
Distributed Formal Concept Analysis

Algorithms Based on an Iterative MapReduce
Framework

Biao Xu, Ruaiŕı de Fréin, Eric Robson, and Mı́cheál Ó Foghlú

Telecommunications Software & Systems Group,
Waterford Institute of Technology, Ireland

{bxu,rdefrein,erobson,mofoghlu}@tssg.org

Abstract. While many existing formal concept analysis algorithms are
efficient, they are typically unsuitable for distributed implementation.
Taking the MapReduce (MR) framework as our inspiration we intro-
duce a distributed approach for performing formal concept mining. Our
method has its novelty in that we use a light-weight MapReduce run-
time called Twister which is better suited to iterative algorithms than
recent distributed approaches. First, we describe the theoretical foun-
dations underpinning our distributed formal concept analysis approach.
Second, we provide a representative exemplar of how a classic central-
ized algorithm can be implemented in a distributed fashion using our
methodology: we modify Ganter’s classic algorithm by introducing a
family of MR� algorithms, namely MRGanter and MRGanter+ where
the prefix denotes the algorithm’s lineage. To evaluate the factors that
impact distributed algorithm performance, we compare our MR∗ algo-
rithms with the state-of-the-art. Experiments conducted on real datasets
demonstrate that MRGanter+ is efficient, scalable and an appealing al-
gorithm for distributed problems.

Keywords: Formal Concept Analysis, Distributed Mining, MapReduce.

1 Introduction

Formal Concept Analysis (FCA), pioneered in the 80’s by Wille [1], is a method
for extracting formal concepts –natural clusters of objects and attributes– from
binary object-attribute relational data. FCA has great appeal in the context of
knowledge discovery [2], information retrieval [3] and social networking analysis
applications [4] because arranging data as a concept lattice yields a powerful and
intuitive representation of the dataset [1,5].

The main short-coming of FCA –which has curtailed a more widespread up-
take of the approach– is that FCA becomes prohibitively time consuming as the
dataset size increases. However, association rules mining tends to deal with large
datasets. FCA relies on the fact that the set of concept intents is closed under
intersection [6], namely, a closure system. Appealingly, using this property, new
formal concepts may be extracted iteratively by extending an existing intent,

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 292–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributed FCA Algorithms: MRGanter 293

in practice, by intersecting it with a new attribute and shrinking the extent in
an iteration. While existing FCA algorithms perform this iterative procedure
efficiently for small centralized datasets, the recent explosion in dataset sizes,
privacy protection concerns, and the distributed nature of the systems that col-
lect this data, suggests that efficient distributed FCA algorithms are required.
In this paper we introduce a distributed FCA approach based on a light-weight
MapReduce runtime called Twister [7], which is suited to iterative algorithms,
scales well and reduces communication overhead.

1.1 Related Work

Some well-known algorithms for performing FCA include Ganter’s algorithm [8],
Lindig’s algorithm [9] and CloseByOne [10,11] and their variants [12,13]. Gan-
ter introduces lectic ordering so that all possible attribute subsets of the data
do not have to be scanned when performing FCA. Ganter’s algorithm computes
concepts iteratively based on the previous concept without incurring exponential
memory requirements. In contrast, CloseByOne produces many concepts in each
iteration. Bordat’s algorithm [14] runs in almost the same amount of time as Gan-
ter’s algorithm, however, it takes a local concept generation approach. Bordat’s
algorithm introduces a data structure to store previously found concepts, which
results in considerable time savings. Berry proposes an efficient algorithm based
on Bordat’s approach which requires a data structure of exponential size in [15].
A comparison of theoretical and empirical complexity of many well-known FCA
algorithms is given in [16]. In addition, some useful principles for evaluating al-
gorithm performance for sparse and dense data are suggested by Kuznetsov and
Obiedkov; We consider data density when evaluating our approach.

The main disadvantage of the batch algorithms discussed above is that they re-
quire that the entire lattice is reconstructed from scratch if the database changes.
Incremental algorithms address this problem by updating the lattice structure
when a new object is added to database. Incremental approaches have been
made popular by Norris [17], Dowling [18], Godin et al. [19], Capineto and Ro-
mano [20], Valtchev et al. [21] and Yu et al. [22]. In recent years, to reduce
concept enumeration time, some parallel and distributed algorithms have been
proposed. Krajca et al., proposed a parallel version based on CloseByOne [13].
The first distributed algorithm [23] was developed by Krajca and Vychodil in
2009 using the MapReduce framework [24]. In order to encourage more wide-
spread usage of FCA, beyond the traditional FCA audience, we propose the
development and implementation of efficient, distributed FCA algorithms. Dis-
tributed FCA is appealing as distributed approaches that can take advantage of
cloud infrastructures to reduce enumeration time, are attractive for practitioners.

1.2 Contributions

We utilize the MapReduce framework in this paper to execute distributed al-
gorithms on different nodes. Several implementations of MapReduce have been

294 B. Xu et al.

developed by a number of companies and organizations, such as Hadoop MapRe-
duce by Apache1, and Twister Iterative MapReduce2, since its introduction by
Google in 2004. A crucial distinction between the present paper and the work of
Krajca and Vychodil [23] is that we use a Twister implementation of MapReduce.
Twister supports iterative algorithms [7]: we leverage this property to reduce
the computation time of our distributed FCA algorithms. In contrast, Hadoop
architecture is designed for performing single step MapReduce. We implement
new distributed versions (MRGanter and MRGanter+) of Ganter’s algorithm
and empirically evaluate their performance. In order to provide an established
and credible benchmark under equivalent experimental conditions, MRCbo, the
distributed version of CloseByOne is implemented as well using Twister.

This paper is organized as follows. Section 2 reviews Formal Concept Analysis
and Ganter’s algorithm. The theoretical underpinnings for implementing FCA
using distributed databases are described in Section 3 to support our approach.
Our main contribution is a set of Twister-based distributed versions of Gan-
ter’s algorithm. Section 4 presents an implementation overview and comparison
of MapReduce, Hadoop and Twister. Empirical evaluation of the algorithms
proposed in this paper is performed using datasets from the UCI KDD machine
learning repository; experimental results are discussed in Section 5. In summary,
MRGanter+ performs favourably in comparison to centralized versions.

2 Formal Concept Analysis

We continue by introducing the notational conventions used in the sequel. Let
O and P denote a finite set of objects and attributes respectively. The data
ensemble, S, may be arranged in Boolean matrix form as follows: the objects
and attributes are listed along the rows and columns of the matrix respectively;
The symbol × is entered in a row-column position to denote an object has that
attribute; An empty entry denotes that the object does not have that attribute.
Formally, this matrix describes the binary relation between the sets O and P .
The object X has attribute Y if (X,Y) ∈ I, X ⊆ O and Y ⊆ P . The triple
(O,P, I) is called a formal context. For example, in Table 1, O = {1, 2, 3, 4, 5, 6}
and P = {a, b, c, d, e, f, g}, thus object {2} has attributes {a, c, e, g}. We define
a derivation operator on X and Y where X ⊆ O and Y ⊆ P as:

X ′ = {p ∈ P | ∀t ∈ O : (t, p) ∈ I} (1)

Y ′ = {t ∈ O | ∀p ∈ P : (t, p) ∈ I}. (2)

The operation X ′ generates the set of attributes which are common to objects
in X . Similarly, Y ′ generates the set of objects which are common to attributes
in Y . A pair 〈X,Y 〉 is called a formal concept of (O,P, I) if and only if X ⊆ O,
Y ⊆ P , X ′ = Y , and Y ′ = X . Given a formal concept 〈X,Y 〉, X and Y are its
extent and intent. The crucial property here is that the mappings X �→ X ′′ and
1 http://hadoop.apache.org/mapreduce/
2 http://www.iterativemapreduce.org/

Distributed FCA Algorithms: MRGanter 295

Table 1. The symbol × indicates that an object has the corresponding attribute

a b c d e f g

1 × × × ×
2 × × × ×
3 × × × × ×
4 × × ×
5 × × × ×
6 × × × ×

Y �→ Y ′′, commonly known as closure operators, hold. The closure operator can
be used to calculate the extent and intent that form a formal concept.

Establishing some notion of concept ordering, that is engendering a sub/super-
concept hierarchy, is crucial in what follows. Given X1, X2 ⊆ O and Y1, Y2 ⊆ P
the concepts of a context are ordered as follows: 〈X1, Y1〉 � 〈X2, Y2〉: ⇐⇒ X1 ⊆
X2 ⇐⇒ Y2 ⊆ Y1, an ordering which is interesting because it facilitates the
iterative formation of a complete lattice which is called the concept lattice of
the context [6]. In the following sections we describe algorithms for concept
lattice formation, namely Ganter’s algorithm (also known as NextClosure) and
CloseByOne. We then introduce our distributed extensions of these approaches.

2.1 Ganter: Iterative Closure Mining Algorithm

The NextClosure algorithm describes a method for generating new closures which
guarantees every closure is enumerated once. Closures are generated iteratively
using a pre-defined order, namely lectic ordering. The set of all formal concepts
is denoted by F . Let us arrange the elements of P = {p1, · · · , pi, · · · , pm} in an
arbitrary linear order p1 < p2 < · · · < pi < . . . < pm, where m is the cardinality
of the attribute set, P . The decision to use lectic ordering dictates that any
arbitrarily chosen subset of P is also ordered according to the lectic ordering
which was defined ab initio. Given two subsets Y1, Y2 ⊆ P , Y1 is lectically
smaller than Y2 if the smallest element in which Y1 and Y2 differ belongs to Y2.

Y1 ≤ Y2 :⇐⇒ ∃pi(pi ∈ Y2, pi /∈ Y1, ∀pj<pi(pj ∈ Y1 ⇐⇒ pj ∈ Y2)). (3)

NextClosure uses (Eqn. 3) as a feasibility condition for accepting new candidate
formal concepts. Typically this difference in set membership is made more ex-
plicit by denoting the smallest element, pi, in which the set Y1 and Y2 differ.

Y1 ≤pi Y2 :⇐⇒ ∃pi(pi ∈ Y2, pi /∈ Y1, ∀pj<pi(pj ∈ Y1 ⇐⇒ pj ∈ Y2)). (4)

To fix ideas, if the order of P = {a, b, c, d, e, f, g} is defined as a < b < c < d <
e < f < g, and two subsets of P , or itemsets, Y1 = {a, c, e, g} and Y2 = {a, b, e, g}
are examined then Y1 ≤ Y2 because the smallest element in which the two sets
differ is b and this element belongs to Y2.

Each subset Y ⊆ P may yield a closure, Y ′′ ⊆ P ; The NextClosure algo-
rithm attempts to find all closures systematically by exploiting lectic ordering.

296 B. Xu et al.

Table 2. Formal concepts mined from Table 1, including empty concepts

F1: 〈{1, 2, 3, 4, 5, 6}, {}〉 F8: 〈{1, 3, 4, 6}, {b}〉 F15: 〈{1, 2, 5}, {a}〉
F2: 〈{1, 3, 5, 6}, {f}〉 F9: 〈{1, 3, 6}, {b, f}〉 F16: 〈{2, 5}, {a, e}〉
F3: 〈{2, 4, 5}, {e}〉 F10: 〈{1, 3, 4}, {b, d}〉 F17: 〈{1, 5}, {a, d, f}〉
F4: 〈{1, 3, 4, 5}, {d}〉 F11: 〈{1, 3}, {b, d, f}〉 F18: 〈{5}, {a, d, e, f}〉
F5: 〈{1, 3, 5}, {d, f}〉 F12: 〈{4}, {b, d, e}〉 F19: 〈{2}, {a, c, e, g}〉
F6: 〈{4, 5}, {d, e}〉 F13: 〈{3 6}, {b, c, f, g}〉 F20: 〈{1}, {a, b, d, f}〉
F7: 〈{2, 3, 6}, {c, g}〉 F14: 〈{3}, {b, c, d, f, g}〉 F21: 〈{}, {a, b, c, d, e, f, g}〉

Let the ordering of P be p1 < p2 < . . . < pi < . . . < pm, and consider the subset
Y ⊆ P . The generative operation is the ⊕-operation: a new intent is generated
by applying ⊕ on an existing intent and an attribute, and is defined as

Y ⊕ pi := ((Y ∩ {p1, . . . , pi−1}) ∪ {pi})′′, where Y ⊆ P and pi ∈ P. (5)

NextClosure then compares the new candidate formal concept with the previous
concept. If the condition in (Eqn. 4) is satisfied the candidate concept produced
by (Eqn. 5) is kept and added to the lattice.

The ⊕-operator in (Eqn. 5) consists of intersection, union and closure opera-
tions; Lectic ordering and the associated complexity of these operations explains
why NextClosure’s ordered approach incurs high computational expense. Con-
sequently the largest dataset-size NextClosure can practically process is small.

Example 1. Consider the formal context in Table 1. Assume we have a con-
cept 〈{1, 5}, {a, d, f}〉. We take the attribute set, Y = {a, d, f}, and calculate,
Y ⊕ e. First, we compute, {a, d, f} ∩ {a, b, c, d} = {a, d}, then we append e
and generate {a, d} ∪ {e} = {a, d, e}. Performing {a, d, f} ⊕ e = {a, d, e}′′
yields the set, {a, d, e, f}. To demonstrate the role of lectic ordering, we compute
Y ⊕c = {a, c, e}. According to the feasibility condition in (Eqn. 4), {a, d, e, f} ≤c

{a, c, e}. Thus, the set, {a, c, e}, is added to the concept lattice, F . By repeat-
ing this process, NextClosure determines that there are 21 formal concepts in
the concept lattice representation of the formal context in Table 1. The set of
concepts, F , is listed in Table 2.

Pseudo code for NextClosure is described in the Algorithm 1 and 2 as back-
ground to our distributed approach. Algorithm 1 applies the closure operator
on the null attribute set and generates the first intent, Y , which is the base
for all subsequent formal concepts. New concepts are generated in turn by call-
ing Algorithm 2 and concatenating the resultant concepts to the set of formal
concepts, F . As each candidate intent is extended with new attributes, the in-
tent for the last iteration of this loop consists of the complete set of attributes.
This feature is used to terminate the loop (in Line 2 of the Algorithm 1). Al-
gorithm 2 accepts the formal context triple, (O,P, I) and current intent, Y , as
inputs. By convention, the attribute set P is sorted in descending order. The
⊕-operator described in (Eqn. 5) is applied to produce candidate formal con-
cepts. The concept feasibility condition (Eqn. 4) is used to verify whether a

Distributed FCA Algorithms: MRGanter 297

Algorithm 1. AllClosure
Input: ∅: null attribute set.
Output: F : Formal concepts set.
1: Y ← ∅′′;
2: while Y is not the last closure do
3: Y ← NextClosure();
4: F ← F ∪ Y ;
5: end while
6: return F

Algorithm 2. NextClosure
Input: O,P, I, Y : formal context & current

intent.
Output: Y .
1: for pi from pm down to p1 do
2: if pi /∈ Y then
3: candidate ← Y ⊕ pi;
4: if candidate ≤pi

Y then

5: Y ← candidate;
6: break;
7: end if
8: end if
9: end for
10: return Y

new candidate should be added to the set of formal concepts, F . The approach
taken in the CloseByOne algorithm is similar in spirit to the approach taken by
the NextClosure algorithm: CloseByOne generates new formal concepts based
on concept(s) generated in the previous iteration and tests their feasibility us-
ing the operator, ≤pi . The crucial difference is that the CloseByOne algorithm
generates many concepts in each iteration. CloseByOne terminates when there
are no more concepts that satisfy (Eqn. 4). In short, NextClosure only finds the
first feasible formal concept in each iteration whereas CloseByOne potentially
generates many. As a consequence, CloseByOne requires far fewer iterations.

The appeal of NextClosure, and explanation for our desire to make it more
efficient lies in its thoroughness; the guarantee of a complete lattice structure
which is a consequence of the main theorem of Formal Concept Analysis [6].
This thoroughness is due to lectic ordering and the iterative approach deployed
by NextClosure; however, thoroughness comes at the cost of high complexity.
The advent of efficient mechanisms for dealing with iterative algorithms using
MapReduce captured by Twister allow us to couple NextClosure’s thoroughness
with a practical distributed implementation in this paper.

3 Distributed Algorithms for Formal Concept Mining

We continue by describing two methods for performing distributed NextClosure,
namely, MRGanter and MRGanter+. An introduction to Twister is deferred
to Section 4. We start by describing the properties of a partitioned dataset
compared to its unpartitioned form. In many cases these properties are simply
restatements of the properties of the derivations operators.

Given a dataset S, we partition its objects into n subsets and distribute the
subsets over n different nodes. Without loss of generality, it is convenient to limit
n = 2 here. We denote the partitions by S1 and S2. Alternatively we can think
in terms of formal contexts and write the formal context, (O,P, I), in terms of
the partitioned formal contexts (OS1 , P, IS1) and (OS2 , P, IS2). To fix ideas, we
use the dataset in Table 1 as an exemplar and generate the partitions in Table 3.

298 B. Xu et al.

Table 3. Partitioned datasets derived from Table 1, S1 and S2

S1 or (OS1 , P, IS1)

a b c d e f g

1 × × × ×
2 × × × ×
3 × × × × ×

S2 or (OS2 , P, IS2)

a b c d e f g

4 × × ×
5 × × × ×
6 × × × ×

The partitions are non-overlapping: the intersection of the partitions is the null
set, S1∩S2 = ∅ and their union gives the full dataset S = S1∪S2. It follows that
the partitions, S1, S2, have the same attributes sets, P , as the entire dataset S,
however, the set of objects is different in each partition, e.g. OS1 and OS2 . Let
YS , YS1 and YS2 denote an arbitrary attribute set Y with respect to the entire
dataset S, and each of its partitions S1 and S2 respectively. By construction
they are equivalent: YS ≡ YS1 ≡ YS2 . Similarly, Y ′S , Y

′
S1

and Y ′S2
are the sets of

objects derived by the derivation operation in each of the partitions S1, S2 and
the entire dataset S respectively.

Property 1. Given the formal context, (O,P, I), the two partitions (OS1 , P, IS1)
and (OS2 , P, IS2) and an arbitrary itemset, Y ⊆ P , the property Y ′S = Y ′S1

∪ Y ′S2

holds: the union of the sets of objects generated by the derivation of the attribute
set Y in each of the partitions is equivalent to the set of objects generated by the
derivation of the attribute set over the entire dataset, S.

Appealing to the definition of the derivation operator proposed by Wille in [1],
the set, Y ′S , is a subset of O, Y ′S ⊆ O. Moreover, Y ′S1

⊆ OS1 and Y ′S2
⊆ OS2 .

Given S1 ∪ S2 = S and S1 ∩ S2 = ∅, it follows that, OS1 ∪ OS2 = O and
OS1 ∩OS2 = ∅; Therefore, Y ′S1

⊆ Y ′S and Y ′S2
⊆ Y ′S . Finally, Y

′
S1

∪ Y ′S2
≡ Y ′S . As

a counterexample, an object t that exists in Y ′S , but not in Y ′S1
or Y ′S2

, cannot
exist because OS1 ∪ OS2 = O and OS1 ∩ OS2 = ∅ and YS = YS1 = YS2 . If t is
in Y ′S it must appear in Y ′S1

or Y ′S2
. In short, Property 1 allows us to process

all objects independently: the objects can be distributed and processed in an
arbitrary order and this will not affect the result of Y ′. Property 1 is trivially
extended to the case of n partitions. Now we describe how formal concepts can
be combined from different partitions.

Property 2. Given the formal context, (O,P, I), the two partitions (OS1 , P, IS1)
and (OS2 , P, IS2) and an arbitrary itemset, Y ⊆ P , the property Y ′′S = Y ′′S1

∩ Y ′′S2

holds: The intersection of the closures of the attribute set, Y , with respect to
each of the partitions S1 and S2 is equivalent to the closure of the attribute set,
Y , with respect to the entire dataset S.

By the definition of the partition construction method above, S1 ∪ S2 = S,
which implies that, S1 ⊂ S and S2 ⊂ S. Recall that, Y ′S1

⊂ Y ′S and Y ′S2
⊂ Y ′S ,

and from Property 1 we have that Y ′S = Y ′S1
∪ Y ′S2

. Appealing to the properties
of the derivation operators, in [1], we have, Y ′′S1

⊇ Y ′′S and Y ′′S2
⊇ Y ′′S . It is

clear that Y ′′S1
and Y ′′S2

need not equal Y ′′S , but by the definition of a closure

Distributed FCA Algorithms: MRGanter 299

(Y ′S1
∪ Y ′S2

)′ = (Y ′S)
′ = YS , thus, (Y

′
S1

∪ Y ′S2
)′ = Y ′′S1

∩ Y ′′S2
follows trivially from

the definition of the derivations operators.

Example 2. Consider the following example. Taking itemset Y = {b, d}. We
derive Y ′′S1

= {b, d, f} from the first partition S1, and Y ′′S2
= {b, d, e} from S2.

We derive Y ′′S = {b, d} for the entire dataset S. Therefore Y ′′S = Y ′′S1
∩ Y ′′S2

.

Theorem 1. Given a set of attributes Y , Y ⊂ P . Let FY
S1

and FY
S2

be the sets
of closures based on Y in relation to S1 and S2 respectively. Then the closure
set of Y in relation to S can be calculated from: FY

S = FY
S1

∩ FY
S2

This is simply a consequence of Property 2 as, FY
S = Y ′′S = Y ′′S1

∩Y ′′S2
= FY

S1
∩FY

S2

and YS ≡ YS1 ≡ YS2 by definition of the partition.

Example 3. Consider again Example 2. Appealing to Theorem 1, the formal
concept with respect to the entire data set is the intersection of the formal con-
cepts from each partition FY

S = FY
S1

∩ FY
S2

= {b,d,f} ∩ {b,d,e}={b,d}.
We denote the k-th partition as Sk and then propose:

Theorem 2. Given the closures FY
S1
, . . . , FY

Sn
from n disjoint partitions, FY

S =

FY
S1

∩ . . . ∩ FY
Sn

.

A trivial inductive argument establishes that Theorem 2 holds. Theorem 1 proves
the n = 2 case. Theorem 2 follows by recognizing that the dataset S at the (k−1)-
th step of the proof can be thought as of consisting of two partitions only, the
partition S1 ∪ · · · ∪ Sk−1 and a second partition Sk.

Calling on nothing more complex than: 1) the properties of the derivation
operators, and 2) construction of non-overlapping partitions, we leverage The-
orem 2 in order to apply the MapReduce, specifically the Twister variant, to
calculate closures from arbitrary number of distributed nodes sure in the knowl-
edge that the thoroughness of NextClosure is preserved.

3.1 MRGanter

To address the dataset size limitations imposed on NextClosure –owing to the
complexity of the ⊕-operation– we deploy FCA across multiple nodes to reduce
the execution time. We demonstrate how decompose NextClosure so that each
sub-task is executed in parallel. In Algorithm 2, there were two stages involved in
computing NextClosure: 1) computing a new candidate closure, and 2) making a
judgment on whether to add it to the evaluated formal concepts. In MapReduce
parlance, computing a new candidate closure corresponds to the map stage, and
validating its feasibility corresponds to the reduce phase. In this paper, we only
calculate the intent of a formal concept. The variables and constants used by
distributed algorithms are summarized in Table 4. The main operation in the
merging function is the intersection operator, which is applied on the set of local
closures L k generated at each node. Algorithm 3 gives the pseudo code for the
merging function based on Theorem 2. To describe the merging operation, we

300 B. Xu et al.

Table 4. Variables and constants used in distributed FCA

Variables/Constants Description

p i an attribute in P, where i = 1, · · · ,m
L k complete set of local closures in data partition k, k =

1, · · · , n.
l i an intent in L k which is derived from p i
d the intent produced in the previous iteration
f the newly generated intent
G a container for storing newly generated intents

Algorithm 3. Merging function
Input: p i, L k, f.
Output: f .
1: l i ← the local closure in L k in terms of

p i;
2: f ← Ψ(l i, f);
3: return f

Algorithm 4. Map: MRGanter
Input: d.
Output: (d, L k).
1: for p i from p m down to p 1 do
2: if p i is not in d then
3: l i ← d ⊕ p i;
4: associate l i with p i;
5: L k ← L k ∪ l i;
6: end if
7: return (d, L k);
8: end for

Algorithm 5. Reduce: MRGanter
Input: (d,L k).
Output: f.
1: for p i in P do
2: f ← initialize new intent;
3: for i from 1 up to m do
4: f ← merging(p i, L k, f);
5: end for
6: if f ≤p i d then
7: break;
8: else
9: continue;
10: end if
11: end for
12: return f

Algorithm 6. Reduce: MRGan-
ter+
Input: (d, L k).
Output: G.
1: H ← initialize a two-level hash table;
2: for pi in P do
3: f ← initialize new intent;
4: for i from 1 up to m do
5: f ← merging(p i, L k, f);
6: end for
7: if f is not in H then
8: add f into H;
9: add f into G;
10: end if
11: end for
12: return G

introduce the notation, Ψ(l i, f) =l i ∩ f, which acts on two intents. The merging
function is deployed at the reduce phase and only processes local closures derived
from the same attribute (Line 1).

The Map phase described in the Algorithm 4 produces all local closures. The
output consists of the previous intent d and a set of local intents L k. In order
to be used in the merging function the attribute which was used to form local
closures should be recorded and passed (Line 4). All pairs with the same key,
d, are sent to the same reducer. All local intents are used to form global intents
and then filtered by the closure validation condition (Line 6 in Algorithm 5).
Algorithm 5 accepts (d,L k) from the k-th mappers (see Section 4), where k =
1, · · · , n. Only pairs with the same key, d, are accepted by a Reducer. Line 4

Distributed FCA Algorithms: MRGanter 301

〈atr1, localClosure1〉

〈atrj, localClosurej〉

〈atr1, localClosure1〉

〈atri, localClosurei〉

Fig. 1. MRGanter work flow: static data is loaded at the start of the procedure (labeled
by S) and the dynamic data (Closures produced during each iteration) is passed and
used in the next iteration (labeled by D)

generates an candidate closure f. This candidate is then validated. Successful
candidates are outputted as a global closure f.

Fig. 1 depicits the iterative flow of control of MRGanter; the lines marked
with “S” import static data from each partition, while the lines marked with
“D” configure each map with the previous closure. Each new closure is tested
to see if it is the last, e.g. it contains all attributes, P . If this condition is not
met MRGanter continues. We present a worked example using the dataset in Ta-
ble 3. Table 5, does not illustrate all results due to space limitations. MRGanter
performs 20 iterations to determine all concepts.

3.2 MRGanter+

NextClosure calculates closures in lectic ordering to ensure every concept appears
only once. This approach allows a single concept to be tested with the closure
validation condition during each iteration. This is efficient when the algorithm
runs on a single machine. For multi-machine computation, the extra computation
and redundancy resulting from keeping only one concept after each iteration
across many machines is costly. We modify NextClosure to reduce the number
of iterations and name the corresponding distributed algorithm MRGanter+.

Rather than using redundancy checking, we keep as many closures as possi-
ble in each iteration; All closures are maintained and used to generate the next
batch of closures. To this end, we modify Algorithm 5: the Map algorithm re-
mains the same as in Algorithm 4. Algorithm 6 describes the ReduceTask for

302 B. Xu et al.

Table 5. MRGanter: Only single a in-
tent (bold) produced per iteration.

d p i l i from S1 l i from S2 f

∅
g {c,g} {b,c,f,g} {c,g}
f {b,d,f} {f} {f}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{f}
g {b,c,d,f,g} {b,c,f,g} {b,c,f,g}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{e}
g {a,c,e,g} {a,. . . ,g} {a,c,e,g}
f {a,. . . ,g} {a,d,e,f} {a,d,e,f}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{d}
g {b,c,d,f,g} {a,. . . ,g} {b,c,d,f,g}
f {b,d,f} {a,d,e,f} {d,f}
e {a,. . . ,g} {d,e} {d,e}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

Table 6. MRGanter+: Many intents
(bold) produced per iteration

d p i l i from S1 l i from S2 f

∅
g {c,g} {b,c,f,g} {c,g}
f {b,d,f} {f} {f}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{cg}
f {b,c,d,f,g} {b,c,f,g} {b,c,f,g}
e {a,c,e,g} {a,. . . ,g} {a,c,e,g}
d {b,c,d,f,g} {a,. . . ,g} {b,c,d,f,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{f}
g {b,c,d,f,g} {b,c,f,g} {b,c,f,g}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{e}
g {a,c,e,g} {a,. . . ,g} {a,c,e,g}
f {a,. . . ,g} {a,d,e,f} {a,d,e,f}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

MRGanter+. The Reduce in MRGanter+ merges local closures first in Line 5,
and then recursively examines if they already exist in the set of global formal
concepts H (Line 7). The set H is used to fast index and search a specified clo-
sure; it is designed as a two-level hash table to reduce its costs. The first level is
indexed by the head attribute of the closure, while the second level is indexed
by the length of the closure. New closures are stored in G. We present a running
example based on the dataset in Table 3 for comparison. MRGanter+ produces
many intents in each iteration. New intents are kept if they are not already in
H. Notably, MRGanter+ requires 3 iterations to mine all concepts. Moreover,
we implement CloseByOne proposed by Krajca and Vychodil in [23] based on
the MapReduce framework and call it, MRCbo. Comparing MRGanter+ with
MRCbo, we demonstrate that MRGanter+ typically generates more concepts in
each iteration and uses fewer iterations. Detailed analysis is given in Section 5.2.

4 Twister MapReduce

The MapReduce framework adopts a divide-conquer strategy to deal with huge
datasets and is applicable to many classes of problems [25]. A large number of
computers, collectively referred to as a cluster, are used to run the algorithm.

Distributed FCA Algorithms: MRGanter 303

MapReduce was inspired by the map and reduce functions commonly used
in functional programming, for example Lisp. It was introduced by Google [24]
and then implemented by many companies (Google, Yahoo!) and organizations
(Apache). These implementations provide automatic parallelization and distri-
bution, fault-tolerance, I/O scheduling, status and monitoring. The only demand
made of the user is the formulation of the problem in terms of map and reduce
functions. We use the terminology mapper and reducer when we refer to the
map and reduce function respectively. The map function takes an input pair and
produces a set of intermediate key/value pairs. The MapReduce library provides
the ability to acquire input pairs from files or databases which are stored in dis-
tributed way. Additionally, it can group all intermediate values associated with
the same intermediate key I and pass them to the same reducer. The reduce
function accepts an intermediate key I and a set of values associated with I. It
merges these values to form a possibly smaller set of values.

Twister [7] was designed to enhance MapReduce’s functionality by efficiently
supporting iterative algorithms. Twister uses a public/subscribemessaging infras-
tructure for communication and data transfer, and introduces long running map/
reduce tasks which can be re-used in different iterations. These long running tasks,
which last for the duration of the entire computation, ensures that Twister avoids
reading static data in each execution of MapReduce; a considerable saving. For
iterative algorithms, Twister categorizes data as being either static or dynamic.
Static data is the distributed data in local machines. Dynamic data is typically
the data produced by the previous iteration. Twister’s configure phase allows the
specification of where the mapper reads the static data. Calculation is performed
cyclically based upon the dynamic and static data. All communication between
the mappers and the reducers is handled by a broker network3.

Unlike Twister, Hadoop focuses on single step MapReduce and lacks built-in
support for iterative programs. For iterative algorithms, Hadoop MapReduce
chains multiple jobs together. The output of a previous MapReduce task is used
as the input for the next MapReduce task4. This approach is suboptimal; it
incurs the additional cost of repetitively applying MapReduce –the disadvantage
is that new map/reduce tasks are created repetitively for different iterations.
This incurs considerable performance overhead costs.

5 Evaluation

We provide evidence of the effectiveness and scalability of our algorithm in this
section. First we describe the experimental environment and the dataset char-
acteristics for the datasets used. Then, we describe our experimental results.

5.1 Test Environment and Datasets

MRGanter and MRGanter+ are implemented in Java using the Twister runtime
as the distributed environment. In addition, MRCbo, a distributed version of

3 NaradaBrokering is used in this paper http://www.naradabrokering.org/
4 http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters

304 B. Xu et al.

Table 7. UCI dataset characteristics: numbers of objects, attributes, and density

Dataset mushroom anon-web census-income

objects 8124 32711 103950

attributes 125 294 133

density 17.36% 1.03% 6.7%

Table 8. Execution time: Distributed algorithms are the fastest (in seconds)

Dataset mushroom anon-web census-income
concepts 219010 129009 96531

NextClosure 618 14671 18230
CloseByOne 2543 656 7465
MRGanter 20269(5 nodes) 20110 (3 nodes) 9654 (11 nodes)

MRCbo 241 (11 nodes) 693 (11 nodes) 803 (11 nodes)
MRGanter+ 198 (9 nodes) 496 (9 nodes) 358 (11 nodes)

CloseByOne proposed by Krajca and Vychodil [23] is implemented using the
Twister model in order to provide a fair comparison with the algorithms pro-
posed in the present paper. To illustrate the performance improvement of our
distributed approach, we also evaluate NextClosure and CloseByOne.

The experiments were run on the Amazon EC2 cloud computing platform.
We used High-CPU Medium Instances which had 1.7 GB of memory, 5 EC2
Compute Units (2 virtual cores with 2.5 EC2 Compute Units each), 350 GB of
local instance storage, and a 32-bit platform. We selected 3 datasets from UCI
KDD machine learning repository, mushroom, anon-web, and census-income for
this evaluation5. These datasets have 8124, 32711, 103950 records and 125, 294,
133 attributes respectively. We used the percentage of 1s to measure the dataset
density (see row 4 in Table 7). CPU time was used as the metric for comparing
the performance of each of the algorithm. The number of iterations used by each
algorithms was also recorded in Table 9.

5.2 Results and Analysis

In Table 8, we present the best test results for the centralized algorithms,
NextClosure and CloseByOne, and the distributed algorithms, MRGanter, MR-
Cbo and MRGanter+. In short, it is clear that MRGanter+ has the best overall
performance for the mushroom, anon-web and census datasets when 9 nodes and
11 nodes are used respectively. In comparison with NextClosure, MRGanter+
demonstrates a 97.6% time saving improvement. MRGanter+ runs 102 times
faster than MRGanter and 1.4 times faster than MRCbo. MRCbo runs much
faster than CloseByOne when 11 nodes are used. It presents a 90.5% saving in
time when dealing with the mushroom dataset compared to CloseByOne, but

5 http://archive.ics.uci.edu/ml/index.html

Distributed FCA Algorithms: MRGanter 305

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

Nodes (Count)

C
P

U
 T

im
e

(S
ec

on
d)

MRGanter+

MRCbo

MRGanter

Fig. 2. Mushroom dataset: comparison
of MRGanter+, MRCbo and MRGanter.
MRGanter+ outperforms MRCbo and
MRGanter when dense data is processed.

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

Nodes (Count)

C
P

U
 T

im
e

(S
ec

on
d)

MRGanter+

MRCbo

MRGanter

Fig. 3. Anon-web dataset: comparison
of MRGanter+, MRCbo and MRGanter.
MRGanter+ is faster when more than 3
nodes are used.

there is not much of difference when the anon-web dataset is processed. MR-
Ganter takes the longest time to calculate the formal concepts for both the
mushroom and anon-web datasets. It is much slower than even the centralized
version, NextClosure. The census-income dataset is an exception because MR-
Ganter saves up to half the time with 11 nodes. Among the MR∗ algorithms and
centralized algorithms, MRGanter+ achieves the best performance.

Taking scalability into account, we tested MR∗ algorithms on a range of nodes
to demonstrate the ability of the algorithms to decrease computation time by
utilizing more computers. These results are presented in Fig. 2, 3 and 4 for each
dataset.

In Fig. 2, MRCbo is slower than MRGanter+ although this curve decreases
faster than MRGanter+ when we increase the number of nodes. The execu-
tion time of MRGanter+ is fast even on a single node and the execution time
keeps decreasing up to the maximum number of nodes, 11. The performance of
MRGanter is not beneficially affected by increasing the number of nodes. One
explanation for this is the overhead incurred by distributing the computation, for
example network communication overhead. This is markedly different from MR-
Ganter+, because MRGanter+ produces substantially more intermediate data
than MRGanter and MRCbo. Moreover, there is additional computation in-
volved in the distributed algorithms in comparison with the centralized versions
of these algorithms. Consider, for instance, the extra operation needed by the
merging operation. The best number of nodes, in terms of performance speed,
depends on the density characteristics of the dataset.

Fig. 3 demonstrates that MRGanter+ outperforms MRGanter for the
anon-web dataset. One reason for this performance improvement is that both al-
gorithms produce different numbers of concepts during each iteration. Table 9 in-
dicates that MRGanter+ requires 12, 11 and 9 iterations for each of the datasets,
whereas MRGanter requires 219010, 129009 and 96531 iterations to obtain all

306 B. Xu et al.

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

Nodes (Count)

C
P

U
 T

im
e

(S
ec

on
d)

MRGanter+

MRCbo

MRGanter

Fig. 4. Census dataset: comparison of MR-
Ganter+, MRCbo and MRGanter. MRGan-
ter+ is fastest when a large dataset is
processed.

Table 9. Number of iterations required
for each of the three datasets

Dataset mushroom anon-web census-
income

concepts 219010 129009 96531

NextClosure 219010 129009 96531
CloseByOne 14 11 11
MRGanter 219010 129009 96531

MRCbo 14 11 11
MRGanter+ 12 11 9

concepts. These additional iterations incur higher network communication costs.
Fig. 4 demonstrates that this is also the case for the census dataset. In addition,
the curves in Fig. 4 are steeper than the curves in Fig. 2 and 3. These figures
give evidence that the performance of the MR∗ algorithms is related to size and
density of the data. Based on these results we posit that MR∗ algorithms scale
well for large and sparse datasets. This evidence suggests that MR∗ algorithms
may be a viable candidate tool for handling large datasets, particularly when it
is impractical to use a traditional centralized technique.

Classical formal concept computing methods usually act on, and have local ac-
cess to the entire database. Network communication is the primary concern when
developing distributed FCA approaches: Frequent requests to remote databases
incur significant time and resource costs. Performance improvements of the al-
gorithms proposed in this paper may potentially arise from preprocessing the
dataset so that the dataset is partitioned in a more efficient manner. One direc-
tion for improving these algorithms lies in making the partitions more even, in
terms of density, so that the complexity is distributed more equably. In future
work we we intend to explore the effect of data distribution between cluster
nodes in more detail. We propose to extend this empirical study in a companion
paper which examines algorithm performance on larger dataset sizes. We will
also study the affects the data distribution has on the optimal number of nodes.
In addition, we intend to extend these methods so that they reduce the size of
intermediate data produced in each iteration. We posit that further improve-
ment of the methods proposed here could motivate a more widespread adoption
of FCA using the Map-Reduce framework.

6 Conclusion

In this paper we considered methods for extending the NextClosure FCA algo-
rithm. A formal description of dealing with distributed datasets for the

Distributed FCA Algorithms: MRGanter 307

NextClosure FCA was discussed. Two new distributed FCA algorithms, MR-
Ganter and MRGanter+, were proposed based on this discussion. Various im-
plementation aspects of these approaches were discussed based on empirical eval-
uation of the algorithms. These experiments demonstrated the advantages of our
approach and the scalability in particular of MRGanter+. By comparing MR-
Ganter+ with MRCbo and MRGanter, we found that the number of iterations
significantly impacted the performance of distributed FCA, a promising result.
In future work we hope to capitalize on this by improving the MR∗ methodology
by reducing the number of iterations of these approaches and to further reduce
computation time.

References

1. Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of
Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel (1982)

2. Lakhal, L., Stumme, G.: Efficient Mining of Association Rules Based on Formal
Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005)

3. Polaillon, G., Aufaure, M.-A., Le Grand, B., Soto, M.: FCA for Contextual Seman-
tic Navigation and Information Retrieval in Heterogeneous Information Systems.
In: DEXA Workshops 2007, pp. 534–539 (2007)

4. Snásel, V., Horak, Z., Kocibova, J., Abraham, A.: Analyzing Social Networks Using
FCA: Complexity Aspects. In: Web Intelligence/IAT Workshops 2009, pp. 38–41
(2009)

5. Caspard, N., Monjardet, B.: The Lattices of Closure Systems, Closure Operators,
and Implicational Systems on a Finite Set: A Survey. Discrete Applied Mathemat-
ics, 241–269 (2003)

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

7. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.:
Twister: a Runtime for Iterative MapReduce. In: Hariri, S., Keahey, K. (eds.)
HPDC, pp. 810–818. ACM (2010)

8. Ganter, B.: Two Basic Algorithms in Concept Analysis. In: Kwuida, L., Sertkaya,
B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 312–340. Springer, Heidelberg (2010)

9. Lindig, C.: Fast Concept Analysis. In: Working with Conceptual Structures-
Contributions to ICCS, pp. 235–248 (2000)

10. Kuznetsov, S.O.: A Fast Algorithm for Computing All Intersections of Objects
in a Finite Semi-Lattice. Automatic Documentation and Mathematical Linguis-
tics 27(5), 11–21 (1993)

11. Andrews, S.: In-Close, a Fast Algorithm for Computing Formal Concepts. In: The
Seventeenth International Conference on Conceptual Structures (2009)

12. Vychodil, V.: A New Algorithm for Computing Formal Concepts. Cybernetics and
Systems, 15–21 (2008)

13. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In:
CLA 2008, vol. 433, pp. 71–82. CLA (2008)

14. Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques et Sciences Humaines 96, 31–47 (1986)

15. Berry, A., Bordat, J.-P., Sigayret, A.: A Local Approach to Concept Generation.
Ann. Math. Artif. Intell. 49(1), 117–136 (2006)

308 B. Xu et al.

16. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Gen-
erating Concept Lattices. J. Exp. Theor. Artif. Intell. 14, 189–216 (2002)

17. Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary
Relation. Rev. Roum. Math. Pures et Appl. 23(2), 243–250 (1978)

18. Dowling, C.E.: On the Irredundant Generation of Knowledge Spaces. J. Math.
Psychol. 37, 49–62 (1993)

19. Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms
Based on Galois (Concept) Lattices. Computational Intelligence 11, 246–267 (1995)

20. Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Ap-
plication to Browsing Retrieval. Machine Learning, 95–122 (1996)

21. Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-based Approach Towards Con-
structing Galois (concept) Lattices. Discrete Mathematics, 801–829 (2002)

22. Yu, Y., Qian, X., Zhong, F., Li, X.-R.: An Improved Incremental Algorithm for
Constructing Concept Lattices. In: Proceedings of the 2009 WRI World Congress
on Software Engineering, WCSE 2009, vol. 04, pp. 401–405. IEEE Computer So-
ciety, Washington, DC (2009)

23. Krajca, P., Vychodil, V.: Distributed Algorithm for Computing Formal Concepts
Using Map-Reduce Framework. In: Adams, N.M., Robardet, C., Siebes, A., Bouli-
caut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg
(2009)

24. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI, p. 13 (2004)

25. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.:
Map-Reduce for Machine Learning on Multicore. In: Schölkopf, B., Platt, J.C.,
Hoffman, T. (eds.) NIPS, pp. 281–288. MIT Press (2006)

	Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework
	Introduction
	Related Work
	Contributions

	Formal Concept Analysis
	Ganter: Iterative Closure Mining Algorithm

	Distributed Algorithms for Formal Concept Mining
	MRGanter
	MRGanter+

	Twister MapReduce
	Evaluation
	Test Environment and Datasets
	Results and Analysis

	Conclusion
	References

