height,
and revenue can be thought of as either relations or concepts, but since Number
is already used as a concept, we require them to be relations. We enforce this
rule because in DBpedia’s ontology numerical attributes only have data types,
which we uniformly treat as Number instances.

We circumvent the difficult task of understanding sentential semantics by
asking users to directly supply the compositional relations between the lexical
terms while users are not required to know a formal language and ontology.

Fig. 1. A SG for “Where was the author of the Adventures of Tom Sawyer born?”

336 L. Han, T. Finin, and A. Joshi

3 Translation

We start by laying out a novel, three-step approach that maps terms in the se-
mantic graph to ontology terms. The approach focuses on vocabulary or schema
mapping, which is done without involving entities. We then discuss how to gen-
erate a SPARQL query from the mappings. Finally, we describe the ontology
statistics and semantic similarity components used in the mapping approach.

3.1 Mapping Approach

Step One: Finding Semantically Similar Ontology Terms. For each con-
cept or relation in the semantic graph, we generate a list of the k candidate on-
tology classes or properties that are most semantically similar. (See Section 3.4
for semantic similarity computation). A minimum similarity threshold, currently
experimentally set at 0.1, is used to guarantee that all the terms have at least
some similarity. If the relation is a very general term such as in, has and from,
which we call “default relation”, we generate k

2 most semantically similar ontol-
ogy properties to each of its connected concepts. We do so because using one
concept’s name as relation name is the typical way to represent has-relation or
in-relation in Wikipedia and because the semantics of a default relation is often
conveyed in one of its connected concepts. The value k (currently 20) depends
on the degree of heterogeneity in the underlying ontologies, how well semantic
similarity measure is implemented, and the allowed computation time.

In Figure 2, candidate

Fig. 2. Lists of candidate ontology terms

lists are generated for the
five user terms in the se-
mantic graph query. Classes
starting with # are virtual
classes1, which we assign
only half similarity to make
them subordinate to native
classes. Datatype properties
are indicated by a starting
@ character to distinguish
them from object proper-
ties. Candidate terms are
ranked by their similarity scores, which are displayed to the right of the terms.
The example shows that our semantic similarity measure is well implemented
but still has a large space to improve.
Step Two: Disambiguation. Each combination of ontology terms, with one
term coming from one candidate list, is a potential interpretation of the user
query, but some are reasonable and others not. Disambiguation in this context
means, among all the interpretations, chooses the most reasonable ones. An
intuitive measure of reasonableness is the degree to which the ontology terms,

1 They are inferred from the object properties (e.g. “publisher”). We create them to
facilitate the mapping.

GoRelations: An Intuitive Query System for DBpedia 337

in one interpretation, associate in the way that their corresponding user terms
connect in the semantic graph. DBpedia is a knowledge representation of the
world’s facts made by humans and a semantic graph is a description of some facts
about the world in the user’s mental model. Since both of them are mirrors of
the world, they share an important feature – associations. Consider the example
in Figure 2. In the query graph the relation wrote connects the two entities
whose concepts under the query context are Author and Book. This implies that
the relation wrote should have good associations with the concepts Author and
Book. What should be reflected in the DBpedia Ontology is that the property
corresponding to the relation wrote should also have good statistical associations
with the classes corresponding to the concepts Author and Book.

Using association to resolve ambiguity is a common practice, as often seen in
word sense disambiguation. However, many of previous researches only made use
of coarse-grained association. That is, their contexts used for disambiguation are
only a bag of words without considering the compositional structure of the knowl-
edge in the sentences. With the coming of DBpedia, a large machine-readable
KB, we are now able to compute fine-grained associations. We use Pointwise Mu-
tual Information (PMI) [3] to compute statistical associations between classes
and between classes and properties (See Section 3.3 for details).

If candidate ontology terms ideally contained all the near-synonyms, we could
rely solely on their fine-grained associations for disambiguation. However, in
practice many other related terms are also included and therefore the similarity
of candidate ontology terms to the user terms is an important feature to identify
correct interpretations. We experimentally found that by simply weighting their
associations by their similarities we obtain a better disambiguation algorithm.

Below, we present a simple but novel disambiguation algorithm that exploits
fine-grained associations. Suppose the query graph G has m links and n nodes.
We need find a combination of m ontology properties p1 to pm, and n ontology
classes, c1 to cn, from the space H of all interpretations that maximize the good-
ness or reasonableness of the mapping on the query graph G. This is computed
as the summation of goodness of the mapping on each link Li, i from 1 to m.
More specifically,

argmax
p1..pm c1..cn∈H

goodness(G) = argmax
p1..pm c1..cn∈H

m∑
i=1

goodness(Li) (1)

Note that the global optimal mapping on the whole graph is not necessarily
composed of all the local optimal mappings on the individual links. Since a node
can be involved in multiple links, the mapping decision on the node is affected
by all the links it participates in. For example, the “Author” node in Figure 2 is
involved in both the left link born in and the right link wrote. The local optimal
mapping decision for “Author” from one link may be given up if it produces low
goodness score on the other link. The same principle can be recursively spread
to all other nodes and links in the entire graph. Therefore, our approach maps
the semantic graph jointly.

Each link Li is a tuple with three elements: subject concept Si, relation
Ri and object concept Oi. Let their corresponding ontology terms of current

338 L. Han, T. Finin, and A. Joshi

interpretation be c(Si), p(Ri) and c(Oi). Before we compute the goodness of
link Li, we need first resolve the direction of the property p(Ri) because p(Ri)
is semantically similar to Ri but they may have opposite directions. For ex-
ample, the relation wrote in Figure 2 is semantically similar to the property
author which, however, connects from Book to Author. We invent the statisti-

cal association measure
−−→
PMI (see Section 3.3) to help determine the direction

of p(Ri).
−−→
PMI measures statistical association between a class and a property.

Unlike the traditional PMI,
−−→
PMI also considers direction.

−−→
PMI(Class c, Property

p) measures the strength of association between c as subject and p as predicate

whereas
−−→
PMI(Property p, Class c) measures the strength of association between

p as predicate and c as object. Whether the direction of p(Ri) should be inverse
to the one of Ri is decided in Formula 2.

If [
−−→
PMI(c(Oi), p(Ri)) +

−−→
PMI(p(Ri), c(Si))]

− [
−−→
PMI(c(Si), p(Ri)) +

−−→
PMI(p(Ri), c(Oi))] > α

Then Si
′ = Oi, Oi

′ = Si

Else Si
′ = Si, Oi

′ = Oi (2)

The association term
−−→
PMI(c(Oi), p(Ri)) +

−−→
PMI(p(Ri), c(Si)) measures the de-

gree of reasonableness of the inverse direction and the term
−−→
PMI(c(Si), p(Ri)) +−−→

PMI(p(Ri), c(Oi)) measures the degree of reasonableness of the original direc-
tion. If the inverse direction is much more reasonable than the original direction,
we inverse the direction by switching the classes that p(Ri) connects; otherwise
we respect the original direction. Currently, the reverse threshold α is 2.0. The
Formula 2 worked very well empirically. Further verifying the formula and the
hypothesis behind it using statistical techniques is one of our future work.

Finally, the goodness on link Li is the sum of three pairwise associations:
the directed association from subject class c(Si

′) to property p(Ri), the directed
association from property p(Ri) to object class c(Oi

′), and the undirected as-
sociation between subject class c(Si

′) and object class c(Oi
′), all weighted by

semantic similarities between ontology terms and their corresponding user terms.

goodness(Li) = max(
−−→
PMI(c(Si

′), p(Ri)) · sim(Si
′, c(Si

′)) · sim(Ri, p(Ri))

+
−−→
PMI(p(Ri), c(Oi

′)) · sim(Oi
′, c(Oi

′)) · sim(Ri, p(Ri)), β)

+PMI(c(Si
′), c(Oi

′)) · sim(Si
′, c(Si

′)) · sim(Oi
′, c(Oi

′)) (3)

We use a parameter β (currently 0.05) to shield the effect of the first two pairwise
terms on the occasions when the property p(Ri) fits too poorly with its two
classes to be a valid choice (their value can be negative infinite). For these cases,
the goodness is determined only by the last pairwise term.

Of the best interpretation yielded by the disambiguation algorithm for the
example in Figure 2, the concepts Place, Author and Book are mapped to the
ontology classes Place, Writer and Book respectively. The relation born in and
wrote are mapped to the ontology property birthPlace and author with direction

GoRelations: An Intuitive Query System for DBpedia 339

unchanged and reversed respectively. Although the property writer has larger
semantic similarity to the user term wrote than the property author, it is not
selected because it is mainly used for describing films or songs but rarely for
books. Although the property birthPlace has relatively low similarity with born
in, it is selected because all the candidate terms with higher similarity do not
associate well with the classes similar to the concept Place and Author.

The computation complexity of a straightforward disambiguation algorithm is
O(kn+m) simply because the total number of interpretations is kn+m. However,
we can significantly reduce this complexity to O(kn m

n k) by exploiting locality
because the optimal mapping choice of a property can be determined locally
when the two classes it links are fixed.

Step Three: Refinement. The best interpretation typically gives us the most
appropriate classes and properties that the user terms can map to. However,
for properties there can be some issues requiring additional work. First, the
concepts are mapped to correct classes but occasionally the relation connecting
them cannot find any mapping. Second, although the disambiguated property
is appropriate, sometimes it is not the major property used in the context.
Because the concepts are already disambiguated, we can narrow down to the
disambiguated context where we can have more information about all properties
that actually connect the two known classes and their conditional probabilities.
In the case of a missing property, we map the relation to its most semantically
similar property in the context. In the case of a minor property, we add other
properties in the context, which are less similar to the user relation than the
disambiguated property but have much higher conditional probabilities.

3.2 SPARQL Generation

After users terms are disambiguated

Fig. 3. SPARQL Query Generated

and mapped to appropriate ontology
terms, the translation of a semantic
graph query to SPARQL is straight-
forward. Figure 3 shows the SPARQL
query produced for the semantic graph
in Figure 2. Classes are used to type
the instances, such as ?x a dbo:Writer.
Properties are used to connect instances
just as relations do for entities as in ?0
dbo:author ?x. If a user relation is mapped to multiple properties, the SPARQL
UNION operator is used to combine them. bif:contains is a virtuoso built-in text
search function which find literals containing specified text.

3.3 Ontology Statistics Component

GoRelations uses three kinds of ontology statistics: directed association between
classes and properties, undirected association between classes themselves, and
conditional probability of properties given two connected classes. Computing

340 L. Han, T. Finin, and A. Joshi

these statistics requires information about the number of occurrences of a term
and the number of co-occurrences of two or three terms in the universe con-
sisting of all relations. In DBpedia, the universe is represented by the dataset
Ontology Infobox Properties, which contains RDF triples describing all relations
between instances, and the dataset Ontology Infobox Types, which provides all
type definitions for the instances.

The example in Figure 4

Fig. 4. An example for counting (co-)occurrences

explains how we count term
occurrences and co-occurr-
ences by observing one rela-
tion in the universe. On the
left of the figure, we give
an RDF triple describing a
relation and the type defi-
nitions for the subject and
object in the triple. On the
right, we list the resulting
occurrences and co-occurr-
ences of terms. The directed
co-occurrences are indicated by the arrow character → between two terms, for
example Book→author. The occurrences of directed classes (e.g. Book→) are
counted separately from the occurrences of undirected classes (e.g. Book).

PMI is used to measure the strength of statistical association between two
terms. Equation 4 gives the PMI formula where ft1 and ft2 are the marginal
occurrence counts of the two terms t1 and t2 and f(t1, t2) is the co-occurrence
count of t1 and t2 in the universe. N is a constant for the size of the universe.−−→
PMI is computed the same way as PMI except that its class term is directed.

PMI(t1, t2) ≈ loge(
f(t1, t2) ·N
ft1 · ft2

) (4)

3.4 Semantic Similarity Component

We assume that the semantic of a phrase is compositional on its component
words and we apply an algorithm to compute semantic similarity between two
phrases using word similarity. As in Mihalcea’s approach [4], we pair up words
from two phrases in a way such that it maximizes the sum of word similarities of
the resulting word-pairs. We differ, however, in that we do not allow a constituent
word to participate in multiple pairs. The maximized sum of word similarities
is further normalized by the number of words in the longer phrase to get the
output similarity for two phrases.

Our word similarity measure is based on distributional similarity and latent
semantic analysis, which is further enhanced using knowledge from WordNet.
The distributional similarity approach that we use is described in [5] while we
give higher similarity to word pairs which are in the same WordNet synset or
one of which is the immediate hypernym of the other.

GoRelations: An Intuitive Query System for DBpedia 341

4 Evaluation

To evaluate ontology-based QA systems, the 2011 Workshop on Question An-
swering over Linked Data (QALD) provided 50 training and 50 test questions on
DBpedia dataset along with their true answers. We use the 50 QALD training
questions to tune our system, setting the thresholds and coefficients. Of the 50
test questions, 33 questions can be answered using only the DBpedia Ontology,
while the rest need knowledge from the YAGO ontology. We used the 33 ques-
tions to evaluate our system. We modified seven of them that required Boolean
answers or operations not supported by our semantic graph notation for the time
being, such as grouping and counts. Our changes included changing the answer
type or removing the unsupported operations but preserving the relations and
thus the question schemata. Our collection of 33 test questions with their true
answers are available at http://ebiq.org/r/326.

Three human subjects unfamiliar with the DBpedia ontology independently
translated the test questions into semantic graph queries. Three versions of 33 se-
mantic graphs were given to our system which automatically translated them into
SPARQLqueries.The average time to translate a semantic graph to its correspond-
ing SPARQLquerieswas 0.38 second.The querieswere then run onpublicDBpedia
SPARQL endpoints to produce answers. The precision, recall and f-measure of our
system, averaging on three versions, are 0.687, 0.722 and 0.704, respectively.

5 Conclusion

GoRelations is an intuitive query system that allows people to query DBpedia
without mastering SPARQL or acquiring detailed knowledge of the classes and
properties used in the underlying ontologies. It’s interface uses a simple semantic
graph notation for queries that is automatically translated into a corresponding
SPARQL query. We developed a novel three-step mapping approach that disam-
biguates user terms in a semantic graph query and maps them to DBpedia ontol-
ogy terms. Our system was evaluated on 33 QALD test questions and the result
shows the approach works decently well.

References

1. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N., Alle-
mang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi,
R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS,
vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

2. Lopez, V., Fernndez, M., Motta, E., Stieler, N.: Poweraqua: Supporting users in
querying and exploring the semantic web content. Semantic Web Journal (2011)

3. Church, K., Hanks, P.: Word association norms, mutual information and lexicogra-
phy. In: Proc. 27th Annual Conf. of the ACL, pp. 76–83 (1989)

4. Mihalcea, R., Corley, C., Strapparava, C.: Corpus-based and knowledge-based mea-
sures of text semantic similarity. In: Proc. 21st AAAI Conf., pp. 775–780 (2006)

5. Rapp, R.: Word sense discovery based on sense descriptor dissimilarity. In: Proc.
9th Machine Translation Summit, pp. 315–322 (2003)

http://ebiq.org/r/326

Proposed SKOS Extensions for BioPortal

Terminology Services

Cui Tao1, Natalya F. Noy2, Harold R. Solbrig1,
Nigam H. Shah2, Mark A. Musen2, and Christopher G. Chute1

1 Division of Biomedical Statistics and Informatics,
Mayo Clinic College of Medicine, Rochester, MN

2 Stanford Center for Biomedical Informatics Research,
Stanford University, Stanford, CA

Abstract. The National Center for Biomedical Ontology (NCBO) Bio-
Portal provides common access for browsing and querying a large set of
ontologies that are commonly used in biomedical communities. One of
our missions is to align lexical features (i.e., textual definitions) that are
commonly used in these ontologies across different representation for-
mats with standard tags and to represent them in a standard way to the
users. The Simple Knowledge Organization System (SKOS) is a recom-
mendation of the World-Wide-Web Consortium (W3C) for a common
data model for sharing and linking knowledge organization systems on
the Semantic Web. The BioPortal is in the process of adopting SKOS in
the backend representation for its content. During this process, we dis-
covered that there exists a set of commonly-used lexical features shared
by the biomedical ontologies that SKOS does not yet represent. In this
paper, we discuss our proposed SKOS extensions to cover this set of com-
monly used lexical features, the rationales, and the detailed description
of each proposed construct.

1 Introduction

The use of ontologies in the biomedical domain has accelerated dramatically
over the last decade [5,6,7]. Biomedical ontologies provide the essential domain
knowledge needed for different purposes such as data integration, data sharing,
semantic annotation, information extraction, and natural language processing.
The National Center for Biomedical Ontology (NCBO) BioPortal [4] is an open-
source repository of ontologies, terminologies, and thesauri of importance in
biomedicine. As of Oct. 2011, BioPortal is hosting 296 biomedical ontologies,
including more than 5 million terms. These ontologies cover domain knowledge
from basic science, clinical terms, to translational studies.

One important goal of BioPortal is to provide a common access for browsing
and querying the shared ontologies that are commonly used in the biomedical
communities [10]. BioPortal is designed for harmonizing these resources in a
uniform representation and delivering this content in a consistent, standardized
fashion for use in biomedical, clinical, and research applications.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 342–349, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Proposed SKOS Extensions for BioPortal Terminology Services 343

This goal coincides with one of the missions of the Semantic Web community:
creating technologies to share heterogeneous content and to distribute it over the
Web. The World Wide Web Consortium (W3C) has produced recommendations
for a stack of Semantic Web languages for structured data, terminologies, and
ontologies, including the Resource Description Framework (RDF) for represent-
ing data on the Web [13], the SPARQL language for querying RDF data [16], the
Web Ontology Language (OWL2) for representing ontologies on the Web [12],
the Simple Knowledge Organization System (SKOS) [14], and SKOS eXtension
for Labels (SKOS-XL) [15] for representing terminologies and thesauri.

One necessary step toward this goal is to represent commonly existing prop-
erties in the biomedical domain in a standard, Semantic-Web compliant way.
BioPortal is a host for different kinds of resources: formal ontologies, termi-
nologies, thesauri, and so on. Formal ontologies are mapped to a formal se-
mantics, thus allowing well defined and rather powerful inferences, and use a
precise and rigorous set of constructs to represent their content. Thesauri and
other knowledge-organization systems, however, have less emphasis on formal
structure and focus more on lexical components such as synonyms, multilingual
definitions, examples, comments, cross references. The latest SKOS specifica-
tion describes a standard set of tags for most of these constructs and has been
adopted by many organizations, including the Library of Congress [8], NASA [9],
and the United National Food and Agriculture Organization [3].

BioPortal assists authors in the identification of the related constructs during
terminology submission. For example, when submitting their terminology or on-
tology, the authors indicate which property in their ontology stores synonyms,
authors of each term, definitions of a term and so on.We then relate the corre-
sponding lexical components to the SKOS standard, which, in combination with
a structured terminology model, can serve as a baseline for the representation
of the next generation of terminological resources. During this process, we have
identified several properties and constructs that are missing from SKOS, but are
critical to biomedical terminologies, including:

– multiple definitions - resources may be accompanied by multiple (textual
definitions), derived from multiple sources. The resource authors need to
indicate which of these definitions is preferred in a given language or context.

– flavors of annotation - resource annotations include information about
what was changed and when, the current status of the entry and targeted
directions, when and where the resource is applicable, etc. Applications need
to be able to differentiate these various flavors of notes as some are applicable
to end user situations while others are only of value in editorial or historical
contexts. In addition, applications need to be able to clearly differentiate
definitions from comments from examples, as when and where each of these
is used is different.

– lexical semantics - as ontologies begin to be consumed in the NLP space,
it becomes important to be able to identify the various forms of labels -
the noun form, adjectival form, singular, plural as well as the label deriva-
tion - acronym, abbreviation, eponym, etc. In addition, the introduction of

344 C. Tao et al.

multi-lingual lexical systems creates a need to be able to identify the deriva-
tion of specific labels, notes, etc. The fact that a German definition is a literal
translation of a corresponding English definition is important when attempt-
ing to understand the intended meaning of a term. Similarly, an acronym or
abbreviation needs to be associated with the language and term that it is
an acronym and abbreviation for.

Building on our experience with LexGrid [1], which provides common terminol-
ogy services for biomedical terminologies, as well as standard ontology repre-
sentation guidelines [17], we propose a set of constructs to cover these common
lexical properties in the biomedical domain.

2 SKOS Extensions

Table 1. SKOS Extension Summary

New Construct Description Comment

skosxl plus:Comment Notes for a resource exclud-
ing examples and definitions

see Figure 1

skosxl plus:Note Similar to skosxl:Label
but works with
skos:noteRelation

skosxl plus:Source Reified provenance details.

skos plus:prefDefinition The preferred definition of a
resource given a specific con-
text or language

subproperty of
skos:definition

skos plus:altDefinition Alternative definitions of a
resource

subproperty of
skos:definition

skos plus:designationType Discriminant that de-
termines the type of a
particular description

synonyms, acronyms,
short names, etc

skosxl plus:noteRelation Relationships between two
lexical properties

a super property of
skosxl:labelRelation,
domain and range
are skosxl:Note

skosxl:literalForm Expand its domain
and range to cover
skosxl:Note

Comments and Notes. “Notes are used to provide information relat-
ing to SKOS concepts.” [14]. The current SKOS specification identifies 6
subclasses, skos:changeNote, skos:definition, skos:editorialNote, skos:example,
skos:historyNote, skos:scopeNote. Applications that consume terminology ser-
vices need to be able to distinguish definitions, examples from other forms of
notes as definitions are used to clarify the meaning of a concept or term, examples
help to refine it, while other types of comments provide a variety of secondary

Proposed SKOS Extensions for BioPortal Terminology Services 345

Fig. 1. Proposed Hierarchy of skos:note

purposes. We propose the addition of one additional class, skos plus:Comment,
which provides this primary distinction.1

Preferred Definition. Textual definitions are becoming increasingly common
in biomedical ontologies. They provide an important link between the computa-
tional formalism of the ontology and the (intended) meaning of the term, class
or property. A given class may be accompanied by several definitions that are
drawn from multiple reference sources. Definitions may be provided in different
languages and may be applicable in different contexts. SKOS currently defines
prefLabel and altLabel, but no analogous distinctions are provided for definitions.
To remedy this, we propose the creation of prefDefinition and altDefinition, as
subproperties of skos:defintion, with the assertion that each concept may have
at most one preferred definition given a language.

Type of Descriptions. The use and a meaning of a term label can require
additional lexical semantics. It is often important to know whether a label is
a noun form, adjectival form, whether it is singular or plural, whether it is a
common acronym, an abbreviation or a full form. The existing SKOS specifica-
tion provides some ability to make these distinctions, as labels can be marked as
“preferred”, “alternate” or “hidden”, which indicates whether they are the pri-
mary identifiers, synonyms or deprecated forms such as common misspellings,
deprecated acronyms, etc. It doesn’t, however, provide the sort of granularity
many sophisticated applications need. To address this issue, we propose a new
construct, designationType, to define the type of a description of a given re-
source. Typical types would include noun, adjective, acronym, eponym, and ab-
breviation, which we propose can be drawn from the ISO TC37 Data Category
Registry[2].

1 The reason that the existing tag, rdfs:comment was not used is that it is often heavily
overloaded in existing ontologies— being used to carry definitions, examples, various
flavors of comments, etc.

346 C. Tao et al.

<C1> skosxl:altLabel <L>.

<L> rdf:type skosxl:Label;

skosxl:literalForm "FAO";

skos_plus:designationType ISOcat:acronym.

ISOCat:acronym rdfs:subClass ISOCat:abbreviatedForm.

Fig. 2. An Example of Designation Type

Figure 2 shows an example using designationType. Here we use the SKOS-XL
data model to represent that concept <C1> has an alternative label “FAO”
which serves the role of acronym.2

Relations between Lexical Properties. SKOS-XL defines skosxl:labelRelation
to represent binary relations between instances of the class skosxl:Label, which
allows assertions such as the label, “FAO” is an ISOcat:acronymFor “Food and
Agriculture Organization”. This pattern, however, does not extend to definition-
definition or comment-definition relationships, etc. To address this issue, we pro-
pose a new construct, noteRelation, which can be used for representing relations
between not only two labels, but also any two lexical properties, such as defini-
tions, comments, and examples.

We also propose a new class—skosxl plus:Note—as the domain and range
of noteRelation. Similar to designationType, the types of these relations could
be adopted from the ISO TC37 Data Category Registry. Figure 3 provides an
example of a noteRelation.3

<C1> skos:editoralNote <E1>.

<E1> rdf:type skosxl_plus:Note;

skosxl:literalForm "needs to be updated later"@en.

<C1> skos:editoralNote <E2>.

<E2> rdf:type skosxl_plus:Note;

skosxl:literalForm "moeten later worden bijgewerkt"@de.

<E2> ISOcat:translation <E1>.

ISOcat:translation rdf:subProperty skosxl_plus:noteRelation.

Fig. 3. An Example of Property Relation

2 ISOCat does not follow the convention of capitalizing the first letter of class names
- all identifiers begin with a lower case letter. We have included a type definition in
the examples to help clarify this.

3 Note that ISO TC37 does not, at the moment, appear to provide a property “trans-
lation of”. We will need to address the difference between the verb / noun (property
/ class) with this organization.

Proposed SKOS Extensions for BioPortal Terminology Services 347

SKOS-XL has defined skosxl:prefLabel, skosxl:altLabel, and skosxl:hiddenLabel
as instances of the class skosxl:Label. These new constructs are necessary
because skos:prefLabel, skos:altLabel and skos:hiddenLabel are sub-properties
of rdfs:label, and therefore inherit its range of rdfs:Literal vs. the class
skosxl:label. skos:note and its sub properties are already defined as instances
of owl:AnnotationProperty, which means that the target does not have the same
restrictions and we can use them directly when connecting a concept (e.g., <C1>
to note (e.g., <E1> or <E2> in Figure 3).

Provenance Annotations. We also need the ability to provide provenance in-
formation for the lexical resources in an ontology.4 As an example, the OBO [11]
allows the specification of the source roles and documents of definitions. Figure 4
shows the definition of “reproduction” in the Gene Ontology.

def: "The production by an organism of new individuals that contain some

portion of their genetic material inherited from that organism."

[GOC:go_curators, ISBN:0198506732 "Oxford Dictionary of

Biochemistry and Molecular Biology"]

GO:0000003 rdf:type skos:Concept;

skos_plus:prefDefinition <D1>.

<D1> rdf:type skosxl_plus:prefDefinition;

skosxl:literalForm "The production by an organism of new ...";

dc:source <S1>.

<S1> rdf:type skosxl_plus:Source;

crdf:role GOC:go_curators;

crdf:sourceDocument URN:ISBN:0198506732;

crdf:sourceDescription "Oxford Dictionary of Biochemistry

and Molecular Biology".

Fig. 4. Definition of “reproduction” in OBO and RDF

In this case, we need a general class for source to allow further annotations of
the instances of the source. Here we propose a new class, skosxl plus:Source, to
represent the overall source information for reification purposes. Note that we use
the crdf namespace for tags that describe further source information. We do not
propose that these tags are included in the SKOS extension because we believe
that they are out of scope for SKOS. Note that the “<S1>” tag is used in this
example because this represents a description of URN:ISBN:019506732 by the GO
curators rather than the resource itself.

3 Discussion

The definition of a logic formalism consists of two sections. The first section de-
fines syntax of the logic—describing the set of symbols that are valid in the logic

4 Fine grained provenance is also required in the formal or “semantic” assertions, but
that is out of the scope of this document.

348 C. Tao et al.

and the set of possible transformations that may be applied to them. The sec-
ond section describes the semantics—a set of rules that describe how the various
logic symbols and operations correspond with equivalent structures the (or some)
“real world”. Most of the Ontology efforts to date have been focused on the first
section—the representation and manipulation of the formal symbols. The seman-
tics of an ontology is represented by the lexical aspects, and is the part that allows
human beings to map the symbols from and to their intended referents. An ontol-
ogy that fails to maintain this second, lexical component becomes nothing more
than an interesting mathematical artefact—a set of logically consistent symbols
that may or may not apply to the real world.

The SKOS [14] specification has formed an excellent starting point for for-
malizing the lexical aspects of an ontology. Today, many of the ontologies that
pay attention to the lexical components at all use ontology specific tags for these
components, or, in some situations, embed the meanings of these tags lexically
inside rdfs:comment constructs. The conversion of these idiosyncratic approaches
into one that is semantically consistent requires a sufficiently robust target that
the majority of the information that needs conversion can migrated without
significant loss.

The proposals that we discuss in this document suggest one such approach.
It should be noted, however, that this approach depends on either (a) semantics
that do not formally include the distinction made by OWL between Annota-
tionProperty and ObjectProperty and DataProperty or (b) the use of OWL 2.
The reason for this is because the OWL 1 series of specifications restrict Anno-
tationProperties to the point that they cannot be used as first class resources
without lapsing into the computational marshland of OWL Full. This restriction
has driven many existing ontologies to resort to a variety of tricks and embed-
ding schemes to allow them to carry the information they need while, at the
same time, taking advantage of the formal classifications that are available.

The proposals presented here seem to work in principal. To be truly useful,
however, more standardization work still remains. While the ISOCat Data Cat-
egory Registry [2] appears to carry many of the markup properties that are
needed, there are still issues about format, rights and completeness that need to
be resolved. The specific provenance tags such sourceDocument, sourceDescrip-
tion need standardization as well before the work done here will begin to bear
significant fruit.

4 Concluding Remarks

In this paper, we discussed our proposed SKOS extension for representing com-
mon lexical information in BioPortal ontologies. One important goal of BioPortal
is to provide a common access for browsing and querying the shared ontologies
that are commonly used in the biomedical communities. We believe these addi-
tional properties will improve interoperability among biomedical ontologies, and
therefore enhance the common service provided by BioPortal.

Proposed SKOS Extensions for BioPortal Terminology Services 349

These proposed extensions were based on our more than a decade experience
with common terminology service in the biomedical domain. We believe that
SKOS has already provided a reasonably good foundation for common lexical
information representation. The proposed tags will be a useful addition to SKOS
for harmonizing biomedical ontologies.

Acknowledgement. This research is partially supported by the National Cen-
ter for Biomedical Ontology (NCBO) under the NIH Grant #N01-HG04028 and
the NSF under Grant #0937060 to the Computing Research Association for the
CIFellows Project.

References

1. LexGrid: The Lexical Grid (2009), https://cabig-kc.nci.nih.gov/Vocab/KC/

index.php/LexGrid

2. ISOcat - data category registry (October 2011), http://www.isocat.org
3. AGROVOC Thesaurus, Food and Agriculture Organization of the United Nations

(FAO), http://www.fao.org/agrovoc
4. NCBO Bioportal, http://bioportal.bioontology.org/
5. Bodenreider, O.: Biomedical Ontologies in Action: Role in Knowledge Manage-

ment, Data Integration and Decision Support. In: Geissbuhler, A., Kulikowski, C.
(eds.) IMIA Yearbook of Medical Informatics, vol. 47, pp. 67–79. International
Medical Informatics Association (2008)

6. Chute, C.G.: The Copernican Era of Healthcare Terminology: A Re-Centering of
Health Information Systems. In: AMIA Annual Symposium, pp. 68–73 (1998)

7. Chute, C.G.: Clinical Classification and Terminology: Some History and Current
Observations. JAMIA 7(3), 298–303 (2000)

8. Library of congress subject headings, the library of congress cataloging distribution
service, http://www.loc.gov/cds/lcsh.html

9. NASA Taxonomy, http://nasataxonomy.jpl.nasa.gov/fordevelopers/
10. Noy, N.F., Shah, N.H., Whetzel, P.L., Dai, B., Dorf, M., Griffith, N., Jonquet,

C., Rubin, D.L., Storey, M.D., Chute, C.G., Musen, M.A.: Bioportal: ontologies
and integrated data resources at the click of a mouse. Nucleic Acids Research 37,
170–173 (2009)

11. The open biomedical ontologies, http://www.obofoundry.org/
12. OWL 2 web ontology language structural specification and functional-style syntax,

http://www.w3.org/TR/owl2-syntax/

13. The RDF vocabulary, http://www.w3.org/1999/02/22-rdf-syntax-ns
14. SKOS vocabulary, http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/

skos.rdf

15. SKOS XL vocabulary, http://www.w3.org/2006/07/SWD/SKOS/reference/

20090315/skos-xl.rdf

16. SPARQL Query Language for RDF, www.w3.org/TR/rdf-sparql-query/
17. Tao, C., Pathak, J., Solbrig, H.R., Wei, W., Chute, C.G.: Common terminology

guidelines for representing biomedical ontologies in semantic web notations. Journal
of Biomedical Informaitcs (submitted)

https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexGrid
https://cabig-kc.nci.nih.gov/Vocab/KC/index.php/LexGrid
http://www.isocat.org
http://www.fao.org/agrovoc
http://bioportal.bioontology.org/
http://www.loc.gov/cds/lcsh.html
http://nasataxonomy.jpl.nasa.gov/fordevelopers/
http://www.obofoundry.org/
http://www.w3.org/TR/owl2-syntax/
http://www.w3.org/1999/02/22-rdf-syntax-ns
http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/skos.rdf
http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/skos.rdf
http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/skos-xl.rdf
http://www.w3.org/2006/07/SWD/SKOS/reference/20090315/skos-xl.rdf
www.w3.org/TR/rdf-sparql-query/

Learning Complex Mappings between Ontologies

Wei Hu, Jianfeng Chen, Hang Zhang, and Yuzhong Qu

State Key Laboratory for Novel Software Technology,
Nanjing University, China

{whu,yzqu}@nju.edu.cn, jf chen@ymail.com,

hangzhang@smail.nju.edu.cn

Abstract. In this paper, we introduce a new approach for constructing
complex mappings between ontologies by transforming it to a rule learn-
ing process. Derived from the classical Inductive Logic Programming, our
approach uses instance mappings as training data and employs tailoring
heuristics to improve the learning efficiency. Empirical evaluation shows
that our generated Horn-rule mappings are meaningful.

1 Introduction

As the amount of ontologies grows with the development of the Semantic Web,
it is now common to have different ontologies in a single domain. Ontologies can
be heterogeneous in various forms including terminological and conceptual het-
erogeneities. Such heterogeneities are dealt with the ontology matching process,
which plays a vital role in semantic interoperability between applications.

There exist plenty of works that tackle the ontology matching problem [2],
however they mainly focus on finding simple 1 : 1 equivalence mappings between
named classes and/or named properties in ontologies. In the real world, complex
m : n mappings are also pervasive and needed by many applications for query
rewriting, distributed reasoning, instance migration, etc. Neither the discovery
methods to complex mappings nor their formal semantics has been well studied
in literature yet.

In this paper, we propose a new approach which transforms the problem of
constructing complex mappings to rule learning across ontologies. Our approach
extends a pioneering Inductive Logic Programming (ILP) method named FOIL
[8], and generates complex mappings in the form of first-order Horn-rules. Fur-
thermore, our approach exploits instance mappings as the training data for vari-
able bindings, and heuristically reduces the search and storage space by tailoring
irrelevant data. Empirical evaluation shows the feasibility of our approach.

The rest of this paper is organized as follows. Preliminaries are introduced
in Section 2. Section 3 presents our learning approach while Section 4 reports
experimental results. Finally, we conclude this paper in Section 5.

2 Problem Statement

The Web Ontology Language (OWL), as a W3C recommendation, is proposed
for authoring ontologies on the Web [5]. OWL DL is a species of OWL, whose

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 350–357, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Learning Complex Mappings between Ontologies 351

logic foundation is Description Logic (DL), a subset of First-Order Logic (FOL).
An OWL DL ontology declares axioms and facts for its classes, properties and
instances, where a class corresponds to a unary predicate in FOL with one free
variable, a property to a binary predicate with two free variables, and an instance
to a constant.

Regarding Horn-rules, a clause is a disjunction of literals, where a literal is a
(class or property) predicate that is applied on constants or variables. A positive
literal is a literal that can be satisfied; otherwise it is negative. A clause is called
a Horn-clause if it has at most one positive literal. A Horn-rule is a category of
Horn-clause that has one positive literal and at least one negative literal, which
can be written as: H ← L1 ∧ L2 ∧ . . . ∧ Ln, where H is called the head of the
rule, and L1 ∧ L2 ∧ . . . ∧ Ln is called the body. ← gives an implication from the
body to the head. A variable binding is a substitution which maps a variable to
a constant in a Horn-rule.

We define the construction of complex mappings as a rule learning process
across two ontologies. The mappings between classes or properties in different
ontologies are expressed in the form of Horn-rules to reflect their (directional)
semantics.

Definition 1. Let O1,O2 be the source and target ontologies, respectively. Find-
ing complex mappings from O1 to O2 is to learn a set of Horn-rules:MO1�O2 =
{M1,M2, . . . ,Mk}. A complex mapping Mi (i = 1, 2, . . . , k) is as follows:

O2 : H ← O1 : L1 ∧O1 : L2 ∧ . . . ∧ O1 : Ln,

where H,Lj (j = 1, 2, . . . , n) are literals in O2,O1, respectively. A complex map-
ping satisfies that its rule body has at least two literals (n ≥ 2).

In practice, we often match O1 to O2, and switch them to match O2 to O1. It is
worth noting that the above Horn-rule mappings can only cover a kind of “se-
quential” complex mappings, rather than some “combinational” mappings [3] or
formula-like ones [1]. The semantics of Horn-rule mappings may be interpreted
using the binding semantics [11], where each ontology has a “subjective seman-
tics” based on local interpretation and a “foreign semantics” based on semantic
binding to matched ontologies. In general, reasoning with OWL and Horn-rules
is an undecidable problem [6].

A Motivating Example. Fig. 1 shows the source and target ontologies O1,O2.
O1 has two instances Jianfeng Chen and Yuzhong Qu of the class foaf:Person,
and an instance Semantic Web of Course. There are two properties takeCourse
and teachBy that link these instances. O2 defines in a similar way. Let us assume
that O1 : Jianfeng Chen and O2 : jfchen denote the same person (which can
be identified by some instance matching algorithms), and so do O1 : Yuzhong Qu

and O2 : yzqu, we can learn complex mappings as follows:

O2 : hasTeacher(x, y)← O1 : takeCourse(x, z) ∧ O1 : teachBy(z, y),

O2 : Student(x)← O1 : Person(x) ∧ O1 : takeCourse(x, z). �"

352 W. Hu et al.

foaf:Person O1:Courserdf:type
rdf:type

rdf:type
O1:takeCourse O1:teachBy

O2:ProfessorO2:Studentrdf:type rdf:type

O2:hasTeacher

owl:sameAs owl:sameAs

target: O2

source: O1

O1:Jianfeng_Chen O1:Yuzhong_Qu

O1:Semantic_Web

O2:jfchen O2:yzqu

Fig. 1. A motivating example

Related Work. The state of the art ontology matching techniques are limited
to detect simple mappings between atomic classes and properties, while finding
complex mappings is relatively new. Ritze et al. [9] defined various hand-tailored
patterns and used heuristic search methods, and Dhamankar et al. [1] developed
a similar system called iMAP. He et al. [3] proposed to apply correlation mining
to find co-occurrence entities. Qin et al. [7] gave a systematic approach to create
executable mapping rules in the Web-PDDL language. Stuckenschmidt et al. [10]
recently summarized the challenges of applying ILP to learn complex mappings,
which inspires us to present a concrete approach in this paper.

3 Approach

The outline of our algorithm for learning complex mappings is shown in
Algorithm 1, which starts with two ontologies with their instances as input,
and its goal is to create as output a set of complex mappings in the form of
Horn-rules. In general, the algorithm contains three phases:

– Instance matching phase matches instances, which are then used as corre-
spondences between ontologies for finding and validating complex mappings.

– Data tailoring phase conducts a class-based extraction mechanism to elimi-
nate irrelevant data from the source ontology.

– Mapping learning phase performs a general-to-specific search to construct
Horn-rule mappings for classes and properties.

We will describe the details of these phases in the rest of this section.

3.1 Instance Matching Phase

Weuse a set of OWL terms, namely owl:sameAs,owl:FunctionalProperty,owl:
InverseFunctionalProperty, owl:cardinality and owl:maxCardinality, to
infer instance mappings (see Line 2 in Algorithm 1). For example, foaf:mbox is

Learning Complex Mappings between Ontologies 353

Algorithm 1: ComplexMatch

Input: Source and target ontologies Os,Ot, including their instances Is, It.
Output: A set of complex mappings M.
begin1

A = MatchInstances(Is, It); // Instance matching phase2

Ct = SelectClassesFromTargetOntology(Ot,A);3

foreach C ∈ Ct do // Data tailoring phase4

(Pt, IC
t) = SelectPredicatesAndInstances(C,Ot, It, δ); // |IC

t | ≤ δ5

(Ps,Fs) = SelectPredicatesAndFactsFromSourceOntology(Os, Is, IC
t ,A);6

foreach P ∈ Pt do // Mapping learning phase7

M = ConstructMapping(P,Ps,Fs,A);8

Add M to M;9

return M;10

end11

an inverse functional property. If O1 : Jianfeng Chen and O2 : jfchen have the
same email address, they constitute an instancemapping. These five built-in terms
in OWL are frequently used in data fusion systems [4], and we integrate them as
a transitive closure to form a set of semantically equivalent mappings.

We employed seven students to evaluate 500 instance mappings in [4], and
observed that the average precision of our approach is about 0.95. Additionally,
this matching phase can be completed in a few microseconds. Please note that
our approach would lost some mappings, which leads to a low recall. However,
we argue that the ILP-based learning relies more on the quality of training data
than its quantity.

3.2 Data Tailoring Phase

We extract relevant predicates and facts from the source ontology by leveraging
the instance mappings (see Line 6 in Algorithm 1). As a result, we reduce both
the searching space for candidate predicates and the storage space for negative
variable bindings. We propose different strategies for classes and properties to
extract the corresponding training data:

– Classes in an ontology represent the conceptual classification. We guide the
data tailoring by typing information, e.g., rdf:type and rdfs:subClassOf.
Specifically, we start from each instance in the source ontology and prefer to
collect the facts about those instances having the same type.

– Properties express the relationships between instances. We collect the facts
for the instances that can constitute property chains, i.e., a set of properties
that are chained with compatible rdfs:domain(s) and rdfs:range(s).

– We also set a boundary for the relevant data search, which is terminated
once five facts have been crossed at a search direction. Additionally, for each
class, we randomly select at most δ instances (denoted by ICt) and associated
predicates (Pt) from the target ontology to avoid the combinatorial explosion
(see Line 5 in Algorithm 1).

354 W. Hu et al.

Example. Supposing that the data tailoring phase utilizes O2 : jfchen as the
start and obtains the matched instance O1 : Jianfeng Chen from O1. Then, we
collect the facts local to O1 : Jianfeng Chen. For the class Student, the phase
prefers to the facts about the instances that have the same class foaf:Person
as O1 : Jianfeng Chen does, e.g., O1 : Yuzhong Qu, whose facts can provide the
evidence for negative bindings. For the property O2 : hasTeacher, it prefers to
the fact takeCourse(Jianfeng Chen, Semantic Web). �"

3.3 Mapping Learning Phase

In Algorithm 2, we learn a complex mapping in the form of Horn-rules (called
at Line 8 in Algorithm 1). The algorithm conducts a greedy search to select the
best literals, where the goodness of a candidate literal is measured by Gain() in
Line 7. This learning process terminates when the number of positive variable
bindings versus negative ones is insignificant or the length of rule body exceeds
a threshold (e.g., ε = 10, θ = 7 in our case).

Algorithm 2: ConstructMapping

Input: A target predicate P , a set of source predicates Ps, a set of source facts
Fs and a set of instance mappings A.

Output: A complex mapping M .
begin1

Initialize a Horn-rule M : P ←;2

PV B(M) = |PositiveVariableBindings(M,Ps,Fs,A)|;3

NV B(M) = |NegativeVariableBindings(M,Ps,Fs,A)|;4

while PV B(M)
NV B(M)

> ε && BodyLength(M) < θ do5

L = GenerateAllCandidateLiterals(M,Ps);6

Lmax = argmaxL∈L Gain(L,M);7

Append Lmax to the body of M ;8

Update PV B and NV B w.r.t. the new MLmax ;9

return M ;10

end11

Whether appending a new literal to the current mapping is evaluated based
upon the numbers of positive and negative variable bindings, with an objective
to cover more positives and fewer negatives. The two sets of bindings keep up-
dating during the learning. More specifically, our algorithm constructs positive
variable bindings in terms of the instance mappings, whereas inferring nega-
tive variable bindings in terms of the constants extracted from ontology facts.
For each matched instance within the source ontology, we create the negative
variable bindings that only refer to the constants from its close facts. For ex-
ample, in Fig. 1 {x/Jianfeng Chen, y/Yuzhong Qu} is a positive variable bind-
ing for O2 : hasTeacher(x, y), while {x/Jianfeng Chen, y/Semantic Web} and
{x/Yuzhong Qu, y/Jianfeng Chen} are negative ones, due to no corresponding
fact can be found in the source ontology. It worth noting that all constants in

Learning Complex Mappings between Ontologies 355

the negative variable bindings are local to Jianfeng Chen, departing from those
of other instances, such as the constants from the facts close to Hang Zhang.

We use the FOIL gain [8] to measure whether a candidate literal should be
appended, which is computed as follows:

Gain(L,M) = t× (log
PV B(ML)

PV B(ML) +NV B(ML)
− log

PV B(M)

PV B(M) +NV B(M)
),

where PV B(M), NV B(M) are the numbers of positive and negative variable
bindings of the complex mapping M , respectively. t is the number of positives
ofM that are still covered after appending a new literal L toM (denoted byML).

Example. Let O2 : hasTeacher(x, y) ← be the initial complex mapping with
an empty body. Given the three possible constants in O1, there are nine possible
variable bindings for the initial mapping, where only one is positive. PV B is
1 and NV B is 8. Consider the candidate literals O1 : foaf:Person(x) and
O1 : takeCourse(x, z). To add foaf:Person, PV B remains 1 but NV B reduces
to 5, so its Gain equals 0.85. Similarly, the Gain of takeCourse is 1.58. The new
complex mapping (in progress) is: O2 : hasTeacher(x, y) ← O1 : takeCourse
(x, z). �

4 Evaluation

We developed the proposed approach in Java and conducted empirical evaluation
on its performance. Our three test cases are constituted by ontologies in various
domains, namely Restaurants from IM@OAEI2010, SwetoDBLP vs. ESWC, and
Mondial vs. Factbook, each of which contains tens of classes or properties and
thousands of instances.

Table 1. Statistics of three datasets

O1 #Classes #Props. #Insts. O2 #Classes #Props. #Insts.

Restaurant1 3 7 339 Restaurant2 3 7 2,256
SwetoDBLP 17 46 83 ESWC 35 31 1,261
Mondial 17 40 15,398 Factbook 36 171 24,990

We found six complex mappings from the three cases excluding simple 1 : 1
ones, where the average body length is 2.17. According to human observation,
all the mappings are correct, so the precision equals to 1.0. It also shows that
the number of complex mappings are relatively few, because the schemas of the
ontologies in the experiment are not complicated. However, we believe that, with
the wider acceptance of OWL 2 [5], especially the property chain feature, there
will be more complex mappings that can be learnt from our ILP-based method.
So, an interesting future work is to see what kinds of complex mappings can be
obtained in more realistic cases.

356 W. Hu et al.

We also counted the learning time w.r.t. the number of instance mappings,
and found that our approach accelerated twice more than the original approach
that does not tailor irrelevant data. The optimized approach spent nearly two
minutes to complete the learning on 100 instance mappings.

We illustrate two complex property mappings for Restaurants and Mondial
vs. Factbook respectively, which give some clear meanings and are difficult to be
logically entailed by the union of simple mappings and the input ontologies:

ORest1 : city(x, y)← ORest2 : is in city(x, z) ∧ ORest2 : name(z, y),

OMondial : neighbor(x, y)← OFactbook : border(x, z) ∧ OFactbook : country(z, y).

Additionally, a complex class mapping for SwetoDBLP vs. ESWC is as follows:

OESWC : InProceedings(x)← ODBLP : Publication(x)

∧ODBLP : isIncludeIn(x, y) ∧ODBLP : Proceedings(y).

These complex mappings can be easily translated to SPARQL queries, such as
using the Named Graph to query the two ontologies and fuse the query results
together in applications.

5 Conclusion

In this paper, we proposed a new approach for learning complex mappings be-
tween ontologies. We utilized instance mappings as training data and applied
data tailoring to improve efficiency. We implemented the approach and experi-
mentally evaluated it on three pairs of real-world ontologies, which showed the
high precision and clear meanings of the constructed Horn-rule mappings. The
work reported here is a first step, and many issues still need to be addressed in
future. For example, we look forward to exploring more possible semantics and
rules for learning and testing our approach steadily on new datasets in Linked
Data. We also want to formally analyze the learning complexity of our approach,
especially for the negative example construction.

Acknowledgements. This work was supported in part by the National Nat-
ural Science Foundation of China under Grant Nos. 61003018 and 60903010, in
part by the National Research Foundation for the Doctoral Program of Higher
Education of China under Grant No. 20100091120041, and in part by the Nat-
ural Science Foundation of Jiangsu Province under Grant Nos. BK2011189 and
BK2009268.

References

1. Dhamankar, R., Lee, Y., Doan, A., Halevy, A., Domingos, P.: iMAP: Discovering
Complex Semantic Matches Between Database Schemas. In: SIGMOD 2004, pp.
383–394 (2004)

2. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)

Learning Complex Mappings between Ontologies 357

3. He, B., Chang, K.C.-C.: Automatic Complex Schema Matching Across Web Query
Interfaces: A Correlation Mining Approach. ACM Transactions on Database Sys-
tems 31(1), 346–395 (2006)

4. Hu, W., Chen, J., Qu, Y.: A Self-training Approach for Resolving Object Corefer-
ence on the Semantic Web. In: WWW 2011, pp. 87–96 (2011)

5. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web
Ontology Language Profiles. W3C Recommendation (2009)

6. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and Logic Programming
Live Together Happily Ever After? In: Cruz, I., Decker, S., Allemang, D., Preist,
C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.) ISWC 2006. LNCS,
vol. 4273, pp. 501–514. Springer, Heidelberg (2006)

7. Qin, H., Dou, D., LePendu, P.: Discovering Executable Semantic Mappings Be-
tween Ontologies. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I. LNCS,
vol. 4803, pp. 832–849. Springer, Heidelberg (2007)

8. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning 5(3),
239–266 (1990)

9. Ritze, D., Meilicke, C., Šváb-Zamazal, O., Stuckenschmidt, H.: A Pattern-Based
Ontology Matching Approach for Detecting Complex Correspondences. In: ISWC
Workshop on Ontology Matching (2009)

10. Stuckenschmidt, H., Predoiu, L., Meilicke, C.: Learning Complex Ontology Align-
ments – A Challenge for ILP Research. In: ILP 2008 (2008)

11. Zhao, Y., Wang, K., Topor, R., Pan, J.Z., Giunchiglia, F.: Semantic Cooperation
and Knowledge Reuse by Using Autonomous Ontologies. In: Aberer, K., Choi, K.-
S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard,
D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC
2007. LNCS, vol. 4825, pp. 666–679. Springer, Heidelberg (2007)

Discovering and Ranking New Links

for Linked Data Supplier

Nansu Zong, Sungkwon Yang, Hyun Namgoong, and Hong-Gee Kim

Biomedical Knowledge Engineering Lab.
School of Dentistry, Seoul National University, Korea

{zongnansu1982,sungkwon.yang,nghyun,hgkim}@snu.ac.kr

Abstract. For new data supplier who wants to join the web of data club,
it’s difficult to find new links between local repository and data sets in
the web of data to make local data well-connected or harmonize with
other data. The purpose of this research is not for finding similar entities
but discovering new potential link for helping users have more choice for
using multiple links instead of only using “owl:sameAs”. The approach
use information retrieval technique index the data sets and Page Rank
and graph theory analyze RDF document to filter links. We implemented
our method using Dbpedia data sets and two open ontologies, the results
showed our approach can discover new links with highly accuracy.

Keywords: Link Discovering, Linked Data, Entity Ranking.

1 Introduction

Along with the development of the semantic web, linked data as a new data
publish format become popular for connecting distributed data sets across the
web instead of using traditional ontology which rich in the schema but limit on
the data layer. However, for a new data supplier who wants to join the Linked
Open Data club, it’s difficult to establish new links between local repository and
data sets in the web of data for making local data well-connected or harmonize
with other data. Not only, because of establishing links to similar entities in the
web of data is not easy to filtrate through heterogeneous data resources, but also
because multiple meaningful links to close related entities is hard to navigate.
Traditional semantic search engine like Swoogle[5], sindice[11] and Falcon[14] in
general domain or NCBO bioportal1in a specific domain like Bio-Medical focus
on locating the similar entities but not the links to close related entities. These
methods have an obvious weakness that it can only navigate the user with the
data resource or entities most matching the query word. This makes users have
limited choice to make new links between local repository and data in the web
of data.

The purpose of this research is not for finding similar entities but discovering
potential new links in Linked Open Data. Through our method, users could have

1 http://bioportal.bioontology.org/

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 358–365, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://bioportal.bioontology.org/

Discovering and Ranking New Links for Linked Data Supplier 359

more choice for using multiple links instead of only using “owl:sameAs”. An easy
example may help for understanding our scenario. Assume one small graph to de-
scribe the Tim Berners-Lee who can be considered as the father of the internet,
for the data supplier, simply using “owl:sameAs” to link other similar entities may
not be satisfied as a user may visit more than two pages to find the useful prop-
erty of Tim Berners-lee which consuming time and energy. So different with others
focusing only on similar entity (Tim Berners-Lee) in Dbpedia2, we are trying to
find important links of similar entities likeWWW3, FellowsOfTheRoyalAcademy-
OfEngineering4, and ComputerPioners5. However, if potential links are diversity,
we should rank every linking entity in order to show the importance of the links.
In the later section, we will discuss how we compute the importance of links for
ranking. The contribution of this paper will be:

– Proposed an approach for the local repository to discover new potential
meaningful links to diversity entities in the Linked Open Data.

– Based on the IR techniques, we proposed an approach which combined RDF
document Ranking and our entity ranking algorithm for discovering new
important links in Linked Open Data.

– We proposed an entity ranking algorithm based on Page Rank and graph the-
ory. Trough locating similar entities of query entity, we traced links connecting
to similar entities and ranked all links using our entity ranking algorithm.

We implemented the proposed approach and perform an evaluation where we
compare proposed algorithm under different index graph patterns. The evalua-
tion showed our approach can efficiently help users discovering multiple potential
links in the web of data.

Outline we will introduce the methodology of this method in Sect.2. Later,
we will describe the detail of our entity ranking algorithm. Further more, we will
introduce evaluation in the Sect.4 . Finally, in Sect.5, we will make the conclusion
and discuss the new issue should be studied in future work.

2 Method Overview

In the Linked Open Data, most data resources are stored in various types of
data bases by triples or RDF documents with index in the file system. Although
supported with the SPARQL end point, most entities still difficult to be lo-
cated by simple query sentences. For accurate navigate the related entities of
query entity, we implemented traditional Information Retrieval techniques and
our own algorithm to discover potential possible new links in heterogeneous data
resources. For realize our approach, we proposed two steps for processing. First

2 http://dbpedia.org/page/Tim_Berners-Lee/
3 http://dbpedia.org/page/Www/
4 http://dbpedia.org/class/yago/FellowsOfTheRoyalAcademyOfEngineering/
5 http://dbpedia.org/class/yago/ComputerPioners/

http://dbpedia.org/page/Tim_Berners-Lee/
http://dbpedia.org/page/Www/
http://dbpedia.org/class/yago/FellowsOfTheRoyalAcademyOfEngineering/
http://dbpedia.org/class/yago/ComputerPioners/

360 N. Zong et al.

part is through querying the web of data index to filter the most relevant docu-
ment. Second part is locating the most important links by tracing the links from
potential candidate documents get from the RDF document ranking.

2.1 RDF Document Ranking

The inverted index has been widely used in the information retrieval domains.
The semantic community also gave a lot of attention to searching the RDF
document based on the inverted index and other technologies. Generally, IR
uses the Vector Space Model (VSM) and Probabilistic model to rank the web
pages, In the conventional Vector Space Model, the TF-IDF which is a statistical
measure used to evaluate how important a word is to a document in a collection
or corpus. Some approach inherited the TF-IDF, like Siren, which using the triple
frequency-inverse source frequency (TF-ISF) and index the RDF based on the
node indexing scheme[4]. [2] showed the probability of relevance of a document
increase as the term frequency of a term increase, and the increase is non-linear.
Our approach implemented the Siren TF-ISF, TF-ISF is inheritance from the
TF-IDF.

2.2 Link Discovering and Ranking

In the web of data, every entity is connected by the links. If a new entity hopes
to link the data in the Linked Open Data, Firstly, the entity should links to
similar entities with “owl:sameAs”. In our approach, we assume a link could be
the potential link to the new entity if the link is connected to the similar entity of
the local entity. So we defined our problem as discovering entities, which connect
to similar entities of the local entity.

Definition 1. An entity could have a potential relationship with the local entity
if the entity has a connection with the similar entities of local entity.

Each document we get from the index with a local entity query, we will first
locate the similar entity in different searched documents. Then set the similar
entities as anchor node, and collect all links which connect with the similar
entities. We sort all possible links through calculating the importance of every
link. Pseudocode below shows the processing of discovering the importance links.
Classical method for computing the importance of a link could be considering
both the innate link weights, like Semantic Associations[1] and entity impor-
tance. In this paper, we will only compute the importance of entity as the im-
portance of the link.

In world-wide web search engine, the importance of web pages is determined
by the number of pages linking to and the importance of linking pages, fa-
mous Page Rank, HITS[9] and SALSA[10] algorithms are used to rank the
web pages based on this theory. In Semantic Web domain, many algorithms
used links to compute the importance of resources, like OntoRank[6], Ding[12],
ObjectRank[2], ReConRank[8], Triple Rank[7] and Reverse PageRank[13]etc.
[3]through calculating the Subject weight, object weight and class weight which

Discovering and Ranking New Links for Linked Data Supplier 361

Algorithm 1. Processing of Discovering the important links

Input: Query entity, Index index, TOPdoc, TOPlink.
Output: List list

1: DTOP← Get TOPdoc documents using Entity-Query-Index;
2: for all d∈DTOP do
3: Ln← All links inside the document d;
4: E← Similar entity of input entity in d;
5: for all l∈Ln do
6: if l have connection with similar entity E then
7: Compute importance of l;
8: end if
9: end for
10: Sort Ln by importance;
11: list←list∪Ln ;
12: end for
13: list← list Ln by importance;
14: list← Get TOPlink links from list;

all the weights are based on the connection between entities in the non-class re-
source. In our approach, we consider the importance of entities not only related
to the links but also related on the entity frequency and importance inside graph
structure. Our approach will calculate the importance of a link based on the link
computing, term frequency and centrality (importance inside graph structure),
and more detail will be introduced in Sect.4.

3 Ranking Algorithm for Choosing Important Entities

Most of entity ranking approaches only consider the importance of links, and
many mutations of page rank have been implemented. In our paper, we both
consider importance of entity inside the RDF document and frequency of docu-
ment, which contains the specific entity besides page rank.

The merge function for the Page Rank score, Centrality and entity document
Frequency is shown:

score(Ei) = αPR(Ei) + βC(Ei) + γFreq(d, e) (1)

where Where the α, β, γ are used to control the influence in each sub-functions,
and α+ β + γ = 1.

We changed Page Rank function to fit the entity ranking and the formulae is
shown below:

PR(Ei) =
i− d
N

+ d
∑

Ej∈D(Ei)

PR(Ej)

L(Ej)
(2)

where E1, E2...En are the entities under consideration, where D(Ei) is the Set
of entities that links to E1, L(Ej) is the number of outbound links to the entity
Ej , and N is total number of entities.

362 N. Zong et al.

The centrality shown below:

C(Ei) = ϕCc(Ei) + (1− ϕ)CB(Ei) (3)

where CB(Ei) =
∑

s�=Ei �=t�=V

σstEi

σst
(4)

where Cc(Ei) =
∑

t∈V \Ei

dG(Ei, t)/n− 1 (5)

The Entity Document Frequency:

Freq(d, e) = (
Numd∈D(d, e)

N
)2 (6)

Freq(d, e) means the document frequency which the entity appeared.
The final entity importance function will merge the SIREn query score and

entities Ranking Score, the merge function is:

Score(e, q) = ρscore(Ei) + (1− ρ)score(d, q) (7)

Where score(d, q) is the document ranking core for the query in the RDF Doc-
ument Ranking.

4 Preliminary Experiment

For evaluating our approach, we indexed DBpedia pagelinks6 as the linked data
resource and 60 important entities as query, which randomly selected from Bible
Ontology7 and Diseasome Ontology8 in linked Life Data.During the index and
page rank computing part, we were using the hadoop9 cluster with one master
and two slaves based on 12 core computing unit with 300 GB hard disk and 3
GB RAM in Cloud environment. In the local searching part, we used the In-
tel, I-5 CPU with 4 GB RAM and 1TB hard disk on the window XP system.
Our assessment of this part can be found in our website10. Using Siren API,
we indexed the DBpedia page link with star-shaped context and muti-shaped
context. Star-shaped means we only considered every document with one sub-
ject and multiple objects. Muti-shaped index means we put specific entity into
one document whatever it appeared in the subject position or object position.
This was different with star-shaped index because muti-shaped index could have
richer information than the star-shaped index. Table.1. showes information of
data sets and index. For each query entity, we collected Top-10 documents and
traced potential links. Fig.4. Showes Top-10 documents searched by 30 bible and
diseasome queries.

6 http://wiki.dbpedia.org/Downloads36
7 http://home.bibleontology.com/
8 http://linkedlifedata.com/
9 http://hadoop.apache.org/

10 http://bike.snu.ac.kr/~nansu/link_discover_eval/

http://wiki.dbpedia.org/Downloads36
http://home.bibleontology.com/
http://linkedlifedata.com/
http://hadoop.apache.org/
http://bike.snu.ac.kr/~nansu/link_discover_eval/

Discovering and Ranking New Links for Linked Data Supplier 363

Table 1. Data sets and index Size

File Size

DBpedia page link(decompressed) 9.17 GB
Star-shaped index 10.6 GB
Muti-shaped index 21.4 GB
Page Rank Map 598 MB

(a) 30 bible queries (b) 30 diseasome queries

Fig. 1. Top-10 documents searched from star-index and muti-index of 30 bible queries
and diseasome queries

We computed all potential links in Top-10 documents and got five most im-
portant links from both star-shaped graph index and muti-shaped graph index.
Table.2 showes one example of query. We used “tyrosinemia”in diseasome as
query word and both got 5 related links from disease muti-shaped index and
star-shaped index.We invited domain expert to score each link scale from 0 to
5 as the standard expectation. 5 means most important or related links for the
entity. We defined two standards for evaluated the link as related, using the
2.0 and 3.0 as scale marks for each links. We used the Precision, Recall and
F-Measure to evaluate the links.

Fig. 2. F-measure results of bible and diseasome

364 N. Zong et al.

Table 2. Query results of “tyrosinemia” from muti-shaped index and star-shaped index
in Diseasome

Index Entity Name

Dbpedia:Alkaptonuria
Muti-shaped index Dbpedia:Tyrosine

Dbpedia:Ochronosis
Dbpedia:Alkaptonuria

Dbpedia:amino acid
Dbpedia:Histidinemia

Star-shaped index Dbpedia:Fanconi syndrome
Dbpedia:Chromosome 15 %28human%29

Dbpedia:Alkaptonuria

As the Fig.2 shown, the F-measure for Bible m and Bible s are 97% and 96%
when the scale mark is 0.2. Diseasome m and Diseasome s are little worse than
Bible, the F-measure are 89% and 82%. when scale mark raised to 0.3, the per-
formance decreased 12%. Muti-shaped index has better results than Star-shaped
index,which shows more related connection be considered, better performance
the algorithm will give.

5 Conclusion and Future Work

In this paper, we introduced a method to discover new links in the Linked Open
Data for web suppliers. Based on information retrieval technique, the approach
indexed the data sets and used Page Rank and graph theory to analyze RDF
document to filter links. We implemented our method using Dbpedia data sets
and two open ontologies. The results showed our approach can discover new links
with highly accuracy.

However, we still find some weakness of our approach. Firstly, we didn’t con-
sider the context of local data, for example, if local sets describe “Tim Berners-
Lee” in the semantic domain, the results will not be constrained in Semantic
Web. All the possible links in the different domain will be listed. Secondly, we
only compute the entity importance and ignore the links’ weights. This is not
objective in computing importance of a link as every link in not flat and can
influent the importance. Due to the weakness of our method, our future work
will focus on context detection of local data set and link’s importance calcula-
tion. The improvement, will help our approach discovering more accurate links
for data suppliers.

Acknowledgment. Thanks professor Myungdae Cho for supporting us with
Bible ontology and Doctor Soonjeong Koh for supporting us with evaluation.
This research is supported by Ministry of Culture, Sports and Tourism(MCST)
and Korea Creative Content Agency(KOCCA) in the Culture Technology(CT)
Research & Developement Program 2011.

Discovering and Ranking New Links for Linked Data Supplier 365

References

1. Aleman-Meza, B., Halaschek, C., Arpinar, I.B., Sheth, A.: Context-aware semantic
association ranking. In: Proceedings of SWDB, vol. 3, pp. 33–50. Citeseer (2003)

2. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank: Authority-based key-
word search in databases. In: Proceedings of the Thirtieth International Conference
on Very Large Data Bases, vol. 30, pp. 564–575. VLDB Endowment (2004)

3. Bamba, B., Mukherjea, S.: Utilizing Resource Importance for Ranking Semantic
Web Query Results. In: Bussler, C.J., Tannen, V., Fundulaki, I. (eds.) SWDB 2004.
LNCS, vol. 3372, pp. 185–198. Springer, Heidelberg (2005)

4. Delbru, R., Campinas, S., Tummarello, G.: Searching web data: an entity re-
trieval and high-performance indexing model. Web Semantics: Science, Services
and Agents on the World Wide Web (2011)

5. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V.C., Sachs, J.: Swoogle: A semantic web search and metadata engine. In: Proc.
13th ACM Conf. on Information and Knowledge Management (2004)

6. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and Ranking
Knowledge on the Semantic Web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen,
M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005)

7. Franz, T., Schultz, A., Sizov, S., Staab, S.: TripleRank: Ranking Semantic Web
Data by Tensor Decomposition. In: Bernstein, A., Karger, D.R., Heath, T., Feigen-
baum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS,
vol. 5823, pp. 213–228. Springer, Heidelberg (2009)

8. Hogan, A., Harth, A., Decker, S.: Reconrank: A scalable ranking method for seman-
tic web data with context. In: 2nd Workshop on Scalable Semantic Web Knowledge
Base Systems. Citeseer (2006)

9. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of
the ACM (JACM) 46(5), 604–632 (1999)

10. Lempel, R., Moran, S.: Salsa: the stochastic approach for link-structure analysis.
ACM Transactions on Information Systems (TOIS) 19(2), 131–160 (2001)

11. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice. com: a document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies 3(1), 37–52 (2008)

12. Toupikov, N., Umbrich, J., Delbru, R., Hausenblas, M., Tummarello, G.: Ding!
dataset ranking using formal descriptions (2009)

13. Wu, G., Li, J.: Swrank: An approach for ranking semantic web reversely and con-
sistently. In: SKG, pp. 116–121 (2007)

14. Wu, H., Cheng, G., Qu, Y.: Falcon-s: An ontology-based approach to searchin-
gobjects and images in the soccer domain. In: Supplemental Proceedings of ISWC
(2006)

Probabilistic Multi-Context Systems

Marco Sotomayor1,�, Kewen Wang1, Yidong Shen2, and John Thornton1

1 Griffith University, Australia
2 Institute of Software, Chinese Academy of Sciences, China

marco-vinicio.sotomayorsanchez@griffithuni.edu.au

Abstract. The concept of contexts is widely used in artificial intelligence. Sev-
eral recent attempts have been made to formalize multi-context systems (MCS)
for ontology applications. However, these approaches are unable to handle prob-
abilistic knowledge. This paper introduces a formal framework for representing
and reasoning about uncertainty in multi-context systems (called p-MCS). Some
important properties of p-MCS are presented and an algorithm for computing the
semantics is developed. Examples are also used to demonstrate the suitability of
p-MCS.

1 Introduction

The formalization of context is a critical building block towards the achievement of
the semantic web vision [5]. In order to deliver accurate and unambiguous information,
ontology-driven applications rely significantly on context modeling [6]. An ontology
is a formal representation of shared terms and their relationships for an application do-
main. Ontologies have been widely applied in situations where the use and management
of shared information are core issues (e.g. in medical applications [12,14]). According
to the vision of the semantic web, information on the internet will also be represented
as ontologies [5]. In this setting, explicit models of semantic information are needed in
order to support information exchange. Since shared ontologies define a common un-
derstanding of terms for an application of interest, the use of ontologies makes it pos-
sible to communicate and exchange information between different users and systems
on a semantic level. However, ontologies can be used only when a consensus about
their contents is reached. Moreover, building and maintaining ontologies can become
difficult in a dynamic, open and distributed domain such as the internet. To enhance
the use and management of highly distributed ontologies, the framework of contextual
ontologies has been established and an extension of OWL called C-OWL has been in-
troduced in [1]. C-OWL is based on the theory of multi-context systems (MCS) [4]. To
the best of our knowledge, the problem of incorporating probabilistic information into
multi-context systems is still open

Multi-Context Systems (MCS), constitute one of the most recognized and mature
formalizations of context in AI [15]. MCS are a generalization of Natural Deduction
systems, which allow the use of different languages through a mechanism of tagged
formulae [15]. This implies that in different languages or contexts, a logical proposition

� Corresponding author.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 366–375, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Probabilistic Multi-Context Systems 367

Fig. 1. Magic Box

can be interpreted in different ways. However, classical logic cannot express the degree
of certainty of premises, nor the degree of certainty in conclusions derived from these
premises (Williamson cited by [8]).

Figure 1 illustrates this situation using a typical Magic Box example [4] where Mr1
and Mr2 are unable to distinguish the depth of a ball inside a magic box. It is assumed
that Mr1 and Mr2 are both almost blind but have knowledge about the compatibility
relation between their different perspectives. So, Mr1 cannot answer with certainty if
there is a ball on the right, he can only assume according his knowledge that “there
is a ball on the right” with probability p. The same reasoning applies to Mr2, except
that the probabilities for Mr2 are calculated in relation to Mr2’s context. A probabilistic
multi-context system provides a language for representing what Mr1 and Mr2 know
about their environment that allows them infer new probabilistic knowledge based on
what they already know. Existing semantics of MCS are unable to handle probabilistic
knowledge of contexts. For this reason the aim of this paper is to introduce a semantic
framework for representing and reasoning about probabilistic knowledge in logic-based
MCS.

The probabilistic logic approach in this paper is based on the work of [3,9,10], which
dealt with formalization and semantics for uncertainty in logic programming. An im-
portant contribution of the current research is the introduction of probability theory into
MCS, which provides more expressive languages in different contexts without losing
the original logic of multi-context systems proposed by Giunchiglia [4]. The paper also
shows that probabilistic multi-context systems can be reduced to MCS by simply as-
signing a probability of one to every proposition. This shows that MCS are a particular
case of more general probabilistic multi-context systems. In addition, the idea of min-
imal information in context proposed by [13] is preserved in order to emphasize and
contrast the relationship between MCS and p-MCS, and at the same time provide a
probabilistic notion of the information entailed logically.

2 Probabilistic Multi-Context Systems

This section introduces the p-MCS framework for representing and reasoning about
probabilistic information in multi-context systems. The first step in formalizing p-MCS
is to specify the type of language used in each context.

368 M. Sotomayor et al.

Suppose that we have a set of contexts called K and denote context k as an element
of K . Each context k is associated with a finite set Ak of labeled atoms of the form k
: a (a denotes an atom). Informally, k : a means that atom a belongs to context k. Note
that Ak contains only the atomic propositions needed to express the basic knowledge
in context k. A propositional language Lk is constructed over Ak in a standard sense.
A formula in context k can be expressed as φ ∈ Lk. The next step is to introduce an
uncertainty degree to a formula in Lk.

Let k :φ be a labeled formula and μ be a point probability between [0, 1], then a
formula function in a particular context (k :φ)μ is called p-labeled formula. Intuitively,
(k : φ)μ means that the probability of formula φ in context k is μ.

Definition 1. A p-labeled rule r is of the form (k : F)μ ← (k1 : F1)μ1, . . . , (kn :
Fn)μn where n ≥ 0, (k : F)μ and each (ki : Fi)μi are p-labeled formulas.

Informally, this rule reads that if the probability of each Fi in context ki is equal to μi

for i = 1, . . . , n, then the probability of F in context k is equal to μ. The p-labeled
formula (k : F)μ is called the head of the p-labeled rule r, denoted head(r). The set
{(k1 : F1)μ1, . . . , (kn : Fn)μn} of p-labeled formulas is called the body of r, denoted
body(r). We remark that in the traditional probabilistic logic programming approaches
[10,9], probabilities are assigned to atoms and the premises and head of the rule belong
to the same context.

A local p-rule r for context k is a p-labeled rule without premises or body. Local
knowledge of context k is a set of its local p-rules.

A bridge rule r for context k is a p-labeled rule such that (1) head(r) has label k and
(2) a p-labeled formula in body(r) belongs to at least one context apart from context
k. Such a rule provides a way for inferring new knowledge in context k from other
contexts.

Definition 2. A probabilistic multi-context system (or p-MCS) T is of the form
[(R1, B1), . . . , (Rm, Bm)] where Rk is a set of local p-rules for context k and Bk is a
set of bridge rules for context k for k = 1, . . . ,m.

In the same way as for ordinary MCS [13], a probabilistic multi-context system is
defined as a specification of contextual probabilistic information and inter-contextual
probabilistic information flow. Contextual information can be specified through local
p-rules (facts) and inter-contextual information flow through bridge rules.

Given a p-MCS T = [(R1, B1), . . . , (Rm, Bm)], each context (Rk, Bk) represents
two types of knowledge: (1) the knowledge Bk directly derived from the local context
k and other contexts through bridge rules; and (2) the knowledge ηk inferred from Bk

through probabilistic reasoning [10]. This type of reasoning problem is called proba-
bilistic entailment [10], and is formally expressed as follows:

ζk = Bk

⋃
ηk (1)

Probabilistic Multi-Context Systems 369

Example 1. The scenario illustrated in Figure 1 can be formalized as a p-MCS as
follows:
l = “The ball is on the left” r = “The ball is on the right” c = “The ball is in the

center”.
T = [(R1, B1), (R2, B2)]. The two contexts are defined as (R1 = {r1}, B1 = {r3}),
(R2 = {r2}, B2 = {r4}).

r1 : (1 : ¬r)0.5 ←
r2 : (2 : c)0.5 ←
r3 : (1 : l ∨ r)0.75 ← (2 : l ∨ c ∨ r)0.875
r4 : (2 : l ∨ c ∨ r)0.875← (1 : l ∨ r)0.75

Then B1 = {(1 : ¬r)0.5, (1 : l ∨ r)0.75}.
To explain how to determine η1, we need some basics of probabilistic reasoning.

One important concept in probability theory is the notion of worlds or atomic events
[11]. Given a propositional language, we define a world as a Herbrand interpretation.

Let Nk be the number of propositions in Ak. Then there are 2Nk possible worlds for
context k. For example, if A1 = {1 : l, 1 : r}, then there are four possible worlds Wj

(j = 1, 2, 3, 4) and each such world Wj is associated with a probability wj . We use
LMk to denote a finite set of possible worlds for context k: LMk = {W1, . . . ,Wm}.

Definition 3. A contextual world probability density function for a context k is de-
fined as a function WPk : LMk → [0, 1] satisfying ΣW∈LMKWPk(W) = 1. Denote
WPk(Wj) = wj ; 0 ≤ wj ≤ 1, 1 ≤ j ≤ m (m denotes possible worlds for context k).

Because the possible worlds for every context are different, a world probability density
function has to be defined for every context.

A p-local interpretation for context k is a pair W : μ of an interpretation W of Lk

and an (associated) probability value μ. Let Mk be the set of p-local interpretations for
context k : Mk = {W1 : w1, . . . ,Wm : wm}

Definition 4. A p-labeled chain is of the form: c = {c1, . . . , cm} where ck ⊆ Mk for
k = 1, . . . ,m.

A p-labeled chain describes a world probability density function for every context k.
Every world is mutually exclusive and a proposition is equal to the disjunction of all

the worlds where it holds [11]. For example: l = {W1

⋃
W2}.

The general laws of the probability theory can be deduced through Kolmogorov’s
axioms [11]. One of Kolmogorov’s axioms states that: p(W1∨W2) = p(W1)+p(W2)−
p(W1 ∧W2). Because W1 andW2 are mutually exclusive, then: p(l) = p(W1 ∨W2) =
p(W1) + p(W2)− 0 = w1 + w2

Given this demonstration it can be stated that the probability of a proposition is equal
to the sum of the probabilities of the worlds where it holds (where a proposition is true).

Definition 5. A contextual probabilistic interpretation is a mapping from Lk to [0,1]
defined as follows: For each φ ∈ Lk: Iwpk

(φ) = ΣW |=φ WPk(W)

370 M. Sotomayor et al.

Given a set of contextual probabilistic interpretations Iwpk
(φ) in context k, a set of

equations is generated under the following constraints:

I. ΣWj |=φ Wj = μ , for all Iwpk
(φ) = μ.

II. Σm
j=1 wj = 1.

III. 0 ≤ wj ≤ 1, 1 ≤ j ≤ m.

Now the notion of satisfiability for p-MCS can be introduced:

– A p-labeled chain c satisfies a p-labeled formula (k : φ)μ iff Iwpk
(φ) = μ

– A p-labeled chain c satisfies a p-labeled rule, iff whenever c satisfies the body of
the rule body(r) then the head of the rule head(r) must be also satisfied.

– A p-labeled chain c satisfies a system T (i.e p-MCS) iff it satisfies every p-labeled
rule of the system.

3 Minimal Probabilistic Entailed Chain/Fixpoint

The following section describes the process of constructing the probabilistic solution
chain and the minimal probabilistic entailed chain and shows how to test if the contex-
tual probabilistic interpretations are consistent in the set of equations that are generated.
Finally, it is shown how to construct the contextual world probability density.

Let C be the set of all p-labeled chains. It is possible to order the p-labeled chains
according to the amount of information that they contain. A p-labeled chain c is less
informative than c′ (c % c′), if for every context k, ck ⊇ ck’ [13].

Definition 6. A p-labeled solution chain cp of a p-MCS is a p-labeled chain such that
satisfying the p-MCS.

Based on [13], it can be argued that a minimal solution chain cs in a non-probabilistic
MCS contains all the logical entailments for every context k .

Definition 7. A minimal probabilistic entailed chain ce contains all the probabilistic
entailments ηk per every context k. ce : cs → [0, 1]; ce = {η1, . . . , ηm}

i.e. ce is the result of a mapping of all Herbrand interpretations of cs to a probability
between [0,1].

Proposition 1. Let cp and ce be a probabilistic solution chain and a minimal proba-
bilistic entailed chain of a p-MCS, respectively. Then cp ⊇ ce

A non-probabilistic multi-context system is a particular case of a probabilistic multi-
context system where every formula in the system is associated with a probability of
one. The minimal solution chain cs [13] in a non-probabilistic multi-context system dis-
cards Herbrand interpretations because these worlds have a probability of zero. How-
ever probabilistic multi-context systems have to keep these Herbrand interpretations in
the solution chain because these worlds can have probabilities associated to them. For

Probabilistic Multi-Context Systems 371

this reason a probabilistic solution chain has to provide information about the mini-
mal solution chain in non-probabilistic multi-context systems and the description of the
contextual world probability density function. In cases where the probabilistic interpre-
tations of the system do not comply with the probability theory, a probabilistic solution
chain cannot be determined.

Roelofsen and Serafini [13] prove that every non-probabilistic multi-context system
S has a unique minimal solution chain cs. Then, according to proposition 1, cp contains
a unique minimal probabilistic entailed chain ce.

In order to find the probabilistic solution chain cp and at the same time the minimal
probabilistic entailed chain ce, the following analysis is conducted.

According to formula 4, Bk denotes a finite set of sentences or formulas in a
context k.

Bk = {(k : ϕ1)μ1, . . . , (k : ϕm)μm}

Given this set of sentences, it can be inferred that: ηk = {(k : ϕ1)μ1∧, . . . ,∧(k :
ϕm)μm} = {(k : ψ)μ}. For a finite set of contexts K for k = 1, . . . ,m, then: ce =
{η1, . . . , ηm} = {(k1 : ψ1)μ1, . . . , (k1 : ψm)μm}.

Because this chain is unique in a system and constitutes the probabilistic entailment
for system T, it is necessary to introduce an operator that computes this chain.

We can say that Bk, the set of formulas that constitute the knowledge base in context
k, is composed of facts and information obtained through bridge rules. For a chain c, if
c |= body(r) then head(r) ∈ Bk.

Assuming that B1 (for context 1) contains two formulas ϕ and ψ: B1 = {(k1 :
ϕ)μ1, (k1 : ψ)μ2}

It can be inferred:N1 = {(k1 : ϕ)μ1 ∧ (k1 : ψ)μ2} = {(k1 : υ)μ}
In order to address the probabilistic consistency, the following Kolmogorov’s axiom

can be applied:

P (A ∧B) = P (A) + P (B)− P (A ∨B)

This axiom can be expressed as:

Iwp1
(ϕ ∧ ψ) = Iwp1

(ϕ) + Iwp1
(ψ)− Iwp1

(ϕ ∨ ψ) = μ1 + μ2 − Iwp1
(ϕ ∨ ψ)

Then:N1 = (k1 : υ)μ = (k1 : υ)Iwp1
(ϕ ∧ ψ); IWP 1

(ϕ∧ψ) =
∑

W |= ϕ∧ψWP 1(W)

= μ;μ ∈ [0, 1]

As can be seen, being given the probabilities of two formulas is not sufficient to find
the probability of their conjunction. Also, the probabilistic interpretation Iwp1

(ϕ ∧ ψ)
provides information of the Herbrand interpretations or worlds where ϕ ∧ ψ holds,
which is its logical entailment υ. For example, if ϕ holds in worlds W2, W4 and ψ
holds in worlds W1, W2, W3 then ϕ ∧ ψ holds in W2. This means that the logical
entailment υ is equal to W2.

Every probabilistic interpretation generates an equation. For example, ifm = 4 (four
worlds): Iwp1

(l) = w1 + w2 = 0.5
The first row in Table 1 represents the default constraint and the second row repre-

sents the equation w1 + w2 = 0.5. Table 2 depicts a system of equations, where the

372 M. Sotomayor et al.

Table 1.

w1 w2 w3 w4 0 ≤ μ ≤ 1

1 1 1 1 1
1 1 0 0 0.5

Table 2.

w1 w2 . . .wm 0 ≤ μ ≤ 1

IWP 1 (ϕ) μ1

IWP1 (ψ) μ2

IWP 1 (ϕ ∨ ψ) μ1 + μ2 − IWP1 (ϕ ∧ ψ)

IWP1 (ϕ ∧ ψ) μ

goal is to obtain the probabilistic entailment N1 , given ϕ and ψ. These equations are
processed in such way that the probabilistic consistency in the right column of the table
can be verified and N1 = (k1 : υ)μ is obtained in the last row. The logical entailment
υ is implicit in the equation (w1+w2 = 0.5, Table 2), because Herbrand interpretations
that hold correspond to a value of one in the equation and Herbrand interpretations that
do not hold correspond to a value of zero in the equation. Let this process be the KE
function.

Definition 8. The KE function for k = 1, . . . ,m is of the form :
KE(IWP k

(ψ)) = IWP k
(Bk ∧ψ) = Nk; if a p-chain c |= body(r) then head(r) ∈

Bk

Bk represents the knowledge base in a context k. The KE function can be applied itera-
tively for many p-formulas. Also, if the same process is applied for all contexts then ce
can be obtained.

Theorem 1. KE is monotonic.

Proof. Given a default constraint in LEk and an interpretation ϕ in KE :

(i) KE(Iwpk
(ϕ)) = Iwpk

(ϕ ∧ 1) = Iwpk
(ϕ)

Then adding another interpretation ψ in KE : (ii)KE(Iwpk
(ψ)) = Iwpk

(ϕ ∧ ψ).
If KE is monotonic: whenever IWPk (ψ) = IWPk (ϕ) , (iii)KE(Iwpk(ψ)) ≤KE(Iwpk

(ϕ))

Replacing (i) and (ii) in (iii): Iwpk
(ϕ ∧ ψ) ≤ Iwpk

(ϕ).
A Kolmogorov’s axiom states that:
If φ logically implies λ then P (φ) ≤ P (λ) because (ϕ ∧ ψ) ⊆ ϕ then (ϕ ∧ ψ)→ ϕ
Then if (ϕ ∧ ψ) implies ϕ : IWP k

(ϕ ∧ ψ) ≤ IWP k
(ϕ)

Because KE is monotonic and sets of all p-labeled chains (C,() form a complete
lattice, according to the Knaster-Tarsky theorem (cited by [7]), it can be stated that:

Theorem 2. KE has a least fixpoint

This least fixpoint contains ce or the set of all the probabilistic entailmentsNk.

Example 2. Continuing Example 1 to find cp and ce:

Probabilistic Multi-Context Systems 373

Step 1:
r1 : (1 :∼ r)0.5 ←

c⊥ denotes the initial p-labeled chain (containing all p-local models with unknown
probabilities). Because body(r1) is empty then c⊥ |= body (r1) . That means that
head(r1)∈ B1

Iwp1
(∼ r) = w2 + w4 = 0.5

c1=

⎧⎨
⎩

[{l, r} : w1, {l, ∼ r} :w2, {∼ l, r} : w3, {∼ l, ∼ r} :w4]1,
[{l, c, r} : w1, {l, c, ∼ r} : w2, {l,∼ c, r} : w3, {l,∼ c,∼ r} : w4, {∼ l, c, r} : w5,

{∼ l, c,∼ r} : w6, {∼ l,∼ c, r} : w7, {∼ l,∼ c,∼ r} : w8]2

⎫⎬
⎭

Step 2:
r2 : (2 : c)0.5 ←

Because body(r2) is empty then c1 |= body (r2) . That means that head(r2)∈ B2

Iwp2
(c) = w1 + w2 + w5 + w6 = 0.5

c2=

⎧⎨
⎩

[{l, r} :w1, {l, ∼ r} :w2, {∼ l, r} : w3, {∼ l,∼ r} : w4]1,
[{l, c, r} :w1, {l,c,∼ r} :w2, {l,∼ c, r} : w3, {l,∼ c,∼ r} : w4, {∼ l, c, r} :w5,

{∼ l, c, ∼ r} :w6, {∼ l,∼ c, r} : w7, {∼ l,∼ c,∼ r} : w8]2

⎫⎬
⎭

Step 3:
r3 : (1 : (l ∨ r))0.75 ← (2 : (l ∨ c ∨ r))0.875
Iwp2

(l ∨ c ∨ r) = w1 + w2 + w3 + w4 + w5 + w6 + w7 = 0.875
w8 = 1− 0.875 = 0.125
c2 |= (2 : (l ∨ c ∨ r))0.875 then head(r3)∈ B1

Iwp1
(l ∨ r) = w1 + w2 + w3 = 0.75

Step 4:
r4 : (2 : (l ∨ c ∨ r))0.875 ← (1 : (l ∨ r))0.75
Iwp1

(l ∨ r) = w1 + w2 + w3 = 0.75

w1 w2 w3 w4

1 1 1 1 1
0 1 0 1 0.5
1 1 1 1 1.5-w2-w4

0 1 0 1 0.5
1 1 1 0 0.75
1 1 1 1 1.25-w2

0 1 0 0 0.25
1 1 1 0 0.75
1 1 1 0 1-w2

0 1 0 0 0.25

w1 w2 w3 w4 w5 w6 w7 w8

1 1 1 1 1 1 1 1 1
1 1 0 0 1 1 0 0 0.5
1 1 1 1 1 1 1 1 1.5-w1-w2-w5-w6

1 1 0 0 1 1 0 0 0.5
1 1 1 1 1 1 1 0 0.87
1 1 1 1 1 1 1 0 1.37-w1-w2-w5-w6

1 1 0 0 1 1 0 0 0.5
1 1 1 1 1 1 1 0 0.87
1 1 1 1 1 1 1 0 0.87-w1-w2-w5-w6

1 1 0 0 1 1 0 0 0.5

c3 |= (1 : (l ∨ r))0.75 then head(r4) ∈ B2(2 : (l ∨ c ∨ r))0.875
Iwp2

(l ∨ c ∨ r) = w1 + w2 + w3 + w4 + w5 + w6 + w7 = 0.875

374 M. Sotomayor et al.

c4 =

⎧⎨
⎩

[{l, r} : w1, {l, ∼ r} :0.25, {∼ l, r} : w3, {∼ l,∼ r} : 0.25]1,
[{l,c, r} :w1, {l, c,∼ r} :w2, {l,∼ c, r} : w3, {l,∼ c,∼ r} : w4,

{∼ l, c, r} :w5, {∼ l,c, ∼ r} :w6, {∼ l,∼ c, r} : w7, {∼ l,∼ c,∼ r} : 0.125]2

⎫⎬
⎭

c3 = c4 ; cp = c4

ce =

{
[{l, ∼ r} :0.25]1,

[({l, c, r} , {l, c,∼ r} , {∼ l, c, r} , {∼ l, c, ∼ r}) :0.5]2

}

Then, ce can be interpreted as: “The probability that there is a ball on the left and not
on the right (relative to Mr1) is 0.25” and “The probability that there is a ball in the
center (relative to Mr2) is 0.5”.

Although the precise connection between contextual ontologies (e.g C-OWL) and p-
MCS is not being developed in this paper, we can extend Example 2, creating a mapping
between the probabilistic entailment obtained in context 1 and an ontology, using the
following bridge rule:

(onto : Ball(ball, left))0.25 ← (1 : l ∧ ¬r)0.25

4 Conclusion

This paper has proposed a theoretical approach to the introduction of uncertainty in
multi-context systems. A more expressive semantics has been presented in order to ex-
tend the notion of probability in multi-context systems. This additional expressiveness
brings new constraints that have to be harmonious and consistent with probability and
logic theory. In order to address this situation, a probabilistic logic semantic approach
based on the works of [3,9,10] has been extended to MCS. Also, a technique that deals
with probabilistic inconsistency and the deduction of a minimal entailed chain has been
incorporated to the framework.

There are some additional observations worth making about the characteristics of
the framework. Firstly, MCS can be embedded in p-MCS assigning to the propositions
a probability of one. This characteristic and the deduction of a minimal entailed chain
mean MCS can be incorporated into a more general framework. However, there are
practical limitations that need to be addressed in future work. For example, the joint
probability function or contextual world probability density function has to be specified
explicitly in tabular form, which requires exponentially many parameters. This circum-
stance could be a limitation in practical applications [2]. Nevertheless, this strategy
can be used as a theoretical foundation for different approaches [11]. Finally, Bayesian
Networks have been successful the last two decades in reducing the complexity of com-
putation of joint probability functions [2]. This suggests that future work should look
at incorporating the notion of conditional probabilities into p-MCS through Bayesian
Networks.

Probabilistic Multi-Context Systems 375

References

1. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.: C-OWL:
Contextualizing ontologies. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 164–179. Springer, Heidelberg (2003)

2. Cozman, F., Haenni, R., Romeijn, J., Russo, F., Wheeler, G., Williamson, J.: Combining
probability and logic. Journal of Applied Logic (2007)

3. Dekhtyar, M., Dekhtyar, A.: Revisiting the Semantics of Interval Probabilistic Logic Pro-
grams. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI),
vol. 3662, pp. 330–342. Springer, Heidelberg (2005)

4. Giunchiglia, F., Ghidini, C.: Local model semantics, or contextual reasoning = local-
ity+compatibility. Technical report. Instituto Trentino di Cultura (1997)

5. Hendler, J., Berners-Lee, T.: From the semantic web to social machines: A research challenge
for AI on the world wide web. Artificial Intelligence (2010)

6. Bao, J., Tao, J., McGuinness, D., Smart, P.: Context representation for the semantic web. In:
Proceedings of the WebSci 2010 (2010)

7. Lloyd, J.: Foundations of logic programming. Springer, Heidelberg (1987)
8. Ng, K., Lloyd, J.: Probabilistic reasoning in a classic logic. Journal of Applied Logic (2009)
9. Ng, R., Subrahmanian, V.: Probabilistic logic programming. Information and Computation

(1992)
10. Nilsson, N.: Probabilistic logic. Artificial Intelligence (1986)
11. Norvig, P., Russell, S.: Artificial intelligence: a modern approach. Prentice Hall/Pearson Ed-

ucation (2003)
12. Rector, A., Nowlan, W.: The GALEN project. Computer Methods and Programs in

Biomedicine (1994)
13. Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proceedings of

19th IJCAI (2005)
14. Schulz, S., Cornet, R., Spackman, K.: Consolidating SNOMED CT’s ontological commit-

ment. Applied Ontology (2011)
15. Serafini, L., Bouquet, P.: Comparing formal theories of context in AI. Artificial Intelligence

(2004)

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 376–384, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Web Schema Construction Based on Web Ontology
Usage Analysis

Jamshaid Ashraf and Maja Hadzic

DEBII, Curtin University, Western Australia
jamshaid.ashraf@gmail.com, maja.hadzic@cbs.curtin.edu.au

Abstract. The ultimate vision of the semantic web is to enable computers to
understand and process the information published on the web. This vision is
being primarily achieved by web ontologies which semantically annotate the
data. In order to effectively access the structured data mainly published in RDF
format, one needs to understand not only the prevalent vocabularies being used
by the community, but also the extent and the patterns of its usage. In this
paper, we achieve this by proposing a framework that analyzes the domain
ontology usage and rank terms (classes, properties and attributes) based on
multi-criteria characteristics that include population, coverage, and structure.
We consider a purpose-built RDF dataset to select the popular terms and
construct the schema based on the ranking, enabling the semantic web
application to acquire information from the web of data effectively and
efficiently.

Keywords: Ontology Usage Analysis, RDF, Semantic Web, eCommerce.

1 Introduction

Humans have been the only primary actors in the traditional web, whereas in the
semantic web, computers have become equal citizens in this emerging social
machines (digital) ecosystem. This phenomenon has extended the web into a
decentralized knowledge platform for dissemination and sharing of information.
Ontologies are at the heart of this process, providing terms and relationship between
terms, agreed upon by users, in a machine understandable and process-able format.
Terms defined by ontologies are then used to annotate the data, providing semantics
and structure to the published information. The ever-growing availability of semantics
and structures on the web [1] is transforming the web into a global database where
information can be queried, not just merely searched.

Over the past five years, a few significant developments have given momentum to
the widespread adoption of semantic web technologies. Simplicity of Linked Data
principles, the tremendous success of the Linked Open Data (LOD) project1 and the
recognition and consumption of semantic data by search engines (Yahoo and Google)

1 http://richard.cyganiak.de/2007/10/lod/

 Web Schema Construction Based on Web Ontology Usage Analysis 377

are a few of the most significant events that have helped to bootstrap semantic data on
the web. Hence, we now have billions of triples on the web in different domains such
as health care and life sciences (HCLS), social spaces, digital libraries, financial
services, oil and gas exploration, and eCommerce, to name a few. Given all this, now
we are at the point where we can start conducting empirical studies to analyze the data
and perform meaningful measurements. We can provide checkpoints allowing us to
analyze the data from different aspects as highlighted in [5] such as data quality, data
management and ontology usage.

Having reached the point where we have billions of triples and thousands of
ontologies [6], it is of paramount importance to conduct a systematic study on the
actual use of domain-focused terminological knowledge on the web and to provide
feedback on the improvement and refinement process of the semantic web data life
cycle. Therefore, there is a need to develop a systematic approach for evaluating and
analyzing the particular ontology usage, its adoption and uptake by different users.

In this paper, we present a framework to evaluate the RDF dataset and the domain
specific ontology/vocabulary usage. The result of usage analysis along with the
structural characteristics is then used to rank the terms based on multi-criteria
characteristics that include population, coverage and structure. To conduct the
empirical study, in order to reflect the real-world setting, an RDF dataset comprised
of hundreds of different websites is collected from the web in eCommerce. We
propose a set of metrics to measure the ontology usage, ontology instantiation and
population.

The remainder of the paper is organized as follows. Section 2 discusses the overall
approach used in this research. In section 3, we discuss the dataset collection, dataset
characteristics and the experiment. Section 4 discusses related work and presents the
conclusion, with the direction of future work indicated in section 5.

2 Analyzing the Ontology Usage in RDF Dataset

In the following, we present the details of our approach to evaluate the RDF dataset
and identify the different domain ontologies being used and based on their usage,
construct the web schema. The approach we follow is generic and can be virtually
applied to any domain. However, in order to empirically ground our study, we
selected the web eCommerce domain (vertical industry) for this research as we
believe that this domain has the largest real instantiation of semantic data on the web
after the HCLS (Healthcare and Life Science) domain. The approach is comprised of
the following steps and details are presented in subsequent sections.

- Construct the vocabulary graph. A populated vocabulary graph, where each node
represents the vocabulary used in the dataset, is the result of this step.

- Analyse the vocabularies to find the usage patterns and ontology instantiation. For
detailed investigation, we use the Ontology USage Analysis Framework (OUSAF)
[3] which provides a set of metrics for measuring the terminology usage defined by
the domain ontologies.

378 J. Ashraf and M. Hadzic

- Rank the terms of each ontology (represented by vocabulary graph) based on multi-
criteria characteristics that include population, semantic coverage and semantic
relationships.

- Construct the web schema covering the key concepts and attributes based on their
ranking.

2.1 Construction of the Vocabulary Graph

In this section, first we present the definitions used throughout the paper and then
discuss the construction of a vocabulary graph.

Vocabulary Graph. A vocabulary graph VG is a tuple <V, E>, where n is a node (n
 V) such that n is the vocabulary namespace mentioned in the dataset based on a

simple heuristic: a triple with rdf:type predicate, object is the class and the subject is
the instance of that class. e E is an edge of graph V linking two nodes n1 and n2
such that there is a triple in the dataset where n1 is the namespace of the subject and n2
is the namespace of the object. Hence, we will have a graph representing all the
vocabulary namespaces (ontologies) available in the dataset. The vocabulary graph
provides the list of the vocabularies being used in the RDF dataset. The vocabulary
graph has as many nodes as there are vocabularies used to annotate the structured data
on the web. We queried the dataset to access the triples with a pattern of having
rdf:type used as predicate, indicating that the object is an RDF resource defined as a
class in the ontology document. The URIs of the RDF resource matching the
abovementioned patterns are used to extract the namespace URI of the vocabulary
and the term defined by the namespace. The nodes’ content of vocabulary graph is
then aggregated to build the list of vocabularies used and the number of terms
(terminological knowledge) of each vocabulary used in the dataset.

2.2 Vocabulary/Ontology Usage Analysis

Vocabulary usage analysis is conducted using the OUSAF framework [3] which
provides a set of metrics to measure the usage, taking into consideration the ontology
population2 and the structural characteristics.

Concept Richness (CR). The concept richness of a concept CR(C) of a given
vocabulary is calculated by adding the number of non-hierarchical relationships it has
with other concepts and the data properties defined in the ontology document. CR(C)
is calculated using the following formula:

CR(C) = |PC| + |AC|

PC returns the number of object properties of C while AC returns the number of data
properties.

2 [2] defines ontology population as having occurred when an ontological term (i.e. concept,

property or individual) is used to annotate data.

 Web Schema Construction Based on Web Ontology Usage Analysis 379

Concept Usage (CU). In concept usage, we measure the instantiation of a particular
concept in a dataset. In the RDF graph, we calculate the triples <?instance rdf:type
v:Con >, where Con is the concept defined by the ontology v. The concept usage
CU(C) is measured as follows:

CU(C) = |t = (s,p,o) | p = rdf:type, o=C|

CU(C) helps in ranking the concepts based on their instantiation in the dataset.

Relationship Value (RV). In ontology, a concept is linked with other concepts using
a typed relationship, allowing semantic web applications to use the information in a
more effective manner. Typed relationships are known as object properties linking the
instances of the concepts defined as the domain with the instances of the concept
defined as range of the property.

RV(P) = |dom(P)| + |range(P)|

dom and range are the domain and range of the property P respectively in an ontology
document.

Relationship Usage (RU). Relationship usage calculates the triples in which object
property is used as a predicate of the RDF statement. Relationship value is helpful in
ranking and indexing the properties based on their usage for efficient information
retrieval.

RU (P) = | t:= (s,p,o) | p = P|

Similarly, we have Attribute Value (AV) and Attribute Usage (AU) to measure the
data property value and usage in the dataset as follows:

AV(A) = |dom(A)|

AU(A) = |t:= (s,p,o)|p A, o L)|

The aforementioned metrics are implemented as part of the ontology usage analysis
framework and can be used for any number of ontologies.

2.3 Ranking the Terms

To rank the terms based on the empirical data, the rank of a given term t of
vocabulary/ontology v is calculated by aggregating the TermUsage in the dataset. To
offer the preferential aspect to the ranking, weights are used to adjust the priority of
each measure accordingly. To normalize the measures and cast them into a similar
range, we divide each measure value by the maximum measure value of each term
represented in the vocabulary graph.

380 J. Ashraf and M. Hadzic

The ranking of each term of ontologies extracted from the RDF dataset helps in
constructing the Web Schema to represent the prevailing structure and semantic
metadata for semantic web client applications. Additionally, vocabulary graphs help
us to better understand the co-usability of different vocabularies in a specific domain
and identify the relationship(s) between them.

3 Dataset and Experiment

To conduct the empirical study on the RDF data and analyse the vocabulary usage in
a specific (focused) domain, we build the dataset to serve as a representative sample
of the web of data currently on the web. The collected dataset is sufficiently
representative and provides a snapshot of actual domain specific semantic data
enabling us to undertake meaningful measurements and understand how data is really
being used. We selected the eCommerce domain for this study and collected a dataset
that is predominantly comprised of the RDF data published in eCommerce websites.
In the following, we discuss the dataset collection approach and composition
characteristics.

3.1 Dataset Collection

In our previous works [4], we observed that approximately 90% of the semantic
eCommerce data (RDF data) is published on the web by embedding the structured
data snippets within HTML pages using different formats such as RDFa,
microformats and microdata. We focused on websites using the RDFa format for
mainly two reasons: first, several tools such as crawlers and parsers are available for
RDFa to extract the triples and populate the database; secondly, the new breed of
semantic search engines such as Sindice, Swoogle, Falcons and Watson index the web
documents with RDFa snippets. We used the Sindice API to retrieve all the URIs
(URLs to be specific, since we were interested in knowing the web domains hosting
semantic eCommerce data) returned by search engine in response to query against
eCommerce, Product, Price, Offer and Company keywords. Currently, most of the
web documents containing RDFa do not have links to any of the other documents in
the same web domain (website) and it was impractical to use a crawler based on RDF
link traversal. Therefore, we provided the list of web document URLs to the crawler
to extract the RDF data and transform it into a single format, ie. RDF/XML syntax
using the Any23 APIs.

3.2 Analysis of Vocabulary Usage

The generated vocabulary graph (VG) from the collected data set contains 33 unique
URIs. Each URI denotes an ontology/vocabulary used to describe the eCommerce
related information and the rank is the aggregated average value of the ontology usage
(including all the terms which have instantiation in the dataset) as listed in Table 1.

 Web Schema Construction Based on Web Ontology Usage Analysis 381

Table 1. List of ontologies found in dataset

Prefix Ontology URI Rank
gr http://purl.org/goodrelations/v1# 0.982
foaf http://xmlns.com/foaf/0.1/ 0.235
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns# 0.222
rdfs http://www.w3.org/2000/01/rdf-schema# 0.216
v http://rdf.data-vocabulary.org/# 0.085
vocab http://www.w3.org/1999/xhtml/vocab 0.063
dcterm http://purl.org/dc/terms/ 0.028
og http://opengraphprotocol.org/schema/ 0.021
rev http://purl.org/stuff/rev# 0.018
_logic http://www.logicpass.com/semanticweb.owl 0.014
owl http://www.w3.org/2002/07/owl# 0.012
_kica http://www.kica-jugendstil.com/semanticweb.rdf 0.011
_bunt http://www.buntegeschenke.de/semanticweb.rdf# 0.009
vCard http://www.w3.org/2006/vcard/ns# 0.007
audio http://purl.org/media/audio# 0.005
virt http://www.openlinksw.com/schemas/virtrdf# 0.004
dc http://purl.org/dc/elements/1.1/ 0.004
sioc http://rdfs.org/sioc/ns# 0.003
frbr http://vocab.org/frbr/core# 0.003
vso http://purl.org/vso/ns# 0.003
commerce http://purl.org/commerce# 0.002
vCard-rdf http://www.w3.org/2001/vcard-rdf/3.0# 0.002
_acig http://www.acigroup.co.uk/semanticweb.rdf# 0.001
yahoo http://search.yahoo.com/searchmonkey/commerce/ 0.001
void http://rdfs.org/ns/void# 0.001
powder http://www.w3.org/2007/05/powder-s# 0.001
_oplweb http://data.openlinksw.com/oplweb# 0.000
_loko http://lokool.com/semanticweb.owl# 0.000
scovo http://purl.org/NET/scovo# 0.000
wgs84 http://www.w3.org/2003/01/geo/wgs84_pos 0.000
eClass http://www.ebusiness-unibw.org/ontologies/eclass/5.1.4/# 0.000
_lokoo http://lokool.com/extendedgoodrelations.owl 0.000
pto http://www.productontology.org/id/ 0.000

In our calculation, to observe the unbiased usage pattern, we set all the weights to 1

which can be tuned to different values based on the preferential adjustment
requirements. For example, if the extracted web schema is intended to be used for
querying the semantic web structured data with high recall, then usage weights should
be set higher to incentive measures. In the dataset, a few of the ontologies (prefixes in
italic in Table 1) for which we could not find any known prefix in prefic.cc database
are used by a few of the publishers (web domains) and URIs in red are the ones for
which we were not able to retrieve the original ontology document.

Using the list of ontologies reported by the vocabulary graph, we retrieved the
authoritative description of each ontology from its hosting service in order to validate
the terms analyzed by the OUSAF framework before applying multi-criteria ranking
approach. In Table 2, we report the terms usage analysis with their ranking for two of
the highly populated ontologies of our dataset; foaf and gr. We present only a partial
list of the gr terms so as to fit within the space to increase readability.

Note that a few of the terms have a ranking value close to zero, but this is after
applying the 3 decimal precision format for readability. However, their usage is far
less than others. Based on the usage analysis and ranking, we constructed the web

382 J. Ashraf and M. Hadzic

schema representing the prevalent structure of semantic data on the web in the
eCommerce domain. In Table 3, we present the statistics of the web schema content
to summarize the experiment results.

Our vocabulary graph (VG) initially had 33 namespaces of vocabularies and 29 of
these were validated by their authoritative description which was used by the OUSAF
framework to rank the terms. The resultant web schema is comprised of 11 ontologies
and 49 concepts, 50 object properties and 49 attributes. gr is the dominating ontology
in web schema and sioc is the least used vocabulary. Since we focused on the
eCommerce domain, gr’s dominance is not surprising. However, it was quite
interesting to discover that several other ontologies are being co-used in the
eCommerce domain.

Table 2. List of ontologies found in dataset

 foaf gr

C
oncept

term rank

Person 0.536

Document 0.016

Organization 0.008

OnlineAccount 0.006

term rank

Offering 0.906

UnitPriceSpecification 0.476

TypeAndQuantityNode 0.431

ProductOrServicesSomeInstancesPlaceholder 0.416

QuantitativeValueFloat 0.220

ProductOrServiceModel 0.209

BusinessEntity 0.057

QuantitativeValue 0.032

O
bject P

roperty
 (relationships)

term rank

depiction 0.886

thumbnail 0.689

page 0.656

homepage 0.230

topic 0.125

member 0.012

mbox 0.010

primaryTopic 0.005

term rank

hasBusinessFunction 0.821

offers 0.725

hasPriceSpecification 0.485

eligibleCustomerTypes 0.438

typeOfGood 0.427

includesObject 0.424

acceptedPaymentMethods 0.418

availableAtOrFrom 0.409

D
atatype P

roperty
(attributes)

term rank

name 0.604

accountName 0.002

term rank

eligibleRegions 1.000

hasUnitOfMeasurement 0.480

validFrom 0.379

validThrough 0.379

hasCurrencyValue 0.226

hasCurrency 0.221

amountOfThisGood 0.190

hasStockKeepingUnit 0.139

 Web Schema Construction Based on Web Ontology Usage Analysis 383

Table 3. Web Schema content and statistics

 gr foaf v dcterm rev vCard audio sioc vso void scovo TOT

Concepts 22 4 6 2 1 3 2 - 6 2 1 49
ObjProperty 21 11 - - 3 6 - 1 8 - - 50
DataProperty 31 2 - - 1 10 - - 5 - - 49
TOTAL 68 17 6 2 5 19 2 1 19 2 1

4 Related Work

In the last few years, semantic web technologies have increasingly been adopted and
consequently, we are seeing a tremendous amount of structured data being published
on the web in almost every domain [5]. Given this, the use of ontologies and
vocabularies on the web has also increased [6] and subsequently has increased the
importance of analyzing ontology usage in order to better to understand its adoption
and usage, and the current trends.

Several researches have proposed different frameworks and sets of measurements
to evaluate ontologies. For example, in [7], the authors present a framework and set of
metrics to evaluate the richness, connectivity, fullness and cohesiveness of a given
ontology. Although the metrics proposed in their framework provides insight into
ontology structures, most of their study is carried out on either a small set of data or
on test data generated to obtain a sample representation of a dataset. In [2], the
authors have considered the actual social data by conducting their study on FOAF
documents published on the web. This work focused solely on FOAF vocabulary and
did not offer any generic framework to allow similar studies to be conducted on other
vocabularies.

Keeping in view the abovementioned points, in this work, we discuss the
implementation of a generic framework for analyzing semantic web data with focus
on domain ontologies and vocabularies.

5 Conclusion and Future Work

In this paper, we analyzed the RDF data currently published on the web in the
eCommerce domain in order to analyze the ontology usage and rank the terms to
construct Web Schema providing the semantic coverage of eCommerce data on the
web. As future work, we intend to extend this work to include data and ontologies
from other domains such as entertainment, healthcare and eGovernment and analyze
the data patterns and use of different vocabularies and ontologies.

References

1. Mika, P., Meij, E., Zaragoza, H.: Investigating the Semantic Gap through Query Log
Analysis. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta,
E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 441–455. Springer,
Heidelberg (2009)

384 J. Ashraf and M. Hadzic

2. Ding, L., Zhou, L., Finin, T., Joshi, A.: How the semantic web is being used: An analysis of
foaf documents. In: Proceedings of the 38th Annual Hawaii International Conference on
System Sciences (HICSS 2005) - Track 4, vol. 04, p. 113C. IEEE Computer Society,
Washington, DC, USA (2005),
http://portal.acm.org/citation.cfm?id=1042435.1042928

3. Jamshaid, A., Maja, H.: Domain Ontology Usage Analysis Framework. In: The
International Conference on Semantics, Knowledge and Grids, SKG 2011 (2011) (in press)

4. Ashraf, J., Cyganiak, R., O’Riain, S., Hadzic, M.: Open ebusiness ontology usage:
Investigating community implementation of GoodRelations. In: Linked Data on the Web
Workshop (LDOW 2011) at WWW 2011, the Proceedings of the Linked Data on the Web
WWW 2011 Workshop (LDOW 2011), Hyderabad, India, March 29 (2011)

5. Auer, S., Lehmann, J.: Creating knowledge out of interlinked data. Semantic Web 1(1-2),
97–104 (2010)

6. Hu, W., Chen, J., Zhang, H., Qu, Y.: How Matchable are Four Thousand Ontologies on the
Semantic Web. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 290–304.
Springer, Heidelberg (2011)

7. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman- Meza, B.: Ontoqa: Metric-based
ontology quality analysis. In: Proceedings of IEEE Workshop on Knowledge Acquisition
from Distributed, Autonomous, Semantically Heterogeneous Data and Knowledge Sources
(2005)

Building Linked Open University Data:

Tsinghua University Open Data as a Showcase

Yuanchao Ma, Bin Xu, Yin Bai, and Zonghui Li

Knowledge Engineering Group, Department of Computer Science and Technology,
Tsinghua University, Beijing, China

{myc,xubin,baiy,lzh}@keg.cs.tsinghua.edu.cn

http://keg.cs.tsinghua.edu.cn

Abstract. Linked Open University Data applies semantic web and
linked data technology to university data scenario, aiming at building in-
terlinked semantic data around university information, providing possibil-
ity for unified inner- and inter- school information query and comparison.
This paper proposes a general process of building linked open university
data, with procedures covering choosing datasets and vocabularies, col-
lecting and processing data, building RDF and interlink, etc. Tsinghua
University Open Data is used to demonstrate the process. Tsinghua Uni-
versity consist of 5 well-formed, interconnected datasets, with a number of
interesting applications has been built on top of them. Finally, remarkable
points about data collecting and processing is discussed.

Keywords: Open Data, Linked Data, Linked Open University Data,
SPARQL server, Semantic Portal.

1 Introduction

As tools and standards related to the Semantic Web are becoming comprehensive
and stable, how to build high-quality semantic data and how to make use of these
semantic data, become two major challenges in the development of the Semantic
Web. Linked Data1 project describes a well-acknowledged standard method of
publishing interlinked structured data based on the Semantic Web technology[2].
The LOD2 project now has published hundreds of datasets using Linked Data
standard, covering a large variety of domains. [4]

Linked Open University Data builds linked open data around universities
and academic institutions. Linked open university data under a unified schema
provides consistent data access to different universities, offering convenience for
inner-university and inter-university information management.

However, building linked open university data faces some major challenges.
First of all, there is no unified, well accepted vocabulary for describing university-
related information. What is more, as existing well-structured data about uni-
versity which is publicly accessible is very limited, collecting and organizing raw

1 http://linkeddata.org
2 http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 385–393, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://keg.cs.tsinghua.edu.cn
http://linkeddata.org
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData
http://www.w3.org/wiki/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

386 Y. Ma et al.

data needs extra work. Establishing interlink to connect different datasets to-
gether is also great challenge, considering complex relationship between different
pieces of university data.

In this paper, we present a general process of building linked open university
data. We first list common data categories about university information, then
give a summary of useful vocabularies for describing university datasets. We
then discuss common approaches to retrieve raw data about university, and
the preprocessing and cleaning work necessary to get these raw data ready for
converting, followed by naming and linking strategies to make them correspond
with Linked Data standard. Then we describe techniques and tools used to
convert well-organized structured data of different formats to RDF format.

While describing the general process, Tsinghua University Open Data
(http://data.cs.tsinghua.edu.cn/) is demonstrated as a showcase. Unlike
other open datasets, our datasets are mostly built upon data crawled from
the public university website. We currently have 5 core datasets, with down-
loadable RDF/XML descriptions and a standard SPARQL endpoint. There is
also a HTML web interface available for SPARQL query and data browsing.
We have also built some applications by ourselves, including CampusAssistant,
CourseFinder, etc.

Processes and techniques described in this paper serves well in building Ts-
inghua University Open Data, and we believe that it is helpful when building
open data for other institutions, and for publishing general linked data as well.

The rest of this paper is organized as follows: In Section 2, we discuss common
categories of university data, and the vocabularies used to describe these data.
In Section 3, we discuss different approaches of getting raw data, and necessary
procedures to clean and normalize these data, as well as converting the processed
data to RDF. A detailed description of Tsinghua University Open Data is given
in Section 4. Then we give a brief introduction about related work in Section 5.
Finally, we discuss key points and difficulties in building linked open university
data in Section 6 and conclude the paper in Section 7.

2 Data Categories and Schema

2.1 Data Categories

Modern universities serve as educational institutions, academic research insti-
tutions, as well as living communities of their students and staff members. As
a consequence, there are so many aspects of university data. However, several
university datasets attract most attentions of people and act as core data con-
necting different aspects of university information, thus are of great importance
in building linked open university data.

We categorize the most important university information into the following
classes:

University Basic Information. General properties about the institution.
These mainly consist of founding year, motto, location, etc. Basic information

http://data.cs.tsinghua.edu.cn/

Building Linked Open University Data 387

also includes organization structure of the institution. Organizations - schools
and departments - description has organization name, size, superior organiza-
tion information, location of department building, etc.

Campus Information. Campus information contains geographic description
of the campus, as well as building information within and around the campus.

Educational Administrative Information. As facility for education, educa-
tional administrative information is important to not only students within
the university, but also to researchers and students outside campus. Courses,
exam schedule are examples of datasets of this category.

Faculty Information. Describes staff members of the university, mostly teach-
ers and researchers, their basic information, contact information, research
related information, etc.

2.2 Vocabularies

On the Semantic Web, vocabularies (or ontologies, more strictly), define the
concepts and relationships (also referred to as “terms”) used to describe and
represent an area of concern. Vocabularies are used to classify the terms that
can be used in a particular application, characterize possible relationships, and
define possible constraints on using those terms3. A standard set of vocabularies
not only provides unified access to data consumers, but also acts as an important
role in data mushup and inference.

There is a number of vocabularies that can be used in describing university
information. We have summarized a set of vocabularies for university datasets,
mainly considering popularity, comprehensiveness and quality. Most of the vo-
cabularies we use are strictly defined and public accessible.

FOAF 4 (Friend Of A Friend) is a universally acknowledged vocabulary devoted
to describe information about people and their relationships. FOAF is so
widely used that it appears in nearly every dataset of our site.

AIISO 5 The Academic Institution Internal Structure Ontology (AIISO) is
designed to describe the internal organizational structure of an academic
institution. In our datasets, we use aiiso:Course to describe university course
information, with is used along with FOAF and Org, and newly defined
extended properties to link courses with organizations and staff members.

Org 6 is a widely used vocabulary devoted to describe information about or-
ganization and their relationships.ORG is the main vocabulary used in the
Organization dataset of Tsinghua University Open Data, with each work
unit as a org:Organization. It describes basic relationship informations such
as subOrgnizationOf, hasSubOrganization, hasUnit etc.

3 http://www.w3.org/standards/semanticweb/ontology
4 http://xmlns.com/foaf/spec/
5 http://vocab.org/aiiso/schema
6 http://www.w3.org/ns/org

http://www.w3.org/standards/semanticweb/ontology
http://xmlns.com/foaf/spec/
http://vocab.org/aiiso/schema
http://www.w3.org/ns/org

388 Y. Ma et al.

CourseWare 7 is developed for describing courses and resources within the
ReSIST 8 project. This vocabulary represents various information about a
course, including material, pre-requirement, language, etc.

As for those datasets which there is no suitable existing vocabulary defined, we
have defined new terms, and linked our own terms to the existing vocabularies
as supplements. The main vocabularies used are listed as follows.

We use OpenVocab to create our own terms. OpenVocab9 is a community
maintained vocabulary intended for use on the Semantic Web, ideal for proper-
ties and classes that do not warrant the effort of creating or maintaining a full
schema. OpenVocab allows anyone to create and modify vocabulary terms using
their web browser. We defined several properties to construct interlink between
different datasets. For example, ov:deliveredBy is used for linking courses with
lecturers; ov:offeredBy is used for linking courses with organizations.

3 Data Collection and Structuring

3.1 Data Collection

Considering the variety among different universities, different approaches may
apply to collect raw structured data for building linked open university data.
We list the most commonly used methods as follows:

Some raw data can be retrieved from the university administration facility,
which are allowed to be published under certain license. These data are usu-
ally well structured, high quality with few or no noise. However, this approach
need firm cooperation between data publisher and university authority, which
is sometimes difficult to achieve. What’s more, many kinds of data do not have
structured backends.

The university publishes some of its information on the web, either as down-
loadable structured format or HTTP queryable. We can downloaded these data
and organize them as our data sources. These data sources need slightly more
preprocessing before data converting and interlinking. The organization and
course schedule data sources are obtained by this approach.

Other data could come from webpage crawling, and this is often the major ap-
proach of getting raw data. We use information extraction technology to extract
structured data out of description pages on the web, e.g. organizations’ main
page and people’s homepage. Webpages are crawled following website structure
of the university, we then analyze the pages and extract semantic properties to
build structured data source. These data sources are usually of inferior qual-
ity, with a lot of noises and mistakes. After necessary alignment, they can be
matched and linked with other data sources.

7 http://courseware.rkbexplorer.com/ontologies/courseware
8 http://www.resist-noe.org/
9 http://open.vocab.org/

http://courseware.rkbexplorer.com/ontologies/courseware
http://www.resist-noe.org/
http://open.vocab.org/

Building Linked Open University Data 389

3.2 Data Converting and Mashup

After collection and preprocessing, we have got structured tabular data in differ-
ent formats, such as SQL database, MS Excel .xls file and plain text file. These
data are then marked with URI using our naming strategy.

Different data sources are then linked together using usual mapping technique.
For example, in the course data source, lecturer is stored using lecturer’s name.
Then the lecture is mapped to a instance entry in the staff member data source
who has the same name.

Finally, these data sources are converted to RDF format using RDF generating
tools like D2R Server10 and ConvertToRDF 11.

4 Tsinghua University Open Data

4.1 Datasets

Tsinghua University Open Data currently has 5 core datasets, describing the
basic information and structure of the institution.

Campus Buildings and Places. This dataset describes buildings, sightsee-
ings and other geospacial entities related to Tsinghua University. Properties
include name, description, geographic location, type, image, etc. This dataset
currently has 784 triples, with 114 instances described.

Organizations. This dataset contains description for the 87 organizations
above department/school level. Organization name, homepage type and
structure are described. This dataset currently has 372 triples.

Staffs. We crawled all the staff members listed in all organizations’ reference
pages using automatic extraction along with manual selection, totally 2758
instances. Considering data deficiency and error, this may not be the ac-
tual count of all Tsinghua staff members. Name, gender, title and contact
information of the staff members are described with 21631 triples.

Campus Photographs. This dataset contains additional photographs about
the campus. Each photograph is listed with its URL and the place it depicts.
There are currently 316 photographs described with 977 triples.

Courses Schedule. We extract the public course information from the univer-
sity’s website and form this dataset. We have done 30 recent semesters, with
course name, lecturer, delivering department and open type described. Each
semester has less than 2000 courses and about 10,000 triples.

Relationships of these five dataset are illustrated in Fig. 1

4.2 System Infrastructure and User Interface

We have built a web portal (http://data.cs.tsinghua.edu.cn) for publishing
our datasets using JSP and JavaScript. There is a dataset catelog page available

10 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
11 http://www.mindswap.org/~mhgrove/convert/

http://data.cs.tsinghua.edu.cn
http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
http://www.mindswap.org/~mhgrove/convert/

390 Y. Ma et al.

Fig. 1. Tsinghua University Open Data Cloud

for browsing and downloading datasets. We have also set up a standard SPARQL
endpoint, with a HTML front end for query and browsing. We have also made
a customized web page for every class, corresponding to HTTP request of an
instance URI. Thus every URI can be dereferenced, as is required by Linked
Data principle.

4.3 Applications

We aim at providing a unified open data platform about Tsinghua University and
other academic institutes, and we hope that researchers and programmers can
make full use of the datasets and build interesting and useful applications upon
them. Meanwhile, we have built several interesting applications by ourselves.
These applications all use the SPARQL endpoint to access data, and most of
them use two or more datasets.

CampusAssistant 12 provides searchable map for finding buildings, naviga-
tion, memo and paths in Tsinghua University. This application uses the
Buildings and Places dataset, as well as the Photographs dataset.

CourseFinder 13 provides various ways for searching course information. A
course can be found by searching its name, the lecturer’s name, the facility’s
name, or combination of these criteria. What’s more, one can easily navigate
between courses, lecturers and departments; view detailed information about
the lecturer, e.g. contact information(if public); and find relevant courses and
teachers. All these need no extra work and is automatically achieved using
interlinks between datasets.

5 Realated Work

There are numbers of projects related to building and linking open university
data. Waterloo Open Data Initiative14 offers information about campus build-
ings, classes schedule and exam information about University of Waterloo. Their

12 http://iweb.cs.tsinghua.edu.cn/CampusAssistant
13 http://data.cs.tsinghua.edu.cn/OpenData/courses.jsp
14 https://opendata.uwaterloo.ca/drupal/

http://iweb.cs.tsinghua.edu.cn/CampusAssistant
http://data.cs.tsinghua.edu.cn/OpenData/courses.jsp
https://opendata.uwaterloo.ca/drupal/

Building Linked Open University Data 391

data are provided with standard structured format like JSON and CSV file, but
not in Linked Data format.

University of Southampton Open Data15 provides open access to some of
the university’s administrative data. Currently, they provide 29 datasets, cov-
ering from campus information to public phonebook of teachers and students,
with RDF file and SPARQL endpoint provided. They have also built several
applications, mostly school maps and phonebooks. They provided relatively
wide-ranging datasets, but some of the datasets are not tidily bounded to the
university, and some basic datasets are missing, e.g. course information and
school affairs statistics.

Several other open university data portals are also on the go, OU Linked
Data16 currently has 6 datasets, but without university organizations and staff
members description; Open Data about the University of Oxford17 is under con-
struction and not yet public. A incomplete list of European universities that
have published open data can be found at Linked Universities18.

6 Discussion

In this section, we will talk about some key points and difficulties me have met
throughout the procedure of building open data.

First of all, “Useful” is the first principle when publishing open data, thus
making data quality a great concern. We notice that several aspects of data
processing act as an important role for better data quality.

For data retrieved from webpage crawling, careful strategy for handling in-
complete data records is needed. Some missing fields of a record just result in
missing properties of the generated instance; however, missing of some key values
may leave the instance pointless and omitted. We have developed an automatic
filtering system when generating RDF data from the data sources.

Problems concerning data privacy and copyright also cannot be ignored when
publishing open data, especially data involving personal information. We must
be sure that our collected data is either public or properly licensed; and when
processing data, we do data filtering (filter bad and false data) and add non-
sensitive information to data(by adding links and meta data), but we never do
any modification or correction to existing data. A formal disclaimer is provided
along with the data as well.

7 Conclusion and Future Work

Linked Open University Data applies Linked Data to publishing information
about universities and academic institutions. In this paper, we discuss university

15 http://data.southampton.ac.uk/
16 http://data.open.ac.uk/
17 http://data.ox.ac.uk/
18 http://linkeduniversities.org/

http://data.southampton.ac.uk/
http://data.open.ac.uk/
http://data.ox.ac.uk/
http://linkeduniversities.org/

392 Y. Ma et al.

data category, vocabularies, data collection and cleaning, as well as method of
build and mushup linked data about university. Tsinghua University Open Data
is presented as a showcase. We describe its datasets and applications upon them.
These applications, however, is also portable for any other datasets with the same
or similar schema.

As future work, we will first improve our datasets. This include work in several
aspects. Firstly, we will continue to find other data sources to add more dataset.
Secondly, we plan to do deeper work at the data preprocessing and mapping
phase, like doing name disambiguation.

Another important future work is to connect our datasets to the various
existing Semantic Web data. With more raw data available, we can connect
our datasets with academic publication datasets, geographic datasets, etc. This
will further improve the power of our datasets and open new possibilities to
applications.

We hope that more academic institutions can join the work of publishing open
data, to build increasing number of datasets publish from different institutions
using unified schema. Applications can then make full use of the data, creating
useful and interesting tools and amazing user experience, which in turn inspire
more institutions providing open data.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43

2. Tim Berners-Lee: Design Issues: Linked Data (2009),
http://www.w3.org/DesignIssues/LinkedData.html

3. Bizer, C., Cyganiak, R.: Tom Heath: How to Publish Linked Data on the Web,
Tutorial (2007),
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, C., Ives, Z.: DBpe-
dia: A Nucleus for a Web of Open Data. In: Aberer, K., Choi, K.-S., Noy, N.,
Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mi-
zoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007.
LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

5. Bizer, C., Heath, T., Berners-Lee, T.: Linked Data - The Story So Far. International
Journal on Semantic Web and Information Systems (IJSWIS) 2009

6. Auer, S., et al.: Triplify - Light-Weight Linked Data Publication from Relational
Databases. In: Proceedings of the 18th World Wide Web Conference, WWW 2009
(2009)

7. Bizer, C., Cyganiak, R.: D2R Server - Publishing Relational Databases on the
Semantic Web. Poster at the 5th International Semantic Web Conference, ISWC
2006 (2006)

8. Chen, H., Wang, Y., Wang, H., Mao, Y., Tang, J., Zhou, C., Yin, A., Wu, Z.:
Towards a Semantic Web of Relational Databases: A Practical Semantic Toolkit
and an in-use Case from Traditional Chinese Medicine. In: Cruz, I., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M. (eds.)
ISWC 2006. LNCS, vol. 4273, pp. 750–763. Springer, Heidelberg (2006)

http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/bizer/pub/LinkedDataTutorial/

Building Linked Open University Data 393

9. Auer, S., Lehmann, J.: What Have Innsbruck and Leipzig in Common? Extracting
Semantics from Wiki Content. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC
2007. LNCS, vol. 4519, pp. 503–517. Springer, Heidelberg (2007)

10. Metaweb Technologies, Freebase Wikipedia extraction (wex) (2009),
http://download.freebase.com/wex/

11. Li, X., Bao, J., Hendler, J.A.: Fundamental analysis powered by semantic web.
In: Proceedings of IEEE Symposium on Computational Intelligence for Financial
Engineering and Economics (2011)

http://download.freebase.com/wex/

An Abductive CQA Based Matchmaking System

for Finding Renting Houses

Jianfeng Du1,2, Shuai Wang1, Guilin Qi3, Jeff Z. Pan4, and Che Qiu1

1 Guangdong University of Foreign Studies, Guangzhou 510006, China
jfdu@mail.gdufs.edu.cn

2 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

3 Southeast University, Nanjing 211189, China
4 The University of Aberdeen, Aberdeen AB243UE, UK

Abstract. A matchmaking system for finding renting houses is required
as the housing problem becomes serious in China and many people resort
to rent a house. A semantic approach based on abductive conjunctive
query answering (CQA) in Description Logic ontologies is exploited to
provide more matches for a request about renting houses. Moreover, a
matchmaking system based on this approach is developed. This demo
will guide users to find suitable renting houses using this matchmaking
system and show the advantages of the system.

1 Motivation

The housing problem is an important social problem in China due to the large
scale of population. This problem becomes more serious recently. According to
some survey, the housing price-to-income ratio in China is very high and such
a high ratio implies that about 85 percent of the families cannot afford a house
in cities [7]. Under this situation, many people resort to rent a house and use
matchmaking systems to find suitable renting houses.

Keyword search based matchmaking systems for finding renting houses are
backing up the current rental search engines which are available at the World
Wide Web. Although these matchmaking systems are rather efficient, they are
hard to provide sound and complete matches. On the one hand, keyword search
based matchmaking makes little use of the background knowledge and will easily
miss real matches. For example, HEMC (Higher Education Mega Center) locates
in Panyu (a district in Guangzhou). When a request for renting houses in Panyu
is posed, a matchmaking system based on keyword search will not output any
offer which describes that the renting house is in HEMC, because it does not
involve reasoning by using the relationship between HEMC and Panyu. On the
other hand, keyword search based matchmaking makes little use of the seman-
tics of offers or requests and will easily output wrong matches. For example, a
matchmaking system based on keyword search does not manage the meaning of
the word “top floor”. When a request for renting houses at the top floor is posed,

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 394–401, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Abductive CQA Based Matchmaking System for Finding Renting Houses 395

the system will output offers describing that the renting houses are at any floor,
because the word “floor” appears in the offer descriptions.

To make the matchmaking results more sound and complete, ontology-based
matchmaking systems have been proposed. There are two approaches to ontology-
based matchmaking. One approach exploits a Description Logic (DL) [1] ontol-
ogy to compute semantic distances between offers and requests, where offers and
requests are expressed as DL concept descriptions. This approach is followed by
many methods such as those proposed in [2,8,16]. They mainly focus on defining a
reasonable distance function between two DL concept descriptions. The other ap-
proach exploits DL inference methods to compute different kinds of matches. Con-
cept subsumption checking is the most popular one among such methods [12,15].
Other known DL inference methods include concept abduction and concept con-
traction [14]. They are used to compute possible matches in a negotiation frame-
work. That is, an offer is regarded as a possible match for a request if it can get
subsumed by the request after abduction, i.e. adding some information to itself,
and contraction, i.e. removing some information from the request.

However, the two main ontology-based matchmaking approaches are not easy
to scale to real-life applications that involve a large number of offers and requests,
because composing the DL concept descriptions for offers and requests is time con-
suming and laborious. To alleviate human efforts to formalize offers or requests,
our initial solution is to treat the matchmaking problem as the conjunctive query
answering (CQA) problem. In this solution, offer information is expressed as in-
dividual assertions in the back-end ontology, request information is expressed as
conjunctive queries, and a match for a request is defined as an answer to a con-
junctive query that expresses the request. This solution allows offer information
to be automatically extracted from text sources, such asWeb pages, using off-the-
shelf ontology population techniques [3], thus significantly reducing human efforts.
However, this solution is still hard to provide complete matches due to incomplete-
ness of information extracted from the World Wide Web. When some information
about an offer is missing in the back-end ontology, the offer will not be an answer
to a conjunctive query that expresses the given request, but it will turn to be after
missing information is added, so this offer can also be considered as a match for
the request.

To realize the above idea, in [6] we introduced the abductive CQA problem
which computes all abductive answers to a conjunctive query in a consistent
ontology. An abductive answer is an answer to the given query in some consistent
ontology enlarged from the given one by adding a bounded number of individual
assertions, where the individual assertions that can be added are confined by
user-specified concept or role names. We developed an abductive CQA based
matchmaking system for finding renting houses, where a match for a request is
defined as an abductive answer to a conjunctive query that expresses the request.

In the next two sections, we highlight the novelty of our matchmaking system
and give preliminaries about this demo, respectively. Then, before the last section
in which we explain what will be shown in this demo, we describe the architecture
of the matchmaking system.

396 J. Du et al.

2 Novelty

The matchmaking system provides a DL based framework for integrating infor-
mation from different Web sources and handling user requests for renting houses.
It has some advantages. One is that the system can accept a complex request
considering nearby traffic lines and public facilities. These requests for renting
houses cannot be handled by current rental search engines. Another advantage
is that all output information for responding to a request is interpretable by
existing DL reasoning facilities.

3 Preliminaries

3.1 OWL 2 and Conjunctive Query Answering

The World Wide Web Consortium (W3C) has proposed the Web Ontology Lan-
guage (OWL), for which the newest version is OWL 2 [9], to model ontologies.
OWL is based on DLs [1]. In particular, the most expressive and decidable species
of OWL 2, OWL 2 DL, corresponds to the DL SROIQ [11]. An OWL 2 DL
ontology consists of an RBox, a TBox and an ABox. The RBox consists of a
finite set of complex role inclusion axioms and role assertions declaring that a
role is symmetric, transitive, reflexive, irreflexive, or disjoint with another role.
The TBox consists of a finite set of concept inclusion axioms. The ABox consists
of a finite set of individual assertions that declare memberships of concepts or
roles, or equivalence relations between individuals. Since SROIQ is a fragment
of First-order Logic, its semantics can be defined by translating to First-order
Logic. For example, the following two axioms expressed in SROIQ, namely
hasFacility ◦ isA � hasFacility and House � Building, can be translated to two
First-order rules given below and inherit the standard First-order semantics,
where the former rule tells that if x has a facility y and y is more specific than z,
then x also has a facility z, while the latter one tells that if x is a renting house,
then it is also a building.

∀x, y, z : hasFacility(x, y) ∧ isA(y, z)→ hasFacility(x, z)

∀x : House(x)→ Building(x)

A model of an OWL 2 DL ontology is an interpretation on all entities in the
ontology that satisfies all First-order rules translated from the ontology under the
standard First-order semantics. An OWL 2 DL ontology is said to be consistent
if it admits at least one model.

A conjunctive query is an expression of the form ∃−→y : conj(−→x ,−→y ,−→c), where
−→x and −→y are both vectors of variables, and −→c is a vector of individuals or
constants. conj(−→x ,−→y ,−→c) denotes a conjunction of atoms of the form A(v) or
r(v1, v2), where A is an atomic concept (i.e. a concept name), r is an atomic
role (i.e. a role name) or a built-in predicate, and v, v1 and v2 are variables in
−→x and −→y , or individuals or constants in −→c . A Boolean conjunctive query is a
conjunctive query without distinguished variables.

Given an OWL 2 DL ontology O and a Boolean conjunctive query Q = ∃−→y :
conj(−→y ,−→c), a model I of O is said to satisfy Q if there exists a tuple of (possibly

An Abductive CQA Based Matchmaking System for Finding Renting Houses 397

anonymous) individuals or constants whose substitution for the variables in −→y
makes every atom in conj(−→y ,−→c) satisfied by I. Q is said to be entailed by O,
denoted by O |= Q, if every model of O satisfies Q. A tuple

−→
t of individuals

is called an answer to a conjunctive query Q(−→x) = ∃−→y : conj(−→x ,−→y ,−→c) in O
if O |= Q(−→x)[−→x !→ −→

t], where Q(−→x)[−→x !→ −→
t] denotes a Boolean conjunctive

query obtained from Q(−→x) by replacing every variable in −→x with its corre-
sponding individual in

−→
t . The conjunctive query answering (CQA) problem is

to compute all answers to a conjunctive query in an ontology.

3.2 Abductive Conjunctive Query Answering

As mentioned before, the matchmaking problem can be treated as the CQA
problem, where offer information and background knowledge are stored in a
back-end ontology. For example, when we want to find all southward renting
houses in Guangzhou, we can pose the following conjunctive query upon the
back-end ontology:

House(x) ∧ locatesIn(x,Guangzhou) ∧ towards(x, South).

Then the answers to this query, namely the individuals substituting for the
variable x, are renting houses to be found. However, these answers may not
provide all choices to a requester. For example, when the orientation of a renting
house is missing, possibly due to incomplete extraction from Web pages, this
renting house will not be an answer to the aforementioned query, although its
orientation is south in reality. To compensate these answers, a certain enlarged
ontology should be considered. This ontology can be seen as the result of adding
missing information about offers to the back-end ontology.

Hence, in [6] we introduced a new kind of answers, called abductive answers,
to a conjunctive query. Abductive answers are formally defined as follows. Given
a consistent ontology O, a conjunctive query Q, a non-negative integer k, two
disjoint sets of concept or role names SA and SC , an abductive answer

−→
t to Q

in O w.r.t. k, SA and SC is an answer to Q in O∪A for some set A of individual
assertions such that the cardinality of A is not greater than k, all individual
assertions in A are on abducible predicates, and any individual assertion on
closed predicates that is entailed by O ∪ A is also entailed by O, where A is
said to be attached with

−→
t and the concept or role names in SA (resp. SC) are

called abducible predicates (resp. closed predicates). In this definition, A can be
seen as the missing information about a certain offer. The definition says that
A should consist of at most k individual assertions, where k is a user-specified
parameter which reflects the incompleteness of the given ontology O. It also
says that all concepts/roles appearing in A should be abducible predicates, and
appending A to O should not make O entail any individual assertion α on closed
predicates unless α is already entailed by the original O. We call the problem of
computing all abductive answers to a conjunctive query in a consistent ontology
the abductive CQA problem.

The abductive CQA problem is similar to the ABox abduction problem
proposed in [4] which, for a consistent ontology O and a set G of individual
assertions, computes all minimal sets A of individual assertions on a set S of

398 J. Du et al.

predicates such thatO∪A is consistent, andO∪A entails all individual assertions
in G but A does not. Compared to the ABox abduction problem, the abduc-
tive CQA problem also restricts A to a set of individual assertions on abducible
predicates such that appending it to O does not introduce inconsistency, where
abducible predicates are used to define which kind of information is incomplete.
However, instead of computing certain A, the abductive CQA problem computes
abductive answers to a conjunctive query by considering all possible A. More-
over, it introduces the use of the parameter k and a set of closed predicates.
The parameter k is used to control the extensiveness of abducible answers, while
closed predicates are used to simulate disjoint concept or role axioms (see [6]
for the explanations on this usage) and enable some optimizations in computing
abductive answers. These optimizations are exploited in a method for comput-
ing abductive answers [6]. Basically, the method encodes the abductive CQA
problem into a Prolog program and solves it with Prolog engines. It computes
exactly all abductive answers in a consistent DLP ontology, which is an ontol-
ogy expressed in the DLP fragment [10] of OWL 2 DL and adopts the Unique
Name Assumption [1] that any two different individual names must correspond
to different elements in the interpretation domain.

4 The Architecture of the Matchmaking System

We developed an abductive CQA based matchmaking system for finding renting
houses, where a match for a request for renting houses is defined as an abductive
answer to a conjunctive query that expresses the request. The system consists
of two parts, the offline part and the online part, as shown in Fig. 1. The of-
fline part targets integrating rental related information from different Websites
into a consistent DLP ontology, and consists of several components, including a
controller, a triple converter, a consistency restorer and multiple wrappers. The
online part targets responding to user requests about renting houses, and is built
on a matchmaker which implements the method for abductive CQA [6]. More
details for all these components are given below.

Fig. 1. The interactions among components of the matchmaking system

An Abductive CQA Based Matchmaking System for Finding Renting Houses 399

4.1 Wrapper

A wrapper is a component for extracting tuples from a Website. It first down-
loads Web pages from a Website, then extracts tuples from these Web pages. We
developed different wrappers for different Websites, including those that provide
rental search services and those publishing information on traffic lines and ad-
ministrative regions. The extraction process relies on a set of extraction rules,
some of which were manually written and some were automatically learned by
machine learning methods [13].

4.2 Triple Converter

The triple converter is a component for converting the extracted tuples to indi-
vidual assertions, which are stored as RDF triples in the ABox of the back-end
ontology. In this converter, the TBox and the RBox of the back-end ontology,
which were manually constructed using ontology editors, confine the concept or
role names that can appear in a generated individual assertion.

Moreover, some methods for relation extraction were developed to add links
between two individuals from different Websites. For example, the tuples ex-
tracted from a rental Website have a free-text field mentioning traffic lines and
stops that a renting house locates near. We developed a pattern based method
for extracting role assertions of the form locatesNear(a, b) from this free-text
field, where a is a renting house and b is either a traffic line or a stop. The
method first generates a pattern set based on the words about traffic lines or
stops that are extracted from a traffic Website, then uses this pattern set to
identify entities about traffic lines or stops in the free-text field and compose
role assertions of the form locatesNear(a, b). The individual b in a generated
role assertion locatesNear(a, b) may not have the same name as the truly same
individual extracted from other Websites. We used the same pattern set to de-
termine whether two individuals with different names are the same in reality.
That is, we defined that two individuals are the truly same if the core parts of
their names are the same, where the core part of a name is computed by some
manually written rules based on matched patterns of the name. On the other
hand, two individuals with the same name but extracted from different Websites
may not be the same in reality. We defined that such two individuals are the
truly same if the concepts they belong to are not disjoint in the back-end ontol-
ogy. To avoid introducing equality assertions, the triple converter only mentions
a representative for all truly same individuals in the back-end ontology.

4.3 Consistency Restorer

The consistency restorer is a component for rendering the back-end ontology
consistent when it is inconsistent. The method proposed in [5] is applied to
compute a cost-minimal set of individual assertions that should be removed to
restore consistency, where the cost of an individual assertion is determined by
the importance of the concept or role name that the assertion is on. This kind
of importance information is set by the administrator of the system.

400 J. Du et al.

4.4 Controller

The controller is a component for scheduling the execution of every wrapper, the
triple converter and the consistency restorer. It periodically invokes all wrappers
to extract tuples. After the tuple extraction process finishes, it invokes the triple
converter to generate individual assertions and add them to the ABox. After the
triple generation process finishes, it invokes the consistency restorer to render
the evolved back-end ontology consistent.

4.5 Matchmaker

The matchmaker is the kernel component in the online part. To start this com-
ponent, the administrator of the system should set the parameters k, SA and SC

for computing abductive answers, and then trigger the component to perform
preprocessing, i.e. to encode the back-end ontology and the parameters k, SA

and SC to a Prolog program and load it into a Prolog engine. Afterwards, this
component waits for user requests for renting houses. Once it receives a user re-
quest, it first translates it to a conjunctive query, then combines the conjunctive
query with the loaded Prolog program and computes all abductive answers from
the combination. These abductive answers correspond to renting houses that
are offered. The abductive answers that can attach with (cardinality) smaller
sets of individual assertions are output earlier. To show why a renting house is
an abductive answer, a cardinality-minimal set of individual assertions attached
with it is also displayed.

5 What Will Be Demonstrated?

This demo will guide users to find suitable renting houses in China using the
proposed matchmaking system. In more details, we will show how to compose
a request for renting houses in this system and how to analyze the output in-
formation to pick up a suitable renting house. The demo will also show some
advantages of the system, including that it can handle complex requests consid-
ering nearby traffic lines and public facilities and that all output information is
interpretable by existing DL reasoning facilities.

Acknowledgement. Jianfeng Du and Shuai Wang are partly supported by
the NSFC under grant 61005043 and the Undergraduate Innovative Experiment
Project in Guangdong University of Foreign Studies. Guilin Qi is partly sup-
ported by Excellent Youth Scholars Program of Southeast University under grant
4009001011, the NSFC under grant 61003157, Jiangsu Science Foundation under
grant BK2010412, and the Key Laboratory of Computer Network and Informa-
tion Integration (Southeast University). Jeff Z. Pan is partly supported by the
EU K-Drive project and the RCUK dot.rural project.

An Abductive CQA Based Matchmaking System for Finding Renting Houses 401

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The
Description Logic Handbook: Theory, Implementation, and Applications. Cam-
bridge University Press (2003)

2. Bianchini, D., Antonellis, V.D., Melchiori, M.: Flexible semantic-based service
matchmaking and discovery. World Wide Web 11(2), 227–251 (2008)

3. Cimiano, P., Völker, J.: Text2onto - A Framework for Ontology Learning and Data-
Driven Change Discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

4. Du, J., Qi, G., Shen, Y., Pan, J.Z.: Towards practical abox abduction in large OWL
DL ontologies. In: Proc. of the 25th AAAI Conference on Artificial Intelligence
(AAAI), pp. 1160–1165 (2011)

5. Du, J., Shen, Y.: Computing minimum cost diagnoses to repair populated DL-
based ontologies. In: Proc. of the 17th International World Wide Web Conference
(WWW), pp. 265–274 (2008)

6. Du, J., Wang, S., Qi, G., Pan, J.Z., Hu, Y.: A New Matchmaking Approach Based
on Abductive Conjunctive Query Answering. In: et al. (eds.) JIST 2011. LNCS,
vol. 7185, pp. 144–159. Springer, Heidelberg (2012)

7. Feng, W., Wu, N.: On the capital production of space and china’s housing problem.
Journal of Wuling 35(6), 55–59 (2010)

8. Fenza, G., Loia, V., Senatore, S.: A hybrid approach to semantic web services
matchmaking. International Journal of Approximate Reasoning 48(3), 808–828
(2008)

9. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.:
OWL 2: The next step for OWL. Journal of Web Semantics 6(4), 309–322 (2008)

10. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: com-
bining logic programs with description logic. In: Proc. of the 12th International
World Wide Web Conference (WWW), pp. 48–57 (2003)

11. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. In: Proc.
of the 10th International Conference on Principles of Knowledge Representation
and Reasoning (KR), pp. 57–67 (2006)

12. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology. In: Proc. of the 12th International World Wide Web Conference
(WWW), pp. 331–339 (2003)

13. Liu, B.: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data. Data-
Centric Systems and Applications. Springer, Heidelberg (2007)

14. Noia, T.D., Sciascio, E.D., Donini, F.M.: Semantic matchmaking as non-monotonic
reasoning: A description logic approach. Journal of Artificial Intelligence Re-
search 29, 269–307 (2007)

15. Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A system for principled
matchmaking in an electronic marketplace. In: Proc. of the 12th International
World Wide Web Conference (WWW), pp. 321–330 (2003)

16. Shu, G., Rana, O.F., Avis, N.J., Chen, D.: Ontology-based semantic matchmaking
approach. Advances in Engineering Software 38(1), 59–67 (2007)

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 402–410, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Ontological Approach to Oracle BPM

Jean Prater, Ralf Mueller, and Bill Beauregard

Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065, USA
{jean.prater,ralf.mueller,william.beauregard}@oracle.com

Abstract. A modern business process management (BPM) operates using
common tenants of an underlying Service Oriented Architecture (SOA) runtime
infrastructure based on the Service Component Architecture (SCA) and
supports the BPMN 2.0 OMG1 standard. Semantically-enabling all BPM
artifacts, from high-level design to deployment and the runtime model of a
BPM application, promotes continuous process refinement, comprehensive
impact analysis, and reuse to minimize process and service proliferation. A
semantic database can manage semantically-enabled BPM ontologies and
models, enable machine-driven inference to discover implicit relationships in
the models, and perform pattern-matching queries to find associations.

This paper presents an ontology for BPM based upon BPMN 2.0, Service
Component Architecture (SCA) and the Web Ontology Language (OWL 2) that
can support a wide range of use cases for process analysis, governance,
business intelligence and systems management. It has the potential to bring
together stakeholders across an enterprise, for a truly agile, end-to-end
enterprise architecture.

Keywords: BPM Ontology, OWL 2, BPMN 2.0, SOA, SCA, SPARQL,
Semantic Technologies.

1 Introduction

Semantic technology can be used by business process management (BPM) to define
contextual relationships between business processes. This allows ‘software agents’
(programs working on behalf of people) to automatically find the right information or
processes and enables machine-driven decision-making based on the established
contextual relationships.

Organizations can optimize their information technology resources through a
Service Oriented Architecture (SOA) approach that embraces common business
processes and semantics throughout the enterprise. The challenge, however, with
applications built on BPM and SOA is the number of representation formats used to
define artifacts, such as the Service Component Architecture Assembly Model, Web
Service WSDL definitions, and XSLT transformations. This makes even simple
queries about the entire BPM model difficult and complicated.

1 Object Management Group, see http://www.omg.org

 An Ontological Approach to Oracle BPM 403

This heterogeneous modeling problem can be addressed with an ontology based
upon the W3C OWL standard [7] that encompasses all artifacts of a BPM application.
The ontology and associated models are stored in a semantically-enabled database.
Support for W3C SPARQL query language allows pattern matching queries across
the enterprise-wide model to find associations. Native inferencing in the database
allows machine-driven discovery of new, previously undefined relationships within
the model.

Business users can find, share, and combine information and processes across
organizational boundaries more easily with the addition of contextual relationships.
The combination of business process management and semantic technology driven by
an underlying ontology makes it possible to:

• Evolve a business process model into a complete executable process in the
same model.

• Analyze the impact on existing processes and web services of adding,
modifying or deleting processes and process building blocks.

• Minimize proliferation of processes and services.

Oracle is actively involved in the standards process and is leading industry efforts to
use ontologies for metadata analysis. Oracle is also investigating the integration of
organizational and social aspects of BPM using the ontology FOAF2. BPMN 2.0 task
performers can be associated with a FOAF Person, Group or Organization and then
used in Social Web activities to enable business users to collaborate on BPM models.

2 Customer Use Case

The US Department of Defense (DoD), Business Transformation Agency (BTA),
under the purview of the Deputy Chief Management Officer (DCMO) is on a mission
to achieve an Architecture-driven Business Operations Transformation. A key
principle in the DoD Business Transformation is developing a common vocabulary
and standard processes in support of business enterprise interoperability. The use of
primitives and reuse of process patterns will reduce overhead costs, process
duplication and resources needed for building and maintaining enterprise
architectures. By aligning the Department of Defense Architecture Framework3 2.0
(DoDAF 2.0) with Business Process Modeling Notation 2.0 (BPMN 2.0) and
partnering with industry, the BTA is accelerating the adoption of these standards to
improve government business process efficiency.

A vital tenet for success is ensuring that business process models are based on a
standardized, semantically-enabled representation. This will enable analysis and
comparison of end-to-end business processes and reuse of the most efficient and
effective process patterns (style guide) and elements (primitives), throughout the DoD
Business Mission Area.

2 The Friend of a Friend (FOAF) project, see http://www.foaf-project.org
3

 See http://www.bta.mil/products/BEA_6.2/BEA/products/2009-04-27
 Primitives Guidelines for Business Process Models (DoDAF OV-6c).pdf

404 J. Prater, R. Mueller,

The DoD implementatio
in this paper to generate R
artifacts included BPMN
service definitions, XML-S
Oracle Database using the S
SPARQL endpoint was use

3 An Ontology for

An ontology for BPM enco
Component Architecture (S
by establishing relationship
and the OWL classes of the
the layering of the BPM o
their relationship to other re

Generally speaking, the
corresponding SCA comp
references. For instance, BP
to components in the SCA
Service tasks and Message
BPM ontology creates ap
artifacts. The relationships
provides an example tha
“Determine Approval

One can see in Figure
corresponding SCA composi
Business Rule Task “De
“BusinessRuleTask”. I
that is of SCA type “Decis
“RequestQuote” through

 and B. Beauregard

on used Oracle BPM and the ontology for BPM discus
RDF triples from the artifacts of the BPM Project. Th

2.0 process definitions, SCA assembly model, WS
Schema and other metadata. The triples were managed
Semantic Technologies feature of Oracle Spatial [3] an

ed to query the model.

r BPM

ompasses and expands the BPMN 2.0 Ontology and Serv
SCA) ontology. This ontology creates a composite mo
ps between the OWL classes of the BPMN 2.0 ontol
e SCA runtime ontology. The following diagram illustra
ontology on top of the BPMN 2.0 and SCA ontology
epresentation formats.

Fig. 1. The BPM ontology stack

ontology for BPM relates BPMN 2.0 tasks and events
mposite model entities like components, services

PMN 2.0 Process, User and Business Rule tasks are rela
A composite model and BPMN 2.0 Send, Receive

e Events are related to SCA Services and References. T
ppropriate relationships between these composite mo

include the OWL representation of SCA wires. Figur
at illustrates the anatomy of a Business Rule T
l Flow”.

2 how the BPM ontology relates BPMN 2.0 tasks
ite model, services and references. At the top of the figure
etermine_Approval_Flow” is of type BPMN
t is implemented by a SCA component “ApprovalRule
sionComponent” and related to another SCA Compon
h a SCA Wire.

ssed
hese
SDL
d in
nd a

vice
odel
ogy
ates
and

s to
and
ated
and
The
odel
re 2

Task

s to
e the

2.0
es”
nent

Fig. 2. An

It is important to note th
side of the figure exp
“…AprovalRules_Dec
Schema, “Quote.XSD” in
referred to by data object
process “RequestQuote
illustrates how the seman
possible to perform a comp
schema definitions and serv

4 An Ontology for

The OMG BPMN 2.0 stand
of BPMN 2.0 processes in
based on this model. Orac
following:5

OWL Classes and Proper
the Business Process Mo
conventions in the BPMN 2
included by adding all of th
class associations in the BP

4 Visualized using TopBraid C
5 All of the classes of the BPM

m:n relationship or special c
6 The work in [2] describes an

model exists.
7 Oracle formulated SPARQL

and restrictions to the ontolo

An Ontological Approach to Oracle BPM

natomy of a BPMN 2.0 Business Rule Task4

hat the SCA “DecisionComponent” in the middle
poses the Service in the bottom of the figu
cisionService_1” that in turn refers to the XM
n the bottom right side of the figure. “Quote.XSD” is a
ts “approvalFlow” and “quote” in the BPMN
e.bpmn” in the upper right side of the figure. T
tic relationships defined in the BPM ontology make
prehensive impact analysis for process data objects, XM
vice contracts across the entire model.

r BPMN 2.0

dard specifies a serialization format for the semantic mo
n XMI and XML-Schema. The ontology for BPMN 2.0
cle BPM includes an implementation that comprises

rties for All BPMN 2.0 Elements That are Relevant
odel.6 The OWL classes, whenever possible, follow
2.0 UML meta-model. OWL properties and restrictions
he data and object properties according to the attributes
PMN 2.0 model.7

ComposerTM.
MN 2.0 meta model that exist for technical reasons only (mo
containments) are not represented in the ontology.
n ontology based on BPMN 1.x for which no standardized m

queries for envisioned use cases and added additional proper
ogy to support those use cases.

405

left
ure,

ML-
also
2.0

This
e it
ML

odel
0 is
the

for
the
are
and

odel

meta

rties

406 J. Prater, R. Mueller, and B. Beauregard

OWL Classes and Properties for Instantiations of a BPMN 2.0 Process Model.
These OWL classes cover the runtime aspects of a BPMN 2.0 process when executed
by a process engine. The process engine creates BPMN 2.0 flow element instances
when the process is executed. Activity logging information is captured, including
timestamps for a flow element instance’s activation and completion, as well as the
performer of the task.

The implicit (unstated) relationships in the ontology for BPM can be automatically
discovered using semantic inferencing, for example as provided by the native
inferencing engine included with Oracle Database Semantic Technologies. The
explicit and implicit relationships in the ontology can be queried using SPARQL
pattern matching queries and, in the case of Oracle Database, can also be queried
using SPARQL patterns in SQL queries. [5] Example SPARQL queries are shown
below:

Select all User Tasks in all Lanes

select ?usertask ?lane
 where {
 ?usertask rdf:type bpmn:UserTask .
 ?usertask bpmn:inLane ?lane
 }

Select all flow elements with their sequence flow in lane p1:MyLane (a concrete
instance of RDF type bpmn:Lane)

select ?source ?target
 where {
 ?flow bpmn:sourceFlowElement ?source .
 ?flow bpmn:targetFlowElement ?target .
 ?target bpmn:inLane p1:MyLane
 }

Select all activities in process p1:MyProcess that satisfy service level agreement
(SLA) p1:MySLA

select ?activity ?activityInstance
 where {
 ?activity bpmn:inProcess p1:MyProcess .
 ?activityInstance obpm:instanceOf ?activity .
 ?activityInstance obpm:meetSLA p1:MySLA
 }

Representative examples8 of the BPMN 2.0 ontology elements in OWL functional
syntax9 are listed below.10

8 The complete BPMN 2.0 ontology comprises of about 100 OWL classes.
9 OWL 2 Structural Spec. and Functional-Style Syntax, http://www.w3.org/TR/owl2-
syntax

 An Ontological Approach to Oracle BPM 407

Start Event:

Declaration(Class(bpmn:StartEvent))
SubClassOf(bpmn:StartEvent bpmn:CatchEvent)
SubClassOf(bpmn:StartEvent DataMaxCardinality(1
bpmn:isInterrupting))

Data Association:

Declaration(Class(bpmn:DataAssociation))
SubClassOf(bpmn:DataAssociation bpmn:BaseElement)
SubClassOf(bpmn:DataAssociation DataMaxCardinality(1
bpmn:hasAssignment))
SubClassOf(bpmn:DataAssociation DataMaxCardinality(1
bpmn:dataAssociationSource))
SubClassOf(bpmn:DataAssociation DataMaxCardinality(1
bpmn:dataAssociationTarget))
SubClassOf(bpmn:DataAssociation DataMaxCardinality(1
bpmn:hasTransformation))

Task:

Declaration(Class(bpmn:Task))
SubClassOf(bpmn:Task bpmn:Activity)
DisjointClasses(bpmn:Task bpmn:CallActivity)
DisjointClasses(bpmn:Task bpmn:SubProcess)

ItemAwareElement:

Declaration(Class(bpmn:ItemAwareElement))
SubClassOf(bpmn:ItemAwareElement bpmn:BaseElement)
SubClassOf(bpmn:ItemAwareElement DataMaxCardinality(1
bpmn:hasItemDefinition))

5 An Ontology for SCA

The SCA composite model ontology represents the SCA assembly model. The Oracle
BPM implementation comprises OWL classes for Composite, Component, Service,
Reference and Wire, which form the major building blocks of the assembly model. A
SCA ontology can be specified with OWL classes for concrete services specified by
WSDL and data structures specified by XML-Schema. The transformation of the
SCA assembly model to the SCA ontology includes creating finer grained WSDL and
XML-Schema artifacts to capture the dependencies and relationships between
concrete WSDL operations and messages to elements of some XML-Schema and
their imported schemata.

10 Generated from the source OWL via
 http://owl.cs.manchester.ac.uk/converter/

408 J. Prater, R. Mueller,

The SCA ontology is pri
a bridge between the onto
concrete runtime infrastruc
analysis, identify dependen

6 Applications

The ontology for BPM enab

6.1 Continuous Process

In modern enterprises, busi
better business performan
bottom, the diagram in Figu

Fig

6.1.1 Process Analysis
In the process analysis sta
toolset to constrain the p
architecture framework (lik
with concepts of the given
the people in the organizatio

The ontology associates
sets with process models an
models to appropriate mod
process models and the bro
dependencies analysis for a
business process. This can
risk of disrupting the busine

 and B. Beauregard

imarily created for the purpose of governance and to ac
ology for BPM and an ontology that would represen
cture. This enables the important ability to perform imp
cies and prevent unnecessary proliferation.

bles a rich set of applications based on a common model

s Refinement and Optimization

iness processes are continuously refined and optimized
ce and to adapt to market changes. Reading from
ure 3 visualizes this refinement and optimization loop.

g. 3. Applications of Ontology for BPM

age, the ontology for BPM allows the process model
palette of modeling elements depending on a cho
ke DoDAF), and process tasks and data objects associa
enterprise vocabulary. The ontology can also help iden
on responsible for a specific task.
custom classification models, thesauri, and people’s s

nd tasks, fosters re-use of existing tasks, constrains proc
deling elements, and establishes a relationship between
oader concepts of the enterprise. It also enables impact
all artifacts (data, services, tasks, and people) involved i
reduce the proliferation of services and processes and

ess by introducing incompatible service contracts.

ct as
nt a
pact

l.

for
the

ling
osen
ated
ntify

skill
cess
the
and
in a
the

 An Ontological Approach to Oracle BPM 409

6.1.2 Implementation
An important aspect of implementing a business process for execution is validating
the correctness of the process relative to the process blueprint from the analysis stage.

The ontology for BPM provides relationship metadata that the business process
modeling toolset can use to validate semantic equivalence between the process model
defined in the analysis stage and the process engine’s execution. Validation includes
ensuring the process and data flow conform with the organization’s enterprise
architectures.

6.1.3 Execution
During execution of a business process, the process engine generates events that can
be used for business activity monitoring and identifies the human resources for the
User Tasks in the business process.

The ontology for BPM can be used to provide a more precise identification of a
human performer for the user tasks in the business process by relating specific
attributes about an organization and skill sets. In addition, the events from activity
monitoring can be investigated in the broader context by relating relevant information
about business strategies and service level agreements.

6.1.4 Optimization
Optimization of a business process requires a holistic view of the process including
the systems, services and people involved in the execution of business process.

The ontology for BPM can be referenced for semantically-enabled searches that
provide a more complete perspective of the artifacts involved in a business process
and discover patterns in a business process to foster re-use, reduce redundant work
and identify bottlenecks.

6.2 Systems Integration

Modern business applications can expose thousands of SOA Services that have the
potential to be re-used and integrated in custom business processes.

The ontology for BPM can be used as a source to search for services or composite
applications that might be used in the implementation of a business process task. It
can further support the developer in the modeling of data transformations by relating
structural and semantic attributes of the source and target data objects. It is quite
normal for the services exposed by commercial business applications to define
hundreds of attributes for the service input and output. Semantic technology can help
the systems integrator automate the process of mapping those attributes, a task that is
time consuming and error prone if done manually.

7 Conclusion

An ontology for BPM, such as the one implemented for Oracle BPM, encompasses
and expands the generic ontologies for BPMN 2.0 and the SOA composite model. It

410 J. Prater, R. Mueller, and B. Beauregard

covers all artifacts of a BPM application from a potentially underspecified11 process
model in BPMN 2.0 down to the XML-Schema type level. The combination of BPM
with RDF/OWL data storage, inferencing and SPARQL querying, as supported by
Oracle Database Semantic Technologies, provides the ability to discover implicit
relationships in the BPM models and find patterns beyond what is possible with the
classical approaches of XML-Schema, XQuery and SQL. This promotes continuous
process refinement, comprehensive impact analysis, and reuse to minimize
unnecessary proliferation of processes and services.

Acknowledgements. We’d like to thank Sudeer Bhoja, Linus Chow, Xavier Lopez,
Bhagat Nainani and Zhe Wu for their contributions to the paper and valuable
comments.

References

[1] Business Process Model and Notation (BPMN) Version 2.0,
 http://www.omg.org/spec/BPMN/2.0/

[2] Ghidini, C., Rospocher M., Serafini L.: BPMN Ontology,
 https://dkm.fbk.eu/index.php/BPMN_Ontology

[3] Oracle Database Semantic Technologies,
 http://www.oracle.com/technetwork/database/options/
 semantic- tech/
[4] Service Component Architecture (SCA), http://www.osoa.org
[5] Kolovski, V., Wu, Z., Eadon, G.: Optimizing Enterprise-Scale OWL 2 RL Reasoning in a

Relational Database System. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P.,
Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496,
pp. 436–452. Springer, Heidelberg (2010)

[6] “Primitives and Style: A Common Vocabulary for BPM across the Enterprise”; Dennis
Wisnosky, Chief Architect & CTO ODCMO and Linus Chow Oracle; BPM Excellence in
Practice 2010; Published by Future Strategies (2010)

[7] Web Ontology Language (OWL), http://www.w3.org/owl

11 A BPMN 2.0 model element is considered underspecified, if its valid but not all attribute

values relevant for execution are specified.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 411–416, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Shining Light on Complex RDF Data
through Advanced Data Visualization

Francois Bertault, Wendy Feng, Austris Krastins,
Liangrong Yi, and Arturs Verza

Tom Sawyer Software, 181 Montecito Avenue, 94610 Oakland, USA
{fbertault,wfeng,akrastins,lyi,averza}@tomsawyer.com

Abstract. This Demonstration paper discusses ongoing work at Tom Sawyer
Software in the area of advanced visualization and analysis of very large data
sets, including RDF data. There is a growing imperative to explore large data
sets as part of opportunity and threat analysis in areas such as national defense,
financial risk analysis, market intelligence, and disease epidemiology. An
increasing volume of this type of information is represented as RDF graphs. By
visualizing and visually analyzing data, it is possible to see patterns, trends, and
outliers in complex RDF graphs that would otherwise be difficult or even
impossible to discover. Since RDF graphs are by nature difficult for humans to
read, Tom Sawyer Software has been developing an innovative, graphical
approach to defining the schema of RDF data, visualizing salient parts of the
RDF graph, and integrating social network analysis into the visualization
process to provide intuitive visual navigation, query, and understanding of
information. This Demonstration paper discusses the underlying technology and
its realization in sophisticated software for building advanced data visualization
and analysis applications for making sense of large RDF graphs.

Keywords: RDF Data Visualization, Graph Drawing, Application
Development.

1 Introduction

The Semantic Web data model of Resource Description Framework [1] (RDF) is a
suite of W3C recommendations for representing information. It provides a simple
data model where information is represented as a labeled directed graph, formal
semantics that enable the definition of inference rules on the data, and a clear XML
based syntax. In addition, the SPARQL query language for RDF [2] provides an
efficient mechanism for retrieving RDF data. This makes RDF a natural format for
representing large data sets, in particular data sets that convey relationships between
entities.

A number of applications [3,4,5,6] allow for the visualization and editing of RDF
data. These applications are meant to help users view and manipulate the RDF graph
itself or to run queries on the RDF graph. They are, in essence, the equivalent of the
administration tools for viewing or querying tables and table content in relational
databases. They give insight on how the information is structured and represented in
RDF form, and appeal to users who are interested in the RDF representation aspect of
the data.

412 F. Bertault et al.

Tom Sawyer Perspectives is a departure from these tools. It allows users to create
data visualization and social network analysis applications, where the data is stored in
RDF or other formats, and then presented to the user in a way that matches the user’s
mental representation of what the data actually conveys. This allows for the creation
of applications that leverage the technical power of RDF while isolating the users
from the fact that the application uses RDF as a way to store the information.

Fig. 1. Representation of corporate filing data as a RDF graph

Fig. 2. Representation of corporate filing data using Tom Sawyer Perspectives

 Shining Light on Complex RDF Data through Advanced Data Visualization 413

2 System Architecture

Tom Sawyer Perspectives is a software package for creating advanced data
visualization and social network analysis applications. It consists of a graphical
design and preview environments, with a set of API libraries. The overall architecture
consists of different layers (Fig. 3).

The data model layer defines the type of data to be visualized. This allows for the
definition of domain specific data models relevant to the application being developed.

The data integration layer provides read-and-write access to disparate data sources
and a mechanism for aggregating the data into one unified view of the data. The data
integration layer supports several types of data sources, including databases or XML,
RDF, text and Excel documents. It also provides conflict detection and merging
capabilities to support multi-users environments.

The data visualization layer provides the different views of data. It adds support for
hierarchical tree, tabular, and drawing representations. The drawing view allows for
the representation of relationships in the data as a nested graph structure. That view
supports advanced formatting with automatic layout capabilities in different styles
commonly used in various application domains, such as electrical and CAD-oriented
schematics, software engineering, or data and network modeling.

The visual interaction layer provides user interactions to help end users view,
navigate, and edit the data.

The design environment is a graphical application used to define the components
from the different layers. Users define the type of data the application is handling,
how to access the data sources, and how to represent and interact with the data. The
resulting design file can be deployed to create either desktop or web applications.

Fig. 3. Overall architecture of Tom Sawyer Perspectives

414 F. Bertault et al.

3 Demonstration

The demonstration covers two aspects of Tom Sawyer Perspectives. The first part of
the demonstration shows the overall functionality of a typical application built using
Tom Sawyer Perspectives. The second part of the demonstration shows how to build a
typical visualization application using the Tom Sawyer Perspectives Designer. The
data for this demonstration consists of corporate filing data as reported to the U.S.
Securities and Exchange Commission. The data is stored in RDF format in an Oracle
database, and consists of 1.8M triplets.

The demonstration application consists of different views, each supporting
dynamic filtering, where information can be selectively shown based on type or
connectivity.

The first view (Fig. 4) shows corporations and people related to these corporations.
It lets users search for particular corporations of interest, then retrieve additional
content by selecting individual items. Users may also view only a subset of the data
and load additional information on demand, providing a user-guided traversal of the
data space.

Fig. 4. View of corporate filing data. Elements with a highlighted icon indicate that related
information is available.

The second view (Fig. 5) shows the same data, but with the corporations omitted.
This view shows indirect relationships between people by inferring a relationship if
two people are linked to a same corporation. It assumes that two people who work
together are likely to know each other and be part of a larger network. This view
allows us to run some social network analysis on the network of people, and deduce
who are the influential people in the network (Fig. 5 and Fig. 6).

 Shining Light on Complex RDF Data through Advanced Data Visualization 415

The second part of the demonstration (Fig. 7) shows how to build a typical
visualization application using the Tom Sawyer Perspectives Designer. It covers
defining the data model, connecting to a data source, defining of rule-based views and
the filter.

Fig. 5. View of a social network with overlaid centrality measures

Fig. 6. View of a large social network

416 F. Bertault et al.

Fig. 7. Tom Sawyer Designer with a rule-based definition of how to represent a person in the
Drawing view

4 Conclusion

We presented a demonstration of an application built using Tom Sawyer Perspectives.
The demonstration illustrates how combining an RDF data store with advanced
visualization techniques can provide a compelling solution for visualizing and
analyzing very large data sets. This demonstrates how these visual analytic techniques
can complement traditional semantic analysis of RDF data.

References

1. Manola, F., Miller, E.: RDF primer. W3C recommendation (2004)
2. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C candidate

recommendation (2006)
3. Simile, http://simile.mit.edu/welkin
4. Splendiani, A.: Semantic browsing of pathway ontologies and biological networks with

RDFScape. In: Managing and Mining Genome Information: Frontiers in Bioinformatics.
Dagstuhl Seminar Proceedings (2006)

5. IsaViz, http://www.w3.org/2001/11/IsaViz
6. RDFGravity, http://semweb.salzburgresearch.at/apps/rdf-gravity

OntoRevision: A Plug-in System for Ontology Revision
in Protégé

Nathan Cobby1, Kewen Wang1,�, Zhe Wang2, and Marco Sotomayor1

1 Griffith University, Australia
2 Oxford University, UK

k.wang@griffith.edu.au

Abstract. Ontologies have been widely used in advanced information systems.
However, it has been a challenging issue in ontology engineering to efficiently
revise ontologies as new information becomes available. A novel method of re-
vising ontologies has been proposed recently by Wang et al. However, related
algorithms have not been implemented yet. In this article we describe an imple-
mentation of these algorithms called OntoRevision and report some experimental
results. Our system is a plug-in for revising general ontologies in Protégé and
thus can be used by Protégé users to revise ontologies automatically.

1 Introduction

In knowledge engineering, an ontology is a formal model of some domain knowledge
of the world [6], by providing a shared vocabulary relevant to the domain, specification
of the meaning (semantics) of the terms, and a formalized specification of the concep-
tualization. Ontologies have been applied in a wide range of practical domains such as
e-Science, e-Commerce, medical informatics, bio-informatics, and the Semantic Web.

As with all knowledge formalizing structures, ontologies are not static, but may
evolve over time. In particular, ontologies may need to be extended and sometimes
revised. Although the operation of incorporating an ontology into another existing on-
tology is supported by Protégé1, it does not provide any machinery to assure the validity
or usefulness of such incorporation. Firstly, classes with the same name in different on-
tologies are, by default, considered to be distinct. When incorporating two ontologies,
classes with the same name co-exist in the resulting ontology. For instance, suppose we
have two ontologies both with a class called Student . When merging the two ontolo-
gies, two classes both named Student will occur in the result. The two classes can only
be distinguished when we refer to their respective URI inherited from their source on-
tologies. Secondly, suppose we can change the URI of the two classes Student to unify
them, another problem occurs when the knowledge in the two ontologies contradicts to
each other. In such case, Protégé simply combine the two ontologies leaving the result
inconsistent. Although Protégé can detect such inconsistency, no solution is provided
to resolve the inconsistency.

� Corresponding author.
1 http://protege.stanford.edu

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 417–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://protege.stanford.edu

418 N. Cobby et al.

Recently, a novel framework for revising ontologies in DL-Lite is introduced in [7].
The DL-Lite [2,1], which forms the basis of OWL 2 QL [3], is a family of lightweight
DLs with efficient ontology reasoning and query answering algorithms. However, Wang
et al’s algorithm for ontology algorithms has not been implemented yet. In this article
we describe a reasoning system for ontology revision called OntoRevision2. This sys-
tem is an implementation of Wang et al’s original revision algorithm and an improved
algorithm. Our system is a plug-in for revising general ontologies in Protégé and thus
can be used by Protégé users to revise ontologies automatically. We also report some
preliminary experimental results.

2 Feature-Based Revision

In this section we briefly recall some basics of ontology revision introduced in [7]. The
revision operator is based on a new semantic characterization called features. So we
first introduce the definition of features.

2.1 An Alternative Semantics for DL-Lite

A signature is a finite set S = SC ∪ SR ∪ SI ∪ SN where SC is the set of atomic
concepts, SR is the set of atomic roles, SI is the set of individual names and SN is
the set of natural numbers in S. We assume 1 is always in SN . � and ⊥ will not be
considered as atomic concepts or atomic roles. Formally, given a signature S, a DL-
LiteR,N

bool language has the following syntax:

R←− P | P− S ←− P | ¬P
B ←− � | A | � n R C ←− B | ¬C | C1 �C2

where n ∈ SN , A ∈ SC and P ∈ SR. B is called a basic concept and C is called
a general concept. We write ⊥ as a shorthand for ¬�, ∃R for � 1 R, � n R for
¬(� n + 1 R), and C1 " C2 for ¬(¬C1 � ¬C2). Let R+ = P , where P ∈ SR,
wheneverR = P or R = P−.

A TBox T is a finite set of concept inclusions of the form C1 � C2 with C1 and C2

being general concepts, and role inclusions of the formR1 � R2. An ABoxA is a finite
set of membership assertions of the form C(a) or S(a, b), where a, b are individual
names. We call C(a) a concept assertion and S(a, b) a role assertion. A knowledge
base (KB) is a pair K = 〈T ,A〉. In this paper, a DL ontology is represented as a DL
KB. We will use ontology and KB alternatively.

Features for DL-LiteNbool are based on the notion of types defined in [5]. An S-type
τ is a set of basic concepts over S such that � ∈ τ , and for any m,n ∈ SN with
m < n, � n R ∈ τ implies � m R ∈ τ . When the signature S is clear from context,
we will simply call an S-type a type. As � ∈ τ for any type τ , we omit it in examples
for simplicity. For example, let SC = {A,B}, SR = {P}, and SN = {1, 3}. Then
τ = {A, ∃P, � 3 P, ∃P− } is a type.

2 http://www.ict.griffith.edu.au/˜kewen/OntoRevision/

http://www.ict.griffith.edu.au/~kewen/OntoRevision/

OntoRevision: A Plug-in System for Ontology Revision in Protégé 419

Define a type τ satisfying a concept in the following way: τ satisfies basic concept
B if B ∈ τ , τ satisfies ¬C if τ does not satisfy C, and τ satisfies C �D if τ satisfies
both C and D.

We can also define a type τ satisfies concept inclusion C � D if τ satisfies concept
¬C "D. Type τ satisfies a TBox T if it satisfies every inclusion in T .

Types are sufficient to capture the semantics of TBoxes, but as they do not refer to
individuals, they are insufficient to capture the semantics of ABoxes. We need to extend
the notion of types with individuals and thus define Herbrand sets in DL-Lite.

Definition 2.1. An S-Herbrand set (or simply Herbrand set) H is a finite set of asser-
tions of the form B(a) or P (a, b), where a, b ∈ SI , P ∈ SR and B is a basic concept
over S, satisfying the following conditions

1. For each a ∈ SI , �(a) ∈ H, and � n R(a) ∈ H implies � m R(a) ∈ H for
m,n ∈ SN with m < n.

2. For each P ∈ SR, P (a, bi) ∈ H (i = 1, . . . , n) implies � m P (a) ∈ H for any
m ∈ SN such that m ≤ n.

3. For each P ∈ SR, P (bi, a) ∈ H (i = 1, . . . , n) implies � m P−(a) ∈ H for any
m ∈ SN such that m ≤ n.

We use HR to denote the set of all role assertions in H. Given a Herbrand set H for a
KB K = 〈T ,A〉 and an individual a, τ(a,H) = {C | C(a) ∈ H} is a type, called the
type of a inH.

We define a Herbrand setH satisfies concept assertion C(a) if τ(a,H) satisfies con-
cept C. Herbrand set H satisfies role assertion P (a, b) if P (a, b) is in H, and ¬P (a, b)
if P (a, b) is not inH. Herbrand setH satisfies an ABoxA ifH satisfies every assertion
in A. The concept of features is defined as follows.

Definition 2.2 (Features). Given a signature S, an S-feature (or simply feature) is
defined as a pair F = 〈Ξ,H〉, where Ξ is a non-empty set of S-types and H a S-
Herbrand set, satisfying the following conditions:

1. ∃P ∈
⋃
Ξ iff ∃P− ∈

⋃
Ξ , for each P ∈ SR.

2. τ(a,H) ∈ Ξ , for each a ∈ SI .

Example 2.1. Consider the knowledge base K = 〈T ,A〉, where

T = {A � ∃P, B � ∃P, ∃P− � B, A �B � ⊥, ≥ 2 P− � ⊥}
A = {A(a), P (a, b) }.

Take S = sig(K) = {A,B, P, 1, 2, a, b}. Then F = 〈Ξ,H〉 is a (finite) model feature
of K, where

Ξ = {τ1, τ2} with τ1 = {A, ∃P} and τ2 = {B, ∃P, ∃P−}, and

H = {A(a), ∃P (a), B(b), ∃P (b), ∃P−(b), P (a, b) }.

420 N. Cobby et al.

Definition 2.3. Given a feature F = 〈Ξ,H〉, we say F satisfies

– a concept C if there is a type in Ξ satisfying C.
– an inclusion C � D if τ satisfies C � D for all τ ∈ Ξ .
– an assertion C(a) or S(a, b) ifH satisfies it.
– F is a model feature of KB K if F satisfies every concept inclusion and every

membership assertion in K. MF(K) denotes the set of all model features of K.

It has been shown in [7] that the semantics defined in terms of features characterize
the standard semantics of DL-Lite in terms of all major reasoning forms for DL-Lite
ontologies.

A KB K is said to be a maximal approximation of M over S if (1) sig(K) ⊆ S
and M ⊆ mod(K), and (2) there exists no KB K′ satisfying (1) such that mod(K′) ⊂
mod(K). It is shown in [4] that maximal approximation may not exist for some DLs.
However, as shown in [7], maximal approximations always exist in DL-LiteNbool .

2.2 Ontology Revision

Given two S-featuresF1 = 〈Ξ1,H1〉 andF2 = 〈Ξ2,H2〉, the distance betweenF1 and
F2, denotedF1)F2, is a pair 〈Ξ1)Ξ2, H1)H2 〉. Recall thatX)Y is the symmetric
difference for any two sets X and Y .

To compare two distances, we define F1)F2 ⊆ F3)F4 if Ξ1)Ξ2 ⊆ Ξ3)Ξ4 and
H1)H2 ⊆ H3)H4; and F1)F2 ⊂ F3)F4 if F1)F2 ⊆ F3)F4 and F3)F4 �⊆
F1)F2.

Definition 2.4 (F-Revision). Let K,K′ be two DL-LiteNbool KBs and S = sig(K ∪ K′).
Define the f-revision of K by K′, denotedK ◦f K′, such that MF(K ◦f K′) = MF(K′)
if MF(K) = ∅, and otherwise

MF(K ◦f K′) = { 〈Ξ ′,H′〉 ∈ MF(K′) | ∃〈Ξ,H〉 ∈ MF (K) s.t.

H)H′ ∈ dH(K,K′) and 〈Ξ)Ξ ′,H)H′〉 ∈ dF (K,K′) }.

where

dH(K1,K2) = min⊆({ H1)H2 | ∃〈Ξ1,H1〉 ∈ MF(K1), ∃〈Ξ2,H2〉 ∈ MF(K2) }),
dF (K1,K2) = min⊆({ F1)F2 | ∃F1 ∈ MF(K1), ∃F2 ∈ MF(K2) })

Example 2.2. Consider the following knowledge base,

K = 〈 {PhDStudent � Student � Postgrad ,

Student � ¬∃teaches , ∃teaches− � Course,

Student � Course � ⊥}, {PhDStudent(Tom) } 〉.

The TBox of K specifies that PhD students are postgraduate students, and students are
not allowed to teach any courses, while the ABox states that Tom is a PhD student.
Suppose PhD students are actually allowed to teach, and we want to revise K with

K′ = 〈 {PhDStudent � ∃teaches }, ∅ 〉.

OntoRevision: A Plug-in System for Ontology Revision in Protégé 421

Then, K ◦f K′ is

〈 { PhDStudent � Student � Postgrad , PhDStudent � ∃teaches ,
Student � ∃teaches � PhDStudent , ∃teaches− � Course,
Student �Course � ⊥}, { Student(Tom), Postgrad(Tom) } 〉.

2.3 Algorithms for Ontology Revision

In this section, we introduce an algorithm for computing the maximal approximation of
revision syntactically and briefly explain how it can be improved.

Given a S-type τ , we denote the concept Cτ =
�

B∈τ B �
�

B �∈τ ¬B, where B is
a basic concept over S. In what follows, we present an algorithm for DL-LiteNbool KB
revision (ref. Figure 1).

Algorithm 1
Input: Two DL-LiteNbool KBs K and K′, S = sig(K ∪K′).
Output: K ◦f K′.
Method: Initially, let T = ∅ and A = ∅.
Step 1. Compute MF (K) and MF (K′).
Step 2. Obtain MF (K ◦f K′) from MF (K) and MF (K′) by Definition 2.4.
Step 3. For each S-type τ not occurring in any type set in MF (K ◦f K′), add inclusion Cτ � ⊥
into T .
Step 4. For each individual a ∈ SI , add concept assertion (

⊔
τ∈Ξa

Cτ)(a) into A, where Ξa =
{ τ | ∃〈Ξ,H〉 ∈ MF (K ◦f K′) s.t. τ is the type of a in H }.
Step 5. For each role assertion P (a, b) occurring in every Herbrand set in MF (K ◦f K′), add
P (a, b) into A.
Step 6. Return 〈T ,A〉 as K ◦f K′.

Fig. 1. Compute f-revision

In general, it is inefficient to compute the set of features for an ontology. For this rea-
son, we have developed an improved algorithm. In particular, we only need to consider
subsets of MF (K) and MF(K′) when selecting the model features of the revision.

The optimisation is based on the following observations when selecting model fea-
tures F = 〈Ξ,H〉 for the revision. Firstly, we can compare the Herbrand sets H in-
dependently from the type sets Ξ , and eliminate those features whose Herbrand sets
do not have a minimal distance. Secondly, we do not need to consider all the Herbrand
sets, but only those containing only role assertions explicitly appearing in the ABoxes
A and A′. Thirdly, when the Herbrand sets H are fixed, then the corresponding type
sets Ξ can be constructed based onH.

3 Implementation Details

OntoRevision is implemented in Java as a plug-in of Protégé. The system has been
tested for Protégé version 4.1.0 (Build 213). To install OntoRevision, we need only

422 N. Cobby et al.

Fig. 2. A Screen Shot of OntoRevision

to copy the file OntoRevision.jar into Protégé’s plug-in directory. Once the plug-in is
installed, it can be displayed within Protégé by selecting the OntoRevision menu item
under View→ Ontology View and placing it within the tab user interface. Protégé uses
the Manchester OWL syntax for editing ontologies.

Besides necessary preprocessing and postprocessing, OntoRevision has four major
modules: (1) Feature Constructor (for computing the set of features for a given KB);
(2) Distance Calculator (for calculating the distance between two features); (3) Feature
Selector (for picking out features with minimal distances); and (4) KB Constructor (for
constructing a KB from a set of features). An input of OntoRevision is a pair (K,K′) of
DL-Lite KBs. The system first computes the sets MF(K) and MF(K′) of features for
K and K′, respectively. Then MF(K ◦f K′) is obtained by the module Feature Selec-
tor, which uses the Distance Calculator. Finally, the revision result (maximal approx-
imation) is obtained by KB Constructor. A screen shot for the completion of revision
operation in Protégé is shown in Figure 3.

Some preliminary experiments have been performed on a desktop computer (Intel
Pentium 4 CPU 3.4 GHz, 2 GB RAM). We compared the performance of the original

OntoRevision: A Plug-in System for Ontology Revision in Protégé 423

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11

Number of Individuals in K Prime

Time (ms)

Revision v2

Revision v1

Fig. 3. Number of Individuals vs Time

0

2000

4000

6000

8000

10000

12000

2 3 4 5 10 11 12 13 14 15

Number of Atomic Concepts in K Prime

Time (ms)
Revision v2

Revision v1

Fig. 4. Number of Atomic Concepts vs Time

algorithm for ontology revision (v1) in [7] and an (improved) version (v2). In the first
example we tested the performance of two algorithms when the number of individuals
in K′ is increased. The example used is K = ({A � ¬B}, {}) and K′

k = 〈{A �
B}, {A(a1), A(a2), ..., A(ak)}〉 with k > 0. The experimental results are shown in
Figure 3. It can be seen that the improved algorithm performs better than the original
one but the improvement is not radical.

We also tested the performance of the two algorithms when the number of concepts
in K′ is increased. The example used is K = 〈{A � ¬B1}, {A(a)}〉 and K ′

k = 〈{A �
B1, B1 � B2, . . . , Bk � Bk+1}, {}〉 with k > 0. The results show that the improved
algorithm is significantly faster than the original one (ref. Figure 3).

424 N. Cobby et al.

4 Conclusion

We have implemented a prototype system for revising DL-Lite ontologies, called On-
toRevision. It is able to revise general DL-Lite knowledge bases (i. e. containing both
TBoxes and ABoxes). The system is implemented as a plug-in for the ontology editor
Protégé. Some experimental results have also been reported in the paper. However, the
scalability of OntoRevision is still a challenge. Currently, we are working on developing
more efficient algorithms for DL-Lite revision.

Acknowledgments. We would like to thank all anonymous reviewers for their com-
ments. This work was supported by the Australia Research Council (ARC) Discovery
Projects DP110101042 and DP1093652.

References

1. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: DL-Lite in the light of first-
order logic. In: Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence
(AAAI 2007), pp. 361–366 (2007)

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. Autom. Reason-
ing 39(3), 385–429 (2007)

3. Dean, M., Connolly, D., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L.: Owl web ontology language reference (February 10, 2004) 3C Rec-
ommendation, http://www.w3.org/tr/2004/rec-owl-ref-20040210/

4. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the approximation of instance level
update and erasure in description logics. In: Proceedings of the 22th National Conference on
Artificial Intelligence (AAAI 2007), pp. 403–408 (2007)

5. Kontchakov, R., Wolter, F., Zakharyaschev, M.: Can you tell the difference between DL-Lite
ontologies? In: Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2008), pp. 285–295. AAAI Press (2008)

6. Staab, S., Studer, R. (eds.): Handbook on Ontologies, 2nd edn. Springer, Berlin (2009)
7. Wang, Z., Wang, K., Topor, R.W.: A new approach to knowledge base revision in dl-lite. In:

Proc. of 24th AAAI, pp. 369–374 (2010)

 http://www.w3.org/tr/2004/rec-owl-ref-20040210/

An Efficient Approach to Debugging Ontologies

Based on Patterns�

Qiu Ji1, Zhiqiang Gao1,��, Zhisheng Huang2, and Man Zhu1

1 School of Computer Science and Engineering, Southeast University,
Nanjing, China

{jiqiu,zqgao,mzhu}@seu.edu.cn
2 Department of Mathematics and Computer Science,

Vrije University Amsterdam
huang@cs.vu.nl

Abstract. Ontology debugging helps users to understand the unsatis-
fiability of a concept in an ontology by finding minimal unsatisfiability-
preserving sub-ontologies (MUPS) of the ontology for the concept. Al-
though existing approaches have shown good performance for some real
life ontologies, they are still inefficient to handle ontologies that have
many MUPS for an unsatisfiable concept. In this paper, we propose an
efficient approach to debugging ontologies based on a set of patterns.
Patterns provide general information to explain unsatisfiability but are
not dependent on a specific ontology. In this approach, we make use of
a set of heuristic strategies and construct a directed graph w.r.t. the
hierarchies where the depth-first search strategy can be used to search
paths. The experiments show that our approach has gained a significant
improvement over the state of the art and can find considerable number
of MUPS.

1 Introduction

Ontology debugging is one of the key tasks in the Semantic Web, which helps
users to understand the unsatisfiability of a named concept in an ontology. Here,
a concept is unsatisfiable if it is interpreted as an empty set. Currently, various
debugging approaches have been proposed. The first approach is originally pro-
posed in [12], which is a tableaux based approach and is restricted to unfold-
able ALC TBoxes. In [8], the authors developed a glass-box approach based on
description logic tableaux reasoner - Pellet and a black-box approach which is
independent of any reasoner. As these methods are based on the entire ontologies
which may contain a large number of axioms, the module extraction methods
are used to improve the efficiency by extracting a relatively smaller module for
an unsatisfiable concept. The work in [13] is an example.

Also, there are some works to debug ontologies by using the patterns. Patterns
here provide general information to explain unsatisfiability but are not dependent

� This paper is sponsored by NSFC 60873153, 60803061 and 61170165.
�� Corresponding author.

J.Z. Pan et al. (Eds.): JIST 2011, LNCS 7185, pp. 425–433, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

426 Q. Ji et al.

on a specific ontology. In [14], a heuristic strategy is proposed to detect various
patterns which are identified by the experience. Although this method is efficient,
for each unsatisfiable concept it only computes one explanation which is not
always a MUPS. Thus, it is not enough for ontology repair and cannot meet the
users’ needs if more than one explanation for a concept is preferred. In [3], a set
of logical inconsistent patterns (i.e. debugging patterns) is given. Based on these
patterns, an ontology is debugged manually with the help of an ontology editor.
So this method becomes very inefficient if many axioms are involved to explain
the unsatisfiability of a concept.

Although quite a few methods have been developed, they are still inefficient
to deal with those ontologies with large number of MUPS. Therefore, we pro-
pose a pattern-based approach to finding a set of MUPS efficiently. Take a com-
monly used ontology bt km (see Section 4) with 5000 axioms as an example. The
concept hardware system has more than 16000 MUPS. After applying a model
extraction method given in [5] (i.e., we choose ”top of bottom”), the number
of axioms in the extracted module becomes 124. Then the glass-box approach
proposed in [7] is applied to compute all MUPS. It cannot finish the process
within 30 minutes and only no more than 100 MUPS are found. But our ap-
proach only takes no more than 1000 seconds to finish the debugging process
and 16719 MUPS are returned. Although our approach cannot ensure to find all
MUPS, it can be regarded as a heuristic strategy of the existing approaches to
computing all MUPS.

Specifically, to improve the efficiency of finding MUPS, we use a set of heuristic
strategies instead of invoking a classical DL reasoner frequently which is quite
time-consuming. In this approach, the ontologies need to be normalized and
a directed graph is constructed for applying the efficient search strategies. The
experimental results demonstrate an improvement of several orders of magnitude
in efficiency by comparing with a representative existing approach. At the same
time, considerable number of MUPS have been found.

The main contributions include the following: We propose a novel debugging
approach by using a set of heuristic strategies based on patterns. Through ex-
periments, it shows that our approach has gained a significant improvement over
the state of the art approaches and can find considerable number of MUPS.

2 Preliminaries

We assume the readers are familiar with description logics (DLs) and refer to [1]
for more details. In the followings, we give several key notations in DL ontologies.

Definition 1. (Unsatisfiable Concept)[4] A named concept C in an ontology
O is unsatisfiable iff for each model I of O, CI = ∅. Otherwise C is satisfiable.

Definition 2. (Incoherent Ontology)[4] An ontology O is incoherent iff there
exists at least one unsatisfiable named concept in O. Otherwise O is coherent.

Ontology debugging deals with the problem of computing a set of minimal
incoherence-preserving sub-ontologies for a specific unsatisfiable concept.

An Efficient Approach to Debugging Ontologies Based on Patterns 427

Fig. 1. A set of debugging patterns

Definition 3. (MUPS)[12] Assume C is an unsatisfiable concept in a TBox
T . A set T ′ ⊆ T is a minimal unsatisfiability-preserving sub-TBox (MUPS) of
T if C is unsatisfiable in T ′, and C is satisfiable in every sub-TBox T ′′ ⊂ T ′.

In this paper, the computation of MUPS based on a set of debugging patterns
is proposed. So far, various debugging patterns have been given in [14,3] (e.g.
the patterns in Figure 1). Each pattern can be represented as a directed graph
GP . In GP , a vertex indicates a (possibly complex) concept and is labeled with
the concept name. An arc or directed edge from vertex A to vertex B indicates
a relation between A and B which can be represented by a pair of concepts.
A relation indicates a logical axiom. For example, 〈X, ∃r.Y 〉 indicates the edge
from X to ∃r.Y and it corresponds to the axiom X � ∃r.Y . 〈Y,¬Z〉 indicates
the edge “Y disjoint Z” and corresponds to the axiom Y � ¬Z. These patterns
are illustrative to introduce our approach and thus they are not exhaustive.

It should be noted that a MUPS may contain several different patterns and
also the same pattern can appear in a MUPS for many times. For example, in the
MUPS {A � ∃P.B,B � C,B � D,C � ¬D}, the Isa-Disjoint pattern and the
Exist-Bottom pattern are involved. In the MUPS {A � ∃P1.B,B � ∃P2.C, C �
⊥}, the Exist-Bottom pattern has appeared twice.

3 Approach to Debugging Ontologies Based on Patterns

Based on various patterns, how to make use of these patterns to find MUPS is
an extremely important problem. In this section, we propose a novel debugging
approach to automatically computing a set of MUPS for an unsatisfiable concept
by applying a set of heuristic strategies based on the patterns. Before presenting
our approach, the task of data preprocessing needs to be performed.

3.1 Data Preprocessing

Data preprocessing consists of the following steps: normalizing an ontology and
constructing a directed graph of the concept and property hierarchies.

Normalizing an ontology is to remove those nested descriptions and make
the axioms as small and flat as possible, which makes the axioms in an ontology
suitable to apply our heuristic strategies. To normalize an ontology, we borrow

428 Q. Ji et al.

the idea of structural transformation used in [6] and originally defined in [9].
The normalization can be done by introducing new concepts. Specifically, for the
axioms in the forms of C � D,C � ∃P.D,C � ∀P.D,C �≥ nP.D,C �≤ nP.D,
the normalization step is to make them contain only one atomic concept in the
right side of an axiom. For the axiom in the form of C � D1 "D2, it makes the
axiom contain only two atomic concepts in the right side.

Note that we differentiate the unsatisfiable concepts in the original ontology
O with those that are newly added concepts when normalizing O. The former
concepts are found by applying a standard DL reasoner and the latter ones are
computed by using some heuristic strategies. For instance, a novel concept is
unsatisfiable if it has an existential restriction whose filler is unsatisfiable.

Constructing a directed graph is to obtain those implicit relations which will
be used when detecting and expanding a pattern. Such a graph consists of two
sub-graphs for the concept and property hierarchies respectively. To construct
the sub-graph w.r.t. the concept hierarchy, we only consider those subsumed
relations between pairs of atomic concepts which are explicitly included in a
normalized ontology ON . In this sub-graph, an edge from vertex A to vertex
B indicates that B is a direct super concept of A. Similarly, we can construct
a sub-graph according to the property hierarchy by considering those explicitly
declared subsumed relations between pairs of atomic properties.

Example 1. Assume we have an ontology O consisting of the following axioms:

A � ∃P1.(B � ∃P2.C), C � ∃P3.D � ∀P3.E, E � F , D � ¬F
In O, A and C are unsatisfiable. After normalizing this ontology, we can obtain
the normalized ontology ON :

A � ∃P1.N , N � ∃P2.C, N � B, C � ∃P3.D
C � ∀P3.E, E � F , D � ¬F .
Here, N is a freshly added concept. According to our heuristic strategy, the novel
concept N is also unsatisfiable as we have N � ∃P2.C where C is unsatisfiable.
As for the mappingMN , we take the following example. N � ∃P2.C in ON can
be represented as 〈N, ∃P2.C〉 and mapped to A � ∃P1.(B � ∃P2.C) in O.

3.2 Pattern-Based Debugging Approach

In Algorithm 1, vc is a global variable which is initialized by an empty set. To
compute MUPS of C, findMUPS may be invoked for several times. Thus we
use vc to avoid the case that this method takes a concept as input more than
once as this will cause a dead circle. findMUPS invokes each concrete method like
findMUPS Isa-Disjoint(C) to instantiate a pattern. We only provide the algorithm
to detect the Exist-All pattern as others can be instantiated similarly.

Algorithm 2 is the algorithm to instantiate the Exist-All pattern. In the al-
gorithm, MexistsC (resp. MallC) is a mapping which maps an ancestor of C (a
concept can be an ancestor of itself) to the set of its direct super conditions,
each of which is defined with an existential (resp. universal) restriction.

An Efficient Approach to Debugging Ontologies Based on Patterns 429

Algorithm 1: findMUPS(C)
Data: An unsatisfiable concept C in an ontology O
Result: A set of MUPS MU of C
begin1

if C ∈ vc then2
return null;3

vc ← vc ∪ {C};4
MU ← findMUPS Isa-Disjoint(C);5
MU ← MU ∪ findMUPS Exist-Bot(C);6
MU ← MU ∪ findMUPS Exist-All(C);7
MU ← MU ∪ findMUPS Exist-Domain(C);8
return MU ;9

end10

Algorithm 2: findMUPS Exist-All(C)
Data: An unsatisfiable concept C in an ontology O
Result: A set of MUPS MU of C based on the Exist-All pattern
begin1

MU ← ∅;2
for 〈C1, cond1〉 ∈ MexistC

do3
for 〈C2, cond2〉 ∈ MallC

do4
if property in cond1 �= property in cond2 then5

continue;6

Sdisj ← findDisjRelations(filler in cond1, filler in cond2);7
if Sdisj = ∅ then8

continue;9

for 〈A,¬B〉 ∈ Sdisj do10
Pexpand ← {〈filler in cond1, A〉, 〈filler in cond2, B〉, 〈C,C1〉, 〈C,C2〉};11
combPaths ← ∅;12
for 〈D1, D2〉 ∈ Pexpand do13

paths ← findPaths(D1, D2);14
combPaths ← combine(combPaths, paths);15

MUt ← combine(combPaths, {{〈C1, cond1〉, 〈C2, cond2〉, 〈A,¬B〉}});16
MU ← MU ∪ minimize(t(MUt));17

return MU ;18

end19

Algorithm 2 iterates on MexistC and MallC to find each pair of restrictions
which share the same property. If found, we then compute the disjoint relations
between the two fillers in the two restrictions by using the method findDisjRe-
lations (see below). If we fail to find such kind of disjoint relations, it shows
that this pair of restrictions cannot form any instantiated pattern. In such case,
another pair of restrictions will be checked. For each found disjoint relation like
〈A,¬B〉, several pairs (see Line 11) of atomic concepts like 〈C,C1〉 need to be
further instantiated in the directed graph G of the hierarchies. It is because, for
such a pair to be expanded, we only know the second concept in the pair is a
super concept of the first one (possibly the two concepts are same), we do not
know the specific reason. To instantiate each such kind of subsumed relation,
the method findPaths will be invoked to search a set of paths in the graph G
(see below). As different sets of paths belong to different parts of an instanti-
ated pattern, they should be combined with each other (see lines 12-16). Then
each found set of axioms by translating the set of paths with the function t (see
below) needs to be minimized to form a set of MUPS.

430 Q. Ji et al.

findDisjRelations(A,B) is to find disjoint relations by iterating on the ancestors
of A and those of B. If one ancestor of A is disjoint with the other ancestor of B,
then we know A is also disjoint with B. In this way, we can find those disjoint
relations between A and B. findPaths(D1, D2) is to find the paths from a starting
vertexD1 to an ending vertexD2 by applying the depth-first search strategy in a
directed graph of hierarchies. combine(S1,S2) combines two sets of sets. Namely,
{S1∪S2|S1 ∈ S1 and S2 ∈ S2}. If S is a set of sets of (possibly complex) concept
pairs, t(S) is to translate each set in S to a set of logical axioms according to the
mapping MN . If S is a set of sets of axioms, the method minimize(S) means to
check each axiom in S ∈ S one by one. If removing an axiom does not influence
the unsatisfiability of the input concept C in S, then remove it from S. In this
way, we can find MUPS of C.

Example 2. For A in Example 1, the Exist-Bottom pattern is detected in find-
MUPS Exist-Bot as A � ∃P1.N where N is unsatisfiable in ON . To explain why
N is unsatisfiable, findMUPS needs to be invoked again. Then the Exist-Bottom
pattern is detected again for N as N � ∃P2.C where C is unsatisfiable.

For C, the Exist-All pattern is detected. It is because C has two super condi-
tions ∃P3.D and ∀P3.E which share the same property P3 and there is a disjoint
relation 〈D,¬F 〉 between D and E (see Line 7 in Alg. 2). For this relation, we
have Pexpand = {〈D,D〉, 〈E,F 〉, 〈C,C〉}. After expanding the pairs, we obtain
combPaths = {{〈E,F 〉}}. Then we have t(MUt) = {{C � ∃P3.D�∀P3.E,E �
F,D � ¬F}}. After minimizing, we know MUt is a MUPS of C.

When going back to the method findMUPS Exist-Bot, the axiom A � ∃P1.(B�
∃P2.C) will be added to each found MUPS by findMUPS Exist-All(C). Finally,
we obtain one MUPS for A which contains all axioms in O.

Property 1. Our debugging approach findMUPS is sound but not complete.

It is straightforward to prove this property based on our method findMUPS.

4 Experimental Evaluation

Our approach1 was implemented with OWL API 3.1.0 and the standard rea-
soning tasks are performed using Pellet 2.2.2. The experiments were performed
on a computer with 2.99 GHz Intel(R) Core(TM)2 Duo CPU and 2.00 GB of
RAM using Windows XP. Sun’s Java 1.6.0 was used for Java-based tools and the
maximum heap space was set to 1GB. The maximal time limit is 30 minutes.

4.1 Data Set

The ontologies in the first dataset are learned by applying the ontology learning
framework Text2Onto [2] on a text corpus which consists of the abstracts from
the “knowledge management” information space of the BT Digital Library. To
obtain processable data, we choose two sub-ontologies (marked as bt km-3000

1 http://research.aturstudio.com/Reasoning/debugPatterns.zip

http://research.aturstudio.com/Reasoning/debugPatterns.zip

An Efficient Approach to Debugging Ontologies Based on Patterns 431

and bt km-5000) for our test which are obtained by randomly choose 3000 and
5000 axioms from the original ontology containing 12040 axioms respectively.

The second dataset includes two biomedical ontologies: the galen medical
knowledge base (Galen) and the gene ontology (Go). To make them incoherent,
for each of them about 500 disjoint relations are added between pairs of sibling
concepts. Two concepts are siblings if they share a direct super concept. We
mark them as Galen-inco (contains 4569 axioms) and Go-inco (contains 29375
axioms) respectively. Both of them are EL++ ontologies.

4.2 Evaluation Results

Our approach is evaluated w.r.t. the efficiency and completeness by comparing
with a representative debugging approach (i.e. the glass-box approach in [7]). To
make the glass-box approach achieve better performance, we extract modules by
applying the “top of bottom” approach2 proposed in [11] (marked as Module top-
bot). Our approach is based on the entire ontologies. The efficiency is measured
by the time to finish the process to find MUPS which includes the time to output
each found MUPS. The completeness is measured by the ratio of the number of
MUPS found by our approach to the number of MUPS found by the glass-box
approach. For each ontology, four unsatisfiable concepts are randomly selected:
The extracted modules of the selected concepts contain no more than 400, 60, 45
and 125 axioms for Galen-inco, Go-inco, bt km-3000 and bt km-5000 respectively.

UC bt km-3000 bt km-5000 Galen-inco Go-inco
C1 application design application design AreaOfAtrophicGastritis GO 0006588
C2 management hardware system InflammationOfStomach GO 0042421
C3 network technology management KneeJointCavity GO 0042427
C4 term term RenalAbscess GO 0042429

Efficiency: For each selected concept in all ontologies except bt km-5000, our
approach can finish the debugging process within 1 second. Even for a concept in
bt km-5000 which contains quite a lot MUPS (e.g. at least 16719 MUPS for C2),
it takes about 1000 seconds. As for Module top-bot, it cannot finish the process
within the limited time for 10 out of 16 concepts. Overall, comparing Module top-
bot with our approach, the efficiency has been improved at most 1446 times for
C3 in bt km-3000 and about 319 times in average over all selected concepts
except those which cannot be processed by Module top-bot. The experiment
shows the merit of adopting patterns to guide the process of computing MUPS.

Completeness: For bt km-3000, all MUPS can be found by both approaches.
For the concepts C2 and C4 in Galen-inco, Module top-bot can find all MUPS
and our approach can find more than 84% MUPS. As for other selected concepts
in ontologies Galen-inco, Go-inco and bt km-5000, Module top-bot cannot finish
the process to compute all MUPS within the limited time, but our approach can

2 The implementation of this approach is available in OWL API.

432 Q. Ji et al.

find quite a lot MUPS within a short time. For example, for C2 in the ontology
bt km-5000, 16719 MUPS are found within 971 seconds. In a word, this reflects
that our approach returns MUPS with high completeness and is suitable to deal
with those ontologies that contain many MUPS.

5 Conclusion and Future Work

To improve the efficiency to debug an ontology, we proposed a pattern-based
approach by using a set of heuristic strategies instead of invoking a classical DL
reasoner frequently. Comparing with the glass-box approach based on modules,
the efficiency has been improved at most 1446 times and about 319 times in
average. Besides, at least 84% MUPS have been found for each selected concept.
It shows the advantage of adopting the heuristic strategies based on patterns.

In the future, we will use the hitting set tree algorithm [10] to find all MUPS
of a concept based on those found by our approach. Besides, more patterns will
be integrated into our approach.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

2. Cimiano, P., Völker, J.: Text2onto – A Framework for Ontology Learning and Data-
Driven Change Discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

3. Corcho, Ó., Roussey, C., Blázquez, L.M.V., Pérez, I.: Pattern-based owl ontology
debugging guidelines. In: WOP (2009)

4. Flouris, G., Huang, Z., Pan, J.Z., Plexousakis, D., Wache, H.: Inconsistencies,
negations and changes in ontologies. In: AAAI, Boston, Massachusetts, pp. 1295–
1300 (2006)

5. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Just the right amount: extracting
modules from ontologies. In: WWW, pp. 717–726 (2007)

6. Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Justifications in Owl.
In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T.,
Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 323–338. Springer, Hei-
delberg (2008)

7. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all Justifications of
OWL DL Entailments. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee,
K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber,
G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp.
267–280. Springer, Heidelberg (2007)

8. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW, pp.
633–640 (2005)

9. Plaisted, D.A., Greenbaum, S.: A structure-preserving clasue form translation.
Journal of Symbolic Computation (1986)

10. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

An Efficient Approach to Debugging Ontologies Based on Patterns 433

11. Sattler, U., Schneider, T., Zakharyaschev, M.: Which kind of module should i
extract? In: Description Logics (2009)

12. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: IJCAI, pp. 355–362 (2003)

13. Suntisrivaraporn, B., Qi, G., Ji, Q., Haase, P.: A Modularization-Based Approach
to Finding All Justifications for OWL DL Entailments. In: Domingue, J., Anu-
tariya, C. (eds.) ASWC 2008. LNCS, vol. 5367, pp. 1–15. Springer, Heidelberg
(2008)

14. Wang, H., Horridge, M., Rector, A.L., Drummond, N., Seidenberg, J.: Debugging
OWL-DL Ontologies: A Heuristic Approach. In: Gil, Y., Motta, E., Benjamins,
V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 745–757. Springer,
Heidelberg (2005)

Author Index

Abel, Fabian 160
Ashraf, Jamshaid 376

Bai, Xi 318
Bai, Yin 385
Beauregard, Bill 402
Bertault, Francois 411

Celino, Irene 128
Chao, Jiansong 268
Chen, Huajun 258
Chen, Jianfeng 350
Cheng, Gong 226
Chute, Christopher G. 342
Cobby, Nathan 417

d’Aquin, Mathieu 284
Davis, Hugh C. 210
Dell’Aglio, Daniele 128
Du, Jianfeng 144, 394

Fang, Jun 1
Feng, Wendy 411
Finin, Tim 334
Fionda, Valeria 64

Gao, Qi 160
Gao, Zhiqiang 425
Ge, Weiyi 226
Gibbins, Nicholas 242
Groza, Tudor 300
Gu, Peiqin 258

Hadzic, Maja 376
Haller, Armin 300
Han, Lushan 334
Hihara, Keisuke 96
Horne, Ross 242
Houben, Geert-Jan 160
Hu, Wei 48, 350
Hu, Yong 144
Huang, Zhisheng 1, 425

Ichise, Ryutaro 112

Ji, Feng 226
Ji, Qiu 425
Joshi, Anupam 334

Kim, Hong-Gee 358
Kim, Hyoung-Joo 33
Kim, Kisung 33
Klein, Ewan 318
Kozaki, Kouji 96
Krastins, Austris 411

Lee, Kevin 17
Li, Juanzi 80
Li, Zonghui 385
Luo, Shengmei 226

Ma, Yuanchao 385
Mizoguchi, Riiciro 96
Moon, Bongki 33
Motta, Enrico 284
Mueller, Ralf 402
Musen, Mark A. 342

Namgoong, Hyun 358
Nikolov, Andriy 284
Noy, Natalya F. 342

Pan, Jeff Z. 17, 80, 144, 394
Pirró, Giuseppe 64
Prater, Jean 402

Qi, Guilin 144, 394
Qiu, Che 394
Qu, Yuzhong 48, 226, 350

Ren, Yuan 17
Robertson, Dave 318
Rosenberg, Florian 300

Sassone, Vladimiro 242
Shah, Nigam H. 342
Shen, Yidong 366
Solbrig, Harold R. 342
Sotomayor, Marco 366, 417

436 Author Index

Tao, Cui 342
Thornton, John 366
Tian, Yuan 176
Tiropanis, Thanassis 210

Umbrich, Jürgen 176

van Harmelen, Frank 1
Verza, Arturs 411

Wang, Haofen 268
Wang, Kewen 366, 417
Wang, Shuai 144, 394
Wang, Xin 210
Wang, Zhe 417
Wang, Zhichun 80

Wang, Zhigang 80
Wu, Gang 192

Xu, Bin 385

Yang, Mengdong 192
Yang, Sungkwon 358
Yi, Liangrong 411
Yu, Yong 176, 268

Zhang, Hang 48, 350
Zhang, Weinan 268
Zhao, Lihua 112
Zhou, Wenlei 268
Zhu, Man 425
Zong, Nansu 358

	Title
	Preface
	Organization
	Table of Contents
	A Method of Contrastive Reasoning with Inconsistent Ontologies
	Introduction
	Motivation
	Simple Example
	Structure and Contributions of This Paper

	Formalization of Contrastive Reasoning
	Nonstandard Entailment for Inconsistent ontologies
	Contrastive Answers

	Computing Contrastive Answers
	The PION Approach
	The CRION Approach

	Implementation and Evaluation
	Implementation
	Evaluation
	Discussion

	Related Work
	Conclusions and Future Work
	References

	Parallel ABox Reasoning of EL Ontologies
	Introduction
	Preliminary
	The ELHR+ and ELH,R+ DLs
	Parallel TBox Classification of ELHR+ Ontologies

	Technical Challenges: Parallel ABox Reasoning
	Approach
	TBox Completion Rules
	ABox Completion Rules
	Parallel Algorithms
	Cascading Processing

	Evaluation
	Conclusion
	References

	RP-Filter: A Path-Based Triple FilteringMethod for Efficient SPARQL Query Processing
	Introduction
	Related Work
	Preliminary
	RP-Filter
	Requirements of RP-Filter
	Definition of RP-Filter
	Storage Model of RP-Filter

	Query Evaluation Using RP-Filter
	RPFLT Operator
	Generating an Execution Plan with RPFLT Operators

	Experimental Results
	RP-Filter Size
	Query Execution Time

	Conclusions and Future Work
	References

	Constructing Virtual Documents for Ontology Matching Using MapReduce
	Introduction
	Preliminaries
	Problem Statement
	MapReduce

	Related Work
	Constructing Descriptions
	Descriptions of Entities
	Descriptions of Blank Nodes

	Exchanging Information with Neighbors
	Matching Virtual Documents
	Evaluation
	Datasets
	Experimental Results

	Conclusion
	References

	Semantic Flow Networks: Semantic Interoperability in Networks of Ontologies
	Introduction
	Related Work
	Preliminaries
	Processing Ontology Mappings
	Constraints over Mappings

	Semantic Flow Networks
	Mapping Discovery Strategies in a SFN
	Mapping Existence
	Optimal Mapping Selection

	Some Complexity Results
	A Constraint Satisfaction Problem Formulation
	Conclusions
	References

	Building a Large Scale Knowledge Base from Chinese Wiki Encyclopedia
	Introduction
	Preliminary
	Related Definitions
	Hudong

	Ontology Extraction
	Concept Extraction
	Property Extraction

	Instance Extraction
	Extract Instances and Descriptions
	Link Entities to DBpedia Entities

	Results
	Dataset
	Extracted Knowledge Base

	Related Work
	Conclusion
	References

	Dynamic Is-a Hierarchy Generation System Based on User's Viewpoint
	Introduction
	Dynamic Is-a Hierarchy Generation According to Viewpoints
	Ontology Representation in Hozo
	Dynamic Is-a Hierarchy Generation through Transcription of a Hierarchical Structure
	Examples of Dynamic Is-a Hierarchy Generation

	Ontological Consideration on Generated Is-a Hierarchies
	Three kinds of Is-a Relationship
	Consistency of Is-a Relationships

	Implementation
	Application of Dynamic Is-a Generation to a Medical Ontology
	Related Work
	Concluding Remarks
	References

	Mid-Ontology Learning from Linked Data
	Introduction
	Mid-Ontology Learning Approach
	Data Collection
	Predicate Grouping
	Mid-Ontology Construction
	Implementation

	Experimental Evaluation
	Experimental Data
	Evaluation of Data Reduction
	Ontology Evaluation
	Evaluation with a SPARQL Example
	Characteristics of Integrated Ontology Predicates

	Discussion
	Related Work
	Conclusion and Future Work
	References

	An Ontological Formulation and an OPM Profile for Causality in Planning Applications
	Introduction and Motivations
	The Ontological Formulation of the Planning Problem
	Planning Metamodel
	An OWL 2 Formulation of the Planning Metamodel
	Modelling Conditions in Planning Rules

	The Planning Causality as an Open Provenance Model
	Mapping the Planning Metamodel to OPMV
	Completion Rules and Inferences

	Automated Checking of Causality in Planning Models
	Model Completeness and Action Reachability
	Constraint Checking

	Applying Our Approach to Simulation Learning
	Related Work
	Conclusions
	References

	A New Matchmaking Approach Based on Abductive Conjunctive Query Answering
	Introduction
	Preliminaries
	OWL 2 and DLP
	Conjunctive Query Answering

	The Abductive CQA Problem
	A Method for the Abductive CQA Problem
	Experimental Evaluation
	Conclusion and Future Work
	References

	GeniUS: Generic User Modeling Library for the Social Semantic Web
	Introduction
	Related Work
	GeniUS: A Generic Library for Topic and User Modeling
	Architecture of GeniUS
	Domain-Specific User Profile Construction Using GENIUS

	Analysis of Domain-Specific User Profile Construction
	Data Collection
	Results

	Evaluation of Domain-Specific User Profile Construction for Recommendation Systems
	Experimental Setup
	Results

	Conclusion
	References

	Enhancing Source Selection for Live Queries over Linked Data via Query Log Mining
	Introduction
	Overview of Source Selection
	Query Relevant Sources
	Source Selection

	Summarizing Source Information
	Mining Frequent BGPs from Query Logs
	Selecting Sources from Summaries
	Evaluation
	Experimental Setup
	Results and Analysis

	Related Work
	Conclusion and Future Work
	References

	Semantic Caching for Semantic Web Applications
	Introduction
	Preliminaries
	Notions and Definitions
	SPARQL Query Evaluation

	Principles and Mechanism
	AET Based Caching
	Entity Caching

	Implementation
	Evaluation
	Evaluation Metrics
	Experiment Setup
	Evaluation Result

	Conclusion and Future Work
	References

	Evaluating Graph Traversal Algorithms for Distributed SPARQL Query Optimization
	Introduction
	The Evaluation Framework
	Design of the Evaluation Framework

	Graph Traversal Algorithm for Distributed SPARQL Query Optimization
	Graph Traversing Algorithms
	Distributed SPARQL Processing Evaluation Strategy
	Decomposition Strategy
	Implementation

	Evaluation
	Configuration of the Evaluation Environment
	Evaluation Results
	Analysis

	Discussion and Future Work
	References

	BipRank: Ranking and Summarizing RDFVocabulary Descriptions
	Introduction
	Problem Statement
	Salience Measurement
	Centrality-Based Salience
	BipRank: Centrality within a Bipartite Graph
	Patterns of RDF Sentences

	Vocabulary Summarization
	Goodness of a Vocabulary Summary
	Metrics
	Notes on Implementation

	Experiments
	Evaluation of Salience Measures
	Evaluation of Vocabulary Summaries
	Performance Testing

	Related Work
	Vocabulary Summarization: Extracting RDF Sentences
	Vocabulary Summarization: Identifying Key Terms
	Keyword Search on Graphs

	Conclusions and Future Work
	References

	Operational Semantics for SPARQL Update
	Introduction
	Background and Motivation
	A Case for an Operational Semantics for SPARQL Update
	A Comparison of SPARQL Update to This Work

	A Concise Abstract Syntax
	Syntactic Conventions
	A Syntax for RDF Data
	A Syntax for Constraints
	A Syntax for Updates
	Abbreviations for Common Updates

	An Equivalence over RDF Terms
	A Structural Congruence

	A Commitment Relation for Updates
	The Delete Axiom
	The Insert Axiom
	The Join Rule
	The Select Literal Rule and Select URI Rule
	The Choose Left Rule and Choose Right Rule
	The Filter Axiom
	The Rules for Iterated Updates
	The Context Rule for Unused Data
	The Blank Node Rule for Updating Local Names
	An Example of a Nested Update

	Related Work
	Conclusion
	References

	Knowledge-Driven Diagnostic System for Traditional Chinese Medicine
	Introduction
	Medical Ontology Modeling
	WenBing Domain Ontology
	Basic Theory of Febrile Disease
	Terminology and Assertions
	Modeling Syndrome Classification

	TCM Diagnostics
	Medical Scenario
	Conclusions
	References

	LODDO: Using Linked Open Data Description Overlap to Measure Semantic Relatedness between Named Entities
	Introduction
	Related Work
	Methodology
	LOD Index Builder
	Semantic Relatedness Measuring

	Experiments
	Experimental Setup
	Description Overlap Strategy Comparison
	Semantic Relatedness Measuring Performance
	LOD Data Source Selection

	Conclusion
	References

	What Should I Link to? Identifying Relevant Sources and Classes for Data Linking
	Introduction
	Motivation
	Scenarios and Requirements
	Overview of the Approach

	Selecting Relevant Data Sources Using Keyword Search Services
	Finding Potentially Relevant Sources
	Using Ontology Matching Techniques to Filter Out Irrelevant Results

	Identifying Relevant Classes in the Dataset
	Experiments
	Dataset Search
	Finding the Best-Fitting Class

	Related Work
	Conclusion
	References

	Interacting with Linked Data via Semantically Annotated Widgets
	Introduction
	Running Example
	A Framework for Data Publishing in RDFa
	Widget Generation
	Widget Deployment
	Widget Usage
	Data Reuse

	The ActiveRaUL System
	ActiveRaUL RESTful Web Service
	ActiveRaUL Client-Side JS API Processing

	Evaluation
	Related Work
	Conclusion and Future Work
	References

	RDFa2: Lightweight Semantic Enrichment for Hypertext Content
	Introduction
	Related Work
	Topic Nodes and Topic Trees
	Embedded-Annotation Generation
	Topic-Node Discovery
	Federated-Annotation Generation
	Customisation and Template Reuse
	Self-adaptability and Reflections on RDF Features
	Linking Annotations to the LOD Cloud

	Experiment and Use-Case Analysis
	Conclusions
	References

	GoRelations: An Intuitive Query System for DBpedia
	Introduction
	Semantic Graph Interface
	Translation
	Mapping Approach
	SPARQL Generation
	Ontology Statistics Component
	Semantic Similarity Component

	Evaluation
	Conclusion
	References

	Proposed SKOS Extensions for BioPortal Terminology Services
	Introduction
	SKOS Extensions
	Discussion
	Concluding Remarks
	References

	Learning Complex Mappings between Ontologies
	Introduction
	Problem Statement
	Approach
	Instance Matching Phase
	Data Tailoring Phase
	Mapping Learning Phase

	Evaluation
	Conclusion
	References

	Discovering and Ranking New Links for Linked Data Supplier
	Introduction
	Method Overview
	RDF Document Ranking
	Link Discovering and Ranking

	Ranking Algorithm for Choosing Important Entities
	Preliminary Experiment
	Conclusion and Future Work
	References

	Probabilistic Multi-Context Systems
	Introduction
	Probabilistic Multi-Context Systems
	Minimal Probabilistic Entailed Chain/Fixpoint
	Conclusion
	References

	Web Schema Construction Based on Web Ontology Usage Analysis
	Introduction
	Analyzing the Ontology Usage in RDF Dataset
	Construction of the Vocabulary Graph
	Vocabulary/Ontology Usage Analysis
	Ranking the Terms

	Dataset and Experiment
	Dataset Collection
	Analysis of Vocabulary Usage

	Related Work
	Conclusion and Future Work
	References

	Building Linked Open University Data: Tsinghua University Open Data as a Showcase
	Introduction
	Data Categories and Schema
	Data Categories
	Vocabularies

	Data Collection and Structuring
	Data Collection
	Data Converting and Mashup

	Tsinghua University Open Data
	Datasets
	System Infrastructure and User Interface
	Applications

	Realated Work
	Discussion
	Conclusion and Future Work
	References

	An Abductive CQA Based Matchmaking System for Finding Renting Houses
	Motivation
	Novelty
	Preliminaries
	OWL 2 and Conjunctive Query Answering
	Abductive Conjunctive Query Answering

	The Architecture of the Matchmaking System
	Wrapper
	Triple Converter
	Consistency Restorer
	Controller
	Matchmaker

	What Will Be Demonstrated?
	References

	An Ontological Approach to Oracle BPM
	Introduction
	Customer Use Case
	An Ontology for BPM
	An Ontology for BPMN 2.0
	An Ontology for SCA
	Applications
	Continuous Process Refinement and Optimization
	Systems Integration

	Conclusion
	References

	Shining Light on Complex RDF Data through Advanced Data Visualization
	Introduction
	System Architecture
	Demonstration
	Conclusion
	References

	OntoRevision: A Plug-in System for Ontology Revision in Prot´eg´e
	Introduction
	Feature-Based Revision
	An Alternative Semantics for DL-Lite
	Ontology Revision
	Algorithms for Ontology Revision

	Implementation Details
	Conclusion
	References

	An Efficient Approach to Debugging Ontologies Based on Patterns
	Introduction
	Preliminaries
	Approach to Debugging Ontologies Based on Patterns
	Data Preprocessing
	Pattern-Based Debugging Approach

	Experimental Evaluation
	Data Set
	Evaluation Results

	Conclusion and Future Work
	References

	Author Index

