

Lecture Notes in Artificial Intelligence 7278

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Florent Domenach Dmitry I. Ignatov
Jonas Poelmans (Eds.)

Formal
Concept Analysis

10th International Conference, ICFCA 2012
Leuven, Belgium, May 7-10, 2012
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Florent Domenach
University of Nicosia, Computer Science Department
46 Makedonitissas Ave., 1700 Nicosia, Cyprus
E-mail: domenach.f@unic.ac.cy

Dmitry I. Ignatov
National Research University Higher School of Economics
Pokrovsky Boulevard, 109028 Moscow, Russia
E-mail: dignatov@hse.ru

Jonas Poelmans
Katholieke Universiteit Leuven, Faculty of Business and Economics
Naamsestraat 69, 3000 Leuven, Belgium
E-mail: jonas.poelmans@econ.kuleuven.be

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29891-2 e-ISBN 978-3-642-29892-9
DOI 10.1007/978-3-642-29892-9
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012936071

CR Subject Classification (1998): I.2, G.2.1-2, F.4.1-2, D.2.4, H.3

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 10th InternationalConference on
Formal Concept Analysis (ICFCA 2012) held during May 7–10, at the Katholieke
Universiteit Leuven, Belgium.

There were 68 submissions by authors from 27 countries. Each submission
was reviewed by at least three Program Committee members, and 20 regular
papers (29%) were accepted. The program also included six invited talks on
topical issues: Recent Advances in Machine Learning and Data Mining, Mining
Terrorist Networks and Revealing Criminals, Concept-Based Process Mining,
and Scalability Issues in FCA and Rough Sets. The corresponding abstracts are
gathered in the first section of this volume. Another 14 papers were assessed
as valuable for discussion at the conference and were therefore collected in the
supplementary proceedings.

Formal concept analysis emerged in the 1980s from attempts to restructure
lattice theory in order to promote better communication between lattice theo-
rists and potential users of lattice theory. Since its early years, formal concept
analysis has developed into a research field in its own right with a thriving theo-
retical community and a rapidly expanding range of applications in information
and knowledge processing including visualization, data analysis, and knowledge
management.

The conference aims to bring together researchers and practitioners working
on theoretical or applied aspects of formal concept analysis within major related
areas such as mathematics, computer and information sciences and their diverse
applications to fields such as software engineering, linguistics, life and social
sciences.

We would like to thank the authors and reviewers whose hard work ensured
presentations of very high quality and scientific vigor. In addition, we express
our deepest gratitude to all Program Committee and Editorial Board members
as well as external reviewers, especially to Bernhard Ganter, Claudio Carpineto,
Frithjof Dau, Sergei Kuznetsov, Sergei Obiedkov, Sebastian Rudolf and Stefan
Schmidt for their advice and support.

We would like to acknowledge all sponsoring institutions and the local or-
ganization team who made this conference a success. In particular, we thank
Amsterdam-Amstelland Police, IBM Belgium, OpenConnect Systems, Research
Foundation Flanders, and Vlerick Management School.

We are also grateful to Springer for publishing this volume and the developers
of the EasyChair system, which helped us during the reviewing process.

March 2012 Florent Domenach
Dmitry I. Ignatov

Jonas Poelmans

Organization

The InternationalConference onFormalConceptAnalysis is the annual conference
and principal research forum in the theory and practice of formal concept analysis.
The inaugural International Conference on Formal Concept Analysis was held at
the TechnischeUniversitätDarmstadt,Germany, in 2003. Subsequent ICFCAcon-
ferences were held at the University ofNew South Wales in Sydney,Australia, 2004,
Université d’Artois, Lens, France, 2005, Institut für Algebra, Technische Univer-
sität Dresden, Germany, 2006, Université de Clermont- Ferrand, France, 2007,
Université du Québec à Montréal, Canada, 2008, Darmstadt University of Ap-
plied Sciences, Germany, 2009, Agadir, Morocco, 2010, and University of Nicosia,
Cyprus, 2011. ICFCA 2012 was held at the Katholieke Universiteit Leuven,
Belgium. Its committees are listed below.

Conference Chair

Jonas Poelmans Katholieke Universiteit Leuven, Belgium

Conference Organizing Committee

Guido Dedene Katholieke Universiteit Leuven, Belgium
Stijn Viaene Vlerick Management School, Belgium
Aimé Heene Ghent University, Belgium
Jasper Goyvaerts Katholieke Universiteit Leuven, Belgium
Nicole Meesters Katholieke Universiteit Leuven, Belgium
Elien Poelmans Maastricht University, The Netherlands
Gerda Verheyden GZA Hospitals, Antwerpen, Belgium

Program Chairs

Florent Domenach University of Nicosia, Cyprus
Dmitry I. Ignatov Higher School of Economics, Russia

Editorial Board

Peter Eklund University of Wollongong, Australia
Sébastien Ferré Université de Rennes 1, France
Bernhard Ganter Technische Universität Dresden, Germany
Robert Godin Université du Québec à Montréal, Canada
Robert Jäschke Universität Kassel, Germany
Sergei O. Kuznetsov Higher School of Economics, Russia
Leonard Kwuida Zurich University of Applied Sciences,

Switzerland

VIII Organization

Raoul Medina Université de Clermont-Ferrand 2, France
Rokia Missaoui Université du Québec en Outaouais, Canada
Sergei Obiedkov Higher School of Economics, Russia
Uta Priss Edinburgh Napier University, UK
Sebastian Rudolph Karlsruhe Institute of Technology, Germany
Stefan Schmidt Technische Universität Dresden, Germany
Bariş Sertkaya SAP Research Center Dresden, Germany
Gerd Stumme University of Kassel, Germany
Petko Valtchev Université du Québec à Montréal, Canada
Rudolf Wille Technische Universität Darmstadt, Germany
Karl Erich Wolff University of Applied Sciences Darmstadt,

Germany

Program Committee

Simon Andrews Sheffield Hallam University, UK
Michael Bain University of New South Wales, Australia
Jaume Baixeries Polytechnical University of Catalonia, Spain
Peter Becker The University of Queensland, Australia
Radim Belohlavek Palacky University, Czech Republic
Sadok Ben Yahia Faculty of Sciences, Tunisia
Karell Bertet Université de La Rochelle, France
Claudio Carpineto Fondazione Ugo Bordoni, Italy
Nathalie Caspard Université Paris 12, France
Frithjof Dau SAP, Germany
Guido Dedene Katholieke Universiteit Leuven, Belgium
Stephan Doerfel University of Kassel, Germany
Vincent Duquenne Université Paris 6, France
Alain Gély LITA, Université Paul Verlaine, France
Joachim Hereth DMC GmbH, Germany
Marianne Huchard Université Montpellier 2 and CNRS, France
Tim Kaiser SAP AG, Germany
Mehdi Kaytoue LORIA Nancy, France
Markus Krötzsch The University of Oxford, UK
Marzena Kryszkiewicz Warsaw University of Technology, Poland
Yuri Kudryavcev PMSquare, Australia
Lotfi Lakhal LIF, Université Aix-Marseille, France
Wilfried Lex TU Clausthal, Germany
Engelbert Mephu Nguifo LIMOS, Université de Clermont-Ferrand 2,

France
Amedeo Napoli LORIA Nancy, France
Lhouari Nourine LIMOS, France
Jan Outrata Palacky University of Olomouc, Czech Republic
Jean-Marc Petit LIRIS, INSA Lyon, France
Geert Poels Ghent University, Belgium
Alex Pogel New Mexico State University, USA

Organization IX

Sándor Radeleczki University of Miskolc, Hungary
Olivier Raynaud LIMOS, Université de Clermont-Ferrand 2,

France
Camille Roth CNRS/EHESS, France
Mohamed Rouane-Hacene Université du Québec à Montréal, Canada
Dominik Śl ↪ezak University of Warsaw and Infobright, Poland
Laszlo Szathmary University of Debrecen, Hungary
Andreja Tepavčević University of Novi Sad, Serbia
Stijn Viaene Katholieke Universiteit Leuven, Belgium

External Reviewers

Mikhail Babin, Russia
Philippe Fournier-Viger, Taiwan
Nathalie Girard, France
Tarek Hamrouni, France
Alice Hermann, France

Yury Katkov, Russia
Viet Phan Luong, France
Nikita Romashkin, Russia

Sponsoring Institutions

Amsterdam-Amstelland Police, The Netherlands
IBM, Belgium
OpenConnect Systems, USA
Research Foundation Flanders, Belgium
Vlerick Management School, Belgium

Table of Contents

Invited Talks

Dark Web: Exploring and Mining the Dark Side of the Web 1
Hsinchun Chen

Declarative Modeling for Machine Learning and Data Mining 2
Luc De Raedt

Can Concepts Reveal Criminals? . 3
Paul Elzinga

Cartification: From Similarities to Itemset Frequencies 4
Bart Goethals

Processes Are Concepts, Aren’t They? . 5
Ir. Edward Peters

Rough Sets and FCA – Scalability Challenges . 6
Dominik Śl ↪ezak

Regular Papers

Approximating Concept Stability . 7
Mikhail A. Babin and Sergei O. Kuznetsov

Logical Analysis of Concept Lattices by Factorization 16
Eduard Bartl and Michal Krupka

Basic Level of Concepts in Formal Concept Analysis 28
Radim Belohlavek and Martin Trnecka

A Peep through the Looking Glass: Articulation Points in Lattices 45
Anne Berry and Alain Sigayret

Practical Use of Formal Concept Analysis in Service-Oriented
Computing . 61

Stéphanie Chollet, Vincent Lestideau, Yoann Maurel,
Etienne Gandrille, Philippe Lalanda, and Olivier Raynaud

Publication Analysis of the Formal Concept Analysis Community 77
Stephan Doerfel, Robert Jäschke, and Gerd Stumme

Understanding the Semantic Structure of Human fMRI Brain
Recordings with Formal Concept Analysis . 96

Dominik Endres, Ruth Adam, Martin A. Giese, and Uta Noppeney

XII Table of Contents

Cubes of Concepts: Multi-dimensional Exploration of Multi-valued
Contexts . 112

Sébastien Ferré, Pierre Allard, and Olivier Ridoux

Ordinal Factor Analysis . 128
Bernhard Ganter and Cynthia Vera Glodeanu

A Macroscopic Approach to FCA and Its Various Fuzzifications 140
Tim B. Kaiser and Stefan E. Schmidt

A Connection between Clone Theory and FCA Provided by Duality
Theory . 148

Sebastian Kerkhoff

Formal Concept Discovery in Semantic Web Data . 164
Markus Kirchberg, Erwin Leonardi, Yu Shyang Tan, Sebastian Link,
Ryan K.L. Ko, and Bu Sung Lee

Concept Lattices of Incomplete Data . 180
Michal Krupka and Jan Lastovicka

Formal Concept Analysis as a Framework for Business Intelligence
Technologies . 195

Juraj Macko

Good Classification Tests as Formal Concepts . 211
Xenia A. Naidenova

Modeling Preferences over Attribute Sets in Formal Concept
Analysis . 227

Sergei Obiedkov

Finding Top-N Colossal Patterns Based on Clique Search with Dynamic
Update of Graph . 244

Yoshiaki Okubo and Makoto Haraguchi

Quantitative Concept Analysis . 260
Dusko Pavlovic

Some Notes on Managing Closure Operators . 278
Sebastian Rudolph

Distributed Formal Concept Analysis Algorithms Based on an Iterative
MapReduce Framework . 292

Biao Xu, Ruaiŕı de Fréin, Eric Robson, and Mı́cheál Ó Foghlú

Author Index . 309

Dark Web: Exploring and Mining

the Dark Side of the Web

Hsinchun Chen

Artificial Intelligence Lab, MIS Dept.
P.O. Box 210108, Tucson, AZ 85721-0108, USA

hchen@eller.arizona.edu

Abstract. This talk will review the emerging research in Terrorism In-
formatics based on a web mining perspective. Recent progress in the
internationally renowned Dark Web project will be reviewed, including:
deep/dark web spidering (web sites, forums, Youtube, virtual worlds),
web metrics analysis, dark network analysis, web-based authorship anal-
ysis, and sentiment and affect analysis for terrorism tracking. In col-
laboration with selected international terrorism research centers and
intelligence agencies, the Dark Web project has generated one of the
largest databases in the world about extremist/terrorist-generated In-
ternet contents (web sites, forums, blogs, and multimedia documents).
Dark Web research has received significant international press cover-
age, including: Associated Press, USA Today, The Economist, NSF
Press, Washington Post, Fox News, BBC, PBS, Business Week, Dis-
cover magazine, WIRED magazine, Government Computing Week,
Second German TV (ZDF), Toronto Star, and Arizona Daily Star,
among others. For more Dark Web project information, please see:
http://ai.eller.arizona.edu/research/terror/.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Declarative Modeling for Machine

Learning and Data Mining

Luc De Raedt

Katholieke Universiteit Leuven, Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium

luc.deraedt@cs.kuleuven.be

Abstract. Despite the popularity of machine learning and data min-
ing today, it remains challenging to develop applications and software
that incorporates machine learning or data mining techniques. This is
because machine learning and data mining have focussed on developing
high-performance algorithms for solving particular tasks rather than on
developing general principles and techniques.

I propose to alleviate these problems by applying the constraint pro-
gramming methodology to machine learning and data mining and to
specify machine learning and data mining problems as constraint sat-
isfaction and optimization problems. What is essential is that the user
be provided with a way to declaratively specify what the machine learn-
ing or data mining problem is rather than having to outline how that
solution needs to be computed. This corresponds to a model + solver-
based approach to machine learning and data mining, in which the user
specifies the problem in a high level modeling language and the system
automatically transforms such models into a format that can be used by
a solver to efficiently generate a solution. This should be much easier for
the user than having to implement or adapt an algorithm that computes
a particular solution to a specific problem.

I shall illustrate this using our results on constraint programming for
itemset mining [1] and probabilistic programming. Some further ideas
along these lines are contained in [2].

References

1. Guns, T., Nijssen, S., De Raedt, L.: Itemset mining: A constraint programming
perspective. Artificial Intelligence 175(12-13), 1951–1983 (2011)

2. De Raedt, L., Nijssen, S.: Towards Programming Languages for Machine Learning
and Data Mining (Extended Abstract). In: Kryszkiewicz, M., Rybinski, H., Skowron,
A., Raś, Z.W. (eds.) ISMIS 2011. LNCS, vol. 6804, pp. 25–32. Springer, Heidelberg
(2011)

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Can Concepts Reveal Criminals?

Paul Elzinga

Amsterdam-Amstelland Police, James Wattstraat 84,
1000 CG Amsterdam, The Netherlands
paul.elzinga@amsterdam.politie.nl

Abstract. In 2005 the Amsterdam-Amstelland police introduced
Intelligence-led Policing as a management paradigm. The goal of ILP
is to optimally use the information which becomes available after po-
lice patrols, motor vehicle inspections, video camera recordings, etc. to
prevent crimes where possible and optimally allocate available resources.
This policy has resulted in an increasing number of textual reports, video
materials, etc. every year. Until now, this vast amount of information was
not easily accessible because good analysis methods were missing and as
a consequence hardly used by the criminal intelligence departments. In
the first part of this talk I will give a short overview of traditional sta-
tistical methods such as hot spot analysis which have been used to make
this information accessible and steer police actions. In the second part
of this talk I will present using some real life cases how FCA was used
to identify criminals involved in human trafficking, terrorism, robberies,
etc. In the third part of this talk I would like to evoke a lively discussion
on the potential of FCA related algorithms and methods for analyzing
textual reports, internet data such as twitter feeds, browsing behavior of
visitors of radical Islamic websites, etc.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cartification: From Similarities

to Itemset Frequencies

Bart Goethals

University of Antwerp, Dept. of Mathematics and Computer Science
Middelheimlaan 1, B-2020 Antwerpen, Belgium

bart.goethals@ua.ac.be

Abstract. Suppose we are given a multi-dimensional dataset. For ev-
ery point in the dataset, we create a transaction, or cart, in which we
store the k-nearest neighbors of that point for one of the given dimen-
sions. The resulting collection of carts can then be used to mine frequent
itemsets; that is, sets of points that are frequently seen together in some
dimensions. Experimentation shows that finding clusters, outliers, clus-
ter centers, or even subspace clustering becomes easy on the cartified
dataset using state-of-the-art techniques in mining interesting itemsets.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, p. 4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Processes Are Concepts, Aren’t They?

Ir. Edward Peters1,2

1 K.U.Leuven, Faculty of Business and Economics,
Naamsestraat 69, 3000 Leuven, Belgium

2 OpenConnect Systems, 2711 LBJ Freeway Suite 700,
Dallas, TX 75234, United States of America

epeters@oc.com

Abstract. Discovery is an information / technical approach to the im-
portant managerial problem of decision making under not only uncer-
tainty, but also actually, “unknown unknowns”. Formal Concept Analysis
(FCA) is an elegant mathematically grounded theory that
complements Data Discovery particularly well, especially for data with
no predefined structure. It allows for discovering emergent, a-priori un-
known concepts in these data. Process Discovery deals with emergent
behaviour in business workflows. In its current state-of-the-art, Pro-
cess Discovery combines machine-learning techniques utilizing Hidden
Markov Model (HMM) representations of Processes. In one of our re-
search lines, we investigate how FCA can improve and complement Pro-
cess Discovery. Although the inclusion of temporal data and events in
FCA allows for the creation of ”early warning” and trend-models, HMM’s
are needed for a deep understanding of the processes and their intrinsic
complexities. However, FCA can assist significantly in the post-processing
and understanding of HMM’s, in particular in the presence of process
variations and exceptions. But FCA allows also for the detection of re-
current, coherent Process steps, which can be considered ”service steps”
in business processes. Ultimately, an appropriate mathematical represen-
tation of HMM’s should allow for the application of algebraic extensions
of FCA for discovering Processes and their variations as mathematical
concepts as well. Some initial work on Process patterns gives inspiring
research directions. Real-life case materials from Healthcare Administra-
tion, Customer Contact-Center’s and Financial Services illustrate this
keynote lecture.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, p. 5, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Rough Sets and FCA – Scalability Challenges�

Dominik Ślęzak

Institute of Mathematics, University of Warsaw
ul. Banacha 2, 02-097 Warsaw, Poland

Infobright Inc.
ul. Krzywickiego 34, lok. 219, 02-078 Warsaw, Poland

Rough Sets (RS) [1,2,3] and Formal Concept Analysis (FCA) [4,5] provide foundations
for a number of methods useful in data mining and knowledge discovery at different
stages of data preprocessing, classification and representation. RS and FCA are often
applied together with other techniques in order to cope with real-world challenges. It
is therefore important to investigate various ways of extending RS/FCA notions and
algorithms in order to facilitate dealing with truly large and complex data. This talk
attempts to categorize some ideas of how to scale RS and FCA methods with respect
to a number of objects and attributes, as well as types and cardinalities of attribute val-
ues. We discuss a usage of analytical database engines [6] and randomized heuristics
[7] to compute approximate, yet meaningful results. We also discuss differences and
similarities in algorithmic bottlenecks related to RS and FCA, illustrating that these ap-
proaches should be regarded as complementary rather than competing methodologies.
As a case study, we consider the tasks of data analysis and knowledge representation
arising within a research project aiming at enhancing semantic search of diverse types
of content in a large repository of scientific articles [8].

References

1. Pawlak, Z., Skowron, A.: Rudiments of Rough Sets. Inf. Sci. 177(1), 3–27 (2007)
2. Pawlak, Z., Skowron, A.: Rough Sets and Boolean Reasoning. Inf. Sci. 177(1), 41–73 (2007)
3. Pawlak, Z., Skowron, A.: Rough Sets: Some Extensions. Inf. Sci. 177(1), 28–40 (2007)
4. Poelmans, J., Kuznetsov, S., Ignatov, D., Dedene, G., Elzinga, P., Viaene, S.: Formal Concept

Analysis in Knowledge Processing: A Survey on Models and Techniques. Inf. Sci. (2012)
5. Poelmans, J., Ignatov, D., Kuznetsov, S., Dedene, G., Elzinga, P., Viaene, S.: Formal Concept

Analysis in Knowledge Processing: A Survey on Applications. Inf. Sci. (2012)
6. Ślęzak, D., Synak, P., Toppin, G., Wróblewski, J., Borkowski, J.: Rough SQL - Semantics and

Execution. In: Proc. of IPMU (to appear, 2012)
7. Ślęzak, D., Janusz, A.: Ensembles of Bireducts: Towards Robust Classification and Simple

Representation. In: Kim, T.-H., Adeli, H., Ślęzak, D., Sandnes, F.E., Song, X., Chung, K.-I.,
Arnett, K.P. (eds.) FGIT 2011. LNCS, vol. 7105, pp. 64–77. Springer, Heidelberg (2011)

8. Ślęzak, D., Janusz, A., Świeboda, W., Nguyen, H.S., Bazan, J.G., Skowron, A.: Semantic
Analytics of PubMed Content. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS,
vol. 7058, pp. 63–74. Springer, Heidelberg (2011)

� Partly supported by grant 2011/01/B/ST6/03867 from Ministry of Science and Higher Educa-
tion of Republic of Poland, and National Centre for Research and Development (NCBiR) under
grant SP/I/1/77065/10 by strategic scientific research and experimental development program:
“Interdisciplinary System for Interactive Scientific and Scientific-Technical Information”.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, p. 6, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Approximating Concept Stability

Mikhail A. Babin and Sergei O. Kuznetsov

National Research University Higher School of Economics,
Pokrovskii bd. 11, 109028 Moscow, Russia
mikleb@yandex.ru, skuznetsov@hse.ru

Abstract. Concept stability was used in numerous applications for se-
lecting concepts as biclusters of similar objects. However, scalability re-
mains a challenge for computing stability. The best algorithms known so
far have algorithmic complexity quadratic in the size of the lattice. In
this paper the problem of approximate stability computation is analyzed.
An approximate algorithm for computing stability is proposed. Its com-
putational complexity and results of computer experiments in comparing
stability index and its approximations are discussed.

Keywords: concept stability, approximate counting, computational
complexity.

1 Introduction

The approaches to data analysis and data mining using concept lattices for
clustering and ontology engineering often encounter the problem of the large
number of concepts of a formal context. There may be exponentially many for-
mal concepts wrt. the size of the underlying context, the problem of computing
the number of formal concepts given a context being #P-complete [5]. Several
indices were proposed for measuring concept quality, such as concept stabil-
ity [1,6,8,9], probability and separation [13]. Stability was used in numerous
applications for selecting concepts as biclusters of similar objects, e.g., in tech-
nical diagnostics [1], in detecting scientific subcommunities [9,11,10], in planing
medical treatment [12,17], or in grouping French verbs [14,16,15]. In [13] the au-
thors compared filtration based on various indices and their linear combinations
for data recovery. Linear index combinations that showed the best performance
in computer experiments on concept filtration use stability with large weights.
However, a potential constraint for applying stability for large data is the com-
plexity of its computation, shown to be #P-complete in [1,8]. Sergei Obiedkov
et al. proposed [11] an algorithm for computing stability index for all concepts
using the concept lattice. This algorithm was quite good in practical applica-
tions so far, but in the worst case its complexity is quadratic in the size of the
lattice (which itself can be exponential in the input context size). In this paper
we consider the problem of approximate stability computation. We propose an
approach to approximation, consider its computational complexity and discuss
results of computer experiments in comparing stability index and its approxima-
tions. The rest of the paper is organized as follows. In the next section we recall

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 7–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

8 M.A. Babin and S.O. Kuznetsov

main definitions related to FCA and concept stability, in Section 3 we discuss
the complexity of approximations of the number of all closed and nonclosed sets,
in Section 4 we consider computation of stability and in Section 5 we discuss
results of computer experiments.

2 Main Definitions

2.1 FCA

Here we briefly recall the FCA terminology [3]. Let G and M be sets, called
the set of objects and attributes, respectively. Let I be a relation I ⊆ G ×M
between objects and attributes: for g ∈ G,m ∈ M, gIm holds iff the object g
has the attribute m. The triple K = (G,M, I) is called a (formal) context. If
A ⊆ G,B ⊆ M are arbitrary subsets, then a Galois connection is given by the
following derivation operators :

A′ = {m ∈M | gIm ∀g ∈ A}

B′ = {g ∈ G | gIm ∀m ∈ B}

The pair (A,B), where A ⊆ G, B ⊆M , A′ = B, and B′ = A is called a (formal)
concept (of the context K) with extent A and intent B (in this case we have also
A′′ = A and B′′ = B).

The operation (·)′′ is a closure operator [3], i.e. it is idempotent (X ′′′′ = X ′′),
extensive (X ⊆ X ′′), and monotone (X ⊆ Y ⇒ X ′′ ⊆ Y ′′). Sets A ⊆ G, B ⊆M
are called closed if A′′ = A and B′′ = B. Obviously, extents and intents are
closed sets. The set of attributes B is implied by the set of attributes A, or the
implication A→ B holds, if all objects from G that have all attributes from the
set A also have all attributes from the set B, i.e. A′ ⊆ B′. Implications obey the
Armstrong rules:

A→ A
,

A→ B

A ∪C → B
,

A→ B,B ∪ C → D

A ∪ C → D
.

A subset X ⊆M respects an implication A→ B if A ⊆ X implies B ⊆ X . Every
set of implications J on the set M defines a closure operator (·)J on M , where
a subset of M is closed iff it respects all implications from J

2.2 Stability

The notion of stability of a formal concept was first introduced in [1,8] and now
is used in a slightly revised form from [9,11].

Approximating Concept Stability 9

Definition 1. Let K = (G,M, I) be a formal context and (A,B) be a formal
concept of K. The (intensional) stability σin(A,B), or σin(A), is defined as
follows:

σin(A,B) =
|C ⊆ A | C′ = B|

2|A|

The extentional stability is defined in the dual way:

σex(A,B) = σex(B) =
|C ⊆ B | C′′ = B|

2|B| .

Usually, when it does not lead to misunderstanding, subscripts in and ex are
omitted.

The numerator of intensional stability γ(A,B) = |C ⊆ A | C′ = B| is the
number of all generators of the concept (A,B), so

2|A| =
∑

(C,D)≤(A,B)

γ(C,D)

and

γ(A,B) =
∑

(C,D)≤(A,B)

2|C|μ((C,D), (A,B)),

where μ(x, y) is the Möbius function of the concept lattice. Thus, stability nom-
inator is dual to powersets of extents of the concept lattice wrt. the Möbius
function of the concept lattice. This is reflected in the algorithm from [11] for
computing stability, which is implicitly based on inclusion-exclusion principle,
like standard algorithms for computing the Möbius function of a lattice.

3 Approximation of the Number of Closed and Nonclosed
Sets

Many counting problems in FCA are known to be #P-complete but it does
not imply that they cannot be solved approximately in polynomial time. For
example, the problem of counting satisfying assignments for a DNF (unlike the
dual problem for CNF) can be solved approximately using so-called FPRAS [2].
A randomized approximation scheme for a counting problem f : Σ∗ → N (e.g.,
the number of formal concepts of a context) is a randomized algorithm that
takes as input an instance x ∈ Σ∗ (e.g. a formal context K = (G,M, I)) and an
error tolerance ε > 0, and outputs a number N ∈ N such that, for every input
instance x,

Pr[(1 − ε)f(x) ≤ N ≤ (1 + ε)f(x)] ≥ 3

4

If the time of randomized approximation scheme is polynomial in |x| and ε−1,
then this algorithm is called fully polynomial randomized approximation scheme,
or FPRAS.

10 M.A. Babin and S.O. Kuznetsov

Below, for the problem Problem we will denote the number of solutions of
Problem on corresponding input (which will be clear from the context) by
|#Problem|.

Given a hypergraph G = (V, E), E = {E1, . . . , Em}, a subset U ⊆ V is called
independent set if Ei � U for any 1 ≤ i ≤ m and is called coindependent set if
U � Ei for any 1 ≤ i ≤ m.

Problem 1. Counting independent set (#IS)
INPUT: A hypergraph G.
OUTPUT: The number of independent sets of all sizes of G

It is known that there is no FPRAS for #IS unless RP = NP (see [4]) when the
hypergraph is a simple graph. So we can see this problem is hard even when V
and {∅} are not edges of the hypergraph.

We also need the formulation of the following problem.

Problem 2. Counting coindependent sets (#CIS)
INPUT: A hypergraph G = (V, E), E = {E1, . . . , Em}, Ei ⊆ V .
OUTPUT: The number of coindependent sets of G.

Note that set U ⊂ V is an independent set of a hypergraph G = (V, E), E =
{E1, . . . , Em} iff V \U is a coindependent set of the hypergraphG′ = (V, E ′), E ′ =
{V \ E1, . . . , V \ Em}. Thus there is no FPRAS for #CIS, unless RP = NP .

Now we are ready to discuss complexity of the counting problems for nonclosed
sets of a formal context, closed sets of the closure system given by implication
base, and nonclosed sets of the closure system given by implication base.

Problem 3. Counting nonclosed sets (#NC)
INPUT: A formal context K = (G,M, I)
OUTPUT: The number of sets A ⊂M that A′′ �= A

Proposition 2. There is no FPRAS for #NC, unless RP = NP

Proof. Consider any input instance (V, E), V ={v1, . . . , vn} E={E1, . . . , Em} of
#CIS. From this instance we construct the formal context K = (G, V, I) with the
set of object intents

⋃
1≤i≤m Ei ∪ {Ei \ {v1}} ∪ {Ei \ {v2}} ∪ . . . ∪ {Ei \ {vn}}.

Obviously, the set A ⊆ V is a coindependent set of hypergraph (V, E) iff A′′ �= A
or A = V for the context K. Hence |#CIS| = |#NC|+ 1. �

Problem 4. Counting closed sets of implication base (#CJ)
INPUT: An inplication base J = {A1 → B1, . . . , Am → Bm}, Ai, Bi ⊆M
OUTPUT: The number of closed sets of J.

Proposition 3. There is no FPRAS for #CJ, unless RP = NP

Approximating Concept Stability 11

Proof. Consider any input instance (V, E), E = {E1, . . . , Em} of #IS. From
this instance let us construct the implication base J = {E1 → V, . . . , Em → V }
(implications are defined on the set V). Obviously, a set U is an independent set
of hypergraph (V, E) iff U is closed set of J and U �= V . Hence |#IS| = |#CJ|−1.

�

Since a closed set wrt. an implication base can be represented as a satisfying
assignment of a Horn CNF, we immediately get

Corollary 1. There is no FPRAS for the counting problem of Horn CNF satis-
fiability (#Horn SAT), unless NP = RP .

Problem 5. Counting nonclosed set of implication base (#NCJ)
INPUT: An inplication base J = {A1 → B1, . . . , Am → Bm}, Ai, Bi ⊆M
OUTPUT: The number of nonclosed sets of J.

Proposition 4. There is FPRAS for #NCJ

Proof. Consider an instance J = {A1 → B1, . . . , Am → Bm}, Ai, Bi ⊆ X
of #NCJ. Closed sets of implication base J are in one-to-one correspondence
with the satisfying truth assignments of the corresponding Horn CNF fJ. Thus
nonclosed sets of J are in one-to-one correspondence with satisfying truth as-
signments of DNF ¬fJ. There is a known FPRAS for the counting problem of
satisfying assignments of a DNF [2]. �

It is worth to note that exact complexity of approximate counting of a closed
set of a formal context is open, but it is known that this problem is complete in
class #RHΠ1 [4]. All of the above results of this section can be summarized in
the following table.

Table 1. Complexity of closed/nonclosed sets counting

#closed sets #nonclosed sets
cs(K) #RHΠ1-complete no FPRAS, unless RP = NP
cs(J) no FPRAS, unless RP = NP FPRAS

cs(K) denotes the case where a closure system is given by context K.
cs(J) denotes the case where a closure system is given by implication base J.

4 Computation of Stability

Recall that exact computing of concept stability is an #P-complete
problem[1,6,8]. Moreover, there is no FPRAS for computing stability, unless
RP = NP . In order to show this fact consider the context from the proof of
proposition 2. Clearly σ(M) = (|#NC|+1)/2|M|. Here we discuss how to approx-
imate stability with bounded absolute error. By definition of stability, stability
of an intent A of a formal context K = (G,M, I) equals to the probability that

12 M.A. Babin and S.O. Kuznetsov

a closure of a random subset of A is equal to A, i.e. σ(A) = Pr(X ′′ = A), when
X is chosen uniformly and random from 2A. Thus to estimate σ(A) we can use
a Monte Carlo method.

GetStability(A,N)

1 answer ← 0
2 for i← 1 to N
3 do pick random subset X of A
4 if X ′′ = A
5 then answer ← answer +1
6 answer ← answer

N
7 return answer

Recall Chernoff-Hoeffding theorem with simplified bounds [2].

Theorem 5 (Chernoff-Hoeffding). Let X1, X2, . . . , XN be independent and
identically distributed random variables with p = E(Xi). Then

Pr(
1

N

∑
Xi ≤ p− ε) ≤ exp (−2ε2N)

It is easy to get the following proposition which states that for sufficiently large
N = N(ε, δ), the probability of | answer −σ(A)| ≥ ε is not greater than δ.

Proposition 6. The Monte Carlo method yields an approximation to σ(A) with
probability at least 1− δ and absolute error ε provided

N >
1

2ε2
ln

2

δ

Proof. If we take random variables to be 1 − Xi, and substitute them in the
inequality of the Chernoff-Hoeffding theorem, then we have p = E(1 −Xi) and
we get

Pr(
1

N

∑
Xi ≥ p+ ε) ≤ exp (−2ε2N).

Hence

Pr(| 1
N

∑
Xi − p| ≥ ε) ≤

≤ Pr(
1

N

∑
Xi ≤ p− ε) + Pr(

1

N

∑
Xi ≥ p+ ε) ≤

≤ 2 exp (−2ε2N).

Consider random variablesXi such thatXi = 1 iffX ′′ = A in the i-th iteration of
GetStability and Xi = 0 otherwise. Thus 1

N

∑
Xi = answer , where answer is

returned byGetStability(A,N) at the ith iteration. Absolute error probability
is Pr(| answer −p| ≥ ε) ≤ 2 exp (−2ε2N) ≤ δ. Hence 2ε2N ≥ ln 2

δ . �

We can use results of this algorithm to select top approximate stable concepts
using the following straightforward algorithm.

Approximating Concept Stability 13

TopStableConcepts(K, γ0)

1 answer ← ∅
2 for every concept C = (A,A′) of K
3 do if approxStability(A) > σθ

4 then answer ← answer ∪{(A,A′)}
5 return answer

5 Experimental Results

In this section we discuss experimental results in computing stability approx-
imations for random contexts of various sizes and density. The results of the
approximate stability computation on random contexts are presented in Fig-
ure 1 and Figure 2. The Y -axis (labeled as Error) gives the relative error

|S(K, σ̃, σθ)ΔS(K, σ, σθ)|/|S(K, σ, σθ)|.

Here S(K, σ, σθ) denotes the set of all concepts with stability σ ≥ σθ; S(K, σ̃, σθ)
denotes the set of all concepts with approximate stability σ̃ ≥ σθ, where σθ is
a parameter (stability threshold). For every pair g ∈ G, m ∈ M of a random
context K = (G,M, I) one has (g,m) ∈ I with probability d called context
density.

Fig. 1. Approximation quality for random contexts 100× 30 with density 0.3

14 M.A. Babin and S.O. Kuznetsov

Fig. 2. Approximation quality for random contexts 150× 30 with density 0.2

The results of computer experiments show that the algorithm for computing
approximated stability algorithm has better precision when stability threshold is
lower. This behaviour is consistent with theory, since when the stability threshold
is high the number of stable concept is small and a small deviation of this
threshold can result in significant change of the relative number of ”stable”
concepts (i.e. concepts with approximate stability larger than threshold).

6 Conclusion

The problem of approximate stability computation was analyzed. Approximate
solution of the problem was shown to be hard: the existence of FPRAS solving
this problem would imply NP = RP. An approximate algorithm for computing
stability, which can run in reasonable time for approximations with bounded ab-
solute error was proposed. Its computational complexity and results of computer
experiments in comparing stability index and its approximations were discussed.
The results show that the approximations are better when stability threshold is
low. Further study will be related to comparing approximate stability to other
concept interestingness measures, such as independence, probability, wrt. compu-
tation time and selectiveness. Another challenging task would be the generation
of interesting concepts without generating the set of all concepts.

Acknowledgments. This work was partially supported by Russian Foundation
for Basic Research, project no. 08-07-92497-NTsNILa.

Approximating Concept Stability 15

References

1. Kuznetsov, S.O.: Stability as an estimate of the degree of substantiation of hy-
potheses derived on the basis of operational similarity. Autom. Document. Math.
Ling. (Nauchn. Tekh. Inf., Ser. 2) (12), 21–29 (1990)

2. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(1995)

3. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

4. Dyer, M., Goldberg, L.A., Greenhill, C., Jerrum, M.: On the Relative Complexity
of Approximate Counting Problems. In: Jansen, K., Khuller, S. (eds.) APPROX
2000. LNCS, vol. 1913, pp. 108–119. Springer, Heidelberg (2000)

5. Kuznetsov, S.O.: On Computing the Size of a Lattice and Related Decision Prob-
lems. Order 18(4), 313–321 (2001)

6. Kuznetsov, S.O.: Stability of a Formal Concept. In: San-Juan, E. (ed.) Proc. 4th
Journee d’Informatique Messine (JIM 2003), Metz (2003)

7. Roth, C., Obiedkov, S., Kourie, D.: Towards Concise Representation for Tax-
onomies of Epistemic Communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek,
R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg
(2008)

8. Kuznetsov, S.O.: On Stability of a Formal Concept. Annals of Mathematics and
Artificial Intelligence 49, 101–115 (2007)

9. Kuznetsov, S.O., Obiedkov, S., Roth, C.: Reducing the Representation Complexity
of Lattice-Based Taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007.
LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)

10. Roth, C., Obiedkov, S., Kourie, D.: Towards Concise Representation for Tax-
onomies of Epistemic Communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek,
R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg
(2008)

11. Obiedkov, S.A., Roth, C., Kourie, D.G.: On Succinct Representation of Knowledge
Community Taxonomies with Formal Concept Analysis. Int. J. Found. Comput.
Sci. 19(2), 383–404 (2008)

12. Jay, N., Kohler, F., Napoli, A.: Analysis of Social Communities with Iceberg and
Stability-Based Concept Lattices. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008.
LNCS (LNAI), vol. 4933, pp. 258–272. Springer, Heidelberg (2008)

13. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the Selection of Relevant
Concepts in the Case of Noisy Data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA
2010. LNCS, vol. 5986, pp. 255–266. Springer, Heidelberg (2010)

14. Falk, I., Gardent, C., Lorenzo, A.: Using Formal Concept Analysis to Acquire
Knowledge about Verbs. In: Proc. 7th of the International Conference on Concept
Lattices and Their Applications (CLA 2010), pp. 151–162 (2010)

15. Falk, I., Gardent, C.: Bootstrapping a Classification of French Verbs Using Formal
Concept Analysis. In: Interdisciplinary Workshop on Verbs, Pisa, Italy (2011)

16. Falk, I., Gardent, C.: Combining Formal Concept Analysis and Translation to
Assign Frames and Thematic Role Sets to French Verbs. In: Proc. International
Conference Concept Lattices and Their Applications (CLA 2011), Nancy, France
(2011)

17. Egho, E., Jay, N., Raissi, C., Napoli, A.: A FCA-based Analysis of Sequential Care
Trajectories. In: Proc. 8th of the International Conference on Concept Lattices and
Their Applications (CLA 2011), Nancy, France, pp. 362–376 (2011)

Logical Analysis of Concept Lattices

by Factorization

Eduard Bartl and Michal Krupka

Palacky University
{eduard.bartl,michal.krupka}@upol.cz

http://www.inf.upol.cz/

Abstract. Reducing the size of concept lattices is a well-known problem
in Formal Concept Analysis. A particular instance of this problem is
the size reduction of concept lattices using factorization by complete
tolerances. We show that all complete tolerances on a complete lattice
(i.e., all possible ways of factorizing the lattice) with a naturally-defined
operation of multiplication form a residuated lattice. This allows looking
at the set of all complete tolerances as a scale of truth degrees using
which we can evaluate formulas of predicate logic specifying the desired
parameters of the factorization. We present illustrative example to clarify
our approach.

Keywords: block relation, complete residuated lattice, complete toler-
ance, formal concept analysis.

1 Introduction

There is a well-known fact that even small formal contexts generate concept
lattices consisting of a large number of formal concepts. In some particular cases,
providing such a complex lattice does not bring any significant added value to
a user. This issue can be addressed by applying some kind of reduction method.

In this paper we use factorization as a tool for simplifying examined data. The
price for this simplification are small (acceptable) inaccuracies introduced into
the data. We give to a user the possibility to formulate an additional relationship
in the data which was not originally present. Such a relationship represents the
above mentioned acceptable inaccuracy and therefore reduces the concept lattice.

In our approach to the size reduction of concept lattices we consider some
formal concepts as similar according to particular criteria. Similarity of the for-
mal concepts can be naturally modeled by complete tolerances (completeness
property is required since we need to preserve structure of a concept lattice).
The reduction of concept lattices based on complete tolerances was introduced
in [3] and further developed in [6]. The problem is how to intuitively specify
a complete tolerance on the complete lattice we want to factorize. In this paper
we provide an answer to this question.

First, we propose a theorem that a set of all complete tolerances on a complete
lattice along with a naturally-defined operation of multiplication form a residu-
ated lattice. Such a structure is called a tolerance residuated lattice. Obviously

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 16–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Logical Analysis of Concept Lattices by Factorization 17

it is convenient to think of the complete lattice on which we define complete
tolerances as a concept lattice. It is then possible to work with the objects,
attributes and with an incidence relation between them. Second, we establish
a logical calculus where a tolerance residuated lattice serves as the scale of truth
values. Formulas of this logical calculus specify so-called block relations on the
given concept lattice which are in a one-to-one correspondence with the complete
tolerances on the concept lattice.

One can describe a block relation in natural language and then translate it
into a formula of proposed logical calculus. This formula is eventually evaluated
to an element of the tolerance residuated lattice. In other words, the formula
is evaluated to a truth value specifying the way how a given concept lattice is
going to be factorized.

In the paper we also present an illustrative example explaining the proposed
method.

2 Preliminaries

2.1 Formal Concept Analysis

Formal Concept Analysis has been introduced in [8], our basic reference is [3].
A formal context is a triple 〈X,Y, I〉 where X is a set of objects, Y a set of
attributes and I ⊆ X × Y a binary relation between X and Y . For 〈x, y〉 ∈ I it
is said “The object x has the attribute y”.

For subsets A ⊆ X and B ⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds 〈x, y〉 ∈ I},
B↓I = {x ∈ X | for each y ∈ B it holds 〈x, y〉 ∈ I}.

If A↑I = B and B↓I = A, then the pair 〈A,B〉 is called a formal concept of
〈X,Y, I〉. The set A is called the extent of 〈A,B〉, the set B the intent of 〈A,B〉.

A partial order ≤ on the set B(X,Y, I) of all formal concepts of 〈X,Y, I〉 is
defined by 〈A1, B1〉 ≤ 〈A2, B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1). B(X,Y, I) along with
≤ is a complete lattice and is called the concept lattice of 〈X,Y, I〉.

2.2 Complete Tolerances and Block Relations

The results of this subsection are taken from [9], see also [3].
A tolerance on a set X is a binary relation t which is reflexive and symmetric.

Each tolerance on X induces a covering of X , called the factor (quotient) set.
This covering consists of all maximal blocks of the tolerance, i.e., maximal (with
respect to set inclusion) subsets B ⊆ X such that for any a, b ∈ B it holds
〈a, b〉 ∈ t. The factor set of X induced by a tolerance t is denoted X/t. Note that
X/t is a covering of X , but need not be a partition. X/t is a partition of X if
and only if t is transitive (thus an equivalence relation).

18 E. Bartl and M. Krupka

A complete tolerance on a complete lattice V = 〈V,∧,∨, 0, 1〉 is a tolerance
which preserves suprema and infima. More precisely, a tolerance t on V is com-
plete if from 〈aj , bj〉 ∈ t for all j ∈ J it follows 〈∨j∈J aj ,

∨
j∈J bj〉 ∈ t and

〈∧j∈J aj ,
∧

j∈J bj〉 ∈ t (J is an arbitrary index set).
For a complete tolerance t on V and v ∈ V we denote

vt =
∨{w ∈ V | 〈v, w〉 ∈ t}, vt =

∧{w ∈ V | 〈v, w〉 ∈ t}, (1)
[v]t = [vt, (vt)t], [v]t = [(vt)t, v

t], (2)

where [v1, v2] denotes the interval {w ∈ V | v1 ≤ w ≤ v2}.
The mapping v 	→ vt (resp. v 	→ vt) is a

∧
-morphism (resp.

∨
-morphism) of

V. The equations (2) describe all maximal blocks of t. It holds ([2,9]):

L/t = {[v]t | v ∈ V } = {[v]t | v ∈ V }.
An ordering on the set V/t is introduced using suprema of maximal blocks and
can be equivalently introduced using infima. For blocks B1, B2 ∈ V/t we set

B1 ≤ B2 iff
∨
B1 ≤

∨
B2

(
iff

∧
B1 ≤

∧
B2

)
. (3)

The set V/t together with this ordering is a complete lattice, which is denoted
by V/t.

The following result ([3,9]) characterizes all systems of maximal blocks of
complete tolerances on complete lattices.

Lemma 1. Let V be a set of intervals in a complete lattice V such that V is
a covering of V. Then V is the set of all maximal blocks of some complete
tolerance on V if and only if for each [u1, v1], [u2, v2] ∈ V it holds u1 ≤ u2 iff
v1 ≤ v2 and for each [uk, vk] ∈ V, k ∈ K, the element

∧
k∈K vk (resp.

∨
k∈K uk)

is the upper (resp. lower) bound of some interval from V.

We denote by CTolV the set of all complete tolerances on a complete lattice V.
CTolV forms a closure system on V . Therefore, CTolV along with ordering ≤
defined as s ≤ t iff t ⊆ s forms a complete lattice. Infima and suprema in CTolV
are then given by

∧
k∈K

tk = CV

(⋃
k∈K

tk

)
,

∨
k∈K

tk =
⋂

k∈K

tk, (4)

where CV : 2V → 2V is the closure operator corresponding to the closure system
CTolV. The least element 0CTolV in CTolV is the total relation 0CTolV =
V ×V , the greatest element 1CTolV is the equality (diagonal) on V , i.e. 1CTolV =
{〈v, v〉 | v ∈ V }.

The following equalities describe the mappings (1) for the infimum and the
supremum of complete tolerances tk ∈ CTolV, k ∈ K:

v
⋂

k∈K tk =
∧

k∈K

vtk , v⋂
k∈K tk

=
∨

k∈K

vtk
. (5)

Logical Analysis of Concept Lattices by Factorization 19

Let 〈X,Y, I〉 be a formal context. A relation J ⊇ I is called a block relation on
〈X,Y, I〉 if for each x ∈ X the set {x}↑J is an intent of I and for each y ∈ Y the
set {y}↓J is an extent of I.

The set BR(X,Y, I) of all block relations on a formal context 〈X,Y, I〉 is
a closure system. We consider BR(X,Y, I) together with the dual structure of
complete lattice:

∧
k∈K

Jk = CI

(⋃
k∈K

Jk

)
,

∨
k∈K

Jk =
⋂

k∈K

Jk, (6)

where CI is the closure operator induced by the closure system BR(X,Y, I).
By [9], the complete lattices CTolB(X,Y, I) and BR(X,Y, I) are isomorphic,

for corresponding t ∈ CTolB(X,Y, I) and J ∈ BR(X,Y, I) it holds

〈x, y〉 ∈ J iff 〈γ(x), γ(x) ∧ μ(y)〉 ∈ t, (7)
iff 〈γ(x) ∨ μ(y), μ(y)〉 ∈ t, (8)

〈〈A1, B1〉, 〈A2, B2〉〉 ∈ t iff (A1 ×B2) ∪ (A2 × B1) ⊆ J, (9)

where γ and μ are the mappings x 	→ 〈{x}↑↓, {x}↑〉 and y 	→ 〈{y}↓, {y}↓↑〉,
respectively.

2.3 Residuated Lattices

In fuzzy logic, complete residuated lattices are frequently used as basic struc-
tures of truth degrees. A complete residuated lattice [1,4,7] is a structure L =
〈L,∧,∨,⊗,→, 0, 1〉 such that: (i) 〈L,∧,∨, 0, 1〉 is a complete lattice, i.e., a par-
tially ordered set in which arbitrary infima and suprema exist; (ii) 〈L,⊗, 1〉 is
a commutative monoid, i.e., ⊗ is a binary operation which is commutative, as-
sociative, and a ⊗ 1 = a for each a ∈ L; (iii) ⊗ and → satisfy adjointness, i.e.,
a ⊗ b ≤ c iff a ≤ b → c. 0 and 1 denote the least and greatest elements. The
partial order of L is denoted by ≤.

Elements a of L are called truth degrees. ⊗ and → (truth functions of) “fuzzy
conjunction” and “fuzzy implication”.

Common examples of complete residuated lattices include those defined on
a unit interval, (i.e., L = [0, 1]) or on a finite chain in the unit interval, e.g.
L = {0, 1

n , . . . ,
n−1

n , 1}, ∧ and ∨ being minimum and maximum, ⊗ being a left-
continuous t-norm with the corresponding →.

Lemma 2. Let L = 〈L,∧,∨,⊗, 0, 1〉 be a structure satisfying conditions (i) and
(ii) of the definition of residuated lattices, such that 〈L,∧,∨, 0, 1〉 is a complete
lattice. Then the following two conditions are equivalent:

1. There exists a binary operation → on L, satisfying the condition (iii).
2. L satisfies

a⊗
∨
j∈J

bj =
∨
j∈J

a⊗ bj . (10)

20 E. Bartl and M. Krupka

For → it holds

a→ b =
∨

{c ∈ L | a⊗ c ≤ b}. (11)

3 Main Results

3.1 Tolerance Residuated Lattice

Let V be a complete lattice. We set for each s, t ∈ CTolV,

s⊗ t = st ∩ ts, (12)

s→ t =
∨

{r ∈ CTolV | s⊗ r ≤ t}, (13)

where st denotes the composition of the complete tolerances s and t.

Lemma 3. For each s, t ∈ CTolV the relations s ⊗ t and s → t are complete
tolerances. For each u ∈ V it holds

us⊗t = (us)t ∧ (ut)s, us⊗t = (us)t ∨ (ut)s, (14)

us→t =
∧

s⊗r≤t

ur, us→t =
∨

s⊗r≤t

ur. (15)

Proof. s⊗ t is evidently a tolerance. We have for each u, v ∈ V , 〈u, v〉 ∈ s⊗ t iff
〈u, v〉 ∈ st and 〈u, v〉 ∈ ts. Now, 〈u, v〉 ∈ st iff there is w ∈ V such that 〈u,w〉 ∈ s
and 〈w, v〉 ∈ t. This follows w ≤ us and v ≤ wt, which gives v ≤ (us)t. Similarly
we obtain v ≤ (ut)s, and, together, v ≤ (us)t ∧ (ut)s. Since 〈u, us〉 ∈ s and
〈us, (us)t〉 ∈ t, then 〈u, (us)t〉 ∈ st. Similarly, 〈u, (ut)s〉 ∈ ts and put together,
〈u, (us)t ∧ (ut)s〉 ∈ s⊗ t.

Thus, (us)t ∧ (ut)s is the greatest element which is in the relation s⊗ t with
u. Similarly it can be proved that (us)t ∧ (ut)s is the least element which is in
the relation s⊗ t with u.

Moreover, from the beginning of the proof it follows that 〈u, v〉 ∈ s ⊗ t iff
v ≤ (us)t ∧ (ut)s and, similarly 〈v, u〉 ∈ s ⊗ t iff v ≥ (us)t ∧ (ut)s. Therefore, if
we set us⊗t = (us)t ∧ (ut)s and us⊗t = (us)t ∨ (ut)s then intervals [u, v], where
v = us⊗t and u = vs⊗t, form the system of all maximal blocks of the tolerance
s ⊗ t. It can be easily verified that this system satisfies all the assumptions of
the system V from Lemma 1. Thus, s⊗ t is a complete tolerance satisfying (14).

The relation s → t is an intersection of complete tolerances, thus a complete
tolerance, (15) follows from (5).

Theorem 1. The tuple 〈CTolV,∧,∨,⊗,→, 0CTol V, 1CTolV〉 is a complete resid-
uated lattice.

Proof. The operation ⊗ is evidently commutative and 1CTolV is its unit element.
Thus, by Lemma 2 it suffices to verify the distributivity law

t⊗
∨

k∈K

sk =
∨

k∈K

t⊗ sk.

Logical Analysis of Concept Lattices by Factorization 21

We have by Lemma 3, Lemma 1, (4), and (5) (all big suprema, infima, and
intersections are taken over all k ∈ K),

ut⊗∨
sk = (ut)

∨
sk ∧ (u

∨
sk)t = (ut)

⋂
sk ∧ (u

⋂
sk)t

=
(∧

(ut)sk

)
∧
(∧

usk

)t

=
∧

(ut)sk ∧ (usk)t,

u
∨

t⊗sk = u
⋂

t⊗sk =
∧
ut⊗sk =

∧
(ut)sk ∧ (usk)t.

Thus, ut⊗∨
sk = u

∨
t⊗sk , and, similarly, ut⊗∨

sk
= u∨ t⊗sk

.

Definition 1. The residuated lattice from Theorem 1 is denoted CTolV and
called the tolerance residuated lattice of V.

3.2 First-Order Fuzzy Logic for Factorizing Concept Lattices

In the previous section it was shown how to build a complete residuated lattice
using complete tolerances. The class of all complete residuated lattices L repre-
sents a suitable and sufficiently general class of structures of truth values. Using
a tolerance residuated lattice L ∈ L we can then assign a truth values to the
formulas of a certain fuzzy logic, particularly of a many-sorted first-order fuzzy
logic. In other words, a many-sorted first-order fuzzy logic may be used as a tool
for specifying the desired parameters of the size-factorization of concept lattices.

We start with definition of a language FCL of our many-sorted first-order
fuzzy logic.

Definition 2. A language FCL is of type 〈S,R, F,C, σ〉, where S = {X,Y} is
a set of sorts, R = {r∼, rA, rA1 , . . . , rB , rB1 , . . . } is a set of relation symbols with
arities σ(r∼) = X × Y, σ(rA) = σ(rA1) = · · · = X, σ(rB) = σ(rB1) = · · · = Y,
and F = ∅ is an empty set of function symbols. By �,�1, . . . we denote variables
of the sort X, and by �,�1, . . . variables of the sort Y. We use logical connectives
�,�,�, �, quantifiers ∃, ∀, and truth constant 0.

Atomic formulas of the language FCL are for example r∼(�,�), rA(�), rB(�),
or 0. Formulas are defined inductively using logical connectives and quantifiers.
Moreover, we use the abbreviations: � ϕ, (ϕ ⇔ ψ), 1 is the abbreviation for
(ϕ� 0), ((ϕ� ψ) � (ψ � ϕ)), and (0� 0), respectively.

In the next definitionwe suppose a tolerance residuated latticeL=〈BR(X,Y, I),
∨,∧,⊗,→, 0, 1〉.

Definition 3. An L-structure for the language FCL is M = 〈M,RM , FM 〉,
where M = {X,Y }, RM = {rM∼ , rM

A , rM
A1
, . . . , rM

B , rM
B1
, . . . }, FM = ∅. The fuzzy

relation rM
∼ : X × Y → BR(X,Y, I) is defined as:

rM
∼ (x, y) =

∨
{J ∈ BR(X,Y, I) | 〈x, y〉 ∈ J}

22 E. Bartl and M. Krupka

for all x ∈ X , y ∈ Y . The fuzzy sets rM
A , rM

A1
, · · · : X → BR(X,Y, I), where

A,A1, · · · ⊆ X , are given by:

rM
A (x) =

∨
{J ∈ BR(X,Y, I) | x ∈ A↑J↓J},

rM
A1

(x) =
∨

{J ∈ BR(X,Y, I) | x ∈ A↑J↓J

1 },
. . .

for all x ∈ X . Similarly, the fuzzy sets rM
B , rM

B1
, · · · : Y → BR(X,Y, I), where

B,B1, · · · ⊆ Y , are defined in the way:

rM
B (y) =

∨
{J ∈ BR(X,Y, I) | y ∈ B↓J↑J},

rM
B1

(y) =
∨

{J ∈ BR(X,Y, I) | y ∈ B↓J↑J

1 },
. . .

for all y ∈ Y .

For the sake of brevity, we will write just ∼ (using infix notation), A,A1, . . . ,
B,B1, . . . instead of rM

∼ , rM
A , rM

A1
, . . . , rM

B , rM
B1
, . . . , respectively. Moreover, in

what follows we will use instead of all relation symbols rA, rA1 , . . . , rB, rB1 , . . .
just symbols rA and rB.

For M-valuation v assigning to every variable � a value v(�) ∈ X and to
every variable � a value v(�) ∈ Y we can define a value of a variable � as
||�||M,v = v(�) and a value of a variable � as ||�||M,v = v(�). The atomic
formulas are then evaluated as follows:

||r∼(�,�)||M,v = v(�) ∼ v(�),
||rA(�)||M,v = A(v(�)),
||rB(�)||M,v = B(v(�)),

||0||M,v = 0 = X × Y,

||1||M,v = 1 = I.

The formulas get the value inductively in a usual way:

|| � ϕ||M,v = ||ϕ||M,v → 0,
||(ϕ � ψ)||M,v = ||ϕ||M,v ∨ ||ψ||M,v,

||(ϕ � ψ)||M,v = ||ϕ||M,v ∧ ||ψ||M,v,

||(ϕ � ψ)||M,v = ||ϕ||M,v ⊗ ||ψ||M,v,

||(ϕ� ψ)||M,v = ||ϕ||M,v → ||ψ||M,v,

||(ϕ⇔ ψ)||M,v = ||ϕ||M,v ↔ ||ψ||M,v,

Logical Analysis of Concept Lattices by Factorization 23

||(∃�)ϕ||M,v =
∨

{||ϕ||M,v′ | v′ =� v},
||(∃�)ϕ||M,v =

∨
{||ϕ||M,v′ | v′ =� v},

||(∀�)ϕ||M,v =
∧

{||ϕ||M,v′ | v′ =� v},
||(∀�)ϕ||M,v =

∧
{||ϕ||M,v′ | v′ =� v}

for every formulas ϕ and ψ.
For instance, proposition “there exists an object x from set a A such that x

has attribute y1 and does not have attribute y2” can be expressed using FCL by
the formula:

(∃�)(rA(�) � (r∼(�,�1)⊗ � r∼(�,�2))).

4 Illustrative Example

As an illustrative example we consider size reduction of concept lattice B(X,Y, I)
depicted in Fig. 1 (right). This concept lattice is constructed from the simple
formal context 〈X,Y, I〉, where I is a relation between sets X = {M, F, J} and
Y = {ef, rm, of}, see Fig. 1 (left). The symbol M denotes Mercedes Smart, F
Ford Focus, and J Jeep Cherokee, while ef denotes fuel efficient, rm roomy, and
of off-road ability.

I ef rm of

M ×
F × ×
J × ×

M,ef

F

rm

J,of

Fig. 1. Formal context (left) and corresponding concept lattice (right)

There exist ten block relations on the concept lattice B(X,Y, I). Their order-
ing is shown in Fig. 2, by crosses we denote the pairs of the relation I, by dots
there are denoted the pairs of the set-difference J \ I, where J ∈ BR(X,Y, I).
The corresponding complete tolerances are ordered in the same way as we can
see in Fig. 3.

Truth value of the proposition “Ford Focus is a fuel efficient car” is 1 since
〈F, ef〉 ∈ I, while truth value of the proposition “Mercedes Smart is a roomy
car” is obviously lesser than 1, particulary equal to h. The value h is the smallest
(w.r.t. set inclusion) block relation containing 〈M, rm〉, see Fig. 4 (left). By saying
“Mercedes Smart is a roomy car” we actually do not make any difference between

24 E. Bartl and M. Krupka

a

b c

d

e f

g h

0

1

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

x
x x
x x

Fig. 2. Tolerance residuated lattice consisting of truth values 0, a, b, c, d, e, f, g, h, 1
which are expressed using block relations

Mercedes Smart and Ford Focus, i.e. we merge the formal concepts M, ef, and F.
As a result the concept lattice B(X,Y, I) is reduced to the four-element lattice
depicted in Fig. 4 (right).

The proposition “Mercedes Smart is a roomy car” becomes fully true when
we commit the inaccuracy that Mercedes Smart and Ford Focus are of the same
size. This fact corresponds to the evaluation of the proposition “Mercedes Smart
is a roomy car” using L-structure, where L is the tolerance residuated lattice
defined on BR(X,Y, h), i.e. it is defined on the set of all block relations on the
reduced concept lattice in Fig. 4 (right).

The proposition “every fuel efficient vehicle has an off-road ability” is rather
untrue, its truth value is equal to c. Indeed, we evaluate the FCL formula
(∀�)(rA(�) � (r∼(�,�)), where A is the set of all fuel efficient cars, i.e. A =
{M, F}, and M-valuation v assigns to the variable � the attribute of (off-road
ability). Therefore, we get:

Logical Analysis of Concept Lattices by Factorization 25

a

b c

d

e f

g h

0

1

Fig. 3. Tolerance residuated lattice consisting of truth values 0, a, b, c, d, e, f, g, h, 1
which are expressed using complete tolerances

I ef rm of

M × •
F × ×
J × ×

MF,ef

rm

J,of

Fig. 4. Block relation h (left) and corresponding reduced concept lattice (right)

||(∀�)(rA(�) � (r∼(�,�))||M,v =
∧

x∈X

A(x) → (x ∼ of)

= (g → 1) ∧ (1 → d) ∧ (1 → c) = c.

The proposition “every fuel efficient vehicle has an off-road ability” therefore
reduces the given concept lattice to the two-element concept lattice, see Fig. 5
(right).

26 E. Bartl and M. Krupka

I ef rm of

M × • •
F × × •
J × × MF,ef

J,rmof

Fig. 5. Block relation c (left) and corresponding reduced concept lattice (right)

5 Conclusion

The main result of the paper consists in showing that a set of all block relations
on a concept lattice (or generally, on an arbitrary complete lattice) with an
operation of multiplication form a residuated lattice.

Although complete residuated lattices can be defined as non-linear structures
(i.e. some elements might be incomparable), in practical applications entirely
linear ones are used. The reason is that one may consider incomparable truth
values as something artificial. This phenomenon causes the complete residuated
lattices to lose their expressing power and theoretical beauty. Using our ap-
proach we can easily model the situations where non-linear residuated lattices
are naturally employed.

The above mentioned result allows us to consider a logical calculus where
such a residuated lattice serves as the scale of truth values. A formula of this
calculus, being interpreted by a block relation on the concept lattice, relates
certain objects and attributes which where not originally related. Additional
information imposed by a formula merges certain formal concepts and therefore,
creates a concept lattice consisting of a smaller number of formal concepts.

6 Future Work

In the future we are going to focus on the operations on a tolerance residuated
lattice. We are also going to implement the algorithms based on the proposed
method and use them on real data sets.

Moreover, it will be definitely useful to generalize the presented results for
the fuzzy concept lattices since the problem with a far too big number of formal
concepts becomes even more serious in the fuzzy case.

Acknowledgment. Support by project reg. no. CZ.1.07/2.3.00/20.0059 of the
European Social Fund in the Czech Republic is gratefully acknowledged.

References

1. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Aca-
demic Publishers, Norwell (2002)

2. Czédli, G.: Factor lattices by tolerances. Acta Sci. Math. 44, 35–42 (1982)

Logical Analysis of Concept Lattices by Factorization 27

3. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations.
Springer (1999)

4. Hájek, P.: Metamathematics of Fuzzy Logic (Trends in Logic). Springer (November
2001)

5. Konecny, J., Krupka, M.: Block relations in fuzzy setting. In: Napoli, A., Vychodil,
V. (eds.) CLA 2011: Proceedings of the 8th International Conference on Concept
Lattices and Their Applications, pp. 115–130 (2011)

6. Krupka, M.: On Factorization of Concept Lattices by Incompatible Tolerances.
In: Valtchev, P., Jaschke, R. (eds.) ICFCA 2011. LNCS, vol. 6628, pp. 167–182.
Springer, Heidelberg (2011)

7. Ward, M., Dilworth, R.P.: Residuated lattices. Transactions of the American Math-
ematical Society 45, 335–354 (1939)

8. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts.
In: Rival, I. (ed.) Ordered Sets, Boston, pp. 445–470 (1982); seminal publication on
Formal Concept Analysis

9. Wille, R.: Complete tolerance relations of concept lattices. In: Eigenthaler, G., et
al. (eds.) Contributions to General Algebra, vol. 3, pp. 397–415. Hölder-Pichler-
Tempsky, Wien (1985)

Basic Level of Concepts

in Formal Concept Analysis

Radim Belohlavek and Martin Trnecka

Data Analysis and Modeling Lab (DAMOL)
Department of Computer Science, Palacky University, Olomouc

17. listopadu 12, CZ-77146 Olomouc, Czech Republic
radim.belohlavek@acm.org, martin.trnecka@gmail.com

Abstract. The paper presents a preliminary study on basic level of
concepts in the framework of formal concept analysis (FCA). The basic
level of concepts is an important phenomenon studied in the psychology
of concepts. We argue that this phenomenon may be utilized in FCA
for selecting important concepts. In the other direction, we argue that
FCA provides a simple framework for studying the phenomenon itself. In
this preliminary study, we attempt to draw the attention of researchers
in FCA to the basic level of concepts. Furthermore, we propose a for-
malization of one of the several existing psychological views of the basic
level, present experiments, and outline future research in this direction.

Keywords: formal concept analysis, psychology, concepts, basic level.

1 Introduction

1.1 Motivation

It is a well-known fact that, usually, a concept lattice contains a considerable
number of formal concepts. When assessed by domain experts, some of the con-
cepts are found more important (or natural) than others. This observation may
be utilized for selecting only some formal concepts—the important ones—and
filtering out the others. In the literature, one may find several approaches that
implement this general idea of selecting important concepts. In this paper, we
propose and approach based on a phenomenon well-known in the psychology of
concepts, namely the basic level of concepts. In addition to the aim of utilizing
the basic level of concepts in FCA, we would like to draw the attention of re-
searchers in FCA to this phenomenon as well as to argue that FCA may be seen
as a simple formal framework for studying this phenomenon itself and thus be
of interest for the psychologists of concepts (see also [1]).

1.2 Paper Overview

In Sections 1.3 and 1.4, we provide an overview of related work and preliminar-
ies from FCA. In Section 2, we describe the phenomenon of the basic level of

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 28–44, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Basic Level of Concepts in Formal Concept Analysis 29

concepts and provide main references to the work in the psychology of concepts.
An approach to formalize one psychological view of the basic level of concepts is
presented in Section 3. Examples and experiments which demonstrate this ap-
proach are provided in Section 4. In Section 5 we conclude the paper and outline
future research.

1.3 Related Work

The most relevant to this paper is the work on the stability of a formal concept
and other indices that seek to assign indices to formal concepts representing the
importance of formal concepts [14,15]. In the approaches mentioned in the fore-
going paragraph, no other information is used to compute the indices than the
one contained in the formal context (or the concept lattice, which is uniquely
determined by the formal context). Another idea, initiated in [2] and later devel-
oped in [3,4], proposes to utilize the background knowledge to select important
concepts. Other approaches to selection of only certain formal concepts have
been proposed in [7,8,16,23].

1.4 Preliminaries and Notation

We assume that the reader is familiar with basic notions of formal concept anal-
ysis [11]. A formal context is denoted by 〈X,Y, I〉. Formal concepts of 〈X,Y, I〉
are denoted by 〈A,B〉. A pair 〈A,B〉 consisting of A ⊆ X and B ⊆ Y is called
a formal concept if and only if A↑ = B and B↓ = A where

A↑ = {y ∈ Y | for each x ∈ X : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ Y : 〈x, y〉 ∈ I}

are the set of all attributes common to all objects from A and the set of all objects
having all the attributes from B, respectively. The set of all formal concepts
of 〈X,Y, I〉 is denoted by B(X,Y, I). B(X,Y, I) equipped with a subconcept-
superconcept partial order ≤ is the concept lattice of 〈X,Y, I〉.

2 Basic Level of Concepts in the Psychology of Concepts

The psychology of concepts is a field in cognitive psychology studying human
concepts and their cognitive role. The psychology of concepts has been developed
systematically since 1950s, but one may find related work much before the 1950s,
with [10] being probably the first work using what has become the most common
approach to experimental studies of concepts [18]. A comprehensive overview of
the main issues involved in the psychology of concepts is given in [19] which is
our main source in this paper.

An important place in the studies in the psychology of concepts is occu-
pied by concept hierarchy, i.e. a particular way of organizing concepts using

30 R. Belohlavek and M. Trnecka

the superordinate-subordinate (superconcept-subconcept) relationship. An ex-
tensive experimental work has been done on various issues surrounding concept
hierarchies. One of them, central to this paper, is the basic level of concepts.

The basic level of concepts is known from ordinary life. When we see a par-
ticular dog, say a German Shepherd named Alex, we say “This is a dog,” rather
than “This is a German Shepherd” or “This is a mammal.” That is, to name the
object, we use a particular concept that we somehow prefer to other concepts. In
this case, we prefer the concept of a dog to the concept of a German Shepherd
and to the concept of a mammal. The preferred concepts are called the concepts
of the basic level.1

In the psychology of concepts, the basic level of concepts is intuitively under-
stood as

“. . . the most natural, preferred level at which to conceptually carve up
the world. The basic level can be seen as a compromise between the
accuracy of classification at a maximally general level and the predictive
power of a maximally specific level.” [19, p. 210].

[5] is the first work suggesting that people consistently use a kind of a middle level
concepts in speach. Since then, several studies in basic level have been conducted.
For example, it has been observed [19, Chap. 7] that people across cultures tend
to use the same level of concepts when naming plants and animals (the level
corresponds to genus). In addition, it has been observed experimentally that
people with less knowledge about a domain tend to use more general concepts
while people with extensive domain knowledge tend to use more specific concepts
as the basic level concepts.

For our purpose, it is important to note that there exist several informal def-
initions, of the basic level. Some of them have been developed by Eleanor Rosch
[20,21]. The one we attempt to use and formalize within FCA in this paper is
based on experimental work according to which the basic level is distinguished by
the number of common attributes. According to these experiments, when people
are asked to list attributes of a concept from the basic level and its superordinate
and subordinate concepts, the following pattern may be observed. Only a few
attributes are listed for the concepts of a superordinate level, while many more
attributes are listed for the concepts of the basic level and the subordinate con-
cepts. Moreover, the number of attributes listed for the subordinate concepts is
only slightly larger than the one for the basic level. In addition, the experiments

1 Related is our experience from explaining FCA. It is quite common that people
not familiar with FCA ask questions like: “Given a particular object, what is the
(appropriate) formal concept to which the object belongs?” To people familiar with
FCA, such question may suggest that the person asking does not understand FCA
well yet, because there are usually several formal concepts that cover a particular
object, the most specific of them being the object concept generated by the given
object. Nevertheless, such question may probably be seen as a manifestation of the
phenomenon of the basic level of concepts which is inherently present in human
reasoning with concepts: The person is asking for a concept from the basic level.

Basic Level of Concepts in Formal Concept Analysis 31

show that the nature of the attributes plays a role as well. Namely, for super-
ordinate concepts, mostly functional attributes were listed, such as “keeps you
warm”; for basic level, people listed nouns and adjectives as properties, such as
buttons, belt loops; for subordinate concepts, additional adjectives were listed,
such as those referring to color. In [21], the authors concluded what may be
considered a generalized view of the above-described observation: The objects of
the basic level concepts are similar to each other, the objects of the superordi-
nate concepts are significantly less similar, while the objects of the subordinate
concepts are only slightly more similar. This way of characterization of the basic
level is utilized in Section 3.

Due to the lack of space in this paper, we do not comment in detail on the
other psychological views of the basic level. Let us only note that the literature
contains studies of several interesting aspects of the basic level, including the
role of the basic level in cognitive processes such as the speed of classification or
predictive capability. Let us also note that many studies were performed within
specific domains and that the basic level was described using domain-specific
criteria such as types of movements or visual characteristics of the objects.

3 An Approach to Basic Level in FCA

In this section, we propose an approach to identifying concepts of a basic level in
a concept lattice inspired by Rosch’s definition of basic level concepts described
in Section 2. Informally, we call a cohesion of a concept a measure of whether the
objects to which that concept applies are pairwise similar. According to Rosch’s
definition, a formal concept 〈A,B〉 belongs to the basic level if it satisfies the
following properties:

(BL1) 〈A,B〉 has a high cohesion.
(BL2) 〈A,B〉 has a significantly larger cohesion than its upper neighbors.
(BL3) 〈A,B〉 has only a slightly smaller cohesion than its lower neighbors.

Note that the upper neighbors of 〈A,B〉 are the concepts that are more general
than 〈A,B〉 and are directly above 〈A,B〉 in the hierarchy of concepts. The lower
neighbors are defined analogously. The sets of all upper and lower neighbors of
c (i.e. elements covering c and covered by c) is denoted by UN (c) and LN (c),
respectively. That is,

– UN (c) = {d ∈ B(X,Y, I) | c < d and there is no d′ for which c < d′ < d},
– LN (c) = {d ∈ B(X,Y, I) | c > d and there is no d′ for which c > d′ > d}.

Furthermore, we use the following notation and its variants:

– sim(x1, x2) denotes the degree (or index) of similarity of objects x1 and x2.
– coh(c) denotes the degree (or index) of cohesion of formal concept c.

32 R. Belohlavek and M. Trnecka

Similarity of objects x1 and x2 can naturally be assessed by similarity of their
corresponding intents, i.e. by similarity of {x1}↑ and {x2}↑. That is, given an
appropriate similarity measure simY with simY (B1, B2) being a similarity degree
of sets B1, B2 ⊆ Y of attributes, we may put

sim(x1, x2) = simY ({x1}↑, {x2}↑). (1)

In our experiments, we used the following well-known functions for simY :

simSMC(B1, B2) =
|B1 ∩B2|+ |Y − (B1 ∪B2)|

|Y | , (2)

simJ(B1, B2) =
|B1 ∩B2|
|B1 ∪B2|

. (3)

Note that (2) is the simple matching coefficient and that (3) is the Jaccard index
[22]. simSMC is the number of attributes on whichB1 and B2 agree (either y ∈ B1

and y ∈ B2, or y �∈ B1 and y �∈ B2) divided by the number of all attributes.
simJ is the number of attributes that belong to both B1 and B2 divided by the
number of all attributes that belong to B1 or B2. That is, while simSMC treats
both presence and non-presence of attributes symmetrically, simJ disregards
non-presence. This is the main conceptual difference between simSMC and simJ.

A simple approach to measure the cohesion coh(A,B) for a formal concept
〈A,B〉 ∈ B(X,Y, I) is the following:

coh�(A,B) =

∑
{x1,x2}⊆A,x1 	=x2

sim(x1, x2)

|A| · (|A| − 1)/2
. (4)

That is, coh�(A,B) is the average similarity of two objects covered by the formal
concept 〈A,B〉. Alternatively, we might put

cohm(A,B) = min
x1,x2∈A

sim(x1, x2), (5)

in which case the cohesion is the least similarity degree of any two objects covered
by 〈A,B〉.

We are now going to assign to every formal concept 〈A,B〉 of 〈X,Y, I〉 a
degree BL(A,B) to which 〈A,B〉 is a concept from the basic level. Given that the
concepts from the basic level need to satisfy conditions (BL1), (BL2), and (BL3),
it seems natural to construe BL(A,B) as the degree to which a conjunction of
the three propositions, (BL1), (BL2), and (BL3), is true. That is, to put

BL(A,B) = C(α1(A,B), α2(A,B), α3(A,B)), (6)

where

– αi(A,B) is the degree to which condition (BLi) is satisfied, i = 1, 2, 3,
– C is a “conjunctive” aggregation function; that is, if propositions ϕ1, ϕ2, and
ϕ3 have truth degrees α1, α2, and α3, respectively, then the conjunction ϕ1

and ϕ2 and ϕ3 has the truth degree C(α1, α2, α3).

Basic Level of Concepts in Formal Concept Analysis 33

A simple form of C is obtained by taking a t-norm [13] ⊗ and to put

C(α1, α2, α3) = α1 ⊗ α2 ⊗ α3.

We assume that the truth degrees are numbers in [0, 1] and use the product
(Goguen) t-norm, given by a⊗ b = a · b, in the experiments.

For α1(A,B), α2(A,B), and α3(A,B), the following definitions seem natural

choices (coh∗ denotes coh� or cohm, see (4) and (5)):

α∗
1(A,B) = coh∗(A,B), (7)

α�∗
2 (A,B) = 1−

∑
c∈UN(A,B) coh

∗(c)/coh∗(A,B)

|UN (A,B)| , (8)

αm∗
2 (A,B) = 1− max

c∈UN(A,B)
coh∗(c)/coh∗(A,B), (9)

α�∗
3 (A,B) =

∑
c∈LN (A,B) coh

∗(A,B)/coh∗(c)

|LN (A,B)| , (10)

αm∗
3 (A,B) = min

c∈LN(A,B)
coh∗(A,B)/coh∗(c). (11)

Remark 1. Let us explain the meaning of formulas (7)–(11). The formulas are
designed so that the values of α1(A,B), α2(A,B), and α3(A,B) (and their vari-
ants given by the superscripts) may naturally be interpreted as the truth degrees
to which the propositions in (BL1), (BL2), and (BL3) are true.

Ad (7): Clearly, (7) may be interpreted as the truth degree of (BL1).
Before discussing the other formulas, let us observe that if coh∗(c1) ≤ coh∗(c2),

then coh∗(c1)
coh∗(c2) ∈ [0, 1] may be interpreted as the truth degree of “coh∗(c1) is only

slightly smaller than coh∗(c2)”, and hence 1 − coh∗(c1)
coh∗(c2)

∈ [0, 1] may be inter-

preted as the truth degree of proposition “coh∗(c1) is significantly smaller than

coh∗(c2)”. Assume therefore that in the factions coh∗(c1)
coh∗(c2)

in (7)–(11), we always

have coh∗(c1) ≤ coh∗(c2).
Ad (8): Since

α�∗
2 (A,B) =

∑
c∈UN(A,B) 1− coh∗(c)/coh∗(A,B)

|UN (A,B)| ,

it follows that α�∗
2 (A,B) may be interpreted as the truth degree of “on average,

the upper neighbors of 〈A,B〉 have a significantly smaller cohesion than 〈A,B〉”,
which is one possible meaning of (BL2).

Ad (9): Since

αm∗
2 (A,B) = min

c∈UN(A,B)
1− coh∗(c)/coh∗(A,B),

αm∗
2 (A,B) may be interpreted as the truth degree of “each upper neighbor of
〈A,B〉 has a significantly smaller cohesion than 〈A,B〉”, which is another possi-
ble reading of (BL2).

34 R. Belohlavek and M. Trnecka

Ad (10): For the same reasons as in the case of (8), α�∗
3 (A,B) may be in-

terpreted as the truth degree of “on average, 〈A,B〉 has only lightly smaller
cohesion than its lower neighbors”, which is one possible meaning of (BL3).

Ad (11): For the same reasons as in the case of (10), αm∗
3 (A,B) may be

interpreted as the truth degree of “〈A,B〉 has only a slightly small than cohesion
than each of its lower neighbors”, which is another possible reading of (BL3).

The interpretation described in (7)–(11) is correct if, as was mentioned in the

above remark, in the factions coh∗(c1)
coh∗(c2)

in (7)–(11), we have coh∗(c1) ≤ coh∗(c2).
This is the case of cohm, as the following lemma shows.

Lemma 1. If 〈A1, B1〉 ≤ 〈A2, B2〉 then cohm(A2, B2) ≤ cohm(A1, B1).

Proof. Immediate to verify. �
However, for coh� such property no longer holds. Namely, the cohesion of an
upper neighbor of a concept may be greater than that of the concept itself as
the following example shows.

Example 1. Consider the formal context in Table 1. One may check that for the
formal concepts 〈A1, B1〉={{x1, x2}, {y1, y2}} and 〈A2, B2〉={{x1, x2, x3}, {y1}}
we have 〈A2, B2〉 ∈ UN (A1, B1) and yet:

Table 1. Formal context from Example 1

y1 y2 y3 y4 y5

x1 × × × ×
x2 × × ×
x3 × × × ×

coh�(A1, B1) =
sim(x1, x2)

1
=

2

5
<

2
5 + 3

5 + 2
5

3
=

sim(x1, x2) + sim(x1, x3) + sim(x2, x3)

3
= coh�(A2, B2),

for both sim = simSMC and sim = simJ.

We propose the following solution to this problem. Instead of considering
UN (A,B), i.e. all the upper neighbors of 〈A1, B1〉, we consider only

UN≤(A,B) = {c ∈ UN (A,B) | coh�(c) ≤ coh�(A,B)},

i.e. only the upper neighbors with a smaller cohesion in (8) and (9). In addition,
it seems natural to disregard 〈A,B〉 as a candidate for a basic level concept if

the number of “wrong upper neighbors” is relatively large, i.e. if |UN≤(A,B)|
|UN(A,B)| < θ

Basic Level of Concepts in Formal Concept Analysis 35

for some parameter θ. θ itself may be subject to experiments (θ = 1 means that
we require all the upper neighbors to have cohesion ≤ the cohesion of 〈A,B〉).
Likewise, instead of considering LN (A,B), we consider only

LN≥(A,B) = {c ∈ LN (A,B) | coh�(c) ≥ coh�(A,B)}

in (10) and (11), and a similar condition for the number of “wrong lower neigh-
bors” given by θ. Therefore, we get the following formulas (||ϕ|| denoted the
truth degree of condition ϕ):

α∗
1(A,B) = coh∗(A,B),

α�∗
2 (A,B) = [1−

∑
c∈UN≤(A,B) coh

∗(c)/coh∗(A,B)

|UN≤(A,B)|
] · || |UN

≤(A,B)|
|UN (A,B)| ≥ θ||,

αm∗
2 (A,B) = [1− max

c∈UN≤(A,B)
coh∗(c)/coh∗(A,B)] · || |UN

≤(A,B)|
|UN (A,B)| ≥ θ||,

α�∗
3 (A,B) = [

∑
c∈LN≥(A,B) coh

∗(A,B)/coh∗(c)

|LN≥(A,B)|
] · || |LN

≥(A,B)|
|LN (A,B)| ≥ θ||,

αm∗
3 (A,B) = [min

c∈LN≥(A,B)
coh∗(A,B)/coh∗(c)] · || |LN

≥(A,B)|
|LN (A,B)| ≥ θ||.

Lemma 2. α�∗
2 (A,B) ≥ αm∗

2 (A,B) and α�∗
3 (A,B) ≥ αm∗

3 (A,B).

Proof. Immediate to verify.

Now, according to (6) every concept 〈A,B〉 gets assigned a degree BL(A,B)
to which 〈A,B〉 may be considered as a concept of a basic level. The concepts
with high degrees are therefore considered as important ones. The degrees may
be used to rank the concepts accordingly, i.e. to sort them from those with the
highest basic level degrees to the lowest.

4 Experiments

We performed several experiments with the above method to identify basic level
concepts. Our main aim was to see if the method is able to identify concepts that
humans would naturally use as basic level concepts. Clearly, the subjectivity fac-
tor plays a significant role. We therefore selected datasets describing commonly
known objects, for which most people would probably agree on the basic level
concepts, or at least agree on whether a given concept can be regarded as a basic
level concept.

We were not checking the results of our method for a given dataset against a
psychological experiment involving a group of respondents telling their basic level
concepts for the dataset. This important step, particularly from the psychology
point of view, is left for future. Instead, we tried to see whether our method
identifies basic level concepts in a reasonable way based on our intuition.

36 R. Belohlavek and M. Trnecka

For every dataset 〈X,Y, I〉, we observed the basic level degrees of all concepts
of the concept lattice B(X,Y, I). We report the results for the following combi-
nations BLc,a

s (A,B): s is SMC or J and indicates whether simSMC or simJ was

used; c is � or m and indicates whether coh� or cohm was used; a is � or m

and indicates whether α�∗
2 and α�∗

3 , or αm∗
2 and αm∗

3 was used. We report the
results for θ = 1. Note that we have:

Lemma 3. BLc,�
s (A,B) ≥ BLc,m

s (A,B) for any s and c, provided C is isotone.

Proof. Directly from Lemma 2 and the fact that C in (6) is isotone.

4.1 Experiment 1

The dataset in Table 2 contains selected sports and their attributes. There are
the following formal concepts in this dataset (for convenience, we list them in
the form ci = 〈A,B〉 where A and B are the extent and intent of ci):

c1 = 〈{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}, {}〉,
c2 = 〈{1, 2, 4, 11, 13, 14, 15, 20}, {10}〉,
c3 = 〈{3, 5, 6, 7, 8, 9, 10, 12, 16, 17, 18, 19}, {9}〉, c4 = 〈{3, 4, 14, 16}, {8}〉,
c5 = 〈{3, 16}, {8, 9}〉, c6 = 〈{1, 2, 3, 4, 11, 13, 14, 15, 17, 19}, {5}〉,
c7 = 〈{1, 2, 4, 11, 13, 14, 15}, {5, 10}〉, c8 = 〈{3, 17, 19}, {5, 9}〉,
c9 = 〈{3, 4, 14}, {5, 8}〉, c10 = 〈{4, 14}, {5, 8, 10}〉,
c11 = 〈{5, 6, 7, 8, 9, 10, 12, 16, 18, 20}, {4}〉,
c12 = 〈{5, 6, 7, 8, 9, 10, 12, 16, 18}, {4, 9}〉, c13 = 〈{5, 6, 7, 8, 9, 18}, {4, 7, 9}〉,
c14 = 〈{5, 6, 7, 8, 18}, {4, 6, 7, 9}〉, c15 = 〈{4, 16, 17, 18, 19, 20}, {3}〉,
c16 = 〈{4, 20}, {3, 10}〉, c17 = 〈{16, 17, 18, 19}, {3, 9}〉, c18 = 〈{4, 16}, {3, 8}〉,
c19=〈{4, 17, 19}, {3, 5}〉, c20 = 〈{17, 19}, {3, 5, 9}〉, c21 = 〈{16, 18, 20}, {3, 4}〉,
c22 = 〈{20}, {3, 4, 10}〉, c23 = 〈{16, 18}, {3, 4, 9}〉, c24 = 〈{16}, {3, 4, 8, 9}〉,
c25 = 〈{18}, {3, 4, 6, 7, 9}〉, c26 = 〈{9, 10, 11, 12, 13, 14, 15}, {2}〉,
c27 = 〈{11, 13, 14, 15}, {2, 5, 10}〉, c28 = 〈{14}, {2, 5, 8, 10}〉,
c29 = 〈{9, 10, 12}, {2, 4, 9}〉, c30 = 〈{9}, {2, 4, 7, 9}〉,
c31 = 〈{1, 2, 3, 4, 5, 6, 7, 8}, {1}〉, c32 = 〈{3, 5, 6, 7, 8}, {1, 9}〉,
c33 = 〈{1, 2, 3, 4}, {1, 5}〉, c34 = 〈{1, 2, 4}, {1, 5, 10}〉, c35 = 〈{3, 4}, {1, 5, 8}〉,
c36 = 〈{3}, {1, 5, 8, 9}〉, c37 = 〈{5, 6, 7, 8}, {1, 4, 6, 7, 9}〉,
c38 = 〈{4}, {1, 3, 5, 8, 10}〉, c39 = 〈{}, {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}〉

Table 3 contains concepts c1–c39 and their basic level degrees. The corresponding
concept lattice is depicted using a reduced labeling in Fig. 1.

Note first that in accordance with Lemma 3, the basic level degrees in column

BL��
SMC are greater than or equal to those in column BL�m

SMC; and that the same

is true when comparing columns BLm�
SMC to BLmm

SMC, BL
��
J to BL�m

J , and BLm�
J

to BLmm
J .

Second, note that it seems not to matter very much whether α�∗
2 and α�∗

3 , or
αm∗
2 and αm∗

3 is used. This observation needs to be explored further in future. On

the other hand, it matters significantly whether coh� or cohm is used. According
to our intuition and the results of this and other experiments we performed, we

Basic Level of Concepts in Formal Concept Analysis 37

Table 2. Sports and their attributes

o
n
la
n
d

o
n
ic
e

in
w
a
te
r

co
ll
ec
ti
v
e
sp

o
rt

in
d
iv
id
u
a
l
sp

o
rt

u
si
n
g
b
a
ll

n
ee
d
s
o
p
p
o
n
en

t
m
u
lt
ip
le

d
is
ci
p
li
n
es

p
o
in
ts

ti
m
e

1 2 3 4 5 6 7 8 9 10

Run 1 × × ×
Orienteering 2 × × ×
Gymnastics 3 × × × ×

Triathlon 4 × × × × ×
Football 5 × × × × ×

Inline Hockey 6 × × × × ×
Tennis 7 × × × × ×

Baseball 8 × × × × ×
Ice Hockey 9 × × × ×

Curling 10 × × ×
Cross-country Skiing 11 × × ×
Synchronized Skating 12 × × ×

Alpine Skiing 13 × × ×
Biathlon 14 × × × ×

Speed Skating 15 × × ×
Synchronized Swimming 16 × × × ×

Diving 17 × × ×
Water Polo 18 × × × × ×

Underwater Diving 19 × × ×
Rowing 20 × × ×

hypothesize that coh� is better to use than cohm. Again, a more detailed study
is needed to support this claim.

Third, and most importantly for the purpose of our paper, let us consider the
concepts that have been indicated as basic level concepts by the method. Due to

lack of space, we consider the selection by BL��
SMC only. The concepts with a non-

zero degree, depicted by square nodes in Fig. 1, sorted in a descending way are
c29 (which can be verbally described as “winter collective sports”; encompass-
ing Ice Hockey, Curling, Synchronized Skating), c27 (“individual winter sports”;
Cross-country Skiing, Alpine Skiing, Biathlon, Speed Skating), c32 (“land sports
evaluated by points”), c26 (“winter sports”), c13 (“collective sports with oppo-
nent”), c8 (“individual sports”), c14 (“ball games”), c34 (“land sports evaluated
by time”), c19 (“individual water sports”), c31 (“land sports”). Arguably, all of
them are likely to be considered natural, basic level concepts. On the other hand,

38 R. Belohlavek and M. Trnecka

109 8 5

7

6 4

17, 19

20

16

18

3

1411, 13, 159

10, 12

2

1, 2

3

5, 6, 7, 8

4

1

Fig. 1. Concept lattice of Table 2

among the concepts not selected for basic level are, for example, c35 (“individual
land sports with multiple disciplines”, encompassing Gymnastics and Triathlon),
c30 (“collective winter sports with opponent evaluated by points” consisting of
Ice Hockey), c28 (“individual winter sports with multiple disciplines evaluated
by time” consisting of Biathlon), or c18 (“sports performed in water with mul-
tiple disciplines” encompassing Triathlon and Synchronized Swimming). These
concepts are not likely to be regarded as basic level concepts. From this and
other experiments we conclude that the method we present in this paper tends
to select natural concepts likely to be considered basic level concepts and not
to select clear non-basic level concepts. For the “borderline cases”, however, it
happens that seemingly natural concepts are not selected and, vice versa, that
the selected concepts do not seem likely to be considered basic level concepts.
It has to be noted that this study presents an initial study in the presented
problem. As such, we consider the method promising and giving good results
already at this stage.

An important observation, that we made in several experiments, worth not-
ing here is that which concepts are considered as basic level concepts very much
depends on the dataset and the selected attributes in particular. Typically, a

Basic Level of Concepts in Formal Concept Analysis 39

Table 3. Basic level degrees of the concepts of Table 2

intent of concept 〈A,B〉 basic level degree of 〈A,B〉
o
n
la
n
d

o
n
ic
e

in
w
a
te
r

co
ll
ec
ti
v
e
sp

o
rt

in
d
iv
id
u
a
l
sp

o
rt

u
si
n
g
b
a
ll

n
ee
d
s
o
p
p
o
n
en

t

m
u
lt
ip
le

d
is
ci
p
li
n
es

p
o
in
ts

ti
m
e

B
L
�� S
M

C

B
L
� m S
M

C

B
L
m

�
S
M

C

B
L
m

m
S
M

C

B
L
�� J

B
L
� m J

B
L
m

�
J

B
L
m

m
J

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0.33 0.33 0 0 0.08 0.08
0 0 0 0 0 0 0 0 1 0 0 0 0.11 0.09 0 0 0.05 0.04
0 0 0 0 0 0 0 1 0 0 0 0 0.21 0.20 0 0 0.06 0.06
0 0 0 0 0 0 0 1 1 0 0 0 0.15 0.12 0 0 0.07 0.06
0 0 0 0 1 0 0 0 0 0 0 0 0.31 0.29 0.12 0.11 0.08 0.07
0 0 0 0 1 0 0 0 0 1 0 0 0.08 0.07 0 0 0.09 0.07
0 0 0 0 1 0 0 0 1 0 0.10 0.07 0.21 0.14 0.10 0.10 0.10 0.09
0 0 0 0 1 0 0 1 0 0 0 0 0.13 0.09 0.05 0.01 0.12 0.11
0 0 0 0 1 0 0 1 0 1 0 0 0.07 0.07 0 0 0.08 0.08
0 0 0 1 0 0 0 0 0 0 0 0 0.22 0.20 0 0 0.07 0.06
0 0 0 1 0 0 0 0 1 0 0 0 0.10 0.06 0 0 0.08 0.05
0 0 0 1 0 0 1 0 1 0 0.11 0.10 0.16 0.14 0.16 0.15 0.13 0.11
0 0 0 1 0 1 1 0 1 0 0.07 0.07 0.08 0.08 0.11 0.11 0.11 0.11
0 0 1 0 0 0 0 0 0 0 0 0 0.03 0.03 0 0 0.04 0.04
0 0 1 0 0 0 0 0 0 1 0 0 0.15 0.06 0 0 0.06 0.06
0 0 1 0 0 0 0 0 1 0 0 0 0.26 0.18 0.08 0.04 0.11 0.07
0 0 1 0 0 0 0 1 0 0 0 0 0.10 0.05 0 0 0.05 0.04
0 0 1 0 1 0 0 0 0 0 0.05 0.02 0.15 0.06 0.09 0.07 0.06 0.06
0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0.22 0.12 0 0 0.10 0.06
0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0.09 0.07 0 0 0.09 0.08
0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0.14 0.14 0.13 0.13 0.11 0.10 0.03 0.03
0 1 0 0 1 0 0 0 0 1 0.18 0.13 0.36 0.27 0.29 0.23 0.38 0.31
0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 1 0 0.20 0.19 0.41 0.36 0.27 0.24 0.40 0.35
0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0.05 0.05 0.03 0.03 0.11 0.10 0.04 0.03
1 0 0 0 0 0 0 0 1 0 0.15 0.13 0.13 0.10 0.21 0.20 0.05 0.05
1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.19 0.16
1 0 0 0 1 0 0 0 0 1 0.06 0.05 0.12 0.08 0.10 0.09 0.14 0.12
1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0.07 0.05
1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

40 R. Belohlavek and M. Trnecka

Table 4. Animals and their attributes

g
iv
es

m
il
k

g
iv
es

m
ea
t

g
iv
es

fu
r

g
iv
es

eg
g
s

w
a
rm

b
lo
o
d
ed

co
ld
b
lo
o
d
ed

w
a
lk
s
o
n
2
le
g
s

w
a
lk
s
o
n
4
le
g
s

li
v
es

in
w
a
te
r

li
v
es

o
n
la
n
d

fl
ie
s

u
su
a
ll
y
h
a
s
n
a
m
e

o
m
n
iv
o
re

ca
rn
iv
o
re

h
er
b
iv
o
re

u
se
d
to

p
u
ll

German Shepherd × × × × ×
Labrador Retrieval × × × × ×

European Shorthair Cat × × × × ×
Persian Cat × × × × ×

Sheep × × × × × × ×
Ouessan Sheep × × × × × × ×
Domestic Goat × × × × × ×
Mountain Goat × × × × ×

Chicken × × × × × × ×
Czech Gold Chicken × × × × × × ×

Pig × × × × ×
Indochinese Warty Pig × × × × ×

Domestic Horse × × × × × × ×
Pony × × × × × × ×

Donkey × × × × × × × ×
Rabbit × × × × ×
Coypu × × × × × ×

Kosovo Rooster × × × × × × ×
Domestic Goose × × × × × × × × ×

Lesser White-fronted Goose × × × × × × × × ×
Wild Mallard Duck × × × × × × × ×

Domestic Duck × × × × × × × × ×
Domestic Pigeon × × × × × ×
Common Ostrich × × × × × × ×
Domestic Turkey × × × × × ×

Budgerigar × × × × × ×
Carp × × × ×
Trout × × × ×

Basic Level of Concepts in Formal Concept Analysis 41

Table 5. Basic level degrees of the concepts of Table 4

intent of concept 〈A,B〉 basic level degree of 〈A,B〉

g
iv
e
s
m
il
k

g
iv
e
s
m
e
a
t

g
iv
e
s
fu
r

g
iv
e
s
e
g
g
s

w
a
rm

b
lo
o
d
e
d

c
o
ld
b
lo
o
d
e
d

w
a
lk
s
o
n

2
le
g
s

w
a
lk
s
o
n

4
le
g
s

li
v
e
s
in

w
a
te
r

li
v
e
s
o
n

la
n
d

fl
ie
s

u
su

a
ll
y
h
a
s
n
a
m
e

o
m
n
iv
o
re

c
a
rn

iv
o
re

h
e
rb

iv
o
re

u
se
d

to
p
u
ll

B
L

�� S
M

C

B
L

� m S
M

C

B
L

m
�

S
M

C

B
L

m
m

S
M

C

B
L

�� J

B
L

� m J

B
L

m
�

J

B
L

m
m

J

0 0
1 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0.03 0.03 0.05 0.05 0.06 0.06 0.07 0.07
1 1 1 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0
0 1 0.04 0.04
0 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0.02 0.02 0.14 0.13 0.07 0.07 0.08 0.07
0 1 1 1 1 0 1 0 0 1 0 0 0 0 0 0 0.01 0 0 0 0.03 0.01 0 0
0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0.05 0.03 0.09 0.05 0.07 0.04 0.13 0.08
0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0.08 0.02
0 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0.07 0.03 0 0 0.11 0.06 0 0
0 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 0.06 0.03 0.13 0.05 0.10 0.06 0.18 0.08
0 1 1 0 1 0 1 0 1 1 1 0 1 0 0 0 0.09 0.04 0.18 0.12 0.14 0.06 0.27 0.17
0 1 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0.10 0.08 0.03 0.02 0.06 0.06
0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0.02 0.01 0.05 0.05 0.03 0.03 0.08 0.07
0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0.02 0.02 0.05 0.05 0.05 0.04 0.08 0.08
0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0.04 0.02 0 0 0.07 0.05 0.08 0.02
0 1 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0.16 0.08
0 1 0 1 1 0 1 0 0 1 0 0 0 0 1 0 0.03 0.02 0 0 0.04 0.04 0 0
0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0.03 0.02 0 0 0.04 0.04 0.05 0.02
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0.07 0.02 0.16 0.05 0.10 0.04 0.10 0.06
0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0.02 0.01 0.08 0.05 0.04 0.03 0.09 0.07
0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 0 0.04 0.01 0 0 0.06 0.03 0 0
0 1 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0.04 0.02 0 0 0.05 0.04 0 0
0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0.05 0.03 0 0 0.08 0.04 0 0
0 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0.08 0.04 0.18 0.04 0.10 0.06 0.11 0.05
0 1 0 0 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0.11 0.09 0.23 0.18 0.20 0.18 0.36 0.28
0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 0 1 0 0 0 0 1 0 0.06 0.02 0.15 0.05 0.07 0.04 0.12 0.06
0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0.10 0.07 0.14 0.09 0.17 0.12 0.10 0.08
0 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0.01 0 0.13 0.09 0.03 0 0.08 0.07
0 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0.07 0.04 0.13 0.04 0.09 0.06 0.09 0.07
0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0.04 0.02 0.03 0
0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0.19 0.19 0.38 0.38 0.09 0.09 0.25 0.25
0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.09 0.06 0 0 0.04 0.03
0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0.03 0.02
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0.09 0.07
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0.02 0.02 0 0 0.04 0.03 0.09 0.07
0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0.11 0.11 0 0 0.18 0.17 0.10 0.08
0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0.01 0.01 0 0 0.02 0.02 0.05 0.05
0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 0 0 0.01 0.01 0 0
0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0.05 0.01 0 0
0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0.11 0.11 0.28 0.28 0.11 0.10 0.13 0.13
0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 0.04 0.03 0.04 0.04 0.07 0.05 0.04 0.03
0 0 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0.12 0.11 0 0 0.14 0.14 0.19 0.18
0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 0.03 0.01 0 0 0.06 0.04 0.03 0.01
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0.07 0.07 0 0 0.10 0.09 0.10 0.08
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.14 0.14 0.14 0.14 0.15 0.15 0.02 0.02

42 R. Belohlavek and M. Trnecka

human expert tends to take into account other information (not only the at-
tributes present in the dataset) to assess which concepts are the basic level
concepts. This makes it difficult to objectively assess the quality of a particular
basic level function. Rather than instructing the human expert “You must use
only the attributes and objects in the dataset to tell which concepts are basic
level concepts for our data”, which the expert is likely to inadvertently disobey
anyway, we learned that the dataset must be balanced in that it must contain the
main relevant attributes people would naturally take into account when telling
the basic level concepts. From this point of view, it is certainly desirable to do
more experiments with the sport dataset and its variants, such as the one that
would distinguish attribute “points” as to whether points are assigned by jury
or whether this means that points are scored such as in Ice Hockey, which indeed
impacts the basic level.

4.2 Experiment 2

The dataset in Table 4 contains selected animals and their attributes. Table 5
contains the concepts of this dataset and their basic level degrees. Due to lack
of space, we leave the interpretation of these results to the reader.

5 Conclusions and Future Research

We proposed a method that utilizes a psychological phenomenon of basic level
of concepts to select possibly important, natural concepts from a concept lattice
and presented first results and experience obtained from experiments. The future
research will focus on the following issues:

– Psychological experiments. First, to help assess the quality of the functions
for the basic level degrees, aiming to benefit the process of selecting impor-
tant concepts from the concept lattice. Second, to help better understand
the phenomenon of the basic level, thus aiming to benefit the psychology
of concepts itself. Our experimental work opens several questions for psy-
chological research such as whether the basic level may contain comparable
concepts or whether and in what sense the collection of basic level concepts
needs to be exhaustive.

– Comparison with other techniques to select important formal concepts, in
particular with the stability index [14,15]. A more detailed study of the
the mutual relationship of the various basic level degree functions, utilizing
statistical analyses.

– Utilizing further results of the studies of the basic level in the psychology
of concepts, in particular utilizing those from which quantitative criteria for
the basic level can be obtained[19, p. 213].

– Comparing the idea of basic level concepts with the heuristics known from
cluster analysis [9].

– A theoretical study of the issues pertaining to basic level, involving existing
work on similarity in concept lattices such as [17].

– Design of efficient algorithms to compute basic level concepts.

Basic Level of Concepts in Formal Concept Analysis 43

Acknowledgment. Supported by Grant No. P103/10/1056 of the Czech Sci-
ence Foundation.

References

1. Belohlavek, R., Klir, G.J. (eds.): Concepts and Fuzzy Logic. MIT Press, Cambridge
(2011)

2. Bělohlávek, R., Sklenář, V.: Formal Concept Analysis Constrained by Attribute-
Dependency Formulas. In: Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS
(LNAI), vol. 3403, pp. 176–191. Springer, Heidelberg (2005)

3. Bělohlávek, R., Vychodil, V.: Formal Concept Analysis with Constraints by Closure
Operators. In: Schärfe, H., Hitzler, P., hrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI),
vol. 4068, pp. 131–143. Springer, Heidelberg (2006)

4. Belohlavek, R., Vychodil, V.: Formal concept analysis with background knowledge:
attribute priorities. IEEE Trans. Systems, Man, and Cybernetics, Part C 39(4),
399–409 (2009)

5. Brown, R.: How shall a thing be called? Psychological Review 65, 14–21 (1958)
6. Carpineto, C., Romano, G.: Concept Data Analysis. Theory and Applications.

J. Wiley (2004)
7. Cellier, P., Ferré, S., Ridoux, O., Ducassé, M.: A parameterized algorithm to ex-

plore formal contexts with a taxonomy. Int. J. Found. Comput. Sci. 2, 319–343
(2008)

8. Dias, S.M., Vieira, N.J.: Reducing the size of concept lattices: The JBOS Approach.
In: Proc. CLA 2010. CEURWS, vol. 672, pp. 80–91 (2010) ISBN 978–84–614–4027–6

9. Everitt, B.S., Landau, S., Leese, M.: Cluster Analysis, 4th edn. Arnold, London
(2001)

10. Fisher, S.C.: The process of generalizing abstraction; and its product, the general
concept. Psychological Monographs XXI(2.90), 1–209 (1916)

11. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin (1999)

12. Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes
et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579
(1901)

13. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Dordrecht, Kluwer (2000)
14. Klimushkin, M., Obiedkov, S., Roth, C.: Approaches to the Selection of Relevant

Concepts in the Case of Noisy Data. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA
2010. LNCS, vol. 5986, pp. 255–266. Springer, Heidelberg (2010)

15. Kuznetsov, S.O.: On stability of a formal concept. Annals of Mathematics and
Artificial Intelligence 49, 101–115 (2007)

16. Kwuida, L., Missaoui, R., Ben Amor, B., Boumedjout, L., Vaillancourt, J.: Re-
strictions on concept lattices for pattern management. In: Proc. CLA 2010. CEUR
WS, Vol. 672, pp. 235–246 (2010) ISBN 978–84–614–4027–6

17. Lengnink, K.: Formalisierungen von Ähnlichkeit aus Sicht der Formalen Begriffs-
analyse. PhD Thesis, TH Darmstadt, Shaker Verlag, Aachen (1996)

18. Machery, E.: 100 years of psychology of concepts: the theoretical notion of concept
and its operationalization. Stud. Hist. Phil. Biol. & Biomed. Sci. 38, 63–84 (2007)

44 R. Belohlavek and M. Trnecka

19. Murphy, G.L.: The Big Book of Concepts. MIT Press, Cambridge (2002)
20. Rosch, E.: Principles of categorization. In: Rosch, E., Lloyd, B.B. (eds.) Cognition

and Categorization, pp. 27–48. Erlbaum, Hillsdale (1978)
21. Rosch, E., et al.: Basic objects in natural categories. Cognitive Psychology 8, 382–

439 (1976)
22. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison Wes-

ley (2006)
23. Xie, Z.: Φ-generalized concept lattice models: From power concepts to formal con-

cepts, and then to robust concepts. In: CLA 2006, pp. 219–230 (2006)

A Peep through the Looking Glass:

Articulation Points in Lattices

Anne Berry and Alain Sigayret

LIMOS UMR CNRS 6158�

Ensemble Scientifique des Cézeaux, Université Blaise Pascal,
63 173 Aubière, France

{berry,sigayret}@isima.fr

Abstract. We define as an ’articulation point’ in a lattice an element
which is comparable to all the other elements, but is not extremum.

We investigate a property which holds for both the lattice of a binary
relation and for the lattice of the complement relation (which we call the
mirror relation): one has an articulation point if and only if the other
has one also.

We give efficient algorithms to generate all the articulation points.
We discuss artificially creating such an articulation point by adding or
removing crosses of the relation, and also creating a chain lattice.

We establish the strong relationships with bipartite and co-bipartite
graphs; in particular, we derive efficient algorithms to compute a minimal
triangulation and a maximal sub-triangulation of a co-bipartite graph,
as well as to find the clique minimal separators and the corresponding
decomposition.

Keywords: articulation point, chain lattice, complement relation, co-
bipartite graph, minimal triangulation, clique separator decomposition.

1 Introduction

In previous papers we showed and exploited the strong relationship between
the lattice built on the maximal bicliques of a bipartite graph and the minimal
separators of the co-bipartite graph, which is the complement of the bipartite
graph [4].

A question which we have often been asked is: “But what can you say about
the lattice of the bipartite complement ?”

In this paper, we begin our investigation of this question with a simple prop-
erty which is common to both lattices: a lattice has an articulation point if and
only if the lattice of the bipartite complement has an articulation point. What
we call an ’articulation point’ in a lattice is an element which is comparable to all
the other elements, but is not an extremum. The removal of such an ’articulation
point’ disconnects the lattice diagram.

� Research partially supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 45–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

46 A. Berry and A. Sigayret

In order to avoid sentences such as “The co-bipartite graph which is the
complement of the bipartite complement ...”, we have chosen to refer to the
complement relation as the ’mirror relation’. We will investigate properties of
the relations, lattices and graphs seen with this ’looking glass’.

We characterize in terms of binary relation the cases where the lattice has
an articulation point. We give an efficient algorithm to find all the articulation
points of a lattice. We also examine the case where there is no articulation
point: we can create one by either adding or removing an inclusion-minimal set
of elements of the relation.

We then go on to discuss the case where all the elements of the lattice are
articulation points. Such a lattice is a chain, as well as its mirror lattice. We give
a linear-time algorithm to recognize a chain lattice, and then use it to embed a
lattice into a chain by adding or removing an inclusion-minimal set of crosses of
the relation.

In all cases, we explore the relationship with the bipartite and co-bipartite
graphs involved. Our approach uses lattice theory to propose an alternate process
for several graph algorithms. We also derive a new and more efficient algorithm
to compute a minimal triangulation and a maximal subtriangulation of a co-
bipartite graph.

The paper is organized as follows: Section 2 gives preliminary notations and
results. Sections 3 deals with lattices endowed with an articulation point. Section
4 discusses the algorithmic issues of finding these articulation points efficiently.
Section 5 investigates lattices which are chains. Section 5.3 addresses the issues
related to artificially creating a lattice which is a chain; in particular we improve
the triangulation of a co-bipartite graph. We conclude in Section 6.

2 Preliminaries

As our results are pertaining to both lattices and graphs, we give the necessary
notions for both fields.

2.1 Relations, Concepts and Lattices

Given a finite set O of objects (which we will denote by numbers in our examples)
and a finite set A of attributes, (which we will denote by lowercase letters), we
will consider a binary relation R as a subset of the Cartesian product O ×A.
We will refer to elements of R as crosses. For x ∈ A, we will denote R(x) =
{y ∈ A | (x, y) ∈ R}, and for y ∈ O,R(y) = {x ∈ O | (x, y) ∈ R}. For X ⊆ O
and Y ⊆ A, subrelation R(X,Y) denotes the restriction of R to X and Y :
(x, y) ∈ R(X,Y) iff (x, y) ∈ R and x ∈ X and y ∈ Y . The mirror relation of
R is the relation R ⊆ O ×A such that (x, y) ∈ R iff (x, y) �∈ R.

The triple (O,A,R) is called a context [12]; a concept of this context is a
maximal sub-product X × Y ⊂ R, denoted (X,Y): ∀x ∈ X, ∀y ∈ Y, (x, y) ∈ R,
and ∀x ∈ O − X ∃y′ ∈ Y | (x, y′) �∈ R, and ∀y ∈ A − Y ∃x′ ∈ X | (x′, y) �∈ R.

A Peep through the Looking Glass: Articulation Points in Lattices 47

X is called the extent of concept (X,Y), and Y its intent. In our exam-
ples, we will shorten the notations using for instance (12, abcde) instead of
({1, 2}, {a, b, c, d, e}).

A lattice is a partially ordered set in which every pair {e, e′} of elements has
both a lowest upper bound and a greatest lower bound. A finite lattice has two
extremal elements: a lowest element, called the bottom element, and a greatest
element, called the top element. A lattice is graphically represented by its Hasse
diagram: transitivity and reflexivity arcs are omitted, and the orientation from
bottom to top is implicit. In the Hasse diagrams, only the objects or attributes
which appear for the first time are represented, as detailed in the example given
in Subsection 2.6. Our lattices are drawn with the program ’Concept Explorer’
[1]. A maximal chain of a lattice is a path (all the elements are comparable)
from bottom to top in the Hasse diagram.

The concepts of a context (O,A,R) are ordered by inclusion on their intents:
(X,Y) < (X ′, Y ′) iff X ⊂ X ′ iff Y ′ ⊂ Y . This defines a finite lattice called
a concept lattice (or Galois lattice [11]) denoted L(R). Two concepts (X,Y)
and (X ′, Y ′) are comparable if X ⊂ X ′ or X ′ ⊂ X . A concept (X ′, Y ′) is
a descendant of (X,Y) if X ⊂ X ′. Concept (X ′, Y ′) is said to cover concept
(X,Y) if X ⊂ X ′ and there is no concept (X ′′, Y ′′) such that X ⊂ X ′′ ⊂ X ′.

For any concept (X,Y), the descendants of (X,Y) form a sub-lattice, which
is isomorphic to the lattice formed on Bordat’s subrelation [7] R(O−X,Y): any
concept (W,Z) of this relation corresponds to concept (W +X,Z) of the original
relation.

The reader is referred to [12] and [11] for details on lattices and ordered sets.

2.2 Graphs

An undirected finite graph is denoted G = (V,E), where V is the vertex set,
|V | = n, and E ⊂ V 2 is the edge set, |E| = m. The neighborhood NG(x)
of vertex x in graph G is the set of vertices y �= x such that xy is an edge of
E (we then say that x and y see each other). The neighborhood NG(X) of a
set X of vertices is N(X) = (

⋃
x∈X N(x)) − X . G(X) denotes the subgraph

induced by X in G, i.e. the subgraph of G with vertex set X and edges set
{xy ∈ E |x, y ∈ X}.

A clique is a set X of vertices with all possible edges (i.e. ∀x, y ∈ X, x �=
y, xy ∈ E). A maximal clique module is a clique X such that ∀x, y ∈
X,N(x)∪{x} = N(y)∪{y}, and which is maximal for this property. A stable set
(or independent set) is a set X of vertices with no edge (i.e. ∀x, y ∈ X, xy �∈ E).
A path in a graph is a sequence (x0, ..., xk) of vertex such that, for any i ∈ [0, k[,
xixi+1 is an edge of the graph. A cycle of length k is a path (x0, ..., xk) with
x0 = xk and k > 2. A chord in a cycle is an edge between two non-consecutive
vertices of the cycle. A C4 is an induced chordless cycle on 4 vertices, a 2K2 is
the complement of a C4. A connected component of a graph is an inclusion-
maximal set of vertices in which there is a path between any pair of distinct
vertices. A graph is said to be connected if it has only one connected compo-
nent, and disconnected otherwise.

48 A. Berry and A. Sigayret

The complement of graph G = (V,E) is graph G = (V,E) with E =
{xy |x �= y and xy �∈ E}.

Minimal Separators

A separator S of a connected graph G = (V,E) is a subset of vertices the
removal of which disconnects the graph; a separator S is called a minimal
separator if there are at least two connected components X and Y of G(V −S)
such that N(X) = N(Y) = S.

A separator S is called a clique separator if it is a separator and a clique;
we will say that we saturate a non-clique separator S if we add all missing
edges necessary to make S a clique. Clique minimal separator decomposition
is a graph decomposition which repeatedly uses a clique minimal separator S to
replace the current graph G = (V,E) with subgraphs G(Ci ∪N(Ci)), where Ci

is a connected component of G(V − S); the final set of subgraphs obtained are
called ’atoms’ (see [3] for full details on this decomposition). A minimal separa-
tor S is said to cross another minimal separator S′ if S′ has at least on vertex
in each connected component of G(V − S) [17]. Saturating a minimal separator
S causes all the minimal separators which cross S to disappear. Thus a minimal
separator is a clique if and only if it crosses no other minimal separator [17], [5].

Chordal Graphs and Triangulation

A graph is said to be chordal (or triangulated) if it contains no chordless
induced cycle of length strictly greater than three. Minimal triangulation is
the process of embedding a graphG = (V,E) into a chordal graphH = (V,E+F)
by the addition of an inclusion-minimal set F of edges: H is chordal but fails
to remain chordal if any proper subset of edges F ′ ⊂ F is removed. A graph is
chordal if and only if all its minimal separators are cliques. Repeatedly saturating
a minimal separator is a process which yields a minimal triangulation [5].

A maximal subtriangulation H ′ = (V,E−F ′) is a chordal graph obtained
from graph G = (V,E) by removing an inclusion-minimal set of edges.

2.3 Bipartite Graphs

A bipartite graph G = (V1 + V2, E) is a graph whose vertex set can be bipar-
titioned into two disjoint sets V1 and V2, each inducing a stable set. A biclique
(X + Y) in a bipartite graph, with X ⊆ V1 and Y ⊆ V2, is defined as having all
possible edges: ∀x ∈ X, ∀y ∈ Y, xy ∈ E. We will say that vertex x ∈ X (resp.
y ∈ Y) is universal if x sees all the vertices of Y (resp. X).

We will call mirror (or bipartite complement) of bipartite graph G = (V1 +
V2, E) the bipartite graph mir(G) = (V1 + V2, F) such that ∀x ∈ V1, y ∈ V2,
xy ∈ F iff xy �∈ E.

Any context (O,A,R) is associated with bipartite graph bip(R) = (O+A, E),
where xy ∈ E if (x, y) ∈ R. There is a one-to-one correspondence between the
maximal bicliques of G = bip(R) and the concepts of L(R).

A Peep through the Looking Glass: Articulation Points in Lattices 49

2.4 Co-bipartite Graphs

A co-bipartite graph is a graph which is the complement of a bipartite graph.
The vertex set of a co-bipartite graph can thus be partitioned into two disjoint
sets V1 and V2, each inducing a clique. Any minimal separator S of a co-bipartite
graph defines exactly two connected components, X and Y , with X ⊂ V1 and
Y ⊂ V2 and S = N(X) = N(Y) [4].

We will call mirror of co-bipartite graph G = (V1 + V2, E) the co-bipartite
graph mir(G) = (V1 + V2, F) with the same cliques sets X and Y , and where
for x ∈ V1 and y ∈ V2, xy ∈ F iff xy �∈ E.

The reader is referred to [18] and [9] for details on graphs.

2.5 Lattices and Co-bipartite Graphs

Any context (O,A,R) is associated with a concept lattice L(R), a bipartite
graph bip(R) built on stable sets O and A, and a co-bipartite graph cobip(R)
built on cliques O and A, where xy is an external edge of cobip(R) iff xy �∈ R.

Theorem 1. [4] Let (O,A,R) be a context, let cobip(R) be the corresponding
co-bipartite graph. Then (X,Y) is a concept of R if and only if S = V − (X∪Y)
is a minimal separator of cobip(R), minimally separating X ⊂ O from Y ⊂ A.

Characterization 1. [4] Given a context (O,A,R), concepts (X,Y) and (X ′,Y ′)
are comparable elements of L(R) if and only if their respective associated min-
imal separators S = (O − X) ∪ (A − Y) and S′ = (O − X ′) ∪ (A − Y ′) are
non-crossing minimal separators of cobip(R).

2.6 Example

Figure 1 shows a relation R with its associated bipartite graph bip(R), the
corresponding co-bipartite graph cobip(R), and the associated concept lattice
L(R), as well as the mirror objects associated withR: the complement relationR
with its associated graph bip(R), the corresponding co-bipartite graph cobip(R),
and the associated concept lattice L(R).

3 Lattices with an Articulation Point

We will first characterize the relations whose lattices are endowed with an ar-
ticulation point, and then examine how this is translated in the mirror relation.

Definition 1. Let (O,A,R) be a context. A concept (X,Y) which is not the top
or bottom element is called an articulation point of L(R) if it is comparable
with all the other elements of L(R).

50 A. Berry and A. Sigayret

R a b c d

1 × × ×
2 × ×
3 ×
4 × R and its mirror relation R

R a b c d

1 ×
2 × ×
3 × × ×
4 × × ×

bip(R) and its mirror bip(R)

cobip(R) and its mirror cobip(R)

L(R) and its mirror lattice L(R)

Fig. 1. A relation R, its complement R, the associated graphs and lattices

3.1 Cases Where the Lattice Has an Articulation Point

Characterization 2. Let (X,Y) be a concept of L(R). (X,Y) is an articulation
point of L(R) if and only if in bip(R), (O−X)∪(A−Y) is a stable set containing
at least one vertex of O and at least one vertex of A.

Proof: Let G = bip(R). (X,Y) is an articulation point: by definition, (X,Y) is
comparable to all the other concepts, and by Characterization 1, S = (O−X)∪
(A− Y) is a clique in co-bipartite graph cobip(R), and therefore a stable set in
bip(R). There must be at least two concepts (W,Z) with W ⊂ X and (W ′, Z ′)
with Z ′ ⊂ Y , else (X,Y) is extremum. If there is a concept (X,Y) such that
G(V −(X+Y)) is a stable set containing at least one vertex of O and at least one
vertex of A, then there is at least one element of L(G) above (X,Y) and at least
on element below, so (X,Y) is not extremum; suppose there is a concept (X ′, Y ′)
which is not comparable with (X,Y): let x be a vertex of X − X ′, y a vertex
of Y −Y ′; xy is an edge of G(V −(X+Y)), which then fails to be a stable set. �

We are now ready to present our main theorem:

Theorem 2. A concept lattice L(R) has an articulation point if and only if its
mirror concept lattice L(R) has an articulation point.

A Peep through the Looking Glass: Articulation Points in Lattices 51

Proof: Let G = (V1 + V2, E) be a bipartite graph, let X + Y be a maximal
biclique of G such that (V1 −X) ∪ (V2 − Y) induces a stable set. The mirror of
G is a bipartite graph in which, since X �= ∅ and Y �= ∅, (V1 −X) + (V2 − Y)
is a maximal biclique; X ∪ Y induces a stable set, so Theorem 2 follows from
Characterization 2. �

Figure 2 illutrates Theorem 2 and Characterization 2.

bip(R) and bip(R)

L(R) and L(R)

Fig. 2. Bipartite graph bip(R) has a partition into maximal biclique {1, 2, 3, a, b} and
stable set {4, 5, c, d}; the corresponding lattice L(R) has an articulation point: (123, ab).
The mirror bipartite graph bip(R) = mir(bip(R)) has also a partition (maximal bi-
clique {4, 5, c, d} and stable set {1, 2, 3, a, b}); the corresponding mirror lattice L(R)
has an articulation point: (45, cd).

Let us remark that a similar class of bipartite graphs, called ’K+S’ graphs
was studied in [13], [14]. ’K+S’ graphs are the bipartite graphs which can be
partitioned into a maximal biclique and a stable set, and is thus a superclass
of the bipartite graphs whose associated lattice has an articulation point: the
reduced relation of a ’K+S’ graph may correspond to a disconnected bipartite
graph, so the corresponding lattice cannot have an articulation point. This is
the case for instance for relation R = {(1, a), (2, b), (3, a), (3, b)}.

3.2 Expressing the Mirror Articulation Point

When concept (X,Y) is an articulation point of L(R), we could expect that
(O−X,A−Y) is an articulation point of L(R). However, when an object x of X
and/or a attribute y of Y fails to see vertices of the stable set S = V−(X+Y),
this is not exactly the expression of the mirror articulation point. The following
theorem details the possible cases.

Theorem 3. Let (X,Y) be an articulation point of L(G); then

52 A. Berry and A. Sigayret

1. If all the vertices of X and all the vertices of Y see S=V−(X+Y), then
(O−X,A−Y) is an articulation point of L(R).

2. If a set X ′ of objects of X (resp. Y ′ ⊂ Y) fail to see vertices of the stable
set S=V−(X+Y) but every attribute in Y (resp. object in X) sees S, then
((O−X)+X ′ , A−Y) [resp. (O−X , (A−Y)+Y ′)] is an articulation point of
L(R).

3. If a set X ′ of objects of X and a set Y ′ of properties of Y fail to see vertices of
the stable set S = V−(X+Y), then ((O−X)+X ′ , A−Y) and ((O−X) , (A−
Y)+Y ′) are two articulation points of L(R).

Proof:
Case 1: all the vertices ofX and of Y see vertices of the stable set S=V−(X+Y).
(O−X,A−Y) is an articulation point of L(R): O−X ∪ A−Y is a stable set of
bip(R) by Characterization 2, so (O−X,A−Y) is a biclique of L(R). This bi-
clique is maximal, since in bip(R) no vertex of (X+Y) fails to see (O−X,A−Y).
Case 2: a set X ′ of objects ofX fail to see vertices of the stable set S=V−(X+Y)
but every attribute in Y sees S. (Note that all the vertices of X ′ are equivalent,
so if the relation is reduced, there is only one such object x′.) In this case,
X ′ sees all the vertices of S in mir(G), so mir(G)((O−X)+(A−Y)) cannot
be a maximal biclique; the corresponding maximal biclique will include X ′, so
((O−X)+X ′ , A−Y) is an articulation point of L(R).
Naturally, the dual situation where a set of properties fails to see S is similar.
Case 3: Using the previous case, the existence of non-empty X ′ and Y ′ insure
that ((O−X)+X ′ , A−Y) and ((O−X) , ((A−Y)+Y ′) are two distinct articu-
lation points of L(R). �

Remark 1. Conversely, there may be two consecutive articulation points of L(R)
which correspond to a single one in the mirror lattice. In this case, both are
irreducible elements of L(R).

Figure 3 gives an example of a relation corresponding to Case 3 of Theorem 3.

3.3 Impact on the Co-bipartite Graph

[4] showed that an articulation point of the lattice corresponds to a clique min-
imal separator of the co-bipartite graph. Let us remark that the converse does
not hold: when there is a set X of universal vertices in bipartite graph bip(R),
for instance X ⊂ O, then the neighborhood N(X) of X in co-bipartite graph
cobip(R) is a clique separator, separating X from A. The mirror co-bipartite has
the same clique separator.

Property 1. Let R be a relation and G=cobip(R) be its associated co-bipartite
graph. Then L(R) has an articulation point (X,Y) if and only if G has a clique
minimal separator S = (O−X)+(A−Y), minimally separating X from Y .

Corollary 1. A co-bipartite graph has a clique minimal separator if and only if
its mirror co-bipartite graph has a clique minimal separator.

A Peep through the Looking Glass: Articulation Points in Lattices 53

a) G=bip(R) b) bip(R)

c) L(R) d) L(R)

Fig. 3. a) A bipartite graph with partition into maximal biclique {1, 2, 3, a, b, c} and
stable set {4, 5, 6, d, e} where 1 and a see only the biclique. b) The mirror bipartite
graph. c), d) The corresponding lattices, where L(R) has 1 articulation point but L(R)
has 2 corresponding articulation points.

3.4 Artificially Creating an Articulation Point of the Lattice

As described in [4], given a relation R, an articulation point in lattice L(R)
can be created by choosing a concept (X,Y), and saturating the corresponding
minimal separator S = (O−X)∪(A−Y) of cobip(R). This means that we modify
relation R by removing any crosses from R(O −X,A − Y), obtaining relation
R′. This causes articulation point (X,Y) to appear in L(R′). A concept has
disappeared from L(R) if and only if it is incomparable with concept (X,Y)
in L(R). Similarly, a minimal separator S′ disappears from the set of minimal
separators of cobip(R) if and only if S′ crosses minimal separator S in cobip(R).

Note that in the mirror relation R, crosses are added to create an articulation
point of L(R′); L(R) is also reorganized, but in a less straightforward fashion.

Figure 4 illustrates what happens when a concept is forced into an articulation
point.

4 Finding the Articulation Points of a Lattice

If a concept (X,Y) is an articulation point of L(G), then (X,Y) appears on any
maximal chain of L(G). Thus we will first compute a maximal chain, and then
use it to determine efficiently which concepts are articulation points.

54 A. Berry and A. Sigayret

L(R) → L(R′)
↓

L(R) → L(R′)

Fig. 4. A lattice on relationR, the sublattice on relation R′ obtained by forcing concept
(124, ab) of L(R) into an articulation point by removing crosses of R, the corresponding
mirror lattices

4.1 Computing a Maximal Chain of the Lattice

A maximal chain of the lattice can be computed using the sequence of degrees
in a binary relation. We give an algorithm which repeatedly: finds an object x
of maximum degree, whose intent Y = R(x) will belong to a concept (X,Y)
covering the bottom element; removes A − Y ; uses the universal objects of the
obtained subrelation to define the extentX of Y ; and then removesX to compute
the next concept of the maximal chain in the new relation, which is Bordat’s
subrelation for concept (X,Y). This corresponds to the process outlined in [4] to
compute a maximal chain in O(|O +A|.|R|) time, for which we present a more
efficient algorithm Max-Chain.

Theorem 4. Algorithm Max-Chain computes a maximal chain of a lattice
L(R) in O(min(|R|, |R|)) time.

A Peep through the Looking Glass: Articulation Points in Lattices 55

ALGORITHM MAX-CHAIN
Input : A context (O,A,R)
Output: A maximal chain C of L(R)
prefix ← ∅ ; C ← ∅ ;
repeat

Choose an object x of maximum degree; X ← {x};
Y ← R(x);
remove x and A− Y from R ;
U ← set of universal vertices of R ;
X ← X + U ;
remove all vertices of U from R;
add concept (prefix+X,Y) to C ;
prefix ← prefix+X;

until R is empty ;

Proof: Let x be an object of maximum degree in R, then ∀y ∈ O, R(x) �⊂ R(y)
[4]; x, with its equivalent objects forming set X , yields the extent of concept
(X,Y) covering the bottom element, with Y = R(X) [4]. Bordat’s subrelation,
in which (X,Y) will correspond to the bottom concept, is then computed, by
removing x andA−Y and finding the universal vertices, which will be the vertices
which were in the same maximal clique module as x. The next computed element
will be an atom of the new lattice.

Computing and ordering the degrees requires O(|R|) time. If a correct data
structure is used (an adjacency list of bip(R) linked to an ordered list of the
degrees), the sequence of degrees can be updated in O(1) time for each removal
of crosses to form the new subrelation, so the overall cost for these updates costs
O(|R|) time.

All these steps can be done in R equivalently, so the overall time required is
O(min(|R|, |R|)). �

Example 1. Let us consider the lattice from Figure 5. Let us choose 1, which is
of maximum degree; R(1) = {a, b, c, d, e, f}; concept (1, abcdef) is tentatively
created. 1 and g are removed from the relation: there is no universal vertex, so
(1, abcdef) is a concept.

In the new relation, 2 is of maximum degree (5); X←2, Y←abcde; we remove
2 and f from the relation; there is no universal vertex, so the next concept on
our maximal chain will be (12, abcde).

3 is now of maximum degree; X←3, Y←abce; 3 and d are removed from the
relation; 4 is now universal, so X←34; 4 is removed from the relation; concept
(1234, abce) is created.

5 is now of maximum degree;X←5, Y←abc; 5 and e are removed from the rela-
tion; the new relation has no universal vertex, so the next concept is (12345, abc).

6 is now of maximum degree; X←6, Y←bc; 6 and a are removed and the
relation becomes empty; the last concept is (123456, bc).

We have generated maximal chain: ((1, abcdef), (12, abcde), (1234, abce),
(12345, abc), (123456, bc)).

56 A. Berry and A. Sigayret

Fig. 5. A lattice with several articulation points. Example 1 computes maximal chain
((1, abcdef), (12, abcde), (1234, abce), (12345, abc), (123456, bc)).

4.2 Computing the Articulation Points from a Maximal Chain of
the Lattice

Once we have obtained a maximal chain ((X1, Y1), (X2, Y2), . . . , (Xk, Yk)), we
want to test each concept (Xi, Yi) as to whether it is an articulation point. If it
is, then by Theorem 2, S = (O −X) ∪ (A − Y) will be empty, as S is a clique
separator of cobip(R). Thus we will need to test for emptiness R(O−X1,A−Y1),
R(O−X2,A−Y2), . . . , R(O−Xk,A−Yk). Since Yk ⊂ . . . Y2 ⊂ Y1, we need only
to test R(O−X1,A−Y1), R(O−X2, Y1−Y2), . . . , R(O−Xk, Yk−1−Yk).

AlgorithmArticulations computes the set of articulation points of a lattice.

ALGORITHM ARTICULATIONS
Input : A context (O,A,R), a maximal chain ((X1, Y1), . . . , (Xk, Yk)) of L(R).
Output: Set M of articulation points of L(R)
M ← ∅ ;
for i=1 to k do

X ← O −Xi;
if i=1 then

Y ← A− Y1;
else

Y ← (Yi−1 − Yi);
if X × Y = ∅ then

M ← M + (Xi, Yi);

In Example 1, for maximal chain: ((1, abcdef), (12, abcde), (1234, abce),
(12345, abc), (123456, bc)), we will test: R({2, 3, 4, 5, 6, 7}, {g}),R({3, 4, 5, 6, 7},
{f}), R({5, 6, 7}, {d}), R({6, 7}, {e}), R({7}, {a}). We will find (2, g) ∈ R, so
(1, abcdef) is not an articulation point, R({34567}, {f}) = ∅, so (12, abcde) is
an articulation point, (5, d) ∈ R, so (1234, abce) is not an articulation point,
R({67}, {e}) = ∅, so (12345, abc) is an articulation point, and finally (7, a) ∈ R,
so (123456, bc) is not an articulation point.

A Peep through the Looking Glass: Articulation Points in Lattices 57

4.3 Finding the Clique Minimal Separator Decomposition
of a Co-bipartite Graph

Finding the articulation points of a lattice is equivalent to finding the clique
minimal separators of the corresponding co-bipartite graph. Thus we can use
Algorithm Articulations to compute the clique minimal separators of a co-
bipartite graph efficiently, and also easily extract the ’atoms’ of the decom-
position by clique minimal separators, and the mirror ’atoms’. This requires
O(min(|R|, |R|)) time to compute, i.e. less than the number of edges of the
co-bipartite graph, since only the external edges are traversed.

Theorem 5. Let G = (O + A, E) be a co-bipartite graph on cliques O and A,
let R and bip(R) be the corresponding bipartite graph and relation on O + A
(where xy ∈ E if and only if xy �∈ R). Algorithm Articulations returns an
ordered set of articulation points of L(R), call it ((X1, Y1), . . . , (Xk, Yk)). The
clique minimal separators of G are S1 = (O−X1)∪(A−Y1), . . . , Sk = (O−Xk)∪
(A − Yk). The corresponding atoms by clique minimal separator decomposition
are: T1 = O ∪ (A− Y1), T2 = (O − Y1) ∪ (A− Y2), . . . , Tk+1 = (O − Y1) ∪A.

In Example 1, with maximal chain: ((1, abcdef), (12, abcde), (1234, abce), (12345,
abc), (123456, bc)), the articulation points are: (12, abcde) and (12345, abc). The
clique minimal separators of cobip(R) are: {3, 4, 5, 6, 7, f, g} and {6, 7, d, e, f, g}
the atoms by clique minimal separator decomposition of cobip(R) will be: O ∪
A−{a, b, c, d, e}, O−{1, 2}∪A−{a, b, c} and O−{1, 2, 3, 4, 5}∪A, so the atoms
obtained by clique minimal separator decomposition are: {1, 2, 3, 4, 5, 6, 7, f, g},
{3, 4, 5, 6, 7, d, e, f, g} and {6, 7, a, b, c, d, e, f, g}.

5 Lattices Where Every Concept Is an Articulation Point

When every concept is an articulation point, the lattice is just one maximal
chain, which we call a chain lattice. In this case, the relation is a ’Guttmann
scale’: by ordering the elements by decreasing degree, a full triangular matrix is
obtained.

5.1 Chain Lattices and the Corresponding Graphs

By Theorem 2, every articulation point of L(R) corresponds to (at least one)
articulation point of L(R), so the following holds:

Property 2. L(R) is a chain lattice if and only if L(R) is a chain lattice.

In view of the discussion from Subsection 3.2, the chain and the mirror chain do
not necessarily have the same number of elements, although one can not be more
than twice the length of the other. When L(R) is a chain lattice, in cobip(R) all
the minimal separators are clique separators, so the co-bipartite graph is chordal.

58 A. Berry and A. Sigayret

Theorem 6. A co-bipartite graph is chordal if and only if its mirror co-bipartite
graph is chordal.

Since cobip(R) is chordal, it has no C4, so bip(R) has no 2K2; such a bipartite
graph is called a ’chain graph’. Our results give an alternate proof of the result
from [18]:

Property 3. A bipartite graph G is a chain graph if and only if mir(G) is a chain
graph.

5.2 Recognizing Chain Lattices and the Corresponding Graphs

We will now see that we can test, in the same O(min{|R|, |R|}) time as Algo-
rithm Max-Chain, the three equivalent properties:

– whether L(R) is a chain lattice;
– whether bip(R) is a chain graph;
– whether cobip(R) is chordal.

Given a context (O,A,R), we can efficiently recognize whether L(R) is a chain,
using the results from Section 4: while computing a maximal chain ((X1, Y1),
. . . , (Xk, Yk)) of the lattice, add a counter which keeps track of the number of
crosses of R involved; in the end, the lattice is a chain if and only if the counter’s
value is exactly |R|. This is the same as testing whether |X1|.|Y1|+Σk

i=2 (|Xi|−
|Xi−1|) . |Yi| = |R|.

Recently, many graph recognition algorithms endeavour to add a ’certificate’
to the answer; a certificate provides the user with a structure which is easy to
verify and which enables to quickly check that the answer is indeed correct. In
the case of chain graphs, for example, a recent result gives a certifying algorithm
[15].

For chain graphs, we can provide a negative certificate in the form of an
extraneous element (x, z) ∈ R found in R(O − Xi, Yi−1 − Yi) which prevents
L(R) from being a chain. In this case, (x, z) corresponds to the lowest concept
(Xi, Yi) which is not an articulation point of L(R), with x ∈ Xi and z �∈ Yi.
In the lattice, there will be at least one concept which is not comparable with
(Xi, Yi), for instance the concept whose intent is R(x). In a similar fashion,
S = (O −Xi) ∪ (A− Yi) will be a non-clique minimal separator of cobip(R), as
edge xz is missing, certifying that cobip(R) fails to be chordal. Finally, ∀y′ ∈
(Yi−R(x)), ∀x′ ∈ (Xi−Xi−1), {x, x′, y, y′} induces a 2K2 in bip(R), a certificate
that bip(R) fails to be a chain graph.

5.3 Creating a Chain Lattice and Corresponding Graph
Embeddings

We will now examine what happens when we restrict lattice L(R) to one of
its maximal chains. To do this, we will compute a maximal chain, ((X1, Y1),
(X2, Y2), . . . , (Xk, Yk)), as discussed in Subsection 4.1. We will then remove

A Peep through the Looking Glass: Articulation Points in Lattices 59

all crosses which do not correspond to this chain, i.e. we will need to empty
R(O−X1,A−Y1),R(O−X2,A−Y2), . . . ,R(O−Xk,A−Yk), which as discussed
before is equivalent to emptyingR(O−X1,A−Y1),R(O−X2, Y1−Y2), . . . ,R(O−
Xi, Yi−1 − Yi), . . . ,R(O −Xk, Yk−1 − Yk).

As before, this can be done in O(min(|R|, |R|)) time.
In Example 1 and the lattice from Figure 5, with maximal chain ((1, abcdef),
(12, abcde), (1234, abce), (12345, abc), (123456, bc)), relation R will be restricted
to R′, which can be re-organized into a triangular matrix:

R′ b c a e d f g

1 × × × × × ×
2 × × × × ×
3 × × × ×
4 × × × ×
5 × × ×
6 × ×
7

Since all the minimal separators of cobip(R) have been saturated by restricting
R to chain R′, a minimal triangulation of cobip(R) is thereby computed, by
adding to cobip(R) any missing edge from the Cartesian product (O − X1) ×
(A−Y1), (O−X2)×(A−Y2), . . . , (O−Xk)×(A−Yk). An existing algorithm [16]
computes a minimal triangulation of a claw-free AT-free graph in linear time;
co-bipartite graphs are claw-free AT-free graphs [4]; however, the above process
can be considered as an improvement on the linear-time, since only the external
edges of the co-bipartite are counted in the complexity analysis, but not the
edges which lie inside cliques on O and A.

Since the computed triangulation of cobip(R) is minimal, we can ensure that
we have removed an inclusion-minimal set of crosses from R to obtain a chain
lattice; we also have removed an inclusion-minimal set of edges from bip(R) to
reduce it to a chain graph.

When examining what happens in the mirror relation R, we see that we have
computed in O(min(|R|, |R|) time:

– a maximal sub-triangulation of the mirror co-bipartite graph cobip(R), for
which the best known algorithm was the general one in O(nm) time [2].

– a minimal embedding of bip(R) into a chain graph.

6 Conclusion and Perspectives

In this paper, we investigate a property which is true in the relation and in the
complement relation (which we call the mirror relation). This leads us to present
linear time algorithms for both lattice and graph problems, such as computing
a maximal chain of the lattice and computing a minimal triangulation of a co-
bipartite graph.

When an articulation point is artificially created in a lattice L(R) by removing
crosses fromR, we do not know exactly what happens to the mirror lattice L(R),

60 A. Berry and A. Sigayret

which is a strangely distorted image of L(R). We conjecture that the number
of concepts decreases. The set of concepts may be contracted in a fashion which
is exploitable, yielding more information than L(R), where a set of concepts is
simply removed.

We also leave open the question of how the Galois subhierarchy is impacted
by these transformations of the relation.

References

1. Yevtushenko, S.A.: System of data analysis ”Concept Explorer”. In: Proc. 7th
Nat. Conf. on Artif. Intell. KII 2000, Ru., pp.127–134 (2000) (in Russian),
http://conexp.sourceforge.net/download.html, release 1.3. c© Yevtushenko,
S.A., et al. (2000-2006)

2. Berry, A., Heggernes, P., Villanger, Y.: A vertex incremental approach for main-
taining chordality. Discrete Mathematics 306, 318–336 (2006)

3. Berry, A., Pogorelcnik, R., Simonet, G.: An introduction to clique minimal sepa-
rator decomposition. Algorithms 3(2), 197–215 (2010)

4. Berry, A., Sigayret, A.: Representing a concept lattice by a graph. Discrete Applied
Mathematics 144(1-2), 27–42 (2004)

5. Berry, A., Bordat, J.-P., Heggernes, P., Simonet, G., Villanger, Y.: A wide-range
algorithm for minimal triangulation from an arbitrary ordering. Journal of Algo-
rithms 58(1), 33–66 (2006)

6. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society (1967)
7. Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance.

Mathématiques, Informatique et Sciences Humaines 96, 31–47 (1986)
8. Brandstädt, A., Hammer, P.L., Le, V.B., Lozin, V.V.: Bisplit graphs. Discrete

Mathematics 299(1-3), 11–32 (2005)
9. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM Mono-

graphs on Discrete Math. Appl., Philadelphia, Vol. 3, (1999)
10. Carroll, L.: Through the Looking-Glass, and What Alice Found There (1871)
11. Caspard, N., Leclerc, B., Monjardet, B.: Ensembles ordonnés finis: concepts,

résultats et usages. Mathémathiques et Applications 60 (2007)
12. Ganter, B., Wille, R.: Formal Concept Analysis. Springer (1999)
13. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Linear Time Recognition

and Optimizations for Weak-Bisplit Graphs, Bi-Cographs and Bipartite P6-Free
Graphs. International Journal of Foundations of Computer Science 14(1), 107–136
(2003)

14. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite Graphs Totally De-
composable by Canonical Decomposition. International Journal of Foundations of
Computer Science 10(4), 513–534 (1999)

15. Heggernes, P., Kratsch, D.: Linear-time certifying recognition algorithms and for-
bidden induced subgraphs. Nordic Journal of Computing 14, 87–108 (2007)

16. Meister, D.: Recognition and computation of minimal triangulations for AT-free
claw-free and co-comparability graphs. Discr. Appl. Math. 146(3), 193–218 (2005)

17. Parra, A., Scheffler, P.: How to Use the Minimal Separators of a Graph for Its
Chordal Triangulation. In: Fülöp, Z. (ed.) ICALP 1995. LNCS, vol. 944, pp. 123–
134. Springer, Heidelberg (1995)

18. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society
(2003)

http://conexp.sourceforge.net/download.html

Practical Use of Formal Concept Analysis

in Service-Oriented Computing

Stéphanie Chollet1, Vincent Lestideau2, Yoann Maurel2,
Etienne Gandrille2, Philippe Lalanda2, and Olivier Raynaud3

1 Laboratoire de Conception et d’Intégration des Systèmes
F-26902, Valence cedex 9, France

stephanie.chollet@lcis.grenoble-inp.fr
2 Laboratoire d’Informatique de Grenoble

F-38041, Grenoble cedex 9, France
{vincent.lestideau,yoann.maurel,etienne.gandrille,

philippe.lalanda}@imag.fr
3 Laboratoire d’Informatique, de Modélisation et d’Optimisation des Systèmes

F-63173, Aubière cedex, France
raynaud@isima.fr

Abstract. Pervasive applications are encountered in a number of set-
tings, including smart houses, intelligent buildings or connected plants.
Service-Oriented Computing is today the technology of choice for im-
plementing and exposing resources in such environments. The selection
of appropriate services at the right moment in order to compose mean-
ingful applications is however a real issue. In this paper, we propose a
FCA-based solution to this problem. We have integrated FCA algorithms
in our pervasive gateways and adapted them in order to allow efficient
runtime selection of heterogeneous and dynamic services. This work has
been applied to realistic use cases in the scope of a European project.

Keywords: Service-Oriented Computing, Pervasive environment, Ser-
vice classification.

1 Introduction

Service-Oriented Computing (SOC) [13] brings software qualities of major im-
portance. As with any planned reuse approach, it supports rapid, high quality
development of software applications. Using existing, already tested, software el-
ements is likely to reduce the time needed to build up an application and improve
its overall quality. The key concept of the service-oriented approach is the no-
tion of service. A service is a software entity that provides a set of functionalities
described in a service description. The service description contains information
on the service’s functional part, but also on its non-functional aspects. Based
on such specification, a service consumer can search for services that meet its
requirements, select a compliant service and invoke it [6].

Web Services are the most popular and well-known technology for implement-
ing Service-Oriented Architectures, both in the industry and in the academia.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 61–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 S. Chollet et al.

A provider of Web Services can describe their service’s functional and non-
functional characteristics in a WSDL1 file and then registers the service descrip-
tion in an UDDI2 service registry. A client, or consumer, can search the UDDI
registry for services that meet their requirements. Consumers use the SOAP3

protocol to communicate with Web Services.
However,Web Services are not the only technology that implement the Service-

Oriented approach. Web Services technology is dominant to integrate IT appli-
cations. However, in many other domains such as pervasive environments, the
Service-Oriented approach is a solution of choice. Consequently, many technolo-
gies have been implemented and adapted to these domains. For instance, UPnP4

or DPWS5 are preferred in small area networks for devices whereas OSGi6 and
iPOJO[8] are often used in centralized and embedded equipments.

Service-Oriented Computing has thus evolved to support dynamic service dis-
covery and lazy inter-service binding. Weak coupling between consumers and
providers reduces dependencies among composition units, letting each element
evolve separately. Late-binding and substitutability improve adaptability: a ser-
vice chosen or replaced at runtime, based on its current availability and prop-
erties, is likely to better fulfill the consumer expectations. Such characteristics
are essential when building pervasive applications with strong adaptability re-
quirements. A key point is the ability to select at anytime the relevant service
available in the registry to realize an application. The selection of services is a
well-known complex problem. This problem has been particularly studied in the
domain of Web Services [1,3].

However, we think that this problem can not be restricted to a unique technol-
ogy. Today, applications are composed of heterogeneous and dynamic services.
Applications frequently need to integrate UPnP-based and DPWS-based filed
devices and Web Services for remote applications. In this paper, we propose to
tackle the problem of heterogeneous and dynamic service selection in the con-
text of pervasive applications. In realistic use cases studied in the European
OSAMI7 project, one salient problem is the number of services to be considered.
We investigate a solution based on Formal Concept Analysis (FCA) [10] to se-
lect pervasive services in a reactive and efficient fashion. Our proposition, that
has been implemented and tested with the industrial partners of OSAMI, brings
significant results in terms of efficiency and adaptability.

The paper is organized as follows: in Section 2, we detail the challenges of
service selection in pervasive applications. In Section 3, some background about

1 Web Services Description Language, http://www.w3.org/TR/wsdl
2 Universal Description Discovery and Integration, http://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm

3 Simple Object Access Protocol, http://www.w3.org/TR/soap/
4 Universal Plug and Play, http://www.upnp.org
5 Device Profile for Web Services, http://specs.xmlsoap.org/ws/2006/02/devprof/
devicesprofile.pdf

6 Open Service Gateway initiative, http://www.osgi.org/download/r4v41/r4.core.pdf
7 Open Source Ambient Intelligence Commons for an Open and Sustainable Internet,
http://www.osami-commons.org/

Practical Use of Formal Concept Analysis in Service-Oriented Computing 63

FCA is provided. Section 4 outlines the general idea of our FCA-based approach,
detailed in Section 5: the service registry, the decision structure the selection al-
gorithms. In Section 7, we present the implementation and experimental results.
Before conclusion, Section 8 lists and discusses the related work.

2 Challenges of Service Selection

In Service-Oriented approach, a consumer must select the relevant service be-
fore invocation. The selection depends on the consumer requirements and service
registry. The information shared between the different actors is the service de-
scription. For instance, from the consumer perspective, a Web Service is a black
box that provides no technical details on its implementation. The only available
information in the WSDL file includes the Web Service functionalities, certain
characteristics such as non-functional properties, location and invocation in-
structions. Figure 1 recapitulates the different standards used by a set of service
technologies for service description and service registry.

Fig. 1. Variety of standards implementing SOC

Service discovery uses network protocols which allow automatic detection of
services and/or devices. There are two kinds of service discovery: active - the
consumer uses the service registry to discover the service - or passive - the service
announces its arrival/departure on the network. Consequently, service technolo-
gies supporting passive discovery use multicast or event protocols. For instance,
in pervasive environment, services are dynamic: smart devices join and leave the
network at unpredictable times; back office applications are regularly updated.
Services related to these devices are very volatile. In fact, devices connections
and disconnections can be caused by many factors as diverse as users moves, bat-
tery problems, users demands, updates [11]. Then, two primitives (notification
and withdrawal) can be added to support the dynamicity of services.

To conclude, there is a large variety of service technologies and they use
heterogeneous technologies to describe, to discover and to communicate. Note

64 S. Chollet et al.

that the service selection is complex due to this multitude of technologies and
to the dynamicity of services.

In addition, today applications are more and more composed of multiple het-
erogeneous services. For exemple, an application for acquisition chain requires
devices (UPnP and/or DPWS) to acquire data and services for the business
(Web Services) such as to analyze or to store data. We have extended the basic
SOC pattern in order to support heterogeneity (Figure 2).

A key issue in such context lies in the runtime selection of relevant services in
environments filled with devices and applications. Service selection has become
a challenge in pervasive environments with the increasing number of dynamic
devices, often providing close functionalities but with different technologies and
different descriptions.

Fig. 2. SOC adapted to the service heterogeneity

3 Theoretical Fundations: Formal Concept Analysis

Formal Concept Analysis (FCA) [10] is a theoretical and mathematical frame-
work used to classify. We propose to use the Formal Concept Analysis method to
classify available services at runtime. We very shortly define the main concepts
of FCA. The purpose of FCA is to build a partially ordered structure, called
concept lattice, from a formal context.

Definition 1. A formal context K is a set of relations between objects and
attributes. It is denoted by K = (O,A,R) where O and A are respectively sets of
Objects and Attributes, and R is a Relation between O and A.

Definition 2. A formal concept C is a pair (E, I) where E is a set of objects
called Extent, I is a set of attributes called Intent, and all the objects in E are
in relation R with all the attributes in I.

Practical Use of Formal Concept Analysis in Service-Oriented Computing 65

Thus, the Extent of a concept is the set of all objects sharing a set of common
attributes, and the Intent is the set of all attributes shared by the objects of the
Extent. Formally:

– E = {o ∈ O, ∀i ∈ I, (o, i) ∈ R},
– I = {a ∈ A, ∀e ∈ E, (e, a) ∈ R}.

Consequently, a formal concept C = (E, I) is made of the objects in E which
are exactly the set of objects sharing the attributes in I.

Let X a set of attributes. We define the function ClosureK(X) which asso-
ciates to X the concept made of the set of objects sharing X and the other
attributes shared by this set of objects. Note that the computation of a formal
concept from a set of attributes X of size n has a complexity of O(n×m) where
m is the number of objects.

The set C(K) of all concepts induced by a context can be ordered using the
following partial order relation: (E1, I1) <C (E2, I2) if E2 ⊂ E1 and I1 ⊂ I2.

Definition 3. A concept lattice is defined as the pair (C(K), ≤C). Let two
concepts (E1, I1) and (E2, I2) we say that (E2, I2) is a successor of (E1, I1) if
(E1, I1) <C (E2, I2). Given I1 a subset of A, we note by successors(I1) the set
of successors of the concept (E1, I1). The concept lattice can be represented by a
particular graph called Hasse Diagram.

Note that the computation of a concept lattice from a formal context has a
complexity of O((n+m)×m× |C(K)|) where n is the number of attributes and
m is the number of objects ([12]). Most of the time we have n << m and the
complexity becomes O(m2 × |C(K)|).

4 Global Approach

It is assumed that we have an application which is a composition of abstract
services defined at design time. During this step, a set of architectural constraints
are defined. These constraints are the expected functionnalities and/or non-
functional properties; they are considered as mandatory features. From design
time to runtime we must consider as much on these architectural constraints as
runtime environment constraints (i.e. arrival and departure of services).

It is required to select a concrete service for each abstract service of the com-
position. Current approaches only select services from architectural constraints.
In addition, these approaches realize service selection just before runtime. Con-
sequently, they do not completely handle the environment dynamicity.

Our objective is to ensure at runtime the more adapted configuration accord-
ing to the architectural constraints, the current environment and user prefer-
ences. Figure 3 illustrates our approach which is divided into three parts:

– Setting forth user requirements. The user requirements are expressed
by a request which contains the architectural constraints. These constraints
are composed of mandatory and optional features defined by the architect
at design time.

66 S. Chollet et al.

– Storage of available services in the environment. The service registry
supports the dynamicity and the heterogeneity of services. It is global and
it contains the service descriptions annotated with user properties (QoS).

– Service selection. The selection process is divided into two parts. First, a
set of services is selected and classified according to the defined user require-
ments. A decision structure is built at that time. Second, one approriate
service must be chosen from this structure. We define adapted algorithms to
search in this structure the most appropriate service according to the user
preferences.

Fig. 3. Global approach

The following section is divided into three parts in which we detail the service
registry, the computation of the decision structure and the selection algorithms.

5 Application to Services

5.1 Service Registry

The service registry is the central element of our approach. Its goal is to maintain
a global view of all the available services at runtime. It is composed of two parts:

– ROSE [4]: an integration platform monitoring the runtime environment, i.e.
it traces services availability and provides information about them;

– a context model: it stores and maintains the information recovered by ROSE.

ROSE is an OSGi-based open source middleware8 It detects all the services be-
ing in the environment. This tool is able to support active and passive service

8 http://wiki.chameleon.ow2.org/xwiki/bin/view/Main/Rose

Practical Use of Formal Concept Analysis in Service-Oriented Computing 67

discovery. Concretly, it supports multicast and event mechanisms used to ser-
vice notification and service withdrawal. These capabilities are essential because
services related to devices are very volatile.

Since ROSE detects all the services being in the environment, we have de-
fined a filter to compute an application-specific context model. The filter allows
to specify the services of interest. In fact, only the services of interest for the
application are selected. For instance, a multimedia entertainment application
requires multimedia services such as movies library, TV... Humidity sensors will
be ignored.

In our project, we have adapted the context model to the FCA formal context.
The context model can be seen as a relation between the filtered services and
the possible service features of the application domain. We can categorize the
service features into three main groups (Table 1):

– The service technologies (Web Service, UPnP, DPWS...),
– The service functionalities,
– The non-functional properties required and/or provided by the service.

Table 1. Context model as a formal context

t1, ..., ti f1, ..., fj nf1, ..., nfk
s1
...
sn

We have tested our work with security properties (authentication, confidential-
ity, integrity...), a particular non-functional property that can be expressed as
a boolean value (i.e. services are secured or not). However, all non-functional
properties are not boolean. But, in [15,9,2], authors have investigated the link
between FCA with numerical data.

5.2 Decision Structure

From the context model expressed as a formal context, we extract a set of or-
dered formal concepts, i.e. an extract of the concept lattice. Given that the
computation of a lattice has a complexity in O(m2 × |C(K)|) and that the space
complexity is in O(2n) since the number of concepts is potentially 2n, it is not
realistic to dynamically compute the entire concept lattice for each user request.
We propose a way to compute only the interesting concepts.

In the concept lattice, we can distinguish two exclusive groups of concepts, as
illustrated in Figure 4:

– concepts with no real meaning. These concepts contain in their intent a
set of properties which is not usable. For example, all the concepts with an
intent composed of only non-functional properties do not make sense. The
top and the bottom of the lattice are also meaningless. The top contains in its

68 S. Chollet et al.

intent all the attributes, i.e. all the functional and non-functional properties,
and the extent is empty because no service can provide all the properties.
Similarly, the bottom contains in its extent all the services and the intent
is empty because it is not possible to have a common property for all the
services. For example, the type of service is an exclusive property.

– concepts with sense. Contrary to the previous group, the intent of the
concepts makes sense, i.e. the intent contains coherent information. For ex-
ample, at least one functionality is in the intent.

Fig. 4. Computation of the decision structure

This classification into concepts with or without applicative meaning is the key
of our approach. According to concept semantics, we can compute only the inter-
esting concepts and not the entire lattice. The interesting concepts are a subset
of meaningful concepts extracted from the lattice. The subset is a structure
where the root element is a formal concept and the nodes are the successors of
the formal concept.

The decision structure is computed in response of a user request. In the fol-
lowing, a user request (denoted in bold) is defined by a set of mandatory features
(denoted by MF). The result of the request is set of formal concepts in which
the extent (denoted by S) contains all services sharing a set of common features,
the mandatory features and possibly a new set of found features (denoted by
FF).

Practical Use of Formal Concept Analysis in Service-Oriented Computing 69

In the following, we present two kinds of user requests based on the selec-
tion of a service for a workflow activity. First, the selection can be only based
on mandatory features. Second, the selection can be based on mandatory and
optional features.

The solution for the selection of services from a set of mandatory features is the
computation a formal concept called root concept in which the intent contains
the mandatory features: (S;MF∪FF). The sets S and FF can be empty. If the
extent S is empty, there is no service available providing the mandatory features.

The selection based on mandatory and optional features is an extension of
the previous selection. To take into account the optional features, we propose
to compute the successors of the root concept (S;MF∪FF). The computation
of the succesors is then an extract of the concept lattice that can be viewed as
the decision structure: (S;MF∪FF) ∪ successors(MF∪FF). This decision
structure is limited to the set of successors in the concept lattice.

Table 2 is an illustration of a context model. The context model is a simplifi-
cation of a real context model because we have only few service characteristics
(attributes) and eight available services. For clarification purposes, the extract of
context model only contains the functional attributes Temperature and Humidity
and only the services providing the Temperature functionality.

Table 2. Extract of the context model

W
S

U
P
n
P

D
P
W
S

T
em

p
er
at
u
re

(T
)

H
u
m
id
it
y
(H

)

A
u
th
en
ti
ca
ti
on

(A
)

C
on

fi
d
en
ti
al
it
y
(C

)

In
te
gr
it
y
(I
)

S1 X X X
S2 X X X X
S3 X X X X
S4 X X X X
S5 X X X X
S6 X X X
S7 X X
S8 X X X

For example, the administrator can select all the services providing the tem-
perature functionality. The selection result for Temperature activity is the formal
concept ({S1, S2, S3, S5, S6, S7, S8}; {Temperature}). All the services except S4

provide the Temperature functionality. The administrator can refine his request:
the classification of the Temperature services can be computed from the concept
({S1, S2, S3, S5, S6, S7, S8}; {Temperature}) previously obtained. The succes-
sors of this concept constitutes the decision structure (Figure 5).

At the bottom of the figure, we find the concept ({S1, S2, S3, S5, S6, S7, S8};
{Temperature}). Services are classified according to their characteristics. In [7],

70 S. Chollet et al.

we have extended our approach to the composition of decision structures in
response to complex user requests.

Fig. 5. Example of an extract lattice for Temperature activity

5.3 Algorithms for Selection

Depending on the expected response of the request (one or more services), it
may be necessary to choose among all possible services. For this, it is possible
to use different selection algorithms:

A selection based only on mandatory features: computation of a
formal concept (S;MF ∪ FF). Some naive but efficient algorithms with a
complexity (O(1)) will return one service among the extent S (e.g. ”first”, ran-
dom). If the selected service is not available at runtime (realistic use case in
pervasive computing), it is possible to search the extent S to choose another
available service (algorithms with a complexity (O(n)). The ability to use the
extent without recomputing the formal concept is a major advantage of our
solution.

A selection based on mandatory and optional features: computation
of a decision structure (S;MF ∪ FF) ∪ successors(MF ∪ FF). In a
decision structure, services are classified according to a set of optional features
defined by the user at specification time. Being guided by selection policies (i.e.
QoS-based, target environment description-based) when exploring the decision
structure allows fine-grained service selection. In this case, the time complexity
of the selection is linear in the number of successors of the root concept in the
concept lattice.

Practical Use of Formal Concept Analysis in Service-Oriented Computing 71

For instance, with the decision structure previously built in Figure 5, an op-
tional criterion for the user request Temperature can be the services implemented
in the UPnP technology. Then, the right side of the tree can be pruned. Ser-
vices S1, S2, S5, S6 and S7 provide the functionality Temperature with an UPnP
implementation.

In another example, let us consider that the user wants at least two Tempera-
ture services with, if possible, confidentiality and integrity properties for the data
exchange. Only service S2 provides the confidentiality (C) and integrity (I) prop-
erties and it is also implemented with UPnP technology ({S2}; {T, UPnP,C, I}).
However, thanks to the decision tree, the user can relax the constraints. Ser-
vices S1 and S5 have the same features than S2 but the confidentiality property
({S1, S2, S5}; {T, UPnP, I}).

The ability to use the decision structure at runtime (without rebuilding) is
also a major advantage of our solution.

6 Reacting to Service Availability at Runtime

In our approach, the decision structure is stored in memory in order to be re-
active to events related to services (departure and re-arrival). In addition, we
keep a pointer to the formal concept from which the service was selected. For
instance, the service S1 is a selected service extracted from the formal concept
({S1, S2, S5}; {T, UPnP, I}) (Figure 5).

At runtime several scenarios can occur. For example, in the case of service
departure, several options are possible:

– First, we can choose a replacement among the other services of the extent of
the pointed concept (subject to the service availability). In the example, we
can consider that S1, S2 and S3 are owned by a same equivalent class; they
have the same features.

– Second, if there is no available service in the extent of the pointed concept,
we can use the decision tree for backtracking at runtime. More specifically
by selecting a service among the extents in one (or more) of the predecessors
(i.e. {S1, S2, S5, S6, S7} and ({S1, S2, S3, S5, S8}). It is also possible to restart
a partial tree search by relaxing a few constraints.

In this way, we can quickly and easily (at runtime) find a replacement service
while ensuring the most appropriate configuration. In addition, our approach
can also take into account the re-arrival of a more appropriate service.

7 Implementation and Validation

In this section, we present the implementation of our approach and the experi-
mental results. This work has been validated in the European OSAMI project.

72 S. Chollet et al.

7.1 Implementation

To validate our approach, we made a Java implementation. Our implementation
has been cut into three modules (Figure 6):

– A data acquisition module;
– A processing module, containing an algorithm for the formal concept com-

putation;
– A renderer module, to display the results.

Fig. 6. Application architecture

For the needs of our experiment, two implementations have been realized. The
first one loads static data from an XML file; the second uses a random num-
ber generator to generate data. Loading data from a static XML file allowed us
to test our algorithm on a test bench; using the random number generator, we
were able to test the robustness of our algorithm for big data sets. Data gener-
ation is performed in several stages. The first one generates the communication
protocol (UPnP, DPWS), and the following ones the associated functional and
non-functional properties.

To obtain valid data using random generation, this one was made in several
stages. In every stage, attributes laws of generation are function of the the previ-
ous stages results. Then specificities associated with every technology are taken
into account.

In the processing module, to obtain short processing times and low memory
footprint with big data sets, we used bit fields, and took care of allocating only
the strictly necessary memory.

The last part which is the renderer module, is implanted using JGraph9, a
graph drawing open source software component written in Java. This graphic
feedback allowed a fast interpretation of the obtained lattices.

7.2 Experimental Results

In this section, we present the result of our experimentations. The goal of this
work is to prove the feasability of our approach, i.e. introducing FCA in the

9 http://www.jgraph.com/

Practical Use of Formal Concept Analysis in Service-Oriented Computing 73

service selection. Then, we have evaluated our work with a performance study.
Experimentations have been made on a 2.20 GHz Intel Core Duo, 4GB of mem-
ory, Windows 7, 32 bits. We have fixed to 24 the number of attributes for the
context model (3 technologies, 11 functionalities and 10 security properties).

Number of Computed Concepts. To test the feasability of our approach,
we have evaluated the number of computed concepts according to the number
of available services and the size of the request. The request contains:

– No constraint, i.e. equivalent to compute the entire lattice,
– One functional constraint, i.e. the minimal use case because the user knows

at least the expected functionality,
– One functional constraint and the technology used to implement the service.

For this experimentation, we count the number of computed concepts (Figure 7)
for these requests according to the available services in the context model.

Fig. 7. Number of computed concepts in function of the available services

We note that the computation of only interesting concepts largely decreases
the number of computed concepts. For a request based on one functionality,

74 S. Chollet et al.

the decrease is 92% in average; for the second type of request, the decrease is
96%. Consequently, we have studied the computation time for evaluating the
performance of our approach.

Computation Time. The major inconvenience of using FCA is the complexity
of algorithm to compute a lattice: O((n+m)×m×|C(K)|) where n is the number
of attributes (properties) and m is the number of objects (available services).
Even if we have decreased the number of computed concepts, we compute an
ordered set of concepts. In a pervasive environment, we must propose this set in
a ”reasonable” time, i.e. due to the dynamicity of the application, and support
a registry containing numerous services. For instance, a large building or plant
can be approximately composed of one thousand devices (services). To test the
reactivity of our approach, we have studied the computation time.

Fig. 8. Computation time as a function of the available services

In Figure 8, we have represented the computation time for two types of re-
quests. We have not represented the computation time for a request with no
constraint but it is approximately 160s for 50 available services and 2700s for
100 available services. This is clearly not realistic in a pervasive environment.
However, for the selection, the request contains at least the service functionality
and the computation time stays ”reasonable” (25s) with 200 available services
in the context. The request with one functionality constrained by a technology -
more realistic request - can be executed also in 25s but for 700 available services.

Practical Use of Formal Concept Analysis in Service-Oriented Computing 75

8 Related Work

The problem of service selection, depending on service classification and FCA,
has been studied by a few authors. Bruno et al. [5] propose an approach based
on machine-learning techniques to support service classification and annotation.
Peng et al. [14] classify Web Services in a concept lattice. Services are classified
according to their functional operations regardless of non-functional aspects.
Azmeh et al. [3] classify Web Services by their calculated QoS levels and com-
posability modes. This classification is made with a Relational Concept Analysis
approach, an extension of FCA. In these approaches, the inconvenient of using
FCA is the large size of the concept lattice even if optimizations such as min-
imizing the number of attributes are proposed. However, these approaches are
interesting in the assumption that the concept lattice is computed only once.
But in the pervasive domain, services regularly appear and disappear, which
means recalculating the lattice. Moreover, these approaches can not manage si-
multaneously different technologies (UPnP, DPWS...).

The key element of our approach is the service registry definition. We have
adapted the service registry to the FCA context model. Ait Ameur [1] proposes
to adapt the registry to a semantic registry in which semantic Web Services are
stored. The introduction of ontologies allows to define a subsumption relation-
ship between services that expresses a substituability relationship between these
services. In our approach, ontologies can be added in the filter of the service
registry in order to minimize the number of attributes in the context model.

9 Conclusion

Pervasive applications are made of heterogenous and dynamic services requiring
a runtime adaptability and context-sensitive selections. In this paper, we have
proposed an FCA-based solution for this selection problem. The integration and
adaptation of FCA in our pervasive platform allows efficient runtime selection of
heterogeneous and dynamic services. The characteristics of formal concept and
decision structure avoid reiterate each time the selection algorithm which signif-
icantly improves performance at runtime. Our work has been applied on realistic
use cases of the OSAMI European project and the results of experimentation
show that it is possible to integrate FCA-based approach in dynamic context.

In the future, we will be interested in automating the selection in the deci-
sion structure of the appropiated service. We propose to replace the user by an
autonomic manager to be more reactive to the context.

References

1. Ait-Ameur, Y.: A semantic repository for adaptive services. In: IEEE Congress on
Services, pp. 211–218. IEEE Computer Society, Los Alamitos (2009)

2. Assaghir, Z., Kaytoue, M., Meira, W., Villerd, J.: Extracting decision trees from
interval pattern concept lattices. In: Concept Lattices and their Applications (2011)

76 S. Chollet et al.

3. Azmeh, Z., Driss, M., Hamoui, F., Huchard, M., Moha, N., Tibermacine, C.: Se-
lection of composable web services driven by user requirements. In: IEEE Inter-
national Conference on Web Services, ICWS 2011, pp. 395–402. IEEE Computer
Society, Los Alamitos (2011)

4. Bardin, J., Lalanda, P., Escoffier, C.: Towards an Automatic Integration of Het-
erogeneous Services and Devices. In: Proceedings of IEEE Asia-Pacific Services
Computing Conference, pp. 171–178. IEEE Computer Society, Los Alamitos (2010)

5. Bruno, M., Canfora, G., Penta, M.D., Scognamiglio, R.: An approach to support
web service classification and annotation. In: Proceedings of the 2005 IEEE Inter-
national Conference on e-Technology, e-Commerce and e-Service (EEE 2005), pp.
138–143. IEEE Computer Society, Los Alamitos (2005)

6. Chollet, S., Lalanda, P., Bardin, J.: Service-Oriented Computing: from Web Ser-
vices to Service-Oriented Components. In: Lee, J., Ma, S-P., Liu, A. (eds.) Service
Life Cycle Tools and Technologies: Methods, Trends and Advances, pp. 1–20. IGI
Global (2011)

7. Chollet, S., Lestideau, V., Lalanda, P., Maurel, Y., Colomb, P., Raynaud, O.:
Building FCA-based Decision Trees for the Selection of Heterogeneous Services.
In: SCC 2011: Proceedings of the 2011 IEEE International Conference on Services
Computing, pp. 616–623. IEEE Computer Society, Washington, DC (2011)

8. Escoffier, C., Hall, R.S., Lalanda, P.: iPOJO: an Extensible Service-Oriented Com-
ponent Framework. In: IEEE International Conference on Services Computing
(SCC), pp. 474–481. IEEE Computer Society, Los Alamitos (2007)

9. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

10. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations.
Springer, Heidelberg (1999)

11. Lalanda, P., Bourcier, J., Bardin, J., Chollet, S.: Development of service-oriented
pervasive home applications. In: Al-Qutayri, M.A. (ed.) Smart Home Systems, pp.
1–16. I. Book (February 2010)

12. Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices. Jour-
nal of Experimental & Theoretical Artificial Intelligence 14(2-3), 217–227 (2002)

13. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and Di-
rections. In: Proceedings of the Fourth International Conference on Web Informa-
tion Systems Engineering, Los Alamitos, CA, USA, pp. 3–12 (December 2003)

14. Peng, D., Huang, S., Wang, X., Zhou, A.: Management and retrieval of web services
based on formal concept analysis. In: Proceedings of the The Fifth International
Conference on Computer and Information Technology, pp. 269–275. IEEE Com-
puter Society, Los Alamitos (2005)

15. Polaillon, G.: Interpretation and reduction of galois lattices of complex data. In:
Rizzi, A., Vichi, M., Bock, H.-H. (eds.) Advances in Data Science and Classification,
pp. 433–440. Springer (1998)

Publication Analysis of the Formal Concept

Analysis Community

Stephan Doerfel, Robert Jäschke, and Gerd Stumme

Knowledge & Data Engineering Group,
University of Kassel, Wilhelmshöher Allee 73, 34121 Kassel, Germany

http://www.kde.cs.uni-kassel.de/

Abstract. We present an analysis of the publication and citation net-
works of all previous editions of the three conferences most relevant to the
FCA community: ICFCA, ICCS and CLA. Using data mining methods
from FCA and graph analysis, we investigate patterns and communities
among authors, we identify and visualize influential publications and au-
thors, and we give a statistical summary of the conferences’ history.

Keywords: bibliometrics, citation analysis, community, data mining,
influence.

1 Introduction

On the occasion of the 10th anniversary of the International Conference on For-
mal Concept Analysis (ICFCA) we are presenting a quantitative and qualitative
analysis of all papers published at the previous editions of ICFCA. Additionally,
we included the two related conference series International Conference on Con-
ceptual Structures (ICCS) and Concept Lattices and their Applications (CLA) to
extend the range of analyzed publications relevant to Formal Concept Analysis.

Being active members of the FCA community, our intention for this analysis
was to gain more insights into the structure of our community and its relationship
to closely related disciplines. We will address questions that every researcher is
asking himself from time to time, such as

– Which are the most influential authors, papers, and conferences?
– Who is cooperating with whom on which topics?
– Who is citing whom?

We will target these and other questions on three different levels: on the confer-
ence level, the author level, and the paper level.

This paper will allow long-term participants of one or more of these conference
series to gauge their perception about their community. It may also allow new-
comers a faster access to the community by being pointed to the must-read pa-
pers and to the different schools of thought that are attending these conferences.
Last but not least, we intend to spark further research about our community’s
structure. To this end, we publicly provide the dataset which is underlying this
paper’s analysis at http://www.kde.cs.uni-kassel.de/datasets/

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 77–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.kde.cs.uni-kassel.de/
http://www.kde.cs.uni-kassel.de/datasets/

78 S. Doerfel, R. Jäschke, and G. Stumme

The structure of this paper is as follows: In the next section, we discuss related
work. Section 3 describes the dataset of publications in detail. In Section 4, we
briefly introduce the various analysis methods that we used. Section 5 provides
the results of the analysis – this is the main contribution of this paper. Finally,
in Section 6, we briefly address future work.

2 Related Work

The field of research we are dealing with in this paper is bibliometrics, the science
of analyzing (scientific) literature. Subjects of analysis are, among others, the
statistical and structural properties of citation or collaboration networks and
measures of influence and impact of publications, authors, journals or confer-
ences. Given the multitude of bibliometric publications it is difficult to provide
the most relevant pointers. A good starting point are dedicated journals, e.g.,
the Scientometrics journal.

Some recent analyses with a focus on (parts of) computer science include [8]
and [1]. In the latter the authors discuss graph properties like connectivity and
degree distributions in the citation graph of a publication corpus. An analysis
of collaboration networks including the discussion of community structure and
the small-world phenomenon is given in [8]. Tilley and Eklund use FCA for a
qualitative analysis of 47 publications from software engineering in [15]. They
relate publications to software-related activities and classify them by the lines
of code of a particular programming language, applied in the publications.

Poelmans et al. combine text mining and FCA to provide a survey on the
FCA literature related to knowledge discovery [10] (140 publications) and in-
formation retrieval [11] (103 publications). Using a thesaurus of relevant terms,
the retrieved papers are classified and visualized using a concept lattice. In the
sequel the focus of both papers is a detailed survey of some of the publications
under study. An early practical application of FCA to the management of liter-
ature is presented in [12], where meta data of publications is used to search and
visualize a given publication corpus.

In contrast to these previous papers we neither focus on a detailed analysis
of a small publication corpus, nor on a rough statistical analysis of a large scale
corpus. The medium size of our corpus (954 publications with 17121 citations)
still allows us to look at specific authors or publications. We provide the first
analysis of the three conference series, in particular the first analysis with a focus
on FCA that is applied next to such diverse methods as graph partitioning and
ranking.

3 Dataset

We first describe how we collected the publication corpus and then define the
data structures upon which our analysis is based.

Publication Analysis of the Formal Concept Analysis Community 79

Table 1. Venues of the three conference series

ICCS 1993: Quebec City (CA), 1994: College Park (US), 1995: Santa Cruz (US),
1996: Sydney (AU), 1997: Seattle (US), 1998: Montpellier (FR),
1999: Blacksburg (US), 2000: Darmstadt (DE), 2001: Stanford (US),
2002: Borovets (BG), 2003: Dresden (DE), 2004: Huntsville (US),
2005: Kassel (DE), 2006: Aalborg (DK), 2007: Sheffield (UK),
2008: Toulouse (FR), 2009: Moscow (RU), 2010: Kuching (MY),
2011: Derby (UK)

ICFCA 2003: Darmstadt (DE), 2004: Sydney (AU), 2005: Lens (FR),
2006: Dresden (DE), 2007: Clermont-Ferrand (FR), 2008: Montreal (CA),
2009: Darmstadt (DE), 2010: Agadir (MA), 2011: Nicosia (CY)

CLA 2004: Ostrava (CZ), 2005: Olomouc (CZ), 2006: Hammamet (TN),
2007: Montpellier (FR), 2008: Olomouc (CZ), 2010: Sevilla (ES),
2011: Nancy (FR)

3.1 Gathering and Preprocessing

For our analysis we gathered meta data for all papers published at any of the
past editions (up to 2011) of the three conference series ICCS, ICFCA, and
CLA, i.e., 19 editions of ICCS, 9 editions of ICFCA, and 7 editions of CLA,1

see Table 1. ICCS began as a conference on Conceptual Graphs (CG), with first
FCA papers in 1995, and a balanced contribution of CG and FCA papers a few
years later; while both ICFCA and CLA focus on FCA topics.

We collected data like paper titles, authors and their cited references from
the publisher website SpringerLink2 (ICCS and ICFCA) or extracted them from
the paper’s PDFs of CLA’s website.3 In our dataset, invited talks, regular and
short papers are treated the same; poster sessions, satellite workshops as well as
separate ‘contributions’ proceedings were not considered.

To gain knowledge about publications citing any of the conference papers, we
retrieved citations from Microsoft Academic Search.4 Note that these citations
only roughly reflect the real number of citations a publication received, since this
search engine relies on citation data that is available on the web and can only to
a certain extent remove errors and correctly match different citation variants.

Our preprocessing included the extraction of authors, titles, years, and ref-
erences from HTML and PDF files using regular expressions and manual work.
Further, we implemented several normalization and completion steps for the
titles and author names to allow matching and duplicate detection and an ex-
tensive manual error correction. Therefore, we employed the normalization steps
described in [16] with an additional removal of diacritics (e.g., ‘ä’ and ‘á’ were

1 The first edition of the CLA 2002 in Horńı Bečva was a small seminar with four
talks and hence no published proceedings exist.

2 http://www.springerlink.com/
3 http://cla.inf.upol.cz/papers.html
4 http://academic.research.microsoft.com/

http://www.springerlink.com/
http://cla.inf.upol.cz/papers.html
http://academic.research.microsoft.com/

80 S. Doerfel, R. Jäschke, and G. Stumme

replaced by ‘a’). We used different heuristics, e.g., the Levenshtein distance, to
find errors in author names and titles. All references without authors (often
encountered for cited web pages) were removed from the dataset.

Since many publications were cited as different editions or prior to their publi-
cation (‘to appear’), we normalized the publication year by dating back different
editions to the earliest mentioned date of publication. For example, the collected
papers of Charles S. Peirce [47] were cited with different publication years (1931,
1935, 1953, 1958, 1966) which we normalized to 1931.

For the first ICFCA 2003 in Darmstadt no proceedings were published. Thus,
we used the book from 2005 [33] which contains contributions from the partici-
pants of the first ICFCA on the state of the art on FCA and its applications.

Finally, we would like to point out that – since the focus of our analysis is
on the three conference series – many publications related to FCA (in particular
journal articles) have not been included in the dataset. The results presented in
this paper should be interpreted with this fact in mind.

3.2 Notations and Derived Data Structures

From the collected data we derived several structures (graphs and formal con-
texts) that are described in detail in the following. All structures that use the
references were created after removing self-citations (cited publications where
one of the authors is also an author of the citing paper).

We denote the set of all authors that published at any of the three conferences
by A and the set of all papers published at any of the conferences by P .

Authorship. The formal context Kpa = (P ,A, Ipa), with (p, a) ∈ Ipa iff a is an
author of paper p, describes who authored which publication.

The graph of co-authorship Gcoa is an undirected, weighted graph with A as
node set. Two authors are connected, iff they published together and their edge’s
weight is the number of co-authored publications at the conferences.

In Section 5.2, we cluster (partition) Gcoa and use these clusters as attributes
of formal contexts. We denote by Cn(Gcoa) the set containing the n clusters with
the highest cardinality.

Citations. The directed, weighted graph Gcit again has the authors in A as
nodes. An edge (a, b) with weight w indicates that in all considered publications,
w times, some publication of b was referenced by a.

Conferences. To analyze the distribution of all authors over the three confer-
ence series, we use Kconf = (A, {ICCS, ICFCA,CLA},N, Iconf), a many-valued
context where (a, c, n) ∈ Iconf , iff a published exactly n papers at conference c.

4 Definitions and Methodology

In this section, we give a brief overview of the different algorithms and methods
we use in our analysis. Most of the FCA notions are explained in great detail in

Publication Analysis of the Formal Concept Analysis Community 81

the textbook [5]. In Section 5.2, we discuss the extents of an iceberg lattice of a
context, i.e., an ordered subset of the concept lattice containing only concepts
with extents larger (w.r.t cardinality) than a given threshold (minimum support).
Iceberg lattices and a construction algorithm are explained in [13].

In the same section, we analyze communities of co-authorship. Intuitively,
communities are certain subsets of some larger set of entities, such that the
members of a subset are somewhat more related or similar to each other than
they are to others. There is, however, no generally accepted formal definition of
the notion of a “community”. Here, by communities we mean the classes of a
partitioning on the node set of a given graph. To create such a partitioning and
its visualization for the co-authorship graph Gcoa, we laid out the graph using
the force directed graph visualization provided by Graphviz [4]. Then the GMap
algorithm (again Graphviz) based on [9] was applied to discover communities
of collaborators. GMap optimizes its output clustering w.r.t. modularity, which
is a community quality measure that compares the number of co-author edges
within each community to the expected value for this number in an equivalent
random graph. Finally, Voronoi diagrams are used to draw the ‘borders’ between
the different ‘countries’.

In Section 5.2, we also apply different node centrality measures which indicate
the importance of nodes within the citation graph Gcit. Next to the simple
measures in-degree (number of edges pointing towards a node) and in-strength
(sum of the weights of all edges pointing towards a node), we use PageRank [2]
to rank authors of the conferences. PageRank is an eigenvector-based measure
that was originally developed to measure the importance of web pages according
to the link structure of the World Wide Web. To assign a score to each node in a
graph, a linear equation system is solved which integrates the adjacency matrix
of the graph and a probabilistic component. The main idea of the ranking is that
important nodes are pointed to by other (important) nodes. In our scenario of
citations, an author is considered important (i.e., has a high PageRank), if he
or she is cited by many other important authors.

Based on a similar idea, the (also eigenvector-based) HITS algorithm [6] de-
termines hubs and authorities in a graph. Roughly speaking, hubs are nodes that
point to many good authorities in the graph. Authorities are those nodes that
are referenced by many good hubs. In the citation graph, an author is a good
hub, if he or she references many authors that have high values as authorities
(e.g., authors of survey papers). Of interest for us, however, are the authorities,
i.e., authors that have been cited by authors with high hub values.

5 Results

Now, we present the results of our analysis along the three dimensions of con-
ferences (Section 5.1), authors (Section 5.2), and publications (Section 5.3).

82 S. Doerfel, R. Jäschke, and G. Stumme

5.1 Conferences

We start the section on conferences by some basic statistics (cf. Tables 2 and 3)
that give an overview of the conference history. The two lower blocks of Table 2

Table 2. The history of the three conference series in numbers

ICCS ICFCA CLA total

editions 19 9 7 35
publications 567 208 179 954
avg. publications per edition 29.84 23.11 25.57 27.26
authors 542 218 269 872
avg. publications per author 2.04 1.94 1.62 2.25

‘outgoing’ citations (publications that have been cited by the conferences’ papers)

citations 10131 4328 2662 17121
cited authors 5871 2655 2027 8513
cited publications 6079 2406 1668 8813
self-citations 2255 (≈22%) 965 (≈22%) 529 (≈20%) 3749 (≈21%)

‘incoming’ citations (conference papers that have been cited)

citations 3202 1322 153 4677
citing publications 1776 985 134 2522
cited publications 404 (≈71%) 128 (≈62%) 47 (≈26%) 579 (≈61%)

show statistics for two types of citations: ‘outgoing’, i.e., citations we extracted
from the conference papers, and ‘incoming’, i.e., publications that cite one of
the papers published at one of the conferences. The fraction of 20–22% self-
citations is comparable to or lower than prior results (e.g., [14] reports 38% for
mathematical publications). The lower fraction of publications at ICFCA and
CLA that have been cited (last row) can partly be explained by the young age
of these two conferences.

Table 3. The top five contributing authors of each conference. In case of a tie all
authors with the same number of publications are listed.

ICCS ICFCA CLA total

R. Wille (24) R. Wille (14) S. Ben Yahia (13) R. Wille (42)
G.W. Mineau (19) P. Eklund (11) R. Bělohlávek (11) S.O. Kuznetsov (27)
J.F. Sowa (14) P. Valtchev (10) A. Napoli (10) P. Eklund (26)
S.O. Kuznetsov (13) B. Ganter (10) E. Mephu Nguifo (8) B. Ganter (24)
M. Keeler (13) S.O. Kuznetsov (8) V. Vychodil (7) P. Valtchev (20)

S. Ferré (8) M. Huchard (7) G.W. Mineau (20)
L. Nourine (8) J. Outrata (7)

Publication Analysis of the Formal Concept Analysis Community 83

Publication Habits. To gain insights into the publication habits we consider
the many-valued context Kconf . Through conceptual scaling this context is trans-
formed into the single-valued context

Kfreq = (A, {CLA, ICCS, ICFCA, 3 × CLA, 3× ICCS, 3× ICFCA}, Ifreq)
where each author coincides with a conference if he or she published there at
least once. An author incides with one of the other three attributes if he or she
published at the corresponding conference at least three times. The threshold
of three was selected since publishing three times at the same conference series
indicates already a certain commitment to it. On the other hand, we did not set a
higher value, since especially CLA and ICFCA are young conferences (seven and
nine editions, resp.). The line diagram of the context’s concept lattice is depicted
in Figure 1, where the values below each concept count the number of authors in
the concept extent (support values). Exemplarily, the top contributing authors
from Table 3 are annotated at their object concepts. To interpret the lattice, one
has to keep in mind that ICCS runs more than twice as long as the other two
conference series, naturally resulting in higher author participation: 542 authors
vs. 218 (ICFCA) and 269 (CLA). Of the 872 authors, 127 (14.6%) published at
least at two and 30 (3.4%) of them at all three conference series.

CLA

3×CLA

ICCS

3×ICCS

ICFCA

3×ICFCA

13

20

L. Nourine
+32 other20

30

46

14

30

78
24

67

218

J. Outrata
+14 other

32
G.W. Mineau

+15 other

42

269

542

872

S. Ben Yahia
+18 other

R. Bělohlávek,
M. Huchard,
V. Vychodil
+9 otherP. Eklund, S. Ferré,

B. Ganter, S.O. Kuznetsov,
A. Napoli, P. Valtchev,

R. Wille +2 other

E. Mephu Nguifo
+12 other

M. Keeler,
J.F. Sowa
+93 other

Fig. 1. The concept lattice for the author-conference context Kfreq, annotated with
support values and the top contributing authors mentioned in Table 3

84 S. Doerfel, R. Jäschke, and G. Stumme

The Duquenne-Guigues base of implications contains – aside from the trivial
rules resulting from the choice of scales – only two rules:

1. 3×ICCS and 3×CLA =⇒ 3×ICFCA
2. 3×ICCS and ICFCA and CLA =⇒ 3×ICFCA.

The first rule states that any author who frequently published at both ICCS
and CLA also frequently published at ICFCA. Similar rules do not hold for
the other combinations of conferences. However, several association rules with
high confidence further confirm the bonds between the three conferences. The
following list contains those rules with a confidence greater or equal to 80% (each
given with its absolute support and confidence):

1. 3×CLA and ICCS =⇒ ICFCA (15/93%)
2. 3×CLA and 3×ICFCA =⇒ ICCS (13/92%)
3. 3×CLA and ICCS and ICFCA =⇒ 3×ICFCA (14/86%)
4. 3×ICCS and ICFCA =⇒ 3×ICFCA (24/83%)
5. 3×ICCS and CLA =⇒ 3×ICFCA (16/81%).

Roughly speaking, these rules express the fact that many authors who frequently
published a paper at ICCS or CLA also (frequently) published a paper at ICFCA.

Author Fluctuation. Now, we want to answer the question, How many new
authors can the conferences attract each year? Therefore, we investigate for each
year which fraction of authors of all accepted publications is ‘new’, i.e., has never
before published a paper at the corresponding conference. As can be seen in
Figure 2, for the first edition of each conference this fraction naturally is equal
to 1 and has a decreasing trend for the immediately following years. On the
contrary, the fraction of authors that appeared at a conference for the ‘last’ time
(negative bars) naturally increases to -1 for last year’s conferences. Therefore,
we omitted the first (last) two editions of each conference for the calculation of
the mean first (last) fractions. For all three conferences, on average, over half
of the authors never published before at the conference. We conclude that the
conferences are able to attract new authors each year. Similarly, on average, half
of the authors did not publish again. Thus, there is a considerable exchange
of authors and possibly ideas. For CLA, both values are considerably higher,
meaning that this young conference still has a high fluctuation rate. Another
observation is the steady increase of newcomers in the years from 2003 to 2007
for ICCS, followed by a sharp drop in 2008. This is also reflected by the absolute
counts (not shown here) that drop from 58 ‘newcomers’ in 2007 to only 15 in 2008
and the similar behaviour for those years with the ‘last’ authors. One explanation
is given by the absolute numbers of authors for these years: 90 (2007) and 47
(2008), i.e., a decrease by a factor of two. Nevertheless, this might not be the
only explanation, since in the following year 2009 only 40 authors published at
ICCS but both the fraction of ‘newcomers’ and ‘lasttimers’ increases. We could
not find a convincing explanation for this phenomenon, but plan to specifically
compare the collaboration graphs of these years.

Publication Analysis of the Formal Concept Analysis Community 85

-1

-0.5

 0

 0.5

 1

 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012

fr
ac

tio
n

of
 a

ut
ho

rs

year

(mean: first = 0.67, last = 0.59)
(mean: first = 0.50, last = 0.51)
(mean: first = 0.51, last = 0.49)ICCS

ICFCA
CLA

Fig. 2. Fluctuation of authors for each conference. The dark positive (negative) bars
depict the fraction of authors that submitted a paper to the corresponding conference
for the first (last) time in that year. The light bars in front of them depict the fraction
of authors for which that year was also the only year (up to now) they submitted
a paper (note that this measure is symmetric with respect to ‘first’ and ‘last’.) For
the calculation of the mean values for first (last), the first (last) two editions of each
conference were omitted.

5.2 Authors

We analyze collaboration and influence between the authors of the conferences.

The Structure of the Community. First, we take a look at the co-authorship
structure of the conferences. The most frequent collaborators can be read off from
an iceberg lattice (frequent closed itemsets) of the publication-author-context
Kpa. Setting for instance the minimum support (minimum number of publica-
tions) to six, the following ten pairs5 constitute the only (non singleton) intents of
the iceberg lattice (given with their absolute support):6 R. Bělohlávek/V. Vy-
chodil (10), S. Ferré/O. Ridoux (9), J. Ducrou/P. Eklund (8), M.R. Hacene/
P. Valtchev (8), P. Øhrstrøm/H. Schärfe (8), R. Godin/P. Valtchev (7), E. Mephu

5 The fact that only pairs show up indicates that there were no teams of three or more
authors who published more than six papers together.

6 We do not show the iceberg lattice, due to space restrictions, and to the fact that it
is structurally just an anti-chain.

86 S. Doerfel, R. Jäschke, and G. Stumme

Nguifo/S. Ben Yahia (7), M. Ducassé/S. Ferré (6), B. Ganter/S.O. Kuznetsov (6)
and T. Hamrouni/S. Ben Yahia (6). Using a lower minimum support threshold of
4 yields another 12 concepts with 5 publications and 8 concepts with 4 publica-
tions in the extent. Among them are three concepts with intents containing more
than just two authors: P. Cellier/M. Ducassé/S. Ferré (5), T. Hamrouni/E. Me-
phu Nguifo/S. Ben Yahia (5) and M.R. Hacene/M. Huchard/P. Valtchev (4).

The co-author graph Gcoa reveals interesting patterns of collaboration within
and between the FCA and CG (Conceptual Graphs) communities. The map in
Figure 3 shows a clustering created by GMap [3]. Connected components that
contain less than four authors or that are based on less than four papers have
been omitted for the sake of legibility. The width of the edges between two co-
authors reflects the number of publications they have written together at any of
the three conferences; similarly, the size of the author names depicts the number
of published papers.

The giant connected component (GCC) of the graph is divided into 13 clusters
(1–13) and contains 314 of the 482 authors shown on the map. The second largest
component (clusters 14 and 15) contains the second largest cluster (14) with 52
members mostly belonging to the Conceptual Graph (CG) sub-community that
is based in France. The remaining five large clusters (with more than ten mem-
bers) are not connected. Based on our knowledge of the community they can
roughly be classified to belong to the CG community (clusters 17–19) and to the
FCA community (clusters 16 and 20). Adepts of the conferences can discover
many further interesting aspects in this collaboration graph. Due to space re-
strictions we only want to outline that the CG community forms more separate
clusters than the FCA community. Besides the five mentioned separate clusters,
we consider only three of the 13 clusters of the GCC to be part of the core CG
community (clusters 4, 5, and 9). Except for cluster 10 (the Description Logics
community) all remaining clusters of the GCC belong to the FCA community.
Finally, we would like to point out the remarkable role of G. Mineau (cluster 5)
as a bridge between two CG clusters and the FCA community.

Topics of the Clusters. To get an idea about the topics that the authors
of single clusters deal with, we visualize their citations of the most often cited
publications and authors in two concept lattices (Figure 4). For legibility, we
restrict this analysis to the set C8 of the eight largest clusters (each contain-
ing more then 24 authors, while the others contain at most 14 authors), i.e., the
clusters 1–7 and 14. Many different ways of choosing attribute sets and incidence
relations are conceivable and it would be interesting to observe the influence of
these choices. In this paper, we choose the following two examples for visualiza-
tion: We construct the contexts Kcp = (C8, P20, Icp) and Kca = (C8, AC5, Ica).
Hereby, the set P20 contains the 20 most often cited publications of the corpus.
In contrast to that, the set AC5 contains for each of the eight clusters the top
five authors w.r.t to the number of papers – with at least one author from the
cluster – that reference them. A cluster c is set in relation with a publication p
(an author a), if p (a) is cited by at least three (five) papers from c. Figures 4(a)
and 4(b) show the resulting lattice diagrams.

Publication Analysis of the Formal Concept Analysis Community 87

A
.B
er
ry

A
.S
ig
ay
re
t

G
.A
re
va
lo

G
.P
er
ro
t

J.
S
pi
nr
ad

M
.H
uc
ha
rd

R
.M
cc
on
ne
ll

R
.P
og
or
el
cn
ik

E
.E
sc
he
n

N
.P
in
et

J.
Fa
lle
ri

S
.V
au
tt
ie
r

N
.D
es
no
s

O
.N
ie
rs
tr
as
z

S
.D
uc
as
se

P
.V
al
tc
he
v

N
.M
es
sa
i

Z.
A
zm

eh

P
.R
ei
tz

X
.D
ol
qu
es

A
.B
er
ta
ux

A
.B
ra
ud

F.
B
erM
.T
re
m
ol
ie
re
s

C
.G
ra
c

C
.N
ic
a

J.
M
et
zg
er

A
.B
ife
tA
.L
oz
an
o

J.
B
al
ca
za
r

A
.B
oa
ke

D
.K
ou
ri
e

M
.N
or
th
ov
er

S
.C
oe
tz
ee

S
.O
bi
ed
ko
v

F.
V
en
te
r

D
.M
er
w
e

J.
E
lo
ff

A
.B
oc

A
.N
ap
ol
i

L.
S
za
th
m
ar
y

R
.G
od
in

V
.M
ak
ar
en
ko
v

C
.R
ai
ss
i

E
.E
gh
o

F.
K
oh
le
r

J.
M
ac
ko

M
.D
ev
ig
ne
s

M
.H
ac
en
e

M
.K
ay
to
ue

M
.S
m
ai
lta
bb
on
e

N
.J
ay

R
.B
en
da
ou
d

S
.D
up
le
ss
is

S
.K
uz
ne
ts
ov

W
.M
ei
ra

Y
.T
ou
ss
ai
nt

S
.Y
ah
ia

R
.M
is
sa
ou
i

T.
H
am

ro
un
i

Y
.G
ue
he
ne
uc

V
.D
uq
ue
nn
e

R
.N
ka
m
bo
u

A
.B
or
gi
da

D
.M
cg
ui
nn
es
s

F.
B
aa
de
r

F.
D
is
te
l

R
.M
ol
ito
r

S
.T
ob
ie
s

A
.B
ou
ta
ri

C
.C
ar
pi
ne
to

R
.N
ic
ol
us
si

C
.M
ic
hi
ni

G
.R
om

an
o

A
.B
ur
ro
w

P
.E
kl
un
d

S
.P
ol
lit
t

R
.W
ill
e

R
.C
ol
e

T.
Ti
lle
y T.

W
ils
on P
.M
ar
tin

S
.D
om

in
go

T.
W
ra
y

A
.C
as
al
i

L.
La
kh
al

R
.C
ic
ch
et
ti

S
.N
ed
ja
r

A
.C
ha
n

P
.K
oc
ur
a

A
.C
oo
pe
r

A
.D
el
te
il

C
.F
ar
on

R
.D
ie
ng

F.
G
an
do
n

J.
B
ag
et

M
.L
ec
le
re

M
.M
ug
ni
er

O
.C
or
by

R
.T
ho
m
op
ou
lo
s

J.
G
an
as
ci
a

P
.C
ou
pe
y

S
.H
ug

A
.F
is
h

F.
D
au

J.
D
uc
ro
u

J.
H
er
et
h

J.
K
lin
ge
r

M
.K
ne
ch
te
l

A
.F
or
et

S
.F
er
re

T.
C
ha
rn
oi
s

A
.G
el
y

L.
N
ou
ri
ne

R
.M
ed
in
a

Y
.R
en
au
d

O
.R
ay
na
ud

P
.C
ol
om

b

A
.G
ib
oi
n

A
.G
ut
ie
rr
ez

M
.C
ro
ito
ru

O
.H
ae
m
m
er
le

M
.C
he
in

J.
Fo
rt
in

N
.M
or
ea
u

P
.L
ew

is

S
.D
as
hm

ap
at
ra

A
.H
am

do
un
i A
.S
er
ia
i

A
.H
as
na
h

A
.J
ao
ua

B
.S
al
em

J.
A
lja
am M
.S
ai
di

N
.R
as
hi
d

S
.S
ha
re
ef

S
.Z
ag
hl
an

I.N
af
kh
a

S
.E
llo
um

i

A
.H
ot
ho

C
.S
ch
m
itz

G
.S
tu
m
m
e

J.
Ta
ne

P
.C
im
ia
no

R
.J
as
ch
ke

U
.W
ill
e

P
.H
itz
le
r

A
.Ir
la
nd
e

A
.K
ab
ba
j

B
.M
ou
lin

C
.F
ra
ss
on

D
.N
ad
ea
u

J.
D
ja
m
en

J.
G
an
ce
f

K
.B
ou
zo
ub
a

K
.H
ac
hi
m
i

M
.J
an
ta
po
lc
zy
ns
ki

M
.K
al
te
nb
ac
h

M
.N
as
ri

N
.O
ur
da
ni

O
.R
ou
le
au

G
.M
in
ea
u

H
.H
ad
da
d

H
.Ir
an
do
us
t

M
.G
ou
ia
a

S
.D
el
is
le

S
.D
um

asS
.N
ic
ol
as

A
.K
ep
rt

V
.S
na
se
l

A
.K
ha
rr
az

H
.M
ili

A
.M
ai

T.
C
aoV
.W
uw

on
gs
e

T.
Q
ua
n

A
.M
aj
um

da
r

J.
S
ow

a

J.
S
te
w
ar
t

M
.K
ee
le
r

L.
S
ea
rl
e

W
.T
ep
fe
nh
ar
t

A
.M
oo
r

G
.R
ic
hm

on
d

P
.L
ee
nh
ee
r

R
.M
ee
rs
m
an

W
.H
eu
ve
l

H
.W
in
g

M
.A
ou
na
lla
h

M
.M
or
ne
au

O
.G
er
be

R
.C
ol
om

b
R
.K
el
le
r

A
.M
ou
ak
he
r

W
.B
el
le
gh
a

Y
.S
lim

an
i

R
.B
el
oh
la
ve
k

N
.M
oh
a

Z.
A
ss
ag
hi
r

S
.V
ia
en
e

V
.P
an
kr
at
ie
va

A
.N
en
ko
va

G
.A
ng
el
ov
a

S
.B
oy
tc
he
va

I.N
ik
ol
ov
a

K
.B
on
tc
he
va

K
.T
ou
ta
no
va

O
.K
al
ay
dj
ie
v

P
.D
ob
re
v

S
.D
am

ya
no
va

A
.R
as
m
us
se
n

J.
N
ils
so
n

T.
B
ra
un
er

A
.R
ev
en
ko

A
.S
tr
up
ch
an
sk
a

M
.Y
an
ko
va

A
.T
ep
av
ce
vi
c

B
.S
es
el
ja

L.
K
w
ui
da

A
.T
ha
ka
r

S
.B
al
ac
ha
nd
ar

W
.C
yr
e

A
.T
ro
y

G
.Z
ha
ng

Y
.T
ia
n

M
.K
ro
tz
sc
h

B
.A
m
or

J.
V
ai
lla
nc
ou
rt

L.
B
ou
m
ed
jo
ut

B
.B
ae
ts

J.
O
ut
ra
ta

V
.V
yc
ho
di
l

S
.G
ui
lla
um

e P
.K
ra
jc
a

V
.S
kl
en
ar

B
.B
ow

en

B
.C
ar
bo
nn
ei
ll

C
.B
ok
se
nb
au
m

T.
Li
bo
ur
el

S
.L
oi
se
au

P
.B
uc
he

B
.G
ai
ne
s

D
.L
uk
os
e

R
.K
re
m
er

E
.T
su
i

H
.D
el
ug
ac
h

B
.G
al
its
ky

B
.K
ov
al
er
ch
ukG
.D
ob
ro
cs
i

J.
R
os
a

M
.S
am

ok
hi
n

P
.G
ri
go
ri
ev

B
.G
an
te
rC
.M
es
ch
ke

D
.B
or
ch
m
an
n

H
.M
uh
le

H
.R
ep
pe

S
.R
ud
ol
ph

U
.R
ys
se
l

S
.Y
ev
tu
sh
en
ko

S
.S
tr
ah
ri
ng
er

R
.W
ill
eh
en
ni
ng

S
.D
or
fle
in

S
.P
ol
la
nd
t

S
.P
re
di
ge
r

B
.G
ar
ne
r

R
.R
ab
an

B
.G
ho
sh

B
.G
ro
h

B
.H
ab
ib

C
.L
au
dy

J.
V
el
ci
n

B
.H
ar
ri
ng
to
n

P
.W
oj
tin
ne
k

S
.P
ul
m
an

B
.H
u

D
.D
up
pl
awL.
X
ia
o

B
.L
ev
ra
t

F.
G
ay
ra
l

T.
A
m
gh
ar

B
.M
ar
tin

B
.S
er
tk
ay
a

M
.H
er
m
an
n

B
.S
ig
on
ne
au

O
.R
id
ou
x

P
.C
el
lie
r

P
.A
lla
rd

B
.S
m
ith

L.
H
ar
pe
r

R
.B
ac
hm

ey
er

R
.W
ol
f

T.
H
in
ke

B
.V
or
m
br
oc
k

P
.B
ra
w
n

B
.W
at
so
n

B
.W
or
m
ut
h

C
.B
ur
gm

an
n

C
.C
he
ri
f

G
.G
as
m
i

C
.C
om

pa
ro
t

N
.H
er
na
nd
ez

C
.D
em

ko
K
.B
er
te
t

M
.V
is
an
i

N
.G
ir
ar
d

S
.G
ui
lla
s

C
.D
ja
m
eg
ni

J.
K
en
gu
e

C
.D
on
ne
r

P
.O
hr
st
ro
m

S
.U
ck
el
m
an

T.
P
lo
ug

U
.P
et
er
se
n

C
.F
ra
m
bo
ur
g

C
.H
eb
er
t

C
.H
oe
de

L.
Zh
an
g

X
.L
iu

Y
.Y
u

C
.J
os
ly
n

S
.S
ch
m
id
t

T.
K
ai
se
r

W
.B
ru
no

T.
S
ch
le
m
m
er

C
.K
lo
es
el

C
.M
el
lis
h

E
.C
om

pa
ta
ng
el
o

G
.R
itc
hi
e

N
.N
ic
ol
ov

C
.N
eb
ut

C
.N
oy
er

C
.O
rp
ha
ni
de
s

S
.A
nd
re
w
s

S
.P
ol
ov
in
a

C
.P
ra
de
l

C
.R
ot
h

M
.K
lim

us
hk
in

C
.R
ou
m
e

M
.D
aoC
.T
ib
er
m
ac
in
e

C
.U
rt
ad
o

F.
H
am

ou
i

C
.T
ir
na
uc
a

C
.W
en
de

C
.Y
ou
ss
ef

D
.B
at
tis
te
lli

D
.C
ar
te
re
t

J.
P
en
al
va

J.
V
ill
er
d

M
.C
ra
m
pe
s

S
.R
an
w
ez

D
.C
ox

D
.E
nd
re
s

P
.F
ol
di
ak

U
.P
ri
ss

D
.G
en
es
t

E
.S
al
va
t

G
.A
is
sa
ou
i L.
C
ha
uv
in

T.
R
ai
m
ba
ul
t

G
.K
er
di
le
s

S
.C
ou
lo
nd
re

D
.G
ri
ss
a

E
.N
gu
ifo

G
.T
in
do

H
.F
u

H
.F
u2

I.D
en
de
n

I.N
si
r

N
.T
so
pz
eP
.N
jiw
ou
a

D
.H
uy
nh

D
.Ig
na
to
v

D
.J
ak
ob
se
n

H
.S
ch
ar
fe

J.
A
nd
er
se
n

D
.R
ic
ha
rd
s

P
.B
us
ch

P
.C
om

pt
on

D
.R
oc
ho
w
ia
k

D
.S
ha
di
ja

R
.H
ill

D
.T
ch
ar
ak
tc
hi
ev

E
.A
im
eu
r

E
.B
ar
tl

J.
K
on
ec
ny

M
.K
ru
pk
a

P
.O
si
ck
a

E
.G
ai
lla
rd

E
.N
au
er

J.
Li
eb
er

E
.S
ig
m
un
d

J.
M
ita
s

J.
Za
cp
al

P
.B
ec
ke
r

R
.P
os
ch
el

F.
Le
hm

an
n

G
.E
lli
s

P
.C
re
as
y

S
.C
al
la
gh
an

F.
P
es
ci

G
.B
ou
ss
ai
di

J.
R
ez
gu
i

G
.D
ed
en
e

J.
P
oe
lm
an
s

P
.E
lz
in
ga G
.G
ar
ri
ga

G
.H
ig
ne
tt
e

J.
D
ib
ie
ba
rt
he
le
m
y

G
.L
iu

H
.Z
hu

J.
Lu

K
.T
u

J.
Li

J.
Zh
on
g

G
.M
al
ik

H
.C
he
n

J.
W
an
g

T.
W
an
g

H
.M
ac
hi
da

H
.P
fe
iff
er

J.
P
fe
iff
er

R
.H
ar
tle
y

H
.S
ur
ya
nt
o

I.B
ou
rn
au
d

I.B
ou
zo
ui
ta

J.
A
ub
er
t

J.
B
ai
xe
ri
es

J.
C
oo
ke

J.
Lo
ke

J.
D
ib
ie

W
.H
es
se

J.
D
vo
ra
k

J.
H
ea
to
n

J.
H
es
s

J.
M
ar
tin
ov
ic

K
.V
lc
ek

V
.H
av
el

J.
M
ed
in
a

J.
R
ui
zc
al
vi
no
M
.O
je
da
ac
ie
goO
.K
ri
dl
o

S
.K
ra
jc
i

J.
M
oh
r

J.
M
or
en
o

J.
O
gi
er

J.
S
m
id

M
.O
bi
tk
o

J.
V
ol
ke
r

K
.B
az
ha
no
v

K
.D
ee
m
te
r

K
.N
eh
m
e

L.
A
lp
ay

L.
O
ld

L.
O
th
m
an

L.
S
ch
oo
lm
an
n

M
.B
ab
in

M
.B
lu
m
en
st
ei
n

P
.D
ee
r

M
.D
ob
es

M
.R
ad
va
ns
ky

M
.D
uc
as
se

M
.H
ol
de
r

M
.M
an
za
no

M
.R
ib
ie
re

M
.S
ch
ne
id
er

N
.K
ul
ka
rn
i

N
.M
im
ou
ni

O
.B
ed
el

O
.C
og
is

O
.G
ui
na
ld
o

P
.D
er
ge
l

P
.G
aj
do
s

P
.M
or
av
ec

S
.O
w
ai
s

P
.G
eh
ri
ng

R
.K
am

at
h

R
.K
in
g

R
.T
hi
on

S
.H
ui

S
.T
ek
ay
a

1

2

3

3

4

5
6

7

8

9

1
0 1
1

1
2

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

F
ig
.
3
.
A

m
a
p
o
f
th
e
co
-a
u
th
o
r
g
ra
p
h
.
Is
o
la
te
d
‘i
sl
a
n
d
s’

w
it
h
le
ss

th
a
n
fo
u
r
p
u
b
li
ca
ti
o
n
s
o
r
le
ss

th
a
n
fo
u
r
a
u
th
o
rs

h
av

e
b
ee
n
re
m
ov

ed
.

88 S. Doerfel, R. Jäschke, and G. Stumme

Both lattices seem to reflect the two main schools of the considered confer-
ences: FCA and CG. Each cluster cites one of their cornerstone-publications ([60]
and [54]) and their creators (R. Wille and J.F. Sowa). Clearly, clusters 1, 6 and
7 belong to the FCA community and clusters 4 and 14 to the CG community,
while 2, 3 and 5 cite publications and authors from both. The philosophical
foundations of C.S. Peirce are important for clusters 2 and 4. In the FCA com-
munity, we can see the high impact of the foundations book [5] by B. Ganter
and R. Wille and of papers on implications and association rules. The topics
of the papers further suggest that clusters 2 and 4 might be more interested in
mathematical and philosophical foundations while clusters 1, 6 and 7 often cite
important algorithmic publications.

Table 4. Top ten rankings for the network analysis measures in-degree, in-strength,
PageRank and authority (HITS, cf. Section 3.2) in Gcit

in-degree in-strength PageRank authority

1 R. Wille 443 R. Wille 1877 J.F. Sowa .101 R. Wille .161
2 B. Ganter 424 B. Ganter 1322 R. Wille .068 B. Ganter .087
3 J.F. Sowa 307 J.F. Sowa 1033 B. Ganter .043 G. Stumme .042
4 G. Stumme 211 G. Stumme 570 M.-L. Mugnier .021 L. Lakhal .031
5 R. Godin 156 M.-L. Mugnier 427 M. Chein .020 J.F. Sowa .030

6 S.O. Kuznetsov 151 L. Lakhal 412 G. Ellis .017 S. Prediger .023
7 R. Missaoui 134 R. Godin 374 G. Stumme .014 M.J. Zaki .019
8 G.W. Mineau 128 M. Chein 360 O. Gerbé .014 R. Godin .019
9 L. Lakhal 127 S.O. Kuznetsov 349 S. Prediger .013 S.O. Kuznetsov .018

10 P. Eklund 124 C. Carpineto 264 G.W. Mineau .011 C. Carpineto .017

Influence. Finally, we use the author-citation graphGcit to identify key players,
i.e., authors that are the most influential or the most central in the graph.
Several centrality measures have been proposed (see, e.g., [7]). In Table 4 we
present four rankings according to the different measures described in Section 4.
One can observe that the different measures show a strong agreement. Note,
that the scores are only valid within the investigated community of the three
conferences, since we did only consider citations from papers published there.
Thus, these figures do not make a general statement about the importance of
the authors.

5.3 Publications

In this section, we take a closer look on individual publications and their cita-
tions. For each conference the first four rows of Table 5 list cited publications
and citation counts and the top most cited publications for each conference and
for the set of all sources other than the three conference series.

Publication Analysis of the Formal Concept Analysis Community 89

14

6
7

5

4

1 3 2

[22]

[43]

[21,31,45]

[18]

[49,55,61]

[25,46]

[47]

[28]

[24] [13] [56]

[54]
[36]

[5]

[60]

(a) The concept lattice B(Kcp).

6

2

4 5

3

1

14

7

O. Haemmerlé,
E. Salvat

J. Esch,
J.F. Allen

Y. Bastide, V. Duquenne,
R. Taouil, N. Pasquier,
M.J. Zaki, L. Lakhal,

G. Stumme, B. Ganter

S. Prediger,
F. Vogt

P. Hájek

C. S. Peirce

A. de Moor

P. Martin

D. Lukose

M.-L. Mugnier,
M. Chein,
G. Ellis

J.F. Sowa

G.W. Mineau

R. Wille

C. Carpineto
G. Romano

(b) The concept lattice B(Kca).

Fig. 4. The two lattices relate the eight largest clusters from Figure 3 as objects to
the most often (in conference papers) cited publications and authors as attributes. The
eight clusters are: 1 (P. Valtchev, A. Napoli, A.M.R. Hacene, . . .), 2 (R. Wille, P. Ek-
lund, F. Dau, . . .), 3 (S.O. Kuznetsov, B. Ganter, S. Obiedkov, . . .), 4 (J.F. Sowa,
H.S. Delugach, M. Keeler, . . .), 5 (G.W. Mineau, B. Moulin, A. Kabbaj, . . .),
6 (R. Bělohlávek, V. Vychodil, E. Mephu Nguifo, . . .), 7 (S. Ben Yahia, T. Hamrouni,
Y. Slimani, . . .) and 14 (J.-F. Baget, O. Haemmerlé, M.-L. Mugnier, . . .).

90 S. Doerfel, R. Jäschke, and G. Stumme

The most often cited paper of ICCS at ICCS [61] paved the way for a con-
nection of the two schools of research that are the foundation of ICCS, namely
Formal Concept Analysis and Conceptual Graphs. As a general observation, the
most often cited papers from ICCS are theory-minded, the most important pa-
pers from ICFCA equally present theory and applications of and for FCA. The
most often cited papers from other sources include publications belonging to the
foundations of the disciplines FCA [5,36,60] and CG [54].

While the first four rows of the table reveal the most important publications
of and from each community, we take a closer look at the theoretical founda-
tions of the conferences in its last row. It contains the most cited publications
only from authors that never attended any of the conferences. Naturally, this
excludes the well-known foundation papers of Ganter, Wille, Sowa, etc., but it
reveals onto which (other) theories the conferences’ main results are built. We
can see a clear agreement between CLA and ICFCA about the most important
foundational publication for both conferences, namely the book by Birkhoff [21].
Furthermore, association rule mining was an important topic at both confer-
ences. For the ICCS – as one would assume – three publications of Peirce are
the most often cited ‘external’ publications. Interestingly, the paper that laid the
foundation for the Semantic Web [20] is the third most important paper in this
category. This shows the influence of the Semantic Web community on the ICCS
community.

6 Future Work

In this paper, we have analyzed the citation and collaboration behaviour of au-
thors of the three FCA-related conferences ICCS, ICFCA, and CLA. The picture
of the FCA community could be completed by adding further publications from
journals and books. Finding relevant publications and retrieving their metadata
and citations is clearly a first step for future work.

Since we intended to give a broad overview of many different aspects of the
community, we naturally chose not to go into too much detail with only one
specific aspect of the performed analyses. Each analysis could be extended to a
comparison of different settings or methods, e.g., one might try different cluster-
ing algorithms to validate the communities found in Section 5.2. Therefore, with
respect to space and time constraints, we did only deal with some of the ques-
tions relevant for the community and for newcomers. For example, the highly
interesting structure of the FCA community that can be read off the co-author
graph presented in Section 5.2 could be investigated further. Which kind of sub-
communities exist? Which authors are bridges between different communities?
Can roles like student, supervisor, etc. be identified? We also plan to validate
our ad-hoc assignment of community labels by analyzing the titles and abstracts
of the authors’ papers. Thereby, it would be possible to explicitly assign authors
to topics and thus get a clearer picture of how the community is constituted.

Publication Analysis of the Formal Concept Analysis Community 91

T
a
b
le

5
.
T
h
e
m
o
st

o
ft
en

ci
te
d
p
a
p
er
s
o
f
a
ce
rt
a
in

co
n
fe
re
n
ce

b
y
p
a
p
er
s
o
f
a
n
o
th
er

co
n
fe
re
n
ce
.
T
h
e
fi
rs
t
li
n
e
o
f
ea
ch

ce
ll
re
fl
ec
ts

th
e

n
u
m
b
er

o
f
ci
te
d
p
a
p
er
s
a
n
d
th
e
n
u
m
b
er

o
f
ci
ta
ti
o
n
s.

T
h
e
fo
ll
ow

in
g
li
n
es

p
o
in
t
to

th
e
to
p
th
re
e
ci
ta
ti
o
n
s,

th
e
fi
rs
t
is

g
iv
en

w
it
h
ti
tl
e.

p
a
p
er
s
h
av

e
b
ee
n
ci
te
d
a
t
th
is

co
n
fe
re
n
ce

IC
C
S

IC
F
C
A

C
L
A

papersfromthisconferencewerecited

ICCS2
4
9

p
u
b
li
ca
ti
o
n
s
in

7
3
7

ci
ta
-

ti
o
n
s

2
6
×

C
o
n
ce
p
tu
a
l

gr
a
p
h
s

a
n
d

fo
rm

a
l
co
n
ce
p
t
a
n
a
ly
si
s
[6
1
]

1
9
×

[5
3
],
1
6
×

[5
0
]

6
6
p
u
b
li
ca
ti
o
n
s
in

1
9
2
ci
ta
ti
o
n
s

1
1
×

P
a
tt
er
n
st
ru
ct
u
re
s
a
n
d
th
ei
r
p
ro
je
ct
io
n
s
[3
2
]

1
1
×

C
o
n
ce
p
tu
a
l
gr
a
p
h
s
a
n
d
fo
rm

a
l
co
n
ce
p
t
a
n
a
l-

ys
is

[6
1
]

1
1
×

B
oo
le
a
n
co
n
ce
p
t
lo
gi
c
[6
2
]

3
3
p
u
b
li
ca
ti
o
n
s
in

5
1
ci
ta
ti
o
n
s

5
×

P
a
tt
er
n
st
ru
ct
u
re
s
a
n
d
th
ei
r
p
ro
je
ct
io
n
s
[3
2
]

4
×

[4
2
],
4
×

[4
4
]

ICFCA3
8
p
u
b
li
ca
ti
o
n
s
in

6
0
ci
ta
ti
o
n
s

6
×

T
h
e
T
o
sc
a
n
a
J
su
it
e
fo
r
im

-
p
le
m
en

ti
n
g

co
n
ce
p
tu
a
l

in
fo
r-

m
a
ti
o
n
sy
st
em

s
[1
9
]

5
×

[5
9
],
4
×

[2
7
],
4
×

[2
6
]

6
0
p
u
b
li
ca
ti
o
n
s
in

1
2
0
ci
ta
ti
o
n
s

6
×

T
h
e
T
o
sc
a
n
a
J

su
it
e
fo
r
im

p
le
m
en

ti
n
g
co
n
-

ce
p
tu
a
l
in
fo
rm

a
ti
o
n
sy
st
em

s
[1
9
]

6
×

F
o
rm

a
l
co
n
ce
p
t
a
n
a
ly
si
s
fo
r
kn

o
w
le
d
ge

d
is
-

co
ve
ry

a
n
d
d
a
ta

m
in
in
g:

th
e
n
ew

ch
a
ll
en

ge
s
[5
8
]

5
×

[2
7
],
5
×

[3
5
],
5
×

[4
1
],
5
×

[3
0
],
5
×

[5
7
]

6
3
p
u
b
li
ca
ti
o
n
s
in

1
0
0
ci
ta
ti
o
n
s

5
×

M
a
ch
in
e

le
a
rn

in
g

a
n
d

fo
rm

a
l
co
n
ce
p
t
a
n
a
ly
-

si
s
[4
0
]

5
×

F
o
rm

a
l
co
n
ce
p
t
a
n
a
ly
si
s
fo
r
kn

o
w
le
d
ge

d
is
co
v-

er
y
a
n
d
d
a
ta

m
in
in
g:

th
e
n
ew

ch
a
ll
en

ge
s
[5
8
]

5
×

A
n
a
ly
si
s
o
f
so
ci
a
l
co
m
m
u
n
it
ie
s
w
it
h
ic
eb
er
g
a
n
d

st
a
bi
li
ty
-b
a
se
d
co
n
ce
p
t
la
tt
ic
es

[3
7
]

CLA1
0
p
u
b
li
ca
ti
o
n
s
in

1
0
ci
ta
ti
o
n
s

(a
t
m
o
st

o
n
e
ci
ta
ti
o
n

p
er

p
a
-

p
er
)

1
1
p
u
b
li
ca
ti
o
n
s
in

1
3
ci
ta
ti
o
n
s

2
×

W
h
a
t
is

a
fu
zz
y
co
n
ce
p
t
la
tt
ic
e?

[2
3
]

2
×

C
a
m
el
is
:
O
rg
a
n
iz
in
g
a
n
d
br
o
w
si
n
g
a
pe
rs
o
n
a
l

p
h
o
to

co
ll
ec
ti
o
n

w
it
h
a
lo
gi
ca
l
in
fo
rm

a
ti
o
n

sy
s-

te
m

[2
9
]

1
9
p
u
b
li
ca
ti
o
n
s
in

3
1
ci
ta
ti
o
n
s

3
×

W
h
a
t
is

a
fu
zz
y
co
n
ce
p
t
la
tt
ic
e?

[2
3
]

3
×

T
o
w
a
rd
s
co
n
ci
se

re
p
re
se
n
ta
ti
o
n
fo
r
ta
xo
n
o
m
ie
s

o
f
ep
is
te
m
ic

co
m
m
u
n
it
ie
s
[5
2
]

3
×

T
h
e
ba
si
c
th
eo
re
m

o
n

ge
n
er
a
li
ze
d
co
n
ce
p
t
la
t-

ti
ce

[3
9
]

3
×

P
a
ra
ll
el

re
cu

rs
iv
e
a
lg
o
ri
th
m

fo
r
F
C
A

[3
8
]

other4
6
8
6
p
u
b
li
ca
ti
o
n
s
in

7
0
6
9
ci
ta
-

ti
o
n
s

2
8
4
×

C
o
n
ce
p
tu
a
l

st
ru
ct
u
re
s:

in
fo
rm

a
ti
o
n

p
ro
ce
ss
in
g

in
m
in
d
a
n
d
m
a
ch
in
e
[5
4
]

1
0
0
×

[5
],
6
5
×

[5
6
]

1
8
7
7
p
u
b
li
ca
ti
o
n
s
in

3
0
3
8
ci
ta
ti
o
n
s

1
3
9
×

F
o
rm

a
l
co
n
ce
p
t

a
n
a
ly
si
s:

m
a
th
em

a
ti
ca
l

fo
u
n
d
a
ti
o
n
s
[5
]

3
2
×

[6
0
],
2
6
×

[3
6
]

1
2
1
8
p
u
b
li
ca
ti
o
n
s
in

1
9
5
1
ci
ta
ti
o
n
s

1
2
4
×

F
o
rm

a
l
co
n
ce
p
t
a
n
a
ly
si
s:

m
a
th
em

a
ti
ca
l
fo
u
n
-

d
a
ti
o
n
s
[5
]

3
0
×

[6
0
],
2
4
×

[3
6
]

external3
6
7
4
p
u
b
li
ca
ti
o
n
s
in

4
7
0
8
ci
ta
-

ti
o
n
s

4
3
×

C
o
ll
ec
te
d
pa
pe
rs

[4
7
]

1
9
×

[5
1
],
1
5
×

[2
0
],
1
5
×

[4
8
]

1
3
0
4
p
u
b
li
ca
ti
o
n
s
in

1
7
4
1
ci
ta
ti
o
n
s

2
5
×

L
a
tt
ic
e
th
eo
ry

[2
1
]

1
4
×

[4
5
],
1
2
×

[1
7
]

8
2
5
p
u
b
li
ca
ti
o
n
s
in

1
0
4
1
ci
ta
ti
o
n
s

1
6
×

L
a
tt
ic
e
th
eo
ry

[2
1
]

1
2
×

[2
2
],
1
1
×

[1
7
]

92 S. Doerfel, R. Jäschke, and G. Stumme

A dimension we could not analyze in the scope of this paper is time. Such an
analysis would reveal developments and trends of the conferences. It could also
allow us to judge the vitality of the communities in the co-author graph.

We would like to invite interested researchers to collectively tackle the above-
mentioned challenges. The dataset is freely available,7 extensions and error
corrections are welcome and will be added to the dataset’s web page. The meta-
data of all publications referenced in this paper is available in BibSonomy at
http://www.bibsonomy.org/group/kde/citedBy:doerfel2012publication

Acknowledgement. Part of this research was funded by the DFG in the project
“Info 2.0 – Informationelle Selbstbestimmung im Web 2.0”.

References

1. An, Y., Janssen, J., Milios, E.E.: Characterizing and mining the citation graph of
the computer science literature. Knowledge and Information Systems 6(6), 664–678
(2004)

2. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.
Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

3. Gansner, E.R., Hu, Y., Kobourov, S.G.: GMap: Drawing graphs as maps. cs.CG,
arXiv:0907.2585v1 (July 2009)

4. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software Practice & Experience 30(11), 1203–1233
(2000)

5. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46,
604–632 (1999)

7. Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlo-
towski, O.: Centrality Indices. In: Brandes, U., Erlebach, T. (eds.) Network Anal-
ysis. LNCS, vol. 3418, pp. 16–61. Springer, Heidelberg (2005)

8. Newman, M.E.J.: The structure of scientific collaboration networks. Proceedings
of the National Academy of Sciences 98(2), 404–409 (2001)

9. Newman, M.E.J.: Modularity and community structure in networks. Proceedings
of the National Academy of Sciences 103(23), 8577–8582 (2006)

10. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in
Knowledge Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS
2010. LNCS, vol. 6208, pp. 139–153. Springer, Heidelberg (2010)

11. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G., Kuznetsov, S.O.: Text mining
scientific papers: a survey on FCA-based information retrieval research. In: Perner,
P. (ed.) Industrial Conference on Data Mining - Poster and Industry Proceedings,
pp. 82–96. IBaI Publishing (2011)

12. Rock, T., Wille, R.: Ein TOSCANA–Erkundungssystem zur Literatursuche. FB4-
Preprint 1901, TH Darmstadt (1997)

13. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Computing iceberg
concept lattices with titanic. Data & Knowledge Engineering 42(2), 189–222 (2002)

7 http://www.kde.cs.uni-kassel.de/datasets/

http://www.bibsonomy.org/group/kde/citedBy:doerfel2012publication
http://www.kde.cs.uni-kassel.de/datasets/

Publication Analysis of the Formal Concept Analysis Community 93

14. Thijs, B., Glänzel, W.: The influence of author self-citations on bibliometric meso-
indicators. The case of european universities. Scientometrics 66(1), 71–80 (2006)

15. Tilley, T., Eklund, P.: Citation analysis using formal concept analysis: A case
study in software engineering. In: 18th International Workshop on Database and
Expert Systems Applications (DEXA), pp. 545–550. IEEE Computer Society Press
(September 2007)

16. Voss, J., Hotho, A., Jäschke, R.: Mapping bibliographic records with bibliographic
hash keys. In: Kuhlen, R. (ed.) Information: Droge, Ware oder Commons?, Pro-
ceedings of the ISI. Hochschulverband Informationswissenschaft, Verlag Werner
Hülsbusch (2009)

References of the Analyzed Publications

17. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proceedings of the 20th International Conference on Very Large
Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc., San Francisco (1994)

18. Barbut, M., Monjardet, B.: Ordre et classification: algèbre et combinatoire. Ha-
chette, Paris (1970)

19. Becker, P., Correia, J.H.: The ToscanaJ Suite for Implementing Conceptual In-
formation Systems. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 324–348. Springer, Heidelberg (2005)

20. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Ameri-
can 284(5), 34–43 (2001)

21. Birkhoff, G.: Lattice Theory, 3rd edn. American Mathematical Society, Providence
(1967)

22. Bordat, J.P.: Calcul pratique du treillis de galois d’une correspondance. Informa-
tiques et Sciences Humaines 96, 31–47 (1986)

23. Bělohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: CLA 2005,
Proceedings of the 3rd International Workshop, Olomouc, vol. 162, pp. 34–45.
CEUR-WS.org (2005)

24. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications.
John Wiley & Sons, Chichester (2004)

25. Chein, M., Mugnier, M.-L.: Conceptual graphs: fundamental notions. Revue
d’Intelligence Artificielle 6(4), 365–406 (1992)

26. Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual Knowledge Processing
with Formal Concept Analysis and Ontologies. In: Eklund, P. (ed.) ICFCA 2004.
LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)

27. Dau, F., Klinger, J.: From Formal Concept Analysis to Contextual Logic. In: Gan-
ter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI),
vol. 3626, pp. 81–100. Springer, Heidelberg (2005)

28. Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge Uni-
versity Press, Cambridge (1990)

29. Ferré, S.: Camelis: Organizing and browsing a personal photo collection with a
logical information system. In: Proceedings of the Fifth International Conference
on Concept Lattices and Their Applications, Montpellier, vol. 331, pp. 112–123.
CEUR-WS.org (2007)

30. Freese, R.: Automated Lattice Drawing. In: Eklund, P. (ed.) ICFCA 2004. LNCS
(LNAI), vol. 2961, pp. 112–127. Springer, Heidelberg (2004)

31. Ganter, B.: Two basic algorithms in concept analysis. FB4-Preprint 831, TH Darm-
stadt (1984)

94 S. Doerfel, R. Jäschke, and G. Stumme

32. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

33. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI),
vol. 3626. Springer, Heidelberg (2005)

34. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Berlin (1999)

35. Godin, R., Valtchev, P.: Formal Concept Analysis-Based Class Hierarchy Design
in Object-Oriented Software Development. In: Ganter, B., Stumme, G., Wille, R.
(eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 304–323. Springer,
Heidelberg (2005)

36. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives
résultant d’un tableau de données binaires. Mathématiques et Sciences Hu-
maines 95, 5–18 (1986)

37. Jay, N., Kohler, F., Napoli, A.: Analysis of Social Communities with Iceberg and
Stability-Based Concept Lattices. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008.
LNCS (LNAI), vol. 4933, pp. 258–272. Springer, Heidelberg (2008)

38. Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In:
Proceedings of the Sixth International Conference on Concept Lattices and Their
Applications, Olomouc, vol. 433, pp. 71–82. CEUR-WS.org (2008)

39. Krajči, S.: The basic theorem on generalized concept lattice. In: Proceedings of the
2nd International Workshop on CLA 2004, Ostrava, pp. 25–33 (2004)

40. Kuznetsov, S.O.: Machine Learning and Formal Concept Analysis. In: Eklund, P.
(ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 287–312. Springer, Heidelberg
(2004)

41. Kuznetsov, S.O., Obiedkov, S.: Counting Pseudo-intents and #P-completeness. In:
Missaoui, R., Schmidt, J. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3874,
pp. 306–308. Springer, Heidelberg (2006)

42. Kuznetsov, S.O., Obiedkov, S., Roth, C.: Reducing the Representation Complexity
of Lattice-Based Taxonomies. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007.
LNCS (LNAI), vol. 4604, pp. 241–254. Springer, Heidelberg (2007)

43. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gen-
erating concept lattices. Journal of Experimental & Theoretical Artificial Intelli-
gence 14(2-3), 189–216 (2002)

44. Lehmann, F., Wille, R.: A Triadic Approach To Formal Concept Analysis. In: Ellis,
G., Rich, W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43.
Springer, Heidelberg (1995)

45. Maier, D.: The Theory of Relational Databases. Computer Science Press, Rockville
(1983)

46. Mugnier, M.-L., Chein, M.: Représenter des connaissances et raisonner avec des
graphes. Revue d’Intelligence Artificielle 10(1), 7–56 (1996)

47. Peirce, C.S.: Collected Papers, pp. 1931–1935. Harvard University Press, Cam-
bridge

48. Peirce, C.S.: Reasoning and the Logic of Things. Harvard University Press, Cam-
bridge (1992)

49. Prediger, S.: Kontextuelle Urteilslogik mit Begriffsgraphen: ein Beitrag zur Re-
strukturierung der mathematischen Logik. Shaker, Aachen (1998)

50. Prediger, S.: Simple Concept Graphs: A Logic Approach. In: Mugnier, M.-L.,
Chein, M. (eds.) ICCS 1998. LNCS (LNAI), vol. 1453, pp. 225–239. Springer,
Heidelberg (1998)

Publication Analysis of the Formal Concept Analysis Community 95

51. Roberts, D.: The Existential Graphs of Charles S. Peirce. Mouton, The Hague
(1973)

52. Roth, C., Obiedkov, S., Kourie, D.: Towards Concise Representation for Tax-
onomies of Epistemic Communities. In: Yahia, S.B., Nguifo, E.M., Belohlavek,
R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 240–255. Springer, Heidelberg
(2008)

53. Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chainings
of Graph Rules. In: Eklund, P., Ellis, G., Mann, G. (eds.) ICCS 1996. LNCS,
vol. 1115, pp. 248–262. Springer, Heidelberg (1996)

54. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading (1984)

55. Sowa, J.F.: Conceptual graphs summary. In: Eklund, P., Nagle, T., Nagle, J., Ger-
holz, L. (eds.) Conceptual Structures: Current Research and Practice, pp. 3–51.
Ellis Horwood (1992)

56. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Publishing, Pacific Grove (2000)

57. Tilley, T., Cole, R., Becker, P., Eklund, P.: A Survey of Formal Concept Analysis
Support for Software Engineering Activities. In: Ganter, B., Stumme, G., Wille, R.
(eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 250–271. Springer,
Heidelberg (2005)

58. Valtchev, P., Missaoui, R., Godin, R.: Formal Concept Analysis for Knowledge
Discovery and Data Mining: The New Challenges. In: Eklund, P. (ed.) ICFCA
2004. LNCS (LNAI), vol. 2961, pp. 352–371. Springer, Heidelberg (2004)

59. van der Merwe, D., Obiedkov, S., Kourie, D.: AddIntent: A New Incremental Algo-
rithm for Constructing Concept Lattices. In: Eklund, P. (ed.) ICFCA 2004. LNCS
(LNAI), vol. 2961, pp. 372–385. Springer, Heidelberg (2004)

60. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

61. Wille, R.: Conceptual Graphs and Formal Concept Analysis. In: Lukose, D., Del-
ugach, H., Keeler, M., Searle, L., Sowa, J. (eds.) ICCS 1997. LNCS, vol. 1257, pp.
290–303. Springer, Heidelberg (1997)

62. Wille, R.: Boolean Concept Logic. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000.
LNCS, vol. 1867, pp. 317–331. Springer, Heidelberg (2000)

Understanding the Semantic Structure

of Human fMRI Brain Recordings
with Formal Concept Analysis

Dominik Endres1,�, Ruth Adam2,�, Martin A. Giese1, and Uta Noppeney2

1 Sect. Computational Sensomotorics, Dept. Cognitive Neurology,
CIN, HIH, BCCN and University Clinic Tübingen,

Frondsbergstr. 23, 72070 Tübingen, Germany
dominik.endres@klinikum.uni-tuebingen.de, martin.giese@uni-tuebingen.de
2 Cognitive Neuroimaging Group, Max Planck Institute for Biological Cybernetics,

Tübingen, Germany
{ruth.adam,uta.noppeney}@tuebingen.mpg.de

Abstract. We investigate whether semantic information related to ob-
ject categories can be obtained from human fMRI BOLD responses with
Formal Concept Analysis (FCA). While the BOLD response provides
only an indirect measure of neural activity on a relatively coarse spatio-
temporal scale, it has the advantage that it can be recorded from humans,
who can be questioned about their perceptions during the experiment,
thereby obviating the need of interpreting animal behavioral responses.
Furthermore, the BOLD signal can be recorded from the whole brain
simultaneously. In our experiment, a single human subject was scanned
while viewing 72 gray-scale pictures of animate and inanimate objects in
a target detection task. These pictures comprise the formal objects for
FCA. We computed formal attributes by learning a hierarchical Bayesian
classifier, which maps BOLD responses onto binary features, and these
features onto object labels. The connectivity matrix between the binary
features and the object labels can then serve as the formal context. In
line with previous reports, FCA revealed a clear dissociation between an-
imate and inanimate objects with the inanimate category also including
plants. Furthermore, we found that the inanimate category was subdi-
vided between plants and non-plants when we increased the number of
attributes extracted from the BOLD response. FCA also allows for the
display of organizational differences between high-level and low-level vi-
sual processing areas. We show that subjective familiarity and similarity
ratings are strongly correlated with the attribute structure computed
from the BOLD signal.

Keywords: fMRI, inferior temporal cortex, semantic neural decoding.

1 Introduction

Understanding how semantic information is represented in the brain has been an
important research focus of neuroscience in the past few years. A large part of

� Equal contribution.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 96–111, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Understanding the Semantic Structure 97

this research studies object representation in the visual cortex, which we will also
concentrate on in this paper. Experimentally, this question has been addressed
using physiological and brain imaging techniques, specifically electrophysiologi-
cal single/multi-cell recordings [16] and fMRI BOLD (functional magnetic res-
onance imaging, blood-oxygenation-level-dependent) responses [2]. The former
have the advantage of providing a direct measure of neural electrical activity.
However, one can usually record only from a relatively small population of neu-
rons. Furthermore, the experimental animals cannot easily be questioned about
their semantic perceptions. Nevertheless, it was previously shown [6] that formal
concept analysis (FCA, [11]) can reveal interpretable semantic information (e.g.
specialization hierarchies, or indications of a feature-based representation) from
electrophysiological data. Here, we investigate whether similar findings can be
obtained from BOLD responses recorded from human subjects. fMRI measures
BOLD changes which are indirectly related to neuronal activity. Increased neu-
ronal activity (e.g. due to visual input) in a specific brain area increases blood
flow to this area which changes the local ratio between oxygenated (containing
oxygen) blood which is diamagnetic and deoxygenated (without oxygen) blood
which is paramagnetic. This change in the local magnetic properties of the blood
is the BOLD signal detected by fMRI [27]. While the BOLD response provides
only an indirect measure of neural activity on a much coarser spatio-temporal
scale than electrophysiological recordings, it has the advantage that it can be
recorded from humans, which can be questioned about their perceptions during
the experiment, thereby obviating the need of interpreting animal behavioral
responses. Furthermore, the BOLD signal can be recorded from the whole brain
simultaneously.

Our paper is structured as follows: in section 2 we give a brief overview of the
organization of the visual system and previous research on the representation of
semantic information in the brain. Section 3 introduces the basic ideas of FCA.
We describe the experiment in section 4, and the Bayesian feature extractor for
computing the formal context from BOLD signals in section 5. Our results are
detailed in section 6, and section 7 offers some concluding remarks and avenues
of further investigation.

2 Organization of Visual Processing in Humans and
Previous Research

This section contains a very brief and incomplete overview of the visual process-
ing pathways in humans and monkeys, for details the reader is referred to [15].
Visual processing begins in the eye. Patterns of light falling onto the retina are
converted into electrical signals, which are relayed to the primary visual cortex
(V1) by the lateral geniculate nuclei. From the primary visual cortex the infor-
mation is channeled to visual association cortices and thereafter distributed into
two paralleled processing streams: the ventral stream and the dorsal stream [21].

98 D. Endres et al.

The dorsal (”where”) occipitoparietal stream analyzes object location, guides
object-related action and sends information to the parietal cortex. In the ventral
(”what”) occipitotemporal stream, which is involved in object identification,
information is directed to the inferior temporal (IT) cortex. The human IT
contains sub-regions which selectively respond to specific object categories. For
example, faces selectively activate the fusiform gyri, whereas landmarks and
scenes activate the parahippocampal gyri [23].

However, it is unlikely that there is a specific area in the brain dedicated
to every category we encounter in our daily life. Haxby and colleagues could
show that activation patterns elicited by various object categories such as faces,
cats and shoes were distinct and at the same time overlapping in the IT [13].
Multivoxel pattern analysis decoding techniques applied to the relevant sub-
regions could discriminate between ordinate (basic) levels of a certain category
(e.g. beach vs. highway scenes, [28]) as well as between object exemplars (e.g.
two different chairs, [5]), showing that those areas also contain information up
to the exact object identity. Standard encoding and decoding analyses often
compare brain activations evoked by pre-specified object categories (e.g. face vs.
house), and are therefore frequently driven as much by result expectations as by
the data. Hypothesis-free analyses are especially important for complex stimuli,
such as object categories, which cannot be easily grouped a priori to account
for the entire conceivable feature-space.

One clear advantage of FCA is thus, that it does not require a priori group-
ing of the stimuli. In line with previous findings [13], FCA also allows for the
comparison of activation patterns and thus takes into account the distributed
and overlapping representation of objects in the brain. Another data-driven ap-
proach was applied recently to fMRI data, by computing dissimilarity matrices
from fMRI activation patterns. This analysis applied to the IT has revealed
hierarchically-organized animate and inanimate clusters [18]. However, we be-
lieve that comparing dissimilarity matrices is not sufficient to understand the
structure of the representation of visual stimuli in the brain. First, stimulus ar-
rangement is based on pairwise distances and as such does not directly regard
the relations between multiple stimuli. Also, pairwise distances are often being
further analyzed via hierarchical, tree-structured clustering, while a lattice-based
structure may be more appropriate for the study of the cortical representation
of complex objects composed of many overlapping features. Second, dissimilar-
ity coefficients are often derived with linear methods, while the brain is known
to be a highly non-linear system. Third, dissimilarity analysis does not allow
incremental analysis since adding more stimuli or running the analysis with
more BOLD data might change the observed dissimilarity pattern. Finally, and
most importantly, the connection between stimuli and brain activation pattern
observed is not explicitly represented in the dissimilarity matrices. Since FCA
provides this connection via concepts and their ordering relation, we therefore
decided to investigate if FCA was a suitable tool for elucidating the structure of
the representation of (visual) stimuli in the brain.

Understanding the Semantic Structure 99

3 Formal Concept Analysis

We now provide basic definitions and notation used in the following, for a full
introduction to Formal Concept Analysis (FCA) see [11]. The formal context
K := (G,M, I) is comprised of a set of formal objects G, a set of formal at-
tributes M and a binary relation I ⊆ G ×M between members of G and M .
The adjective ”formal” indicates that these objects and attributes represent ab-
stract entities, although it can be helpful to think of them as actual physical
objects and their properties. We will drop ”formal” for brevity, except in def-
initions. In our application, the members of G are visual stimuli, whereas the
members of M correspond to binary features computed from a generative model
representation of BOLD signals recorded in response to these stimuli (see section
5). If attribute m ∈ M is used in the representation of the BOLD response to
stimulus g ∈ G, then we write (g,m) ∈ I or gIm. It is customary to represent
the context as a cross table (incidence table), where the row(column) headings
are the object(attribute) names. For each pair (g,m) ∈ I, the corresponding cell
in the cross table has an ”x”. The table in fig. 1, left, shows a simple example
context.

The derivation operator for subsets X ⊆ G is defined as X ′ = {m ∈ M |∀g ∈
X : gIm} i.e. X ′ is the set of all attributes shared by the objects in X . Likewise,
for Y ⊆ M define Y ′ = {g ∈ G|∀m ∈ Y : gIm} i.e. Y ′ is the set of all objects
having all attributes in Y .

Definition 1. [11] A formal concept of the context K is a pair (X,Y) with
X ⊆ G, Y ⊆ M such that X ′ = Y and Y ′ = X. X is called the extent and Y
is the intent of the concept (X,Y). IB(K) denotes the set of all concepts of the
context K.

Thus, given the relation I, (X,Y) is a concept if X determines Y and vice versa.
X and Y are also called closed subsets of G and M with respect to I. For a
representation of the relationships between concepts, one defines an order on
IB(K):

Definition 2. [11] If (X1, Y1) and (X2, Y2) are concepts of a context, (X1, Y1)
is a subconcept of (X2, Y2) if X1 ⊆ X2 (which is equivalent to Y1 ⊇ Y2). In this
case, (X2, Y2) is a superconcept of (X1, Y1) and we write (X1, Y1) ≤ (X2, Y2).
The relation ≤ is called the order of the concepts.

It can be shown [29,11] that IB(K) and the concept order form a complete lattice.
The middle and right panels of fig. 1 depict lattice diagrams corresponding to
the context in the left panel. In the diagrams, each node is a concept, the arrows
indicate the concept ordering. Full labeling (fig. 1, middle) means that a concept
node is drawn with its full extent and intent. A reduced labeled concept lattice
(fig. 1, right) shows an object only in the smallest (w.r.t. the concept order of
definition 2) concept of whose extent the object is a member. This concept is
called the object concept, or the concept that introduces the object. Likewise, an
attribute is shown only in the largest concept of whose intent the attribute is a
member, the attribute concept, which introduces the attribute.

100 D. Endres et al.

Formal Context Full Labeling Reduced Labeling

m0 m1 m2

bear ×
dog ×

cabbage ×
drum ×

pumpkin × ×

Fig. 1. A simple example context and corresponding lattice diagrams. Left : the formal
context, represented as a cross-table. The objects (rows) are 5 visual stimuli, each of
which can have a subset of 3 attributes (columns) m0,m1,m2, that are computed from
(hypothetical) BOLD responses. Middle: fully labeled concept lattice. Each rectangle
is a concept. The extents are represented by stimulus images, the top of each concept
shows concept number and intent, e.g. ’C4 : {m1, m2}’ means: concept 4 has intent
{m1,m2}. Concept numbers are computed from the lectic order on the attributes [11].
Arrows indicate concept ordering. Concept 1 comprises the animals, concept 2 contains
only vegetables and concept 3 all objects with prominent round parts. Consequently,
concept 4 can be thought of as the ’round vegetable’ concept. Right : concept lattice
with reduced labeling. Here, objects are only depicted in the most specific (smallest)
concept which contains them, whereas an attribute is only shown in the most general
(greatest) concept of whose intent it is a member.

The lattice diagrams is a graphically explicit representation of the ordering
relationships between the concepts: concept 2 contains all vegetables, concept 3
comprises the objects with prominent round parts. They have a common child,
concept 4, which is the ’round vegetable’ (pumpkin) concept. The ’animals’
concept (concept 1) is incomparable to any other concept except the top and
the bottom of the lattice. Note that these relationships arise as a consequence
of the (here hypothetical) BOLD responses. We will show (section 6) that real
BOLD responses lead to similarly interpretable structures when one computes
attributes from suitable brain regions.

To reiterate, in the following we will denote the set of visual stimuli by G, and
the set of attributes computed from BOLD responses by M , and their incidence
relation by I ⊆ G×M .

4 fMRI Experiment

4.1 Experimental Methods and Data Preprocessing

Subject. A single right handed, German native speaker, male subject partici-
pated in this fMRI study. The subject gave informed written consent prior to

Understanding the Semantic Structure 101

Fig. 2. Experimental setup. Bottom: A subject lying in an fMRI scanner. In order
to perform the scan, the subject will be moved into the scanner tube. Stimuli are
visible via the mirror positioned on the head coil. Top: Example run and timing of one
experimental block.

the study which was approved by the joint human research review committee of
the Max Planck Society and the University of Tübingen.

Stimuli. Stimuli G were |G| = 72 gray-scale photographs of real objects taken
from Hemera photo objects vol. 1-3. Half of the stimuli were animate objects
from the four super-ordinate categories: mammals, birds, vegetables, and flowers.
The non-animate objects were taken from the categories: furniture, vehicles,
tools, and music instruments. Three ordinate (i.e. at the basic level of taxonomic
abstraction) categories were chosen from each super-ordinate category (e.g. bear,
dog, and monkey from the mammal category; brush, hammer, scissors from
the tools category), and each ordinate category contained three exemplars (e.g.
panda bear, brown bear, polar bear from the bear category).

To control for low level visual cues, the luminance of the photographs was
equalized according to Knebel et al., 2008 [17]. Second, stimuli were adjusted
in size to the same main diagonal length. In addition, 72 silhouettes (filled with
the mean luminance value) were created for every object.

Behavioral Ranking of the Stimuli Outside the Scanner. The subject
ranked the stimuli in terms of their familiarity, using a 7 point Likert scale (1-
not familiar, 7- very familiar). In addition, he judged the similarity between each
pair of objects (1-very dissimilar, 7- very similar).

Experimental Procedure in the Scanner. The subject was first familiarized
with the photographs in the scanner environment through presentation of all
stimuli in random order with each intact photograph followed by its matching
silhouette. Stimuli (on a black background with white fixation cross in the center,
main diagonal: 3.1 visual angle) were each presented for 1.3s, followed by a white
fixation cross for1.5s (see fig. 2, top).

102 D. Endres et al.

After the familiarization stage, the subject performed the experimental ses-
sions. The experimental paradigm was a target detection task in which the sub-
ject had to press one key for a silhouette and another key for an intact image.
Each session contained the 72 object stimuli repeated twice (displayed for 1.3s,
followed by a 1.5s fixation) and 12 silhouette images, appearing on average every
12 trials. To increase design efficiency, the 6 stimuli from each ordinate category
(3 exemplars x 2 repetitions) were presented in a pseudo-randomized order. The
subject could respond from the onset of the stimulus until the end of the fixa-
tion period, resulting in a response time interval of 2.8s. Instructions emphasized
both speed and accuracy of the response, using the index and middle fingers for
silhouettes and intact photos respectively.

Blocks of six stimuli (block duration ≈17s) were interleaved with 7s fixation
periods. The subject performed 48 sessions (≈10min each) over seven days (max.
scanning time: 2h per day). Hence, each object stimulus was presented 96 times
and every silhouette image eight times.

Experimental Setup. Stimuli were presented using the Cogent 2000 v1.25 (de-
veloped by the Cogent 2000 team at the FIL and the ICN and Cogent Graphics
developed by John Romaya at the LON at the Wellcome Department of Imag-
ing Neuroscience, UCL, London, UK) running under MATLAB (Mathworks Inc.,
Natick, MA, USA) on a Windows PC. The visual stimuli were back-projected
onto a Plexiglas screen using a LCD projector (JVC Ltd., Yokohama, Japan)
visible to the subject through a mirror mounted on the MR head coil. The sub-
ject performed the behavioral task using a MR-compatible custom-built button
device connected to the stimulus computer.

fMRI Data Acquisition.A 3 T Siemens MagnetomTrio Tim System (Siemens,
Erlangen, Germany) was used to acquire both three-dimensional high-resolution
T1-weighted anatomical images (TR=2300ms, TE=2.98ms, TI=1100ms, flip
angle=9◦, FOV=256mm×240mm×176mm, isotropic spatial resolution 1mm)
and T2*-weighted axial echoplanar functional images with BOLD contrast (gra-
dient echo, TR=3080ms, TE=40ms, flip angle=90◦, FOV=192mm×192 mm,
image matrix 64×64mm, 38 transversal slices acquired sequentially in ascending
direction, voxel size=3.0mm×3.0mm ×2.5mm + 0.5mm interslice gap) using a
12-channel head coil (Siemens, Erlangen, Germany). The subject participated in
48 experimental sessions with 212 volume images (whole-brain images) per ses-
sion, amounting to 10,176 volume images. The first three volumes were discarded
to allow for T1 equilibration effects.

Data Preprocessing and GLM Analysis. The functional MRI data was an-
alyzed with statistical parametric mapping (SPM8 software, Wellcome Depart-
ment of Imaging Neuroscience, London, UK; www.fil.ion.ucl.ac.uk/spm) [10].
According to the common practice we first preprocessed the data to reduce
noise such as head motion artifacts. Scans were realigned using the first as a
reference, unwarped, slice-time corrected using the middle image as a reference,
and spatially normalized into Montreal Neurological Institute (MNI) standard
space [7].

Understanding the Semantic Structure 103

To determine the magnitude of the BOLD response in each voxel to a given
stimulus, we used a well established mass-univariate approach based on general
linear models (GLM). This method defines the explanatory variables/regressors
(the stimuli in our case) using a design matrix, and estimates their relative
contribution to the observed BOLD activation. The timeseries in each voxel were
high-pass filtered to 1/128 Hz. The experiment was modeled in an event related
fashion with regressors entered into the design matrix after convolving each
event-related unit impulse function (logged to the onset of the visual stimulus)
with the canonical hemodynamic response function (see [14] for details about
modeling even-related designs). The statistical model included 72 regressors each
modeling a particular stimulus and one additional regressor modeling all target
stimuli, separately for each session. Nuisance covariates included the realignment
parameters (to account for residual motion artifacts). Stimulus-specific effects
for each session were estimated from the GLM. The GLM estimate of every
explanatory variable (i.e. the parameter weight of this variable) for every voxel
was saved in a beta image. All beta images were passed to a second-level analysis
as contrasts, in order to allow for random effects analysis and inferences at the
population level [9]. This involved creating 73 contrast images for each session
and entering them into a second level analysis which evaluated the voxels which
are more responsive for visual stimulation compared to fixation.

Fig. 3. The brain areas evaluated in this study. Location of the two regions of interests,
V1 and IT, displayed on three planes overlaid on a standard brain, numbers are MNI
coordinates [7].

4.2 Search Volumes and Voxel Selection

The activation data was extracted from two a priori defined anatomical search
volumes (region of interests, ROIs, see fig. 3): the inferior temporal cortex (IT
mask), and the calcarine sulcus (V1 mask). The IT mask included the bilateral
inferior temporal gyri, fusiform gyri and parahippocampal gyri. The V1 mask
contained the bilateral calcarine fissure and surrounding cortex which encom-
passes the primary visual cortex. Those areas were anatomically defined by the
AAL library [26] using the MarsBaR toolbox (http://marsbar.sourceforge.net/)
[4]. Within each ROI, the 300 most active voxels (the voxels showing the highest
absolute activations for the second-level comparison all stimuli > fixation) were
selected. From those we selected the 100 voxels that provided the most informa-
tive signals (measured by mutual information) about the stimulus identity.

104 D. Endres et al.

5 Learning the Formal Context with a Hierarchical
Bayesian Classifier

To apply FCA, we need to compute attributes from the BOLD signals in the
selected voxels (see section 4.2). We have so far experimented with binary at-
tributes only, but note that attribute scaling [11] is possible. However, the results
in [6] indicate that binarized responses can summarize most of the conceptually
relevant information in neural data. We first experimented with maximally in-
formative thresholding [6] per voxel. In this approach, a threshold is determined
for each voxel such that the (binarized) voxel signal allows for the best possi-
ble prediction of the stimulus identity. Due to the low signal-to-noise ratios in
BOLD signals, this yielded very large and uninterpretable lattices. Therefore,
we tried multi-voxel pattern analysis to ’average out’ the noise across voxels. We
extracted multi-voxel features and associated factors with two standard unsuper-
vised feature extraction techniques, principal component analysis (PCA) [3], and
non-negative matrix factorization (NFM) [20]. Both of these methods assume a
linear additive generative model of the data, and both try to minimize the error
between predicted and actual BOLD pattern. Let V i = (V0,i, . . . , VD−1,i) be a
vector representation of the BOLD activation pattern (D voxels). i = 0, . . . , N−1
is the presentation (or session) index. The vector V i is decomposed intoK = |M |
features fk and associated real-valued factors Ak,i, such that K ≤ D and

S

A0 A1 AK−1

V0 VD−1Vd.

Fig. 4. Left: the feature extractor for learning the formal context, represented as a
Bayesian network. Nodes represent random variables, arrows indicate conditional de-
pendencies. A stimulus, represented by a multinomial variable S has K = |M | binary
attributes A = (A0, . . . , AK−1), Ak ∈ {0; 1} which encode the observed BOLD voxel
activation pattern V = (V0, . . . , VD−1). The (binarized) distribution p(A|S) repre-
sents the formal context. Voxel activation patterns are described by a distribution
p(V |A) =

∏
d p(Vd|A) with each voxel computed as a linear combination of non-

negative feature vectors fk, i.e. Vd =
∑

k(fk)d · Ak + ηd, where ηd is voxel-specific
Gaussian noise. Right: comparison of cross-validation scores for models with different
K, computed from the D = 100 most informative voxels in area IT (see fig. 3). Error
bars are SEM, 12-fold cross-validation. The model with K = 8 offers (approximately)
the best trade-off between good data description and low model complexity. For details,
see text.

Understanding the Semantic Structure 105

min
Ak,i,fk

∑
i

(
V i −

∑
k

fkAk,i

)2

(1)

under additional constraints. For NMF, the constraints are positivity of both
the fk and the Ak,i, whereas PCA requires the fk to be orthonormal. We then
applied maximally informative thresholding on the Ak,i averaged over all pre-
sentations of a given stimulus to obtain a formal context. While certain basic
features were now discernible in the lattices (e.g. a distinction between animate
and inanimate objects), there still remained a lot of ’noisy’ concepts. To improve
the result further, we regularized the feature extraction by stipulating that there
be only one configuration of the Ak per stimulus (rather than per stimulus pre-
sentation). Moreover, we constrainedAk ∈ {0; 1}. The resulting generative model
is therefore given by (Si ∈ {0, . . . , |G|−1} is a multinomial representation of the
stimulus label):

V i =
∑
k

fkAk,i + ηi with ηi ∼ N (0, Σ) (2)

p(Ak,i|Si) = A
Ik,Si

k,i (1−Ak,i)
1−Ik,Si (3)

p(Si) ∼ uniform (4)

where η is voxel-dependent noise having a Gaussian distribution N (0, Σ) with
zero mean and diagonal covariance matrixΣ. I is a matrix with Ik,s = 1 ifAk = 1
for Si = s and 0 otherwise. In other words, I is a binary matrix representation of
the context I. To formalize the connection between I and I, choose one-to-one
functions V : G→ {0; . . . ; |G| − 1} and W : M → {0; . . . ; |M | − 1}, then:

Si = s ⇔ V (gi) = s (5)

Ak,i = 1⇔W−1(k) ∈ g′i and Ak,i = 0⇔W−1(k) /∈ g′i (6)

The model is depicted as a Bayesian network in fig. 4. To learn the parameters,
i.e. I, Σ and the fk, we employ variational Bayesian expectation maximization
(VBEM) [3], with Gamma p(oste)riors on the fk and the diagonal entries of Σ,
and independent Bernoulli p(oste)riors on the entries of I. In VBEM, learning
is expressed as an maximization problem of a lower bound on the marginal log-
likelihood of the (V i, Si) data. Let the model parameters be collectively denoted
by Θ = (f0, . . . ,fK−1, Σ, I), then this bound is given by

L =

〈∑
i

log (p(V i, Si|Θ)) + log

(
p(Θ)

q(Θ)

)〉
q(Θ)

(7)

where p(V i, Si|Θ) is computed from eqns. 2-4 and p(Θ) is the parameter prior.
q(Θ) is the variational posterior, which we chose to have the same functional form
as the prior, as noted above. The expectation 〈. . .〉q(Θ) can then be evaluated
in closed form. To avoid getting stuck at local maxima in the early phases of

106 D. Endres et al.

the optimization, we precede the VBEM iterations with simulated annealing
[24]. One advantage of taking a Bayesian approach to learning is that we can
evaluate (at least approximately) which number of attributes/features K offers
the best compromise between a good explanation of the data and a low model
complexity.

The Gamma priors on fk enforce NMF-like positivity constraints, which we
found to contribute to the interpretability of the results. A possible reason for
this is that Ak = 1 implies a positive contribution to the BOLD signal under
these constraints. In other words, there is an order-preserving mapping from the
attribute sets ordered under subset inclusion to brain activity.

6 Results

Model Selection. We learned feature extractors with K ∈ {2; . . . ; 10} features
as described in section 5. The VBEM iteration usually began to converge after ≈
50 VBEM steps, preceded by simulated annealing at 10 exponentially decreasing
temperatures (1000 samples each) between Tmax and 1. Tmax was chosen so that
the variational posterior of the entries of I did not differ by more than 0.1 from
its prior value 0.5, indicating a high enough temperature to ’smooth out’ local
maxima. To determine the best K, we performed 12-fold cross validation, the
held-out data were always complete sessions (see section 4). The cross-validation
score plotted in fig. 4, right, is the variational bound L (eqn. 7) computed on the
held-out data after 100 VBEM steps. To model the most informative 100 voxels
in area IT, 8 features/attributes appear to be sufficient. Note that this result is
conditional on K ≤ 10.

Lattices. The concept lattices for both ROIs (IT and V1, after 100 VBEM
steps) are displayed in fig. 5 and fig. 6 for K = 2 and K = 5 attributes, re-
spectively. These lattices are drawn with reduced labeling. We did not plot the
lattice computed from K = 8 attributes, because it would not have fit onto
a page (> 200 concepts). However, its main interpretable features are similar
to the K = 5 lattice, which we describe in the following. The IT lattice with
two attributes already shows one of the most prominent semantic features: the
distinction between animals and other objects (including plants). Concept C1
introduces 22 stimuli, 18 of which are animals, encompassing all animals in the
stimulus set. C0 introduces 50 stimuli, none of which are animals. Indeed, the
IT region is known to be specialized in object recognition. Previous studies sug-
gested that categorical representation in the IT are organized in hierarchical fash-
ion that distinguishes animate (including faces and body parts) and inanimate
stimuli [18,1]. In contrast, three of the V1 lattice’s concepts introduce animals
along with other objects. However, the within-concept organization seems to be
partly shape-based: C1 introduces mainly thin and elongated stimuli, while the
stimuli introduced in C3 are mainly rotund. These observations could be further
tested by comparison to lattices computed with low-level shape descriptors as
attributes. Similar observations, with somewhat higher ’conceptual resolution’,

Understanding the Semantic Structure 107

Table 1. Left: Testing whether the subset ordering of the attributes is correlated
with subjective familiarity. K = |M |: number of attributes. μ: frequency with which
the conditional in eqn. 8 holds across all pairs of stimuli, μ0, σ0 are baseline values
obtained by randomization. Not all values are significantly above chance (p < 0.05),
but there is a clear trend towards z > 0.0. Right: Testing whether attribute set
similarity is correlated with subjective similarity. Here, μ is the frequency with which
the conditional in eqn. 10 holds, μ0, σ0 are corresponding baseline values. All K yield
significant results. ’0.000’ means p < 0.0005. For details, see section 6.

Familiarity Similarity

K μ μ0 ± σ0 z p

2 0.672 0.573 ± 0.023 4.409 0.000

3 0.682 0.572 ± 0.027 4.062 0.000

4 0.630 0.572 ± 0.028 2.077 0.019

5 0.611 0.572 ± 0.034 1.143 0.127

6 0.653 0.572 ± 0.042 1.919 0.027

7 0.685 0.572 ± 0.060 1.901 0.029

8 0.631 0.572 ± 0.051 1.155 0.124

9 0.657 0.572 ± 0.061 1.379 0.084

10 0.635 0.572 ± 0.077 0.816 0.207

K μ μ0 ± σ0 z p

2 0.680 0.614 ± 0.006 11.907 0.000

3 0.711 0.614 ± 0.007 13.860 0.000

4 0.713 0.615 ± 0.008 11.749 0.000

5 0.755 0.617 ± 0.011 12.085 0.000

6 0.737 0.618 ± 0.013 9.254 0.000

7 0.735 0.619 ± 0.014 8.022 0.000

8 0.812 0.623 ± 0.017 11.007 0.000

9 0.815 0.624 ± 0.016 11.725 0.000

10 0.821 0.631 ± 0.019 10.132 0.000

Fig. 5. Left: lattice computed from brain area IT (see fig. 3) with a feature extractor
having K = 2 features/attributes. Reduced labeling. Concepts are numbered according
to the lectic ordering of the intents [11]. E.g. ’C1:{m1}’ means: concept number 1,
introducing the attribute m1. ’{}’ denotes the empty set. Images are the introduced
objects of each concept. Right: lattice computed from brain area V1, also K = 2.

108 D. Endres et al.

Fig. 6. Left: lattice computed from brain area IT (see fig. 3) with a feature extractor
having K = 5 features/attributes. Labeling as in fig. 5. Right: lattice computed from
brain area V1 with K = 5.

hold for the lattices with K = 5. Here, the IT lattice shows concepts which
introduce exclusively animals (C23, 14 animals), mostly plants (C29, 9 plants
of 13 stimuli), and non-animates (C11: 7 of 7, C15: 7 of 8). As for K = 2, the
V1 lattice does not show this sort of semantic organization, but might contain
shape-specific concepts (e.g. horizontally elongated objects in C20 and C22).
Another noteworthy difference between the V1 and IT lattices is the number of
concepts which introduce stimuli: 12 in IT versus 21 in V1. Thus, if one wanted
to use the corresponding feature extractor as a simple classifier, one should use
signals from V1, since they would yield a higher classification rate.

The most specific concept (C31) in the IT lattice introduces a single stimulus,
a recumbent bicycle. This stimulus was ranked by the subject as very unfamiliar
and this might explain the high brain activation resulting in this stimulus having
all attributes.

Familiarity Ranking Comparison. To substantiate the last observation in a
more quantitative fashion, we compared the ordering of the stimuli induced by
the attribute sets with the ordering given by the subject’s familiarity ranking
(7 point likert scale, 1-low, 7-high). Let g1, g2 ∈ G be two stimuli, and fam(g)
the subject’s familiarity ranking. If the attribute set inclusion order reflects the
familiarity ranking, then the conditional

fam(g1) ≥ fam(g2) given g′1 ⊆ g′2 (8)

should be true in (above chance) many instances. The reason for choosing the di-
rection of the inequality signs is the sparse and efficient coding hypothesis, which
is popular in computational neuroscience [22,12,8]: frequently encountered, and
thus familiar stimuli should be represented in the brain with less metabolic effort

Understanding the Semantic Structure 109

than unusual ones. Thus, due to the positivity constraint on the feature vectors
in our model (see section 5), more familiar stimuli should have less attributes.
We therefore computed the frequency μ with which the conditional 8 holds, av-
eraged across all stimulus pairs g1, g2 and excluding the trivial cases g1 = g2.
To obtain a ’baseline’ frequency μ0 for a given lattice structure, we randomly
shuffled the stimuli against the attribute sets. This procedure leaves the lattice
structure intact, but randomizes the extents. We repeated the randomization
≈ 103 times for all K to compute a baseline standard deviation σ0. The results
are shown in table 1, left. While not all μ are significantly (p < 0.05, one-tailed z-
test) above baseline, the trend is clearly towards a higher-than-chance frequency
for conditional 8 to hold.

Similarity Comparison. We also evaluated if the subject’s pairwise similarity
ratings correspond to the (partial) similarity ordering of stimuli induced by the
computed attributes. To this end, we used the contrast model by A.Tversky [25]
which was formalized and extended in [19]. Let g1, g2, f1, f2 ∈ G be stimuli, then

(g1, g2) ≥ (f1, f2)⇔ g′1 ∩ g′2 ⊇ f ′
1 ∩ f ′

2, g
′
1 ∩ g′2 ⊆ f ′

1 ∩ f ′
2

g′1 ∩ g′2 ⊆ f ′
1 ∩ f ′

2, g
′
1 ∩ g′2 ⊇ f ′

1 ∩ f ′
2 (9)

I.e. g1 is at least as similar to g2 as f1 is to f2 if g1 and g2 have more common
attributes (g′1 ∩ g′2), less separating attributes (g′1 ∩ g′2 and g′1 ∩ g′2) and more
attributes not shared by either of them (g′1 ∩ g′2). For an in-depth discussion
of this definition, see [19]. Let sim(g1, g2) be the subject’s similarity rating for
stimuli g1, g2. We computed the frequency μ with which the following conditional
holds:

sim(g1, g2) ≥ sim(f1, f2) given (g1, g2) ≥ (f1, f2) (10)

and also evaluated a baseline μ0, σ0 by randomization, as described above for
the familiarity ranking comparison. The results are shown in table 1, right. All
comparisons are highly significant above chance, indicating that the attribute
similarity structure is strongly correlated with the subject’s similarity ratings.

7 Conclusion

We presented the first (to our knowledge) application of FCA to fMRI data for
the elucidation of semantic relationships between visual stimuli. FCA revealed
different organization within the two ROIs. While BOLD signals from the pri-
mary visual cortical area V1 allow for the construction of a better classifier,
the objects in area IT are organized in a high-level semantic fashion. In addi-
tion to previous studies, the IT categorical organization separated plants from
non-animates. Our current study shows the potential strength of FCA for fMRI
data analysis, especially when dealing with a larger stimulus set. Furthermore,
subjective familiarity and similarity correlate strongly with attribute-induced
orderings of stimuli. In the future, we will investigate what information can be

110 D. Endres et al.

decoded by FCA from other areas of the cortex. For example, we will apply FCA
on intermediate brain regions of the ventral stream to investigate how categorical
representations are formed in the human brain. We are also planning to check
the reproducibility of the lattices by testing additional subjects.

Acknowledgements. This work was supported by EU projects FP7-ICT-
215866 SEARISE, FP7-249858-TP3 TANGO, FP7-ICT-248311 AMARSi and
the Max-Planck Society. We thank the bwGRiD project for computational
resources.

References

1. Bell, A.H., Hadj-Bouziane, F., Frihauf, J.B., Tootell, R.B.H., Ungerleider, L.G.:
Object representations in the temporal cortex of monkeys and humans as revealed
by functional magnetic resonance imaging. Journal of Neurophysiology 101(2), 688–
700 (2009), http://jn.physiology.org/content/101/2/688.abstract

2. Bell, A.H., Malecek, N.J., Morin, E.L., Hadj-Bouziane, F., Tootell, R.B.H.,
Ungerleider, L.G.: Relationship between functional magnetic resonance imaging-
identified regions and neuronal category selectivity. The Journal of Neuro-
science 31(34), 12229–12240 (2011),
http://www.jneurosci.org/content/31/34/12229.abstract

3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
4. Brett, M., Anton, J., Valabregue, R., Poline, J.: Region of interest analysis us-

ing an SPM toolbox. Neuroimage 16(2) (2002); 8th International Conference on
Functional Mapping of the Human Brain

5. Eger, E., Ashburner, J., Haynes, J.D., Dolan, R.J., Rees, G.: fMRI activity patterns
in human LOC carry information about object exemplars within category. J. Cogn.
Neurosci. 20(2), 356–370 (2008)

6. Endres, D., Földiák, P., Priss, U.: An application of formal concept analysis to
semantic neural decoding. Annals of Mathematics and Artificial Intelligence 57(3-
4), 233–248 (2010), doi:10.1007/s10472-010-9196-8

7. Evans, A.C., Marrett, S., Neelin, P., Collins, L., Worsley, K., Dai, W., Milot, S.,
Meyer, E., Bub, D.: Anatomical mapping of functional activation in stereotactic
coordinate space. Neuroimage 1(1), 43–53 (1992)

8. Földiák, P.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Hand-
book of Brain Theory and Neural Networks, 2nd edn. MIT Press, Cambridge (2002)

9. Friston, K.J., Holmes, A.P., Price, C.J., Buchel, C., Worsley, K.J.: Multisubject
fMRI studies and conjunction analyses. Neuroimage 10(4), 385–396 (1999)

10. Friston, K., Holmes, A., Worsley, K., Poline, J., Frith, C., Frackowiak, R.: Sta-
tistical parametric mapping: a general linear approach. Hum. Brain Mapping 2,
189–210 (1995)

11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical foundations.
Springer (1999)

12. Harpur, G.F., Prager, R.W.: Experiments with low-entropy neural networks. In:
Baddeley, R., Hancock, P., Földiák, P. (eds.) Information Theory and the Brain,
ch. 5, pp. 84–100. Cambridge University Press, New York (2000)

13. Haxby, J., Gobbini, M., Furey, M., Ishai, A., Schouten, J., Pietrini, P.: Distributed
and overlapping representations of faces and objects in ventral temporal cortex.
Science 5539(293), 2425–2430 (2001)

http://jn.physiology.org/content/101/2/688.abstract
http://www.jneurosci.org/content/31/34/12229.abstract

Understanding the Semantic Structure 111

14. Josephs, O., Turner, R., Friston, K.J.: Event-related fMRI. Human Brain Map-
ping 5, 243–248 (1997)

15. Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.): Principles of Neural Science, ch.
25-29. McGraw-Hill Education (2000)

16. Kiani, R., Esteky, H., Mirpour, K., Tanaka, K.: Object category structure in re-
sponse patterns of neuronal population in monkey inferior temporal cortex. Journal
of Neurophysiology 97(6), 4296–4309 (2007)

17. Knebel, J.F., Toepel, U., Hudry, J., le Coutre, J., Murray, M.M.: Generating con-
trolled image sets in cognitive neuroscience research. Brain Topogr. 20(4), 284–289
(2008)

18. Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka,
K., Bandettini, P.A.: Matching categorical object representations in inferior tem-
poral cortex of man and monkey. Neuron 60(6), 1126–1141 (2008)

19. Lengnink, K.: Formalisierungen von Ähnlichkeit aus Sicht der Formalen Begriffs-
analyse. Ph.D. thesis, Technische Hochschule Darmstadt, Fachbereich Mathematik
(1996)

20. Lin, C.J.: Projected gradient methods for non-negative matrix factorization. Neural
Computation 19, 2756–2779 (2007)

21. Mishkin, M., Ungerleider, L.G., Macko, K.A.: Object vision and spatial vision: two
cortical pathways. Trends in Neurosciences 6, 414–417 (1983),
http://www.sciencedirect.com/science/article/pii/016622368390190X

22. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

23. Op de Beeck, H.P., Haushofer, J., Kanwisher, N.G.: Interpreting fMRI data: maps,
modules and dimensions. Nat. Rev. Neurosci. 9(2), 123–135 (2008)

24. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical recipes
in C++: the art of scientific computing, 3rd edn. Cambridge University Press, New
York (2007)

25. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)
26. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O.,

Delcroix, N., Mazoyer, B., Joliot, M.: Automated anatomical labeling of activations
in SPM using a macroscopic anatomical parcellation of the mni MRI single-subject
brain. Neuroimage 15(1), 273–289 (2002)

27. Uludag, K., Dubowitz, D., Buxton, R.: Basic principals of functional MRI, pp.
249–287. Elsevier (2005)

28. Walther, D.B., Caddigan, E., Fei-Fei, L., Beck, D.M.: Natural scene categories
revealed in distributed patterns of activity in the human brain. J. Neurosci. 29(34),
10573–10581 (2009)

29. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel, Dordrecht (1982)

http://www.sciencedirect.com/science/article/pii/016622368390190X

Cubes of Concepts: Multi-dimensional

Exploration of Multi-valued Contexts

Sébastien Ferré, Pierre Allard, and Olivier Ridoux

IRISA/Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
Firstname.Lastname@irisa.fr

Abstract. A number of information systems offer a limited exploration
in that users can only navigate from one object to another object, e.g.
navigating from folder to folder in file systems, or from page to page on
the Web. An advantage of conceptual information systems is to provide
navigation from concept to concept, and therefore from set of objects
to set of objects. The main contribution of this paper is to push the
exploration capability one step further, by providing navigation from set
of concepts to set of concepts. Those sets of concepts are structured along
a number of dimensions, thus forming a cube of concepts. We describe a
number of representations of concepts, such as sets of objects, multisets
of values, and aggregated values. We apply our approach to multi-valued
contexts, which stand at an intermediate position between many-valued
contexts and logical contexts. We explain how users can navigate from
one cube of concepts to another. We show that this navigation includes
and extends both conceptual navigation and OLAP operations on cubes.

Keywords: formal concept analysis, information systems, data ex-
ploration, navigation, multi-valued context, multi-dimensional analysis,
OLAP cubes.

1 Introduction

Navigation is a convenient way for exploring data, compared to querying, be-
cause it provides guiding to users during their search, and supports exploratory
search [16]. At each step of a navigation path, users are located at a naviga-
tion place, and a number of navigation links are suggested to them in order to
reach neighbour navigation places. However, most existing systems suffer from
a number of limitations, e.g., file systems and the Web. A first limitation is that
navigation places are objects (e.g., files and folders, Web pages), and users can
therefore only jump from object to object. This makes it difficult to group and
compare objects. A second limitation is that the navigation graph is manually
drawn. As a consequence, the navigation graph is generally very sparse, and re-
quires from users chance or expertise or both to find their way to the searched
objects. For example, if photos are organized in a file system first by date then
by topic, it is easy enough to find photos by date, difficult to find photos by
topic, and impossible to find them by depicted person. A third limitation is

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 112–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Cubes of Concepts: Multi-dimensional Exploration 113

that navigation links may lead to empty results, e.g., an empty folder. This is
a frustrating experience for users who have to resort to tedious trial-and-error.
A fourth limitation is that the navigation path must be linear. At each step,
only one navigation link can be chosen. If users want to explore several naviga-
tion links, they have to choose and explore one, then to move backward in the
navigation history, and choose a second one, and so on.

Conceptual navigation [14,3,15,6,7] overcomes the first three limitations by
relying on Formal Concept Analysis (FCA) [13]. Users navigate from concept to
concept, and hence from set of objects to set of objects. The navigation graph is
the concept lattice, which is automatically derived from data, a formal context,
and therefore automatically adapts to changes in data. Finally, it is easy to
prevent empty results, by removing the bottom concept from the navigation
graph. Regarding the fourth limitation, if the concept lattice is small enough,
the line-diagram enables to view all navigation paths at a glance. In practice,
however, the concept lattice is much too large to be visualized, and only the
current concept and its neighbours are displayed. Existing conceptual navigation
systems follow that principle, and only allow for linear navigation paths.

The contribution of this paper is to extend conceptual navigation to non-linear
navigation paths. Concretely, this means that users can choose a set of navigation
links at some step, leading to a set of concepts. As several multi-choices can be
done in sequence, a navigation place becomes a multi-dimensional set of concepts,
a cube of concepts. We show that our approach covers and extends the multi-
dimensional analysis of OLAP [5,20]. We define cubes of concepts onmulti-valued
contexts, which we introduce in this paper. They extend many-valued contexts
by allowing several values for the attribute of an object, rather than only one.
The advantages of using multi-valued contexts are (1) more general results that
directly apply to many-valued contexts and binary contexts, and (2) a data
model close to databases [4], OLAP [5,20], the Semantic Web [2], and Logical
Information Systems [10].

After introducing useful notations on mappings, multisets, tuples, and FCA in
Section 2, Section 3 defines multi-valued contexts, and value domains. Section 4
defines cubes of concepts to be used as navigation places, and cube transfor-
mations as navigation links. Those cube transformations are proved safe, i.e.
not leading to empty results. Section 5 discusses the representation of cubes of
concepts in Abilis. Section 6 compares cubes of concepts and their transforma-
tions to OLAP cubes and operators. Section 7 compares our approach to other
approaches combining FCA and OLAP.

2 Preliminaries

A mapping M from a set A to a set B is a set of couples a �→ b, where a ∈ A
and b ∈ B, and such that (a, b1) ∈ M ∧ (a, b2) ∈ M ⇒ b1 = b2. It is a partial
function from A to B that is defined in extension. Its domain is noted dom(M),
and its range is noted ran(M). A multiset M over a set A is a mapping from A
to natural numbers N. It generalizes sets by allowing elements to occur several

114 S. Ferré, P. Allard, and O. Ridoux

times in a multiset: a �→ n ∈ M means that a has multiplicity n in M . For
convenience, we define the following notations on a multiset M : Mα = {a �→
n ∈ M | n ≥ α} is the filtering of multiset M by a minimum multiplicity α,
MY = {a �→ n ∈ M | a ∈ Y } is the restriction of the domain of M to Y , and
#M = Σ{n | a �→ n ∈M} is the cardinal of multiset M .

Given a tuple x of dimension n, we denote by xi the i-th component of the
tuple. The notation x is a shorthand for x1 . . . xn. We define the following nota-
tions on tuples: x+x′ = x1 . . . xnx

′ is the extension of a tuple x by an element x′,
x− i = x1 . . . xi−1xi+1 . . . xn is the restriction of a tuple x by removing the i-th
element, x[i ← x′] = x1 . . . xi−1x

′xi+1 . . . xn is the replacement of the i-th ele-
ment by x′, and dom i(X) = {xi | x ∈ X} is the domain of the i-th elements,
where X is a set of tuples of same dimension n.

We here recall some basic notations for Formal Concept Analysis (FCA) [13].
However, we adopt a somewhat novel presentation in that intension is made
a particular case of a more general notion: the index. A formal context is a
triple K = (O,A, I), where O is the set of objects, A is the set of attributes,
and I ⊆ O × A is the incidence relation between objects and attributes. The
extension of a set of attributes Y is defined as the set of objects that have all
the attributes in Y , i.e., ext(Y) = {o ∈ O | ∀a ∈ Y : (o, a) ∈ I}. By abuse of
notation, we will denote by ext({a}) the expression ext(a) for . The index of a
set of objects X is defined as the multiset of attributes of objects in X , where
the multiplicity of each attribute is the number of its objects in X , i.e.,

index (X) = {a �→ n | a ∈ A, n = #(X ∩ ext(a)) �= 0}.

The intent of a set of objects X is then defined as the domain of the index of X
filtered by the maximum frequency, i.e., int(X) = dom(index (X)#X). A concept
c is a pair (X,Y) s.t. X = ext(Y) and Y = int(X): ext(c) = X is called the
extent of c, and int(c) = Y is called the intent of c.

3 Multi-valued Contexts

In order to better represent real datasets and complex data, a number of exten-
sions or generalizations of FCA have been proposed: many-valued contexts [12],
logical contexts [9], pattern structures [11], to cite only a few of them. In particu-
lar, many-valued contexts are equivalent to tables in relational databases. Logical
contexts (and pattern structures) are more general, but miss the distinction be-
tween attributes and values, which will be useful in this paper. Conversely, logical
contexts enable to describe a photo as depicting both Alice and Bob, which is
not possible in a many-valued context where the photo is an object, “depicts” is
an attribute, and persons are values: “depicts” is a multi-valued attribute. The
term “many-valued” means that an attribute can take one among many values,
whereas the term “multi-valued” here means that an attribute can take multi-
ple values at once. Multi-valued attributes do not exist in relational databases
because those are normalized into several tables (one table for photos, and one
table for the “depicts” relation). As FCA generally handles a single table, the

Cubes of Concepts: Multi-dimensional Exploration 115

context, it is important to allow for multi-valued attributes. This leads us to the
definition of multi-valued contexts as a set of triples (object,attribute,value), like
graphs in the RDF data model [2].

Definition 1 (multi-valued context). A multi-valued context is a quadruple
K = (O,A, V, T), where O is the set of objects, A is the set of (valued) attributes,
V is the set of values, and T ⊆ O×A×V is a set of triples. Each triple (o, a, v)
means that v is a value taken by the atribute a on object o.

As the set O × A × V is equivalent to O × A → P(V), a multi-valued context
can also be represented like a many-valued context, but allowing for zero, one or
several values in each cell. The following table defines a multi-valued context Ke

of 6 photos described by the persons they depict, the year they were taken, and
their size in pixels. It has 19 triples.

object person date size
1 Alice 2010-03-19 1.1M
2 Bob 2010-07-13 3.1M
3 Charlie 2011-01-30 1.2M
4 Alice, Bob 2011-04-28 3.2M
5 Alice, Charlie 2011-08-20 1.3M
6 Alice 2011-11-11

This example illustrates the fact that an object can have several values for
an attribute (e.g., the depicted persons of photo 4), or no value at all (e.g., the
size of photo 6). This example is kept small for illustration purposes, but our
approach is designed for datasets with hundreds to thousands of objects, and
tens of attributes.

3.1 Value Domains and Attribute-Value Schemas

In practice, there are interdependencies between attributes and values on one
hand, and between values on the other hand. Each attribute expects values from
a given domain, and the values of a domain can be organized into a generalization
ordering (e.g., locations, date intervals). We first define domains of values in
order to formalize hierarchies of values, and aspects related to OLAP such as
granularity levels, and aggregators.

Definition 2 (value domain). A value domain is a structure
D = (V,�,�, Λ, Γ), where:

– V is the set of values,
– � is a partial ordering (called subsumption) that represents the generaliza-

tion ordering between values, and ≺ is the corresponding covering relation,
– � is a distinguished value, more general than any value,
– Λ ⊆ P(V) is a set of granularity levels, each level λ ⊆ V being defined as a

subset of values,
– Γ is a set of aggregators over multi-sets of values.

116 S. Ferré, P. Allard, and O. Ridoux

The example multi-valued context Ke uses three value domains, respectively for
persons, dates, and sizes.

Person. Values are either persons (e.g., Alice, Bob, Charlie) or groups (e.g.,
family, friends). A person is subsumed by every group it belongs to. Persons
and groups constitute the two granularity levels: Λ = {individual , group}.
The only applicable aggregators are the count (γ(M) = #M) and the dis-
tinct count (γ(M) = #dom(M)).

Date. Values are dates at four granularity levels: days (e.g., 2010-03-19), months
(e.g., 2010-03), years (e.g., 2010), and calendar weeks (e.g., 2010:42). Date
values represent intervals of time, and are hierarchically organized by inclu-
sion. Applicable aggregators are, in addition to the count and distinct count,
the earliest date, the latest date, and the median date.

Size. Values are natural numbers at various precisions (e.g., 1M, 1.2M, 1234k).
There is a granularity level for each level of precision: units (e.g., 1234567),
tens (e.g., 1234.56k), ..., millions (e.g., 1M). Size values represent integer in-
tervals, and are hierarchically organized by inclusion. Applicable aggregators
are, in addition to those of dates, the sum and the average.

There are different ways to define the hierarchy of values of a value domain. A
first way is to use scale contexts [12] when the set of values is finite and fixed. A
second way is to define logics as in Logical Concept Analysis (LCA, [10]), which
works well for infinite domains (e.g., integers, dates, geographic shapes), and
allows for the dynamic and automatic insertion of new values in the hierarchy.

Subsumption can be extended from values to granularity levels: for any two
levels λ1, λ2, we have λ1 � λ2 iff for every v1 ∈ λ1, there exists v2 ∈ λ2 s.t.
v1 � v2. While levels are generally disjoint and totally ordered, they need not be.
A classical example is the date domain, with four disjoint levels: days, months,
weeks, and years. The level “day” is subsumed by the levels “month” and “week”,
both of which are in turn subsumed by the level “year”, but neither “month” is
subsumed by “week” nor the converse. Sometimes, there are no natural levels,
and we want to define them from the topology of the hierarchy. Each level
corresponds to a certain depth in the hierarchy, and they may overlap.

Definition 3 (topological levels). Let D = (V,�,�, Λ, Γ) be a value domain.
The granularity level λ(p) denotes the topological level at depth p, and is recur-
sively defined as follows for every p > 0:

– λ(0) = {�},
– λ(p+ 1) = {v ∈ V | ∃v′ ∈ λ(p) : v ≺ v′} ∪ {v ∈ λ(p) | �v′ ∈ V : v′ ≺ v}.

3.2 Attribute Contexts and Feature Context

A multi-valued attribute is a binary relationship between objects and values. A
formal context can therefore be derived for each attribute, with the help of a
value domain for handling subsumption between values. It is called an attribute
context, and it plays the same role as a realized scale.

Cubes of Concepts: Multi-dimensional Exploration 117

Table 1. The feature context of the multi-valued context Ke on photos (only some
levels of values are shown)

person date size
photo Alice Bob Charlie 2010 2011 1M 3M

1 × × ×
2 × × ×
3 × × ×
4 × × × ×
5 × × × ×
6 × ×

Definition 4 (attribute context). Let K = (O,A, V, T) be a multi-valued
context, a ∈ A be an attribute, and D a value domain for a. The attribute
context of a is defined as Ka = (O, Va, Ia), where Ia = {(o, v) ∈ O × Va |
(o, a, v′) ∈ T, v′ �a v}.

In the attribute context Ka, exta(Y) is the set of objects having all values of Y
as values of the attribute a (directly or by subsumption), e.g., the set of photos
depicting a set of persons together; indexa(X) is the mappings from values in Va

to their frequency as the value of the attribute a over the set of objects X , e.g.,
the distribution of persons that are depicted in a given set of photos. Finally,
inta(X) is the set of values in Va occurring in all objects inX through attribute a,
e.g., the set of persons depicted by all elements of given set of photos.

The feature context KF is the apposition (see p. 30 in [13]) of all attribute
contexts, distinguishing values by prefixing them with attributes. This is the
natural translation of a multi-valued context into a formal context.

Definition 5 (feature context). Let K = (O,A, V, T) be a multi-valued con-
text, and (Da)a∈A be a collection of value domains. The feature context is defined
as KF = (O,F, IF), where the set of features F , and the incidence relation IF
between objects and features is defined by:

– F = {(a, v) | a ∈ A, v ∈ Va},
– IF = {(o, (a, v)) | (o, a, v′) ∈ T, v′ �a v}.

In the feature context, the extension extF (Y) returns the set of objects having a
set of features Y ; and the index indexF (X) returns the distribution of features
over a set of objects X . Table 1 contains a partial representation of the feature
context of Ke, showing only one level of values for each attribute (persons, years,
and millions of pixels). The FCA operations of the feature context can be related
to the FCA operations of attributes contexts as in Lemma 1.

Lemma 1. The following equations holds for every multi-valued context K:

1. extF ((a, v)) = exta(v),
2. intF (X) =

⋃
a∈A{(a, v) | v ∈ inta(X)},

3. indexF (X) =
⋃

a∈A{(a, v) �→ n | v �→ n ∈ indexa(X)}.

118 S. Ferré, P. Allard, and O. Ridoux

4 Cubes of Formal Concepts as Navigation Places

In conceptual navigation, navigation places are formal concepts. We are here
interested in navigating in the concept lattice of the feature context because it
contains all the information of a multi-valued context, and its associated value
domains. In the following, we assume a multi-valued context K = (O,A, V, T)
together with value domains Da for each a ∈ A, and its derived feature con-
text KF = (O,F, IF). In this paper, we start from the framework of Logical In-
formation Systems (LIS, [10]) with a restriction to conjunctive queries, whereas
disjunction and negation are generally available in LIS. For the sake of sim-
plicity, we will stick in this paper to this restriction, but the following results
easily extent to Boolean queries. In LIS, the current concept c is defined by
ext(c) = extF (q), where q ⊆ F is the current query. This query is the result
of the successive choices of a single feature (single-choices) among those sug-
gested by the system, starting from the empty set, and hence from the top
concept. We now want to extend conceptual navigation to choices of multiple
features (multi-choices), in order to escape the linearity limitation, and to pro-
vide multi-dimensional analysis. This raises the following questions: What is a
natural multi-choice? What is a navigation place after performing a multi-choice?
What defines such a navigation place?

Starting from the example multi-valued context Ke, suppose a user wants to
look at photos by depicted person. He can select in turn each person, successively
visiting the concepts 1456, 24, and 35 (for convenience, we name concepts after
their extension: 24 is the concept whose extension is {2, 4}). This is tedious
and unpractical for comparing the three subsets of photos. Alternately, the user
could perform a multi-choice of the three persons, leading him to the set of
the three concepts, indexed by the three persons. This results in the mapping
{Alice �→ 1456,Bob �→ 24,Charlie �→ 35}. From there, the user wants to focus on
photos depicting Alice, and performs a single choice of the feature (person ,Alice).
The effect of this single-choice applies to each of the three above concepts, leading
to the mapping {Alice �→ 1456,Bob �→ 4,Charlie �→ 5}. Bob and Charlie persist
as indices because they are depicted with Alice on some photos. Finally, the user
performs a second multi-choice of sizes at the level of millions (1M and 3M). The
effect of this multi-choice applies to each concept of the last mapping, producing
a mapping of mappings or, in a more compact form, a mapping from couples
(person, size) to concepts: {(Alice, 1M) �→ 15, (Alice, 3M) �→ 4, (Bob, 3M) �→
4, (Charlie , 1M) �→ 5}. Only concepts whose extension is not empty are retained,
so that not all combinations of a person and a size are present.

This example scenario shows that a natural multi-choice is a granularity level
of some attribute, which we define as an axis in analogy with graph axes.

Definition 6 (axis). An axis x = a/λ combines an attribute a ∈ A and a
granularity level λ ∈ Λa for that attribute. In the following, a(x) denotes the
attribute of the axis, λ(x) denotes the level of the axis, and indexx(X) is a
shorthand for (index a(X))λ, the a-index over objects X, restricted to the level λ.

Cubes of Concepts: Multi-dimensional Exploration 119

The example scenario also shows that navigation places are now mappings from
tuples of values to concepts of the feature context. Those mappings are equivalent
to n-dimensional arrays, where n is the size of tuples. Because the dimension of
those arrays can be any natural number, and in analogy with OLAP, we call them
cubes of concepts. Section 7 compares them to OLAP cubes. What determines
such a cube is a sequence of single-choices and multiples-choices. The sequence
of single-choices amounts to a set of features, the query q, and the sequence of
multi-choices amounts to a tuple of axes, the dimension tuple d.

Definition 7 (cube of concepts). Given a query q ⊆ F , and a tuple d of
n axes as dimensions, the cube of concepts is defined as a mapping from coor-
dinates (tuples of values) to concepts:

Cube(q, d) = {v �→ c | v ∈
n∏

i=1

λ(di), ext(c) = extF (q) ∩
n⋂

i=1

ext((a(di), vi)) �= ∅}.

The above example shows that different concepts in a cube of concepts may
overlap, and even that a same concept can appear at different coordinates. This
comes from multi-valued contexts, where an object can have several values on a
same axis (e.g., Alice and Bob as depicted persons). The example also shows that
some coordinates, i.e. some combinations of values, may be missing in the cube.
The reason is that either no object matches this combination, or an object has
no value on some axis (e.g., photo 6 has no size value). Those are key differences
with OLAP cubes (Section 7).

It is possible to generalize some definitions from concepts to cubes.

Definition 8. The extension of the cube of concepts is the union of the exten-
sions of the concepts. The intent and index of a cube of concepts can be derived
from its extension as usual.

ext(C) =
⋃

v �→c∈C

ext(c) int(C) = intF (ext(C)) index (C) = indexF (ext(C))

Beware that the extension of a cube is not necessarily a concept extension, be-
cause concept extensions are not closed under set union. However, it is important
not to close it, so that the index index (ext(C)) properly reflects the contents of
the cube, and not the larger extF (int(C)) that may contain objects not visible
in the cube.

In LIS, navigation links are defined by query transformations [7], rather than
by the covering relation of the concept lattice. Query transformations are the
addition or the removal of a feature, and combinations such as the replacement
of a feature. Adding a feature f to a query q, noted q + f , provides downward
navigation in the concept lattice. This gives access not only to lower neighbours,
but also to concepts deeper in the lattice. All relevant features are suggested as
navigation links, and not only those leading to a lower neighbour. Removing a
feature f , noted q − f , provides upward navigation in the concept lattice. Of
course, features can be removed in a different order they were added to the

120 S. Ferré, P. Allard, and O. Ridoux

query. Addition and removal can be combined to provide sideward navigation,
e.g., shifting from photos of Alice in 2010 to photos of Bob in 2010, and then to
photos of Bob in 2011.

In this paper, because navigation places are cubes of concepts, we define
navigation links as transformations of cubes of concepts. As a cube of concepts
is made of a query q and a tuple of dimensions d, the above query transformations
equally apply to cubes of concepts. A second way to transform a cube is to change
the dimensions of the cube. Possible transformations are:

– d+ d′: the addition of a dimension d′,
– d− i: the removal of a dimension di,
– σ(d): a permutation σ on d to change the ordering of dimensions.

An important property of conceptual navigation is safeness, i.e. to suggest only
navigation links that lead to concepts whose extension is not empty. This is im-
portant to avoid dead-ends, trial-and-error navigation, and hence frustration for
users. With cubes of concepts, navigation is safe if it never leads to empty cubes.
The following theorem states the conditions under which a cube transformation
is safe.

Theorem 1. Let C = Cube(q, d) be a cube of concepts. The specializing cube
transformations are safe under the following conditions:

– Cube(q + f, d) if f ∈ indexF (ext(C)),
– Cube(q, d+ d′), if index d′(ext(C)) �= ∅.

The generalizing transformations Cube(q − f, d) and Cube(q, d − i), as well as
the permutation transformation Cube(q, σ(d)), are necessarily safe.

Proof. We give the proofs for the specializing transformations. The proof for
other transformations are trivial.

– Proof for Cube(q + f, d):
f ∈ indexF (ext(C))
⇒ extF (f) ∩ ext(C) �= ∅
⇒ extF (f) ∩

⋃
v �→c∈C ext(c) �= ∅ (Definition 8)

⇒ ∃v �→ c ∈ C : extF (f) ∩ ext(c) �= ∅ (Definition 7)
⇒ ∃v ∈

∏
i λ(di) : extF (f) ∩ (extF (q) ∩

⋂
i ext((a(di), vi))) �= ∅

⇒ ∃v ∈
∏

i λ(di) : extF (q + f) ∩
⋂

i ext((a(di), vi)) �= ∅
(because ext(f) ∩ ext(q) = ext(q ∪ {f}) = ext(q + f))

⇒ ∃v �→ c′ ∈ Cube(q + f, d)
⇒ Cube(q + f, d) �= ∅.

– Proof for Cube(q, d+ d′):
index d′(ext(C)) �= ∅
⇒ indexa(d′)(ext(C))λ(d′) �= ∅ (Definition 6)
⇒ ∃v′ ∈ λ(d′) : v′ ∈ indexa(d′)(ext(C))
⇒ ∃v′ ∈ λ(d′) : (a(d′), v′) ∈ indexF (ext(C))
⇒ ∃v′ ∈ λ(d′) : extF ((a(d′), v′)) ∩ ext(C) �= ∅ (Lemma 1)

Cubes of Concepts: Multi-dimensional Exploration 121

⇒ ∃v �→ c ∈ C : ∃v′ ∈ λ(d′) : ext((a(d′), v′)) ∩ ext(c) �= ∅ (Definition 8)
⇒ ∃v ∈

∏
i λ(di) : ∃v′ ∈ λ(d′) : ext((a(d′), v′)) ∩ (extF (q) ∩⋂

i ext((a(di), vi))) �= ∅
⇒ ∃v + v′ ∈ (

∏
i λ(di)) × λ(d′) : extF (q) ∩ ((

⋂
i ext((a(di), vi))) ∩

ext((a(d′), v′))) �= ∅
⇒ ∃v + v′ �→ c′ ∈ Cube(q, d+ d′)
⇒ Cube(q, d+ d′) �= ∅. �

The condition for the addition of a feature to the query is the same as previously
known in LIS. It establishes the feature index indexF (ext(C)) of a cube C as the
set of features that can be added to the query. The condition for the addition
of a dimension involves the indexes for each axis, which are included in the
feature index (see Lemma 1). Therefore, the extension of conceptual navigation
from concepts to cubes of concepts does not entail any increase in the size of
suggested navigation links. A suggested dimension is simply an axis that shares
values with the feature context. This is consistent with multi-choices being sets
of choices.

5 Representation and Interaction in Abilis

In LIS systems, e.g. Camelis and Abilis1, the current concept c is represented
by the query q that defines it, the extension ext(c) of the concept as a list of
objects, and the feature index index (ext(c)) over that extension, which includes
the intension int(c) of the current concept. The feature index is organized by
attribute, like facets in Faceted Search [18], and is displayed as a tree to reflect
the generalization ordering between values. The query can be transformed by
selecting features in the index. A feature is removed from the query if it belongs
to it, otherwise it is added to the query.

Multi-dimensional conceptual navigation with cubes of concepts has been im-
plemented in Abilis, along with rich capabilities to represent cubes of concepts.
With a cube of concepts C = Cube(q, d), we still have a query q, an exten-
sion ext(C), and an index indexF (ext(C)) over that extension. The index is also
the support of interaction by suggesting features and axes to be added or re-
moved from the cube. The important difference is that a navigation place is a set
of concepts projected at some coordinates instead of a single concept. Each con-
cept defines a unit of knowledge, and has many possible concrete representations.
The two obvious representations of a concept are its extension and its intention.
Other useful representations are attribute indexes, and also aggregations of at-
tribute indexes. By analogy with OLAP, we call a possible representation of a
concept a measure, even if OLAP measures are generally limited to aggregated
values.

Definition 9 (measure). A measure is defined as any function from a concept
to a piece of data representing some aspect of that concept. Given a multi-valued

1 Abilis is a Web interface (try it at http://ledenez.insa-rennes.fr/abilis/) on
top of Camelis (download it at http://www.irisa.fr/LIS/ferre/camelis/)

122 S. Ferré, P. Allard, and O. Ridoux

context K, the measures for a concept c that we have implemented in Abilis
are the extension ext(c) (noted ext), the count #ext(c) (noted count), the index
over some axis indexx(ext(c)) (noted x), and the aggregated index over some
axis γ(indexx(ext(c))) (noted γ(x)).

For example, the concept 1456 has the following representations.

measure result
ext {1, 4, 5, 6}
count 4
person/individual {Alice �→ 4,Bob �→ 1,Charlie �→ 1}
date/year {2010 �→ 1, 2011 �→ 3}
size/million {1M �→ 2, 3M �→ 1}
sum(size/million) 5M

In Abilis, an extension is represented as a list of objects, which can be displayed
only in part if too long. An index over some axis is a multiset of values, and
can therefore be represented as a tag cloud, where the font size renders the
multiplicity of values. An aggregated index is generally a numerical value, but
it could be anything. For example, in a domain where values are geometrical
shapes, an aggregated value can be a geometrical shape (e.g., union, centroid,
buffer area). If those geometrical shapes are geo-located, they can be rendered
on a map.

The definition of a cube of concepts can be refined as a cube of concept mea-
sures, which is defined by a tuple of measures in addition to the query and
dimensions.

Definition 10 (cube of concept measures). Given a query q ⊆ F , a tuple d
of n axes as dimensions, and a tuple of p measures m, the cube of concept
measures is defined as

Cube(q, d,m) = {v �→ (mj(c))j∈1..p | v �→ c ∈ Cube(q, d)}.

After describing the possible representations of individual concepts, we need to
describe the possible representations of cubes of concepts. In other words, how
to represent the multi-dimensional structure of a cube in rich and flexible ways.
Abilis provides the following structures:

Arrays. Arrays can be used for all dimensions. They use values as row/column
labels, and their cells can contains arbitrary representations of dimensions
and measures. There are three kinds of arrays: horizontal arrays, vertical
arrays, and two-dimensional arrays (spreadsheets). The later represents two
dimensions at a time.

Bar Charts. Bar charts can be used to represent the last dimension when the
measure is an aggregated numerical value. There are horizontal and vertical
bar charts.

Pie Charts. Pie charts can be used in the same conditions as bar charts.
Maps. Maps can be used to represent a geographical dimension.

Cubes of Concepts: Multi-dimensional Exploration 123

Fig. 1. Screenshot of Abilis showing the distribution over years of publications in jour-
nals and conferences since 2000 by author and by type of publication

Figure 1 is a screenshot of our prototype Abilis. It displays a cube of concept
measures showing the distribution over years of publications in journals and con-
ferences since 2000 by author and by type of publication. The query is at the top
left, the feature index is at the bottom left, the selected dimensions and measure
are at the top right along with representation choices, and the cube itself, here a
two-dimensional array of tag clouds, is at the bottom right. There are many pos-
sible ways to navigate to this view from the initial cube Cube(∅, (), ext), because
the definition of the query, dimensions, and measures can be interleaved arbi-
trarily. Here is a possible scenario. Initially, the list of all 208 publications of the
context is displayed in a zero-dimensional cube. Then, this list is grouped by LIS
team author by choosing the attribute lis author as a dimension. This results
in a vertical array of lists of publications indexed by author. Note that a same
publication may appear in several lists (in several cells of the array) because a
publication may have several authors (lis author is multi-valued). Then, the
results are restricted to journal and conference papers by selecting the two fea-
tures type is "article" and type is "inproceedings". Note that disjunc-
tion (and negation) is available in Abilis, like in other LIS systems. Then, by
choosing the attribute year as a measure, lists of papers are replaced by tag
clouds of years in each cell. From there, it would be possible to apply an aggre-
gator such as average, minimum or maximum. Those tag clouds can be restricted
to years since 2000 by adding the feature year = 2k to the query. Finally, in or-
der to get a finer analysis of the distribution of years of publication, the attribute
type is selected as an additional dimension, which results in a two-dimensional
array of tag clouds. Note how the attribute type is used both as a dimension
and in the query, and how the attribute year is used both as a measure and in
the query.

124 S. Ferré, P. Allard, and O. Ridoux

6 Comparison with OLAP

OLAP (On-Line Analytical Processing) [5,20] is an approach to the multi-
dimensional exploration of data, and it is part of the domain of business intelli-
gence. OLAP does not add any expressiveness compared to relational databases,
and in fact is less expressive, but it makes it much easier and quicker to per-
form aggregative queries than with SQL. The principle is to let users navigate
from view to view, and in this respect, it follows the same goals as conceptual
navigation. In this section, we compare our approach to OLAP, and we show
that it covers all OLAP representations and operations, and that it allows for
more flexibility and expressiveness than OLAP. However, it should be noted that
there is a trade-off between expressiveness and efficiency, and that some of the
restrictions seen in OLAP are useful to accelerate some computations.

In OLAP, a same structure, called an OLAP cube, is used both for representing
data and for representing views. An OLAP cube is a multidimensional database
that is defined by n dimensions (e.g., date and place), p measures (e.g., sales),
and a mapping from tuples of n values (e.g., December 2011 and Rennes) to
aggregated values for the measure (e.g., total sales). Therefore, an OLAP cube
is equivalent to a cube of concept measures, where measures are all aggregated
indexes. In our approach, data is represented as a multi-valued context, from
which many different cubes can be defined by varying dimensions and measures.
Moreover, elements of the cubes need not be aggregated values, but can also be
sets of objects (extension), and multisets of values (indexes). In fact, the objects
from which an OLAP cube may have been defined have been lost because they
have been aggregated in the preprocessing stage. On the contrary, multi-valued
contexts are object-centered.

The object-centered approach allows for more flexibility and hetero-
geneity in data, such as multi-valued attributes or missing values. Sup-
pose we have the cube of the sum of the size of photos, by per-
son: Cube(∅, person/individual , sum(size/million)) = {Alice �→ 5M,Bob �→
6M,Charlie �→ 2M}. This is a valid OLAP cube. Now, suppose we want to
aggregate those sizes to get the total size of photos. The result in OLAP would
be 13M , whereas the correct result, as given by our approach, is 9M . This is
because a photo can have several persons, and this is why OLAP assumes a
strict partition between the values of a dimension.

OLAP defines a number of operators on cubes that play the same role as our
cube transformations. We translate each of those operators in our approach:

Slice. The selection of a sub-cube of dimension n − 1 by fixing the value of
some dimension. In our approach, this is equivalent to adding a feature to
the query, and removing a dimension. A difference is that any feature can
be selected, whether it belongs to a dimension or a measure or none.

Add Dimension. The addition of a dimension. In OLAP, this is restricted to
predefined dimensions, while in our approach, this can be any attribute.

Remove Dimension. The removal of a dimension. In OLAP, this necessarily
entails an aggregation.

Cubes of Concepts: Multi-dimensional Exploration 125

Pivot The swap of two dimensions. This is a particular case of permutation in
our approach.

Drill-Down. The change of a dimension level for a finer granularity level (e.g.,
from years to months or weeks). In our approach, this is equivalent to re-
moving a dimension axis a/λ, and adding the axis a/λ′, where λ′ ≺ λ. Abilis
provides a direct navigation link for drill-down.

Roll-Up. The converse of drill-down, i.e. the change of a dimension level for a
coarser granularity level (e.g., from months to years).

This demonstrates the flexiblity and expressiveness of our approach. All at-
tributes can be used in the query, dimensions, and measures, and a same at-
tribute can play several roles at the same time. An attribute can even be used
twice as a dimension, which makes sense when the attribute is multi-valued. For
example, the cube Cube(∅, (person/individual , person/individual), count) dis-
plays the number of photos for each couple of persons (and for each person
on the diagonal of the array).

Finally, our approach allows for drill-down and roll-up on the measures that
are based on an axis, because an axis is parameterized by a level. This is particu-
larly useful when the measure is an index, i.e. a multiset of values. For instance,
we can display for each person, the multiset of the dates of their photos, and
those dates can be displayed at the level of years or months or weeks or days.
This has proved useful for discovering functional dependencies and association
rules in multi-valued contexts [1].

7 Related Work

We compare our approach to other approaches combining FCA and OLAP.
Stumme [19] describes conceptual OLAP for conceptual information systems. His
approach is very similar to OLAP, except for the definition of hierarchies of di-
mension values, and therefore has the same limitations as OLAP (see Section 6).
A many-valued context defines the multi-dimensional space. Each attribute de-
fines a dimension, whose hierarchy of values is the conceptual scale derived from
a scale context. Those conceptual scales have no defined levels, apart from the
default topological levels as in Definition 3. The measures, called variables, are
defined out of the context, as functions from objects of the many-valued context
to values. Therefore, dimensions and measures are strongly separated, and only
aggregated measures are available. The only structures for representing cubes
are the line-diagrams of the conceptual scales, which have to be designed in ad-
vance for better presentation. Each line-diagram represents one dimension, and
nested line-diagrams are used to represent multi-dimensional cubes. Measure
values appear as labels of the concepts of the innermost line-diagrams. Nested
line-diagrams are an alternative to nested arrays. They need more space but
they better expose complex hierarchies of values.

Penkova and Korobko [17] apply standard FCA on cube schemas, instead of on
cubes themselves. They start from a formal context where objects are measures,

126 S. Ferré, P. Allard, and O. Ridoux

attributes are dimensions, and the incidence relation is the compatibility relation
between measures and dimensions. For instance, in a dataset about the activi-
ties of a scientific organization, the dimension “journal name” is compatible with
the measure “number of published paper” but not with “number of established
conferences”. A formal concept is a maximal cube schema: no dimension can
be added without removing measures. The concept lattice can be used to guide
users on the addition of dimensions (moving downward) or measures (moving
upward). This approach is interesting when different kinds of objects are mixed
(e.g., established conferences and published papers), and some dimensions only
apply to some kinds of objects. In our approach, the feature index offers the
same benefits by showing for each attribute whether it applies to all objects in
the current cube, or only to a subset. And this comes without the usual limita-
tions with OLAP: assymetry between dimensions and measures, only aggregated
values as measures, etc. Applying our approach to the above examples, objects
would be the individual published papers and established conferences, and their
number would be obtained by choosing count as a measure. Other measures
would allow to visualize the objects themselves, or the distribution of authors
for papers.

8 Conclusion

The contribution of this paper is to extend conceptual navigation from single-
concept views to cubes-of-concepts views. This means that, at each navigation
step, the view is not limited to a single concept, but to a set of concepts, organized
into a multi-dimensional cube. The single-concept view is a special case of a cube
of concepts, having dimension 0. An important difference with OLAP is that
each cube cell is a concept, which can be represented by a number of measures:
a set of objects (the extension), a multiset of values (an attribute index), or an
aggregated value. Finally, the cube need not cover the whole dataset, but can
focus on a given subset, which is defined by a query.

Our approach generalizes OLAP cubes and navigation between cubes by re-
laxing a number of constraints. Cubes are derived from an object-centered multi-
valued context, where no distinction is made between dimensions and measures,
and where objects are not aggregated a priori. Objects can have several values
for a same attribute. A same attribute can be used in a query, as a dimension,
and as a measure at the same time. Drill-down and roll-up equally apply to
dimensions and measures.

Our approach retains some constraints from OLAP relative to relational
databases in terms of expressiveness. In particular, in a multi-valued context,
the entities of a relational database must clearly be separated between objects
and values. In another work, we have extended conceptual navigation and LIS
to relational data from the Semantic Web [8]. Our goal is now to join the two
extensions into one: multi-dimensional and relational conceptual navigation.

Cubes of Concepts: Multi-dimensional Exploration 127

References

1. Allard, P., Ferré, S., Ridoux, O.: Discovering functional dependencies and associa-
tion rules by navigating in a lattice of OLAP views. In: Kryszkiewicz, M., Obiedkov,
S. (eds.) Concept Lattices and Their Applications, pp. 199–210. CEUR-WS (2010)

2. Antoniou, G., van Harmelen, F.: A Semantic Web Primer. MIT Press (2004)
3. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its appli-

cation to browsing retrieval. Machine Learning 24(2), 95–122 (1996)
4. Codd, E.F.: A relational model of data for large shared data banks. Communica-

tions of the ACM 13(6), 377–387 (1970)
5. Codd, E., Codd, S., Salley, C.: Providing OLAP (On-line Analytical Processing)

to User-Analysts: An IT Mandate. Codd & Date, Inc., San Jose (1993)
6. Ducrou, J., Eklund, P.: An intelligent user interface for browsing and search MPEG-

7 images using concept lattices. Int. J. Foundations of Computer Science 19(2),
359–381 (2008)

7. Ferré, S.: Camelis: a logical information system to organize and browse a collection
of documents. Int. J. General Systems 38(4) (2009)

8. Ferré, S.: Conceptual Navigation in RDF Graphs with SPARQL-Like Queries.
In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 193–208.
Springer, Heidelberg (2010)

9. Ferré, S., Ridoux, O.: A Logical Generalization of Formal Concept Analysis. In:
Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS(LNAI), vol. 1867, pp. 371–384.
Springer, Heidelberg (2000)

10. Ferré, S., Ridoux, O.: An introduction to logical information systems. Information
Processing & Management 40(3), 383–419 (2004)

11. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delu-
gach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142.
Springer, Heidelberg (2001)

12. Ganter, B., Wille, R.: Conceptual scaling. In: Roberts, F. (ed.) Applications of
Combinatorics and Graph Theory to the Biological and Social Sciences, pp. 139–
167. Springer (1989)

13. Ganter, B., Wille, R.: Formal Concept Analysis — Mathematical Foundations.
Springer (1999)

14. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Ga-
lois lattice with conventional information retrieval methods. International Journal
of Man-Machine Studies 38(5), 747–767 (1993)

15. Lindig, C.: Concept-based component retrieval. In: IJCAI Work. Formal Ap-
proaches to the Reuse of Plans, Proofs, and Programs. Morgan Kaufmann (1995)

16. Marchionini, G.: Exploratory search: from finding to understanding. Communica-
tions of the ACM 49(4), 41–46 (2006)

17. Penkova, T., Korobko, A.: Constructing the integral OLAP-model based on for-
mal concept analysis. In: MIPRO, International Convention, pp. 1544–1548. IEEE
(2011)

18. Sacco, G.M., Tzitzikas, Y. (eds.): Dynamic taxonomies and faceted search. The
information retrieval. Springer (2009)

19. Stumme, G.: Conceptual on-line analytical processing. In: Tanaka, K., Ghande-
harizadeh, S., Kambayashi, Y. (eds.) Information Organization and Databases.
The Kluwer International Series in Engineering and Computer Science, vol. 579,
pp. 191–203. Springer, US (2001)

20. Vassiliadis, P., Sellis, T.K.: A survey of logical models for OLAP databases. SIG-
MOD Record 28(4), 64–69 (1999)

Ordinal Factor Analysis

Bernhard Ganter and Cynthia Vera Glodeanu

Institut für Algebra,
Technische Universität Dresden

Bernhard.Ganter@tu-dresden.de,
Cynthia_Vera.Glodeanu@mailbox.tu-dresden.de

Abstract. We build on investigations by Keprt, Snásel, Belohlavek, and
Vychodil on Boolean Factor Analysis. Rather than minimising the num-
ber of Boolean factors we aim at many-valued factorisations with a small
number of ordinal factors.

Keywords: Factor analysis, Order dimension, Ordinal factor.

1 Introduction

Factor Analysis, in particular Principal Component Analysis, is a popular tech-
nique for analysing metric data. It allows for complexity reduction, representing
a large part of the given data by a (preferably) low number of unobserved “latent”
attributes.

Recently a similar approach was discussed for qualitative data, for data that
can be represented in a formal context, and a nice strategy for finding so-called
Boolean factors was found.

However, such Boolean factors have limited expressiveness due to their unary
nature. It can hardly be expected that much of a complex data set can be
captured by only a few Boolean factors.

But even a large factorisation may be useful provided the factors are concep-
tually “well behaved” and can be grouped into well-structured families, which
then may be interpreted as many-valued factors. These are given by the concep-
tual standard scales of Formal Concept Analysis. Here we focus on the case of
(one-dimensional) ordinal scales.

2 Conceptual Factorisation

Definition 1. A factorisation of a formal context (G,M, I) consists of formal
contexts (G,F, IGF) and (F,M, IFM) such that

g I m ⇐⇒ g IGF f and f IFM m for some f ∈ F.

The elements of F are called Boolean factors, (G,F, IGF) and (F,M, IFM) are
the factorisation contexts. We write

(G,M, I) = (G,F, IGF) ◦ (F,M, IFM)

to indicate a factorisation.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 128–139, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Ordinal Factor Analysis 129

The investigation of such factorisations and their relation to Formal Concept
Analysis goes back to A. Keprt and V. Snásel (see [1] and [2]) and was pushed
forward by R. Belohlavek and V. Vychodil (see e.g. [3] and [4]) under the name of
“Boolean Factor Analysis” (but see also e.g., P. De Boeck and S. Rosenberg [5]).
Extensive information about related work is given in [4]. For better compatibility
with the language of Formal Concept Analysis we slightly deviate from these
authors’ terminology.

To each factorisation there corresponds a factorising family

{(Af , Bf) | f ∈ F}
given by

Af := {g ∈ G | g IGF f} and Bf := {m ∈M | f IFM m}.
Such families are easy to characterise: A family {(Af , Bf) | f ∈ F} is a factoris-
ing family of (G,M, I) iff

I =
⋃

f∈F

Af ×Bf .

Expressed in words this says that the factorising families are precisely the families
of preconcepts of (G,M, I) covering all incidences. As an obvious consequence
we get that each factorisation is uniquely determined by its factorising family.

Each preconcept can be enlarged to a formal concept (though not uniquely).
Each factorising family therefore may, without increasing the number of Boolean
factors, be made to a factorising family of concepts. Such a factorisation will be
called conceptual.

A key question of the abovementioned investigations concerned optimal fac-
torisations, i.e. such with the smallest possible number of Boolean factors. The
task of filling a given relation I ⊆ G × M by as few as possible “rectangles”
A×B ⊆ I had been studied earlier under the name set dimension (see [6] and
the literature cited there), and is known to be difficult. There is a close connec-
tion to the 2-dimension of the complementary context, which is the number of
atoms of the smallest Boolean algebra that admits an order embedding of the
concept lattice of the complementary context B(G,M,G×M \ I). Indeed, the
following proposition is an easy consequence of [4] and the dimension theory in
[6]:

Proposition 1. The smallest possible number of Boolean factors of (G,M, I)
equals the 2-dimension of B(G,M,G×M \ I).
Example 1. Consider the formal context in Figure 1, which is part of Wille’s
data on Components of musical experience, see [7]. It can be factored using
seven Boolean factors (in several ways, one of which is shown in Figure 3). This
is no big deal since there is a trivial factorisation with eight Boolean factors
(see below). The concept lattice of the complementary context is depicted in
Figure 2. It contains a chain of length six with a narrow M3. This implies that
it cannot be embedded into a 6-dimensional Boolean algebra. Therefore seven is
the smallest possible number of Boolean factors.

130 B. Ganter and C.V. Glodeanu

m
1

:r
ou

nd
ed

m
2

:b
al

an
ce

d
m

3
:d

ra
m

at
ic

m
4

:t
ra

ns
pa

re
nt

m
5

:w
el

l-s
tr

uc
tu

re
d

m
6

:s
tr

on
g

m
7

:l
iv

el
y

m
8

:s
pr

ig
ht

ly
m

9
:r

hy
th

m
is

in
g

m
1
0
:f

as
t

m
1
1
:p

la
yf

ul

g1 × × × × ×
g2 × × × ×
g3 × × × × × ×
g4 × × × × × × ×
g5 × × ×× × ×
g6 × × × × × × × ×
g7 × × × × ×
g8 × ×× × ×

Fig. 1. Components of musical experience (from R. Wille [7], part). The objects are
musical pieces, six of them by L.v.Beethoven (g1: Romance for violin and orchestra F-
major, g2: 9th symphony, 4th movement (presto), g3: Moonlight sonata, 3rd movement,
g4: Spring sonata, 1st movement, g5: String quartet op.131, final movement, g6: Great
fuge op. 133) and two by J.S.Bach (g7: Contrapunctus I, g8: WTP 1, prelude c minor).
Boldface crosses indicate tight incidences.

An incident object-attribute pair (g,m) ∈I is called tight iff there is no pair
(h, n) ∈I such that

[γh, μn] � [γg, μm].

It is easy to see that for a conceptual factorisation it suffices to cover the tight
incidences by formal concepts, because the other incidences will then automati-
cally be covered. This is sometimes useful for the computation of the set dimen-
sion, since it reduces the size of the corresponding set cover problem. The tight
incidences correspond to the double arrows of the complementary context.

Note that in a conceptual factorisation of (G,M, I) the second factorisation
context is determined by the first. Indeed, we get from Bf = AI

f that

f IFM m ⇐⇒ m ∈ AI
f = (f IGF)I .

Proposition 2. For any conceptual factorisation with factor set F the dual
attribute order of (G,F, IGF) is the same as the object order of (F,M, IFM).

Proof. If f IGF
1 ⊆ f IGF

2 then Af1 = f IGF
1 ⊆ f IGF

2 = Af2 and thus Bf1 = AI
f1

⊇
AI

f2
= Bf2 and therefore f IFM

1 ⊇ f IFM

2 . The converse is similar.

The condition given in this proposition is not in general sufficient. The next
theorem characterises the conceptual factorisation contexts. It turns out that a

Ordinal Factor Analysis 131

Fig. 2. A diagram of the concept lattice of the formal context (G, M, G×M \I), where
(G, M, I) is given in Figure 1. The shaded substructure does not fit into a Boolean
algebra with six atoms.

f1 f2 f3 f4 f5 f6 f7

g1 × ×
g2 ×
g3 × ×
g4 × × ×
g5 × ×
g6 × × ×
g7 × ×
g8 ×

◦

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11

f1 × × × × ×
f2 × × × × × × ×
f3 × × × ×
f4 × × × × ×
f5 × × × ×
f6 × × × × ×
f7 × ×

Fig. 3. A conceptual factorisation of the formal context from Figure 1

conceptual factorisation links each factor context to the complementary context
of the other.

Theorem 1. (G,F, IGF) and (F,M, IFM) are the factorisation contexts of a
conceptual factorisation if and only if

1. all intents of (G,F, IGF) are extents of (F,M,F ×M\ IFM), and
2. all extents of (F,M, IFM) are intents of (G,F,G× F\ IGF).

132 B. Ganter and C.V. Glodeanu

Proof. Start with a conceptual factorisation, and recall that

g I m ⇐⇒ gIGF ∩mIFM �= ∅,
which is equivalent to

g �I� m ⇐⇒ gIGF ⊆ F \mIFM .

For arbitrary g ∈ G we ask if the object intent gIGF is the intersection of attribute
extents of (F,M,F ×M\ IFM). Suppose not. Then there must be some f ∈ F
which is contained in all attribute extents of (F,M,F ×M\ IFM) that contain
gIGF , but which does not belong to gIGF . From g /∈ f IGF = Af we infer that
g /∈ BI

f = (f IFM)I . Consequently there must be some m ∈ f IFM with g �I� m.
This is, as stated above, equivalent to gIGF ⊆ F \ mIFM . But then F \ mIFM

is an attribute extent of (F,M,F × M\ IFM) containing gIGF and not f , a
contradiction.

For the converse direction suppose that the conditions are satisfied. In order to
show that the factorisation is conceptual, we need to prove that (f IGF)I ⊆ f IFM

and dually (f IFM)I ⊆ f IGF hold for all f ∈ F . Now assume that m /∈ f IFM , which
is the same as f /∈ mIFM . Since mIFM is an extent of (F,M, IFM), there must
be, according to the second condition, an object intent of (G,F,G × F\ IGF)
containing mIFM , but not f . In other words, there must be an object g ∈ f IGF

such that gIGF ∩mIFM = ∅. Thus g �I� m, i.e., m /∈ (f IGF)I .

Note that every formal context (G,M, I) is a conceptual factor context in its
trivial factorisations, one of them being

(G,M, I) = (G,M, I) ◦ (M,M,→),

where m → n : ⇐⇒ n ∈ mII . The other is defined dually. Theorem 1 therefore
imposes no restriction on single factorising contexts.

Proposition 3. If (G,F, IGF) and (F,M, IFM) are conceptual factorisation con-
texts and E ⊆ F , then (G,E, IGF ∩ (G× E)) and (E,M, IFM ∩ (E ×M)) also
are conceptual factorisation contexts.

Proof. Let

(G,M, IE) := (G,E, IGF ∩ (G× E)) ◦ (E,M, IFM ∩ (E ×M)).

Each (Ae, Be), e ∈ E, is a formal concept of (G,M, I) and, since IE ⊆ I, also of
(G,M, IE).

3 Ordinal Factors

The set F of Boolean factors may be large and should then, for the sake of better
interpretability, be divided into conceptually meaningful subsets. An ordinal
factor, for example, simply represents a chain of Boolean factors.

Ordinal Factor Analysis 133

Definition 2. If (G,F, IGF) and (F,M, IFM) are conceptual factorisation con-
texts of (G,M, I) and E ⊆ F , then (G,E, IGF ∩ (G × E)) is called a (many-
valued) factor of (G,M, I).

Many-valued factors are closely related to the scale measures described in [6]:

Definition 3. Let K := (G,M, I) and S := (GS,MS, IS) be formal contexts. An
S-measure is a map

σ : G→ GS

with the property that the preimage σ−1(E) of every extent E of S is an extent
of K. An S-measure is called full, if every extent of (G,M, I) is the preimage
of some S-extent.

Proposition 4. S := (G,F, IGF) is a factor of (G,M, I) if and only if the iden-
tity map is an S-measure.

Proof. Clearly S := (G,F, IGF) is a factor of (G,M, I) iff each attribute extent
f IGF is an extent of (G,M, I).

Definition 4. A factor (G,F, IGF) of (G,M, I) is called an S-factor if it has a
surjective full S-measure. If S is an elementary ordinal, or nominal, etc., scale,
we speak of an ordinal or nominal factor, etc. Moreover, we say that (G,M, I)
has an ordinal (nominal, etc.) factorisation iff it has a first factorising context
that can be written as an apposition of ordinal (nominal, etc.) factors.

In other words: The first factorising context of an ordinal factorisation must be
a derived context of a many-valued context with respect to some ordinal scaling.

Example 2. Consider again the formal context of Figure 1. It can be ordinally
factored, using 12 Boolean factors, as shown in Figure 4. It becomes apparent
that the first factor context is a derived context of an ordinally scaled many-
valued context with three many-valued attributes, and the second factor context
is the dual of such a derived context, but with reverse scaling. Such many-valued
contexts are given in Figure 5. The conceptual scales for the first and the second
factor context are shown in Figure 6.

It is somewhat tempting, but highly experimental, to plot the two major fac-
tors (which cover 41 of the 46 incidences, i.e., 89% of the data) as it is usual in
(numerical) Factor Analysis. Such a diagram is shown in Figure 7. A represen-
tation like this may however be misleading, since it displays purely ordinal data
in a metric fashion. An additional source of misinterpretation is that the two
“dimensions” represent ordinal, not interordinal (“bipolar”) data. However, the
diagram indicates that ordinal factor analysis, when interpreted correctly, has
some expressiveness similar to Factor Analysis based on metric data.

The following proposition is evident:

Proposition 5. A formal context is an ordinal factor of (G,M, I) iff its at-
tribute extents are a linearly ordered family of concept extents of (G,M, I).

134 B. Ganter and C.V. Glodeanu

f1
1 f1

2 f1
3 f1

4 f1
5 f2

1 f2
2 f2

3 f2
4 f2

5 f3
1 f3

2

g1 × × × ×
g2 × × × ×
g3 × × × × × ×
g4 × × × × × ×
g5 × × × × × ×
g6 × × × × × × ×
g7 × × × ×
g8 × × × × ×

◦

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
1
0

m
1
1

f1
1 ×

f1
2 × ×

f1
3 × × × ×

f1
4 × × × × ×

f1
5 × × × × × × ×

f2
1 ×

f2
2 × ×

f2
3 × × ×

f2
4 × × × ×

f2
5 × × × × × ×

f3
1 ×

f3
2 × × × × ×

Fig. 4. An ordinal factorisation of the formal context from Figure 1

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
1
0

m
1
1

g1 × × × × ×
g2 × × × ×
g3 × × × × × ×
g4 × × × × × × ×
g5 × × × × × ×
g6 × × × × × × × ×
g7 × × × × ×
g8 × × × × ×

=

f1 f2 f3

g1 4 0 0

g2 0 4 0

g3 0 5 1

g4 5 0 1

g5 2 4 0

g6 3 3 1

g7 3 1 0

g8 1 2 2

◦

f1 f2 f3

m1 2 5 2

m2 2 5 2

m3 5 1 1

m4 1 4 2

m5 0 5 1

m6 5 0 1

m7 4 4 0

m8 4 5 2

m9 5 2 2

m10 5 3 1

m11 3 5 2

d

Fig. 5. Symbolic notation of the ordinal factorisation defined in Figure 4. It holds
that gi IGF fk

j ⇐⇒ fk(gi) ≥ j and that fk
j IFM mi ⇐⇒ fk(mi) < j. Thus

g I m ⇐⇒ fk(g) > fk(m) for some k. Reformulated, g �I� m ⇐⇒ fk(g) ≤ fk(m) for
all k.

Ordinal Factor Analysis 135

≥ 1 ≥ 2 ≥ 3 ≥ 4 ≥ 5

0
1 ×
2 × ×
3 × × ×
4 × × × ×
5 × × × × ×

< 1 < 2 < 3 < 4 < 5

0 × × × × ×
1 × × × ×
2 × × ×
3 × ×
4 ×
5

Fig. 6. Conceptual scales for the two many-valued factor contexts in Figure 5

For an ordinal factorisation there must be a partition {Fd | d ∈ D} of the set F
of factors such that within each class the attribute order of (G,F, IGF) is linear.
According to Proposition 2 the attribute order is dual to that of (M,F, IFM

d).
This gives the following proposition:

Proposition 6. For any ordinal factorisation the dual of the second factorisa-
tion context also is a derived context of the same many valued context, but with
reversely ordered ordinal scales.

Definition 5. A relation R ⊆ G × M is called a Ferrers relation iff there
are subsets A1 ⊂ A2 ⊂ A3 . . . ⊆ G and M ⊇ B1 ⊃ B2 ⊃ B3 ⊃ . . . such
that R =

⋃
iAi × Bi. R is called a Ferrers relation of concepts of (G,M, I)

iff there are formal concepts (A1, B1) ≤ (A2, B2) ≤ (A3, B3) ≤ . . . such that
R =

⋃
i Ai ×Bi.

It is well known that a relation R ⊆ G×M is a Ferrers relation iff the concept
lattice B(G,M,R) is a chain.

Proposition 7. Any Ferrers relation R ⊆ I is contained in a Ferrers relation
of concepts of (G,M, I).

Proof. If Ai ×Bi ⊆ I then Ai ×Bi ⊆ A′′
i ×A′

i. Thus if R =
⋃

i Ai ×Bi ⊆ I then
R ⊆ R :=

⋃
iA

′′
i × A′

i ⊆ I, and R is a Ferrers relation of concepts.

Definition 6. The width of a factorising family F of concepts is the largest
number of pairwise incomparable elements of F . The ordinal factorisation
width of (G,M, I) is the smallest width of a factorising family of concepts.

Theorem 2. The following are equivalent:

1. (G,M, I) has ordinal factorisation width ≤ n.
2. (G,M, I) has an ordinal factorisation with ≤ n ordinal factors.
3. B(G,M,G×M \ I) has order dimension ≤ n.
4. I can be written as a union of ≤ n Ferrers relations.

Proof. (1) ⇒ (2): (G,M, I) has ordinal factorisation width ≤ n iff there is a
factorising family F of concepts, which as an ordered subset of the concept

136 B. Ganter and C.V. Glodeanu

well
structured

trans-
parent

balanced,
rounded

playful sprightly

strong

dramatic

rhyth-
mising

fast

Romance F-major

9th symphony

Moonlight sonata

Spring sonata

String quartet op.131

Great fuge op. 133

Contrapunctus I

Prelude c minor

Fig. 7. A “biplot” of the data in Figure 1, based on the first two factors of the ordinal
factorisation in Figure 4. Note that no metric information is encoded here. The diagram
is based on ordinal data only.

m
1

m
2

m
3

m
4

m
5

m
6

m
7

m
8

m
9

m
1
0

m
1
1

g1 1 1 1 1 1
g2 2 2 2 2
g3 2 2 2 3 2 2
g4 1 1 1 1 3 1 1
g5 2 1 1 2 2 2
g6 1 1 2 1 1 2 3 2
g7 1 1 1 1 2
g8 2 1 2 3 3

Fig. 8. Three Ferrers relations, the union of which is the incidence relation of the
formal context in Figure 1

lattice has width ≤ n. By a classical theorem of R.P. Dilworth this implies that
F can be covered by ≤ n chains, i.e., linear ordered families of concepts, each of
which induces an ordinal factor. This proves (2).

(2) ⇒ (4): The factorising family of an ordinal factor is a chain of concepts,
and the incidences occurring in such a chain form a Ferrers relation.

Ordinal Factor Analysis 137

(3) ⇔ (4) is well known, see e.g. [6].
(4) ⇒ (1): If I can be written as a union of ≤ n Ferrers relations it can,

according to Proposition 7, also be written as a union of ≤ n Ferrers relations
of concepts. These concepts form a factorising family of width ≤ n.

Example 3. Consider once more the formal context of Figure 1. Its incidence
relation I can indeed be covered by three Ferrers relations, as can be seen from
Figure 8.

So the ordinal width of the formal context in Figure 1 equals three (a smaller
value is obviously impossible). This was to be expected, since an ordinal fac-
torisation with three ordinal factors was given in Figure 5. Moreover the order
dimension of the lattice in Figure 2 is apparently equal to three. The concept

g1

g2

g3

g4

g5 g6

g7

g8

m1,m2

m3

m4m5

m6 m7

m8

m9

m10

m11

1

1

1

1

1

2

2

2

2

2

3

3

Fig. 9. The concept lattice of the formal context in Figure 1. The encircled numbers
mark a factorising family of concepts of width three.

138 B. Ganter and C.V. Glodeanu

lattice of the formal context in Figure 1 is shown in Figure 9. Three chains
are marked in the diagram. These cover all (tight) incidences, i.e., whenever
(g,m) ∈ I, then the interval [γg, μm] contains some concept from one of these
chains. Therefore these concepts form a factorising family of width three.

An immediate consequence of Theorem 2 is that for any k ≥ 3 the decision
problem if a formal context has factorisation width ≤ k is NP-complete. This
follows from Yannakakis’ [8] result that “order dimension ≤ k ” is hard to decide
for k ≥ 3. Another consequence is that one can easily determine the factorisation
width of some elementary scales:

Corollary 1. 1. (G,M, I) has ordinal factorisation width 1 iff I is Ferrers.
2. The (one-dimensional) contraordinal scale has ordinal factorisation width 2,

independent of its size (> 1).
3. The interordinal scale has ordinal factorisation width 2, independent of its

size (> 1).

The corollary gives first clues of how algorithmically difficult interordinal and
contraordinal factorisation (yet to be developed) will be. The nominal scale with
n scale values obviously has ordinal factorisation width n.

4 Conclusion

Many-valued factorisations of formal contexts were introduced in this paper as
Boolean factorisations where the Boolean factors are grouped into attribute sets
of conceptual scales. We have studied to some extent the ordinal case, proving
that the problem of finding an ordinal factorisation with few factors is equivalent
to that of determining the order dimension of the complementary context (and
therefore is difficult). For a small example it was demonstrated that ordinal
factor analysis of empirical qualitative data may lead to results that are similar
to those of numerical factor analysis of metric data.

References

1. Keprt, A., Snásel, V.: Binary factor analysis with help of formal concepts. In: Snásel,
V., Belohlávek, R., (eds.) CLA. CEUR Workshop Proceedings, vol. 110. CEUR-
WS.org (2004)

2. Keprt, A.: Algorithms for Binary Factor Analysis. PhD thesis (2006)
3. Belohlávek, R., Vychodil, V.: Formal concepts as optimal factors in boolean factor

analysis: Implications and experiments. In: Eklund, P.W., Diatta, J., Liquiere, M.,
(eds.) CLA. CEUR Workshop Proceedings, vol. 331. CEUR-WS.org (2007)

4. Belohlávek, R., Vychodil, V.: Discovery of optimal factors in binary data via a novel
method of matrix decomposition. J. Comput. Syst. Sci. 76(1), 3–20 (2010)

5. De Boeck, P., Rosenberg, S.: Hierarchical classes: model and data analysis. Psy-
chometrika 53, 361–381 (1988)

Ordinal Factor Analysis 139

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

7. Wille, R.: Formal Concept Analysis as Mathematical Theory of Concepts and Con-
cept Hierarchies. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Anal-
ysis. LNCS (LNAI), vol. 3626, pp. 1–33. Springer, Heidelberg (2005)

8. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM
Journal on Matrix Analysis and Applications 3(3), 351–358 (1982),
http://dx.doi.org/10.1137/0603036

http://dx.doi.org/10.1137/0603036

A Macroscopic Approach to FCA

and Its Various Fuzzifications

Tim B. Kaiser1 and Stefan E. Schmidt2

1 SAP AG, Walldorf
tbkaiser@gmx.de

2 Institut für Algebra, Technische Universität Dresden
midt1@msn.com

Abstract. We promote biresiduation as a fundamental unifying princi-
ple in Formal Concept Analysis, including fuzzification and factor anal-
ysis. In particular, we show that maximal formal rectangles are exactly
formal concepts within the presented framework of biresiduated maps
on ordered sets. Macroscopic implications yield the particular deriva-
tion operators in specific settings such as Fuzzy Formal Concept Anal-
ysis, Factor Analysis, and degree of containment (i.e. degree of being a
subset).

Keywords: biresiduation, complete monoids, formal concept analysis,
fuzzy formal concept analysis, factor analysis, linear algebra.

1 Introduction

We promote biresiduation as a fundamental unifying principle in Formal Con-
cept Analysis, including fuzzification and factor analysis. In particular, we show
that maximal formal rectangles are exactly formal concepts within the presented
framework of biresiduated maps on ordered sets. Macroscopic implications yield
the particular derivation operators in specific settings such as Fuzzy Formal
Concept Analysis, Factor Analysis, and degree of containment, that is, degree of
being a subset.

Most of the macros presented in our paper are implicitely already introduced
in [Bel11a], Section 5, using lattices as basic structures. Nonetheless, we add
value by showing that (1) the maximal rectangle paradigm survives in the general
setting and (2) how biadditivity completes the picture and that (3) ordered sets
can be used instead of lattices.

Important literature is given by [GW99], [Kra04], [MOARC09], [MOA09],
[DP90], regarding factor analysis, especially by [BV09]. Belohlávek gives an
overview on approaches to fuzzy concept analysis in [Bel11b] which is an up-
date of [BV05].

We assume the reader to be familiar with ordered sets and formal concept
analysis as exposed in [DP90] and [GW99]. Profound informaton on residuation
theory can be found, for instance, in [Bly05].

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 140–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Macroscopic Approach to FCA and Its Various Fuzzifications 141

2 Biresiduation

One of the key concepts for accessing FCA and its generalizations is that of a
biresiduated map. We start by recalling the definition of a residuated map.

Definition 1 (residuated map). Let P1 and P2 be ordered sets. Then r : P1 →
P2 is a residuated map if there exists a map r+ : P2 → P1 such that

r(p1) ≤ p2 ⇐⇒ p1 ≤ r+(p2).

The map r+ is unique if it exists and is then called the residual of r.

We can consider a binary operation ⊗ : P1×P2 → P from the cartesian product
of two ordered sets P1 and P2 into a third ordered set P as unary if we fix
one of its two arguments. Let us pick a p1 ∈ P1. Then ⊗(p1, ·) : P2 → P
yields a corresponding unary operation.If ⊗(p1, ·) is residuated for all p1 ∈ P1,
we call the binary operation residuated in its first argument and denote the
corresponding residuals by → (p1, ·) : P → P2. We set ⊗(p1, p2) = p1 ⊗ p2 and
→ (p1, p) = p1 → p. For all p1 ∈ P1 we have

p1 ⊗ p2 ≤ p ⇐⇒ p2 ≤ p1 → p.

The analogous procedure applied to the second argument yields the residuals
← (·, p2) : P → P1 and using infix notation we set ← (p, p2) = p← p2.

The following definition which is central for this paper uses the above con-
struction on both arguments.

Definition 2 (biresiduated map, biresiduation). Let P1, P2, and P be or-
dered sets. Then

⊗ : P1 × P2 → P

is a biresiduated map, short biresiduation, if ⊗ is residuated in both arguments.

If ⊗ is a biresiduated map we have

p1 ≤ p← p2 ⇐⇒ p1 ⊗ p2 ≤ p ⇐⇒ p2 ≤ p1 → p

for all p1 ∈ P1, p2 ∈ P2, and p ∈ P by definition.

Proposition 1. Let ⊗ : P1 × P2 → P be a biresiduation. Then ⊗ is monotone
in both arguments.

Proof. Let q, r ∈ P2 and q ≤ r. Since p1 → (p1 ⊗ ·) is a closure operator, q ≤ r
implies q ≤ p1 → (p1 ⊗ r). The latter is equivalent to p1 ⊗ q ≤ p1 ⊗ r. By
symmetry, a biresiduation is monotone in the first argument as well.

Example 1. We will show that the classical case embeds itself nicely into our
setting. Consider the mapping:

× : 2G × 2M → 2G×M , (A,B) �→ A×B.

142 T.B. Kaiser and S.E. Schmidt

Since × operates on lattices it is enough to note that it is join-preserving in
both arguments to validate that it is a biresiduation. Let α ∈ 2G×M . We have
A×B ⊆ α ⇐⇒ A ⊆ B → α where

B → α = max{H ⊆ G | H ×B ⊆ α} = B′.

Dually, we get

α← A = max{N ⊆M | A×N ⊆ α} = A′.

We have recaptured the derivation operators of classical formal concept analysis
as residuals of a specific biresiduation, the cartesian product.

Now, it is worth noting the connection between cartesian product and dyadic
product as used in linear algebra. We recall the definition of a dyadic product.
Given two n-dimensional vectors u,v over a semiring S we can define the dyadic
product as

u⊗ v := u · vT

where the second multiplication is simply matrix multiplication. If S is the well-
known boolean 2-element semiring, the dyadic product resembles exactly the
cartesian product. So, in a sense, the dyadic product generalizes the cartesian
product. From our point of view, this is key to understanding fuzzy concept
analysis in terms of biresiduations.

3 Biadditivity

We complement the approach sketched above (where ordered sets are used as
basic structures) by using complete monoids [DKV09] as basic structures.

Definition 3 (complete monoid). A quadruple A := (A,+, 0, Σ) is called a
complete monoid if (A,+, 0) is a commutative monoid and Σ assigns to every
α ∈ AI (for an arbitrary index set I) an element Σα =: Σi∈Iα(i) of A such that

1. Σα = 0 if α(i) = 0 for all i ∈ I
2. Σα = α(i) if I = {i}
3. Σα = α(i) + α(j) if I = {i, j} and i �= j
4. Σα = Σβ for every partition T of I and β given by T → A, T �→ Σα|T

We define the analogue of biresiduations for complete monoids.

Definition 4 (biadditive map). Let A := (A1, A2, A) be a triple of complete
monoids. Then a biadditive map w.r.t. A is defined as a map ⊗ : A1 ×A2 → A
such that

Σβ ⊗Σγ = Σ(i,j)∈I×Jβ(i)⊗ γ(j)

holds for all β ∈ AI
1 and γ ∈ AJ

2 for arbitrary index sets I, J .

The following proposition explains how to construct biadditive maps from given
ones.

A Macroscopic Approach to FCA and Its Various Fuzzifications 143

Proposition 2. Let A := (A1, A2, A) be a triple of complete monoids and let ⊗
be a biadditive map w.r.t. A. For sets G and M define ⊗G,M : AG

1 ×AM
2 → AG×M

where

(u⊗G,M w)(g,m) := u(g)⊗ w(m).

Then ⊗G,M forms a biadditive map w.r.t. (AG
1 , A

M
2 , AG×M) which is also known

as the dyadic product.

More generally, we have the following construction.

Proposition 3. Let A := (A1, A2, A) be a triple of complete monoids and let ⊗
be a biadditive map w.r.t. A. For sets G, R, and M define

⊗G,R,M : AG×R
1 ×AR×M

2 → AG×M

where

(β ⊗G,R,M η)(g,m) := Σr∈Rβ(g, r) ⊗ η(r,m).

Then ⊗G,R,M forms a biadditive map w.r.t. (AG×R
1 , AR×M

2 , AG×M) – which, as
a matter of fact, is the matrix product.

If ⊗ is a biadditive map w.r.t. A := (A1, A2, A) and α ∈ A then a familiy
(ur, wr)r∈R ∈ (A1 ×A2)

R will be called a sum-decomposition of (⊗, α) if

α = Σr∈Rur ⊗ wr .

An important observation is the following

Proposition 4. Let A := (A1, A2, A) be a triple of complete monoids and let
⊗ be a biadditive map w.r.t. A. Then for sets G, R, M and α ∈ AG×M the
following holds

1. If (β, η) is a decomposition of (⊗G,R,M , α), that is, β ∈ AG×R
1 and η ∈

AR×M
2 such that α = β ⊗G,R,M η, then (ur, wr)r∈R is a sum-decomposition

of (⊗G,M , α) where ur := β(·, r) and wr := η(r, ·).
2. Conversely, if (ur, wr)r∈R is a sum-decomposition of (⊗G,M , α) then (β, η)

is a decomposition of (⊗G,R,M , α) where β : G × R → A1, (g, r) �→ urg and
η : R ×M → A2, (r,m) �→ wrm.

Example 2. For the last proposition, a class of examples is based on linear
algebra: Let S = (S,+,⊗, 0, 1, Σ) be a complete semiring, that is, Sadd :=
(S,+, 0, Σ) is a complete monoid and Smult := (S,⊗, 1) is a monoid such that ⊗
is biadditive w.r.t. (Sadd,Sadd,Sadd). Then, the above proposition can be applied
to the situation where A1 = A2 = A = Sadd.

In the next section, we will highlight that residuals of a biresiduation play a
crucial role in FCA and its abstractions.

144 T.B. Kaiser and S.E. Schmidt

4 Abstract Concepts and Maximal Rectangles

Let ⊗ be a biresiduation w.r.t. (P1, P2, P). We define

f ⊗ := P1 × P2

to be its set of formal rectangles. If α ∈ P then

K := (⊗, α)

is called an abstract context. Given such an abstract context we can define the
set of formal rectangles w.r.t. K as

f K := {(u,w) ∈ f ⊗ | u⊗ w ≤ α}.

On a formal rectangle, we can apply our biresiduation operation to yield an
(actual) rectangle. We define

K := {u⊗ w | (u,w) ∈ f K}

to be the set of (actual) rectangles w.r.t. K and

mf K := max f K

to be the set of maximal rectangles regarding the product order on P1×P2. We
define the set of abstract concepts as

BK := {(u,w) ∈ P1 × P2 | u→ α = w & α← w = u}.

We order the set of maximal rectangles of an abstract context. For b=(ub, wb), c=

(uc, wc) ∈ mf K we set

b ≤K c :⇐⇒ ub ≤P1 uc ⇐⇒ wc ≤P2 wb.

Now we can define an abstract concept order as

BK := (BK,≤K).

In case (P1, P2, P) is a triple of complete lattices, BK forms a complete lattice,
called the abstract concept lattice of K.

As usual in FCA, let us abbreviate u → α as u′ and α ← w as w′. We show
that even in our rather abstract setting we can talk about maximal rectangles
being the abstract concepts.

Proposition 5. Let K := (⊗, α) be an abstract context and define γ : P1 →
P, x �→ (x′′, x′) and μ : P2 → P, x �→ (x′, x′′). Then

1. BK = im(γ) = im(μ)

2. mf K = BK

A Macroscopic Approach to FCA and Its Various Fuzzifications 145

We call (p1, p2) ∈ f K a decomposition of K if p1 ⊗ p2 = α. If additionally

(p1, p2) ∈ mf K we call (p1, p2) a conceptual decomposition of K.

Corollary 1. Let K = (⊗, α) be an abstract context. If (p1, p2) is a decomposi-
tion of K there exists a conceptual decomposition (q1, q2) of K with p1 ≤ q1 and
p2 ≤ q2.

Proof. For instance, set (q1, q2) := γ(p1).

5 Macroscopics: Combining Biresiduation and
Biadditivity

If L is a complete lattice, let A(L) := (L,+, 0, Σ) be the complete monoid where
x + y = supL{x, y} and 0 = supL∅ and Σα := supL{α(i) | i ∈ I} for all
x, y ∈ L and α ∈ LI . If L := (L1, L2, L) is a triple of complete lattices then
A(L) := (A(L1), A(L2), A(L)).

The following fact will help us to combine biresiduation and biadditivity:

Proposition 6. Let L := (L1, L2, L) be a triple of complete lattices and let
⊗ : L1 × L2 → L be a map. Then ⊗ is biresiduated w.r.t. L if and only if ⊗ is
biadditive w.r.t. A(L).

Theorem 1. Let L := (L1, L2, L) be a triple of complete lattices and let ⊗ be a
biresiduation w.r.t. L. Then for sets G, R, and M the following holds:

1. ⊗G,M is a biresiduation w.r.t. (LG
1 , L

M
2 , LG×M).

Hence, for all u ∈ LG
1 and w ∈ LM

2 and α ∈ LG×M we have

u ≤ α← w ⇐⇒ u⊗G,M w ≤ α ⇐⇒ w ≤ u→ α.

Also,
(α← w)(g) = infL1{α(g,m)← w(m) | m ∈M}

for all g ∈ G and

(u→ α)(m) = infL2{u(g)→ α(g,m) | g ∈ G}

for all m ∈M .
2. ⊗G,R,M is a biresiduation w.r.t. (LG×R

1 , LR×M
2 , LG×M).

Hence, for all β ∈ LG×R
1 and η ∈ LR×M

2 and α ∈ LG×M we have

β ≤ α← η ⇐⇒ β ⊗G,R,M η ≤ α ⇐⇒ η ≤ β → α.

Also,
(α← η)(g, r) = infL1{α(g,m)← η(r,m) | m ∈M}

for all (g, r) ∈ G×R and

(β → α)(r,m) = infL2{β(g, r)→ α(g,m) | g ∈ G}

for all (r,m) ∈ R×M .

146 T.B. Kaiser and S.E. Schmidt

3. Let α ∈ LG×M and let (β0, η0) be a decomposition of K = (⊗G,R,M , α).
Then there exists a conceptual decomposition (β, η) of K with β0 ≤ β and
η0 ≤ η. The corresponding sum-decomposition (β(·, r), η(r, ·))r∈R of K0 :=
(⊗G,M , α) consists of abstract concepts of K0. Such a sum-decomposition is
called conceptual sum-decomposition.
Conversely, if (xr , yr)r∈R is a sum-decomposition of K0 then there exists a
conceptual sum-decomposition (ur, wr)r∈R of K0 with xr ≤ ur and yr ≤ wr.
The corresponding decomposition (β, η) of K defined via

β : G×R→ L1, (g, r) �→ ur(g)

and
η : R×M → L2, (r,m) �→ wr(m)

is a conceptual decompsition of K. If (β, η) is a conceptual decomposition of
K then, by definition, β = α← η and η = β → α.

Proof. Part 1 follows from Propositions 6 and 2. Part 2 follows from Propositions
6 and 3. Part 3 follows from Proposition 6 and 4 together with Corollary 1.

The above theorem extends Theorem 6 from [Bel11a].

Example 3. Referring to example 2, the last theorem is connected with fuzzy
formal concept analysis in the following way: a join-complete semiring

S := (S,+,⊗, 0, 1, Σ)

is defined as a complete semiring such that S is idempotent (x + x = x) and
L(S) := (S,≤) with x ≤ y : ⇐⇒ x + y = y forms a complete lattice such that
Σ = supL(S). In particluar, ⊗ is a biresiduation w.r.t. (L(S),L(S),L(S)). Then,
for sets G,M and α ∈ SG×M , (G,M,α) is a fuzzy context over S having the
same concept lattice as the abstract context (⊗G,M , α). Also the decomposition
discussed in the third part of the above theorem applies to this situation.

If we restrict ourselves to the situation of M being a singleton, Theorem 1.1
yields for all s ∈ S and u, v ∈ SG

us ≤ v ⇐⇒ s ≤ u→ v,

that is, u→ v can be interpreted as the degree of u being a subset of v.

6 Conclusion

Starting from a given biresiduation (biadditive map) we have shown how to
construct two types of biresiduations (biadditive maps): (1) the dyadic product
whose residuals can be interpreted as the derivation operators of (Fuzzy) Formal
Concept Analysis (talking about formal concepts as being maximal rectangles
makes still sense in this abstract framework) and (2) the matrix product, the
residuals of which can be interpreted as the factors as in Factor Analysis. As a
“by-product”, our framework yields a simple proof of the theorem on the uni-
versality of formal concepts as factors given by the proof of Theorem 1.3 which
entails Theorem 1, [Bel11a].

A Macroscopic Approach to FCA and Its Various Fuzzifications 147

References

[Bel11a] Belohlavek, R.: Optimal decompositions of matrices with entries from resid-
uated lattices. Journal of Logic and Computation (2011)

[Bel11b] Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O.,
Śl ↪ezak, D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743,
pp. 19–26. Springer, Heidelberg (2011)

[Bly05] Blyth, T.: Lattices and Ordered Algebraic Structures. Universitext, Springer
(2005)

[BV05] Belohlávek, R., Vychodil, V.: What is a fuzzy concept lattice? In: Snás̃el, V.,
Bělohlávek, R. (eds.) Proc. CLA 2005. CEUR WS, vol. 162, pp. 34–45. Palacký
University in Olomouc, VŠB–Technical University of Ostrava (2005)

[BV09] Belohlavek, R., Vychodil, V.: Factor Analysis of Incidence Data via Novel De-
composition of Matrices. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS,
vol. 5548, pp. 83–97. Springer, Heidelberg (2009)

[DKV09] Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science. Springer (2009)

[DP90] Davey, B.A., Priestley, H.A.: Introduction to lattices and order. Cambridge
University Press, Cambridge (1990)

[GW99] Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

[Kra04] Krajci, S.: The basic theorem on generalized concept lattice. In: Snásel, V.,
Belohlávek, R. (eds.) CLA. CEURWorkshop Proceedings, vol. 110. CEUR-WS.org
(2004)

[MOA09] Medina, J., Ojeda-Aciego, M.: On the representation theorem of multi-
adjoint concept lattices. In: Carvalho, J.P., Dubois, D., Kaymak, U., da Costa
Sousa, J.M. (eds.) IFSA/EUSFLAT Conf., pp. 1091–1095 (2009)

[MOARC09] Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis
via multi-adjoint concept lattices. Fuzzy Sets and Systems 160(2), 130–144 (2009)

A Connection between Clone Theory and FCA

Provided by Duality Theory

Sebastian Kerkhoff

Institut für Algebra, Technische Universität Dresden, Germany
Sebastian.Kerkhoff@tu-dresden.de

http://tu-dresden.de/Members/sebastian.kerkhoff

Abstract. The aim of this paper is to show how Formal Concept Anal-
ysis can be used for the benefit of clone theory. More precisely, we show
how a recently developed duality theory for clones can be used to dual-
ize clones over bounded lattices into the framework of Formal Concept
Analysis, where they can be investigated with techniques very different
from those that universal algebraists are usually armed with. We also
illustrate this approach with some small examples.

Keywords: clones, duality theory, Formal Concept Analysis, clones of
dual operations, coclones, bounded lattices, standard topological
contexts.

1 Introduction

In this paper, we show how a duality theory from [Ker11] can be used to connect
clone theory with Formal Concept Analysis [GW99].

A clone is a set of (finitary) operations over a set A that is closed under
composition and contains all the projection mappings. The interest in clones
is driven by the fact that clones represent the behaviour of algebras. However,
as long as A contains at least three elements, very little is known about the
structure of all clones on A, despite intensive research for several decades.

The principle of Duality is “a very pervasive and important concept in (mod-
ern) mathematics” [Haz95] and “an important general theme that has mani-
festations in almost every area of mathematics” [GBGL08]. When it comes to
dualizing clones, the usual approach is to consider a clone as the set of term
functions of a suitable algebra and then try to dualize this algebra, which may,
or may not, be possible. Another approach, applicable for all clones, was intro-
duced in [Ker11], where clones, inspired by an idea from [Maš06], are dualized
by treating them in a more general way as sets of morphisms in a category.

In this paper, we will use the duality theory from [Ker11] (recalled in Section
3 after the preliminaries) and put it to work in Section 4, where we apply it to
clones over bounded lattices (also called centralizer clones of bounded lattices),
i.e., clones in which every operation is a homomorphism from a finite power of
a bounded lattice to the lattice itself. Since the category of bounded lattices
can be dualized to the category of standard topological contexts ([Har93], see

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 148–163, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Clone Theory and FCA 149

Subsection 2.3), we can dualize the clones to certain sets of context morphisms.
This allows us to investigate the clones from a different angle, namely in the
setting of Formal Concept Analysis. To show that this method is in fact a helpful
technique to investigate clones over lattices, we choose a few small examples in
Section 5 and put the duality to work, producing some concrete results.

2 Preliminaries

In the preliminaries, we will introduce all the ingredients that we need to set up
a duality for clones over bounded lattices, except that we will assume the reader
to be familiar with the basic notions from Formal Concept Analysis [GW99]. We
start with the necessary terminology from category theory, recall the rudimen-
tary basics of clone theory, and end by outlining the dual equivalence for lattices
from [Har93] that we are about to incorporate into our clone duality.

2.1 Category Theory

We assume that the reader is familiar with the rudimentary basics of category
theory. By that, we mean that the reader should be familiar with the defini-
tions of categories, functors, natural transformations, products and coproducts.
In this section, we only introduce our notation and the terminology of duality.
For an object A in a category C , we denote by An the n-th power ofA (provided
it exists) and by πn

i : A
n → A (i ∈ {1, . . . , n}) the associated projection mor-

phisms. For morphisms f1, . . . , fn : B→ A, we denote by 〈f1, . . . , fn〉 : B→ An

the tupling of f1, . . . , fn. Dually, for an object X ∈ C , we denote by n ·X the
n-th copower of X (provided it exists) and by ιni : X→ n ·X (i ∈ {1, . . . , n}) the
associated injection morphisms. For morphisms h1, . . . , hn : X → Y, we denote
by [h1, . . . , hn] : n ·X→ Y the cotupling of h1, . . . , hn.

1

A dual equivalence between categories A and X is a quadruple 〈D,E, e, ε〉
where D : A → X and E : X → A are contravariant functors (i.e., functors that
reverse the direction of the morphisms) and e : idA → ED and ε : idX → DE are
natural isomorphisms. The notion “dual equivalence” is justified since D and
E are full, faithful and preserve all purely category-theoretic properties, except
that they reverse the direction of the morphisms. For instance, monomorphisms
become epimorphisms and products become coproducts. In particular, we have
An ∈ A if and only if n ·D(A) ∈ X .

2.2 Clones

Let A be a (not necessarily finite) non-empty set. For n ∈ N+ and a set B, we
say that the i-th argument of a function f : An → B is nonessential if

f(x1, . . . , xn) ≈ f(x1, . . . , xi−1, y, xi+1, . . . , xn).

1 We will not use the letter g for morphisms since we want to reserve this letter for
objects in contexts.

150 S. Kerkhoff

If the i-th argument of f is not nonessential, then it is called essential. We say
that f is essentially k-ary if it has exactly k essential arguments.

Now let OA :=
⋃

n≥1 A
An

be the set of all finitary, non-nullary operations over
A. A subset C ⊆ OA is a clone on A if it contains all the projection mappings

πn
i : A

n → A : (x1, . . . , xn) �→ xi (1 ≤ i ≤ n)

(also called trivial operations) and is closed with respect to superposition of oper-
ations in the following sense: For an n-ary operation f ∈ C and k-ary operations
f1, . . . , fn ∈ C, the k-ary operation f(f1, . . . , fn) defined by

f(f1, . . . , fn)(x1, . . . , xk) := f(f1(x1, . . . , xk), . . . , fn(x1, . . . , xk))

is also in C. Given an algebra, the set of its non-nullary term functions is a clone.
Conversely, every clone can be realized as the set of term functions of a suitable
algebra. Hence, clones on a set A represent all possible different behaviours of
algebras with carrier set A. Roughly speaking, if one understands all clones on
a set A, one understands all algebras on A. This is the main motivation behind
clone theory.

The set of all clones on a set A forms a lattice with inclusion, which we denote
by LA. The lattice is countable and completely known for |A| ≤ 2. However, for
|A| ≥ 3, there are continuum many clones in LA, and very little is known about
the structure of this lattice.

2.3 Hartung’s Duality for Lattices

A topological representation theorem for lattices seems to have first appeared in
[Urq78]. Since then, there has been put much work into lifting this representation
theorem to a dual equivalence of categories (see for example [Geh06], [HD97]).
Here, we will look at the duality presented in [Har93], where the dual equivalence
is set up between the category of bounded lattices with homomorphisms (i.e.,
functions that commute with ∨ and ∧ and preserve the bottom and the top
of the lattice) and the category of so-called standard topological contexts with
so-called multivalued standard morphisms, described as in the remainder of this
subsection.

A standard topological context is a standard context where the set of objects
and the set of attributes are equipped with suitable topologies. To explain this
more precisely, let Kτ = ((G, ρ), (M,σ), I) be a triple where (G, ρ) and (M,σ)
are topological spaces and (G,M, I) is a context. A concept (A,B) ∈ B(G,M, I)
is said to be closed if A and B are closed with respect to ρ and σ, respectively.
Denote the set of all closed concepts of B(G,M, I) by Bτ (Kτ). To define a
topological context, recall that, for a topological space (X, T), a subcollection
S ⊆ T is said to be a subbasis of (X, T) if T is generated by S, i.e., if T is the
smallest topology on X containing S.

Definition 1. The structure Kτ is called a topological context if

(i) A ∈ ρ⇒ A′′ ∈ ρ and B ∈ σ ⇒ B′′ ∈ σ,

Clone Theory and FCA 151

(ii) Sρ := {A ⊆ G | (A,A′) ∈ Bτ (Kτ)} is a subbasis of (G, ρ) and
Sσ := {B ⊆M | (B′, B) ∈ Bτ (Kτ)} is a subbasis of (M,σ).

A topological context is called a standard topological context if, in addition, the
following three conditions hold:

(a) (G,M, I) is a standard context,
(b) for every (g,m) ∈ I, there exists some (A,B) ∈ Bτ (Kτ) such that g ∈ A

and m ∈ B,
(c) (Ic, (ρ × σ)|Ic) is a compact space2 where Ic := (G × M) \ I and ρ × σ

denotes the product topology on G×M .

We will now explain that there is indeed a one-to-one correspondence between
bounded lattices and standard topological spaces.

First, let Kτ = ((G, ρ), (M,σ), I) be a standard topological context, and set
Bτ (Kτ) := 〈Bτ (Kτ),≤〉 where ≤ is the restriction of the usual order-relation on
B(G,M, I). Then, Bτ (Kτ) is a bounded lattice. In fact, it is a bounded (but
not necessarily complete) sublattice of B(G,M, I).

For the other direction, we need to introduce the notion of I-maximal filters
and F -maximal ideals: For a bounded lattice A, denote by F(A) and I(A) the
set of non-empty (but not necessarily proper) lattice filters and lattice ideals
of A, respectively. For F ∈ F(A) and I ∈ I(A), we say that F is I-maximal
whenever F ∩ I = ∅ and every proper superfilter F ∗ � F already intersects I.
Similarly, we say that I is F -maximal if F ∩ I = ∅ and every proper superideal
I∗ � I already intersects F . Now, set

F0(A) := {F ∈ F(A) | ∃I ∈ I(A) : F is I-maximal},
I0(A) := {I ∈ I(A) | ∃F ∈ F(A) : I is F -maximal},
R(A) := {(F, I) ∈ F0(A)× I0(A) | F ∩ I �= ∅}.

With this notation, we can now define a standard topological context Kτ (A)
such that Bτ (Kτ (A)) ∼= A. This standard topological context can be defined as
follows:

Kτ (A) := ((F0(A), ρ0), (I0(A), σ0),R(A)),

where ρ0 and σ0 are given by the subbases

Sρ0 := {{F ∈ F0(A) | a ∈ F} | a ∈ A},
Sσ0 := {{I ∈ I0(A) | a ∈ I} | a ∈ A},

respectively.
Since we will use this fact in the remainder of this paper, let us note the

following (obvious) proposition:

Proposition 2. For X ⊆ F0(A), we have g ∈ X ′′ if and only if g is a superfilter
of some x ∈ X. Similarly, for X ⊆ I0(A), we have m ∈ X ′′ if and only if m is
a superideal of some x ∈ X.

2 By a compact space, we mean what is sometimes also called a quasicompact space.
That is, a topological space in which all open covers have finite subcovers.

152 S. Kerkhoff

Let us now turn our attention to the morphism part of the duality. Therefor, we
need to define multivalued standard morphisms and their composition.

A multivalued function F : X → Y from a set X to a set Y is a binary relation
F ⊆ X × Y such that π1(F) = X . For x ∈ X , A ⊆ X and B ⊆ Y , we define

F (x) := {y ∈ Y | (x, y) ∈ F},
F [A] := {y ∈ Y | ∃a ∈ A : (a, y) ∈ F},

F [−1][B] := {x ∈ X | F (x) ⊆ B}.

Definition 3. Let Kτ
1 = ((G1, ρ1), (M1, σ1), I1), Kτ

2 = ((G2, ρ2), (M2, σ2), I2)
be standard topological contexts. A multivalued standard morphism h : Kτ

1 → Kτ
2

is a pair (Rh, Sh) of multivalued functions Rh : G1 → G2 and Sh : M1 → M2

such that

(i) (R
[−1]
h [A], S

[−1]
h [B]) ∈ Bτ (Kτ

1) for every (A,B) ∈ Bτ (Kτ
2),

(ii) Rh(x) = Rh(x)
′′ = Rh(x) for every x ∈ G1 and

Sh(x) = Sh(x)
′′ = Sh(x) for every x ∈M1.

For j ∈ {1, 2, 3}, let Kτ
j = ((Gj , ρj), (Mj , σj), Ij), be standard topological con-

texts. We define the composition h2 ◦h1 of two multivalued standard morphisms
h1 : Kτ

1 → Kτ
2 and h2 : Kτ

2 → Kτ
3 by setting:

Rh2◦h1 : G1 → G3 : Rh2◦h1(x) := Rh2 [Rh1(x)]
′′,

Sh2◦h1 : M1 →M3 : Sh2◦h1(x) := Sh2 [Sh1(x)]
′′.

For two bounded lattices A, B and a homomorphism f : A→ B, we define the
multivalued standard morphism (Rf , Sf) : Kτ (B)→ Kτ (A) by setting:

Rf : F0(B)→ F0(A) : Rf(x) := {y ∈ F0(A) | f−1[x] ⊆ y},
Sf : I0(B)→ I0(A) : Sf (x) := {y ∈ I0(A) | f−1[x] ⊆ y}.

It is important to note that, for f being surjective, the preimage of each
F ∈ F0(B) and each I ∈ I0(B) is an element of F0(A) and I0(A), respectively.
For arbitrary homomorphisms, this is not necessarily true.

Now let X be the category with standard topological contexts as objects,
multivalued standard morphisms as morphisms and ◦ as composition. Note that,
for a given standard topological context X = ((G, ρ), (M,σ), I) ∈ X , the identity
morphism idX is given as follows:

RidX : G→ G : RidX(x) = x′′,
SidX : M →M : SidX(x) = x′′.

Theorem 4 ([Har93]). Let A be the category of bounded lattices with homo-
morphisms as morphisms and the usual composition of functions. Then,

Clone Theory and FCA 153

A and X are dually equivalent via the two contravariant functors D : A → X and
E : X → A that are given as follows:

D(A) := Kτ (A) = ((F0(A), ρ0), (I0(A), σ0),R(A)),

D(f) := (Rf , Sf),

E(Kτ) := Bτ (Kτ),

E(h) := (R
[−1]
h [−1], S

[−1]
h [−2]) : (A,B) �→ (R

[−1]
h [A], S

[−1]
h [B]).

3 Duality Theory for Clones

In this section, we will explain how we can dualize arbitrary clones. This theory
will be the foundation of our work in Section 4, where we will use the machinery
to dualize clones over bounded lattice into the framework of Formal Concept
Analysis. To obtain this duality theory for clones, we will use a more general
notion of a clone:

Definition 5. Let n ∈ N+. A morphism f : An → A is called an n-ary op-

eration over A. Denote by O
(n)
A the set of all n-ary operations over A, define

OA :=
⋃

n∈N+
O

(n)
A and, for F ⊆ OA, set F (n) := F ∩O

(n)
A .

Definition 6. A subset C ⊆ OA is called a clone of operations, written C ≤ OA,
if C contains all the projection morphisms πn

i : A
n → A and, for f ∈ C(n) and

f1, . . . , fn ∈ C(k), the superposition f ◦ 〈f1, . . . , fn〉 is also in C.

If A is the category of sets, then this definition coincides with the usual notion
of a clone. It is easy to verify that the clones over an object A form a complete
lattice with respect to inclusion. We call this lattice the lattice of clones over A,
and we denote it by LA. The top element of LA is the full clone OA, and the
bottom element is the clone that contains only the projection morphisms.

Since clones are closed under arbitrary intersection, we can define the closure
operator Clo that assigns to each subset F ⊆ OA the least clone of operations
over A that contains F . It is called the clone generated by F . For a single
operation f , we write Clo(f) to mean Clo({f}).

Examples 7.

(i) If A = Set , then OA is the full clone on the set A and LA is the usual clone
lattice.

(ii) If A is a variety (or a quasivariety) of algebras, then OA is the centralizer
clone of the algebra A and LA is the lattice of subclones of OA. Centralizer
clones are of particular interest in universal algebra (see [MMT87], for
instance).

(iii) For each clone C on a finite set A, we obtain C = OA if we define A to
be a relational structure 〈A,R〉 in a variety of relational structures such
that C is the set of polymorphisms of R (that is, the set of operations that
preserve each σ ∈ R). Such a set of relations R can always be found. In
this case, LA is the lattice of subclones of C.

154 S. Kerkhoff

These examples show that one can investigate clones over sets by treating them
as clones over objects in (abstract or concrete) categories different from Set .

We can lift every notion from clone theory to our setting as long as we can
write it in purely category-theoretic terms. For instance, we can write all kinds
of identities. E.g., we can define essential arguments of an operation as follows:

Definition 8. For n ∈ N+ and i ∈ {1, . . . , n}, the i-th argument of an operation

f ∈ O
(n)
A is said to be nonessential if

f ◦ 〈πn+1
1 , . . . , πn+1

n 〉 = f ◦ 〈πn+1
1 , . . . , πn+1

i−1 , π
n+1
n+1 , π

n+1
i+1 , . . . , π

n+1
n 〉.

An argument is called essential if it is not nonessential. Moreover, we say that
an operation is essentially k-ary if it has exactly k essential arguments.

This definition coincides with the usual definition of (non-)essential arguments
as presented at the beginning of Subsection 2.2 whenever the latter is applicable
(that is, if the powers of A are Cartesian powers and the morphisms are set-
functions). Having written operations and clones in purely category-theoretic
terms, we can dualize all these notions:

Definition 9. Let n ∈ N+. An n-ary dual operation over X (or cooperation

over X) is a morphism from X to n ·X. Denote by O
(n)

X the set of all n-ary dual

operations over X, define OX :=
⋃

n∈N+
O

(n)

X and, for a set of dual operations

H ⊆ OX, set H(n) := H ∩O
(n)

X .

Definition 10. A subset C ⊆ OX is called a clone of dual operations (or co-
clone), written C ≤ OX, if it contains all the injection morphisms and, for
h ∈ C(n) and h1, . . . , hn ∈ C(k), the superposition [h1, . . . , hn] ◦ h is also in C.

If X is a set in the category of sets, then a clone of dual operations over X is a
coclone as introduced in [Csá85].

Definition 11. For n ∈ N+ and i ∈ {1, . . . , n}, the i-th argument of a dual

operation h ∈ O
(n)

X is said to be nonessential if

[ιn+1
1 , . . . , ιn+1

n] ◦ h = [ιn+1
1 , . . . , ιn+1

i−1 , ι
n+1
n+1, ι

n+1
i+1 , . . . , ι

n+1
n] ◦ h.

An argument is called essential if it is not nonessential. Moreover, we say that
an operation is essentially k-ary if it has exactly k essential arguments.

Again, clones of dual operations form a complete lattice, which we will denote
by LX and call the lattice of clones of dual operations over X.

Analogue to the closure operator Clo on sets of operations, we can define Clo:
For a set of dual operations H ⊆ OX, we denote by Clo(H) the least clone of
dual operations that contains H . Again, for a single dual operation, we write
Clo(h) instead of Clo({h}).

Clone Theory and FCA 155

We will now describe how to dualize clones. For this, let 〈D,E, e, ε〉 be a dual
equivalence between two arbitrary categories A and X , and let A ∈ A such that
all finite non-empty powers of A are also in A. Set X := D(A). Since A and
X are dually equivalent, X contains all finite non-empty copowers of X. The
functor D carries A to X and reverses the order of the morphisms, so wishful
thinking suggests that it should map a morphism f ∈ OA to a morphism in
OX. Unfortunately, this is not always the case as D maps f to a morphism
from X to D(An) and the latter is only isomorphic and not necessarily equal to
n ·X.3 However, we can get around this technical problem by finding a family of
isomorphisms (ηn)n∈N+ such that f �→ ηar(f)◦D(f) becomes a clone isomorphism

from OA to OX (recall that ar(f) denotes the arity of f).

Lemma 12 ([Ker11]). There exists a unique family of isomorphisms

(ηn : D(An)→ n ·X)n∈N+

such that the mapping

(−)∂ : OA → OX : f �→ ηar(f) ◦D(f)

has the following properties:

(i) (−)∂ : O(n)
A → O

(n)

X is a bijection for each n ∈ N+,
(ii) (πn

i)
∂ = ιni and (f ◦ 〈h1, . . . , hn〉)∂ = [h∂

1 , . . . , h
∂
n] ◦ f∂ for all n, k ∈ N+,

f ∈ O
(n)
A and h1, . . . , hn ∈ O

(k)
A .

In fact, ηn = [D(πn
1), . . . , D(πn

n)]
−1.

By this lemma, it follows immediately that C is a clone of operations over A
if and only if C∂ is a clone of dual operations over X. Moreover, the family
(ηn)n∈N+ and hence the construction of (−)∂ only depends on the choice of the
dual equivalence. Thus, the following definition is justified:

Definition 13. The mapping (−)∂ : OA → OX is called the clone duality with
respect to D. For F ⊆ OA, set F ∂ := {f∂ | f ∈ F}.

By Lemma 12, we immediately obtain the following theorem:

Theorem 14. LA
∼= LX, where an isomorphism between LA and LX is given

by C �→ C∂ .

Moreover, it is an obvious consequence of Lemma 12 that an identity holds in C
if and only if its dualized version holds in C∂ :

Lemma 15. Let f1 ∈ O
(k)
A , f2 ∈ O

(l)
A . For i1, . . . , ik, j1, . . . , jl ∈ {1, . . . , n}, we

have

f1 ◦ 〈πn
i1 , . . . , π

n
ik〉 = f2 ◦ 〈πn

j1 , . . . , π
n
jl〉 ⇐⇒ [ιni1 , . . . , ι

n
ik] ◦ f

∂
1 = [ιnj1 , . . . , ι

n
jl] ◦ f

∂
2 .

3 Of course, we could avoid the trouble by defining n · X := D(An) for all n ∈ N+.
But then, the copowers of X might not be canonical and they would depend on the
choice of the dual equivalence. One usually wants to avoid both.

156 S. Kerkhoff

In particular, this lemma evidently implies the statement that the i-th argument
of some f ∈ OA is nonessential if and only if the i-th argument of f∂ ∈ OX is
nonessential.

In [Ker11], clone dualities are used to obtain new results for clones over fi-
nite sets and in particular for clones over classical algebraic structures such as
Boolean algebras, distributive lattices, median algebras or Boolean groups. In
the next section, we will present a new example and discuss how clones over
(not necessarily finite) bounded lattices dualize to clones of dual operations in
an FCA-framework.

4 Clones over Bounded Lattices

From now on until the end of this paper, let A = 〈A,∨,∧, 0, 1〉 be a bounded
lattice, and let A be the category of bounded lattices with all homomorphisms
as morphisms. Recall that, in this scenario, OA is the centralizer clone of the
lattice A (cf. Example 7(ii)). Our goal is to investigate LA, that is, the lattice
of subclones of OA.

We will now construct a clone duality for OA. By Theorem 4, A is dually
equivalent to the category X of standard topological contexts with multivalued
standard morphisms. Recall that the corresponding functor D : A → X is given
as follows:

D(A) := Kτ (A) = ((F0(A), ρ0), (I0(A), σ0),R(A)),

D(f) := (Rf , Sf).

From now on, let X := D(A). To obtain the clone duality (−)∂ : OA → OX, we
need to observe how the powers of A dualize under D.

Lemma 16. For n ∈ N+, we have

F0(A
n) =

{
Ai−1 × x×An−i | i ∈ {1, . . . , n}, x ∈ F0(A)

}
,

I0(A
n) =

{
Ai−1 × x×An−i | i ∈ {1, . . . , n}, x ∈ I0(A)

}
.

Proof. We only show the first equality, since the part for I0(A
n) is similar.

“⊆”. We will show this direction in three steps. First we show that each
F ∈ F0(A

n) must be the Cartesian product of n filters F1, . . . , Fn ∈ F(A), then
we show that exactly n−1 of the sets F1, . . . , Fn equal A, and finally we show that
Fi �= A implies Fi ∈ F0(A). For the first part, let (a1, . . . , an), (b1, . . . , bn) ∈ F .
Since F is a filter, it is closed under ∧. Thus, for ci ∈ {ai, bi}, we have

(c1, . . . , cn) ≥ (a1 ∧ b1, . . . , an ∧ bn) = (a1, . . . , an) ∧ (b1, . . . , bn) ∈ F,

Clone Theory and FCA 157

and consequently (c1, . . . , cn) ∈ F since F is also an increasing set. This proves
that F can be written as F1 × . . .× Fn for some F1, . . . , Fn ⊆ A. If Fi is not an
increasing set for some i ∈ {1, . . . , n}, then F is not an increasing set. If Fi is
not closed under ∧ for some i ∈ {1, . . . , n}, then F is not closed under ∧. Hence,
F1, . . . , Fn ∈ F(A).

For the second part, let us first note that we cannot have F = An, so Fi �= A
holds for at least one i ∈ {1, . . . , n}. Now, let us assume the existence of two
integers i, j ∈ {1, . . . , n}, i �= j, such that Fi �= A and Fj �= A. Without loss of
generality we can assume i = 1 and j = 2. Since F1, . . . , Fn are filters, we also
have that F ∗ := F1×A×F3× . . .×Fn and F ∗∗ := A×F2× . . .×Fn are filters.
Moreover, they both properly contain F . Since F ∈ F0(A

n), there must exist
an ideal I ∈ I(An) that is disjoint to F but intersects F ∗ as well as F ∗∗. Let
x1 ∈ F ∗ ∩ I and x2 ∈ F ∗∗ ∩ I. But now, we have x1 ∨ x2 ∈ I since I is an ideal,
and we have x1 ∨ x2 ∈ F by construction of F ∗ and F ∗∗. Thus, x1 ∨ x2 ∈ I ∩F ,
which is impossible.

For the third part, let us assume Fi �= A for some i ∈ {1, . . . , n}. Since we
already know that Fi is a filter, we can finish the proof by showing that there
exists Ii ∈ I(A) such that Fi is Ii-maximal. Recall that F is I-maximal for some
I ∈ I(An). By arguments analogue to above, I can be written as I1 × . . .× In
where I1, . . . , In ∈ I(A). In particular, Ii is an ideal. Let us show that Fi is
Ii-maximal. By F1 = . . . = Fi−1 = Fi+1 = . . . = Fn = A, we can conclude
Fi ∩ Ii = ∅ since otherwise it would follow F ∩ I �= ∅, a contradiction to the
I-maximality of F . It remains to show that there cannot exist a proper superfilter
F ∗
i � Fi that is disjoint to Ii: The existence of such F ∗

i ∈ F(A) would imply
that I does not intersect the filter Ai−1 × F ∗

i × An−i � F , which would again
contradict the I-maximality of F .

“⊇”. Let i ∈ {1, . . . , n} and x ∈ F0(A). Clearly, F := Ai−1 × x × An−i is
a filter. Since x ∈ F0(A), there exists I ∈ I(A) such that x is I-maximal. But
now, Ai−1 × I × An−i is an ideal, and we will finish the proof by showing that
F is (Ai−1 × I ×An−i)-maximal. Clearly, Ai−1 × I ×An−i is disjoint to F . Let
F ∗ � F be a proper superfilter. By arguments from above, F ∗ is of the form
Ai−1 × y × An−i for some filter y � x. But now, y intersects I, and so F ∗

intersects Ai−1 × I ×An−i. Thus, F ∈ F0(A
n). �

It remains to understand how the projection morphisms dualize. For n ∈ N+

and i ∈ {1, . . . , n}, we have (πn
i)

−1[x] = Ai−1 × x × An−i for each x ∈ F0(A)
and each x ∈ I0(A). Thus, the multivalued standard morphism

D(πn
i) = (Rπn

i , Sπn
i) : D(A)→ D(An)

is given as follows:

Rπn
i (x) = {y ∈ F0(A

n) | Ai−1 × x×An−i ⊆ y},
Sπn

i (x) = {y ∈ I0(A
n) | Ai−1 × x×An−i ⊆ y}.

158 S. Kerkhoff

We will now look at the following canonical definition of copowers in X : Let
Y := ((GY, ρY), (MY, σY), IY) be an object in X . Then, the n-th copower of Y
is defined by setting

n ·Y := ((n ·GY, ρn·Y), (n ·MY, σn·Y), In·Y),

where

n ·GY := {〈i, g〉 | i ∈ {1, . . . , n}, g ∈ GY},
n ·MY := {〈i,m〉 | i ∈ {1, . . . , n},m ∈MY},

ρn·Y and σn·Y are the disjoint union topologies (that is, the finest topologies for
which all canonical injections g �→ 〈i, g〉 and m �→ 〈i,m〉 are continuous) and

〈i, g〉In·Y〈j,m〉 :⇐⇒ i �= j or gIYm.

The associated injection morphisms ιni are given by

Rιni
: GY → n ·GY : Rιni

(y) = {〈i, g〉 | g ∈ y′′} = 〈i, y〉′′,
Sιni

: MY → n ·MY : Sιni
(y) = {〈i,m〉 | m ∈ y′′} = 〈i, y〉′′.

Moreover, for a standard topological context Z = ((GZ, ρZ), (MZ, σZ), IZ) and
h1, . . . , hn : Y → Z, the cotupling [h1, . . . , hn] : n ·Y → Z is given as follows:

R[h1,...,hn] : n ·GY → GZ : R[h1,...,hn](〈i, y〉) = Rhi(y),
S[h1,...,hn] : n ·MY →MZ : S[h1,...,hn](〈i, y〉) = Shi(y).

Recall that X = D(A) = ((F0(A), ρ0), (I0(A), σ0),R(A)). For the copowers of
X, we can give a more concrete characterization of the injection morphisms and
their cotuplings:

Lemma 17. Let n ∈ N+ and i ∈ {1, . . . , n}. Then,

Rιni
(x) = {〈i, y〉 | y ∈ F0(A), x ⊆ y},

Sιni
(x) = {〈i, y〉 | y ∈ I0(A), x ⊆ y}.

Consequently, for i1, . . . , ik ∈ {1, . . . , n}, we obtain

R[ιni1
,...,ιnik

](〈j, x〉) = {〈ij, y〉 | y ∈ F0(A), x ⊆ y},

S[ιni1
,...,ιnik

](〈j, x〉) = {〈ij, y〉 | y ∈ I0(A), x ⊆ y}.

Proof. As described above, we have Rιnij
(x) = {〈ij , y〉 | y ∈ x′′}, and it is a

direct consequence of Proposition 2 that we also have

{〈ij , y〉 | y ∈ x′′} = {〈ij, y〉 | y ∈ F0(A), x ⊆ y}.

The part for Sιni
follows in the same way. �

Clone Theory and FCA 159

Let us now turn back to constructing our duality. By Lemma 12, there exists a
unique family of isomorphism (ηn : D(An) → n ·X)n∈N+ with ιni = ηn ◦D(πn

i)
for all n ∈ N+ and i ∈ {1, . . . , n}. Moreover, the lemma states that this family is
obtained by setting ηn := [D(πn

1), . . . , D(πn
n)]

−1 for all n ∈ N+. In the following
proposition, we will describe this family more concretely:

Proposition 18. For n ∈ N+, the unique isomorphism ηn : D(An)→ n ·X
from Proposition 12 is given as follows:

For x ∈ F0(A
n): Rηn(x) = {〈i, y〉 ∈ n · F0(A) | x ⊆ Ai−1 × y ×An−i},

for x ∈ I0(A
n): Sηn(x) = {〈i, y〉 ∈ n · I0(A) | x ⊆ Ai−1 × y ×An−i}.

Proof. In view of Lemma 12, we need to show ηn = [D(πn
1), . . . , D(πn

n)]
−1. For

brevity, let us set h := [D(πn
1), . . . , D(πn

n)]. Then,

Rh : n · F0(A)→ F0(A
n) : Rh(〈i, y〉) = {x ∈ F0(A

n) | Ai−1 × y ×An−i ⊆ x},
Sh : n · I0(A)→ I0(A

n) : Sh(〈i, y〉) = {x ∈ I0(A
n) | Ai−1 × y ×An−i ⊆ x}.

On the one hand, for x ∈ F0(A
n), we have

Rh◦ηn(x) = Rh[Rηn(x)]
′′ = Rh[{〈i, y〉 ∈ n · F0(A) | x ⊆ Ai−1 × y ×An−i}]′′

= {z ∈ F0(A
n) | x ⊆ z}′′ = x′′ = RidD(An)

,

where the last but one step follows directly from Proposition 2. On the other
hand, for 〈i, y〉 ∈ n · F0(A), we have

Rηn◦h(〈i, y〉) = Rηn [Rh(〈i, y〉)]′′ = Rηn [{x ∈ F0(A
n) | Ai−1 × y ×An−i ⊆ x}]′′

= {〈i, z〉 ∈ n · F0(A) | y ⊆ z}′′ = 〈i, y〉′′ = Ridn·X(〈i, y〉),

where the fourth step is again due to Proposition 2. In the same way, it follows
that we have Sh◦ηn = SidD(An)

and Sηn◦h = Sidn·X . Thus, ηn = h−1. �

As outlined in Section 3, we now obtain the clone duality (−)∂ : OA → OX by
setting f∂ := ηar(f) ◦ D(f) for f ∈ OA. The following proposition states (−)∂
explicitly:

Proposition 19. For f ∈ OA with ar(f) = n, the multivalued standard mor-

phism f∂ ∈ O
(n)

X is given as follows:

For x ∈ F0(A): Rf∂ (x) = {〈i, y〉 ∈ n · F0(A) | f−1[x] ⊆ Ai−1 × y ×An−i},
for x ∈ I0(A): Sf∂ (x) = {〈i, y〉 ∈ n · I0(A) | f−1[x] ⊆ Ai−1 × y ×An−i}.

Proof. For x ∈ F0(A), we have

Rf∂ (x) = Rηn◦D(f)(x)

= Rηn [R
f(x)]′′

= Rηn [{z ∈ F0(A
n) | f−1[x] ⊆ z}]′′

= {〈i, y〉 ∈ n · F0(A) | f−1[x] ⊆ Ai−1 × y ×An−i}′′

= {〈i, y〉 ∈ n · F0(A) | f−1[x] ⊆ Ai−1 × y ×An−i}.

The part for Sf∂ follows in the same way. �

160 S. Kerkhoff

As already noted in the preliminaries, surjective homomorphisms play a special
role in the dual equivalence. For them, we can state the following proposition:

Proposition 20. Let f ∈ O
(n)
A be surjective. Then, for each x ∈ F0(A) there

exist i ∈ {1, . . . , n}, y ∈ F0(A) such that Rf∂ (x) = Rιni
(y), and similarly, for

each x ∈ I0(A) there exist i ∈ {1, . . . , n}, y ∈ I0(A) such that Sf∂ (x) = Sιni
(y).

Proof. Let x ∈ F0(A). As noted in the preliminaries, f being surjective implies
f−1[x] ∈ F0(A

n). Thus, there exist i ∈ {1, . . . , n} and y ∈ F0(A) such that
f−1[x] = Ai−1×y×An−i. Hence, Rf∂ (x) = {〈i, z〉 | z ∈ F0(A), y ⊆ z} = Rιni

(y).
As usual, the part for Sf∂ follows in the same way. �

Let us summarize the work of this section: We have constructed a clone dual-
ity (−)∂ that dualizes clones over bounded lattices (of arbitrary cardinality) to
clones of dual operations that consist of multivalued standard morphisms be-
tween standard topological contexts. Thus, we have obtained a technique that
allows us to transfer problems from clone theory to the field of Formal Concept
Analysis. In the next section, we will put this duality to work and give a small
illustration of how this connection can be a useful tool to investigate clones over
bounded lattices.

5 A Small Illustration of the Duality

Let us now illustrate that the duality can be used to obtain (new) results for
clones over bounded lattices that would be much harder to obtain without the
duality. Recall that the categories A and X , the objects A and X, the functor
D and the clone duality (−)∂ : OA → OX still denote what they denoted in the
last section (they were all introduced on page 156).

First, we deal with essential arguments. Since the morphisms in our category
A are homomorphisms and therefore set-functions and the products in A are the
Cartesian products, the i-th argument of a morphism f ∈ OA is essential in the
sense of Definition 8 if and only if the i-th argument of f is essential in the usual
sense that we have presented at the beginning of Subsection 2.2. Furthermore, as
we have noted in Lemma 15, the i-th argument of f is nonessential if and only if
the i-th argument of f∂ is nonessential. Thus, we can investigate the essentiality
of the arguments of an operation f ∈ OA by investigating the arguments of its
dual f∂ ∈ OX. To do the latter, we can use the following lemma:

Lemma 21. Let n ∈ N+. For an at least binary multivalued standard morphism

h ∈ O
(n)

X , the following two statements are equivalent:

(1) the t-th argument of h is nonessential,
(2) Rh[F0(A)] ⊆ {〈i, y〉 | i ∈ {1, . . . , t− 1, t+ 1, . . . , n}, y ∈ F0(A)}, and

Sh[I0(A)] ⊆ {〈i, y〉 | i ∈ {1, . . . , t− 1, t+ 1, . . . , n}, y ∈ I0(A)}.

Clone Theory and FCA 161

Proof. Without loss of generality, we can assume t = 1.
(1) =⇒ (2). By assumption, h does not depend on its first argument. Hence,

[ιn+1
1 , . . . , ιn+1

n] ◦ h = [ιn+1
n+1, ι

n+1
2 , . . . , ιn+1

n] ◦ h,

and so the claim follows by using Lemma 17.
(2) =⇒ (1). We have Rh(x) ⊆ {〈i, y〉 | i ∈ {2, . . . , n}, y ∈ F0(A)} for each

x ∈ F0(A). Hence, Lemma 17 yields

R[ιn+1
1 ,...,ιn+1

n]◦h(x) = R[ιn+1
1 ,ιn+1

2 ,...,ιn+1
n][Rh(x)]

= R[ιn+1
n+1,ι

n+1
2 ,...,ιn+1

n+1]
[Rh(x)]

= R[ιn+1
n+1,ι

n+1
2 ,...,ιn+1

n]◦h(x).

The equation S[ιn+1
1 ,...,ιn+1

n]◦h = S[ιn+1
n+1,ι

n+1
2 ,...,ιn+1

n]◦h follows in the same way. �

As this lemma shows, one only needs to look at the images of Rf∂ and Sf∂ to
determine which arguments of an operation f ∈ OA are essential and which are
nonessential. In most cases, this is much easier than trying to investigate the es-
sentiality of an argument in the usual way. In fact, with this lemma, it becomes
remarkably easy to infer many results about the essential arity of operations
among OA. For instance, we can now almost trivially deduce the fact that the
essential arity of operations among OX, and hence OA, is bounded if X is finite
(note that X is finite if and only if A is finite). This result is known and usu-
ally derived from the fact that lattice-homomorphisms satisfy the strong term
condition [McK83], so what we have obtained is an alternative proof, where the
lemma above replaces the arguments from universal algebra. A much more am-
bitious goal would be to use this lemma to obtain a sharp bound on the essential
arity of operations over a given finite lattice, which, to the best knowledge of the
author, is an open problem. It seems promising that this problem can be solved
with the help of the lemma above and some work with the multivalued standard
morphisms. However, it would be beyond the scope of this paper.

Let us instead conclude this section with some results about idempotent op-
erations. Recall that a function f is said to be idempotent if f(x, . . . , x) ≈ x.
Writing this equivalently in category-theoretic notation, we can say that an op-

eration f ∈ O
(n)
A is idempotent if and only if f ◦ 〈idA, . . . , idA〉 = idA. Clearly,

by Lemma 15, f ∈ OA is idempotent if and only if f∂ ∈ OX is a dual idempotent
operation, that is, [idX, . . . , idX]◦f∂ = idX. A clone of (dual) operations is called
idempotent if it contains only idempotent (dual) operations.

We start our small investigation of idempotent operations by providing the
following characterization of the dual idempotent operations among OX:

Lemma 22. Let h ∈ O
(n)

X . The following two statements are equivalent:

(1) h is idempotent.
(2) For all x ∈ F0(A), there exists i ∈ {1, . . . , n} such that Rh(x) = Rιni

(x), and
for all x ∈ I0(A) there exists i ∈ {1, . . . , n} such that Sh(x) = Sιni

(x).

162 S. Kerkhoff

Proof. (1) =⇒ (2). As usual, we only need to show the part for Rh since the
statement for Sh follows in the same way. First, let x ∈ F0(A). There exists
f ∈ OA such that f∂ = h. Since h is idempotent, so is f . This also implies that
f is surjective. Therefore, we can apply Proposition 20, and it follows that there
exists i ∈ {1, . . . , n} and y ∈ F0(A) such that Rh(x) = Rιni

(y). Moreover, the
idempotency of h implies ιni = [ιni , . . . , ι

n
i] ◦ h. Hence,

Rιni
(x) = R[ιni ,...,ι

n
i]◦h(x) = R[ιni ,...,ι

n
i]
[Rh(x)]

′′ = R[ιni ,...,ι
n
i]
[Rιni

(y)]′′

= R[ιni ,...,ι
n
i]◦ιni (y) = Rιni

(y) = Rh(x).

(2) =⇒ (1). We have to show idX = [idX, . . . , idX] ◦ h. For each x ∈ F0(A),
there exists i ∈ {1, . . . , n} such that Rh(x) = Rιni

(x). Hence,

RidX(x) = R[idX,...,idX]◦ιni (x) = R[idX,...,idX][Rιni
(x)]′′

= R[idX,...,idX][Rh(x)]
′′ = R[idX,...,idX]◦h(x).

Analogously, it follows SidX = S[idX,...,idX]◦h, so idX = [idX, . . . , idX] ◦ h. �

With this lemma, we can establish a close connection between the dual idem-
potent operations over X (and hence the idempotent operations over A) and
certain partitions.

Definition 23. For a dual idempotent operation h ∈ O
(n)

X , we denote by Π(h)
the partition of F0(A) ∪ I0(A) obtained by setting Π(h) := {X1, . . . , Xn} \ {∅}
where X1, . . . , Xn are defined as follows:

For x ∈ F0(A): x ∈ Xi :⇐⇒ Rh(x) = Rιni
(x),

for x ∈ I0(A): x ∈ Xi :⇐⇒ Sh(x) = Sιni
(x).

Note that Π(h) is a well-defined partition due to Lemma 22. Thus, every dual
idempotent operation on X can be uniquely assigned to a partition of
F0(A) ∪ I0(A) (but not necessarily vice versa). Moreover, denoting by � the
finer-than relation for partitions, we can use Lemma 22 to easily deduce the
following statement (its proof will be omitted due to limitation of space):

Lemma 24.

(a) For two idempotent dual operations h1, h2 ∈ OX, we have h2 ∈ Clo(h1) if
and only if Π(h1) � Π(h2). Consequently, Clo(h1) = Clo(h2) if and only if
Π(h1) = Π(h2).

(b) Each idempotent C ≤ OX is generated by a single dual operation.

Note that the second part of the lemma clearly also holds in its dualized version,
that is, each idempotent C ≤ OA is determined by a single operation. The first
part of this lemma makes it very easy to decide whether two dual idempotent
operations generate each other, and with a little bit more work, we can also
establish a close connection between the lattice of partitions of F0(A) ∪ I0(A)
(given by �) and the lattice of idempotent clones over A (one of the ideals of
the clone lattice that is of particular interest).

Clone Theory and FCA 163

Proposition 25. The lattice of idempotent clones of operations over A can be
embedded into the lattice of partitions of the set F0(A) ∪ I0(A).

Proof. By Lemma 24, the desired lattice-embedding ϕ can be obtained by setting
ϕ(C) := Π(f∂) where f is one of the single operations that generate C. �
For future research, it would be an interesting task to further investigate the
lattice of idempotent clones of operations overA by characterizing the sublattice
of the lattice of partitions of F0(A) ∪ I0(A) to which it is isomorphic.

6 Conclusion

We used the dual equivalence from [Har93] and the results from [Ker11] to
construct a duality between clones over bounded lattices and so-called clones of
dual operations over standard topological contexts. We gave some small examples
of how this connection between clone theory and Formal Concept Analysis can
be used to simplify clone theoretic problems and to produce concrete results. In
the process, we also stated some open problems for which an application of the
duality seems promising.

References

[Csá85] Csákány, B.: Completeness in coalgebras. Acta Sci. Math. 48, 75–84 (1985)
[GBGL08] Gowers, T., Barrow-Green, J., Leader, I. (eds.): The Princeton companion

to mathematics. Princeton University Press, Princeton (2008)
[Geh06] Gehrke, M.: Generalized Kripke frames. Studia Logica 84(2), 241–275 (2006)
[GW99] Ganter, B., Wille, R.: Formal concept analysis. Mathematical foundations.

Springer, Berlin (1999); Translated from the 1996 German original by Cornelia
Franzke

[Har93] Hartung, G.: An extended duality for lattices. In: General Algebra and Ap-
plications, Potsdam. Res. Exp. Math., vol. 20, pp. 126–142. Heldermann, Berlin
(1992, 1993)

[Haz95] Hazewinkel, M. (ed.): Encyclopaedia of mathematics. A–Zyg, index, vol. 1–
6. Kluwer Academic Publishers, Dordrecht (1995); Translated from the Russian,
Reprint of the 1988-1994 English translation

[HD97] Hartonas, C., Dunn, J.M.: Stone duality for lattices. Algebra Universalis 37(3),
391–401 (1997)

[Ker11] Kerkhoff, S.: A general duality theory for clones, Ph.D. thesis, Technische
Universität Dresden (2011)

[Maš06] Mašulović, D.: On dualizing clones as lawvere theories. International Journal
of Algebra and Computation 16, 675–687 (2006)

[McK83] McKenzie, R.: Finite forbidden lattices. In: Universal Algebra and Lattice
Theory, Puebla. Lecture Notes in Math., vol. 1004, pp. 176–205. Springer, Berlin
(1982, 1983)

[MMT87] McKenzie, R.N., McNulty, G.F., Taylor, W.: Algebras, lattices, varieties.
The Wadsworth & Brooks/Cole Mathematics, vol. I. Wadsworth & Brooks/Cole
Advanced Books & Software, Monterey (1987)

[Urq78] Urquhart, A.: A topological representation theory for lattices. Algebra Uni-
versalis 8(1), 45–58 (1978)

Formal Concept Discovery

in Semantic Web Data

Markus Kirchberg1, Erwin Leonardi1, Yu Shyang Tan1, Sebastian Link2,
Ryan K.L. Ko1, and Bu Sung Lee1

1 Cloud & Security Lab, Hewlett-Packard Laboratories, Singapore
2 Dept of Computer Science, Auckland University, New Zealand

Abstract. Semantic Web efforts aim to bring the WWW to a state in
which all its content can be interpreted by machines; the ultimate goal
being a machine-processable Web of Knowledge. We strongly believe that
adding a mechanism to extract and compute concepts from the Seman-
tic Web will help to achieve this vision. However, there are a number
of open questions that need to be answered first. In this paper we will
establish partial answers to the following questions: 1) Is it feasible to
obtain data from the Web (instantaneously) and compute formal con-
cepts without a considerable overhead; 2) have data sets, found on the
Web, distinct properties and, if so, how do these properties affect the
performance of concept discovery algorithms; and 3) do state-of-the-art
concept discovery algorithms scale wrt. the number of data objects found
on the Web?

Keywords: Formal Concept Discovery, Semantic Web, Web of Data,
Knowledge Extraction, Parallel Algorithms, Performance Evaluation.

1 Introduction

The Semantic Web [1] is the most prominent effort to address limitations un-
derlying the design of the World Wide Web (WWW); the main aim is to bring
the WWW to a state in which all its content can also be interpreted by ma-
chines. The emphasis is not primarily on putting data on the Web, but rather
on creating links in a way that both humans and machines can explore this Web
of Data (WoD). The ultimate goal, however, is to create a machine-processable
Web of Knowledge. We strongly believe that adding a mechanism to extract and
compute formal concepts from the Semantic Web will help to achieve this vision.

In the WoD, facts (commonly referred to as RDF triples or quads) are not
partitioned according to their meaning. Therefore, every fact represents a sin-
gle concept. With a concept abstraction, semantically-related facts are linked
together as meaningful units. Formal Concept Analysis (FCA) [2,3] is a tool-
box of well-founded, consumer1-oriented methods to structure and analyse data.
FCA, by means of a lattice representation, enables visualisation of not only data

1 A consumer being a developer, machine, end-user, etc.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 164–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formal Concept Discovery in Semantic Web Data 165

but also their inherent structures, implications and dependencies. As an addi-
tional benefit, concepts are abstractions easier to comprehend by consumers.
This assists with the verification of how results have been computed. In turn,
this can help with data provenance and with the establishment of trust among
users – two additional goals of the Semantic Web.

In this paper, we will briefly outline our vision of supplementing the Web of
Data with a concept layer. This is followed by presenting an approach of how
FCA tools and algorithms can be applied to the Semantic Web. Once introduced,
we will examine differences of properties inherent in Web data-sets and those
from traditional FCA data-sets. Mining concepts from diverse (and dynamic)
data sources has the potential to produce data inputs that are different from
what FCA algorithms have been applied to in the past. We will further study
by means of experimentation whether and/or how such differences affect the
performance characteristics of FCA algorithms.

2 Related Work

Applying FCA to the Semantic Web domain is not new in itself; there have
been several works on ontology alignment, learning and engineering as well as
Semantic Web querying, browsing and visualization. In this section, we briefly
introduce basic Semantic Web terminology and review the body of existing works
at the intersection of FCA and Semantic Web. For an introduction to FCA basics,
we refer the reader to [2,3].

2.1 Semantic Web Data

The Resource Description Framework (RDF) [4] is the basic format of data in
the Semantic Web; it consists of statements of the form: “Subject S is in some
relation P to object O”. Such statements (S, P,O) are known as RDF triples (or
triples for short) that can be serialised in N-Triple format. Recently, the notion
of provenance (or context) has been added to triples, and hence, “Given context
C, Subject S is in some relation P to object O”. Triples with context are called
RDF quads (or quads for short). Quads can be modelled in N-Quads format, an
extension of N-Triples with context. Each quad has the following form:

<subject S> <predicate P> <object O> <context C> .

2.2 FCA Algorithms and Benchmarks

Over the years, various FCA implementations and benchmarks (e.g., [5]) have
been published. Given indicative performance measurements published by Strok
et al. [6] as well as the results from the ICCS 2009 FCA Algorithms competition2,
our work mainly utilises implementations from the family of CbO algorithms
(i.e., PCbO [7], FCbO [8] and PFCbO [8]) and In-Close (i.e., In-Close2 [9])
algorithms – as they were deemed to be the fastest FCA algorithms.

2 http://www.upriss.org.uk/fca/fcaalgorithms.html

http://www.upriss.org.uk/fca/fcaalgorithms.html

166 M. Kirchberg et al.

2.3 FCA and the Semantic Web

Formal Concept Analysis has been applied to various areas of the Semantic
Web. Most notable are works on ontology querying, browsing and visualization
(e.g., [10]), interactive ontology merging (e.g., [11]), ontology learning from text
(e.g., [12]) as well as interactive completion of ontologies (e.g., [13]). Besides
ontologies, FCA has been utilised for measuring the similarity of FCA concepts
by determining the similarity of concept descriptors (i.e., attributes) via the
information content approach [14]; building concept maps for a given set of
documents and quantifying the semantic relations between those concepts [15];
facilitating conceptual navigation of RDF graphs whereby concepts are accessed
through SPARQL-like queries [16]; and extracting representative questions over
a given RDF data-set utilising FCA [17].

3 Towards a Concept Layer for the Semantic Web

The current state of the Semantic Web is centred on the Web of Data (also
known as Linked Open Data (LOD) [18]), which is comprised of RDF triples.
The ultimate goal of the Semantic Web is to create a machine-processable Web
of Knowledge (WoK). Such a WoK would be comprised of services in which the
semantics of content are made explicit while content itself is linked to both, other
content and services. The gap between the current LOD and the envisioned WoK
is still large; for instance LOD’s rapid growth, varying data-set compliance wrt.
LOD guidelines, complexity of computations over large data-sets, and lack of
tools and applications pose significant challenges to reaching the ultimate goal.

How do we select the right LOD data-set(s) that contain(s) the data of inter-
est? Even once suitable LOD data-sets have been found, how can we understand
their relationships, schemata (i.e., ontologies), and content? These are just a few
of the problems and issues yet to be addressed successfully.

The main barriers for the Web of Knowledge can be categorised into barriers
of creation and barriers of usage. The former includes challenges related to the
cost involved in developing suitable ontologies as well as annotating Web pages
by linking RDF-encoded facts in Web pages to ontologies. The latter refers to
difficulty in writing SPARQL [19] queries and semantic rules.

We strongly believe that the aforementioned gap can be bridged by adding
an additional abstraction layer of concepts to the Web of Data. The discovery
of formal concepts in RDF triples will partition the Web of Data into a Web
of concepts. Therefore, a concept layer partitions RDF triples into equivalence
classes of semantically related facts. Thus, an additional concept layer better
links the mature core layers (i.e., Unicode, Uniform Resource Identifier, RDF
and SPARQL) of the Semantic Web Stack [20] with its upper layers; addressing
WoK barriers by linking data that are semantically related in a given context.

Concepts can be computed using the well-founded FCA approach. FCA, by
means of a lattice representation, enables visualisation of not only data but
also their inherent structures, implications and dependencies. Utilising the FCA

Formal Concept Discovery in Semantic Web Data 167

approach that has been applied to many different areas offers significant benefits
and value to Semantic Web efforts:

– Concepts facilitate understanding without having ontologies at hand;
– Concepts will lower costs of creating, maintaining, integrating and exchang-

ing ontologies;
– Concepts can be automatically computed from RDF-encoded facts (at scale)

and are context-aware;
– Concepts reduce the difficulty in writing SPARQL queries and semantic rules

as data can be better understood; and
– Concepts are easier to understand by consumers and allow for verification

of data sources by following the path of computation, i.e., supporting trust
and provenance.

The notion of concepts has a great potential to remove some of the barriers that
currently prevent the full vision of the Semantic Web from becoming reality. We
foresee that an additional abstraction layer of concepts can directly address bar-
riers associated with creation (e.g., cost of developing ontologies, linking RDF-
encoded facts in Web pages to ontologies at Web-scale) while usage barriers
(e.g., writing SPARQL queries and semantic rules) are lower – nevertheless, we
further improve usability by making it easier to understand data.

A detailed discussion of the placement and benefits of such a concept layer is
beyond the scope of this paper; instead, we will present details on how FCA can
be applied to Web-scale data.

4 Applying FCA to Semantic Web Data

4.1 Concept Computation Process Overview

The concept layer mentioned in Section 3 computes Semantic Web concepts using
FCA; an overview of the process to compute concepts is depicted in Figure 1.
Consumers (i.e., developers, machines, end-users, etc.) first define the context in
which concepts are to be explored; therefore, a Concept Recipe is to be specified
(Fig. 1, step 1). A Concept Recipe is comprised of three parts:

1. The context is specified as a list of data sources; supported data sources are
RDF documents and SPARQL queries.

2. The object set is defined by specifying bindings wrt. (RDF) subjects, predi-
cates, objects, or combinations thereof.

3. The attribute set is defined by specifying bindings wrt. (RDF) subjects,
predicates, objects, or combinations thereof.

In this paper, we will focus on FCA context extraction from the Web (Fig. 1,
step 2) and concept computation (Fig. 1, step 4).

168 M. Kirchberg et al.

1

2

Web of Data / LOD

3

C
F

A
4

5

6

Context Extraction

Consumer

Concept System Generation

Concept Clustering

Concept Computation

Object Set

Attribute Set

(RDF / SPARQL)
Data Sources

Concept Recipe
Visualisation

Exploration

Query Refinement

and/or Answering
Interactive Query Extraction

Data Cleaning Conflict Resolution

REST API

Context / Concept Store
Store
Data

Store
Data

Fig. 1. Concept Computation Process Overview

4.2 Extracting Contexts from the Semantic Web

As an initial example, let us consider a SPARQL-generated context from
DBPedia3; as data source, we specify a query that returns DBPedia triples with
common predicate ‘<http://dbpedia.org/ontology/officialLanguage>’. Thus,
(RDF) subjects will be countries while (RDF) objects are languages. A cor-
responding JSON-based [21] concept recipe with the (FCA) object set made up
of countries and the (FCA) attribute set made up of the official languages spoken
by these countries would be given as follows:

{ "dataSource ": [

{ "id": 0,

"type ": "SPARQL_ENDPOINT ",

"endpoint ": "http :// dbpedia.org/sparql",

"sparql": "select distinct ?s ?o where {

?s <http :// dbpedia.org/ontology /officialLanguage > ?o }"

}],

"fcaObjectSet ": [

{ "source_id ": 0,

"binding ": "?s" }],

"fcaAttributeSet ": [

{ "source_id ": 0,

"binding ": "?o" }] }

3 DBPedia (http://dbpedia.org/) is a community effort to extract structured infor-
mation from Wikipedia and to transform it into RDF. Each Wikipedia entry has its
corresponding DBPedia URI. DBPedia is one of the most important data sources in
LOD as it can be seen as the center of the LOD cloud.

http://dbpedia.org/
http://dbpedia.org/

Formal Concept Discovery in Semantic Web Data 169

When a Concept Recipe is received by the Context Extraction component
(Fig. 1, step 2), the recipe is first parsed to identify the data sources, object
set, and attribute set definitions. We define two types of supported data sources,
namely, RDF and SPARQL ENDPOINT. The RDF type data source requires
the system to fetch an RDF document from the given URL and store it into a
local RDF repository. After it is stored, the system is able to issue the specified
SPARQL query against the RDF repository (Fig. 1, step 3). When dealing with
the SPARQL ENDPOINT type data source, the system only needs to send the
given SPARQL query to the specified SPARQL endpoint4. This is because the
data has been stored in an external RDF repository and can be queried via
a SPARQL endpoint. The query execution results are materialized in a local
relational data store. After processing the data sources, the system generates
the object set and attribute set using SQL queries against the relational data
store. Similarly, the context matrix is generated by issuing SQL queries to the
relational data store.

4.3 Computing Concepts

Given an FCA context, a slightly extended version of an FCA concept com-
putation algorithm (i.e., PCbO, FCbO, PFCbO or In-Close2 in the context of
this paper) and customised FCA concept system generation, annotation and
clustering scripts are run computing formal concepts for the given context, ≤
concept relationships, concept support values, concept lattice edges and their
annotations, and values necessary for concept clustering (Fig. 1, step 4). All
computational results are stored in a data store (Fig. 1, step 5).

At various points of the processing, data is moved to a local data store (re-
ferred to as Context / Concept Store in Figure 1). This data store is comprised
of an RDF repository (built using the Jena framework [23]) and relational data
stores (using both traditional relational database systems as well as column-store
database systems); the choice of which data resides in which data store container
is based on the efficiency and effectiveness wrt. both storage and access. In addi-
tion, using a data store allows us to reuse previously retrieved context portions
as well as intermediate computation results if and as feasible.

Given the context, concepts and concept system data are made available
through the data store via a RESTful [24] interface (Fig. 1, step 6). Having
the information about concepts available this way will drive the development of
various applications, such as interactive Semantic Web data exploration, query
refinement, concept clustering similarity measurement between RDF triples or
facts embedded in them, and detection of data inconsistencies.

Let us revisit our earlier example that extracts a context from DBPedia and
forms an object set consisting of countries and an attribute set of the official
languages spoken by these countries. Concept extraction returns 497 SPARQL
query results which contain 316 unique objects (i.e., countries) and 169 unique

4 A SPARQL endpoint is a conformant SPARQL protocol service as defined in [22].

http://dbpedia.org/

170 M. Kirchberg et al.

attributes (i.e., official languages). Concept computation reveals 187 concepts
embedded in the context wrt. the given object set and attribute set.

In order to determine performance implications underlying our approach, we
are interested in the overhead incurred when extracting Web content, converting
Web content to standard FCA input format (i.e., FIMI or CXT format) and
computing Web data concepts. Furthermore, we will examine how Web data
differs from those data-sets commonly used in the FCA community up to now.
Lastly, we will benchmark current FCA implementations to see how they perform
on Web data and whether they have the potential to scale up or not.

4.4 Semantic Web Data Properties

LOD has seen a tremendous rise in popularity over the past few years; as of
September 2011, LOD consists of 295 officially acknowledged data-sets; spans
domains such as media, geographic, government (largest wrt. triples), publica-
tions (largest wrt. number of data-sets), cross-domain, life sciences (largest wrt.
out-links) and user-generated content [25]. Mining concepts from such diverse
(and dynamic) data sources has the potential to produce data inputs that are
different from what FCA algorithms have been applied to in the past. As refer-
ence points, we have studied various FCA data-sets made available to the public
including the FCA Repository5 and the Frequent Itemset Mining Dataset Repos-
itory6. One of the first observations we made was that two data properties seem
to differ significantly:

1. Traditional FCA data-sets commonly exhibit a medium to high FCA matrix
density while Web data seems to have very low matrix density values –
typically well below 1%.

2. Traditional FCA data-sets have a relatively small number of objects, while
Web data can have hundreds of thousands, if not millions of objects.

To highlight the former point, we have first obtained a set of meaningful Web
data-sets and examined their properties. These Web data-sets are as follows:

– DBPedia Languages: Query the DBPedia SPARQL endpoint for the offi-
cial languages spoken (dbpedia-owl:officialLanguage property) by peo-
ple living in different countries. The DBPedia URI of each country and the
DBPedia URI of each spoken language are the object set and attribute set,
respectively.

– DBPedia Drug: Query the DBPedia SPARQL endpoint for the routes of ad-
ministration (dbpprop:routesOfAdministration property) of drugs (e.g.,
mouth, rectum, intravenous therapy, etc.). The DBPedia URI of each drug
and the DBPedia URI of each route of administration are the object set and
attribute set, respectively.

5 http://fcarepository.com/
6 http://fimi.ua.ac.be/data/

http://fcarepository.com/
http://fimi.ua.ac.be/data/

Formal Concept Discovery in Semantic Web Data 171

– DBPedia Drug v2: Query the DBPedia SPARQL endpoint for topic (dc-
terms:subject property) of drugs (e.g., Analgesics, Antipyretics, etc.). The
DBPedia URI of each drug and the DBPedia URI of each topic are the object
set and attribute set, respectively.

– DBPedia Country: Query the DBPedia SPARQL endpoint for the topic
(dcterms:subject property) of countries (e.g., Republics, Islamic Coun-
tries, etc.). The DBPedia URI of each country and the DBPedia URI of each
topic are the object set and attribute set, respectively.

– UK Crime Locations7: Query the Crime Report UK SPARQL endpoint for
the location (crime:location property) of each crime report. The value of
crime:location property becomes the attribute, and the URI of the crime
report becomes the object.

– DBPedia Alma-mater: Query the DBPedia SPARQL endpoint for the alma-
maters (dbpedia-owl:almaMater property) of the persons. The DBPedia
URI of each person and the DBPedia URI of each alma-mater are the object
set and attribute set, respectively.

– DBPedia Genre: Query the DBPedia SPARQL endpoint for the music genres
(dbpedia-owl:genre property) of the musical artists. The DBPedia URI of
each musical artist and the DBPedia URI of each music genre are the object
set and attribute set, respectively.

Table 1 summarises the properties of these data-sets; for comparison, we have in-
cluded two traditional FCA data-sets (but studied many more): the Adult data-
set (a USA Census Income data-set); and the Mushroom data-set (mushrooms
being described in terms of physical characteristics; classification: poisonous or
edible). Most notable differences include the low FCA matrix density and the
small number of concepts inherent in Web data. This leads us to a number of
questions we want to address; most prominently:

1. Obtaining data from the Web (instantaneously) causes a considerable over-
head. Can the overhead be quantified wrt. downloading the data and con-
verting it to FCA input formats (FIMI versus CXT)? Will the overhead of
obtaining and converting data mitigate concept computation time?

2. Considering the significant differences in FCA matrix density, how will com-
mon FCA implementations perform on Web data?

3. How good or bad do common FCA implementations scale wrt. the number
of objects?

We have conducted various sets of experiments within our context extraction
and concept computation framework (depicted in Figure 1 on page 168); selected
experiments and results will be discussed in the next section.

7 Crime Report UK (http://crime.rkbexplorer.com/) is a linked data representation
of the street-level crime reports first released for England and Wales in 2011. Each
entry represents a crime report enriched by linking to the nearest postcode for the
position at which the crime was reported.

http://crime.rkbexplorer.com/

172 M. Kirchberg et al.

Table 1. Data-set Properties (Differences in Density)

Data-set Size No. of No. of Density Matrix No. of
Data-set (in bytes) Objects Attributes of Matrix Size Concepts

Adult n/a 32, 561 124 12.09% 4, 038k 1, 064, 875

Mushroom n/a 8, 124 119 21.01% 967k 238, 710

DBPedia
Languages

82, 958 316 169 0.931% 53k 187

DBPedia
Drugs

365, 150 2, 162 459 0.234% 992k 504

DBPedia
Drugs v2

2, 923, 649 4, 726 1, 245 0.287% 5, 884k 9, 012

DBPedia
Country

2, 948, 530 2, 345 5, 709 0.115% 13, 388k 8, 316

UK Crime
Locations

6, 910, 550 31, 936 20, 707 0.005% 661, 299k 20, 708

DBPedia
Alma-mater

7, 595, 917 27, 383 5, 407 0.029% 148, 060k 13, 605

DBPedia
Genre

10, 553, 958 26, 672 2, 145 0.113% 57, 211k 21, 805

5 Experiments

5.1 Web Data Extraction and Preparation

First, we want to determine the overhead of downloading Web data and con-
verting it to FCA input formats (FIMI and CXT). The general procedure is as
discussed in Section 4; individual time measurements are obtained for the follow-
ing steps: a) Download time; b) Store object set in database; c) Store attribute
set in database; d) Store context matrix in database; e) Dump context matrix
into FIMI format; and f) Dump context matrix into CXT format.

Figure 2 and Tables 2 and 3 summarise the results for Web data-sets listed in
Table 1. Main bottlenecks are download time and generation of CXT-formatted
input files (while FIMI-formatted input generation only causes a negligible over-
head). The significantly slower CXT-formatted input file generation times for
UK Crime Locations, DBPedia Alma-mater and DBPedia Genre data-sets are
due to their much larger context matrix sizes (detailed in Table 1).

5.2 FCA Algorithms: Ensuring Fairness

Before we discuss the various experiments in greater detail, it should be high-
lighted that we have undertaken various efforts to level the playing field for all

Formal Concept Discovery in Semantic Web Data 173

Table 2. Web Data Extraction and Preparation Performance (in seconds)

Download Object Attribute Context ma- Generate Generate
Data-set time set to DB set to DB trix to DB FIMI format CXT format

DBPedia
Languages

3.56 0.324 0.256 0.515 0.576 0.209

DBPedia
Drugs

4.94 0.721 0.348 0.962 0.180 0.249

DBPedia
Drugs v2

20.22 0.153 0.644 0.547 0.803 1.694

DBPedia
Country

16.48 0.736 0.189 0.504 0.695 4.405

UK Crime
Locations

30.72 1.359 0.932 1.336 0.206 161.52

DBPedia
Alma-mater

40.18 1.305 0.199 1.468 0.236 39.714

DBPedia
Genre

63.66 1.203 0.187 2.351 0.305 15.077

Table 3. Web Data Extraction and Preparation Performance Overall (in seconds)

DBPedia UK Crime
Languages Drugs Drugs v2 Country Genre Alma-mater Locations

FIMI Overall 5.231 7.151 22.366 18.604 67.705 43.388 34.554

CXT Overall 4.864 7.220 23.258 22.313 82.478 82.866 195.868

0

20

40

60

80

100

120

140

160

180

200

Ti
m

e
in

 se
co

nd
s

Dump matrix into CXT format
Dump matrix into FIMI format
Store matrix list to database
Store intent list to database
Store extent list to database
Download time

Fig. 2. Web Data Extraction and Preparation Performance Test

174 M. Kirchberg et al.

utilised algorithms, i.e., PCbO [7], FCbO [8], PFCbO [8], and In-Close2 [9]8.
While PCbO and FCbO only accept FIMI-formatted input files, In-Close2 only
supports CXT-formatted input files; PFCbO is the only implementation that
supports both input formats. Since CXT input files are significantly larger, we
will differentiate between input file reading time and execution time. For con-
cept computation performance evaluation, we will mainly consider execution
time. Further differences concern the way results are returned; we have modified
all algorithms to only return the intent portion of computed concepts. This will
result in almost identical outputs (remaining differences being sorted versus un-
sorted intent values and whether intent values are counted starting from 0 or 1).
As such differences remain, we verify correctness of computed results by ensuring
that the number of concepts are the same and that for each computed concept,
there is a matching concept with the same number of intent values (i.e., line
and word counts of resulting concepts are identical). In addition, the following
modifications were applied:

– PCbO: Several memory leaks were closed.
– PFCbO: Several memory leaks were closed, memory management was

tweaked to support in-memory data structures holding more than 2GB of
data (on 64bit operating systems), and static output buffer memory alloca-
tion was adjusted to gather for large data-sets.

– In-Close2: Code was ported from the original Windows implementation to
Linux; interactive parts were removed and two memory configurations were
prepared to suit the tested data-sets best (as memory allocation is static).

Modified FCA algorithms, data-sets and complete results can be accessed at:
http://icfca2012.markuskirchberg.net/.

5.3 FCA Algorithms Performance: Traditional vs. Web Data

Next, we want to determine how common FCA implementations perform on
Web data. Experiments start from the respective FCA input formats (FIMI and
CXT) that were either generated (in the case of Web data) or obtained from
FCA data-set repositories.

Benchmarking Set-up. We conducted this test series on an HP Cluster with
the following configuration: Intel 8-core CPU, 2.7GHz, 16GB RAM, 16GB
SWAP, and Ubuntu Linux 64bit. All results are average values obtained over
5 complete runs; data-sets and algorithms were matched in round-robin fashion.
Default time-out (t/o) setting for each algorithm was 3, 600 seconds.

8 PCbO and FCbO implementations were obtained from
http://fcalgs.sourceforge.net/; PFCbO codes were kindly made available to
us by P. Krajca, and the In-Close2 implementation was downloaded from
http://sourceforge.net/projects/inclose/.

http://icfca2012.markuskirchberg.net/
http://fcalgs.sourceforge.net/
http://sourceforge.net/projects/inclose/

Formal Concept Discovery in Semantic Web Data 175

Table 4. FCA Algorithms Performance (in seconds) for Varying Data-sets

In-Close2 PCbO FCbO PFCbO
Data-set (CXT) (FIMI) -P8 (FIMI) (FIMI) (FIMI) -C8 (CXT) -C8 (FIMI)

Adult 1.950 664.83 207.94 6.485 1.328 0.394 0.382

Mushroom 0.697 96.530 27.404 1.250 0.376 0.184 0.173

DBPedia
Language

0.001 0.002 0.003 0.003 0.003 0.005 0.004

DBPedia
Drugs

0.024 0.035 0.033 0.026 0.023 0.020 0.024

DBPedia
Drugs v2

0.093 1.318 0.575 0.247 0.209 0.150 0.159

DBPedia
Country

0.361 3.597 2.026 1.489 10.034 8.146 6.966

UK Crime
Locations

24.028 399.03 401.31 1, 188.53 493.41 204.21 209.38

DBPedia
Alma-mater

4.192 45.855 26.675 24.055 11.144 5.580 5.484

DBPedia
Genre

1.704 25.208 9.294 3.312 1.433 1.063 1.090

Experiments and Results. For each of the data-sets from Table 1, we have
run a variety of FCA algorithms; Table 4 summarises selected results. In-Close2
and PFCbO-based algorithms have the best overall performance; with the ex-
ception of the UK Crime Locations data-set for which all CbO-based algorithms
including PFCbO perform rather badly. Coincidentally, this is the most sparse
data-set that formed a part of our experiments. In-Close2 seems to be very suited
for sparse data-sets as it more often than not outperforms PFCbO algorithms.
However, the opposite is true for traditional (higher density) FCA data-sets (rep-
resented by the Adult and Mushroom data-sets here; the same applies to random
FCA data-sets available via the FCA Repository and the Frequent Itemset Min-
ing Dataset Repository).

Table 5. Input File Read Performance (in seconds) for Selected FCA Algorithms

DBPedia UK Crime
Languages Drugs Drugs v2 Country Genre Alma-mater Locations

In-Close2 0.001 0.004 0.017 0.035 0.128 0.278 1.122
(CXT)

PFCbO -C8 0.000 0.001 0.003 0.005 0.017 0.024 0.076
(FIMI)

It should be noted that omitting input file reading times has no significant im-
pact on the results detailed in this subsection (selected reading times are shown
in Table 5). However, generating CXT input files versus generating FIMI input
files for online Web data processing poses a clear threat to the applicability of

176 M. Kirchberg et al.

Table 6. Context Extraction and Concept Computation Performance (in seconds)

In-Close2 (CXT Input, PFCbO -C8 (FIMI Input,
Data-set Reading & Execution) Reading & Execution

DBPedia Languages 4.866 5.236

DBPedia Drugs 7.248 7.176

DBPedia Drugs v2 23.367 22.528

DBPedia Country 22.709 25.576

UK Crime Locations 221.018 244.008

DBPedia Alma-mater 87.336 48.896

DBPedia Genre 84.309 68.812

450.853 422.232

In-Close2. PFCbO, which can deal with FIMI as well as CXT input files equally
well, would be the overall winner when summing up corresponding measurements
from Tables 3, 4 and 5; as detailed in Table 6.

5.4 FCA Algorithms Performance: Web-Scale Data

Finally, we want to obtain indicative results on how well common FCA im-
plementations scale wrt. the number of objects9. For this, we utilise an addi-
tional Semantic Web data-set extracted from the 2011 Billion Triple Challenge
(BTC)10 data-set. The RDF-type data-set contains any RDF-typed facts that
form a part of the BTC data-set. For our experiments, we consider the first
10K, 50K, 100K, 250K, 500K, and 750K objects, respectively; Table 7 outlines
corresponding data-set properties.

Table 7. RDF-type Data-set Properties

Data-set 10K 50K 100K 250K 500K 750K

No. of Objects 10, 000 50, 000 100, 000 250, 000 500, 000 750, 000

No. of Attributes 1, 548 1, 548 1, 548 1, 552 1, 552 1, 552

No. of Concepts 220 449 601 885 1, 159 1, 416

Benchmarking Set-up. We conducted this test series on an HP Cluster with
the following configuration: Intel 8-core CPU, 2.7GHz, 16GB RAM, 16GB
SWAP, and Ubuntu Linux 64bit. All results are average values obtained over
5 complete runs; data-sets and algorithms were matched in round-robin fashion.
Default time-out (t/o) setting for each algorithm was 10, 800 seconds.

9 Scalability wrt. objects is of more interest as typical Web of Data use cases retrieve
streams of similar facts whereby attributes remain almost constant.

10 http://km.aifb.kit.edu/projects/btc-2011/

http://km.aifb.kit.edu/projects/btc-2011/

Formal Concept Discovery in Semantic Web Data 177

Table 8. FCA Algorithms Performance (in seconds) for Web-scale Data Test

Number of Objects in Context
10K 50K 100K 250K 500K 750K

In-Close2 (CXT) 0.511 16.064 71.525 751.31 3, 466.19 8, 059.15

PCbO (FIMI) 0.375 7.935 31.683 214.62 948.87 2, 316.44

PCbO -P8 (FIMI) 0.375 7.863 31.298 211.81 957.41 2, 305.76

FCbO (FIMI) 0.116 1.006 3.191 15.339 53.345 106.99

PFCbO (FIMI) 0.591 1.525 4.247 18.387 31.639 52.278

PFCbO -C4 (FIMI) 0.314 2.355 3.690 13.904 32.018 42.449

PFCbO -L4 (FIMI) 0.215 1.326 3.349 16.002 25.883 40.901

0

15

30

45

60

75

90

105

10K 50K 100K 250K 500K 750K

Ti
m

e
in

 s
ec

on
ds

In-Close2 (CXT)

PCbO -P8 (FIMI)

FCbO (FIMI)

PFCbO (FIMI)

PFCbO -C4 (FIMI)

PFCbO -L4 (FIMI)

Fig. 3. FCA Algorithms Performance for Web-scale Data Test

Experiments and Results. Figure 3 and Table 8 summarise selected experi-
mental results. The In-Close2 algorithm is the worst performer across the board,
while FCbO for small (<= 100K) and PFCbO for large (>= 250K) data-sets
perform clearly the best. In addition, CXT-formatted inputs incur a hefty read-
ing time penalty (for example, reading time for the 750K CXT data-set exceeds
11.5 seconds while the corresponding FIMI-formatted data-set is read in under
300 milli-seconds). Among the tested algorithms and for the tested data-set, only
PFCbO seems to be a feasible solution when moving close to 1 million objects
and beyond.

6 Conclusion

In this paper, we have introduced our on-going efforts to apply FCA concepts and
algorithms to the Semantic Web. We have shown that FCA context extraction
and concept computation times are feasible wrt. online and offline processing.

178 M. Kirchberg et al.

Notable observations are differences in properties of Web data when compared
to traditional FCA data-sets as well as performance measurements for various
different types of Web data. With respect to overall performance characteristics,
PFCbO is the most suitable state-of-the-art FCA algorithm for Web-scale data.
Main drawback of the In-Close2 algorithm are reliance on CXT-formatted input
files only and the poor performance in our scalability test. However, as our
scalability tests are only indicative, and even PFCbO performed rather poorly
for the very low density UK Crime Locations data-set, more in-depth studies are
necessary. A particular area of interest is the main memory footprint; some of
our ongoing experiments with larger data-sets (beyond 5 million objects) have
already resulted in PFCbO running out of main memory (e.g., 16GB RAM plus
16GB SWAP) while In-Close2 has a much smaller in-memory footprint.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-
can 284(5), 34–43 (2001)

2. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations, 1st
edn. Springer-Verlag New York, Inc. (1997)

3. Priss, U.: Formal concept analysis in information science. Annual Review of Infor-
mation Science and Technology 40(1), 521–543 (2006)

4. Lassila, O., Swick, R.R.: Resource description framework (RDF) model and syntax,
version 1, WD-rdf-syntax-971002 (1997)

5. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for gen-
erating concept lattices. Journal of Experimental & Theoretical Artificial Intelli-
gence 14(2-3), 189–216 (2002)

6. Strok, F., Neznanov, A.: Comparing and analyzing the computational complexity of
FCA algorithms. In: Proceedings of the Annual Research Conference of the South
African Institute of Computer Scientists and Information Technologists (SAIC-
SIT), pp. 417–420. ACM (2010)

7. Krajca, P., Outrata, J., Vychodil, V.: Parallel recursive algorithm for FCA. In:
Proceedings of the 6th International Conference on Concept Lattices and Their
Applications (CLA), vol. 433, pp. 71–82. CEUR WS (2008)

8. Krajca, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. In:
Proceedings of the 8th International Conference on Concept Lattices and Their
Applications (CLA), vol. 672, pp. 325–337. CEUR WS (2010)

9. Andrews, S.: In-Close2, a High Performance Formal Concept Miner. In: Andrews,
S., Polovina, S., Hill, R., Akhgar, B. (eds.) ICCS-ConceptStruct 2011. LNCS,
vol. 6828, pp. 50–62. Springer, Heidelberg (2011)

10. Tane, J., Cimiano, P., Hitzler, P.: Query-Based Multicontexts for Knowledge Base
Browsing: An Evaluation. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS
2006. LNCS (LNAI), vol. 4068, pp. 413–426. Springer, Heidelberg (2006)

11. Maedche, A., Staab, S.: Ontology learning for the Semantic Web. IEEE Intelligent
Systems 16, 72–79 (2001)

12. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using Formal Concept Analysis. Journal of Artificial Intelligence Research 24, 305–
339 (2005)

Formal Concept Discovery in Semantic Web Data 179

13. Völker, J., Rudolph, S.: Lexico-Logical Acquisition of OWL DL Axioms; An In-
tegrated Approach to Ontology Refinement. In: Medina, R., Obiedkov, S. (eds.)
ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 62–77. Springer, Heidelberg (2008)

14. Formica, A.: Concept similarity in Formal Concept Analysis: An information con-
tent approach. Knowledge-Based Systems 21, 80–87 (2008)

15. Lee, M.C., Chen, H.H., Li, Y.S.: FCA based concept constructing and similarity
measurement algorithms. International Journal of Advancements in Computing
Technology (IJACT) 3(1), 97–105 (2011)

16. Ferré, S.: Conceptual Navigation in RDF Graphs with SPARQL-Like Queries.
In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 193–208.
Springer, Heidelberg (2010)

17. d’Aquin, M., Motta, E.: Extracting relevant questions to an RDF dataset using
formal concept analysis. In: Proceedings of the 6th International Conference on
Knowledge Capture (K-CAP), pp. 121–128. ACM (2011)

18. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. International
Journal on Semantic Web andInformation Systems 5(3), 1–22 (2009)

19. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF, W3C Rec-
ommendation (2008)

20. Berners-Lee, T.: Semantic Web - XML2000, Keynote Presentation at XML, Slide
10, Architecture (2000)

21. Crockford, D.: The application/json media type for JavaScript object notation
(JSON), IETF, sec. 6, RFC 4627 (2006)

22. Clark, K.G., Feigenbaum, L., Torres, E.: SPARQL protocol for RDF, W3C Rec-
ommendation (2008)

23. Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.:
Jena: Implementing the Semantic Web recommendations. In: Proceedings of the
13th International World Wide Web (WWW) Conference on Alternate Track Pa-
pers & Posters, pp. 74–83. ACM (2004)

24. Fielding, R.T., Taylor, R.N.: Principled design of the modern Web architecture.
ACM Transactions on Internet Technology 2(2), 115–150 (2002)

25. Bizer, C., Jentzsch, A., Cyganiak, R.: State of the LOD cloud (2011),
http://www4.wiwiss.fu-berlin.de/lodcloud/state/

http://www4.wiwiss.fu-berlin.de/lodcloud/state/

Concept Lattices of Incomplete Data�

Michal Krupka and Jan Lastovicka

Department of Computer Science
Palacký University in Olomouc 17. listopadu 12,

CZ-77146 Olomouc Czech Republic
{michal.krupka,jan.lastovicka}@upol.cz

Abstract. We present a method of constructing a concept lattice of a formal
context with incomplete data. The lattice reduces to a classical concept lattice
when the missing values are completed. The lattice also can reflect any known
dependencies between the missing values. We show some experiments indicating
that in most cases, when the number of missing values is not large, the size of the
incomplete concept lattice is not substantially greater than the size of the concept
lattice of completed data.

Keywords: Incomplete Data, Concept Lattice, Boolean Algebra, Fuzzy Logic.

1 Introduction

In practice, we sometimes encounter a need to analyze incomplete data. In Formal Con-
cept Analysis (FCA), such data can be represented by a formal context 〈X ,Y, I〉, where
I is a multiple-valued relation X ×Y → L, taking values in some structure of truth
values L.

Formal contexts with incomplete data were studied first by Burmeiser and Holzer [5].
They used a framework of a three-valued logic, called Kleene logic, where L = {0,1,?},
with “?” representing an unknown value. In [5], a notion of incomplete context is in-
troduced and several of its properties are studied. The authors concentrate namely on
attribute implications and attribute exploration for incomplete contexts. The authors
notice the main drawback of using Kleene logic in this context: in this logic, the im-
plication satisfies (? → ?) = ?. This is appropriate, if the logical value “?” represents
different unknown values, but does not satisfy the natural requirement that the implica-
tion a→ a should always hold, even if the value of a is unknown.

In this paper, we try to overcome this problem by switching to a multiple-valued logic
with several distinct unknown values, where each of the values satisfies a → a = 1. As
we show, Boolean algebras are structures of truth values, suitable for our purposes.

Boolean algebras represent a special case of residuated lattices. This allows us to use
results of formal concept analysis in fuzzy setting [1,2], where residuated lattices are
used as structures of truth values. We also bring some simple new results for FCA in
fuzzy setting we need in this paper. It should be emphasized that although we use FCA

� Supported by grant no. P103/10/1056 of the Czech Science Foundation.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 180–194, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Concept Lattices of Incomplete Data 181

in fuzzy setting, the meaning of our results is different and should not be interpreted as
results for fuzzy logic. In fuzzy logic, intermediate truth values (i.e., the values between
0 and 1) indicate a degree to which some condition is satisfied (some proposition is
true). However, in our case, these values represent something completely different; they
are used as variables (or some expressions, constructed from the variables), holding an
unknown value equal to 0 or 1.

Another approach to the above problem has been taken in [8], where a modal logic
instead of Kleene logic is used.

In this paper, we concentrate mainly on the problem of constructing a concept lattice
of incomplete contexts. The main goal of our research is to enable the possibility to view
the conceptual structure of the data, even if the data are incomplete. As it turns out, the
concept lattice can be constructed, its size is usually reasonable small (compared to the
size of the concept lattice of a completed context), and it contains the information on
all the concept lattices, that can be obtained by completions of the data.

The organization of the paper is as follows. Section 2 contains an introduction to
concept lattices, Boolean algebras, residuated lattices and fuzzy sets. In Sec. 3 we de-
scribe the main reasons for using Boolean algebras as structures of truth values and in
Sec. 4 we define incomplete contexts using Boolean algebras.

In Sec. 5 we introduce necessary results from Formal Concept Analysis in fuzzy
setting. We also prove some new results we will need in the paper. Section 6 contains
our main results. A reader, not familiar with fuzzy sets and Formal Concept Analysis in
fuzzy setting can skip these two sections and go directly to Sec. 7.

Section 7 contains a review of main results from previous sections and an illustrative
example. Section 8 contains some experimental results on the size of concept lattices of
incomplete contexts.

2 Preliminaries

2.1 Concept Lattices

Concept lattices have been introduced in [9], the basic reference is [6]. A formal context
is a triple 〈X ,Y, I〉where X is a set of objects, Y a set of attributes and I ⊆ X×Y a binary
relation between X and Y . For 〈x,y〉 ∈ I it is said “The object x has the attribute y”.

For subsets A⊆ X and B⊆ Y we set

A↑I = {y ∈ Y | for each x ∈ A it holds 〈x,y〉 ∈ I},
B↓I = {x ∈ X | for each y ∈ B it holds 〈x,y〉 ∈ I}.

If A↑I = B and B↓I = A, then the pair 〈A,B〉 is called a formal concept of 〈X ,Y, I〉. The
set A is called the extent of 〈A,B〉, the set B the intent of 〈A,B〉.

We write ↑ (resp. ↓) instead of ↑I (resp. ↓I) when I is obvious.
A partial order ≤ on the set B(X ,Y, I) of all formal concepts of 〈X ,Y, I〉 is defined

by
〈A1,B1〉 ≤ 〈A2,B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

B(X ,Y, I) together with ≤ is a complete lattice and is called the concept lattice of
〈X ,Y, I〉.

182 M. Krupka and J. Lastovicka

2.2 Boolean Algebras and Residuated Lattices

Recall [7] that a Boolean algebra is an algebra L = 〈L,∧,∨, ′,0,1〉, with two binary,
one unary operation (called complementation), and two nullary operations, such that
〈L,∧,∨〉 is a distributive lattice with the least element 0 and the greatest element 1 and
for each a ∈ L,

a∧a′ = 0, a∨a′ = 1.

The basic example of a Boolean algebra is the two-element Boolean algebra 2, which
is used as a structure of truth values in classical logic, and the Boolean algebra of all
subsets of a set U , denoted by 2U . We usually interpret elements of 2U as mappings
from U to 2.

A residuated lattice [2] is an algebra 〈L,∧,∨,⊗,→,0,1〉, where 〈L,∧,∨,0,1〉 is
a lattice with the least element 0 and the greatest element 1; 〈L,⊗,1〉 is a commuta-
tive monoid (i.e., ⊗ is commutative, associative, and a⊗1 = 1⊗a = a for each a ∈ L);
⊗ (product) and → (residuum) satisfy the so-called adjointness property: a⊗ b ≤ c iff
a≤ b→ c for each a,b,c∈ L (the order≤ on L is defined as usual by a≤ b iff a∧b= a).
A residuated lattice is called complete if its underlying lattice is complete. A homomor-
phism of residuated lattices is called complete, if it preserves arbitrary suprema and
infima:

∨
j∈J f (a j) = f (

∨
j∈J a j),

∧
j∈J f (a j) = f (

∧
j∈J a j).

The class of Boolean algebras can be considered a subclass of the class of residuated
lattices. Namely, if we set

a⊗ b = a∧b, a→ b = a′ ∨b, (1)

for each a,b in a Boolean algebra L, then 〈L,∧,∨,⊗,→,0,1〉 is a residuated lattice.
The complementation can be then computed by a′ = a → 0. If L is a Boolean algebra,
then the residuated lattice 〈L,∧,∨,⊗,→,0,1〉 will be again denoted by L.

2.3 L-sets and L-relations

For a residuated lattice L, an L-set A in universe X is a mapping A: X → L. The set of all
L-sets in universe X is denoted by LX . An L-set A∈ LX is called crisp, if A(X)⊆ {0,1}.
A binary L-relation between sets X and Y is an L-set I ∈ LX×Y .

Operations with L-sets are defined element-wise. For instance, intersection of L-sets
A,B∈ LX is an L-set A∩B in X such that (A∩B)(x)=A(x)∧B(x) for each x∈X , etc. An
L-set A ∈ LX is also denoted {A(x)/x |x ∈ X}. If for all x ∈ X distinct from x1,x2, . . . ,xn

we have A(x) = 0, we also write {A(x1)/x1,
A(x2)/x1, . . . ,

A(xn)/xn}. We usually write x
instead of 1/x.

For two L-sets A,B ∈ LX we say that A is a subset of B and write A ⊆ B, if for each
x ∈ X it holds A(x) ≤ B(x). The degree S(A,B) to which A is contained in B is defined
by

S(A,B) =
∧
x∈X

A(x)→ B(x). (2)

It holds S(A,B) = 1 iff A⊆ B.
Mappings h : L1 → L2 of two residuated lattices L1 and L2 can transform L1-sets to

L2-sets: for an L1-set A ∈ (L1)
X the composition h ◦A is an L2-set, h ◦A∈ (L2)

X .

Concept Lattices of Incomplete Data 183

3 Boolean Algebras with Variables

As we mentioned in the introduction, we base our theory of incomplete contexts on
a multiple-valued logic with truth values 0 (representing falsity), 1 (representing truth)
and other values, representing either variables, containing unknown values from {0,1},
or values, computed from the variables by means of Boolean operations.

Let L be a finite Boolean algebra together with a set of variables U = {u1, . . . , uk}
and mapping ι : U → L, such that L is generated by ι(U). We call L a Boolean algebra
with variables u1, . . . ,uk. If L is freely generated by ι(U), then the variables u1, . . . ,uk

are said to be independent.
Mappings v : U → 2 are called assignments. Since L is generated by ι(U), then for

each assignment v there exists at most one homomorphism v̄ : L→ 2, such that v = v̄◦ ι .
If this homomorphism exists, then the assignment v is called admissible. In this way
we establish a bijection between the set of all admissible assignments and the set of all
homomorphisms from L to 2. The variables u1, . . . ,uk are independent if and only if
each assignment is admissible. The other cases model situations when there are some
known dependencies between the unknown values. For example, if ι(u1)≤ ι(u2), then
there is no admissible assignment v such that v(u1) = 1 and v(u2) = 0.

We use the Boolean algebra L as a structure of truth values. The main reason for
this choice can be explained by means of formulas of propositional logic. Let Fml(U)
be the set of formulas of propositional logic over a set of propositional variables U =
{�1, . . . ,�k} and with propositional connectives , , and . If val : Fml(U)→ 2 is
a truth function, such that the assignment v, defined by v(ui) = val(�i), i = 1, . . . ,k,
is admissible, then val can be factorized through L, as it is shown in the following
commutative diagram:

Fml(U) L

2

�

�

�
�

�
�
��

Val

val
v̄

The mapping Val is unique and does not depend on v. It satisfies

Val(�i) = ι(ui),

Val(F G) = Val(F)∧Val(G),

Val(F G) = Val(F)∨Val(G),

Val(F) = Val(F)′,

for each i ∈ {1, . . . ,k}, F,G ∈ Fml(U). Thus, in our case, when the assignment v is not
known, it is reasonable to use the Boolean algebra L as the structure of truth values and
the mapping Val as the truth function.

The next theorem shows that this choice satisfies the following two natural
requirements:

184 M. Krupka and J. Lastovicka

1. Generality: for every possible dependency between variables there exists an appro-
priate Boolean algebra L (together with a mapping ι : U → L).

2. Efficiency: the Boolean algebra L is (up to isomorphism) the smallest element
within the class of residuated lattices satisfying the generality requirement 1.

Theorem 1. The following holds for each subset V ⊆ 2U .
1. Let L = 2V and a mapping ι : U → L be defined by (ι(u))(v) = v(u). Then for each

v ∈V there is exactly one homomorphism v̄ : L→ 2 such that v = v̄◦ ι .
2. Let L′ be a residuated lattice and ι ′ : U → L′ a mapping such that for each v ∈ V

there is a homomorphism v̄′ : L′ → 2 satisfying v = v̄′ ◦ ι ′. Then there exists a surjective
homomorphism of residuated lattices s : L′ → L such that for each v ∈ V it holds v̄′ =
v̄◦ s.

Proof. 1. Set for each a∈ L, v̄(a) = a(v). The mapping v̄ is evidently a Boolean algebra
homomorphism (for example v̄(a∧b) = (a∧b)(v) = a(v)∧b(v) = v̄(a)∧ v̄(b)) and for
each u∈U we have (v̄◦ ι)(u) = v̄(ι(u)) = (ι(u))(v) = v(u), which means that v̄◦ ι = v.

Let κ : V → L be defined by κ(v) = {v} (i.e., (κ(v))(w) = 1 iff w = v). We will prove
that for each v ∈V it holds

κ(v) =
∧

u∈U
v(u)=1

ι(u)∧
∧

u∈U
v(u)=0

ι(u)′. (3)

Indeed, we have(∧
v(u)=1

ι(u)∧
∧

v(u)=0

ι(u)′
)
(w) =

∧
v(u)=1

(ι(u))(w)∧
∧

v(u)=0

(ι(u))(w)′

=
∧

v(u)=1

w(u)∧
∧

v(u)=0

w(u)′,

which is equal to 1 iff w = v. Hence, the right-hand side of (3) is equal to the singleton
{v}.

Now, from (3) and the obvious fact that L is generated by the set κ(V)⊆ L it follows
that L is generated by the set ι(U)⊆ L, which proves uniqueness of v̄.

2. For each a∈ L′ set (s(a))(v) = v̄′(a). The mapping s is evidently a homomorphism
of residuated lattices (for example, (s(a∧b))(v) = v̄′(a∧b)= v̄′(a)∧ v̄′(b)= (s(a))(v)∧
(s(b))(v) = (s(a)∧s(b))(v)). For each u∈U , v∈V we have (s(ι ′(u)))(v) = v̄′(ι ′(u)) =
v(u) = v̄(ι(u)) = (ι(u))(v). Thus, s(ι ′(u)) = ι(u) and since L is generated by the set
ι(U), then s is surjective.

Finally, for each a ∈ L′ we have (v̄ ◦ s)(a) = v̄(s(a)) = (s(a))(v) = v̄′(a), which
finishes the proof.

Remark 1. The Boolean algebra L from the above theorem can be also obtained by
factorization. We start with the free Boolean algebra L = 22U

over U with the canonical
inclusion ι : U → L, given by (ι(u))(v) = v(u), and factorize it by the congruence ≈,
where a≈ b iff v̄(a) = v̄(b) for each v ∈V .

Concept Lattices of Incomplete Data 185

Example 1. Let U = {u1,u2}, V = {v1,v2,v3}, where v1 = /0, v2 = {u2}, v3 = {u1,u2}
(i.e., v1(u1) = v1(u2) = 0, v2(u1) = 0, v2(u2) = 1, and v3(u1) = v3(u2) = 1). The
choice of V is equivalent to specifying the following dependency between the variables:
ι(u1)≤ ι(u2) (this dependency removes the remaining possible assignment {u1}).

The Boolean algebra L = 2V has 8 elements, which we represent as triples: a =
〈a(v1), a(v2),a(v3)〉 ∈ L. By Theorem 1, the mapping ι : U → L is given by (ι(u))(v) =
v(u). Thus, ι(u1) = 〈0,0,1〉 and ι(u2) = 〈0,1,1〉. In the table in Fig. 1, we can see all
the elements of L in columns (we write ui instead of ι(ui) in the header row).

u1 u2 0 u′1 ∧u2 u′2 u1 ∨u′2 u′1 1
v̄1 0 0 0 0 1 1 1 1
v̄2 0 1 0 1 0 0 1 1
v̄3 1 1 0 0 0 1 0 1

Fig. 1. The 8-element Boolean algebra L from Example 1. Elements of L are written in columns,
their values in the mappings v̄1, v̄2, v̄3 are in rows.

By the proof of Theorem 1, the mappings v̄i, i = 1,2,3, are given by v̄i(a) = a(vi).
Thus, the values of the mappings v̄i in each of the elements of L can be read from the
rows of the table.

This way we constructed the Boolean algebra L with variables u1, u2, based on the
given set of admissible assignments. We could also go the opposite way: if we define a
Boolean algebra L by the table in Fig. 1 and set u1 = 〈0,0,1〉, and u2 = 〈0,1,1〉, then
we easily obtain that the admissible assignments are just the assignments v1,v2,v3.

Any L-set A ∈ LX , where L is a Boolean algebra with variables u1, . . . ,uk, can be in-
terpreted as a set, whose elements depend on values of the variables. Indeed, for each
admissible assignment v, v̄ ◦A is a mapping from X to 2, i.e., a crisp set. We illustrate
this in the following example.

Example 2. Let L be the Boolean algebra with variables u1, u2 from Example 1, X =
{x1,x2,x3} a set. Further, let A = {x1,

u1∨u′2/x2,
u′1/x3} be an L-set in X (for brevity, we

write ui instead of ι(ui)). For an admissible assignment v, the crisp set v̄◦A can be com-
puted by assigning values v(u1), resp. v(u2) to u1, resp. u2. Thus, for the assignments
v1, v2, and v3 from Example 1 we obtain v̄1 ◦A = {x1,x2,x3}, v̄2 ◦A = {x1,x3}, and
v̄2 ◦A = {x1,x2}.

4 Incomplete Contexts

Let L be a Boolean algebra with variables u1, . . . ,uk, U = {u1, . . . ,uk} the set of the
variables. For simplicity, we suppose that U ⊆ L and ι is the inclusion U → L.

An incomplete L-context is a triple 〈X ,Y, I〉, where X and Y are sets and I : X×Y → L
is an L-relation such that I(X×Y)⊆U ∪{0,1}. An ordinary formal context 〈X ,Y,J〉 is
a completion of 〈X ,Y, I〉, if J = v̄◦ I for an admissible assignment v : U → 2.

186 M. Krupka and J. Lastovicka

y1 y2 y3 y4 y5
x1 × ×
x2 u1 × u2 ×
x3 × × ×
x4 ×

Fig. 2. Incomplete context from Example 3. Empty places represent 0, crosses 1. u1,u2 ∈ L are
variables.

Example 3. Let L and U ⊆ L be from Ex. 1, X = {x1,x2,x3,x4}, Y = {y1,y2,y3,y4,y5},
and an L-relation I ∈ LX×Y be given by the table in Fig. 2.

In the figure, empty places represent the value 0, crosses 1. The variables u1, u2 repre-
sent unknown values such that u1 ≤ u2.

In Fig. 3 there are depicted the three possible completions 〈X ,Y, v̄1 ◦ I〉, 〈X ,Y, v̄2 ◦
I〉, 〈X ,Y, v̄3 ◦ I〉 of the incomplete context 〈X ,Y, I〉, corresponding to the admissible
assignments v1 = /0, v2 = {u2}, v3 = {u1,u2}, and their respective concept lattices
B(X ,Y, v̄1 ◦ I), B(X ,Y, v̄2 ◦ I), B(X ,Y, v̄3 ◦ I). We use standard labeling of elements
of the lattices by objects and attributes.

y1 y2 y3 y4 y5
x1 × ×
x2 × ×
x3 × × ×
x4 ×

y1 y2 y3 y4 y5
x1 × ×
x2 × × ×
x3 × × ×
x4 ×

y1 y2 y3 y4 y5
x1 × ×
x2 × × × ×
x3 × × ×
x4 ×

y5

x3, y1x1 x2

y3 x4, y2y4

y5

x1, y4

x3, y1x2

y3 x4, y2

y5

x1, y4 x3, y1

x2

y3 x4, y2

Fig. 3. Three possible completions of the incomplete context from Example 3, corresponding to
admissible assignments (from left to right) v1 = /0, v2 = {u2}, v3 = {u1,u2} (first row), and their
concept lattices (second row)

5 Formal Concept Analysis in Fuzzy Setting

We introduce basics of Formal Concept Analysis in fuzzy setting [1]. Our main refer-
ence is [2]. The theory covers classical Formal Concept Analysis as a special case. For
crisply generated fuzzy concepts see [3].

Concept Lattices of Incomplete Data 187

Let L be a complete residuated lattice. By a formal L-context we understand the triple
〈X ,Y, I〉, where X and Y are sets and I is an L-relation between X and Y , I : X ×Y → L.
The sets X and Y are interpreted as sets of objects, resp. attributes, and for any x ∈ X ,
y ∈ Y the value I(x,y) ∈ L is interpreted as the degree to which the object x has the
attribute y.

For any L-set A ∈ LX of objects we define an L-set A↑I ∈ LY of attributes by

A↑I (y) =
∧
x∈X

A(x)→ I(x,y). (4)

Similarly, for any L-set B ∈ LY of attributes we define an L-set B↓I of objects by

B↓I (x) =
∧
y∈Y

B(y)→ I(x,y). (5)

The L-set A↑I is interpreted as the L-set of all attributes shared by objects from A.
Similarly, the L-set B↓I is interpreted as the L-set of all objects having the attributes
from B in common. If there is no danger of confusion, we write simply ↑ and ↓ instead
of ↑I and ↓I .

An L-formal concept of a formal L-context 〈X ,Y, I〉 is a pair 〈A,B〉 ∈ LX ×LY such
that A↑ = B and B↓ = A. The L-set A is called the extent, B the intent of 〈A,B〉. The set
of all formal concepts of 〈X ,Y, I〉 is denoted B(X ,Y, I) and called the L-concept lattice
of 〈X ,Y, I〉.

The condition

〈A1,B1〉 ≤ 〈A2,B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1) (6)

defines a partial ordering on B(X ,Y, I). Together with this ordering, B(X ,Y, I) is a
complete lattice with infima and suprema given by

∧
j∈J

〈A j,B j〉=
〈⋂

j∈J

A j,

(⋃
j∈J

B j

)↓↑〉
, (7)

∨
j∈J

〈A j,B j〉=
〈(⋃

j∈J

A j

)↑↓

,
⋂
j∈J

B j

〉
, (8)

and is called the L-concept lattice of 〈X ,Y, I〉.
In addition to the partial ordering (6), we have a binary L-relation $ on B(X ,Y, I),

defined by

(〈A1,B1〉 $ 〈A2,B2〉) = S(A1,A2) (= S(B2,B1)). (9)

The L-relation$ satisfies conditions for an L-order on B(X ,Y, I) (see [1,2] for details).
A formal L-concept 〈A,B〉 ∈B(X ,Y, I) is called crisply generated, if there is a crisp

set B0 ⊆Y such that A= (B0)
↓ (and hence B=(B0)

↓↑). The set Bc(X ,Y, I)⊆B(X ,Y, I)

188 M. Krupka and J. Lastovicka

of all crisply generated L-concepts, equipped with the restriction of the ordering ≤, is
a complete lattice and a

∧
-semilattice of B(X ,Y, I). More details on crisply generated

concepts can be found in [3].

Remark 2. In many applications it is not necessary to work with all formal L-concepts
from B(X ,Y, I). The restriction to crisply generated concepts has the advantage that the
lattice Bc(X ,Y, I) is much smaller than the whole concept lattice B(X ,Y, I). We shall
use this advantage later in the paper.

Below are some observations on a correspondence between homomorphisms of residu-
ated lattices and homomorphisms of concept lattices, which we will use in the paper.

Lemma 1. Let h: L→L′ be a complete homomorphism of complete residuated lattices,
〈X ,Y, I〉 a formal L-context. Then for each A ∈ LX and B ∈ LY it holds

(h ◦A)↑h◦I = h ◦A↑I , (h ◦B)↓h◦I = h ◦B↓I . (10)

Proof. For each y ∈ Y we have

(h ◦A)↑h◦I(y) =
∧
x∈X

(h ◦A)(x)→ (h ◦ I)(x,y) =
∧
x∈X

h(A(x))→ h(I(x,y))

= h

(∧
x∈X

A(x)→ I(x,y)

)
= h(A↑I(y)) = (h ◦A↑I)(y).

Analogously for B.

Theorem 2. Let h : L → L′ be a complete homomorphism of complete residuated lat-
tices, 〈X ,Y, I〉 a formal L-context. Then for each formal concept 〈A,B〉 ∈B(X ,Y, I) it
holds 〈h ◦A,h ◦B〉 ∈ B(X ,Y,h ◦ I) and the induced mapping hB(X ,Y,I) : B(X ,Y, I)→
B(X ,Y,h ◦ I) is a complete homomorphism, such that

(
hB(X ,Y,I)(〈A1,B1〉)$ hB(X ,Y,I)(〈A2,B2〉)

)
= h(〈A1,B1〉 $ 〈A2,B2〉), (11)

for each 〈A1,B1〉,〈A2,B2〉 ∈ B(X ,Y, I). If h is injective, then so is hB(X ,Y,I), if h is
surjective, then so is hB(X ,Y,I).

Proof. Let 〈A,B〉 ∈B(X ,Y, I). By Lemma 1, (h◦A)↑= h◦B and (h◦B)↓= h◦A. Thus,
〈h ◦A,h ◦B〉 ∈B(X ,Y,h ◦ I).

Let 〈A j,B j〉 ∈B(X ,Y, I), j ∈ J. Since h is a complete homomorphism, then for each
x ∈ X we have (h ◦⋂ j∈J A j)(x) = h((

⋂
j∈J A j)(x)) = h(

∧
j∈J A j(x)) =

∧
j∈J h(A j(x)) =

(
⋂

j∈J h ◦A j)(x), showing h ◦⋂ j∈J A j =
⋂

j∈J h ◦A j. Now, by (7), the extent of the for-

mal concept hB(X ,Y,I)(
∧

j∈J〈A j,B j〉) is equal to h◦⋂ j∈J A j =
⋂

j∈J h◦A j, which is equal

to the extent of the formal concept
∧

j∈J〈h ◦A j,h ◦B j〉=
∧

j∈J hB(X ,Y,I)(〈A j,B j〉), con-

cluding hB(X ,Y,I) preserves arbitrary infima.
To show hB(X ,Y,I) preserves arbitrary suprema we proceed similarly and use (8).

Concept Lattices of Incomplete Data 189

We have(
hB(X ,Y,I)(〈A1,B1〉)$ hB(X ,Y,I)(〈A2,B2〉)

)
= (〈h ◦A1,h ◦B1〉 $ 〈h ◦A2,h ◦B2〉)

= S(h ◦A1,h ◦A2) =
∧
x∈X

h(A1(x))→ h(A2(x))

= h

(∧
x∈X

A1(x)→ A2(x)

)
= h(S(A1,A2)) = h(〈A1,B1〉 $ 〈A2,B2〉),

proving (11).
Let h be injective and suppose hB(X ,Y,I)(〈A1,B1〉) = hB(X ,Y,I)(〈A2,B2〉). We have h◦

A1 = h ◦A2, whence A1 = A2 and, consequently, 〈A1,B1〉= 〈A2,B2〉, proving hB(X ,Y,I)

is injective.
Suppose h is surjective and take 〈A′,B′〉 ∈ B(X ,Y,h ◦ I). Let B0 ∈ LY be such that

h ◦B0 = B′. Then, by Lemma 1, A′ = B′↓ = (h ◦B0)
↓ = h ◦B↓0 and B′ = A′↑ = h ◦B↓↑0 ,

showing hB(X ,Y,I)(〈B↓0,B
↓↑
0 〉) = 〈A′,B′〉 and proving surjectivity of hB(X ,Y,I).

Theorem 3. Let L be isomorphic to the direct product L1 ×L2, p1 : L → L1 and p2 :
L→ L2 be the respective projections. Then B(X ,Y, I) is isomorphic to the direct product

B(X ,Y, p1 ◦ I)×B(X ,Y, p2 ◦ I) and the mappings pB(X ,Y,I)
1 and pB(X ,Y,I)

2 correspond
to the respective Cartesian projections.

Proof. Let a mapping h : B(X ,Y, I)→B(X ,Y, p1 ◦ I)×B(X ,Y, p2 ◦ I) be defined by

h = 〈pB(X ,Y,I)
1 , pB(X ,Y,I)

2 〉. By Theorem 2, h is a homomorphism of lattices.
The mapping f : L → L1×L2, f = 〈p1, p2〉, is a complete isomorphism of complete

residuated lattices. For each 〈A1,B1〉 ∈B(X ,Y, p1 ◦ I) and 〈A2,B2〉 ∈B(X ,Y, p2 ◦ I) set
A(x) = f−1(A1(x),A2(x)), B(y) = f−1(B1(y),B2(y)). The mapping 〈〈A1,B1〉,〈A2,B2〉〉
�→ 〈A,B〉 is clearly the inverse mapping of h.

6 Concept Lattices of Incomplete Contexts

Let L be a Boolean algebra with variables, V the set of admissible assignments, 〈X ,Y, I〉
an incomplete L-context. Using the results of the previous section, we can construct
a concept lattice of 〈X ,Y, I〉. Our first attempt is straightforward: we simply use the
theory of L-concept lattices and construct the lattice B(X ,Y, I). The main result on the
structure of B(X ,Y, I) is given by the following theorem.

Theorem 4. B(X ,Y, I) is isomorphic to the direct product ∏v∈V B(X ,Y, v̄◦ I). The
mappings v̄B(X ,Y,I) : B(X ,Y, I)→B(X ,Y, v̄◦ I) correspond to the respective Cartesian
projections.

Proof. Follows from the fact that L is isomorphic to 2V (Theorem 1) and from
Theorem 3.

From the above theorem it follows that B(X ,Y, I) is quite large; its size depends expo-
nentially on the number of admissible assignments, which again depends exponentially
on the number of variables.

190 M. Krupka and J. Lastovicka

Example 4. The L-concept lattice B(X ,Y, I) of the incomplete context from Ex. 3 is
isomorphic to the direct product B(X ,Y, v̄1 ◦ I)×B(X ,Y, v̄2 ◦ I)×B(X ,Y, v̄3 ◦ I) and
has 8 · 8 · 7 = 448 elements. The individual components of the product are depicted in
Fig. 3.

The following theorem shows that instead of the whole L-concept lattice B(X ,Y, I) we
can use the lattice of crisply generated concepts.

Theorem 5. For each v ∈ V, the restriction v̄Bc(X ,Y,I) : Bc(X ,Y, I)→ B(X ,Y,v◦ I) of
v̄B(X ,Y,I) is a surjective,

∧
-preserving mapping, such that for each 〈A1,B1〉,〈A2,B2〉 ∈

Bc(X ,Y, I) it holds v̄Bc(X ,Y,I)(〈A1,B1〉)≤ v̄Bc(X ,Y,I)(〈A2,B2〉) iff v̄(〈A1,B1〉 $ 〈A2,B2〉)
= 1.

Proof. Let 〈A0,B0〉 ∈B(X ,Y,v◦ I), B ∈ LY be the crisp L-set in Y such that v◦B = B0

(if B0(y) = 02 then B(y) = 0L and if B0(y) = 12 then B(y) = 1L). We have 〈B↓,B↓↑〉 ∈
Bc(X ,Y, I) and by Lemma 1, v̄Bc(X ,Y,I)(〈B↓,B↓↑〉) = 〈v ◦B↓,v ◦B↓↑〉 = 〈(v ◦B)↓,(v ◦
B)↓↑〉= 〈A0,B0〉.

Since Bc(X ,Y, I) is a
∧

-semilattice of B(X ,Y, I), then v̄Bc(X ,Y,I) preserves infima.
The last assertion follows directly from (11).

7 An Illustrative Example

In the previous section, we showed how to construct a concept lattice Bc(X ,Y, I) of an
incomplete L-context. Let L be a Boolean algebra with variables, 〈X ,Y, I〉 and incom-
plete L-context. Extents and intents of concepts in the lattice Bc(X ,Y, I) are L-sets,
which can be interpreted as classical sets, whose elements depend on values of the
variables (see Example 2). We proved that any choice of values of the variables (by
an admissible assignment) transforms the lattice to an ordinary concept lattice of the
corresponding completed context. Thus, the lattice contains the information on all the
concept lattices, which can be obtained by admissible completions on the incomplete
context. Moreover, the information can be easily obtained from the lattice by a sim-
ple assignment to the variables. Further, the lattice also contains the information on
the ordering of the concepts, which can be again easily computed from any admissible
assignment. We illustrate these results in the following example.

Consider the incomplete L-context 〈X ,Y, I〉 from Ex. 3. The lattice Bc(X ,Y, I) can
be constructed either using an algorithm for lattices of crisply generated concepts (i.e.,
from [3]), or using a transformation of 〈X ,Y, I〉 to an ordinary formal context and com-
puting its concept lattice (see [4]; in our case, the transformation is based on replacing
each row in 〈X ,Y, I〉 with all its admissible completions). Note that in the latter case, an
inverse transformation of the lattice would be required to obtain all the information on
the concepts (i.e., extents, intents, and their dependence on the values of the variables).

In our case, the lattice Bc(X ,Y, I) has the following 11 elements:

〈{x1,x2,x3,x4}, /0〉,〈{x1,x2},{u2/y3,y4}〉,〈{x1,
u2/x2,x3},{y3}〉,

〈{x2,x3,x4},{y2}〉,〈{x1,
u2/x2},{y3,y4}〉,〈{x2},{u1/y1,y2,

u2/y3,y4}〉,
〈{u2/x2,x3},{u1∨u′2/y1,y2,y3}〉,〈{u2/x2},{u1∨u′2/y1,y2,y3,y4,

u′2/y5}〉,

Concept Lattices of Incomplete Data 191

〈{u1/x2,x3},{y1,y2,y3}〉,〈{u1/x2},{y1,y2,y3,y4,
u′1/y5}〉,〈 /0,{y1,y2,y3,y4,y5}〉.

From Theorem 5 it follows that for an admissible assignment v and a concept
c ∈ Bc(X ,Y, I), the corresponding formal concept v̄Bc(X ,Y,I)(c) of the concept lattice
B(X ,Y,v◦ I) of the completed context can be computed simply by assigning appropri-
ate values to the variables (see Ex. 2).

For example, let 〈A,B〉 = 〈{u2/x2,x3},{u1∨u′2/y1,y2,y3}〉, v = v2. Since v2(u1) = 0
and v2(u2) = 1, then

v̄B(X ,Y,I)
2 (〈A,B〉) = v̄B(X ,Y,I)

2 (〈{u2/x2,x3},{u1∨u′2/y1,y2,y3}〉)
= 〈{1/x2,x3},{0/y1,y2,y3}〉= 〈{x2,x3},{y2,y3}〉,

which is a formal concept of 〈X ,Y,v2 ◦ I〉. This way, each 〈A0,B0〉 ∈B(X ,Y, v̄2 ◦ I) can

be obtained as the image of a concept 〈A,B〉 ∈B(X ,Y, I) in the mapping v̄B(X ,Y,I)
2 .

Moreover, using Theorem 5 we can easily compute the ordering in B(X ,Y,v◦ I).
For example, for the concepts c1 = 〈{u2/x2,x3},{u1∨u′2/y1,y2,y3}〉, c2 = 〈{u1/x2,x3},
{y1,y2,y3}〉we have by (9), (2), c1 $ c2 = u1∨u′2, whence v̄Bc(X ,Y,I)(c1)≤ v̄Bc(X ,Y,I)(c2)
iff v(u1)∨ v(u2)

′ = 1. This condition is satisfied for v = v1 and v = v3.
The lattice Bc(X ,Y, I) is depicted in Fig. 4. We use labeling of elements of the lattice

based on the main theorem for Bc(X ,Y, I) [3, Theorem 5]. For any x ∈ X , y ∈ Y , let
〈A1,B1〉 be the formal concept labeled by a/x (for a = 1 we use labels x instead of 1/x)
and 〈A2,B2〉 be the formal concept labeled by y. Then I(x,y)≥ a iff 〈A1,B1〉 ≤ 〈A2,B2〉.
Also, for each formal concept 〈A,B〉 we have A(x) ≥ a and B(y) = 1 if and only if
〈A1,B1〉 ≤ 〈A,B〉 and 〈A2,B2〉 ≥ 〈A,B〉. This way we can use the labeling to determine
the extent and the crisp part of the intent for each formal concept in Bc(X ,Y, I).

u1/x2

u2/x2

x1

x2

x3, y1

x4, y2y4
y3

y5

Fig. 4. Lattice of crisply generated concepts from Sec. 7

The concept lattice B(X ,Y,v◦ I) is in a bijection with the factor set of Bc(X ,Y, I)
by the equivalence, induced by the mapping v̄. In Fig. 5 we can see the classes of this
equivalence for each of the admissible assignments v1,v2,v3.

192 M. Krupka and J. Lastovicka

Since the mapping v̄ does not change crisp parts of intents (see the proof of Theorem
5), it is possible to obtain the factor sets directly from the labeled diagram by replacing
each variable u vith the value v(u) and joining repetitive concepts.

Fig. 5. Factorizations of the lattice of crisply generated concepts from Sec. 7 by means of admis-
sible assignments (from left to right) v1,v2,v3.

8 Experiments

An important question is that of the size of the lattice Bc(X ,Y, I). As the next example
shows, in the worst case the size depends exponentially on the number of variables.

Example 5. Let variables u1, . . . ,uk be independent, 〈X ,Y, I〉 be an incomplete context
such that X = {x}, Y = {y1, . . . ,yn} for n≥ k, and the L-relation I be given by I(x,y j) =
u j for j ≤ k and I(x,y j) = 0 otherwise. Then from the proof of Theorem 5, for each
assignment v : U → 2, the set B = {y j | j ≤ k,v(u j) = 1} is an intent of 〈X ,Y, I〉. On the
other hand, the concept lattice B(X ,Y,v◦ I) has always at most 2 elements.

The following experiments indicate that for real-world data the situation is more opti-
mistic. It seems that if the number of variables is not large, the size of the concept lattice
Bc(X ,Y, I) is not substantially larger than the size of a concept lattice of a similar com-
pleted context.

We demonstrate our observation on two classical example contexts, namely the Dig-
its Context and the Tea Ladies Context. The data can be viewed at

http://www.upriss.org.uk/fca/examples.html .

Our experiment proceeded as follows. For each k∈ {1,2, . . . ,10} (for the Digits Con-
text) or k ∈ {1,2, . . . ,7} (for the Tea Ladies Context) we set L to be the Boolean algebra
with the set of independent variables U = {u1, . . . ,uk}. Since the variables are indepen-
dent, then the set V of all admissible assignments is equal to 2U and L is isomorphic
to 2V . Then we randomly selected k different pairs 〈x j,y j〉 ∈ X ×Y , j = 1, . . . ,k, and
computed the number of concepts in the lattice Bc(X ,Y, Ī), for an incidence relation
with values at positions 〈x j,y j〉 replaced with variables:

Ī(x,y) =

{
u j if 〈x,y〉= 〈x j,y j〉,
I(x,y) otherwise.

Concept Lattices of Incomplete Data 193

We performed this computation 100 times, each time for a different random selection of
pairs 〈x j,y j〉. For the resulting values, we computed the arithmetic mean and standard
deviation.

The results are summarized in Tbl. 1 and Tbl. 2.

Table 1. Results of experiment for the Digits Context. The number of variables is k ∈ {1, . . . ,10}.
For each k we performed 100 measurements. In each measurement, we put k variables at random
places in the context, and computed the size of the lattice B(X ,Y, Ī). From these 100 measure-
ments we computed the average value and standard deviation. The size of the original concept
lattice of the Digits Context is 48.

No. of variables 1 2 3 4 5 6 7 8 9 10
Avg. no. of concepts 50.31 54.31 56.26 59.38 63.49 65.84 68.21 71.01 73.05 77.39

Std. deviation 3.16 6.34 6.51 8.00 8.19 8.67 10.37 11.71 11.31 11.67

Table 2. Results of experiment for the Tea Ladies Context. The number of variables is k ∈
{1, . . . ,7}. For each k we performed 100 measurements. In each measurement, we put k vari-
ables at random places in the context, and computed the size of the lattice B(X ,Y, Ī). From these
100 measurements we computed the average value and standard deviation. The size of the original
concept lattice of the Tea Ladies Context is 65.

No. of variables 1 2 3 4 5 6 7
Avg. no. of concepts 67.88 71.54 74.73 78.3 82.12 86.09 89.67

Std. deviation 2.56 3.79 4.66 5.0 7.53 7.02 8.44

9 Conclusion and Future Research

The experiments in the previous sections indicate that our approach to concept lattices
of incomplete contexts could find practical applications. Our future research will con-
centrate on the folowing topics:

– developing a theory of attribute implications in our framework and comparing the
results with the results of Burmeister and Holzer [5], and Obiedkov [8],

– generalizing the theory to FCA in fuzzy setting,
– more experiments and theoretical results on the size of concept lattices of incom-

plete contexts.

References

1. Belohlavek, R.: Concept lattices and order in fuzzy logic. Ann. Pure Appl. Log. 128(1-3),
277–298 (2004)

2. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic
Publishers, Norwell (2002)

194 M. Krupka and J. Lastovicka

3. Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply Generated Fuzzy Concepts. In: Ganter, B.,
Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284. Springer, Heidelberg
(2005)

4. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges. In: Pro-
ceedings of FUZZ-IEEE 2005: The 14th IEEE International Conference on Fuzzy Systems,
pp. 663–668 (2005)

5. Burmeister, P., Holzer, R.: On the Treatment of Incomplete Knowledge in Formal Concept
Analysis. In: Ganter, B., Mineau, G.W. (eds.) ICCS 2000. LNCS, vol. 1867, pp. 385–398.
Springer, Heidelberg (2000)

6. Ganter, B., Wille, R.: Formal Concept Analysis – Mathematical Foundations. Springer (1999)
7. Gratzer, G.A.: General lattice theory. Academic Press, New York (1978)
8. Obiedkov, S.: Modal Logic for Evaluating Formulas in Incomplete Contexts. In: Priss, U.,

Corbett, D., Angelova, G. (eds.) ICCS 2002. LNCS (LNAI), vol. 2393, pp. 314–325. Springer,
Heidelberg (2002)

9. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival,
I. (ed.) Ordered Sets, Boston, pp. 445–470 (1982)

Formal Concept Analysis as a Framework

for Business Intelligence Technologies

Juraj Macko

Dept. Computer Science, Palacky University,
Olomouc 17. listopadu 12,

CZ-77146 Olomouc Czech Republic
juraj.macko@upol.cz

Abstract. Numerical datasets in data mining are handled using vari-
ous methods. In this paper, data mining of numerical data using FCA in
combination with some interesting ideas from OLAP technology is pro-
posed. This novel method is an enhancement of FCA, in which measures
are assigned to objects and/or attributes and then various numeric op-
erations are applied to these measures (e.g. summarization, aggregation
functions etc.). This new approach results in a structure, which is a con-
cept lattice and where the extent and/or intent have aggregated values
assigned to them. This structure could be seen as a generalization of
OLAP technology. A concept lattice can be constrained by using various
closure operators. The new closure operators presented here are based
on values with very clear meaning for the user. Finally, a fuzzy OLAP
formalization based on FCA in a fuzzy setting and using measures is
proposed. Examples are shown for each introduced topic.

Keywords: formal concept analysis, OLAP, fuzzy logic, data mining.

1 Introduction

In Preliminaries the fundamentals of FCA in crisp and in fuzzy settings is de-
scribed. The OLAP cube is introduced and its formal definition is redesigned
especially for purposes of this paper. Finally basic notions of classical measures
and aggregation operators are shown. In Formal Concept Analysis with Mea-
sures, FCA using measures is introduced and a concept lattice with extent (or
intent) values is proposed, which results from using aggregations on measures
assigned to objects (or attributes respectively). Finally, Applications of Formal
Concept Analysis with Measures, consists of applications, in which an attempt
to show the contribution of the proposed method is made. Concept lattice with
values can be seen as a generalization of OLAP technology. The already devel-
oped constraints via the closure operators for concept lattice are enhanced. These
are based on values. The concept lattices using values are generalized to fuzzy
settings (L-concepts with values) and novel approach to fuzzy OLAP cube (L-
cube) is shown. This paper is supplemented with comprehensive examples. The
final part, summarizes the results and shows a new perspectives in the research.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 195–210, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

196 J. Macko

2 Preliminaries

Just the fundamentals and basic definitions for the different topics are shown.
For all other details, refer to the particular resources. Among important prelim-
inaries can be found Formal Concept Analysis (FCA), FCA in Fuzzy Settings,
Online Analytical Processing (OLAP) technology followed by some mathematic
foundations, namely classical measure and aggregation operators.

2.1 Formal Concept Analysis in Crisp and Fuzzy Settings

The reader should be familiar with the Formal Concept Analysis (FCA) in
crisp settings, so only the basic notion will be mentioned. The formal context
is denoted by 〈X,Y, I〉 where I ⊆ X × Y . The formal concept of the formal
context 〈X,Y, I〉 is denoted by 〈A,B〉, where A ⊆ X and B ⊆ Y . 〈A,B〉 is a
formal concept iff A↑ = B and B↓ = A. The concept forming operators ()↑ and
()↓ are defined as

A↑ = {y ∈ Y | for each x ∈ X : 〈x, y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ Y : 〈x, y〉 ∈ I}.

The set of all formal concepts of 〈X,Y, I〉 is denoted by B(X,Y, I) and equipped
with a partial order ≤ forms the concept lattice of 〈X,Y, I〉.
FCA in fuzzy settings uses fuzzy logic. There are a couple of approaches of
how to use fuzzy logic in FCA. The approach and notation of Belohlavek will be
used. An overview of all approaches including notation can be found in [20]. As
an algebra for fuzzy logic the complete residuated lattice 〈L,∧,∨,⊗,→, 0, 1〉 will
be used, where 〈L,∧,∨, 0, 1〉 is a complete lattice with 0 as the least, 1 as the
greatest element and 〈L,⊗, 1〉 is a commutative monoid (⊗ is commutative and
associative. 1 is a neutral element.). The operator ⊗ denotes the truth function
of the fuzzy conjunction, the operator→ denotes the truth function of the fuzzy
implication and both operators satisfy the adjointness property: a ⊗ b ≤ c iff
a ≤ b → c for each element a, b, c ∈ L. Such elements are called truth degrees.
Fuzzy set A is defined asA ∈ LU , where U is the universe and LU is a collection of
all fuzzy sets in the universe U . Fuzzy context (L-context) is defined as 〈X,Y, I〉,
where X and Y are a set of objects and attributes and I is the fuzzy relation
(L-relation) defined as X × Y → L. I(x, y) means the truth degree of ”object
x has attribute y”. For fuzzy sets A ∈ LX and B ∈ LY , A↑(y) and B↓(x) are
defined as

A↑(y) =
∧
x∈X

(A(x)→ I(x, y))

B↓(x) =
∧
y∈Y

(B(y)→ I(x, y)).

and the fuzzy concept (L-concept) is defined as 〈A,B〉 such that A↑ = B and
B↓ = A. The collection of all L-concepts equiped with ≤ is denoted as B(X,Y, I)
and called an L-lattice. When L = {0, 1} the result is classical logic and FCA in
crisp settings. For further details see [20].

FCA as a Framework for Business Intelligence Technologies 197

2.2 Classical Measure [4] and Aggregation Operators [11]

Function μ : C → R+, where C ⊆ 2X is a classical measure iff μ is 1. Additive:
iff μ (A ∪B) = μ (A) + μ (B), where A,B ∈ C , (A ∪B) ∈ C and (A ∩B) = ∅
and iff μ is 2. Monotone: iff A,B ∈ C and A ⊂ B imply μ (A) ≤ μ (B). Only a
classical measure will be used in this paper (with respect to summarization op-
erator Σ). Aggregation operator Θ is a function which assigns a real number
y to any n-tuple (x1, x2, ..., xn) of real numbers. Formally:
Θ :

⋃
n∈N

[0, 1]n → [0, 1] which satisfies:

1. Θ (x) = x - identity when unary
2. Θ(0,, 0) = 0 and Θ(1,, 1) = 1 - boundary conditions
3. Θ(x1,, xn) ≤ Θ(y1,, yn) if (x1,, xn) ≤ (y1,, yn) - non decreasing

monotonicity

Definition 1 (Ordered Weighted Averaging Operators (OWA)).

OWA(x1,, xn) =
n∑

j=1

wjxσ(j) where σ reorders elements of X in following

manner xσ(1) ≤ xσ(2) ≤ ... ≤ xσ(n) , wj ≥ 0 and
n∑

i=1

wi = 1.

Particular operators can be defined on OWA with the following conditions:

1. minimum min(X): w1 = 1 , wi = 0 if i �= 1
2. maximum max(X): wn = 1, wi = 0 if i �= 1
3. median med(X): wn+1

2
= 1 if n is odd, wn

2
= 1

2 and wn
2
+1 = 1

2 if n is even,

wi = 0 in other case
4. arithmetic mean avg(X): wi =

1
n for ∀i

2.3 On Line Analytical Processing (OLAP)

OLAP is a well known multidimensional data analysis method introduced by
E.F. Codd in 1993 (see [2] for details) and is widely spread even among the
non-technical users. Typical example of OLAP are the so called ”Pivot tables”
and ”Pivot charts” in MS Office Excel. Mathematical formalization of OLAP
have been done by several authors. Although inspiring [8], we used our own
formalization in this paper in respect to its use in fuzzy settings. The Database
table is formally defined in [5] as the relation r on the relation scheme R =
{A1, A2 . . . , An} as a set of mappings {t1, t2 . . . , tm} from R to D where D is
a set of all D - domains of attributes A. Note that n is the number of the
columns and m the number of the rows in the database table. For the purposes
of OLAP definition the sets of domains in D are divided into two groups: Hk ∈
H- dimensions and Ms ∈ M - measures, where k ∈ [1; |H|], s ∈ [1; |M|] and
Ms ⊆ R+). The space for the OLAP cube could be predefined as a cartesian
product

C = LH1 × · · · × LHk × · · · × LH|H|

198 J. Macko

where L = {0, 1}. The OLAP cube is mapping σ : C → R+ and is defined as

σ(h1, . . . , hn) =
m
%
i=1

ti(Ms) such that {ti(Aj)} ⊇ hj for all j ∈ [1; |H|]

where the symbol % stands for the sum operator Σ, the cardinality operator ||
or the arbitrary aggregation operator Θ and |H| is the number of OLAP cube di-
mensions. In Figure 1, part (i) the database table (database relation r) is shown,
where attributes A1 = {TradeMark}, A2 = {Country} and A3 = {Price} have
theirs domains H1 = {BMW,SKODA,FIAT }, H2 = {Germany, France} and
M1 ⊆ R+. Part (ii) shows the 2-dimensional OLAP cube, where % = Σ. Ele-
ments of LHk can be described in the form of l ∈ L tuples 〈l1 ∈ L, . . . , l|Hk| ∈
L〉Hk

. E.g. tuple 〈1, 0, 0〉TradeMark represents the car where the TradeMark =
BMW . Each ”cell” in the OLAP cube is determined by exactly one tuple from
each dimension. The data in Table (ii) in Figure 1 can be interpreted as fol-
lows: the cell, which is determined by tuple 〈1, 0, 0〉TradeMark from dimension
H1 and tuple 〈0, 1〉Coutry from dimension H2, represents the total Price of all
BMW cars sold in France. Tuple 〈0, 0, 0〉TradeMark has a special meaning. It
represents all cars, regardless of the TradeMark. The combination of tuples
〈0, 0, 0〉TradeMark and 〈0, 0〉Country represents the total Price of all cars regard-
less of the TradeMark and Country, and thus all cars. By detailed investigation
of this table, it is clear that some rows and columns are not defined (”n/a”stands
for ”not available”). The reason is, that all values from any dimension domain Hk

are mutually exclusive, e.g. the TradeMark of the car can be either BMW or
SKODA, never both. Technically we can put 0 instead of ”n/a”, because total
the Price of such cars can be seen as 0, but for a better illustration ”n/a” is
used. For this reason in the OLAP cube only these cells are used, which rep-
resents either tuple 〈0,, 0〉 or tuples, where the value 1 ∈ L appears exactly
once. All others are useless in the crisp setting of the OLAP cube (namely where
L = {0, 1}), but will be used later in the fuzzy setting. The size of the OLAP
cube in the crisp setting will be (|H1|+ 1)× · · · × (|H|H||+ 1).

H1 H2 M1

TradeMark Country Price in 000 EUR

BMW Germany 30
BMW France 35

SKODA Germany 20
SKODA France 25
FIAT Germany 10
FIAT France 13

Germany 0 1 0 1
BMW SKODA FIAT France 0 0 1 1

0 0 0 133 73 60 n/a
0 0 1 23 13 10 n/a
0 1 0 45 25 20 n/a
0 1 1 n/a n/a n/a n/a
1 0 0 65 35 30 n/a
1 0 1 n/a n/a n/a n/a
1 1 0 n/a n/a n/a n/a
1 1 1 n/a n/a n/a n/a

(i) Input data table (ii) 2-dimensional OLAP Cube
using operation Σ

Fig. 1. An example of the OLAP technology (known as ”Pivot table” in MS Excel)

FCA as a Framework for Business Intelligence Technologies 199

3 Formal Concept Analysis with Measures

Formal concept analysis with measures tries to analyze the numerical data. The
basic idea is that by assigning the measure to an object and/or attribute, com-
puting formal concepts and aggregating the measures will result in the valuation
of the concept. A similar approach was used by the author in [12], where the
authors selected important concepts by assigning weight to attributes and com-
puting the value of the concept. The weights were assigned to the attributes ar-
tificially, just to get important concepts on output and this numerical approach
was compared to other relational approaches. However, FCA with measures goes
much deeper. Moreover measures, that were natural, not artificial with respect
to the object were assigned. Examples of such naturally assigned measures were
the Price of the Car or the Mass of the P lanet. In this chapter the theory is
introduced and a comprehensive example is given.

3.1 Formal Concept Analysis with Measures - Theory

Definition 2 (Measure of Object and Attribute). A Measure of the object
is mapping Φ : X → R+ and a Measure of the attribute is mapping Ψ : Y → R+.

Definition 3 (Value of Extent and Intent). The Value of extent is mapping
v : AB(X,Y,I) → R+defined as v (A) = %

x∈A
Φ (x), where % is either the symbol

for the sum Σ (the ”sum” operation) or the symbol for cardinality |A| or the
arbitrary aggregation function Θ. A is an extent of the formal concept 〈A,B〉 ∈
B (X,Y, I). Similarly, the value of the intent is mapping w : BB(X,Y,I) → R+

defined as w (B) = %
y∈B

Ψ (y), where B is an intent of the formal concept 〈A,B〉 ∈

B (X,Y, I)

One more property of aggregation operators must be defined before proceeding:

Definition 4 (Additive Monotonicity and Antitonicity).
A ⊂ B imply %(A) ≤ %(B) - is an additive monotonicity of % (denote as %↑)
A ⊂ B imply %(A) ≥ %(B) - is an additive antitonicity of % (denote as %↓)

In other words, when we add the number to the aggregation and the value of the
aggregation will at least increase, the operator is additively monotone, (if the
value at least decrease, the operator is additively antitone). It is evident, that a
cardinality operator |A| is additively monotone. Operator Σ is additively mono-
tone too, because it is a property of classical measure. With OWA operators,
the situation can differ. For additive monotonicity (antitonicity) only the term
monotonicity (antitonicity) is used, even though the term ”monotone” is used in
the definition of the aggregation operators in a different meaning.

Proposition 1 (max(A)). OWA operator max(A) is monotone.

Proof. max(A) =
n∑

j=1

wjxσ(j) and wn = 1, wi = 0 if i �= 1, which means

max(A) = xσ(n) For each x ∈ B and x /∈ A we can have either x > xσ(n)

200 J. Macko

and in this case will be max(A ∪ {x}) = xσ(n+1) = x > max(A) or we can have
x ≤ xσ(n) and in this case it will be max(A ∪ {x}) = xσ(n) = max(A), which is
exactly A ⊂ (A ∪ {x})⇒ max(A) ≤ max(A ⊂ (A ∪ {x})).

Proposition 2 (min(A)). OWA operator min(A) is antitone.

Proof. min(A) =
n∑

j=1

wjxσ(j) and w1 = 1, wi = 0 if i �= 1, which meansmin(A) =

xσ(1) For each x ∈ B and x /∈ A we can have either x < xσ(1) and in this
case will be min(A ∪ {x}) = xσ(1) = x < min(A) or we can have x ≥ xσ(1)

and in this case it will be min(A ∪ {x}) = xσ(1) = min(A), which is exactly
A ⊂ (A ∪ {x})⇒ min(A) ≥ min(A ⊂ (A ∪ {x})).

Proposition 3 (arithmetic mean avg(A)). The OWA operators arithmetic
mean avg(A) and median(A) are neither monotone nor antitone.

Proof. It is very easy to find such x ∈ B and x /∈ A such that avg(A ∪ {x}) ≥
avg(A) and another x ∈ B and x /∈ A such that avg(A ∪ {x}) ≤ avg(A). For
median(A) the proof is similar.

After a short analysis of the monotonicity (antitonicity) of some % operators,
properties of the extent and intent values within lattice ordering will be
examined.

Proposition 4 (monotone aggregations in lattice).
〈A1, B1〉 ≥ 〈A2, B2〉 ⇒ v(A1) ≥ v(A2) where v(A) = %↑(Φ(A))
〈A1, B1〉 ≥ 〈A2, B2〉 ⇒ w(B1) ≤ w(B2) where w(B) = %↑(Ψ(B))

Proof (monotone aggregations in lattice).
〈A1, B1〉 ≥ 〈A2, B2〉 ⇔ A1 ⊇ A2 ⇒ %↑(Φ(A1)) ≥ %↑(Φ(A2))⇔ v(A1) ≥ v(A2)
〈A1, B1〉 ≥ 〈A2, B2〉 ⇔ B1 ⊆ B2 ⇒ %↑(Ψ(B1)) ≤ %↑(Ψ(B2))⇔ w(B1) ≤ w(B2)

Proposition 5 (antitone aggregations in lattice).
〈A1, B1〉 ≥ 〈A2, B2〉 ⇒ v(A1) ≤ v(A2) where v(A) = %↓(Φ(A))
〈A1, B1〉 ≥ 〈A2, B2〉 ⇒ w(B1) ≥ w(B2) where w(B) = %↓(Ψ(B))

Proof (antitone aggregations in lattice).
〈A1, B1〉 ≥ 〈A2, B2〉 ⇔ A1 ⊇ A2 ⇒ %↓(Φ(A1)) ≤ %↓(Φ(A2))⇔ v(A1) ≤ v(A2)
〈A1, B1〉 ≥ 〈A2, B2〉 ⇔ B1 ⊆ B2 ⇒ %↓(Ψ(B1)) ≥ %↓(Ψ(B2))⇔ w(B1) ≥ w(B2)

For aggregations, which are neither monotone nor antitone (e.g. avg()), nothing
like the above mentioned propositions can be asserted.

3.2 FCA with Measures - Comprehensive Example

Let X = {Car1, . . . , Car20} be a set of cars and Y = {AC,AB,ABS, TMP,
EG,AT } be a set of components, namely Air Conditioning (AC), Airbag (AB),
Antilock Braking System (ABS), Tempomat (TMP), Extra Guarantee (EG)
and Automatic Transmission (AT). Table 1 represents the formal context

FCA as a Framework for Business Intelligence Technologies 201

Table 1. The formal context of the cars, the additional components, the price of the
car and the price of the component

1
.
A
C

2
.
A
B

3
.
A
B
S

4
.
T
M

P

5
.
E
G

6
.
A
T

Φ(X) = Price in EUR

Car1 × × 16 000

Car2 × × × 12 000

Car3 × × × × 14 000

Car4 × × × 16 000

Car5 × × 12 000

Car6 × × × 12 000

Car7 × × × 12 000

Car8 × 14 000

Car9 16 000

Car10 × 12 000

Car11 × × 12 000

Car12 × × × × × × 14 000

Car13 × × 16 000

Car14 × × × × × 16 000

Car15 × × 14 000

Car16 × × 12 000

Car17 × × 12 000

Car18 × × × 16 000

Car19 × 16 000

Car20 × × × × 14 000

Ψ(Y) = Price in EUR 1
0
0
0

5
0
0

8
0
0

6
0
0

2
5
0

1
0
0

Table 2. The formal concepts with the extent value

Extent Intent Extent value

Cars Components Total Price

1 X - all cars ∅ 278 000

2 {2, 3, 4, 7, 11, 12, 13, 14, 18} {TMP} 128 000

3 {3, 4, 5, 12, 14, 15, 20} {EG} 100 000

4 {1, 4, 5, 6, 12, 14, 16, 17, 20} {AC} 124 000

5 {1, 2, 3, 6, 7, 10, 11, 12, 13, 14, 16, 17, 18, 20} {AB} 190 000

6 {2, 3, 6, 7, 8, 12, 15, 18, 19, 20} {ABS} 138 000

7 {3, 4, 12, 14} {EG, TMP} 60 000

8 {4, 5, 12, 14, 20} {EG,AC} 72 000

9 {2, 3, 7, 11, 12, 13, 14, 18} {AB, TMP} 112 000

10 {3, 12, 14, 20} {AB,EG} 58 000

11 {3, 12, 15, 20} {ABS,EG} 56 000

12 {1, 6, 12, 14, 16, 17, 20} {AC,AB} 96 000

13 {2, 3, 6, 7, 12, 18, 20} {AB,ABS} 94 000

14 {4, 12, 14} {AC, TMP, EG} 46 000

15 {3, 12, 14} {TMP, EG,AB} 44 000

16 {12, 14, 20} {EG,AB,AC} 44 000

17 {2, 3, 7, 12, 18} {AB,ABS, TMP} 68 000

18 {3, 12, 20} {ABS,EG,AB} 42 000

19 {6, 12, 20} {ABS,AC,AB} 40 000

20 {12, 14} {AB,EG,AC, TMP,AT} 30 000

21 {3, 12} {AB,EG, TMP,ABS} 28 000

22 {12, 20} {AB,AC,EG,ABS} 28 000

23 {12} Y - all components 14 000

202 J. Macko

(i) The concept lattice (ii) The concept lattice
with the extent values with the intent values

Fig. 2. Examples of the concept lattices with the values

I ⊆ X × Y , which means that the ”car has additional component”. There are
two different measures: measure Φ(X) which represents the Price of Car and
measure Ψ(Y) representing the Price of Component.

Formal context from Table 1 results to B(X,Y, I), which consists of 23 con-
cepts (see Table 2). The example of the formal context is 〈A20, B20〉 = 〈{Car12,
Car14}, {AC,AB, TMP,EG,AT }〉. Let Φ(X) be the Price of the Car, namely
Φ(Car12) = 14000, Φ(Car14) = 16000. Putting % = Σ, then v(A20) = Σ

x∈A20

Φ(x)

= Φ(Car12) + Φ(Car14) = 14000 + 16000 = 30000, which is the extent value of
concept A20. It can be interpreted as the ”Total price of all cars with additional
components AC, AB,TMP, EG and AT is 30 000 EUR”. This could be interesting
information for financial managers. The next step is to calculate the intent value.
Let Ψ() be the Price of the Component. Putting % = Σ, we have intent value of
the formal conceptA20 calculatedasw(B20) = 1000+500+600+250+100 = 2450.
In Figure 2 the whole concept lattices are set out, with extent or intent values re-
spectively.

More mappings Φ(x) can be used. In our example Φ(x) was defined as Price,
but Φ1(x) can be defined as Price, Φ2(x) as Costs and Φ3(x) as Benefit - with
different measures assigned to an object. In the example Σ was used, but any
aggregation operator Θ can be utilized, to achieve various vi(A) - values for
extent e.g. Average sales, Minimal costs or Maximal benefit. Similarly, more
attribute measures and corresponding values of intent can be obtained.

4 Applications of Formal Concept Analysis
with Measures

4.1 Extent Values and Generalized OLAP Cube

Consider the example from the OLAP cube definition in Figure 1. The attributes
TradeMark = {BMW,SKODA,FIAT } and Country = {Germany, France}

FCA as a Framework for Business Intelligence Technologies 203

have a non-binary domain, but this can be transformed into binary by nom-
inal scaling. Nominal scaling means, that for each value from the domain we
create an extra attribute (for more details see [1]). It will result in the for-
mal context 〈X,Y, I〉 on Figure 3 (i). Computing concepts and values results
in the concept lattice with values in Figure 3 (ii). Now recall the OLAP cube
and its cells defined by tuples 〈l1, . . . , l|Hk|〉Hk

. Intent B of each formal con-
cept 〈A,B〉 can be used for determining the particular cell in OLAP cube as
follows: For each attribute of B put 1 into a corresponding tuple. Tuples will
determine the cell of the OLAP cube. Consider the formal context 〈A,B〉 =
〈{Car1}, {BMW,Germany}〉. From intent B tuple 〈1, 0, 0〉TradeMark and tuple
〈0, 1〉Country are created. Into each cell determined by tuples, the extent value
of the concept, is put, in this case v({Car1}) = 30. The same OLAP cube
as shown in Figure 1 is the result. Each concept represents at least one cell.
Note, that some cells can remain empty, because the set of attributes, defined
by the corresponding tuples should not be a closed set in the given context. For
example ignore object 5 in the formal context in Figure 3. The cell defined by
tuples 〈0, 0, 1〉TradeMark and 〈0, 0〉Country (representing Total price of all FIATs)
remains empty, because set {FIAT } is not closed (in formal context excluding
object 5). For this reason each cell of the OLAP cube has a value, from the closed
set of attributes, determined by tuples. There is not only a technical reason to
have the OLAP Cube complete, but also a semantical reason. If only FIATs
are sold in France and no FIATs are sold in any other country, the Total price
of all FIATs will be the same as the Total price of all FIATs sold in France.
Hence FCA using measures and aggregated values, can be seen as a generalized
OLAP cube.

4.2 Constraints of Lattice with Values via Closure Operators

When large datasets are analyzed by FCA an huge amount of concepts is result.
Many of them could be insignificant for the user, so there needs to be a way to
select those, which can be important. One of the methods for limiting the amount
is by setting constraints via a closure operator (see [13], [14]). Advantage of this
method is that it is capable of calculating important concepts directly, without
calculating the whole lattice.

Definition 5 (C-interesting attributes - [13]). Let Y be a set of attributes,
C be a closure operator in Y . A set B ⊆ Y is called a C-interesting set of
attributes (shortly, a set of C-attributes) if B = C(B).

Definition 6 (C-interesting concepts - [13]). Let 〈X,Y, I〉 be a formal con-
text, C be a closure operator in Y . We put BC (X,Y, I) = {〈A,B〉 ∈ B (X,Y, I)
|B = C(B)}. Each 〈A,B〉 ∈ BC (X,Y, I) is called a C-interesting concept (shortly,
a C-concept) in 〈X,Y, I〉.

204 J. Macko

C
a
r
n
r.

B
M

W

S
K

O
D
A

F
I
A
T

G
e
r
m

a
n
y

F
r
a
n
c
e

Price in 000 EUR

1 × × 30
2 × × 35
3 × × 20
4 × × 25
5 × × 10
6 × × 13

(i) Formal context with measures (ii) Concept lattice with extent values

Fig. 3. Example of the concept lattices with the values

Theorem 1 (Closure operator constraints on Concept Lattice - [13]).
Let B (X,Y, I) be a concept lattice and K ⊆ B (X,Y, I), then the following are
equivalent

– K is set of C-concepts for some closure operator C
– K equipped with partial order ≤ is a complete

∨
-sublattice of B (X,Y, I)

In [13] there were introduced a couple of examples of closure operators C(B) e.g.
”Minimal support” is defined as C(B) = B if |B↑| ≤ s or C(B) = Y otherwise.
In this paper we present similar closure operators, which will use extent or intent
values respectively.

Theorem 2 (Closure operator constraints on Concept Lattice - [13]).
Let B (X,Y, I) be a concept lattice, C be a closure operator on Y. Then
BC (X,Y, I) equipped with ≤ is a complete

∨
-sublattice of B (X,Y, I)

Proposition 6 (Maximal intent value using %↑ as closure operator).
The maximal intent value using monotone aggregation defined as C(B) = B if
w(B) ≤ n or C(B) = Y otherwise, is a closure operator.

Proof. We need to prove that: w(Bk) ≤ n⇒ w(
⋂

Bi) ≤ n⋂
Bi ⊆ Bk is evident, w(

⋂
Bi) ≤ w(Bk) - using monotonicity of aggregation

w(
⋂

Bi) ≤ w(Bk) ≤ n⇔ w(
⋂

Bi) ≤ n

Proposition 7 (Minimal extent value using %↑ as closure operator).
The minimal extent value using monotone aggregation defined as C(B) = B if
v(A) = v(B↓) ≥ n or C(B) = Y otherwise, is a closure operator.

Proof. We need to prove that: v(B↓) ≥ n⇒ v((
⋂

Bi)
↓) ≥ n⋂

Bi ⊆ Bk ⇔ (
⋂
Bi)

↓ ⊇ B↓
k

v((
⋂

Bi)
↓) ≥ v(B↓

k) - using monotonicity of aggregation

v((
⋂

Bi)
↓)) ≥ v(B↓

k) ≥ n⇔ v((
⋂

Bi)
↓)) ≥ n

FCA as a Framework for Business Intelligence Technologies 205

Proposition 8 (Minimal intent value using %↓ as closure operator).
The minimal intent value using antitone aggregation defined as C(B) = B if
w(B) ≥ n or C(B) = Y otherwise, is a closure operator.

Proof. We need to prove that: w(Bk) ≥ n⇒ w(
⋂

Bi) ≥ n⋂
Bi ⊆ Bk is evident, w(

⋂
Bi) ≥ w(Bk) - using antitonicity of aggregation

w(
⋂

Bi) ≥ w(Bk) ≤ n⇔ w(
⋂

Bi) ≥ n

Proposition 9 (Maximal extent value using %↓ as closure operator).
The maximal extent value using antitone aggregation defined as C(B) = B if
v(A) = v(B↓) ≤ n otherwise, is a closure operator.

Proof. We need to prove that: v(B↓) ≤ n⇒ v((
⋂

Bi)
↓) ≤ n⋂

Bi ⊆ Bk ⇔ (
⋂
Bi)

↓ ⊇ B↓
k

v((
⋂

Bi)
↓) ≤ v(B↓

k) - using antitonicity of aggregation

v((
⋂

Bi)
↓)) ≤ v(B↓

k) ≤ n⇔ v((
⋂

Bi)
↓)) ≤ n

Table 3. Theorems for constraints on the concept lattice with the values

monotone operator �↑ antitone operator �↓
≥ n ≤ n ≤ n ≥ n

v(B↓) complete
∨
-sublattice complete

∧
-sublattice complete

∨
-sublattice complete

∧
-sublattice

w (B) complete
∧
-sublattice complete

∨
-sublattice complete

∧
-sublattice complete

∨
-sublattice

All those propositions were constructed for closure operators as defined on set
Y . The well known duality of concept the lattice comes to similar dual proposi-
tions, where we get

∧
-sublattice for closure operator C defined on set X . Table

3 is an overview of all possible theorems. Recall, that operator Σ and operator
of cardinality |X | together with operator max() belong to monotone operators
%↑ and operator min() is an antitone operator %↓. Based on the previous ex-
ample with cars, a constrainede lattice can be demonstrated. Figure 4 shows a
constrained lattice with different closure operators (• represents C-interesting
concepts, ◦ other ones). Moreover such constraining of a concept lattice has a
very clear meaning for users, e.g. ”We are looking for concepts, where the total
price of the car is at least 50 000 EUR”.

(i) C(B) = B if (ii) C(B) = B if (iii) C(B) = B if (iv) C(B) = B if
v(A) ≥ 50000, v(A) ≤ 50000, w(B) ≤ 1200, w(B) ≥ 1200,

C(B) = Y otherwise C(B) = Y otherwise C(B) = Y otherwise C(B) = Y otherwise

Fig. 4. Concept lattices constrained by closure operators using the values and � = Σ

206 J. Macko

4.3 FCA in Fuzzy Settings with Measures and Fuzzy OLAP

In fuzzy settings we use fuzzy sets A ∈ LX and B ∈ LY . Notation A(x) means
truth degree in which x belongs to A. Note that A(x) = 1 is the same as x ∈ A
in crisp setting and A(x) = 0 is the same as x /∈ A. Definitions of the extent and
intent measure will be the same as in the crisp case. The definition of intent and
extent value will be slightly different:

Definition 7 (Value of fuzzy Extent and fuzzy Intent). The value of
fuzzy extent is mapping v : AB(X,Y,I) → R+defined as v (A) = %

x∈X
(Φ (x)×A(x)),

where × is the symbol for multiplication, % is either the symbol for sum Σ (the
”sum” operation) or the arbitrary aggregation function Θ. A is a fuzzy extent
of L-concept 〈A,B〉 ∈ B (X,Y, I). Similarly, the value of the intent is mapping
w : BB(X,Y,I) → R+ defined as w (B) = %

y∈Y
(Ψ(y) × B(y)), where B is a fuzzy

intent of L-concept 〈A,B〉 ∈ B (X,Y, I)

For all our examples in fuzzy settings we will use the Gödel t-norm, for which
the adjoint pair of operators is defined as a ⊗ b = min(a, b) and a → b = 1
if a ≤ b or a → b = b otherwise. An example of L-context with measure,
L-concepts and L-lattice with values can be found in Figure 5 ((i),(iv)) and
Figure 6. Attributes from this example can be divided into two dimensions,
namely ”Size” and ”Distance from the Sun”. Such dividing enables using the
OLAP approach. Space for the OLAP cube has already been defined, but the set
L = {0, 1} was used, because it was the OLAP cube in crisp settings. Generally
the previous definition for the L-cube can be used for any residuated lattice L.
In the example with the planets L is defined as a Gödel chain L = {0; 12 ; 1}. The
OLAP cube introduces the notation 〈l1, . . . , l|Hk|〉Hk

for LHk . It is the same as
fuzzy set. Now the L-cube in Figure 5 part (ii) can be easily understood, where
L-concepts are assigned to the L-cube cells, and part (iii), where they have been
assigned to the L-cube corresponding values. Note, that each L-concept has its
corresponding cell in the L-cube space according to its fuzzy intent (fuzzy set
B). As an example the L-concept number 4 with value 123 353 is assigned to
the cell with coordinates 〈0; 1〉size and 〈1; 1〉distance corresponding to its fuzzy
intent B = 〈0; 1; 1; 1〉. The above mentioned example shows how to organize
L-concepts with values in the L-cube. It is the case, where the set of attributes
Y , can be organized into dimensions. Generally we can use an L-lattice, with
assigned values as it was used in the crisp example with the cars. Independent
attributes (attributes, which are not organized into dimensions) in fuzzy settings
are not shown, as the reader can easily imagine such examples. Note, that in case
of L-cube, the values have only been assigned to the cells, which represents closed
fuzzy sets of attributes. Empty cells can also be filled in as in the case of the
crisp OLAP cube to have the L-cube complete. Before taking this step, it is
necessary to consider, if such action makes sense as it did in the crisp case and
to discuss the meaning of aggregation functions in the fuzzy setting as well.

FCA as a Framework for Business Intelligence Technologies 207

Size Distance Mass in
Planet Small Large Far Near 1022kg

Mercury 1 0 0 1 33
Venus 1 0 0 1 487
Earth 1 0 0 1 597
Mars 1 0 0,5 1 64

Jupiter 0 1 1 0,5 189 860
Saturn 0 1 1 0,5 56 846
Uranus 0,5 0,5 1 0 8 681
Neptune 0,5 0,5 1 0 10 243
Pluto 1 0 1 0 1

far 0 0 0 0,5 0,5 0,5 1 1 1
small large near 0 0,5 1 0 0,5 1 0 0,5 1

0 0 25 23 18 24 20 13 21 15 7
0 0,5 16
0 1 10 9 4
0,5 0 22 19 14
0,5 0,5 8
0,5 1
1 0 17 11 12 5 6 2
1 0,5
1 1 3 1

(i) Input data table - fuzzy relation (ii) L-Cube with corresponding
and measures L-concepts using Gödel t-norms

far 0 0 0 0,5 0,5 0,5 1 1 1
small large near 0 0,5 1 0 0,5 1 0 0,5 1

0 0 266 813 247 887 124 534 265 695 246 770 123 417 265 663 246 738 123 385
0 0,5 265 630
0 1 256 168 246 706 123 353
0,5 0 20 107 18 989 18 957
0,5 0,5 18 924
0,5 1
1 0 10 645 1 181 9 527 64 9 495 32
1 0,5
1 1 9 462 0

(iii) L-Cube with corresponding L-concepts using Gödel t-norms
with extent values using operator Σ on measures assigned to objects

concept nr. extent intent extent value

1 〈0, 0, 0, 0, 0, 0, 0, 0, 0〉 〈1; 1; 1; 1〉 0
2 〈0, 0, 0, 1

2 , 0, 0, 0, 0, 0〉 〈1; 0; 1; 1〉 32
3 〈0, 0, 0, 0, 0, 0, 1

2 ,
1
2 , 0〉 〈1; 1; 1; 0〉 9 462

4 〈0, 0, 0, 0, 1
2 ,

1
2 , 0, 0, 0〉 〈0; 1; 1; 1〉 123 353

5 〈0, 0, 0, 1, 0, 0, 0, 0, 0〉 〈1; 0; 1
2 ; 1〉 64

6 〈0, 0, 0, 1
2 , 0, 0,

1
2 ,

1
2 , 1〉 〈1; 0; 1; 0〉 9 495

7 〈0, 0, 0, 1
2 ,

1
2 ,

1
2 , 0, 0, 0〉 〈0; 0; 1; 1〉 123 385

8 〈0, 0, 0, 0, 0, 0, 1, 1, 0〉 〈 1
2 ;

1
2 ; 1; 0〉 18 924

9 〈0, 0, 0, 0, 1, 1, 0, 0, 0〉 〈0; 1; 1; 1
2 〉 246 706

10 〈0, 0, 0, 0, 1, 1, 1
2 ,

1
2 , 0〉 〈0; 1; 1; 0〉 256 168

11 〈1, 1, 1, 1, 0, 0, 0, 0, 0〉 〈1; 0; 0; 1〉 1 181
12 〈0, 0, 0, 1, 0, 0, 1

2 ,
1
2 , 1〉 〈1; 0; 1

2 ; 0〉 9 527
13 〈0, 0, 0, 1, 1

2 ,
1
2 , 0, 0, 0〉 〈0; 0; 1

2 ; 1〉 123 417
14 〈0, 0, 0, 1

2 , 0, 0, 1, 1, 1〉 〈 1
2 ; 0; 1;

1
2 〉 18 957

15 〈0, 0, 0, 1
2 , 1, 1, 0, 0, 0〉 〈0; 0; 1; 1

2 〉 246 738
16 〈0, 0, 0, 0, 1, 1, 1, 1, 0〉 〈0; 1

2 ; 1; 0〉 265 630
17 〈1, 1, 1, 1, 0, 0, 1

2 ,
1
2 , 1〉 〈1; 0; 0; 0〉 10 645

18 〈1, 1, 1, 1, 1
2 ,

1
2 , 0, 0, 0〉 〈0; 0; 0; 1〉 124 534

19 〈0, 0, 0, 1, 0, 0, 1, 1, 1〉 〈 1
2 ; 0;

1
2 ; 0〉 18 989

20 〈0, 0, 0, 1, 1, 1, 0, 0, 0〉 〈0; 0; 1
2 ;

1
2 〉 246 770

21 〈0, 0, 0, 1
2 , 1, 1, 1, 1, 1〉 〈0; 0; 1; 0〉 265 663

22 〈1, 1, 1, 1, 0, 0, 1, 1, 1〉 〈 1
2 ; 0; 0; 0〉 20 107

23 〈1, 1, 1, 1, 1, 1, 0, 0, 0〉 〈0; 0; 0; 1
2 〉 247 887

24 〈0, 0, 0, 1, 1, 1, 1, 1, 1〉 〈0; 0; 1
2 ; 0〉 265 695

25 〈1, 1, 1, 1, 1, 1, 1, 1, 1〉 〈0; 0; 0; 0〉 266 813

(iv) List of all L-concepts with extent value
Notation: fuzzy set {0/y1; 0/y2; 1/y3; 1

2
/y4} is denoted as 〈0; 0; 1; 1

2
〉

Fig. 5. FCA with measures in fuzzy settings, example is taken from [3] without mea-
sures, which are taken from NASA

208 J. Macko

(i) L-lattice - using Gödel t-norm (ii) L-lattice - values of extent

Fig. 6. L-lattice with measures. Sources: [3] (example) and NASA (measures)

(i) An overview of the whole research area (ii) What is done already

Fig. 7. Structure of the research - various use of FCA with measures

5 Conclusion and Future Research

A purpose of this paper is to introduce a novel method of data mining with
numeric data. Assigning measures to objects and/or attributes and aggregating
the measures into values of extent and/or intent we get a novel structure -
concept lattice with values, which can be seen as a generalized OLAP cube.
Using fuzzy logic in FCA, the L-cube can be defined based on the L-lattice, or
the L-lattice itself can be used, regardless of dimensions. FCA in crisp or in fuzzy
settings as well, can serve as a mathematical and logical framework for business
intelligence technologies based on OLAP. Moreover in the crisp case efficient
computing of the concept lattice with values can be done via closure operators
based on values. Some constraints with a very clear meaning for the user have
been proposed. Future research has been designed as follows: In the first step
there will be a focus on further generalization. In Figure 7 there are depicted
two lattices. The lattice in (i) shows the whole area of research. Note, that the
crisp relation is a special case of the fuzzy relation, where L = {0, 1}, attributes

FCA as a Framework for Business Intelligence Technologies 209

organized into dimensions forms a special case of unorganized attributes and
finally the classical measure is a special case of the fuzzy measure. Including
fuzzy measures into consideration means also including aggregation operators
defined on fuzzy measures. The main goal of future research is to develop a
generalized model, i.e. model for the L-lattice with fuzzy measures - the top of
the lattice depicted in (i). What has been done in this paper is shown in part
(ii). This step includes investigation of t-norms. It is not clear until now, which
t-norm fits better for the semantics of the L-cube, i.e. which t-norm fits better
for the L-cube in a real application of business intelligence. In the second step
we would like to look at the constraints regarding to the L-lattice (or L-cube
respectively). Constraints on the concept lattice with values via closure operators
are described in this paper, but only in the crisp setting. We want to do the same
in fuzzy settings. Moreover, there are some other methods, of how to constrain
the L-lattice, using hedges [16] or showing only crisply generated L-concepts
[17]. The third step is to develop an efficient algorithm for computing L-lattices
with values, using constraints. Step number four will investigate other formal
definitions of fuzzy OLAP (e.g. presented in [18] or [19]) and compare it with
our approach. According to current investigations it seems that those approaches
use fuzzy measures and operations on fuzzy measures. The final step should lead
to a real application using the L-lattice (L-cube), which will operate with novel
L-SQL language - an enhancement of the classical SQL language. Some of the
above mentioned steps will be presented in the extended version of this paper.

Acknowledgements. The author would like to praise the Lord Jesus Christ
for His amazing grace and the forces that He has given to the author during
the realization of this work. The author dedicates this paper to his beloved
wife Marcela. Partly supported by IGA (Internal Grant Agency) of the Palacky
University, Olomouc.

References

1. Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations.
Springer, Berlin (1999)

2. Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (On-line Analytical Pro-
cessing) to User-Analysts: An IT Mandate. Codd & Date (1993)

3. Belohlavek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer,
Academic/Plenum Publishers, New York (2002)

4. Wang, Z., Klir, G.: Generalized measure theory. Springer, New York (2009)
5. Maier, D.: The theory of relational databases. Computer Science Press, Rockville

(1983)
6. Calvo, T., Mayor, G., Mesiar, R. (eds.): Aggregation Operators. New Trends and

Applications. Physica-Verlag, Heidelberg (2002)
7. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
8. Kuznetsov, S.D., Kudryavtsev, A.: A mathematical model of the OLAP cubes.

Programming and Computer Software 35(5), 257–265 (2009)
9. Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

10. Pollandt, S.: Fuzzy Begriffe. Springer, Heidelberg (1997)

210 J. Macko

11. Calvo, T., Kolesarova, A., Komornikova, M., Mesiar, R.: Aggregation operators:
Properties, classes and construction methods. In: Calvo, T., Mayor, G., Mesiar,
R. (eds.) Aggregation Operators: New Trend and Applications, pp. 3–106. Physica
Verlag, Heidelberg (2002)

12. Belohlavek, R., Macko, J.: Selecting Important Concepts Using Weights. In:
Valtchev, P., Jäschke, R. (eds.) ICFCA 2011. LNCS(LNAI), vol. 6628, pp. 65–80.
Springer, Heidelberg (2011)

13. Belohlavek, R., Vychodil, V.: Background Knowledge in Formal Concept Analysis:
Constraints via Closure Operators. In: ACM SAC 2010, pp. 1113–1114 (2010)

14. Bělohlávek, R., Vychodil, V.: Formal Concept Analysis with Constraints by Clo-
sure Operators. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS
(LNAI), vol. 4068, pp. 131–143. Springer, Heidelberg (2006)

15. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by fuzzy
closure operators. In: Int. Conf. Soft Computing and Intelligent Systems & Int.
Symposium on Intelligent Systems, SCIS & ISIS 2006, Tokyo, Japan, September
20-24, pp. 309–314 (2006)

16. Belohlavek, R., Vychodil, V.: Reducing the size of fuzzy concept lattices by hedges.
In: The IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2005, Reno,
Nevada, USA, May 22-25, pp. 663–668 (2005)

17. Bělohlávek, R., Sklenář, V., Zacpal, J.: Crisply Generated Fuzzy Concepts. In:
Ganter, B., Godin, R. (eds.) ICFCA 2005. LNCS (LNAI), vol. 3403, pp. 269–284.
Springer, Heidelberg (2005)

18. González, C., Tineo, L., Urrutia, A.: Fuzzy OLAP: A Formal Definition. In: Yu,
W., Sanchez, E.N. (eds.) Advances in Computational Intelligence. AISC, vol. 61,
pp. 189–198. Springer, Heidelberg (2009)

19. Laurent, A., Bouchon-Meunier, B., Doucet, A.: Towards Fuzzy-OLAP Mining
20. Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Śl ↪ezak,

D., Hepting, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26.
Springer, Heidelberg (2011)

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 211–226, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Good Classification Tests as Formal Concepts

Xenia A. Naidenova

Military Medical Academy, Saint-Petersburg, Russian Federation
ksennaidd@gmail.com

Abstract. The interconnection between the Diagnostic (Classification) Test
Approach to Data Analysis and the Formal Concept Analysis (FCA) is consi-
dered. The definition of a good classification test is given via Galois’s corres-
pondences. Next we discuss the relations between good tests and formal
concepts. A good classification test is understood as a good approximation of a
given classification on a given set of examples. Classification tests serve as a
basis for inferring implicative, functional dependencies and association rules
from datasets. This approach gives the possibility to directly control the data
analysis process by giving object classifications.

Keywords: Good classification test, Galois lattice, Formal Concept Analysis,
Logical rule mining.

1 Introduction

Mining logical rules (association rules, implicative and functional dependencies) is a
core and extensively studied problem of data analysis. Databases are becoming in-
creasingly larger, thus requiring a higher computing power to mine logical rules in
reasonable time. An increase in the computational power of algorithms leads to the
fact that the quantity of extracted logical rules reaches at least hundreds of thousands.
To search, in this set of rules, for something useful becomes completely difficult.
Meanwhile, taking up data analysis, specialists in any problem domain want to obtain
answers to interesting questions that can be formulated in terms of known concepts or
goals. Therefore it would be expedient to include the algorithms of logical rule min-
ing in the process of reasoning so as this process would be governed by some conse-
cutively formed goals and sub-goals. Some ideas of ontology-driven association rule
mining are advanced in [1], [2], and [3]. The integration of ontology and association
rule mining is considered in [4]. Using a Rule Schema for representing user expecta-
tions is proposed in [5]. An idea to extract the association rules taking into account
the user’s objective has also been advanced in [6].

The principle concept of human reasoning is the concept of classification. It is
possible to assume that classifications can serve as an instrument of managing logical
rules mining. Diagnostic (classification) test approach to data analysis [7-10] can be
one of such instrument.

We will consider two ways for giving classifications as it is shown in Fig. 1: 1)
by a target attribute KL or 2) by a value v of target attribute KL. A target attribute

212 X.A. Naidenova

partitions a given set of examples into disjoint classes the number of which is equal to
the number of values of this attribute. A target value of attribute partitions a given set
of examples into two disjoint classes: 1) the examples in description of which the
target value appears (positive examples); 2) all the other examples (negative
examples).

Fig. 1. Two Modes of Giving the Target Classification

We are interested in solving the following tasks:
1. Given attribute KL, to infer logical rules of the form:
 A B C → KL or
 D S → KL or
 or
 A S Q V → KL
where A, B, C, D, Q, S, V – the names of attributes.
2. Given value v of attribute КL, to infer logical rule of the form:
 if ((value of attribute А = "а") &
 (value of attribute В = "b") &
………………………………………),
 then (value of attribute КL = "v").

Rules of the first form are functional dependencies as they are determined in relation-
al data base constructing [11]. Rules of the second form are implicative dependencies
as they are determined in association rule mining [12]. Left parts of rules can be con-
sidered as descriptions of given classifications. In our diagnostic test approach to
logical rules mining, left parts of these rules are called diagnostic tests.

A concept of good test as a good approximation of a given classification of objects
has been advanced in [8], [13]. A good test must satisfy the greatest number of identi-
fying relations between objects inside the blocks of a given classification and all dis-
tinguishing relations between objects from different blocks of a given classification. It
means that the best test for a given classification must generate a partition of objects
into the smallest number of blocks such that each block of this partition is included in
one and only one block of the given classification. This consideration leads to taking
into account the set of partitions generated by all possible subsets of a given set of

 A B C KL

1 a1 b1 c1 k1

2 a2 b2 c1 k1

3 a1 b2 c2 k2

4 a1 b3 c1 k3

5 a3 b4 c2 k3

 A B C D

1 a1 b1 c1 h

2 a2 b2 c1 v

3 a1 b2 c2 v

4 a1 b3 c1 f

5 a3 b4 c2 v

KL

v−

v

v

v−

v

KL – the target attribute; v – the target value of attribute

 Good Classification Tests as Formal Concepts 213

attributes (values) together with the ordering of partitions by set-theoretical inclusion
relation. Since the system of all partitions (all equivalence relations) of finite set of
objects forms complete algebraic lattice [14], a new algebraic model of diagnostic
task has been introduced on the basis of partition lattice construction [15].

The goal of this paper is to give the definition of good diagnostic test in terms of
Formal Concept Analysis (FCA) for two ways of object classification representation.
For this goal, we will actually use some mathematical techniques that have been ap-
plied by S. Kusnetsov [16-17] for establishing a relation between JSM-hypotheses
and formal concepts in FCA. The first version of the JSM-method of automated hypo-
theses generation has been described in [18]. Later versions can be found in [19]. As a
method of data analysis, JSM-method is a system of machine learning from positive
and negative examples: for given positive and negative examples, one constructs a
“generalization” of positive examples that does not “cover” any negative examples.

The rest of the paper is organized as follows. In Section 2, the basic terminology of
FCA is given. Section 3 is devoted to defining a concept of good diagnostic (classifi-
cation) test in terms of FCA. In Section 4, the problem of inferring functional depen-
dencies as a special kind of diagnostic tests approximating a given classification of
objects into more than two disjoint blocks is considered. Then a reduction of this task
is descrived to a task with only two classes of positive and negative examples. Final-
ly, we give an algebraic model of diagnostic tasks based on the partition lattice. A
short conclusion resumes this paper.

2 The Basic Terminology of Formal Concept Analysis

Now we proceed to definitions from FCA [20].

Definition 1. A formal context K = (G, M, I) consists of a set G of objects, a set M of
attributes, and binary relation I ⊆ G × M. The notation gIm indicates that (g, m) ∈ I
and denotes the fact that the object g possesses the attribute m.

The Galois connection between the ordered sets (2G, ⊆) and (2M, ⊆) is given by the
following mappings called derivation operators: for A ⊆ G and B ⊆ M,

 A′ = {m ∈ M|∀g ∈ A: (gIm)} and B′ = {g ∈ G|∀m ∈ B: (gIm)}.

Definition 2. A formal concept of a formal context (G, M, I) is a pair (A, B), where A
⊆ G, B ⊆ M, A′ = B, and B′ = A. The set A is called the extent, and the set B is called
the intent of the concept (A, B).

For g ∈ G and m ∈ M, {g}′ is denoted by g′ and called object intent, and {m}′ is
denoted by m′ and called attribute extent.

Definition 3. For a context (G, M, I), a concept X = (A, B) is less general than or equal
to a concept Y = (C, D) (or X ≤ Y) if A ⊆ C or, equivalently, D ⊆ B.

The set ℜ(K) of all concepts of a formal context K together with the partial order
(A, B) ≤ (C, D) is called concept lattice of K.

In the framework of FCA, the definition of implication on attributes is determined
as follows.

214 X.A. Naidenova

Definition 4. The implication A → B, where A, B ⊆ M, holds if and only if A′ ⊆ B′ (or
B ⊇ A′′), i.e., all objects from G that have the set of attribute A also have the set of
attributes B.

An equivalence relation θ on the power set (2M, ⊆) of M is given as follows: XθY
⇔ X′ = Y′. Any concept intent is the largest set of attributes of the equivalence class
of θ to which it belongs.

We need the definition of key set of attributes or minimal generator of a class of
equivalence of θ.

Definition 5. Let K = (G, M, I) be a formal context and C ⊆ M be a concept intent,
i.e., C′′ = C. The subset D ⊆ C is a minimum generator of C under the closure opera-
tor ′ if D′′ = C holds and D is minimal subset with respect to this property, i.e., for all
E ⊂ D we have E′′ ≠ C.

Besides formal contexts defined above (two-valued contexts), so-called many-
valued contexts are studied in FCA. For this goal, a many-valued context is reduced
to a two-valued one by a scaling procedure [20]. One of the possible types of scaling
is used by S. Kuznetsov for representing JSM-hypotheses and classifications in terms
of FCA; an example (adopted by us from [16]) of this reduction is given in
Tables 1, 2.

Table 1. An example of many-valued dataset (adopted from [16])

G \ M Color Frm Smooth Form Target
1 apple yellow no yes round +
2 grapefruit yellow no no round +
3 kiwi Green no no oval +
4 plum Blue no yes oval +
5 toycube Green yes yes cubic −
6 egg White yes yes oval −
7 tennis ball White no no round −

Table 2. The result of transforming dataset of Table 1 (adopted from [16])

G \ M w y g b f f- s s- r r- Target
1 apple x x x x +
2 grapefruit x x x x +
3 kiwi x x x x +
4 plum x x x x +
5 toy cub x x x x −
6 egg x x x x −
7 tennis ball x x x x −

In Table 2, the following abbreviations are used: “w” for white, “y” for yellow, “g”

for green, “b” for blue, “s” for smooth, “f” for form, “r” for round, “o” for oval, and
“m-” for m ∈ {w, y, g, b, s, f, r, o}.

 Good Classification Tests as Formal Concepts 215

Now we proceed to definition of classification in term of FCA [16-17].
Let a context K = (G, M, I) be given. In addition to attributes of M, a target

attribute ω ∉ M is considered. The set G of all objects is partitioned into three subsets:
the set G+ of those objects that are known as having property ω (these are the positive
examples), the set G− of those objects that are known as not having property ω (the
negative examples) and the set Gτ of undetermined examples, i.e., those objects, of
which it is unknown whether they have property ω or not. Respectively, we consider
three sub-contexts of K = (G, M, I): K+ := (G+, M, I+), K− := (G−, M, I−), and Kτ := (Gτ,
M, Iτ), and we have Iε := I ∩ (Gε × M) for ε ∈ {+,−,τ}. The corresponding derivation
operators are denoted by (·)+, (·)−, (·)τ, respectively.

A type of hypothesis which is mostly used in practice, namely “no counterexample
hypothesis” [19] or positive hypothesis, is a positive formal intent h of K+ such that h+
≠ ∅ and (h ⊄ g− & h ≠ g−) g−:={m ∈ M | (g,m) ∈ I−} for any negative example g ∈
G−. Equivalently, h++ = h and h′ ∩ G− = ∅, where (·)′ is taken in the whole context K
= (G, M, I). An intent of K+ that is contained in the intent of a negative example is a
falsified(+)-generalization. Negative hypotheses and falsified generalizations are de-
fined similarly.

Hypotheses are used for classifying undetermined examples from the set Gτ. If an
undetermined example gτ ∈ Gτ contains a positive hypothesis h+ (i.e., {gτ}

τ ⊇ h+),
then it is said that h+ is a hypothesis in favor of a positive classification of the unde-
termined example. A hypothesis in favor of a negative classification is defined in a
similar way. If there is a hypothesis in favor of a positive classification of gτ and there
is no hypothesis in favor of negative classification of gτ, then gτ is classified positive-
ly. A negative classification of gτ is realized in a similar way. If {gτ}

τ does not contain
any negative or positive hypotheses, the classification is unsatisfiable. If {gτ}

τ con-
tains both positive and negative hypotheses, then the classification is contradictory.

Return to Table 2. If we have an undetermined example mangoτ = {y, f-, s, r-},
then it is classified positively, since mangoτ contains the minimal hypothesis {f-, r-}
and does not contain any negative hypothesis. We have also two minimal negative
hypotheses: 1. {w} corresponding with examples egg and tennis ball; 2. {f, s, r-}
corresponding with examples toy cube and egg.

3 Good Diagnostic Test Definition in Terms of FCA

Let G = {1, 2,…, N} be the set of objects’ indices (objects, for short) and M = {m1,
m2, …, mj, …mm} be the set of attributes’ values (values, for short). Each object is
described by a set of values from M. The object descriptions are represented by rows
of a table the columns of which are associated with the attributes taking their values in
M (see, please, Table 3).

The definition of good tests is based on correspondences of Galois on G×M [21]
and two relations G → M, M → G. Let A ⊆ G, B ⊆ M. Denote by Bi, Bi ⊆ M, i = 1,…,
N the description of object with index i. We define the relations G → M, M → G as
follows: G → M: A′ = val(A) = {intersection of all Bi: Bi ⊆ M, i ∈ G} and M → G: B′
= obj(B) = {i: i ∈ G, B ⊆ Bi}. Of course, we have obj(B) = {intersection of all obj(m):
obj(m) ⊆ G, m ∈ B}.

216 X.A. Naidenova

Operations val(A), obj(B) are reasoning operations (derivation operators) related to
discovering general features of objects or all objects possessing a given set of fea-
tures. It is worth noticing that, for defining these operators, we do not use any scaling
procedure to transform many-valued context to two-valued one.

These operations possess the following properties [22]:

(i) A1 ⊆ A2 val(A2) ⊆ val(A1) for all A1, A2 ⊆ G;
(ii) B1 ⊆ B2 obj(B2) ⊆ obj(B1) for all B1, B2 ⊆ M;
(iii) A ⊆ obj(val(A)) & val(A) = val(obj(val(A))) for all A ⊆ G;
(iv) B ⊆ val(obj(B)) & obj(B) = obj(val(obj(B))) for all B ⊆ M;
(v) val(∪Aj) = ∩ val(Aj) for all Aj ⊆ G; obj(∪ Bj) = ∩ obj(Bj) for all Bj ⊆ M.

The properties (i), (ii) relate to extending subsets A, B. Extending A by some new
object j* leads to receiving a more general feature of objects: (A ∪ j*) ⊇ A implies
val(A ∪ j*) ⊆ val(A). It is an elementary step of generalization. Extending B by a new
value m leads to decreasing the number of objects possessing the general feature ‘Bm’
in comparison with the number of objects possessing the general feature ‘B’: (B ∪ m)
⊇ m implies obj(B ∪ m) ⊆ obj(B). It is an elementary step of specialization.

Extending B or A is effectively used for finding classification tests, so the property
(v) is very important to control the domain of searching for tests. In order to choose a
new set (A ∪ j) such that val(A ∪ j) ≠ Ø it is necessary to choose j, j ∉ A , j ∈ G such
that the condition (val(A) ∩ Bj) ≠ Ø is satisfied. Analogously, in order to choose a
new set (B ∪ m) such that obj(B ∪ m) ≠ Ø it is necessary to choose m, m ∉ B, m ∈ M
such that the condition (obj(B) ∩ obj(m)) ≠ Ø is satisfied.

The properties (iii), (iv) relate to the following generalization operations:
generalization_of(B) = B′′ = val(obj(B)); generalization_of(A) =A′′ = obj(val(A)).
The generalization operations are actually closure operators [21]. A set A is closed

if A = obj(val(A)). A set B is closed if B = val(obj(B)).
These generalization operations are not artificially constructed operations. One can

perform, mentally, a lot of such operations during a short period of time. For example,
suppose that somebody has seen two films (g) with the participation of Gerard Depar-
dieu (val(g)). After that he tries to know all the films with his participation
(obj(val(g))). Assume that one know that Gerard Depardieu acts with Pierre Richard
(m) in several films (obj(m)). After that he discovers that these films are the films of
the same producer Francis Veber (val(obj(m))).

Namely these generalization operations are used for searching for good diagnostic
tests.

For g ∈ G and m ∈ M, {g}′ is denoted by g′ and called object intent, and {m}′ is
denoted by m′ and called value extent.

Let K = (G, M, I) be a given context and K = K+ ∪ K−, where K+ = (G+, M, I+), K− =
(G−, M, I−), G = G+ ∪ G− (G− = G\ G+).

Diagnostic test is defined as follows.

Definition 6. A diagnostic test for G+ is a pair (A, B) such that B ⊆ M (A = obj(B) ≠
Ø), A ⊆ G+ and B ⊄ val(g) & B ≠ val(g), ∀g, g ∈ G−. Equivalently, obj(B) ∩ G− = ∅.

 Good Classification Tests as Formal Concepts 217

In general case, a set B is not closed for diagnostic test (A, B), i. e., a diagnostic test
is not obligatory a concept of FCA. This condition is true only for the special class of
tests called ‘maximally redundant ones’.

Definition 7. A diagnostic test (A, B), B ⊆ M (A = obj(B) ≠ ∅) for G+ is maximally
redundant if obj(B ∪ m) ⊂ A, for all m ∉ B and m ∈ M.

We define also a key or irredundant test as follows.

Definition 8. A diagnostic test (A, B), B ⊆ M (A = obj(B) ≠ ∅) for G+ is irredundant
if any narrowing B* = B\m, m ∈ B implies that (obj(B*), B*)) is not a test for G+.

Let a pair (A, B) be an irredundant test for G+, where A = obj(B). Consider the max-
imally redundant test (A, B*) for G+, i.e., B* = val(A) and obj(B*) = A. Then B is a
minimum generator of B* under the closure operator ′. An irredundant test is a for-
mal concept if and only if it is simultaneously maximally redundant.

Definition 9. A diagnostic test (A, B), B ⊆ M (A = obj(B) ≠ ∅) for G+ is good if and
only if any extension A* = A ∪ i, i ∉ A, i ∈ G+ implies that (A*, val(A*)) is not a test
for G+.

If a good test (A, B), B ⊆ M (A = obj(B) ≠ ∅) for G+ is irredundant (GIRT), then
any narrowing B* = B\m, m ∈ B implies that (obj(B*), B*)) is not a test for G+.

If a good test (A, B), B ⊆ M (A = obj(B) ≠ ∅) for G+ is maximally redundant
(GMRT), then any extension B* = B ∪ m, m ∉ B, m ∈ M implies that (obj(B* ∪ m),
B*) is not a good test for G+.

Any object description A in a given dataset is a maximally redundant set of values
because for any value m ∉ A, m ∈ M, obj(A ∪ m) is equal to ∅.

In Table 3, the subset of values ‘Blond Blue’ is a good irredundant test for Class-
(+) and, simultaneously, it is maximally redundant subset of values. The subset‘Blond
Hazel’ is a test for Class-(−) but it is not a good test and, simultaneously, it is
maximally redundant subset of values.

Table 3. Example of data classification

Index of example Height Color of hair Color of eyes Target Class
1 Low Blond Blue +
2 Low Brown Blue −
3 Tall Brown Hazel −
4 Tall Blond Hazel −
5 Tall Brown Blue −
6 Low Blond Hazel −
7 Tall Red Blue +
8 Tall Blond Blue +

The value ‘Hazel’ is a good irredundant test for Class-(−). The value ‘Red’ is a

good irredundant test for Class-(+).
The fact that a GIRT (as minimal generator) is contained in one and only one

GMRT implies one of the possible methods for searching for GIRTs for a given class
of objects:

218 X.A. Naidenova

- Find all GMRTs for a given class of objects;
- For each GMRT, find all GIRTs (minimal generators) contained in it.

The first algorithm for inferring all GMRTs for a given class of objects has been
proposed in [7] and described also in [23]. This algorithm, later called “Background
Algorithm” ([24]), uses the vertical format of data, i.e., subsets of indices
corresponding to objects, and the level-wise manner for constructing these subsets of
size k + 1 from subsets of size k, beginning with k = 1 and terminating when all
extended subsets do not correspond to tests for a given class of objects. “The
Background Algorithm” can be also used to extract all the GIRTs contained in a given
GMRT [9].

An algorithm for inferring all GMRTs for a given class of objects proposed in [25]
is based on a decomposition of the main problem into the subtasks of inferring all
GMRTs containing a given subset of values X (maybe, only one value). The subtasks
are solved in a depth-first manner with the use of main recursive procedure. The main
procedure uses some effective pruning techniques to discard values, which can not be
included in any newly constructed GMRTs, and object intents, which do not
correspond currently to tests for a given class of objects.

In [26], an algorithm is proposed to improve “the Background algorithm” given in
[23]. The improvements are the following: 1) only one lexically ordered set S(test) of
k-subsets of object idices, k = 1,……n, is used, where n is the number of objects; 2)
S(test) contains only closed subsets of indices corresponding to tests for a given
classification; 3) k-subsets are extended via adding indices (objects) one-by-one, and,
for each newly obtained subset, its closure is formed and inserted in S(test) if it is the
extent of a test but not of a GMRT (if it is the extent of GMRT, then it is stored in the
set STGOOD; 4) for each k-subset, indices (objects) admissible to extend it are
revealed with the use of STGOOD and S(test).

The algorithm DIAGaRa [9] uses the characteristic W(B) of any subset B of values
named by the weight of B: W(B) = obj(B), where s denotes the cardinality of
s. The algorithm DIAGaRa searches for all GMRT for a given class of objects such
that their weights are equal to or more than WMIN, the minimal permissible value of
the weight.

4 Good Diagnostic Tests and Inference Functional
Dependencies

The peculiarity of Diagnostic Test Approach consist in giving the basis for mining not
only dependencies between values of attributes but also functional dependencies (FD)
in the form X → A, where A is an attribute, X is a set of attributes, A ∉ X, A ∈ M, X ⊆
M, and M is the universe of attributes the values of which appear in descriptions of
objects.

Traditionally [27], the following definition of diagnostic test is given: let Т be an
arbitrary table of n–dimensional pair-wise different vectors partitioned into blocks k1,
k2,kq, q > 2. A collection of coordinates xi1, ... , xim, 1 ≤ m ≤ n is called diagnostic
test with respect to a given partitioning into blocks if the projections of vectors from

 Good Classification Tests as Formal Concepts 219

different blocks defined by xi1, ... , xim, 1 ≤ m ≤ n are also pair-wise different. Other-
wise xi1, ... , xim, 1 ≤ m ≤ n are to be said non-admissible collection of coordinates.

Functional dependency is defined in the following context. Let M = {A1, ..., Am} be
a nonempty set of attributes Ai`s. Let dom(Ai) = {ai1, ai2, ... } be a finite set of values
called the domain of Ai. We assume that dom(Ai) ∩ M = ∅, i ∈ {1, ..., m} and
dom(Ai) ∩ dom(Aj) = ∅, for i, j, i ≠ j, i, j ∈ {1, ..., m}. Let T(M) be a given set of
object descriptions. Usually, description of each object is complete, i.e, contains val-
ues of all attributes of M. Assume that OBJ = {1, 2, ..., n} is the set of object indices
and j ∈ OBJ is associated with description of j-th object, i. e., with tj = xj1 ... xjm such
that tj[Ai] = xji is in dom(Ai) for all Ai in M. Each attribute partitions the set T(M) of
objects into disjoint blocks. Let KL be an additional attribute by values of which the
set of objects T(M) is also partitioned into disjoint blocks.

A functional dependency (FD) between X ⊆ M and KL is defined as follows: X →
KL ⇔∀(i, j), i, j ∈ OBJ, i ≠ j,

ti[Х] = tj[Х] → ti[KL] = tj[KL], (1)

We call this relation the condition of indistinguishability between objects in T(M)
by values of a subset of attributes X.

Traditional definition of diagnostic test in T(M) w.r.t. classification KL can be re-
write as follows: a subset of attributes X ⊆ M is a diagnostic test for a given classifica-
tion KL of objects in T(M) if and only if the following condition is satisfied:

 ∀ (i, j), i, j ∈ OBJ, i ≠ j,

ti[KL] ≠ tj[KL] → ti[X] ≠ tj[X]. (2)

We call this relation the condition of distinguishability between objects belonging
to different classes in classification КL.

Conditions (1) and (2) are equivalent. But for defining good diagnostic test for a
given classification (partitioning) of objects into more then two disjoint blocks, we
will use condition (1).

Let Pair(T) be the set of all pairs of objects of T(M). Every partition P of T(M) ge-
nerates a partition of Pair(T) into two disjoint classes: PairIN(P) and PairBET-
WEEN(P). PairIN(P) contains all pairs of objects inside the blocks of partition P
(these are pairs of objects, connected with the relation of equivalence in partition P).
The set PairBETWEEN(P) is the set of all pairs of objects containing objects from
different blocks of partition P.

Let us recall the definition of inclusion relation between partitions.

Definition 10. A pair of partitions P1 and P2 are said to be in inclusion relation P1 ⊆
P2 if and only if every block of P1 is contained in one and only one block of P2. The
relation ⊆ means that P1 is a sub-partition of P2.

It follows from Definition 10 that if P1 ⊆ P2, then PairIN(P1) ⊆ PairIN(P2) and
PairBETWEEN(P2) ⊆ PairBETWEEN(P1).

Let P(X) be the partition of T(M) generated by X ⊆ M. Let PairsIN(X) be the set of
object pairs (i, j) inside the blocks of P(X), i. e., ti[Х] = tj[Х].

220 X.A. Naidenova

Definition 11. A set X ⊆ M is a good test or a good approximation of КL in T(M) if
and only if the following conditions are satisfied a) X is a diagnostic test for KL; b)
there does not exist a set of attributes Z, Z ⊆ M, X ≠ Z such that Z is a diagnostic test
for КL in T(M) and PairsIN(X) ⊂ PairsIN(Z) ⊆ PairIN(KL).

The task of inferring good tests for approximating a given classification (partition-
ing) of objects into more then two disjoint blocks can be reduced to inferring good
tests defined in formal context K = (G, M, I) K = K+ ∪ K−, where K+ = (G+, M, I+), K−
= (G−, M, I−), G = G+ ∪ G− (G− = G\ G+) (see, please, the previous section).

This reduction consists of the following steps.

1. Construct for all pairs {i, j}, i, j ∈ OBJ the set E = {Fij: 1 ≤ i < j ≤ n}, where Fij =
{A ∈ M: ti[A] = tj[A]}.
2. Construct the partitioning of E into two disjoint parts: part IN of attribute sets Fij,
such that for corresponding ti, tj, ti[KL] = tj[KL], and part BETWEEN of attribute sets
Fij such that for corresponding ti, tj, ti[KL] ≠ tj[KL].

3. Construct the set test-1(T,KL) = {Fij: Fij ∈ IN and ∀ F, F ∈ BETWEEN Fij ⊄ F' &

Fij ≠ F' }.

Now the indices of elements of test-1(T,KL) is considered as G+ and the indices of
elements of BETWEEN is considered as G− of a new constructed formal context K =
(G, M, I), where G = G+ ∪ G−, I =I+ ∪ I−, and good, good maximally redundant, and
good irredundant tests are defined as in Section 3. But intents of tests will be inter-
preted as subsets of attributes; consequently dependencies between subsets of
attributes and KL will be interpreted as FDs. The proof of correctness of this reduction
can be found in [26].

Table 4. Example for illustration of good test definition

t A B C D E F G KL
t1 a1 b1 c1 d1 e1 f1 g1 k1
t2 a2 b1 c2 d2 e2 f2 g1 k1
t3 a1 b1 c2 d1 e1 f3 g2 k1
t4 a1 b2 c3 d2 e1 f1 g1 k1
t5 a2 b2 c3 d2 e1 f1 g2 k2
t6 a3 b3 c3 d3 e3 f1 g3 k2

In Table 4, we have: the set IN = {BG, ABDE, AEFG, DG, AE}, the set

BETWEEN = {EF, F, AD, EG, BCDEF, CF}, the set test-1(T,KL) = {BG(1),
ABDE(2), AEFG(3), DG(4), AE(5)}, G+ = {1, 2, 3, 4, 5}.

One of the ways of searching for GMRTs is based on the following theorem [26].

Theorem 1. ([26].) A GMRT for KL either belongs to the set test-1(T,KL) or there
exists a number q, 2 ≤ q ≤ nt, such that this test will be equal to the intersection of
exactly q elements of the set test -1(T,KL), where nt is the cardinality of test -1(T,KL).

 Good Classification Tests as Formal Concepts 221

In our example, the set of good tests = {(obj(BG), BG), (obj(AE), AE), (obj(DG),
DG)}. where obj(BG) = {1}, obj(AE) = {2,3,5}, obj(DG) = {4}. In fact, we have the
following FDs: BG → KL, AE → KL, and DG → KL supported by the following in-
clusion relations P(BG) ⊆ P(KL), P(DG) ⊆ P(KL), P(AE) ⊆ P(KL) for the reason that
P(AE) = {{t1,t3,t4}, {t2}, {t5}, {t6}} P(BG) = {{t1,t2}, {t3}, {t4}, {t5},{t6}}, P(DG) =
{{t1}, {t2, t4}, {t3}, {t5},{t6}}, and P(KL) = {{t1, t2, t3, t4}, {t5,t6}}.

The equivalence between diagnostic tests, FDs, and partition dependencies allows
constructing an algebraic model of diagnostic task on the basis of the partition lattice.

Now we proceed to some facts from the partition lattice theory.

Theorem 2. The system PS of all partitions or all equivalence relations of a set S
forms a complete algebraic lattice (see the proof in [14].

The unit element of this lattice is the partition P1 containing only one class – the
set S, the zero element of this lattice is the partition P0 in which every class is a single
element of S.

Algebraic lattice of partitions (partition lattice) can be defined (and generated) by
means of two binary operations {+,*} – addition (generalization) and multiplication
(refinement). The first of these forms a partition P3 = P1+P2 such that P1 ⊆ P3, P2 ⊆
P3, and if there exists a partition P in PS for which P1 ⊆ P and P2 ⊆ P, then it implies
that P3 ⊆ P. Partition P3 is the least upper bound of partitions P1 и P2. The second
operation forms a partition P4 = P1* P2 such that P4 ⊆ P1, P4 ⊆ P2, and if there exists a
partition P in PS for which P ⊆ P1 and P ⊆ P2, then it implies that P ⊆ P4. Partition P4
is the greatest lower bound of partitions P1 and P2.

Let ℑ(T) be the set {P(A), A ∈M}. Consider the set L(ℑ(T)) of partitions produced
by closing atomic partitions of ℑ(T) with the use of operations addition + and multip-
lication * on partitions. L(ℑ(T)) is the algebraic lattice with constants over M ([28]).

The following theorem is given without proof.

Theorem 3. ([28], [29]). Let T(M) be a table of objects. Let P(X), P(Y) be partitions
of T(M) generated by X, Y ⊆ M, respectively. Then Т(M) ⏐− X → Y if and only if L(ℑ
(Т)) ⏐− P(X) ⊆ P(Y).

Definition 12. ([29]). A set X ⊆ M is a test for a given classification КL in table T(M)
of objects, if and only if P(X) ⊆ P(КL) (P(X) ⊆ P(КL) ≡ P(X)*P(KL) = P(X) ≡ P(X) +
P(KL) = P(KL)).

Definition 13. A set X ⊆ M is a good test or a good approximation of КL in T(M) if
the following conditions are satisfied а) X is a test for KL in T(M); б) there does not
exist a set of attributes Z, Z ⊆ U, X ≠ Z such that Z is a test for KL in T(M) and P(X) ⊂
P(Z) ⊆ P(KL).

The concept of the best diagnostic test is defined as follows.

Definition 14. A test X, X ⊆ U is the best one for a given classification KL in T(M) if
(∀Y) P(Y) ⊆ P(KL) ⏐P(X) ≤ ⏐P(Y)⏐.

Let us determine on the power set (2M, ⊆) the equivalence relation Θ as follows:
XΘY if and only if P(X) = P(Y) (P(X) ⊆ P(Y), P(Y) ⊆ P(X)).

222 X.A. Naidenova

Two subsets of attributes X, Y ⊆ M belong to one and the same class of relation Θ
if and only if the union of these subsets also belongs to the same class, i. e., X ≡ Y(Θ)
if and only if X ≡ X ∪ Y(Θ) & Y ≡ X ∪ Y(Θ).

By [a]Θ, where a ∈ M, we denote the equivalence class of relation Θ containing a
as [a]Θ = {X: X ⊆ M, X ≡ a(Θ)}.

Fig. 2 gives the diagram of all possible partitions of objects in Table 5.
In table 5, we have P(A1) = {r1, r2, r3}, P(A2) = {{r1}, {r2}, {r3}}, P(A3) = {{r1, r3},

{r2}}, P(A4) = {{r1, r2}, {r3}}.

Table 5. An example for demonstrating the equivalence relation Θ

N A1 A2 A3 A4
r1 1 1 1 1
r2 1 2 2 1
r3 1 3 1 2

Fig. 2. The diagram of all possible partitions of the set {r1, r2, r3}

The following is a direct consequence of the definition of relation Θ.

Proposition 1. If for two subsets of attributes X, Y ⊆ M we have that P(X)*P(Y) =
P(X) holds, then X ∪ Y and X belong to one and the same equivalence class of relation
Θ: [X ∪ Y]Θ = [X]Θ.

For the brevity, we shall omit the sign ∪ an, therefore, X ∪ Y will be simply desig-
nated as XY.

Proposition 2. If, for X, Y ⊆ M, P(X)*P(Y) = P(X) holds, then XY is a subset of max-
imal set of attributes belonging to the equivalence class [X]Θ of relation Θ.

Fig. 3 demonstrates the upper semi-lattice with constants over M with equivalence
classes of relation Θ on attributes of Table 5. In Fig. 3, we have the following

π0 = {{{r1}, {r2}, {r3}}}

π1 = {{r1, r2, r3}}

πx = {{r1, r3}, {r2}}

πy = {{r1, r2}, {r3}}}

πz = {{r2, r3}, {r1}}}

π0

π1

πx

πy

πz

 Good Classification Tests as Formal Concepts 223

irredundant sets of attributes А1, А2, А3, А4, and А3А4 and the following equivalence
classes [A1]Θ, [A2]Θ = [A3A4]Θ, [A3]Θ, [A4]Θ of relation Θ.

The set of partition dependencies in this example is:
{P(A1A4) = P(A4); P(A1A3) = P(A3); P(A1A2) = P(A2); P(A2A3) = P(A2); P(A2A4) =

P(A2); P(A2A3A4) = P(A2); P(A2A3A4) = P(A3A4); P(A3A4) ⊂ P(A4); P(A3A4) ⊂ P(A3)}.
These dependencies can be represented in another form: A4 → A1; A3 → A1; A2 → A1;
A2 → A3; A2 → A4; A2 → A3A4; A3A4 → A2; A3A4 → A3; A3A4 → A4.

We have also four maximally redundant attribute sets including all corresponding
irredundant sets of the each equivalence class of relation Θ:

clo(A2) = clo(A3A4) = [A1A2A3A4]Θ
clo(A1) = [A1]Θ
clo(A3) = [A1A3]Θ
clo(A4) = [A1A4]Θ.

Fig. 3. The upper semi-lattice with constant over M for example in Table 5

The following definitions are important for inferring good classification tests.
Definition 15. A subset of attribute X ⊆ M is said to be maximally redundant one if
for any attribute А ∉ Х, А ∈ M, subsets АХ and X belong to different equivalence
classes of relation Θ, i.e., [XA] Θ ≠ [X]Θ for all А ∉ Х, А ∈ M.

A diagnostic test Х is said to be maximally redundant one if it is maximally redun-
dant set of attributes. If X is a good maximally redundant test for KL, then after add-
ing to it any attribute А ∉ Х, А ∈ M, we obtain a test for KL but not good one.

A1A2A3A4

A1A2A3
A1A2A4 A1A3A4

A2A3A4

A1A2 A1A3 A1A4 A2A3 A2A4 A3A4

A2 A4

A3 A1

224 X.A. Naidenova

Definition 16. A subset of attribute Х ⊆ M is said to be irredundant one, if for all Z, Z
⊂ X, Z does not belong to the equivalence class of relation Θ to which Х belongs, i.e.,
[X]Θ ≠ [Z]Θ.

A diagnostic test Х is said to be irredundant one if it is irredundant set of attributes.
If Х is an irredundant test for KL, then deleting any attribute A, A ∈ X from it leads to
the fact that subset X\A is not a test for KL.

In the framework of Diagnostic Test Approach, FDs can be obtained directly by
the use of the multiplication operation on partitions in Apriori level-wise manner as it
is realized ([30-31]).

5 Conclusion

The concept of good diagnostic (classification) test has been given in terms of FCA
and in terms of independently developed Diagnostic Test Analysis (DTA). The link
between FCA and DTA approaches to classification of objects has been revealed. An
algebraic model of diagnostic task as algebra of object classifications has also been
described based on the partition lattice. Integration of FCA and DTA will allow orga-
nizing naturally classification-driven logical rule extraction from large datasets with
resulting more relevant sets of rules with respect to special goals of data analysis.

References

1. Bellandi, A., Furletti, B., Grossi, V., Romei, A.: Ontology-driven association rule extrac-
tion: a case study. In: Proceedings of the Workshop “Context & Ontologies: Representa-
tion and Reasoning”, pp. 1–10 (2007)

2. Garriga, G.C., Kralj, P., Lavrac, N.: Closed sets for labeled data. Journal of Machine
Learning Research 9, 559–580 (2008)

3. Won, D., McLeod, D.: Ontology-driven rule generalization and categorization for market
data. In: Proceedings of the 23rd ICDE Workshop on Data Mining and Business Intelli-
gence (DMBI 2007), pp. 917–923. The IEEE Computer Society (2007)

4. Marinica, C., Guillet, F.: Filtering discovered association rules using ontologies. IEEE
Transactions on Knowledge and Data Engineering Journal, Special Issue “Domain-Driven
Data Mining” 22(6), 784–797 (2010)

5. Olaru, A., Marinika, C., Guillet, F.: Local mining of association rules with rule schemas.
In: Proceeding of the IEEE Symposium on Computational Intelligence and Data Mining.
IEEE Symposium Series on Computational Intelligence, pp. 118–124. The IEEE Computer
Society (2009)

6. Shen, Y.-D., Zhang, Z., Yang, Q.: Objective-oriented utility-based association mining. In:
Proceedings of the IEEE International Conference on Data Mining, pp. 426–433. The
IEEE Computer Society (2002)

7. Naidenova, X.A., Polegaeva, J.G.: SISIF – the System of knowledge acquisition from ex-
perimental facts. In: Alty, J.L., Mikulich, L.I. (eds.) Industrial Applications of Artificial In-
telligence, pp. 87–92. Elsevier Science Publishers B.V., Amsterdam (1991)

 Good Classification Tests as Formal Concepts 225

8. Naidenova, X.A.: Reducing machine learning tasks to the approximation of a given classi-
fication on a given set of examples. In: Proceedings of the 5th National Conference at Ar-
tificial Intelligence, Kazan, Tatarstan, vol. 1, pp. 275–279 (1996) (in Russian)

9. Naidenova, X.A.: DIAGARA: an incremental algorithm for inferring implicative rules
from examples. Intern. Journal “Information Theories & Applications” 12(2), 171–186
(2005)

10. Naidenova, X.A., Shagalov, V.L.: Diagnostic Test Machine. In: Auer, M. (ed.) Proceed-
ings of the ICL 2009 – Interactive Computer Aided Learning Conference, Austria, CD, pp.
505–507. Kassel University Press (2009)

11. Maier, D.: The theory of relational databases. Computer Science Press (1983)
12. Kotsiantis, S., Kanellopoulos, D.: Association rules mining: a recent overview. GESTS In-

ternational Transactions on Computer Science and Engineering 32(1), 71–82 (2006)
13. Naidenova, X.A., Polegaeva, J.G.: An algorithm of finding the best diagnostic tests. In:

Mintz, G.E., Lorents, P.P. (eds.) The Application of Mathematical Logic Methods, pp. 63–
67. Institute of Cybernetics, National Acad. of Sciences of Estonia, Tallinn, Estonia (1986)

14. Ore, O.: Theory of equivalence relations. Duke Mathematical Journal 9(4), 573–627
(1942)

15. Naidenova, X.A.: Automation of experimental data classification based on the algebraic
lattice theory. Unpublished doctoral dissertation, Saint-Petersburg, Electro-Technical Uni-
versity (1979) (in Russian)

16. Kuznetsov, S.O.: Machine learning on the basis of Formal Concept Analysis. Automation
and Remote Control 62(10), 1543–1564 (2001)

17. Kuznetsov, S.O.: Galois Connections in Data Analysis: Contributions from the Soviet Era
and Modern Russian Research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Con-
cept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005)

18. Finn, V.K.: On computer-oriented formalization of plausible reasoning in F. Bacon - J. S.
Mill Style. Semiotika Inf. 20, 35–101 (1983) (in Russian)

19. Finn, V.K.: Plausible reasoning in intelligent systems of JSM-type. Itogi Nauki Tekh., Ser.
Inf. 15, 54–101 (1991)

20. Ganter, B., Wille, R.: Formal Concept Analysis: mathematical foundations. Springer, Hei-
delberg (1999)

21. Ore, O.: Galois Connexions. Transactions of the American Mathematical Society 55(1),
493–513 (1944)

22. Birkhoff, G.: Lattice theory. Foreign Literature, Moscow (1954) (in Russian)
23. Naidenova, X.A.: Machine learning as a diagnostic task. In: Arefiev, I. (ed.) Knowledge-

Dialogue-Solution, Materials of the Short-Term Scientific Seminar, pp. 26–36. State
North-West Technical University, Saint-Petersburg (1992)

24. Naidenova, X.A.: Machine learning methods for commonsense reasoning processes. Inter-
active models. Inference Science Reference, Hershey (2009)

25. Naidenova, X.A., Plaksin, M.V., Shagalov, V.L.: Inductive inferring all good classification
tests. In: Valkman, J. (ed.) “Knowledge-Dialog-Solution”, Proceedings of International
Conference in Two Volumes, vol. 1, pp. 79–84. Kiev Institute of Applied Informatics, Yal-
ta (1995)

26. Naidenova, X.A.: The data-knowledge transformation. In: Soloviev, V. (ed.) Text
Processing and Cognitive Technologies, Pushchino, Russia, vol. (3), pp. 130–151 (1999)

27. Juravlev, J.N.: About algebraic approach to solving the pattern recognition and classifica-
tion tasks. In: Jablonskij, S.V. (ed.) The Problem of Cybernetics, vol. 33, pp. 5–68. Nauka,
Moscow (1978)

226 X.A. Naidenova

28. Cosmadakis, S., Kanellakis, P.S., Spiratos, N.: Partition semantics for relations. Computer
and System Sciences 33(2), 203–233 (1986)

29. Naidenova, X.A.: Relational model for analyzing experimental data. The Transaction of
Acad. Sci. of USSR, Series Technical Cybernetics 4, 103–119 (1982) (in Russian)

30. Huhtala, Y., Karkkainen, J., Porkka, P., Toivonen, Y.: TANE: An Efficient algorithm for
discovering functional and approximate dependencies. The Computer Journal 42(2), 100–
111 (1999)

31. Megretskaya, I.A.: Construction of natural classification tests for knowledge base genera-
tion. In: Pecherskij, Y. (ed.) The Problem of Expert System Application in the National
Economy: Reports of the Republican Workshop, pp. 89–93. Mathematical Institute with
Computer Centre of Moldova Acad. of Sciences, Kishinev, Moldova (1988)

Modeling Preferences over Attribute Sets

in Formal Concept Analysis

Sergei Obiedkov

National Research University Higher School of Economics, Moscow, Russia
sergei.obj@gmail.com

Abstract. In this paper, we consider two types of preferences from pref-
erence logic and propose their interpretation in terms of formal concept
analysis. We are concerned only with preferences between sets of at-
tributes, or, viewed logically, between conjunctions of atomic formulas.
We provide inference systems for the two types of preferences and study
their relation to implications.

Keywords: implications, formal concept analysis, preference logic,
preferences.

1 Introduction

The formal context on the left-hand side of Fig. 1 shows the menus of four
student canteens in Dresden on one particular day.1 The symbol stands

for a vegetarian meal, for a non-vegetarian meal without pork, for a
meal containing alcohol, and � for a meal without any of these properties. The
diagram on the right-hand side shows the preferences of an (imaginary) actor over
these canteens. It should be read as a line diagram of a partial order: Bergstraße
is incomparable to Klinikum, but less preferable than Reichenbachstraße, etc.

Is it possible to derive preferences over menu items from these preferences over
the canteens? For example, is a meal with alcohol better than the one without for
our actor? Preference logic [13,11,4] gives several ways to answer such questions.
The key principle is to extend the preference relation on individual alternatives
to sets of alternatives and, based on that, derive preferences between propositions
about these alternatives.

In this paper, we consider two common ways to extend the preference relation
and, when moving to the level of propositions, restrict ourselves to preferences
between conjunctions of atomic propositions, or, to put it in terms of formal
concept analysis, to preferences between sets of attributes. We provide contex-
tual interpretations for preferences, develop inference systems, and show how
preferences could be computed by translating them into implications. Our aim
in this paper is to give a general characterization of preferences rather than to

1 Jan. 19, 2004. The example is taken from [7]. Figures are produced using the fca

LaTeX package developed by B. Ganter.

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 227–243, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

228 S. Obiedkov

�
Bergstraße × × ×
Reichenbachstraße × ×
Klinikum × ×
Siedepunkt ×

Bergstraße

Reichenbach-
straße

Klinikum

Siedepunkt

Fig. 1. A preference context

provide a practical method for their extraction from data; for this reason, we
are not (yet) particularly concerned about the scalability of our approach.

We assume familiarity with the main notions and notation of formal concept
analysis [8]. Here, we define a preference context P = (G,M, I,≤) as a formal
context (G,M, I) supplied with a preference relation ≤ on G. We write g < h if
g ≤ h and h �≤ g. As usual in preference logic, we assume that ≤ is a preorder,
i.e., it is reflexive and transitive. In general, neither antisymmetry nor totality
is required, although it seems natural for a preference relation to have at least
one of these properties. The preference relation of the preference context in Fig.
1 is antisymmetric; i.e., it is a partial order.

A preference context P = (G,M, I,≤) can be regarded as a combination of
two formal contexts: (G,M, I) and (G,G,≤). Viewed this way, a preference con-
text is a special case of a relational context family in the sense of relational
concept analysis (RCA) [12]. However, our goals are different from those gen-
erally pursued in RCA, and so is our approach—except for when we define the
conceptual existential translation of a preference context (Definition 5) in a way
similar to how the wide scaling operator is defined in RCA.

Throughout the text, we use (·)′ to denote the derivation operators of (G,M, I)
and (·)≤ and (·)≥ to denote the two derivation operators of (G,G,≤).

2 Universal Preferences

In von Wright’s version of preference logic [13], a set Y is preferred to a set X if

∀x ∈ X∀y ∈ Y (x ≤ y),

that is, every alternative in Y is preferred to every alternative in X . Translating
this into preferences over sets of attributes, we obtain the following definition:

Definition 1. A set of attributes B ⊆ M is universally preferred to a set of
attributes A ⊆M in a preference context P = (G,M, I,≤) if B′ ⊆ A′≤. Notation:
P |= A � B.

Modeling Preferences over Attribute Sets in Formal Concept Analysis 229

That is, A � B holds (or is valid) in (G,M, I,≤) if every object with all
attributes from B is preferred to every object with all attributes from A. We
will call A the premise and B the conclusion of the universal preference A � B.
We will sometimes omit curly brackets in premises and conclusions when giving
examples of preferences.

Note that, as long as there is no object g with B ⊆ g′, we have both A � B
and B � A for any A ⊆ M : in the former case, ∅ = B′ ⊆ A′≤, and, in the
latter case, A′ ⊆ B′≤ = ∅≤ = G.

On the other hand, if B′ = G, the preference A � B takes place if and only
if objects with A are the “worst” objects in G: every object from G (including
those from A) is preferred to every object from A. Similarly, B � A (with
B′ = G) would hold if objects with A are preferable to each other and all other
objects.

Example 1.

, ,� � ∅

does not hold in the preference context from Fig. 1, for { , ,�} ⊆
Bergstraße, but Bergstraße �≤ Klinikum.

∅ �

does not hold either, because { } ⊆ Reichenbachstraße, but Klinikum �≤ Re-
ichenbachstraße. On the other hand,

� �

does hold, since the only option with is preferable to the only option with
�, i.e., Bergstraße ≤ Reichenbachstraße.

The inference system for universal preferences consists of a single rule:

X � Y

X ∪ U � Y ∪ V
, (1)

which allows one to add arbitrary attributes to the premise and conclusion of a
valid preference.

Proposition 1. Rule (1) is sound and complete with respect to universal pref-
erences.

Proof. Soundness. We need to show that

if (G,M, I,≤) |= X � Y , then (G,M, I,≤) |= X ∪ U � Y ∪ V

for any X,Y, U, V ⊆M . From (G,M, I,≤) |= X � Y , we get Y ′ ⊆ X ′≤. Taking
into account (X ∪ U)′ ⊆ X ′, we obtain (Y ∪ V)′ ⊆ Y ′ ⊆ X ′≤ ⊆ (X ∪ U)′≤ and
(G,M, I,≤) |= X ∪ U � Y ∪ V as claimed.

230 S. Obiedkov

Completeness. By completeness, we mean that, if A � B holds for all prefer-
ence contexts satisfying all the preferences in set Σ, then A � B can be deduced
from Σ using rule (1). In fact, we will prove a stronger claim: in this situation,
A � B can be deduced from a single preference in Σ; in other words, Σ must
contain a preference X � Y with X ⊆ A and Y ⊆ B.

Suppose that Σ contains no such preference. Then, consider a preference con-
text P with only two objects, g1 < g2, such that g′1 = B and g′2 = A. Note
that g2 ∈ H≤ for any H ⊆ G. Obviously, A � B is invalid in P. Take any
X � Y ∈ Σ. If X ⊆ A, then Y �⊆ B and Y ′ ⊆ {g2}. Consequently, Y ′ ⊆ X ′≤

and X � Y holds in P. If X �⊆ A, then g2 �∈ X ′ and X ′≤ = {g1, g2}. Hence,
X � Y holds in this case, too.

Thus, if Σ contains no preference X � Y with X ⊆ A and Y ⊆ B, there
is a preference context where every preference from Σ holds, but A � B does
not. �

Universal preferences are very different from implications: even X � X does

not always hold (for example, � does not hold in the context from

Fig. 1, since incomparable canteens Bergstraße and Klinikum both serve).
Nevertheless, we are now going to describe a formal context KP

∀ corresponding
to a preference context P in such a way that valid universal preferences of P are
translated into valid implications of KP

∀, while invalid preferences are translated
into invalid implications.

Definition 2. Let P = (G,M, I,≤) be a preference context. The universal trans-
lation of P is a formal context KP

∀ = (G×G, (M × {1, 2})∪ {≤}, I∀), where

(g1, g2)I∀m1 ⇐⇒ g1Im1,
(g1, g2)I∀m2 ⇐⇒ g2Im2,
(g1, g2)I∀ ≤ ⇐⇒ g1 ≤ g2.

Here, m1 and m2 stand for (m, 1) and (m, 2) respectively, m ∈ M . We denote
the derivation operators of KP

∀ by (·)∀.
T∀(A � B), the translation of a universal preference A � B, is the

implication
(A× {1}) ∪ (B × {2})→ {≤}

of the formal context KP

∀.

Example 2. The universal translation of the preference context from Fig. 1 is
shown in Fig. 2. Below we give translations of the universal preferences from
Example 1 (without curly brackets):

, ,� � ∅ 1, 1,�1 → ≤
∅ � 2 → ≤
� � �1, 2 → ≤

It is easy to see that the translations of the first two preferences in Example 2
are not valid in the context shown in Fig. 2, while the third translation is valid.

Modeling Preferences over Attribute Sets in Formal Concept Analysis 231

1 1 1 �1 ≤ 2 2 2 �2

Bergstraße, Bergstraße × × × × × × ×
Bergstraße, Reichenbachstr. × × × × × ×
Bergstraße, Klinikum × × × × ×
Bergstraße, Siedepunkt × × × × ×
Reichenbachstr., Bergstraße × × × × ×
Reichenbachstr., Reichenbachstr. × × × × ×
Reichenbachstr., Klinikum × × × ×
Reichenbachstr., Siedepunkt × × × ×
Klinikum, Bergstraße × × × × ×
Klinikum, Reichenbachstr. × × × ×
Klinikum, Klinikum × × × × ×
Klinikum, Siedepunkt × × × ×
Siedepunkt, Bergstraße × × × ×
Siedepunkt, Reichenbachstr. × × ×
Siedepunkt, Klinikum × × ×
Siedepunkt, Siedepunkt × × ×

Fig. 2. The universal translation of the preference context from Fig. 1

This agrees with the validity of the corresponding universal preferences in the
original preference context from Fig. 1. More generally:

Proposition 2. A universal preference A � B is valid in a preference context
P = (G,M, I,≤) if and only if its translation is valid in KP

∀:

P |= A � B ⇐⇒ KP

∀ |= T∀(A � B).

Proof. Suppose that P |= A � B and (A×{1})∪ (B×{2}) ⊆ (g1, g2)
∀ for some

g1 ∈ G and g2 ∈ G. Then, A ⊆ g′1 and B ⊆ g′2. Since, A � B holds in P, we
have g1 ≤ g2 and (g1, g2)I∀ ≤ as required.

Conversely, assume KP

∀ |= (A×{1})∪(B×{2})→ {≤}. We need to show that
B′ ⊆ A′≤, that is, g1 ≤ g2 whenever A ⊆ g′1 and B ⊆ g′2. Indeed, in the latter
case, we have (A× {1}) ∪ (B × {2}) ⊆ (g1, g2)

∀ and, consequently, (g1, g2)I∀ ≤,
i.e., g1 ≤ g2. �

The canonical (Duquenne–Guigues) basis [9] of KP

∀ in Fig. 2 consists of twelve
implications, but, since the translation is not surjective, most of these implica-
tions do not correspond to preferences of the preference context in Fig. 1. If we
are interested only in preferences, a better representation can be obtained by
considering minimal generating sets of ≤ in KP

∀, i.e., minimal attribute sets A
such that ≤ ∈ A∀∀.

Example 3. For our example, this would give us the following set of universal
preferences (shown to the left with their translations to the right):

232 S. Obiedkov

� 1, 2 → ≤
� � �1, 2 → ≤
� � � �1,�2 → ≤

, � ∅ 1, 1 → ≤
∅ � , 2, 2 → ≤
,� � ∅ 1,�1 → ≤
∅ � ,� 2,�2 → ≤

This is the minimal basis of the universal preferences of the preference context
in Fig. 1,2 as the following Proposition shows:

Proposition 3. Let P be a preference context. The

Σ = {A � B | (A× {1}) ∪ (B × {2}) is minimal

w.r.t. KP

∀ |= (A× {1}) ∪ (B × {2})→ {≤}}

is the minimal (in the number of preferences) basis of the universal preferences
valid in P.

Proof. Due to Proposition 2, all universal preferences from Σ are valid in P.
Proposition 1 ensures that the only way to obtain a valid universal preference
from other valid preferences is to add attributes to their premises and/or con-
clusions. Taking into account that both premises and conclusions of preferences
in Σ are minimal among premises and conclusions of valid preferences, it is
easy to see that Σ is indeed the (unique) minimal basis of universal preferences
of P. �

Although, as said above, the scalability is not our concern here, a short remark
is worth making. If |G| is large, it may not be feasible to work directly with KP

∀,
which contains |G|2 objects. In this case, an approach based on query learning
(as opposed to learning from examples) can be used [1]. In this setting, there is
a “learner” and a “teacher”; the learner proposes a hypothesis of a certain kind
to the teacher, and the teacher either confirms it or provides a counterexample,
based on which the learner forms a new hypothesis. Thus, the learner may never
see the entire set of examples, but still be able to learn whatever it is learning. A
similar approach in formal concept analysis is attribute exploration: the learner
starts with a small (possibly empty) context, generates implications valid in this
context, and asks the teacher to provide counterexamples, which it then adds
to the context [6]. While learning universal preferences, the learner is interested

2 As should be expected, by saying that Σ is a basis of universal preferences of P, we
mean that Σ contains only universal preferences valid in P and that all other such
preferences are valid exactly in contexts where Σ is valid. Σ must also be irredundant
with respect to this property.

Modeling Preferences over Attribute Sets in Formal Concept Analysis 233

only in implications of the form (A×{1})∪ (B×{2})→ {≤}, where A,B ⊆M .
To find a counterexample for such an implication, the teacher would identify A′

and B′ in P and then check all pairs in A′ × B′, eliminating the need to store
the entire KP

∀ explicitly.
If we already have information about implications holding in (G,M, I), a

different approach to exploring preferences in P = (G,M, I,≤) might be helpful.
If L is a set of implications valid in (G,M, I) (for example, but not necessarily,
its Duquenne–Guigues basis), we may compute the canonical basis of KP

∀ relative
to the following implications:

{A× {i} → B × {i} | A→ B ∈ L, i ∈ {1, 2}}.

In fact, implications A → B ∈ L with zero support, i.e., with A′ = ∅, give rise
to stronger background implications, with M × {1, 2} as the conclusion. So, we
may also add the following implications to the background knowledge:

{A× {i} →M × {1, 2} | A→ B ∈ L, i ∈ {1, 2} and A′ = ∅}.

All implications in the relative canonical basis of KP

∀ will contain the “preference
attribute”, ≤, either in their premises or in their conclusions. However, we are
interested only in implications with ≤ in the conclusion. It is easy to generate
only such implications using Ganter’s algorithm [8], which produces implications
in the lectic order of their premises with respect to a given linear order on
attributes:3 the trick is to set ≤ to be the first attribute in KP

∀ and terminate
the algorithm before it starts generating premises containing ≤.

Example 4. The Duquenne–Guigues basis of the formal context in Fig. 1 consists
of three implications:

∅→
,�→

, , → ⊥

Here, ⊥ in the conclusion of the third implication stands for M and marks the
implication as zero-support. We will see shortly how this can be used.

Computing the canonical basis of KP

∀ relative to the background implications
obtained from these three implications as described above, we get the following
preferences (before the algorithm would start generating implications with ≤ in
the premise):

, � ,

, ,� � ,

, ,� � , ,�
3 A set A ⊆ M is lectically smaller than a set B ⊆ M , if the first (w.r.t. a given linear
order on M) attribute in which A and B differ belongs to B.

234 S. Obiedkov

Of course, this system of three preferences is equivalent to the system of seven
preferences from Example 3 only under the given background knowledge. Obvi-
ously, each preference from the smaller set can be derived from one of the seven
preferences using rule (1). Inference in the other direction requires Armstrong
rules [2] for implications, rule (1) for universal preferences, and three additional
rules to connect implications with preferences:

X → ⊥
∅ � X, X � ∅

,
X → Y, X ∪ Y � Z

X � Z
,

X → Y, Z � X ∪ Y

Z � X
.

Example 5. To check that the preference � � follows from the hybrid
system of implications and universal preferences of Example 4, we first derive
two implications using the Armstrong rules:

�→ , ,� and → , .

From these two implications and the universal preference

, ,� � ,

we obtain � � by the last two of the additional rules.

To derive ∅ � ,�, which is a zero-support preference in the sense that

there are no canteens serving both and �, we first derive the implication

,�→ ⊥

and then use the first additional rule to get the desired preference.

To sum up, we described two approaches to the representation of universal pref-
erences: one involves a set of universal preferences together with a single inference
rule, while the other combines implications and preferences and requires a more
sophisticated inference system. For the preference context in Fig. 1, the first
approach results in seven universal preferences, whereas the second approach
yields three implications and three preferences. The second approach effectively
separates knowledge about preferences from knowledge about the structure of
the underlying formal context. For some applications, such separation may be
valuable.

The two approaches suggest two ways to design universal preference explo-
ration (by analogy with attribute exploration [6]). One is to go through universal
preferences based on minimal generating sets of ≤ in KP

∀ (see Example 3). If a
universal preference A � B valid in the current preference context P does not
hold in general, the user must provide two objects g and h with A ⊆ g′, B ⊆ h′,
and g �≤ h. One of these two objects may already be contained in P; the other
must be new.

The other approach is to start with standard attribute exploration of the for-
mal context underlying P (however, the ≤ relation must also be filled for objects

Modeling Preferences over Attribute Sets in Formal Concept Analysis 235

added during this stage) and, when that is finished, move to the exploration
of universal preferences obtained from the relative basis (see Example 4). Here,
as in the first approach, counterexamples are pairs of objects, but they must
respect the implications accepted during attribute exploration.

We finish this section by pointing out at a slightly different way to look at
universal preferences. Given a preference context P = (G,M, I,≤), the formal
concepts of (G,G,≤) summarize the preference relation on object sets that gives
rise to universal preferences between attribute sets (see the beginning of this
section). Indeed, an object set Y is preferred to an object set X (in the sense of
von Wright) if and only if Y ⊆ X≤. Sets X and Y are maximal with respect to
this property if and only if (X,Y) is a formal concept of (G,G,≤). At the same
time, if an object set Y is preferred to an object set X , then any subset of Y
is preferred to any subset of X . Thus, concepts of (G,G,≤) provide a complete
representation of von Wright’s preferences on object sets. We leave it for further
work to study the relation between this representation and universal preferences
on attribute sets.

3 Existential Preferences

Another type of preferences often used in preference logic derives from the fol-
lowing extension of the ≤ relation between individual alternatives to sets of
alternatives: a set Y is preferred to a set X if

∀x ∈ X∃y ∈ Y (x ≤ y),

that is, for every alternative in X , one can find an alternative in Y that is at
least as good. If alternatives are described by attribute sets, this reads as follows:

Definition 3. A set of attributes B ⊆ M is existentially preferred to a set of
attributes A ⊆M in a preference context P = (G,M, I,≤) if

A′ ⊆
⋃

g∈B′
g≥.

Notation: P |= A �→ B.

In other words, A �→ B is valid if, for every object with all attributes from A,
one can find an object with all attributes from B that is at least as good.

It may seem that the terms “strong preferences” and “weak preferences” sug-
gest themselves for universal and existential preferences respectively. We chose
not to use them, because, if A′ �= B′ = ∅, then A � B holds, but A �→ B does
not.

Example 6. Unlike the corresponding universal preference, the existential
preference

, ,� �→ ∅

236 S. Obiedkov

holds in the preference context from Fig. 1, since { , ,�}′ = {Bergstraße}
and Bergstraße ≤ Bergstraße ∈ ∅′. On the other hand,

∅ �→

does not hold (similarly to the corresponding universal preference), because

Klinikum ∈ ∅′ and { }′ = Reichenbachstraße, but Klinikum �≤ Reichenbach-
straße. The existential preference

� �→

holds for the same reason as its universal counterpart.

Note that an existential preference is a generalization of an implication: firstly,
every valid implication A→ B gives rise to a valid preference A �→ B; secondly,
if ≤ is the identity relation, then valid existential preferences are exactly all the
valid implications.

Proposition 4. Let P = (G,M, I,≤) be a preference context.

1. If (G,M, I) |= A→ B, then P |= A �→ B.
2. If ≤ is the identity relation and P |= A �→ B, then (G,M, I) |= A→ B.

Proof. 1. (G,M, I) |= A → B implies A′ ⊆ B′, but, since g ≤ g for all g ∈ G,
we have B′ ⊆

⋃
g∈B′ g≥. Therefore, P |= A �→ B.

2. If ≤ is the identity relation, then
⋃

g∈B′ g≥ = B′. Hence, P |= A �→ B only
when A′ ⊆ B′, i.e., when (G,M, I) |= A→ B.

The inference system for existential preferences is a weakened version of the
Armstrong system for implications:

Proposition 5. The following system of three rules is sound and complete with
respect to existential preferences:

X �→ X
,

X �→ Y ∪ U

X ∪ V �→ Y
,

X �→ Y, Y �→ Z

X �→ Z
. (2)

Proof. Soundness is easy; we will concentrate on completeness. Suppose that
A �→ B cannot be derived from a set Σ of existential preferences using rules (2).
We will build a preference context PΣ = (G,M, I,≤) where all preferences from
Σ hold, but A �→ B does not.

We start with G = {g0} such that g′0 = A. We add new objects to G as
follows: if X ⊆ g′ for some X �→ Y ∈ Σ and g ∈ G, we add to G an object h
with h′ = Y if such an h is not yet in G. In the end, we set ≤ equal to G×G.
Obviously, all existential preferences from Σ hold in PΣ. To show that A �→ B
does not hold, we will prove that B �⊆ g′ for all g ∈ G.

Let us index objects in G according to the order in which they were added
to G. Obviously, B �⊆ g′0 = A: otherwise, we could derive A �→ B using the first

Modeling Preferences over Attribute Sets in Formal Concept Analysis 237

two rules. Suppose for contradiction that B ⊆ g′k for some k > 0. Then, there is
an existential preference X �→ Y ∈ Σ with B ⊆ Y = g′k and X ⊆ g′j for some
j < k. Therefore, we can derive X �→ B from Σ using the second rule. If j = 0,
then X ⊆ A = g′0 and A �→ B is derivable from Σ (again using the second rule
and augmenting the premise of X �→ B). Otherwise, there must be i < j and
U �→ V ∈ Σ such that X ⊆ V = g′j and U ⊆ g′i. From U �→ V we derive U �→ X
and then, using X �→ B and the third rule, U �→ B. Continuing like this, we will
eventually derive W �→ B for some W ⊆ A = g′0, from which A �→ B is derived
by the second rule. However, A �→ B is not derivable from Σ. Therefore, our
assumption that B ⊆ g′k is wrong, and B �⊆ g′ for all g ∈ G.

Now, g0 ∈ A′, but
⋃

g∈B′ g≥ =
⋃
∅ = ∅. Therefore, A �→ B does hold in PΣ ,

as claimed. �

Next, we develop a translation of existential preferences into implications simi-
larly to how this was done for universal preferences in Definition 2.

Definition 4. Let P = (G,M, I,≤) be a preference context. The existential
translation of P is a formal context KP

∃ = (G,P(M), I∃), where P(M) is the
power set of M and

gI∃A ⇐⇒ g≤ ∩ A′ �= ∅.

We denote the derivation operators of KP

∃ by (·)∃.
T∃(A �→ B), the translation of an existential preference A �→ B, is the impli-

cation
{A} → {B}

of the formal context KP

∃.

Example 7. The existential translation of the preference context from Fig. 1 is
shown in Fig. 3. Below we give translations of the existential preferences from
Example 6 (here, we omit curly brackets in preferences, but keep them in the
translations to emphasize that implications are between sets of sets):

, ,� �→ ∅ {{ , ,�}} → {∅}
∅ �→ {∅} → {{ }}
� �→ {{�}} → {{ }}

From Fig. 3, it is easy to see that the first and third implications hold in KP

∃,
while the second one does not.

Proposition 6. An existential preference A �→ B is valid in a preference context
P = (G,M, I,≤) if and only if its translation is valid in KP

∃:

P |= A �→ B ⇐⇒ KP

∃ |= T∃(A �→ B).

238 S. Obiedkov

∅ {�
}

{
}

{
,
�
}

{
}

{
,
�
}

{
,

}
{

,
,
�
}

{
}

{
,
�
}

{
,

}
{

,
,
�
}

{
,

}
{

,
,
�
}

{
,

,
}

{
,

,
,
�
}

Bergstraße × × × × × × × × × ×
Reichenbachstr. × × × ×
Klinikum × × × ×
Siedepunkt × ×

Fig. 3. The existential translation of the preference context from Fig. 1

Proof. Suppose that P |= A �→ B and A ∈ g∃1 for some g1 ∈ G. Then, g≤1 ∩A′ �=
∅, i.e., there is g2 ∈ A′ with g1 ≤ g2. Since A �→ B holds in P, there is g3 ∈ B′

such that g2 ≤ g3. Due to transitivity of ≤, we have g1 ≤ g3 and g1I∃B as
required.

Conversely, assume KP

∃ |= {A} → {B}. We need to show that A′ ⊆
⋃

g∈B′ g≥,
that is, g1 ≤ g2 for some g2 ∈ B′ whenever A ⊆ g′1. Indeed, in the latter case,
we have g1I∃A and, consequently, g1I∃B, which holds exactly when g1 ≤ g2 for
some g2 ∈ B′. �

The canonical basis [9] of KP

∃ in Fig. 3 consists of 16 implications, but, as it
was the case with KP

∀, most of them are of little interest from the viewpoint of
computing preferences, since existential preferences correspond to implications
of KP

∃ with single-element premises. More relevant is the system of existential
preferences given by the following set:

{A �→ B | A is minimal and B is maximal w.r.t. KP

∃ |= {A} → {B}}. (3)

To see that this system is complete, note that every valid existential preference
can be derived from this set using the second rule of (2)—except for trivial
preferences X �→ X , which can be derived with the first rule. However, the third
rule, transitivity, is not necessary with this system. Given that the third rule
is necessary in general, it should be clear that this system may be redundant.
Indeed, it may contain preferences {a} �→ {b}, {b} �→ {c}, and {a} �→ {c}, even
though the third preference is a consequence of the first two.4 Therefore, some
reduction may be needed to obtain a minimal representation from (3).

Example 8. Here is the system of existential preferences defined by (3) for the
preference context in Fig. 1 (shown to the left with their translations to the
right):

4 The preferences {a} �→ {b} and {a} �→ {c} cannot be replaced by {a} �→ {b, c}, since
the latter does not follow from them.

Modeling Preferences over Attribute Sets in Formal Concept Analysis 239

∅ �→ {∅} → {{ }}
� �→ , {�} → {{ , }}
� �→ , ,� {�} → {{ , ,�}}
�→ , {{ }} → {{ , }}

,� �→ , , ,� {{ ,�}} → {{ , , ,�}}
�→ , {{ }} → {{ , }}

, �→ , , ,� {{ , }} → {{ , , ,�}}

Note that, in Example 8, we need the preference �→ , even in

the presence of ∅ �→ : it may happen that there is “the best” object with

, but no object with both and . However, in our example ∅ �→
is not only an existential preference, but also an implication. This means that,

if there is an object with , this object has both and . In other

words, the existential preference �→ , follows from the implication

∅ → . Thus, as with universal preferences, it may be useful to consider a
hybrid system of implications and existential preferences.

A set L of implications valid in (G,M, I) gives rise to the following background
implications of KP

∃ for every A ⊆M :

{A} → {L(A)}

where L(A) is the closure of A with respect to the implications in L. In addition,
we use the following background implications for every A ⊆M :

{A} → {A \ {a} | a ∈ A},

as well as
∅→ {∅}.

Example 9. Setting L to be the canonical basis of the formal context P in Fig. 1
(see Example 4) and computing the implications ofKP

∃ with one-element premises
relative to the background implications just defined, we obtain a single existential
preference:

, ,� �→ , .

Compared to Example 8, this is a noticeable improvement on the size of the
representation (three implications and one preference instead of seven prefer-
ences), but it requires a hybrid inference system for implications and existential
preferences. Such system consists of Armstrong rules for implications, rules (2)
for existential preferences, and one additional rule relating implications and pref-
erences, which is based on Proposition 4:

A→ B

A �→ B
.

240 S. Obiedkov

Example 10. The existential preference � �→ , can be derived in the
hybrid system as follows. First, we derive the implication

�→ , ,�

from the canonical basis (see Example 4) with Armstrong rules. Then, we use
the additional rule to transform this implication into a preference:

� �→ , ,�

From this and , ,� �→ , , we finally obtain

� �→ ,

using the third rule from (2).

The formal context in Fig. 3 strikes as rather uneconomical: for example,
it consists of two identical parts, which is due to the fact that the original
context satisfies the implication ∅→ . We will now describe an alternative
translation, which makes a better use of the structure of the original context. The
idea is to use only concept intents (rather than all subsets of M) as attributes
of the formal context into which the translation is done.

Definition 5. Let P = (G,M, I,≤) be a preference context. The conceptual
existential translation of P is a formal context CP

∃ = (G,B(G,M, I), I∃), where
B(G,M, I) is the concept set of the formal context (G,M, I) and

gI∃(A,B) ⇐⇒ g≤ ∩ A �= ∅.

We denote the derivation operators of KP

∃ by (·)∃.
TC

∃ (A �→ B), the conceptual translation of an existential preference A �→ B,
is the implication

{(A′, A′′)} → {(B′, B′′)}
of the formal context CP

∃.

Readers familiar with relational concept analysis will notice that a similar
construction is used there under the name of the wide scaling operator [12]: the
context resulting from such scaling applied to P is the apposition of (G,M, I) and
CP

∃. The wide scaling operator is intended to capture the semantics of existential
role restrictions as defined in description logics [3], and, indeed, it is easy to see
that an existential preference A �→ B corresponds to the terminiological axiom
A � ∃R≤.B (where R≤ is the role interpreted by the preference relation ≤).5

Example 11. The conceptual existential translation of the preference context
from Fig. 1 is shown in Fig. 4. Below we give conceptual translations (in an
abbreviated form) of the existential preferences from Example 6:

5 Note that a universal preference A � B corresponds not to the axiom A � ∀R≤.B,
but to the axiom A � ∀¬R≤.¬B.

Modeling Preferences over Attribute Sets in Formal Concept Analysis 241

, ,� �→ ∅ (B, �)→ (BRKS,)

∅ �→ (BRKS,)→ (R,)

� �→ (B, �)→ (R,)

As can be seen from the line diagram of the concept lattice of CP

∃ in Fig. 4, the
first and the third implications are valid, while the second one is not.

(B
R
K
S
,

)

(R
,

)

(B
K
,

)

(B
,

�
)

(∅
,

�
)

Bergstraße × × × ×
Reichenbachstraße × ×
Klinikum × ×
Siedepunkt ×

Bergstraße

Reichenbachstraße Klinikum

Siedepunkt

�

�

Fig. 4. The conceptual existential translation of the preference context from Fig. 1
and its concept lattice. The attributes are the formal concepts of the formal context
underlying the original preference context; only concept intents are used as attribute
labels in the diagram.

242 S. Obiedkov

Proposition 7. An existential preference A �→ B is valid in a preference context
P = (G,M, I,≤) if and only if its conceptual translation is valid in CP

∃:

P |= A �→ B ⇐⇒ CP

∃ |= TC

∃ (A �→ B).

Proof. The proof is almost identical to the proof of Proposition 6. �

The previously considered translations are purely syntactical, but the conceptual
translation of existential preferences requires access to the derivation operator
of the original context. Therefore, the information contained in CP

∃ must be
regarded relative to the information in the original formal context. In particular,
a complete set of existential preferences valid in P = (G,M, I,≤) relative to the
implications of (G,M, I) is as follows:

{A �→ B | CP

∃ |= {(A′, A)} → {(B′, B)} and B �⊆ A}. (4)

Example 12. For our example, this gives the same existential preference as
before:

, ,� �→ , .

Thus, conceptual translation is not only more economical in terms of the size
of the representation (identifying the closed rather than all subsets of M with
new attributes), but it also allows more straightforward computation of relative
preferences without explicitly using background implications and, thus, avoiding
the computation of the canonical basis, which is known to be a hard problem
[10,5].

As with universal preferences, we described two ways to represent existen-
tial preferences: a pure system of existential preferences and a hybrid system
of implications and existential preferences. On the other hand, organizing ex-
ploration of existential preferences seems less straightforward than it was the
case for universal preferences, since adding a counterexample—an object—to an
existentially translated context requires also adding new attributes.

4 Conclusion

In this paper, we studied two approaches to deriving preferences over attribute
sets from preferences over individual objects: universal preferences and exis-
tential preferences. For each of the two types of preferences, we developed two
inference systems: one for a set of pure preferences of the respective type and the
other for a mixed set of implications and preferences. We showed how preferences
can be translated into implications of certain formal contexts, which makes it
possible—at least, in principle—to compute preferences with existing algorithms
for implications; however, we leave a thorough treatment of algorithmic issues
for further research. It also remains to see whether there is any nontrivial rela-
tion between universal and existential preferences that could be used to build a
hybrid system for these two types of preferences.

Modeling Preferences over Attribute Sets in Formal Concept Analysis 243

References

1. Angluin, D.: Queries and concept learning. Machine Learning 2, 319–342 (1988)
2. Armstrong, W.W.: Dependency structure of data base relationships. In: Proc. IFIP

Congress, pp. 580–583 (1974)
3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The

Description Logic Handbook: Theory, Implementation and Applications, 2nd edn.
Cambridge University Press, New York (2010)

4. van Benthem, J.: Modal Logic for Open Minds. CSLI lecture notes, Center for the
Study of Language and Information (2010)

5. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete
Applied Mathematics 159(6), 450–466 (2011)

6. Ganter, B.: Attribute exploration with background knowledge. Theoretical Com-
puter Science 217(2), 215–233 (1999)

7. Ganter, B., Obiedkov, S.: Implications in Triadic Formal Contexts. In: Wolff, K.E.,
Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp.
186–195. Springer, Heidelberg (2004)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

9. Guigues, J.-L., Duquenne, V.: Famille minimale d’implications informatives
résultant d’un tableau de données binaires. Mathématiques et Sciences Hu-
maines 24(95), 5–18 (1986)

10. Kuznetsov, S.O., Obiedkov, S.: Some decision and counting problems of the
Duquenne–Guigues basis of implications. Discrete Applied Mathematics 156(11),
1994–2003 (2008)

11. Liu, F.: Changing for the Better. Preference Dynamics and Agent Diversity. Ph.D.
thesis, Universiteit van Amsterdam (2008)

12. Rouane Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: A Proposal for Combin-
ing Formal Concept Analysis and Description Logics for Mining Relational Data.
In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp.
51–65. Springer, Heidelberg (2007)

13. von Wright, G.H.: The Logic of Preference. Edinburgh University Press (1963)

Finding Top-N Colossal Patterns

Based on Clique Search with
Dynamic Update of Graph

Yoshiaki Okubo and Makoto Haraguchi

Graduate School of Information Science and Technology
Hokkaido University

N-14 W-9, Sapporo 060-0814, Japan
{yoshiaki,mh}@ist.hokudai.ac.jp

Abstract. In this paper, we discuss a method for finding top-N colossal
frequent patterns. A colossal pattern we try to extract is a maximal pat-
tern with top-N largest length. Since colossal patterns can be found in
relatively lower areas of an itemset (concept) lattice, an efficient method
with some effective pruning mechanisms is desired.

We design a depth-first branch-and-bound algorithm for finding colos-
sal patterns with top-N length, where a notion of pattern graph plays an
important role. A pattern graph is a compact representation of the class
of frequent patterns with a designated length. A colossal pattern can be
found as a clique in a pattern graph satisfying a certain condition. From
this observation, we design an algorithm for finding our target patterns
by examining cliques in a graph defined from the pattern graph. The
algorithm is based on a depth-first branch-and-bound method for find-
ing a maximum clique. It should be noted that as our search progresses,
the graph we are concerned with is dynamically updated into a sparser
one which makes our task of finding cliques much easier and the branch-
and-bound pruning more powerful. To the best of our knowledge, it is
the first algorithm tailored for the problem which can exactly identify
top-N colossal patterns. In our experimentation, we compare our algo-
rithm with famous maximal frequent itemset miners from the viewpoint
of computational efficiency for a synthetic and a benchmark dataset.

Keywords: colossal patterns, maximal patterns, pattern graph, cliques.

1 Introduction

For a given transaction database D, a problem of Frequent Pattern/Itemset Min-
ing is to enumerate every pattern of items, also called an itemset, which frequently
appears in D [1]. It has been one of the fundamental computation tasks in the
field of Data Mining for recent decades.

As is well known, since we in general suffer from a huge number of frequent
patterns, we are usually concerned with some particular class of patterns. Paying
our attention to the structure of possible pattern space, called an itemset lat-
tice, we are often interested in maximal frequent patterns (e.g. [3,6]) and closed

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 244–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Finding Top-N Colossal Patterns Based on Clique Search 245

frequent patterns (e.g. [4,5,6]), where a closed pattern is related to the notion of
Formal Concept [11]. Besides, several measures of interestingness, e.g. Bond [8],
have been proposed from the viewpoint of quality of patterns.

In this paper, we are concerned with maximal frequent patterns. Especially,
we try to extract maximal frequent patterns with larger length. Such a pattern is
often called a (frequent) long pattern and several excellent algorithms for finding
them have already been proposed (e.g. [2]). In general, the frequency (or support)
of a longer pattern tends to be lower. In spite of this tendency, if a longer pattern
is found to be frequent, then we might expect such a pattern to provide us some
valuable insight. For example, in the field of Bioinformatics, long patterns are
actually regarded as important ones to be mined. In this sense, extracting long
patterns would be worth investigating.

In [12], Zhu, et al. have originally named a pattern with larger length a Colos-
sal Pattern in order to distinguish such a pattern from just frequent patterns.
They have discussed the problem of finding a designated number (say, K) of
frequent colossal patterns and proposed an algorithm based on a method of
Pattern Fusion. In the algorithm, assuming a pool of (frequent) patterns with
smaller length, we obtain a set of larger patterns by combining several patterns,
called core patterns, in the pool. Then, the pattern pool is updated into a new
pool consisting of the newly obtained patterns. Starting with an initial pool of
frequent patterns with length 3, such a process of core pattern fusion is iterated
until we get a pool with K (larger) patterns as the final output. Core patterns to
be combined are cleverly selected so that each resultant pattern can probably get
closer to some of correct K colossal patterns. Therefore, we can avoid examining
many useless ones which cannot constitute correct colossal patterns.

In [13], Xie and Yu have recently tried to solve a similar problem. Their
problem is to find top-K maximal frequent patterns, where top-K means K
patterns with length larger than those of the other maximal ones. They have
proposed an algorithm, named Max-Clique, which works in top-down manner.
In their method, a notion of Pattern Graph has been introduced and effectively
used to restrict candidate patterns to be examined. A pattern graph is an edge-
weighted undirected graph with items as vertices and can be viewed as a compact
representation of frequent patterns with a designated length. A key observation
in the pattern graph is that a frequent pattern with length � can be obtained
as a clique in the graph in which any edge-weight is no less than some value
determined by �. In their algorithm, a set of maximal cliques with larger size in
the pattern graph is first extracted and then each of them is refined to several
maximal frequent patterns, where the refinement process has two phases, item
removal phase and candidate extension phase. For a maximal clique, in the former
phase, several items are identified with some randomization factor and then
removed from the clique. In general, since some necessary items might be wrongly
removed in the phase, they are recovered in the latter phase with a traditional
frequent pattern miner.

Exactly speaking, the problems in [12] and [13] are different in a mathemati-
cal sense. In most cases, however, the difference will never cause serious matters.

246 Y. Okubo and M. Haraguchi

A fact to be noted here is that both of their algorithms are based on heuristic
approaches. They cannot always detect top-K colossal/maximal frequent pat-
terns with larger length exactly. In general, we might miss some of the target
patterns to be extracted. Needless to say, such an incompleteness would be surely
undesirable because those missing patterns could provide valuable information
and knowledge. It would be therefore worth investigating a complete algorithm
which can exactly discover the targets.

In this paper, we try to design a complete algorithm for efficiently extracting
all maximal frequent patterns with top-N largest length. Unlike the previous
problems of mining K colossal/maximal patterns with larger length in [12,13],
our parameter N for top-N restricts the length of patterns to be detected, not
the number of extracted patterns. We consider that it is more intuitive for users
to provide N rather than K because we are interested in colossality of patterns.
For example, if we try to obtain all patterns with the largest length, we need to
provide an adequate value of K by which all the target patterns can be covered
completely. We, however, have no idea to guess how many patterns actually have
the largest length. In our problem, on the other hand, we can simply provide
N = 1 for the task. Thus, our problem in this paper can be regarded as a natural
modification of the previous problems.

We present a depth-first branch-and-bound algorithm for our problem. Espe-
cially, it has been designed based on a branch-and-bound method for finding a
maximum clique [15,16]. In the algorithm, we first construct a pattern graph, as
Max-Clique does [13]. From the pattern graph, we then extract a subgraph G
satisfying a simple constraint on edge-weight, where our target patterns can be
extracted as cliques in G.

In order to obtain a maximal frequent pattern, we recursively expand a clique
(a pattern) into larger cliques in a depth-first manner. During the process, we
manage a tentative list of maximal patterns with top-N largest length obtained
so far. It is noted here that for each clique C, we can estimate an upper bound,
ũC , on the size of any C’s expansion. Therefore, if we find ũC is less than the
minimum length of patterns in the tentative list, we do not need to expand C any
more because no expansion of C with top-N largest length can be obtained. Thus,
such a C and its possible expansions can be pruned without losing completeness,
that is, a branch-and-bound pruning is available.

In our computation, the tentative top-N list is iteratively updated, monoton-
ically increasing the minimum length of patterns in the list. Simultaneously, the
graph G can be also updated into a more sparse one. As the result, as our search
progresses, the task of finding cliques in G becomes much easier and the branch-
and-bound pruning more powerful. Our algorithm, therefore, can efficiently and
completely find all maximal patterns with top-N largest length. To the best of
our knowledge, it is the first algorithm which can exactly identify the target
patterns, not approximately.

For a synthetic dataset and a famous benchmark dataset, our experimental
results show that the computational performance of our algorithm is better than

Finding Top-N Colossal Patterns Based on Clique Search 247

famous fast algorithms for extracting maximal frequent itemsets, MAFIA [3],
LCM [6] and ABS [7].

2 Preliminaries

Let I be a set of items. A subset of I, X ⊆ I, is called an itemset. We often call
an itemset a pattern. If an itemset X consists of k items, that is, |X | = k, then
X is particularly called a k-itemset/pattern, where k is the length of X .

A transaction is given as an itemset T ⊂ I. A transaction database, D, is a
finite collection (a multiple set) of transactions.

For a transaction database D and a pattern X , the set of transactions in D
containing X is referred to as D(X), that is, D(X) = {T ∈ D | X ⊆ T }. The
number of transactions in D(X), |D(X)|, is called the frequency of X .

For an integer σ, a pattern X is said to be σ-frequent if |D(X)| ≥ σ holds.
The set of σ-frequent patterns is referred to as Fσ. Given σ as a threshold on
the minimum frequency, Frequent Itemset/Pattern Mining [1] is defined as the
problem of identifying Fσ.

Based on pattern length, Fσ can be partitioned into F0
σ ,F1

σ,F2
σ, . . . and FL

σ ,
where F�

σ is the set of σ-frequent �-patterns and L is the maximum length of
patterns in Fσ.

A (undirected) graph is denoted by G = (V,E), where V is a set of vertices,
E ⊆ V × V a set of edges. In case each edge is assigned some weight, a graph is
denoted by G = (V,E,w), where w : E →N is a weight function for edges.

For a vertex v ∈ V , the set of vertices adjacent to v is denoted by NG(v),
where |NG(v)| is called the degree of v. The degree of v is often referred to as
degG(v). If it is clear from the context, they are simply denoted by N(v) and
deg(v), respectively.

3 Pattern Graph

A pattern graph, introduced in [13], is an approximate compact representation of
the frequent itemsets with a designated length and is formally defined as follows.

Definition 1. (�-Item Pattern Graph)
Let D be a transaction database with the set of items I and σ a threshold on
the minimum frequency. For a length �, the �-item pattern graph is an edge-
weighted undirected graph Gσ,� = (I, E, w), where (x, y) ∈ E ⊆ I × I iff there
exists a σ-frequent �-itemset X ∈ F�

σ such that {x, y} ⊆ X , and for (x, y) ∈ E,
w((x, y)) = | {X ∈ F�

σ | {x, y} ⊆ X} |.

From the definition, if a pair of items x and y co-occur in at least one σ-frequent
�-itemset, then they are connected in the graph. Moreover, the edge (x, y) is
assigned an weight defined as the number of σ-frequent �-itemsets containing
both x and y.

In the pattern graph, we can observe an interesting theoretical property.

248 Y. Okubo and M. Haraguchi

Lemma 1. [13]
Let Gσ,� be the �-item pattern graph constructed for a threshold on the minimum
frequency σ. If a k-itemset X is σ-frequent, then X forms a clique in Gσ,� in

which the weight of each edge is at least
(
k−2
�−2

)
.

That is, the lemma states necessary conditions on frequent patterns with a cer-
tain length. Based on them, in [13], an algorithm for mining top-K maximal
frequent patterns, named Max-Clique, has been proposed, where top-K means
“K patterns with larger length”. From the lemma, any σ-frequent pattern can
be extracted by examining only cliques in the pattern graph. In fact, Max-Clique
first extracts a given number (more than K) of larger maximal cliques in Clique
Detection Phase and then, in Candidate Refinement Phase, tries to refine each
maximal clique into several maximal patterns with larger length. Since the lat-
ter phase, however, takes a randomized method, Max-Clique is not a complete
algorithm for the problem.

As has been discussed in [13], the value of � has a direct influence on our com-
putation. A larger � can make the graphGσ,� sparser and both of the computation
phases easier with less approximation error. However, the task of identifying F�

σ

necessary for constructing the graph becomes harder. From an empirical point
of view, Max-Clique takes � = 3.

In the following section, we define an optimization problem of finding top-
N colossal frequent patterns, where top-N means “patterns with top-N largest
length”, that is, we try to maximize the length of patterns to be extracted. We
then present a complete algorithm for the optimization problem.

4 Top-N Colossal Frequent Pattern Mining

As has been seen in many actual domains, it would be worth discussing a problem
of finding all frequent patterns with top-N largest length, where N is a relatively
small integer specified by users based on their interest. We call this mining task
Top-N colossal frequent pattern mining and formalize it as follows.

Definition 2. (Top-N Colossal Frequent Pattern Mining)
Let D be a transaction database, σ a threshold on the minimum frequency and
N an integer. Then, Top-N Colossal Frequent Pattern Mining is a problem of
identifying the set of σ-frequent patterns with top-N largest length, denoted by
CLSσ,N , that is, CLSσ,N = FL

σ ∪ FL−1
σ ∪· · ·∪FL−N+1

σ , where L is the maximum
length of σ-frequent patterns.

In the next section, we present a depth-first branch-and-bound algorithm for
exactly identifying CLSσ,N with the help of a pattern graph.

5 Finding Top-N Colossal Patterns with Pattern Graph

Given a transaction database D with a set of items I and a threshold on
the minimum frequency σ, let us assume we have the �-item pattern graph
Gσ,� = (I, E, w). The observations stated in Lemma 1 bring us an idea for
finding colossal frequent patterns in D with top-N largest length.

Finding Top-N Colossal Patterns Based on Clique Search 249

5.1 Fundamental Idea

Extracting Patterns as Cliques in Graph with Dynamic Update: From
Lemma 1, we can notice the following simple fact.

Observation 1
For a length k, a σ-frequent k-pattern can be obtained as a clique in a graph
GW

σ,� defined from the pattern graph Gσ,� as GW
σ,� = (I, EW), where W =

(
k−2
�−2

)
and EW = {e ∈ E | w(e) ≥W}.

Note here that EW is obtained by just deleting every edge in E with the weight
less than W , that is,

(
k−2
�−2

)
. It is easy to see that for any k′ such that k′ ≥ k,

every σ-frequent k′-pattern can be also found as a clique in GW
σ,�. This implies

that examining possible cliques in GW
σ,� would be a basic procedure for extracting

all frequent patterns with the length no less than k.
Since, in general, we have no idea to identify the maximum length of frequent

patterns, L, without any computation, we are forced to begin our computation
under W = 1 given by � = 3 and k = 3 1. We try to extract cliques in G1

σ,3 =
(I, E1) each of which is examined whether it is actually a frequent maximal
pattern or not. If a clique Q is found to be a frequent maximal pattern, then
Q is stored in a list LN which keeps patterns with top-N largest length found
so far. Once the list LN is filled with patterns with tentative top-N length,
our task is now to detect frequent patterns (cliques) with the length no less
than s, where s is the minimum length of the patterns in LN . We can therefore
update the graph G1

σ,3 into Gs−2
σ,3 and continue to extract cliques. Whenever a

pattern is found to be longer than those with the minimum length in LN , the
list is updated so that it correctly keeps patterns with top-N length at that
point. Furthermore, since the minimum length of the patterns in the list might
increase from s to say s′ accordingly, the graph Gs−2

σ,3 can be also updated to

Gs′−2
σ,3 . It should be emphasized here that from the definition of GW

σ,�, the higher

W becomes, the sparser GW
σ,� becomes. Thus, as our search progresses, the task

of extracting cliques becomes easier. Such a procedure is repeated until no clique
remains to be examined and finally, the list LN is output as our target patterns
with top-N largest length.

Depth-First Branch-and-Bound Method for Finding Patterns with
Larger Length: Finding cliques in a graph has been one of the fundamental
problems in computer science. In these decades, many researchers have developed
excellent algorithms for efficiently finding a maximum clique and enumerating
maximal cliques (e.g. [14,17]). Since our primary task is to extract cliques in a
graph, those methods would be helpful in designing our algorithm.

Let G be a graph with a set of items, I = {x1, . . . , x|I|}, as the vertices.
Consider a total ordering on I, ≺, simply defined as xi ≺ xj iff i < j. We assume
that for each subset X ⊆ I, the elements in X is always ordered based on ≺.
1 Although it has not been explicitly stated in [13], we reasonably assume in this paper
k ≥ � > 2.

250 Y. Okubo and M. Haraguchi

For a set X , the first element is referred to as head(X) and the last one as
tail(X). Furthermore, the set of first k elements is referred to as prefix(X, k),
where prefix(X, 0) is defined as ∅.

We introduce here a partial ordering ≺s on 2I . Let Xi and Xj be subsets of
I such that Xi �= Xj. Then we have Xi ≺s Xj iff Xi = prefix(Xj, |Xi|). It can
be easily observed that the partially ordered set (2I ,≺s) forms a tree with the
root node ∅ which is well-known as a set enumeration tree.

Since each clique in G is a subset of I and any subset of a clique is also a
clique, the ordering ≺s is still valid for cliques and the cliques in G also form a
tree, called a clique enumeration tree.

For a problem of finding a maximum clique in a given graph, several efficient
algorithms have been proposed in [15,16]. Basically speaking, these algorithms
commonly explore the clique enumeration tree in a depth-first manner with a
simple branch-and-bound pruning in order to efficiently find a maximum clique,
that is, a clique with the largest size. The underlying idea is expected to be
useful for our problem of finding colossal patterns (as cliques) with top-N largest
length.

In a clique enumeration tree, an immediate successor of a clique can be gen-
erated by adding a certain vertex (item), called an extensible candidate, to the
clique.

Definition 3. (Extensible Candidates for Clique)
Let Q be a clique in a graph G = (I, E). A vertex v adjacent to any vertex
in Q is called an extensible candidate (or simply a candidate) for Q. The set
of extensible candidates is denoted by candG(Q), that is, candG(Q) = {v ∈
I | ∀x ∈ Q, (v, x) ∈ E} =

⋂
x∈Q NG(x). If it is clear from the context, it is

simply denoted by cand(Q).

Since it is easy from the definition to see that for any v ∈ cand(Q), Q ∪ {v}
always becomes a clique, we can easily generate an immediate successor of Q by
just adding v ∈ cand(Q) such that tail(Q) ≺ v. Thus, the clique enumeration
tree can be systematically generated without any duplications.

We can observe the following simple but important theoretical property.

Observation 2
For cliques Q and Q′ such that Q ⊆ Q′, Q ∪ cand(Q) ⊇ Q′ ∪ cand(Q′).

From this observation, it is easy to see that for a clique Q, each successor of Q is
a subset of Q∪cand(Q), more exactly, a subset of Q∪exp-cand(Q)tail(Q), where
for an item α, exp-cand(Q)α = {x ∈ cand(Q) | α ≺ x}. This fact provides us a
branch-and-bound pruning mechanism.

Let G be a graph in which we try to find colossal patterns (as cliques) with
top-N largest length. Moreover, let us assume that a list LN already keeps
maximal patterns with top-N length found so far, where the minimum length
of the patterns in LN is referred to as minlen(LN), that is, minlen(LN) =
minX∈LN{|X |}.

Finding Top-N Colossal Patterns Based on Clique Search 251

Observation 3
Let Q be a clique such that |Q ∪ exp-cand(Q)tail(Q)| < minlen(LN). Then, for
any successor Q′ of Q, |Q′| < minlen(LN).

As a direct consequence, we have the following pruning rule.

Pruning 1
For a clique Q, if |Q ∪ exp-cand(Q)tail(Q)| < minlen(LN) holds, then Q and its
successors do not have to be examined.

If the condition holds, we can safely prune all possible successors of Q as useless
patterns without loss of completeness. In order to enjoy this pruning effect as
much as possible, we examine cliques in a depth-first manner.

More concretely speaking, a (current) clique Q can be expanded in several
ways by adding an extensible candidate v selected from exp-cand(Q)tail(Q). For
an immediate successor Qv = Q ∪ {v}, if |Qv ∪ exp-cand(Qv)v| ≥ minlen(LN)
holds, then we try to further expand Qv with exp-cand(Qv)v in the same man-
ner. Conversely, if |Qv ∪ exp-cand(Qv)v| < minlen(LN), then we can imme-
diately discard Qv and try the next successor Qv′ = Q ∪ {v′} with another
v′ ∈ exp-cand(Q)tail(Q) in the order of ≺. Starting with Q = ∅ and cand(Q) = I,
this expansion process is recursively iterated until we have no Q to be expanded.

5.2 More about Prunings of Useless Cliques

Our targets to be extracted must be frequent patterns. During our search, there-
fore, if a clique Q is found to be infrequent, then we can immediately backtrack
to the next clique in order to skip all of the successors of Q.

In addition to this ordinary pruning, we can exclude many redundant cliques
based on the notion of closed patterns [4], equivalently, formal concepts [11].
Since we are interested in (frequent) maximal patterns with top-N largest length,
paying our attention to closed patterns is sufficient for our purpose.

Given a transaction database D with I, for a pattern X ⊆ I, we can
uniquely compute its closure, denoted by closure(X) 2, defined as closure(X) =⋂

T∈D(X) T . In general, since several patterns have their identical closure, ex-
amining those patterns would be undesirable for efficient computation. We can
observe the following simple property of closed patterns which is useful for ex-
cluding such redundant patterns.

Observation 4
Let X be a pattern and x an item such that tail(X) ≺ x. If an item α ∈
closure(X ∪ {x})\closure(X) such that α ≺ x can be found, then there exists
a pattern Y such that closure(Y) = closure(X ∪ {x}) and Y is examined prior
to X ∪ {x} in depth-first traversal of the set enumeration tree.

2 As a conventional notation, closure(X) is often denoted by X ′′ in Formal Concept
Analysis [11].

252 Y. Okubo and M. Haraguchi

As has been seen before, since a clique enumeration tree is a part of a set enu-
meration tree, the above property can be also observed in the clique tree and as
a result, it provides us the following pruning rule to exclude redundant cliques
in our depth-first search.

Pruning 2
Let Q be a clique and Q ∪ {x} an immediate successor of Q. If there exists
α ∈ closure(Q∪{x})\closure(Q) such that α ≺ x, then Q∪{x} and its successors
do not have to be examined.

5.3 Expanding Clique with Pruning Rules

Our procedure of expanding cliques with the prunings is described in detail.
Assume we already have a list, LN , of maximal patterns with top-N length

found so far. Thus, the graph we are currently concerned with is G
minlen(LN)−2
σ,3 .

We now try to expand a clique (as a closed frequent pattern) Q in the graph.

Checking Maximality of Pattern. For each item x in cand(Q), we first
compute the set of transactions containing Q∪ {x}, D(Q∪ {x}). It can be done
efficiently by the technique called occurrence-deliver [6].

If |D(Q ∪ {x})| < σ for each x ∈ cand(Q), then Q is a frequent maximal
pattern because any superset of Q is not frequent. In this case, the list LN is
adequately updated with Q as follows, where s = minlen(LN).

|Q| < s: Although Q is frequent and maximal, it is out of our target due to its
short length. We, therefore, have nothing to do for LN and just backtrack.

|Q| = s: Q is simply added to LN and then we backtrack.
|Q| > s: If there already exists a pattern in LN with the length |Q|, Q is simply

added to LN . If such a pattern does not exist, Q is added to LN and then the
patterns with length s in LN are removed. In this case, since minlen(LN) is
incremented from s to say s′, the current graph Gs−2

σ,3 can be also updated

to Gs′−2
σ,3 . Then, we backtrack.

In case of Q is not maximal, Q is tried to expand with several particular items
in cand(Q) as follows.

Expanding Clique with Hopeful Extensible Candidates. Q is divided
into two parts, generator(Q) and implied(Q). The former is the set of items in
Q actually added at the previous expansion steps to get Q from ∅, and the latter
the set of items in Q which are implied by generator(Q), that is, implied(Q) =
closure(generator(Q)) \ generator(Q).

Here we consider a subset of cand(Q), freq-cand(Q), defined as

freq-cand(Q) = {x ∈ cand(Q) | |D(Q ∪ {x})| ≥ σ ∧ degG(x) ≥ s− 1},

Finding Top-N Colossal Patterns Based on Clique Search 253

where G is the current graph we are concerned with and s = minlen(LN). It is
easy to see that expanding Q with each item in freq-cand(Q) is sufficient for
our purpose because our target must be frequent and a clique in G with the size
no less than s. More precisely, we can try only items x ∈ freq-cand(Q) such
that tail(generator(Q)) ≺ x.

Let us assume Q is tried to expand by adding an item x̃ ∈ freq-cand(Q) such
that tail(generator(Q)) ≺ x̃. freq-cand(Q) can be separated into chk-cand(Q)x̃
and exp-cand(Q)x̃, where chk-cand(Q)x̃ is the set of items x ∈ freq-cand(Q)
such that x ≺ x̃ and exp-cand(Q)x̃ the set of those such that x̃ ≺ x. Based on
Pruning 1, we first check whether | Q | + |exp-cand(Q)x̃| < s holds or not. If
it is true, we can immediately stop expanding Q and backtrack. This means we
never try to expand Q with x′ ∈ freq-cand(Q) such that x̃ ≺ x′. If it is not the
case, we enter to the following two phases, checking-phase and expansion-phase.

Checking-Phase: We check whether there exists an item x ∈ chk-cand(Q)x̃
implied by Q ∪ {x̃}. It can be done by verifying whether D(Q ∪ {x}) ⊇
D(Q ∪ {x̃}) or not. If it is the case for some x, x is implied by Q ∪ {x̃}, but
not by Q. Based on Pruning 2, therefore, the expansion with x̃ is stopped
and the immediate successor of x̃ in freq-cand(Q) is then tried as the next
x̃. If there is no such x, the expansion-phase is carried out.

Expansion-Phase: Let us denote the expansion of Q with x̃ by Qx̃. For each
x ∈ exp-candx̃, we check whether D(Q ∪ {x}) ⊇ D(Q ∪ {x̃})} holds or not.
If it is true, that is, x is implied by Q ∪ {x̃}, then x becomes an element
of implied(Qx̃). Thus, Qx̃ is given as Qx̃ = generator(Qx̃) ∪ implied(Qx̃),
where

generator(Qx̃) = Q ∪ {x̃}
and

implied(Qx̃) = implied(Q)∪{x ∈ exp-cand(Q)x̃|D(Q∪{x}) ⊇ D(Q∪{x̃})}.
Moreover, the set of extensible candidates for Qx̃, cand(Qx̃), consists of the
items in freq-cand(Q) each of which is adjacent to any item in Qx̃, that is,

cand(Qx̃) = freq-cand(Q) ∩

⎛
⎝ ⋂

x∈Qx̃

N(x)

⎞
⎠ .

By recursively applying this expansion procedure to the newly obtained Qx̃, we
can obtain top-n colossal frequent patterns in a depth-first manner.

5.4 Algorithm for Finding Top-N Colossal Patterns

Pseudo-code: The above discussion can be summarized in a pseudo-code pre-
sented in Figure 1. In the figure, we assume tail(∅) = ⊥, where the symbol ⊥
is a (virtual) minimum element in any ordering. Moreover, for a list of patterns
L, the function minlen(L) returns the minimum length of the patterns in L
if the list tentatively contains patterns with top-N largest length found so far.
Otherwise, it returns 3 which corresponds to the minimum length of patterns to
be extracted as our assumption.

254 Y. Okubo and M. Haraguchi

procedure Main(D, σ, N):
[Input] D: a transaction database with a set of items I.

σ: a threshold on the minimum frequency.
N : an integer for top-N .

[Output] CLSσ,N : the set of top-N colossal σ-frequent patterns.
[Global Variables] L: a list of colossal frequent patterns.

G: an edge-weighted undirected graph.
D, σ and N .

begin
compute F3

σ; construct G1
σ,3 from F3

σ; G ← G1
σ,3; L ← ∅;

FindTopNColossalPatterns(∅, ∅, I);
return L;

end

procedure FindTopNColossalPatterns(Gen, Imp, Cand):
begin
Q ← Gen ∪ Imp;
for each x ∈ Cand do compute D(Q ∪ {x});
FrecCand ← {x ∈ Cand | |D(Q ∪ {x})| ≥ σ ∧ degG(x) ≥ minlen(L) − 1};
if FrecCand = ∅ then begin UpdateTopNList(Q); return; end // Q is maximal
ChkCand ← {x ∈ FrecCand | x ≺ tail(Gen)}; ExpCand ← {x ∈ FrecCand | tail(Gen) ≺ x};
while ExpCand 	= ∅ do
begin
if |Q| + |ExpCand| < minlen(L) then return; // Pruning 1
else
begin
x̃ ← head(ExpCand); ExpCand ← ExpCand \ {x̃};
NewImp ← Imp; NewCand ← ∅; pruning-flag ← 0;
for each x ∈ ChkCand do // Cheking-Phase
begin
if D(Q ∪ {x̃}) ⊆ D(Q ∪ {x}) then // x is implied by x̃
begin pruning-flag ← 1; break; end // Pruning 2

else if x and x̃ are adjacent in G then NewCand ← NewCand ∪ {x} ;
end

if pruning-flag = 1 then
begin ChkCand ← ChkCand ∪ {x̃}; ExpCand ← ExpCand \ {x̃}; continue; end

for each x ∈ ExpCand do // Expansion-Phase
begin
if D(Q ∪ {x̃}) ⊆ D(Q ∪ {x}) then NewImp ← NewImp ∪ {x}; // x is implied by x̃
else if x and x̃ are adjacent in G then NewCand ← NewCand ∪ {x};

end
FindTopNColossalPatterns(Gen ∪ {x̃}, NewImp, NewCand);
if Q is a clique in G then // G might have been updated
begin
ChkCand ← {x ∈ ChkCand ∩ candG(Q) | degG(x) ≥ minlen(L) − 1};
ExpCand ← {x ∈ ExpCand ∩ candG(Q) | degG(x) ≥ minlen(L) − 1};
if x̃ ∈ candG(Q) ∧ degG(x̃) ≥ minlen(L) − 1 then ChkCand ← ChkCand ∪ {x̃};

end
else return; // Q is no longer a clique due to update of G

end
end

end

procedure UpdateTopNList(Q):
begin
L ← L ∪ {Q};
if |{|P | | P ∈ L}| ≥ N then // L contains patterns with tentatively top-N largest length
begin
remove all patterns with M-th largest length from L such that N < M ;

G ← G
minlen(L)−2
σ,3 ; // updating graph

end
end

Fig. 1. Algorithm for Finding Top-N Colossal Frequent Patterns

Finding Top-N Colossal Patterns Based on Clique Search 255

ID Transaction

1 c d e

2 a c d f

3 a b c d

4 a b c d f

5 b c e f

6 a b d e

7 a b e

Fig. 2. Trans. DB. D

Running Example
We are given a transaction databaseD in Figure 2, where
the ordering on the items, ≺, is given as alphabetical
order. We try to find top-1 colossal 2-frequent patterns
in D.

We first identify F3
2 , the set of 2-frequent 3-patterns.

There exist 9 those patterns shown in Figure 3 (a).
For each pair of items, we then count the number of
2-frequent 3-patterns in which the items co-occur. Fig-
ure 3 (b) shows the result of counting in a matrix form.
Based on the frequency matrix, we can construct a 3-item pattern graph G2,3 in
Figure 3 (c) from which the initial graph G1

2,3 in Figure 4 is obtained.

F3
2

a b c
a b d
a b e
a c d
a c f
a d f
b c d
b c f
c d f

a b c d e f

a - 3 3 3 1 2
b 3 - 3 2 1 1
c 3 3 - 3 0 3
d 3 2 3 - 0 2
e 1 1 0 0 - 0
f 2 1 3 2 0 -

3
33

3

3
3

2

1
2

2

1

1

a

b

c

d

e

f

(a) 3-pat. with freq. 2 (b) Freq. table of item-pairs (c) G2,3

Fig. 3. 3-Item Pattern Graph G2,3 for D

a

b

c

d

e

f

Fig. 4. G1
2,3

Then, the function FindTopNColossalPatterns is ini-
tially called with the arguments Gen0 = ∅, Imp0 = ∅ and
Cand0 = {a, b, c, d, e, f}, respectively 3, where the function
call is referred to as C0.

AsQ0 = Gen0∪Imp0 = ∅, for each x ∈ Cand0,D(Q0∪{x})
is computed. It gives FrecCand0 = {a, b, c, d, e, f} and then
ChkCand0 = ∅ and ExpCand0 = {a, b, c, d, e, f}. Q0 is now
tried to expand with each x ∈ ExpCand0 in order.

For x̃01 = a, we have ExpCand0 = {b, c, d, e, f}. Through
Checking-Phase and Expansion-Phase, NewImp01 = ∅ and
NewCand01 = {b, c, d, e, f} are obtained and then FindTopNColossal-
Patterns is recursively called as the function call C1 with the arguments
Gen0 ∪ {x̃01} = {a}, NewImp01 and NewCand01.

As Gen1 = Gen0 ∪ {x̃01}, Imp1 = NewImp01 and Cand1 = NewCand01, we
haveQ1 = {a} and identify D(Q1∪{x}) for each x ∈ Cand1. Since FrecCand1 =
{b, c, d, e, f}, we have ChkCand1 = ∅ and ExpCand1 = {b, c, d, e, f} and then
try to expand Q1 with each x ∈ ExpCand1.

3 We use proper subscripts to distinguish individual variables in each recursive call of
FindTopNColossalPatterns.

256 Y. Okubo and M. Haraguchi

For x̃11 = b ∈ ExpCand1, ExpCand1 = {c, d, e, f} is obtained. Checking-
Phase and Expansion-Phase give NewImp11 = ∅ and NewCand11 = {c, d, e, f}.
They are passed to FindTopNColossalPatterns together with Gen1 ∪
{x̃11} = {a, b} as the first argument, making the function call C2.

As Gen2 = Gen1 ∪ {x̃11}, Imp2 = NewImp11 and Cand2 = NewCand11,
we have Q2 = {a, b} and identify D(Q2 ∪ {x}) for each x ∈ Cand2. Since
|D({a, b, f})| �≥ 2, f cannot be contained in FrecCand2. From FrecCand2 =
{c, d, e}, we have ChkCand2 = ∅ and ExpCand2 = {c, d, e}, and try to expand
Q2 with each x ∈ ExpCand2.

For x̃21 = c ∈ ExpCand2, we haveExpCand2 = {d, e}. Since ChkCand2 = ∅,
Checking-Phase is skipped. In Expansion-Phase, it is found that d is implied
by {a, b, c}. We, therefore, obtain NewImp21 = {d}. Moreover, since e is not
adjacent to c in the current graph G = G1

2,3, e cannot belong to NewCand21.
Thus, we get NewCand21 = ∅. FindTopNColossalPatterns is called with
Gen2 ∪ {x̃2}, NewImp21 and NewCand21, making the function call C3.

a

b

c

d

e

f

Fig. 5. G2
2,3

AsGen3 = Gen2∪{x̃21}, Imp3 = NewImp21 and Cand3 =
NewCand21, we have now Q3 = Gen3 ∪ Imp3 = {a, b, c, d}.
Since Cand3 = ∅, that is, FreqCand3 = ∅, Q3 is a maximal
frequent pattern. Then, UpdateTopNList is called with the
argument Q3. Since minlen() is incremented to |Q3| = 4 and
our task is now to extract cliques/patterns with the size no
less than 4, the graph we are currently concerned with can
also be updated into G = G4−2

2,3 = G2
2,3 shown in Figure 5.

The function call, C3 is now completed and we return to the
while loop in the previous call C2.

Before trying to expand Q2 with the next x̃22 ∈ ExpCand2, we need to
check whether Q2 is a clique in the updated graph G. Since Q2 = {a, b} is still
a clique, ChkCand2 and ExpCand2 are also modified so that they are valid
for the current G. By taking intersection with candG(Q2) = {c, d}, we have
ChkCand2 = ∅ and ExpCand2 = {d}. Since x̃21 = c ∈ candG(Q2), c is then
added to ChkCand2, that is, ChkCand2 = {c}. As the result, in the while loop,
we see |Q2|+ |ExpCand2| = |{a, b}|+ |{d}|= 3 < 4. From Pruning 1, therefore,
the function call C2 is now completed.

Returning to the while loop in the function call C1, we can similarly continue
our procedure. As the result, one more maximal frequent pattern with length 4,
{a, c, d, f}, can be detected. Finally, the patterns in the list L, {a, b, c, d} and
{a, c, d, f}, are presented as our target, top-1 colossal frequent patterns.

6 Experimental Results

For our experimentations, our system has been implemented in language C and
compiled by gcc-4.4.3 with the optimization of O3 on Ubuntu-10.04. For com-
parison, fast maximal frequent itemset miners,MAFIA [3], LCM [6] and ABS [7],
have also been compiled. The systems have been executed on a PC with IntelR©

Core
TM

-i3 M380 (2.53GHz) CPU and 8GB main memory.

Finding Top-N Colossal Patterns Based on Clique Search 257

We have prepared a synthetic dataset and a famous benchmark dataset,
ExtDiagn and Accidents. The former is for comparison with Pattern Fusion
Method in [12] and the latter with Max-Clique in [13]. Since these systems are
not publicly available, it is hard to make a direct comparison with them. As
the authors in [12,13] have compared their system with LCM, we attempt some
indirect comparison via LCM. It is noted that computation times by our system
include those for constructing pattern graphs.

Diagn is an n × (n − 1) matrix, where i-th raw as a transaction consists of
(n − 1)-items of integers 1 to n without i. It can be extended to ExtDiagn by
adding n/2 identical raws each of which consists (n−1)-items of integers n+1 to
2n− 1. Thus, Ext−Diagn has n+ (n/2) transactions each of which consists of
n− 1 (integer) items. In [12], ExtDiagn has been discussed as a simple example
for which it is quite hard to find frequent patterns with larger length. In case
of n = 40 and the minimum frequency threshold σ = 20, ExtDiag40 has

(
40
20

)
maximal (closed) frequent patterns with length 20 and only one with length 39.
It is easily imagined that most maximal/closed frequent pattern miners cannot
finish their computations for the pattern with the largest length because they
take exponential time for the patterns with length 20.

Accident is publicly available in the FIMI repository 4 and is widely used as
a benchmark dataset for frequent pattern mining. It consists of 340, 183 traffic
accident records in which 468 distinct items appear. In [13], although LCM takes
long time for the dataset under various parameter settings, Max-Clique can find
patterns with larger length with reasonable time.

For ExtDiagn, under several values for n, we have observed computation times
by LCM, MAFIA, ABS and our system, where the minimum frequency threshold
is set to σ = n/2 and N for top-N 1. The results are summarized in Figure 6.
In the figure, as the value of n increases, computation times by LCM, MAFIA
and ABS grow exponentially, where trials for ExtDiagn have been aborted after
73, 200 seconds (about 20 hours) past. On the other hand, our system has took just
a few seconds for each value of n because once the unique pattern with the largest
length is found, the other maximal patterns with less length can be skipped in
our search. Although ExtDiagn might be considered as an extreme instance, not
a few datasets in real domains seem to have a similar characteristic, that is, only a
few patterns uncommonly have larger length and hence they are interesting. The
authors expect that our algorithm would be particularly useful for such a case.

For Accident, varying the minimum frequency threshold σ, we have observed
computation times by LCM, MAFIA, ABS and ours, where N for top-N is set to
1. We present the results in Figure 7. As we can observe, in the higher range of σ,
LCM andMAFIA show much better performances than ours. However, the times
needed grow very rapidly in the range of lower σ. On the other hand, the times
taken by our system are relatively stable even in the lower range of σ. Recently,
some kinds of patterns with lower frequency have been paid attention as rare pat-
terns/concepts [9,10,18,19]. It is well known that extracting those patterns is a hard
task because in general there exist a huge number of patterns belonging to lower

4 Frequent Itemset Mining Implementations Repository (http://fimi.ua.ac.be/data/).

258 Y. Okubo and M. Haraguchi

1

 10

 100

 1000

 10000

 100000

8 16 24 32 40

C
om

pu
ta

tio
n

T
im

e
[s

ec
]

n for ExtDiagn

Aborted after
73200 sec. past

Aborted abnormally
after 13464 sec. past

Aborted after
73200 sec. past

LCM
MAFIA

ABS
Ours

Fig. 6. Computation Times for ExtDiagn

 100

 1000

 10000

 100000

0 5000 10000

C
om

pu
ta

tio
n

T
im

e
[s

ec
]

σ: Minimum Frequency Threshold

Aborted after 100000 sec. past

Abnormally Terminated

LCM
MAFIA

ABS
Ours

Fig. 7. Computation Times for Accident

range of frequency. Our system would be a promising candidate which can work
well even in such a hard situation. This is a remarkable advantage of our system.

7 Concluding Remarks

In this paper, we have discussed a problem of finding top-N colossal frequent
patterns. Particularly, we have proposed a method for completely and exactly
detecting them. For our efficient computation, a depth-first branch-and-bound
algorithm has been designed. In the algorithm, our target patterns can be found
as cliques in a graph constructed based on a k-item pattern graph. It should be
emphasized again that as our search progresses, the graph dynamically becomes
sparser. Therefore, it makes our primary task for finding cliques more efficient
and our pruning effect more powerful. In our experimentation, it has been ob-
served that our method can efficiently find top-N colossal patterns for datasets
ExtDiagn and Accident from which it is hard to exactly identify those patterns
by previously proposed algorithms.

Usefulness of our algorithm has to be proved for more datasets including
those in real application domains, e.g., Bioinformatics. Improving efficiency of
the algorithm is also required for large scale real datasets. For this purpose,
several techniques useful for efficiently finding maximum/maximal cliques would
be helpful. Concretely speaking, an adequate ordering on vertices (items) to be
added in the clique expansion process can drastically improve efficiency of our
computation, as has been previously reported in [14,15]. Moreover, approximate
coloring of vertices can provide us more powerful branch-and-bound pruning.
These techniques must be incorporated into our algorithm. It would be also
worth investigating colossal patterns (concepts) from the viewpoint of semantics.

References

1. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent Pattern Mining - Current Status
and Future Directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

2. Bayardo Jr., R.J.: Efficiently Mining Long Patterns from Databases. In: Proc. of
the 1998 ACM SIGMOD Int’l. Conf. on Management of Data, pp. 85–93 (1998)

3. Burdick, D., Calimlim, M., Flannick, J., Gehrke, J., Yiu, T.: MAFIA: A Maximal
Frequent Itemset Algorithm. IEEE Transactions on Knowledge and Data Engi-
neering 17(11), 1490–1504 (2005)

Finding Top-N Colossal Patterns Based on Clique Search 259

4. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient Mining of Association
Rules Using Closed Itemset Lattices. Information Systems 24(1), 25–46 (1999)

5. Wang, J., Han, J., Pei, J.: CLOSET+: Searching for the Best Strategies for Min-
ing Frequent Closed Itemsets. In: Proc. of the 9th ACM SIGKDD Int’l Conf. on
Knowledge Discovery and Data Mining - KDD 2003, pp. 236–245 (2003)

6. Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient Mining Algorithm for
Frequent/Closed/Maximal Itemsets. In: Proc. of IEEE ICDM 2004 Workshop -
FIMI 2004 (2004),
http://sunsite.informatik.rwth-aachen.de/

Publications/CEUR-WS//Vol-126/

7. Flouvat, F., Marchi, F.D., Petit, J.: ABS: Adaptive Borders Search of Frequent
Itemsets. In: Proc. of IEEE ICDM 2004 Workshop - FIMI 2004 (2004),
http://sunsite.informatik.rwth-aachen.de/

Publications/CEUR-WS//Vol-126/

8. Omiecinski, E.R.: Alternative Interest Measures for Mining Associations in
Databases. IEEE Transactions on Knowledge and Data Engineering 15(1), 57–69
(2003)

9. Szathmary, L., Napoli, A., Valtchev, P.: Towards Rare Itemset Mining. In: Proc.
of the 19th IEEE Int’l Conf. on Tools with Artificial Intelligence - ICTAI 2007, pp.
305–312 (2007)

10. Troiano, L., Scibelli, G., Birtolo, C.: A Fast Algorithm for Mining Rare Itemsets.
In: Proc. of the 2009 9th Int’l Conf. on Intelligent Systems Design and Applications
– ISDA 2009, pp. 1149–1155 (2009)

11. Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations, p.
284. Springer (1999)

12. Zhu, F., Yan, X., Han, J., Yu, P.S., Cheng, H.: Mining Colossal Frequent Patterns
by Core Pattern Fusion. In: Proc. of the 23rd IEEE Int’l Conf. on Data Engineering
- ICDE 2007, pp. 706–715 (2007)

13. Xie, Y., Yu, P.S.: Max-Clique: A Top-Down Graph-Based Approach to Frequent
Pattern Mining. In: Proc. of the 2010 IEEE Int’l Conf. on Data Mining - ICDM
2010, pp. 1139–1144 (2010)

14. Tomita, E., Akutsu, T., Matsunaga, T.: Efficient Algorithms for Finding Maximum
and Maximal Cliques: Effective Tools for Bioinformatics. In: Laskovski, A.N. (ed.)
Biomedical Engineering, Trends in Electronics, Communications and Software, pp.
625–640. InTech (2011)

15. Tomita, E., Kameda, T.: An Efficient Branch-and-Bound Algorithm for Finding a
Maximum Clique with Computational Experiments. Journal of Global Optimiza-
tion 37(1), 95–111 (2007)

16. Balas, E., Yu, C.S.: Finding a Maximum Clique in an Arbitrary Graph. SIAM
Journal on Computing 15(4), 1054–1068 (1986)

17. Eppstein, D., Strash, D.: Listing All Maximal Cliques in Large Sparse Real-World
Graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp.
364–375. Springer, Heidelberg (2011)

18. Okubo, Y., Haraguchi, M., Nakajima, T.: Finding Rare Patterns with Weak Cor-
relation Constraint. In: Proceedings of the 2010 IEEE International Conference on
Data Mining Workshops - ICDMW 2010, pp. 822–829 (2010)

19. Okubo, Y., Haraguchi, M.: An Algorithm for Extracting Rare Concepts with
Concise Intents. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS(LNAI),
vol. 5986, pp. 145–160. Springer, Heidelberg (2010)

http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-126/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-126/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-126/
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-126/

Quantitative Concept Analysis

Dusko Pavlovic

Royal Holloway, University of London, and University of Twente
dusko.pavlovic@rhul.ac.uk

Abstract. Formal Concept Analysis (FCA) begins from a context, given as a bi-
nary relation between some objects and some attributes, and derives a lattice of
concepts, where each concept is given as a set of objects and a set of attributes,
such that the first set consists of all objects that satisfy all attributes in the sec-
ond, and vice versa. Many applications, though, provide contexts with quanti-
tative information, telling not just whether an object satisfies an attribute, but
also quantifying this satisfaction. Contexts in this form arise as rating matrices
in recommender systems, as occurrence matrices in text analysis, as pixel inten-
sity matrices in digital image processing, etc. Such applications have attracted a
lot of attention, and several numeric extensions of FCA have been proposed. We
propose the framework of proximity sets (proxets), which subsume partially or-
dered sets (posets) as well as metric spaces. One feature of this approach is that it
extracts from quantified contexts quantified concepts, and thus allows full use of
the available information. Another feature is that the categorical approach allows
analyzing any universal properties that the classical FCA and the new versions
may have, and thus provides structural guidance for aligning and combining the
approaches.

Keywords: concept analysis, enriched category, semantic completion, universal
property.

1 Introduction

Suppose that the users U =
{
Abby,Dusko, Stef,Temra,Luka

}
provide the following star

ratings for the items J = {"Nemo", "Crash" , "Ikiru", "Bladerunner"}
"Nemo" "Crash" "Ikiru" "Bladerunner"

Abby � � �� � � � � � �� � � ��

Dusko �� �� � � �� � � � � �

Stef �� � � � � � � � � ��

Temra � � � � � � � � � ��

Luka � � � � � � � ��

This matrix Φ = (Φiu)J×U contains some information about the relations between these
users’ tastes, and about the relations between the styles of the items (in this case movies)
that they rated. The task of data analysis is to extract that information. In particular,
given a context matrix Φ : J × U → R like in the above table, the task of concept
analysis is to detect, on one hand, the latent concepts of taste, shared by some of the

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 260–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Quantitative Concept Analysis 261

users in U, and on the other hand the latent concepts of style, shared by some of the
items in J. In Formal Concept Analysis (FCA) [35,15,9,14,33], the latent concepts are

expressed as sets: a taste t is a set of users, i.e. a map U
t−→ {0, 1}, whereas a style s is

a set of items, i.e. a map J
s−→ {0, 1}. We explore a slightly refined notion of concept,

which tells not just whether two users (resp. two items) share the same taste (resp.
style) or not, but it also quantifies the degree of proximity of their tastes (resp. styles).

This is formalized by expressing a taste as a map U
τ−→ [0, 1], and a style as a map

J
σ−→ [0, 1]. The value τu is thus a number from the interval [0,1], telling how close

is the taste τ to the user u; whereas the value σi tells how close is the item i to the
style σ. These concepts are latent, in the sense that they are not given in advance, but
mined from the context matrix, just like in FCA, and similarly like in Latent Semantic
Analysis (LSA) [10]. Although the extracted concepts are interpreted differently for the
users in U and for the items in J (i.e. as the tastes and the styles, respectively) it turns
out that the two obtained concept structures are isomorphic, just like in FCA and LSA.
However, our approach allows initializing a concept analysis session by some prior
concept structures, which allow building upon the results of previous analyses, from
other data sets, or specified by the analyst. This allows introducing different conceptual
backgrounds for the users in U and for the items in J.

Related Work and Background. The task of capturing quantitative data in FCA was
recognized early on. The simplest approach is to preprocess any given numeric data into
relational contexts by introducing thresholds, and then apply the standard FCA method
[13,15]. This basic approach has been extended in several directions, e.g. Triadic Con-
cept Analysis [17,18,26] and Pattern Structures [12,19,20], and refined for many appli-
cation domains. A different way to introduce numeric data into FCA is to allow fuzzy
contexts, as binary relations evaluated in an abstract lattice of truth values L. The dif-
ferent ways to lift the FCA constructions along the inclusion {0, 1} ↪→ L have led to
an entire gamut of different versions of fuzzy FCA [3,4,7,8,23], surveyed in [5]. With
one notable exception, all versions of fuzzy FCA input quantitative data in the form as
fuzzy relations, and output qualitative concept lattices in the standard form. The fact
that numeric input data are reduced to the usual lattice outputs can be viewed as an
advantage, since the outputs can then be presented, and interpreted, using the available
FCA visualization tools and methods. On the other hand, only a limited amount of in-
formation contained in a numeric data set can be effectively captured in lattice displays.
The practices of spectral methods of concept analysis [1,10,22], pervasive in web com-
merce, show that the quantitative information received in the input contexts can often be
preserved in the output concepts, and effectively used in ongoing analyses. Our work
has been motivated by the idea that suitably refined FCA constructions could output
concept structures with useful quantitative information, akin to the concept eigenspaces
of LSA. It turns out that the steps towards quantitative concepts on the FCA side have
previously been made by Bělohlávek in [4], where fuzzy concept lattices derived from
fuzzy contexts were proposed and analyzed. This is the mentioned notable exception
from the other fuzzy and quantitative approaches to FCA, which all derive just qual-
itative concept lattices from quantitative contexts. Bělohlávek’s basic definitions turn
out to be remarkably close to the definitions we start from in the present paper, in spite
of the fact that his goal is to generalize FCA using carefully chosen fuzzy structures,

262 D. Pavlovic

whereas we use enriched categories with the ultimate goal to align FCA with the spec-
tral methods for concept analysis, such as LSA. Does this confirm that the structures
obtained in both cases naturally arise from the shared FCA foundations, rather than
from either the fuzzy or the categorical approach? The ensuing analyses, however, shed
light on these structures from essentially different angles, and open up completmentary
views: while Bělohlávek provides a detailed analysis of the internal structure of fuzzy
concept lattices, we provide a high level view of their universal properties, from which
some internal features follow, and which offers guidance through the maze of the avail-
able structural choices. Combining the two methods seems to open interesting alleys
for future work.

Our motivating example suggests that our goals might be related to those of [11],
where an FCA approach to recommender systems was proposed. However, the authors
of [11] use FCA to tackle the problem of partial information (the missing ratings) in
recommender systems, and they abstract away the quantitative information (contained
in the available ratings); whereas our goal is to capture this quantitative information,
and we leave the problem of partial information aside for the moment.

Outline of the Paper. In Sec. 2 we introduce proximity sets (proxets), the mathemati-
cal formalism supporting the proposed generalization of FCA. Some constructions and
notations used throughout the paper are introduced in Sec. 2.2. Since proxets generalize
posets, in Sec. 3 we introduce the corresponding generalizations of infimum and supre-
mum, and spell out the basic completion constructions, and the main properties of the
infimum (resp. supremum) preserving morphisms. In Sec. 4, we study context matrices
over proximity sets, and describe their decomposition, with a universal property analo-
gous to the Singular Value Decomposition of matrices in linear algebra. Restricting this
decomposition from proxets to discrete posets (i.e. sets) yields FCA. The drawback of
this quantitative version of FCA is that in it a finite context generally allows an infinite
proxet of concepts, whereas in the standard version of FCA, of course, finite contexts
lead to finite concept lattices. This problem is tackled in Sec. 5, where we show how the
users and the items, as related in the context, induce a finite generating set of concepts.
Sec. 6 provides a discussion of the obtained results and ideas for the future work.

2 Proxets

2.1 Definition, Intuition, Examples

Notation. Throughout the paper, the order and lattice structure of the interval [0, 1] are
denoted by ≤, ∧ and ∨, whereas · denotes the multiplication in it.

Definition 2.1. A proximity over a set A is a map (�) : A × A → [0, 1] which is

– reflexive: (x � x) = 1,
– transitive: (x � y) · (y � z) ≤ (x � z), and
– antisymmetric: (x � y) = 1 = (y � x) =⇒ x = y

If only reflexity and transitivity are satisfied, and not antisymmetry, then we have an
intensional proximity map. The antisymmetry condition is sometimes called extension-
ality. A(n intensional) proximity set, or proxet, is a set equipped with a(n intensional)

Quantitative Concept Analysis 263

proximity map. A proximity (or monotone) morphism between the proxets A and B is a
function f : A → B such that all x, y ∈ A satisfy (x � y)A ≤ (f x � f y)B. We denote by
Prox the category of proxets and their morphisms.

Categorical View. A categorically minded reader can understand intensional proxets
as categories enriched [21] over the poset [0, 1] viewed as a category, with the monoidal
structure induced by the multiplication. In the presence of reflexivity and transitivity,
(x � y) = 1 is equivalent with ∀z. (z � x) ≤ (z � y), and with ∀z. (x � z) ≥ (y � z).
A proximity map is thus asymmetric if and only if (∀z. (z � x) = (z � y)) ⇒ x = y,
and if and only if (∀z. (z � x) = (z � y)) ⇒ x = y. This means that extensional proxets
correspond to skeletal [0, 1]-enriched categories.

Examples. The first example of a proxet is the interval [0, 1] itself, with the proximity

(x � y)[0,1] =

⎧⎪⎪⎨⎪⎪⎩
y
x if y < x

1 otherwise
(1)

Note that (�) : [0, 1] × [0, 1] → [0, 1] is now an operation on [0,1], satisfying

(x · y) ≤ z ⇐⇒ x ≤ (y � z) (2)

A wide family of examples follows from the fact that proximity sets (proxets) generalize
partially ordered sets (posets), in the sense that any poset S can be viewed as a proxet
WS , with the proximity induced by the partial ordering

S
as follows:

(x � y)WS =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if x

S
y

0 otherwise
(3)

The proxet WS is intensional if and only if S is just a preorder, in the sense that the
relation

S
is just transitive and reflexive. The other way around, any (intensional) proxet

A induces two posets (resp. preorders), ΥA and ΛA, with the same underlying set and

x
ΥA

y ⇐⇒ (x � y)A = 1 x
ΛA

y ⇐⇒ (x � y)A > 0

Since the constructions W, Υ and Λ, extended on maps, preserve monotonicity, a cate-
gorically minded reader can easily confirm that we have three functors, which happen
to form two adjunctions Λ � W � Υ : Prox → Pos. Since W : Pos ↪→ Prox is an
embedding, Pos is thus a reflective and correflective subcategory of Prox. This means
that ΛWS = S = ΥWS holds for every poset S , so that posets are exactly the proxets
where the proximities are evaluated only in 0 or 1; and that ΛA and ΥA are respectively
the initial and the final poset induced by the proxet A, as witnessed by the obvious mor-
phisms WΥA → A → WΛA. The same universal properties extend to a correspondence
between intensional proxets and preorders.

A different family of examples is induced by metric spaces: any metric space X with
a distance map d : X × X → [0,∞] can be viewed as a proxet with the proximity map

(x � y) = 2−d(x,y) (4)

264 D. Pavlovic

Proxets are thus a common generalization of posets and metric spaces. But the usual
metric distances are symmetric, i.e. satisfy d(x, y) = d(y, x), whereas the proximi-
ties need not be. The inverse of (4) maps any proximity to a quasi-metric d(x, y) =
− log (x � y) [36], whereas intensional proximities induce pseudo-quasi-metrics [37].
For a concrete family of examples of quasi-metrics, take any family of sets X ⊆ ℘X,
and define

d(x, y) = |y \ x|

The distance of x and y is thus the number of elements of y that are not in x. This
induces the proximity (x � y) = 2−|y\x|. If X is a set of documents, viewed as bags
(multisets) of terms, then both constructions can be generalized to count the difference
in the numbers of the occurrences of terms in documents, and the set difference becomes
multiset subtraction.

Proximity or Distance? The isomorphism − log x : [0, 1] � [0,∞] : 2−x is easily
seen to lift to an isomorphism between the category of proxets, as categories enriched
over the multiplicative monoid [0, 1] and the category of generalized metric spaces, as
categories enriched over the additive monoid [0,∞]. Categorical studies of generalized
metric spaces were initiated in [25], continued in denotational semantics of program-
ming languages [34,6,24], and have recently turned out to be useful for quantitative
distinctions in ecology [27]. The technical results of this paper could equivalently be
stated in the framework of generalized metric spaces. While this would have an ad-
vantage of familiarity to certain communities, the geometric intuitions that come with
metrics turn out to be misleading when imposed on the applications that are of interest
here. The lifting of infima and suprema is fairly easy from posets to proxets, but leads
to mysterious looking operations over metrics. In any case, the universal properties of
matrix decompositions do not seem to have been studied in either framework so far.

2.2 Derived Proxets and Notations

Any proxets A, B give rise to other proxets by following standard constructions:

– the dual (or opposite) proxet A, with the same underlying set and the proximity
(x � y)A = (y � x)A;

– the product proxet A × B over the cartesian product of the underlying sets, and the
proximity (x, u � y, v)A×B = (x � y)A ∧ (u � v)B

– the power proxet BA over the monotone maps, i.e. Prox(A, B) as the underlying set,
with the proximity (f � g)BA =

∧
x∈A (f x � gx)B.

There are natural correspondences of proxet morphisms

Prox(A, B) × Prox(A,C) � Prox(A, B ×C) and Prox(A × B,C) � Prox(A,CB)

Notations. In any proxet A, it is often convenient to abbreviate (x � y)A = 1 to x ≤
A

y.

For f , g : A → B, it is easy to see that f ≤
BA

g if and only if f x ≤
B

gx for all x ∈ A.

Quantitative Concept Analysis 265

3 Vectors, Limits, Adjunctions

3.1 Upper and Lower Vectors

Having generalized posets to proxets, we proceed to lift the concepts of the least upper
bound and the greatest lower bound. Let (S ,) be a poset and let L,U ⊆ S be a lower
set and an upper set, respectively, in the sense that

(x y and y ∈ L) ⇒ x ∈ L (x ∈ U and x y) ⇒ y ∈ U

Then an element denoted
⊔

L is supremum of L, and
�

U is the infimum of U, if all
x, y ∈ A satisfy ⊔

L ≤ y ⇐⇒ ∀x. (x ∈ L ⇒ x y) (5)

x ≤ �U ⇐⇒ ∀y. (y ∈ U ⇒ x y) (6)

We generalize these definitions to proxet limits in (7-8). To generalize the lower sets,
over which the suprema are taken, and the upper sets for infima, observe that any upper

set U ⊆ S corresponds to a monotone map
−→
U : S → {0, 1}, whereas every lower set L

corresponds to an antitone map
←−
L : S → {0, 1}, where S is the dual proxet defined in

Sec. 2.2.

Definition 3.1. An upper and a lower vector in a proxet A are the monotone maps
−→υ : A → [0, 1] and

←−
λ : A → [0, 1]. The sets of vectors ⇑A = [0, 1]A and ⇓A = [0, 1]A

form proxets, with the proximity
(−→υ �−→τ) ⇑A = ∧

x∈A

(−→τ x �−→υ x

)
A

and
(←−
λ �←−μ

)
⇓A
=∧

x∈A

(←−
λ x �←−μ x

)
A

computed by infima in [0, 1].

Remark. Note that (x � y) ≤
(−→υ x � −→υ y

)
is equivalent with −→υ x · (x � y) ≤ −→υ y, and

(x � y) ≤
(←−
λ x � ←−λ y

)
with (x � y) · ←−λ y ≤ ←−λ x.

3.2 Limits

Definition 3.2. The upper limit or supremum
∐←−
λ of the lower vector

←−
λ and the lower

limit or infimum
∏−→υ of the upper vector −→υ are the elements of A that satisfy for every

x, y ∈ A (∐←−
λ � y

)
A
=
∧
x∈A

←−
λ x � (x � y)A (7)

(
x �∏−→υ

)
A
=
∧
y∈A

−→υ y � (x � y)A (8)

The proxet A is complete under infima (resp. suprema) if every upper (resp. lower)
vector has an infimum (resp. supremum), which thus yield the operations

∏
: ⇑A → A

and
∐

: ⇓A → A

266 D. Pavlovic

Remarks. Condition (7) generalizes (5), whereas (8) generalizes (6). Note how prox-
imity operation � over [0,1], defined in (1), plays in (7–8) the role that the implication
⇒ over {0, 1} played in (5–6). This is justified by the fact that � is adjoint to the mul-
tiplication in [0, 1], in the sense of (2), in the same sense in which ⇒ is adjoint to the
meet in {0, 1}, or in any Heyting algebra, in the sense of (x ∧ y) ≤ z ⇐⇒ x ≤ (y ⇒ z).

An element w of a poset S is an upper bound of L ⊆ S if it satisfies just one direction
of (5), i.e. (w y) =⇒ ∀x. (x ∈ L ⇒ x y). Ditto for the lower bounds. In a proxet A,

u is an upper bound of
←−
λ and � is a lower bound of −→υ if all x, y ∈ A satisfy

(u � y)A ≤
∧
x∈A

←−
λ x � (x � y)A

(x � �)A ≤
∧
y∈A

−→υ y � (x � y)A

Using (2) and instantiating y to u in the first inequality, and x to � in the second one,

these conditions can be shown to be equivalent with
←−
λ x ≤ (x � u)A and −→υ y ≤ (� � y)A,

which characterize the upper and the lower bounds in proxets.

3.3 Completions

Each element a of a proxet A induces two representable vectors

Δa : A → [0, 1] ∇a : A → [0, 1]

x �→ (a � x)A x �→ (x � a)A

It is easy to see that these maps induce proximity morphisms Δ : A → ⇑ A and ∇ :
A →⇓A, which correspond to the categorical Yoneda embeddings [29, Sec. III.2]. They
make ⇑ A into the lower completion, and ⇓ A into the upper completion of the proxet
A.

Proposition 3.3. ⇑A is upper complete and ⇓A is lower complete. Moreover, they are
universal, in the sense that

– any monotone f : A → C into a complete proxet C induces a unique
∏

-preserving
morphism f# : ⇑A → C such that f = f# ◦ Δ;

– any monotone g : A → D into a cocomplete proxet D induces a unique
∐

-
preserving morphism g# : ⇓A → D such that g = g# ◦ ∇.

⇑A

∃! f#A

Δ

∀ f
C

⇓A

∃!g#A

∇

∀g
D

Quantitative Concept Analysis 267

3.4 Adjunctions

Proposition 3.4. For any proximity morphism f : A → B holds (a) ⇐⇒ (b) ⇐⇒ (c)
and (d) ⇐⇒ (e) ⇐⇒ (f), where

(a) f
(∐←−
λ
)
=
∐

f
(←−
λ
)

(b) ∃ f∗ : B → A ∀x ∈ A ∀y ∈ B. (f x � y)B = (x � f∗y)A

(c) ∃ f∗ : B → A. idA ≤ f∗ f ∧ f f∗ ≤ idB

(d) f
(∏−→υ

)
=
∏

f
(−→υ)

(e) ∃ f ∗ : B → A ∀x ∈ A ∀y ∈ B. (f ∗y � x)B = (y � f x)A

(f) ∃ f ∗ : B → A. f ∗ f ≤ idA ∧ idB ≤ f f ∗

The morphisms f ∗ and f∗ are unique, whenever they exist.

Definition 3.5. An upper adjoint is a proximity morphism satisfying (a-c) of Prop. 3.4;
a lower adjoint satisfies (d-f). A (proximity) adjunction between proxets A and B is a
pair of proximity morphisms f ∗ : A� B : f∗ related as in (b-c) and (e-f).

3.5 Projectors and Nuclei

Proposition 3.6. For any adjunction f ∗ : A� B : f∗ holds (a) ⇐⇒ (b) and (c) ⇐⇒
(d), where

(a) ∀xy ∈ B. (f∗x � f∗y)A = (x � y)B

(b) f ∗ f∗ = idB

(c) ∀xy ∈ A. (f ∗x � f ∗y)B = (x � y)A

(d) f∗ f ∗ = idA

Definition 3.7. An adjunction satisfying (a-b) of Prop. 3.6 is an upper projector; an
adjunction satisfying (c-d) is a lower projector. The upper (resp. lower) component
of an upper (resp. lower) projector is called the upper (lower) projection. The other
component (i.e. the one in (a), resp. (c)) is called the upper (lower) embedding.

Proposition 3.8. Any upper (lower) adjoint factors, uniquely up to isomorphism,
through an upper (lower) projection followed by an upper (lower) embedding through
the proxet

� f � = {〈x, y〉 ∈ A × B | f ∗x = y ∧ x = f∗y}

Definition 3.9. A nucleus of the adjunction f ∗ : A � B : f∗ consists of a proxet � f �
together with

– embeddings A
e∗←↩ � f �

e∗
↪→ B

– projections A
p∗
� � f �

p∗
� B

such that f ∗ = e∗p∗ and f∗ = e∗p∗.

268 D. Pavlovic

3.6 Cones and Cuts

The cone operations are the proximity morphisms Δ# and ∇#

⇓A

Δ#A

∇

Δ ⇑A

∇#

These morphisms are induced by the universal properties of the Yoneda embeddings ∇
and Δ as completions, stated in Prop. 3.3. Since by definition Δ# preserves suprema,
and ∇# preserves infima, Prop. 3.4 implied that each of them is an adjoint, and it is not
hard to see that they form the adjunction Δ# : ⇓A� ⇑A : ∇#. Spelling them out yields(

Δ#←−λ
)

a
=
∧
x∈A

←−
λ x � (x � a)

(
∇#
−→υ
)

a
=
∧
x∈A

−→υ x � (a � x)

Intuitively,
(
Δ#←−λ

)
a

is the proximity of
←−
λ to a as its upper bound, as discussed in

Sec. 3.2. Visually,
(
Δ#←−λ

)
a

thus measures the cone from
←−
λ to a, whereas

(
∇#
−→υ
)

a mea-

sures the cone from a to −→υ .

Proposition 3.10. For every
←−
λ ∈ ⇓A every −→υ ∈ ⇑A holds

←−
λ ≤ ∇#Δ

#←−λ and
←−
λ ≥ ∇#Δ

#←−λ ⇐⇒ ∃−→υ .←−λ = Δ#−→υ
−→υ ≤ Δ#∇#

−→υ and −→υ ≥ Δ#∇#
−→υ ⇐⇒ ∃←−λ . −→υ = ∇#

←−
λ

The transpositions make the following subproxets isomorphic

(⇓A)∇#Δ# =

{←−
λ ∈ ⇓A | ←−λ = ∇#Δ

#←−λ
}

(⇑A)Δ#∇#
=
{−→υ ∈ ⇑A | −→υ = Δ#∇#

−→υ
}

Definition 3.11. The vectors in (⇓A)∇#Δ# and (⇑A)Δ#∇#
are called cones. The associ-

ated cones ←−γ ∈ (⇓A)∇#Δ# and −→γ ∈ (⇑A)Δ#∇#
such that ←−γ = ∇#

−→γ and −→γ = Δ#←−γ a
cut γ = 〈←−γ ,−→γ 〉 in proxet A. Cuts form a proxet � A, isomorphic with (⇓A)∇#Δ# and
(⇑A)Δ#∇#

, with the proximity

(γ � ϕ) �A =
(←−γ �←−ϕ) ⇓A = (−→γ �−→ϕ) ⇑A

Lemma 3.12. The �A-infima are constructed in ⇓A, and �A suprema are constructed
in ⇑A.

Corollary 3.13. A proxet A has all suprema if and only if it has all infima.

Quantitative Concept Analysis 269

Dedekind-MacNeille Completion is a Special Case. If A is a poset, viewed by (3)
as the proxet WA, then � WA is the Dedekind-MacNeille completion of A [28]. The
above construction extends the Dedekind-MacNeille completion to the more general
framework of proxets, in the sense that it satisfies in the universal property of the
Dedekind-MacNeille completion [2]. The construction seems to be novel in the fa-
miliar frameworks of metric and quasi-metric spaces. However, Quantitative Concept
Analysis requires that we lift this construction to matrices.

4 Proximity Matrices and Their Decomposition

4.1 Definitions, Connections

Definition 4.1. A proximity matrixΦ from proxet A to proxet B is a vectorΦ : A×B →
[0, 1]. We write it as Φ : A � B, and write its value Φ(x, y) at x ∈ A and y ∈ B in the
form (x |= y)Φ. The matrix composition of Φ : A� B and Ψ : B� C is defined

(x |= z)(Φ ;Ψ) =
∨
y∈B

(x |= y)Φ · (y |= z)Ψ

With this composition and the identity matrices IdA : A× A → [0, 1] where IdA(x, x′) =
(x � x′)A, proxets and proxet matrices form the category Matr.

Remark. Note that the defining condition (u � x) · (y � v) ≤ ((x |= y)Φ � (u |= v)Φ
)
, which

says that Φ is a proximity morphism A × B → [0, 1], can be equivalently written

(u � x) · (x |= y)Φ · (y � v) ≤ (u |= v)Φ (9)

Definition 4.2. The dualΦ‡ : B� A of a matrix Φ : A� B has the entries

(y |= x)Φ‡ =
∧
u∈A
v∈B

(u |= v)Φ � ((u � x)A · (y � v)B
)

A matrix Φ : A� B where Φ‡‡ = Φ is called a suspension.

Remarks. It is easy to see by Prop. 3.10 that (x � y)Φ ≤ (x � y)Φ‡‡ holds for all x ∈ A
and y ∈ B, and that Φ is a suspension if and only if there is some Ψ : B � A such that
Φ = Ψ‡. It is easy to see thatΦ ≤ Ψ ⇒ Φ‡ ≥ Ψ‡, and thusΦ ≤ Φ‡‡ impliesΦ‡ = Φ‡‡‡.

Definition 4.3. The matrices Φ : A� B and Ψ : B� A form a connection if
Φ ;Ψ ≤ IdA and Ψ ;Φ ≤ IdB.

Proposition 4.4. Φ : A� B and Φ‡ : B� A always form a connection.

Definition 4.5. A matrix Φ : A � B is embedding if Φ ;Φ‡ = IdA; and a projection if
Φ‡ ;Φ = IdB.

Definition 4.6. A decomposition of a matrix Φ : A� B consists of a proxet D, with

270 D. Pavlovic

– projection matrix P : A� D, i.e. (d � d′)D =
∨

x∈A (d |= x)P‡ · (x |= d′)P,
– embedding matrix E : D� B, i.e. (d � d′)D =

∨
y∈B (d |= y)E · (y |= d′)E‡ ,

such thatΦ = P ; E, i.e. (x |= y)Φ =
∨

d∈D (x |= d)P · (d |= y)E.

Matrices as Adjunctions. A matrixΦ : A� B can be equivalently presented as either
of the proximity morphismsΦ• and Φ•, which extend to Φ∗ and Φ∗ using Thm. 3.3

A × B
Φ−→ [0, 1]

A
Φ•−−→ ⇑B B

Φ•−−→ ⇓A

⇓A
Φ∗−−→ ⇑B ⇑B

Φ∗−−→ ⇓A(
Φ∗
←−
λ
)

b
=
∧
x∈A

←−
λ x � (x |= b)Φ

(
Φ∗−→υ

)
a
=
∧
y∈B

−→υ y � (a |= y)Φ (10)

Both extensions, and their nucleus, are summarized in diagram (11).

A
∇

◦

Φ

Φ•

⇓A

Φ∗ �Φ�

e∗

e∗

p∗

p∗

B
Δ

Φ•

⇑B

Φ∗ (11)

The adjunctionΦ∗ : ⇓A� ⇑B : Φ∗ means that(
Φ∗
←−
λ � −→υ

)
⇑B
=
∧
y∈B

−→υ y � (Φ∗
←−
λ)y =

∧
x∈A

←−
λ x � (Φ∗−→υ)x =

(←−
λ �Φ∗−→υ

)
⇓A

holds. The other way around, it can be shown that any adjunction between ⇓A and ⇑B
is completely determined by the induced matrix from A to B.

Proposition 4.7. The matrices Φ ∈ Matr(A, B) are in a bijective correspondence with
the adjunctionsΦ∗ : ⇓A� ⇑B : Φ∗.

4.2 Matrix Decomposition through Nucleus

Prop. 3.10 readily lifts to matrices.

Proposition 4.8. For every ←−α ∈ ⇓A every
−→
β ∈ ⇑B holds

←−α ≤ Φ∗Φ∗←−α and ←−α ≥ Φ∗Φ∗←−α ⇐⇒ ∃−→β ∈ ⇑B.←−α = Φ∗−→β
−→
β ≤ Φ∗Φ∗−→β and

−→
β ≥ Φ∗Φ∗−→β ⇐⇒ ∃←−α ∈ ⇓A.

−→
β = Φ∗←−α

Quantitative Concept Analysis 271

The adjunction Φ∗ : A � B : Φ∗ induces the isomorphisms between the following
proxets

�Φ�A =
{←−α ∈ ⇓A | ←−α = Φ∗Φ∗←−α

}
�Φ�B =

{−→
β ∈ ⇑B | −→β = Φ∗Φ∗−→β

}
�Φ� =

{
γ = 〈←−γ ,−→γ 〉 ∈ ⇓A × ⇑B | ←−γ = Φ∗−→γ ∧Φ∗←−γ = −→γ

}
with the proximity

(γ � ϕ)�Φ� =
(←−γ �←−ϕ) ⇓A = (−→γ �−→ϕ) ⇑B

Definition 4.9. �Φ� is called the nucleus of the matrix Φ. Its elements are the Φ-cuts.

Theorem 4.10. The matrix Φ : A� B decomposes through �Φ� into

– the projection P∗ : A� �Φ� with
(
x |= 〈←−α,−→β 〉

)
P∗
=←−α x, and

– the embedding E∗ : �Φ�� B with
(
〈←−α,−→β 〉 |= y

)
E∗
=
−→
β y

4.3 Universal Properties

Any proxet morphism f : A → B induces two matrices, Ω f : A � B and � f : B � A
with

(x |= y)Ω f = (f x � y)B (y |= x)� f = (y � f x)B

Definition 4.11. A proximity matrix morphism from a matrix Φ : F0 � F1 to Γ :
G0 � G1 consists of pair of monotone maps h0 : F0 → G0 and h1 : F1 → G1 such that

– Ωh0 ;Γ = Φ ;Ωh1,
– h0 preserves any

∐
that may exist in F0,

– h1 preserves any
∏

that may exist in F1.

Let MMat denote the category of proxet matrices and matrix morphisms. Let CMat
denote the full subcategory spanned by proximity matrices between complete proxets.

Proposition 4.12. CMat is reflective in MMat along �−� : MMat� CMat : U

Posets and FCA. If A and B are posets, a {0, 1}-valued proxet matrix Φ : A � B can
be viewed as a subposet Φ ⊆ A × B, lower closed in A and upper closed in B. The
adjunction Φ∗ : A � B : Φ∗ is the Galois connection induced by Φ, and the posetal
nucleus �Φ� is now the complete lattice such that

– A
∇−→ ⇓A� �Φ� is ∨-generating and ∧-preserving,

– B
∇−→ ⇑B� �Φ� is ∧-generating and ∨-preserving.

272 D. Pavlovic

When A and B are discrete posets, i.e. with all elements incomparable, then any binary
relation R ⊆ A × B can be viewed as a proxet matrix between them. Restricting to the
vectors that take their values in 0 and 1 yields ⇓ A � (℘A,⊆) and ⇑ B � (℘B,⊇).
The concept lattice of FCA then arises from the Galois connection R∗ : ⇓A� ⇑B : R∗
as the concept lattice �R�. Restricted to {0, 1}-valued matrices between discrete sets A
and B, Prop. 4.12 thus yields a universal construction of a lattice ∨-generated by A and
∧-generated by B. The FCA concept lattice derived from a contextΦ is thus its posetal
nucleus �Φ�. This universal property is closely related with the methods and results of
[2,16].

Lifting the Basic Theorem of FCA. The Basic Theorem of FCA says that every
complete lattice can be realized as a concept lattice, namely the the one induced by the
context of its own partial order. For quantitative concept analysis, this is an immediate
consequence of Prop.4.12, which implies a proxet A is complete if and only if IdA =

�IdA�. Intuitively, this just says that nucleus, as a completion, preserves the structure
that it completes, and must therefore be idempotent, as familiar from the Dedekind-
MacNeille construction. It should be noted that this property does not generalize beyond
proxets.

5 Representable Concepts and Their Proximities

5.1 Decomposition without Completion

The problem with factoring matrices Φ : A � B through �Φ� in practice is that �Φ�
is a large, always infinite structure. The proxet �Φ� is the completion of the matrix
Φ : A� B in the sense that it is

– the subproxet of the
∐

-completion ⇓A of A, spanned by the vectors ←−α = Φ∗Φ∗←−α ,

– the subproxet of the
∏

-completion ⇑B of B, spanned by the vectors
−→
β = Φ∗Φ∗

−→
β .

Since there are always uncountably many lower and upper vectors, and the completions
⇓A and ⇑ B are infinite, �Φ� follows suit. But can we extract a small set of generators
of �Φ�, still supporting a decomposition of the matrix Φ.

Definition 5.1. The representable concepts induced Φ are the elements of the comple-
tion �Φ� induced the representable vectors, i.e.

– lower representable concepts ∇Φ = {〈Φ∗Φ∗∇a, Φ∗∇a〉 | a ∈ A}
– upper representable concepts ΔΦ = {〈Φ∗Δb, Φ∗Φ∗Δb〉 | b ∈ B}
– representable concepts ♦Φ = ∇Φ ∪ ΔΦ

Notation. The elements of ♦Φ are written in the form ♦x = 〈←−♦x,
−→
♦x〉, and thus

←−
♦a = Φ∗Φ∗∇a

−→
♦a = Φ∗∇a

←−
♦b = Φ∗Δb

−→
♦b = Φ∗Φ∗Δb

Quantitative Concept Analysis 273

Theorem 5.2. For any proxet matrix Φ : A � B, the restriction of the decomposition

A
P∗
� �Φ�

E∗
� B from Thm. 4.10 along the inclusion ♦Φ ↪→ �Φ� to the representable

concepts yields a decomposition A
P
� ♦Φ

E
� B which still satisfies Def. 4.6. More

precisely, the matrices

– P : A × ♦Φ ↪→ A × �Φ� P∗−−→ [0, 1]

– E : ♦Φ × B ↪→ �Φ� × B
E∗
−−→ [0, 1]

are such that P : A� ♦Φ is a projection, E : ♦Φ� B is an embedding, and P ; E = Φ.

5.2 Computing Proximities of Representable Concepts

To apply these constructions to the ratings matrix from Sec. 1, we first express the star
ratings as numbers between 0 and 1.

n c i b

a 4
5 1 2

5
4
5

d 2
5

2
5

4
5 1

s 2
5 1 3

5
2
5

t 1
5

3
5

3
5

4
5

l 1 1
5

1
5

2
5

where we also abbreviated the user names to U = {A,D, S , T, L} and the item names to
J = {n, c, i, b}. Now we can compute the representable concepts ♦ϕ ∈ ♦Φ according to
Def. 5.1, using (10):

(
←−
♦ j)u =

⎛⎜⎜⎜⎜⎜⎝∧
�∈J

(Δ j)� � (u |= �)
⎞⎟⎟⎟⎟⎟⎠ = (u |= j) (

−→
♦ j)k =

⎛⎜⎜⎜⎜⎜⎝∧
x∈U

(
−→
♦ j)x � (x |= k)

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝∧

x∈U

(x |= j) � (x |= k)

⎞⎟⎟⎟⎟⎟⎠
(
−→
♦u) j =

⎛⎜⎜⎜⎜⎜⎝∧
x∈U

(∇u)x � (x |= j)

⎞⎟⎟⎟⎟⎟⎠ = (u |= j) (
←−
♦u)v =

⎛⎜⎜⎜⎜⎜⎝∧
�∈J

(
←−
♦u)� � (v |= �)

⎞⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎝∧
�∈J

(u |= �) � (v |= �)
⎞⎟⎟⎟⎟⎟⎠

Since
←−
♦ϕ = Φ∗

−→
♦ϕ and Φ∗←−♦ϕ = −→♦ϕ, it suffices to compute one component of each pair

♦ϕ = 〈←−♦ϕ,−→♦ϕ〉, say the first one. So we get

←−
♦n =

(
4
5

2
5

2
5

1
5 1
) ←−

♦c=
(
1 2

5 1 3
5

1
5

) ←−
♦ı =

(
2
5

4
5

3
5

3
5

1
5

)
←−
♦b =

(
4
5 1 2

5
4
5

1
5

) ←−
♦a=

(
1 2

5
1
2

1
4

1
5

) ←−
♦d =

(
1
2 1 2

5
1
2

1
4

)
←−
♦s =

(
2
3

2
5 1 1

2
1
5

) ←−
♦t =

(
2
3

2
3

1
2 1 1

3

) ←−
♦l =

(
4
5

2
5

2
5

1
5 1
)

The proximities between all representable concepts can now be computed in the form

(x � y)♦Φ = (♦x � ♦y)♦Φ =
∧
u∈U

←−
♦xu � ←−♦yu

since the proximity in ♦Φ is just the proximity in ∇Φ, which is a subproxet ot ⇓U, so
its proximity is by Def. 3.1 the pointwise minimum. Hence

274 D. Pavlovic

� n c i b a d s t l

n 1 1
5

1
5

1
5

1
5

1
4

1
5

1
3 1

c 1
3 1 2

5
2
5

5
12

2
5

2
3

1
2

1
3

i 1
3

1
2 1 2

3
5
12

2
3

1
2

5
6

1
3

b 1
4

2
5

1
2 1 5

16
5
8

2
5

2
3

1
4

a 4
5 1 2

5
4
5 1 1

2
2
3

2
3

4
5

d 2
5

2
5

4
5 1 2

5 1 2
5

2
3

2
5

s 2
5 1 3

5
2
5

1
2

2
5 1 1

2
2
5

t 1
5

3
5

3
5

4
5

1
4

1
2

1
2 1 1

5

l 1 1
5

1
5

2
5

1
5

1
4

1
5

1
3 1

The bottom five rows of this table display the values of the representable concepts
themselves

(u � j)♦Φ = (u |= j)Φ (12)

(u � v)♦Φ =
∧
�∈J

(v |= �)Φ � (u |= �)Φ (13)

for u, v ∈ U and j ∈ J, because
(←−
♦u �←−♦x

)
♦Φ
=
←−
♦xu follows from the general fact that(

∇a �←−λ
)
⇓A
=
←−
λ a. The upper four rows display the values

(j � k)♦Φ =
∧
x∈U

(x |= j)Φ � (x |= k)Φ (14)

(j � u)♦Φ =
∧
x∈U

(x |= j)Φ � (x � u)♦Φ =
∧
�∈J

(u |= �)Φ � (j � �)♦Φ (15)

for u ∈ U and j, k ∈ J. Intuitively, these equations can be interpreted as follows:

– (13) the proximity (u � v) measures how well (v |= �) approximates (u |= �):
• u’s liking (u |= �) of any movie � is at least (u � v) · (v |= �).

– (14) the proximity (j � k) measures how well (x |= j) approximates (x |= k)
• any user x’s rating (x |= k) is at least (x |= j) · (j � k),

– (15) the proximity (j � u) measures how well j’s style approximates u’s taste
• any x’s proximity (x � u) to u is at least (x |= j) · (j � u),
• j’s proximity (j � �) to any � is at least (j � u) · (u |= �).

Since (a � l) = 4
5 , it would make sense for Abby to accept Luka’s recommendations,

but not the other way around, since (l � a) = 1
5 . Although Temra’s rating of "Ikiru" is

just (t � i) = 3
5 , "Ikiru" is a good test of her taste, since her rating of it is close to both

Dusko’s and Stefan’s ratings.

Latent Concepts? While the proximities between each pair of users and items, i.e.
between the induced representable concepts, provide an interesting new view on their
relations, the task of determining the latent concepts remains ahead. What are the dom-
inant tastes around which the users coalesce? What are the dominant styles that connect

Quantitative Concept Analysis 275

the items? What will such concepts look like? Formally, a dominant concept is a highly
biased cut: in a high proximity of some of the representable concepts, and distant from
the others. One way to find such cuts is to define the concepts of cohesion and adhesion
of a cut along the lines of [30], and solve the corresponding optimization problems.
Although there is no space to expand the idea in the present paper, some of the latent
concepts can be recognized already by inspection of the above proximity table (recalling
that each cut is both a supremum of users’ and an infimum of items’ representations).

6 Discussion and Future Work

What has been achieved? We generalized posets to proxets in Sec. 2 and 3, and lifted
in Sec. 4 the FCA concept lattice construction to the corresponding construction over
proxets, that allow capturing quantitative information. Both constructions share the
same universal property, captured by the nucleus functor in Sec. 4.3. In both cases,
the concepts are captured by cuts, echoing Dedekind’s construction of the reals, and
MacNeille’s minimal completion of a poset. But while finite contexts yield finite con-
cept lattices in FCA, in our analysis they yield infinitely many quantitative concepts.
This is a consequence of introducing the infinite set of quantities [0,1]. The same phe-
nomenon occurs in LSA [10], which allows the entire real line of quantities, and the
finite sets of users and items span real vector spaces, that play the same role as our
proxet completions. The good news is that the infinite vector space of latent concepts in
LSA comes with a canonical basis of finitely many singular vectors, and that our proxet
of latent concepts also has a finite generator, spelled out in Sec. 5. The bad news is that
the generator described there is not a canonical basis of dominant latent concepts, with
the suitable extremal properties, but an ad hoc basis determined by the given sets of
users and items. Due to a lack of space, the final step of the analysis, finding the basis
of dominant latent concepts, had to be left for a future paper. This task can be reduced
to some familiar optimization problems.

More interestingly, and perhaps more effectively, this task can also addressed us-
ing qualitative FCA and its concept scaling methods [13]. The most effective form of
concept analysis may thus very well be a combination of quantitative and qualitative
analysis tools. Our analysis of the numeric matrix, extracted from the given star ratings,
should be supplemented by standard FCA analyses of a family of relational contexts
scaled by various thresholds. We conjecture that the resulting relational concepts will
be the projections of the dominant latent concepts arising from quantitative analysis.
If that is the case, then the relational concepts can be used to guide computation of
quantitative concepts.

This view of the quantitative and the qualitative concept analyses as parts of a puta-
tive general FCA toolkit raises an interesting question of their relation with LSA and
the spectral methods of concept analysis [10,1], which seem different. Some prelimi-
nary discussions on this question can be found in [31,32]. While FCA captures a par-
ticle view of network traffic, where the shortest path determines the proximity of two
network nodes, LSA corresponds to the wave view of the traffic, where the proximity
increases with the number of paths. Different application domains seem to justify dif-
ferent views, and call for a broad view of all concept mining methods as parts of the
same general toolkit.

276 D. Pavlovic

Acknowledgements. Anonymous reviewers’ suggestions helped me to improve the
paper, and to overcome some of my initial ignorance about the FCA literature. I am
particularly grateful to Dmitry Ignatov, who steered the reviewing process with a re-
markable patience and tact. I hope that my work will justify the enlightened support,
that I encountered in these first contacts with the FCA community.

References

1. Azar, Y., Fiat, A., Karlin, A., McSherry, F., Saia, J.: Spectral analysis of data. In: Proceedings
of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC 2001, pp.
619–626. ACM, New York (2001)

2. Banaschewski, B., Bruns, G.: Categorical characterization of the MacNeille completion.
Archiv der Mathematik 18(4), 369–377 (1967)

3. Bělohlávek, R.: Fuzzy relational systems: foundations and principles, vol. 20. Plenum Pub-
lishers (2002)

4. Bělohlávek, R.: Concept lattices and order in fuzzy logic. Annals Pure Appl. Logic 128(1-3),
277–298 (2004)

5. Belohlavek, R.: What is a Fuzzy Concept Lattice? II. In: Kuznetsov, S.O., Ślęzak, D., Hept-
ing, D.H., Mirkin, B.G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 19–26. Springer, Hei-
delberg (2011)

6. Bonsangue, M.M., van Breugel, F., Rutten, J.J.M.M.: Generalized metric spaces: completion,
topology, and power domains via the yoneda embedding. Theor. Comput. Sci. 193(1-2), 1–51
(1998)

7. Burusco, A., Fuentes-González, R.: Construction of the L-fuzzy concept lattice. Fuzzy Sets
and systems 97(1), 109–114 (1998)

8. Burusco, A., Fuentes-González, R.: The study of the L-fuzzy concept lattice. Mathware &
Soft Computing 1(3), 209–218 (2008)

9. Carpineto, C., Romano, G.: Concept Data Analysis: Theory and Applications. John Wiley &
Sons (2004)

10. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.: Indexing by
Latent Semantic Analysis. Journal of the American Society of Information Science 41(6),
391–407 (1990)

11. du Boucher-Ryan, P., Bridge, D.G.: Collaborative recommending using Formal Concept
Analysis. Knowl.-Based Syst. 19(5), 309–315 (2006)

12. Ganter, B., Kuznetsov, S.O.: Pattern Structures and Their Projections. In: Delugach, H.S.,
Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg
(2001)

13. Ganter, B., Wille, R.: Conceptual scaling. Institute for Mathematics and Its Applications 17,
139 (1989)

14. Ganter, B., Stumme, G., Wille, R. (eds.): Formal Concept Analysis. LNCS (LNAI), vol. 3626.
Springer, Heidelberg (2005)

15. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Hei-
delberg (1999)

16. Gehrke, M.: Generalized kripke frames. Studia Logica 84(2), 241–275 (2006)
17. Kaytoue, M., Kuznetsov, S.O., Macko, J., Meira Jr., W., Napoli, A.: Mining biclusters of

similar values with triadic concept analysis. In: Proceedings of CLA 2011. CLA (2011)
18. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Pattern mining in numerical data: Extracting

closed patterns and their generators. Research Report RR-7416, INRIA (October 2010)

Quantitative Concept Analysis 277

19. Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Revisiting numerical pattern mining with formal
concept analysis. In: Proceedings of IJCAI 2011, pp. 1342–1347. AAAI (2011)

20. Kaytoue, M., Kuznetsov, S.O., Napoli, A., Duplessis, S.: Mining gene expression data with
pattern structures in formal concept analysis. Inf. Sci. 10(181), 1989–2001 (2011)

21. Kelly, G.M.: Basic Concepts of Enriched Category Theory. London Mathematical Society
Lecture Note, vol. 64, pp. 1–136. Cambridge University Press (1982); Reprinted in Theory
and Applications of Categories, vol. 10, pp.1–136 (2005)

22. Koren, Y., Bell, R.M., Volinsky, C.: Matrix factorization techniques for recommender sys-
tems. IEEE Computer 42(8), 30–37 (2009)

23. Krajči, S.: A generalized concept lattice. Logic Journal of IGPL 13(5), 543–550 (2005)
24. Künzi, H.P., Schellekens, M.P.: On the yoneda completion of a quasi-metric space. Theor.

Comput. Sci. 278(1-2), 159–194 (2002)
25. William Lawvere, F.: Metric spaces, generalised logic, and closed categories. Rendiconti del

Seminario Matematico e Fisico di Milano 43, 135–166 (1973)
26. Lehmann, F., Wille, R.: A Triadic Approach to Formal Concept Analysis. In: Ellis, G., Rich,

W., Levinson, R., Sowa, J.F. (eds.) ICCS 1995. LNCS, vol. 954, pp. 32–43. Springer, Hei-
delberg (1995)

27. Leinster, T., Cobbold, C.: Measuring diversity: the importance of species similarity. Ecology
(to appear, 2012)

28. MacNeille, H.M.: Extensions of partially ordered sets. Proc. Nat. Acad. Sci. 22(1), 45–50
(1936)

29. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics,
vol. 5. Springer (1971); 2nd edn. (1997)

30. Pavlovic, D.: Network as a Computer: Ranking Paths to Find Flows. In: Hirsch, E.A.,
Razborov, A.A., Semenov, A., Slissenko, A. (eds.) CSR 2008. LNCS, vol. 5010, pp. 384–
397. Springer, Heidelberg (2008)

31. Pavlovic, D.: On quantum statistics in data analysis. In: Bruza, P. (ed.) Quantum Interaction
2008. AAAI (2008), arxiv.org:0802.1296

32. Pavlovic, D.: Quantifying and Qualifying Trust: Spectral Decomposition of Trust Networks.
In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 1–17.
Springer, Heidelberg (2011)

33. Poelmans, J., Elzinga, P., Viaene, S., Dedene, G.: Formal Concept Analysis in Knowledge
Discovery: A Survey. In: Croitoru, M., Ferré, S., Lukose, D. (eds.) ICCS 2010. LNCS,
vol. 6208, pp. 139–153. Springer, Heidelberg (2010)

34. Wagner, K.R.: Liminf convergence in omega-categories. Theor. Comput. Sci. 184(1-2), 61–
104 (1997)

35. Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. In:
Rival, I. (ed.) Ordered Sets, pp. 445–470. Dan Reidel, Dordrecht (1982)

36. Wilson, W.A.: On quasi-metric spaces. Amer. J. Math. 52(3), 675–684 (1931)
37. Kim, Y.W.: Pseudo quasi metric spaces. Proc. Japan Acad. 10, 1009–1012 (1968)

Some Notes on Managing Closure Operators

Sebastian Rudolph

Karlsruhe Institute of Technology, Germany
rudolph@kit.edu

Abstract. It is widely known that closure operators on finite sets can be repre-
sented by sets of implications (also known as inclusion dependencies) as well
as by formal contexts. In this paper we survey known results and present new
findings concerning time and space requirements of diverse tasks for managing
closure operators, given in contextual, implicational, or black-box representa-
tion. These tasks include closure computation, size minimization, finer-coarser-
comparison, modification by “adding” closed sets or implications, and conversion
from one representation into another.

Keywords: Formal Concept Analysis, closure operators, complexity issues.

1 Introduction

Closure operators and closure systems are a basic notion in algebra and occur in various
computer science scenarios such as logic programming or functional dependencies in
databases. One central task when dealing with closure operators is to represent them
in a succinct way while still allowing for their efficient computational usage. Formal
concept analysis (FCA) naturally provides two complementary ways of representing
closure operators: by means of formal contexts on one side and implication sets on the
other. Although being complementary, these two representation modes share a lot of
properties:

– Both allow for tractable closure computation.
– Both kinds of data structures do not uniquely represent the corresponding closure

operator, but in either case, there is a well-known minimal “normal form” which is
unique up to isomorphism: row-reduced formal contexts and canonical bases.

– In both cases, this normal form can be computed with polynomial effort.

For a given closure operator, the space needed to represent it in one or the other way
may differ significantly: there are closure operators whose minimal implicational repre-
sentation is exponentially larger than their minimal contextual one and vice versa (see
Section 3).

Thus, it seems worthwhile to modify algorithms which store and manipulate clo-
sure operators (as many FCA algorithms do) such that they can switch between the two
representations depending on which is more memory-efficient. To this end, algorithms
performing basic operations on closure operators need to be available for both represen-
tations. Moreover, conversion methods from one representation to the other are needed

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 278–291, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Some Notes on Managing Closure Operators 279

and their computational complexity needs to be analyzed. Thereby, it is not only inter-
esting to determine the required resources related to the size of the input, but also to the
size of the output. This is to account for the fact, that (in order to be “fair”) an algorithm
creating a larger output should be allowed to take more time and use more memory.

Next to surveying well-known complexity results for tasks related to closure opera-
tors in different representations, this paper’s noteworthy original contributions are the
following:

– We clarify the complexities for comparing closure operators in different representa-
tions in terms of whether one is a refinement of the other. Interestingly, some of the
investigated comparison tasks are tractable (i.e. time-polynomial), others are not.

– We show how to compute an implication set which realizes the closure operator of
a given context and has polynomial size compared to the size of the context. This
is achieved by virtue of auxiliary attributes. Note that this contrasts results accord-
ing to which without such auxiliary attributes, a worst-case exponential blow-up is
unavoidable.

– Exploiting this polynomial representation, we propose an alternative algorithm for
computing the Duquenne-Guigues base of a given context.

The paper is organized as follows. After recalling some basics about closure operators
and formal concept analysis in Section 2, we note that no representation is generally
superior to the other in terms of the size needed to store it in Section 3. Finally, Section 4
provides algorithms and complexity results before we conclude in Section 5.

2 Preliminaries

We start providing a condensed overview over the notions used in this paper.

2.1 Closure Operators

Definition 1. Let M be an arbitrary set. A function ϕ : 2M → 2M is called a closure
operator on M if it is

1. extensive, i.e., A ⊆ ϕ(A) for all A ⊆ M,
2. monotone, i.e., A ⊆ B implies ϕ(A) ⊆ ϕ(B) for all A, B ⊆ M, and
3. idempotent, i.e., ϕ(ϕ(A)) = ϕ(A) for all A ⊆ M.

A set A ⊆ M is called closed (or ϕ-closed in case of ambiguity), if ϕ(A) = A. The set of
all closed sets {A | A = ϕ(A) ⊆ M} is called closure system.

It is easy to show that for an arbitrary closure system S, the corresponding closure
operator ϕ can be reconstructed by

ϕ(A) =
⋂

B∈S, A⊆B

B.

Hence, there is a one-to-one correspondence between a closure operator and the accord-
ing closure system.

280 S. Rudolph

Definition 2. Given two closure operators ϕ and ψ on M, ϕ is called finer than ψ (writ-
ten ϕ � ψ, alternatively we also say ψ is coarser than ϕ) if every ϕ-closed set is also
ψ-closed. We call ϕ and ψ equivalent (written ϕ ≡ ψ), if ϕ(A) = ψ(A) for all A ⊆ M.

It is well-known that the set of all closure operators together with the “finer than” rela-
tion constitutes a complete lattice.

2.2 Contexts

Following the normal line of argumentation of FCA [8], we use formal contexts as data
structure to encode closure operators.

Definition 3. A formal context K is a triple (G,M, I) with an arbitrary set G called
objects, an arbitrary set M called attributes, and a relation I ⊆ G ×M called incidence
relation. The size of K (written: #K) is defined as |G| · |M|, i.e. the number of bits to
store I.

This basic data structure can then be used to define operations on sets of objects or
attributes, respectively.

Definition 4. Let K = (G,M, I) be a formal context. We define a function (·)I : 2G →
2M with G̃I := {m | gIm for all g ∈ G̃} for G̃ ⊆ G. Furthermore, we use the same
notation to define the function (·)I : 2M → 2G where M̃I := {g | gIm for all m ∈ M̃} for
M̃ ⊆ M. For convenience, we sometimes write gI instead of {g}I and mI instead of {m}I .
Applied to an object set, this function yields all attributes common to these objects; by
applying it to an attribute set we get the set of all objects having those attributes. The
following facts are consequences of the above definitions:

– (·)II is a closure operator on G as well as on M.
– For A ⊆ G, AI is a (·)II-closed set and dually
– for B ⊆ M, BI is a (·)II-closed set.

In the following, we will focus only on the closure operator on attribute sets and ex-
ploit the fact that this closure operator is independent from the concrete object set G; it
suffices to know the set of the context’s object intents. Thus, we will directly use intent
sets, that is: families F of subsets of M to represent formal contexts.

Definition 5. Given a family F ⊆ 2M, we let K(F) denote the formal context (G,M, I)
with G = F and, for an A ∈ F , we let AIm exactly if m ∈ A. Given B ⊆ M, we use the
notation BF to denote the attribute closure BII in K(F) and let #F = #K(F) = |F | · |M|.
For the sake of simplicity we will from now on to refer to F as contexts (on M). We
recall the first basic complexity result:

Proposition 1. For any context F on a set M and any set A ⊆ M, the closure AF can
be computed in O(#F) = O(|F | · |M|) time and O(|M|) space.

Some Notes on Managing Closure Operators 281

Given an arbitrary context F representing some closure operator ϕ on some set M, the
question whether there exists another F ′ representing ϕ and satisfying #F ′ < #F – and
if so, how to compute it – is straightforwardly solved by noting that this coincides with
the question if K(F) is row-reduced and how to row-reduce it. Hence we obtain:

Proposition 2. Given a context F on M, a size-minimal context F ′ with (·)F ≡ (·)F ′

can be computed in O(|F | · #F) = O(|F |2 · |M|) time and O(|M|) space.

Algorithm 1 displays the according method cast in our representation via set families.
We close this section by noting that for a given closure operator ϕ, the minimal F

with ϕ ≡ (·)F is uniquely determined. We will denote it by F (ϕ).

2.3 Implications

Given a set of attributes, implications on that set are logical expressions that can be used
to describe certain attribute correspondences which are valid for all objects in a formal
context.

Definition 6. Let M be an arbitrary set. An implication on M is a pair (A, B) with
A, B ⊆ M. To support intuition we write A → B instead of (A, B). We say an implication
A → B holds for an attribute set C (also: C respects A → B), if A � C or B ⊆ C.
Moreover, an implication i holds (or: is valid) in a formal context K = (G,M, I) if it
holds for all sets gI with g ∈ G. We then write K |= i. The size of an implication set I
(written: #I) is defined as |I| · |M|. Given a set A ⊆ M and a set I of implications on
M, we write AI for the smallest set that contains A and respects all implications from
I. (Since those two requirements are preserved under intersection, the existence of a
smallest such set is assured).

It is obvious that for any set I of implications on M, the operation (·)I is a closure
operator on M. Furthermore, it can be easily shown that an implication A → B is valid
in a formal context K = (G,M, I) exactly if B ⊆ AII .

The following result is an often noted and straightforward consequence from [16].

Proposition 3. For any attribute set B ⊆ M and set I of implications, BI can be com-
puted in O(#I) = O(|I| · |M|) time and O(|M|) space.

Like in the case of the contextual encoding, also here it is natural to ask for a size-
minimal set of implications that corresponds to a certain closure operator.

Although there is in general no unique minimal implication set for a given closure
operator ϕ, the so-called Duquenne-Guigues base or stem base [10] is often used as a
(minimal) canonical representation. We follow this practice and denote it by I(ϕ).

Algorithm 2 (cf. [1,22,19]) provides a well-known way to turn an arbitrary impli-
cation set into an equivalent Duquenne-Guigues base. Thus we can note the following
complexity result.

Proposition 4 (Day 1992). Given a set I of implications on M, a size-minimal I′ with
(·)I ≡ (·)I′ can be computed in O(|I| · #I) = O(|I|2 · |M|) time and O(|I| · |M|) space.

282 S. Rudolph

Algorithm 1. minimizeContext
Input: context F on M
Output: size-minimal context F ′

such that (·)F ≡ (·)F ′

1: F := F ′

2: for each A ∈ F ′ do
3: if A = AF ′\{A} then
4: F ′ := F ′ \ {A}
5: end if
6: end for
7: output F ′

Algorithm 2. minimizeImpSet
Input: implication set I on M
Output: size-minimal implication set I′

such that (·)I ≡ (·)I′
1: Ĩ := ∅
2: for each A → B ∈ I do
3: Ĩ := Ĩ ∪ {A → (A ∪ B)I}
4: end for
5: I′ := ∅
6: for each A → B ∈ Ĩ do
7: delete A → B from Ĩ
8: C := AĨ∪I

′

9: if C � B then
10: I′ := I′ ∪ {C → B}
11: end if
12: end for
13: output I′

A closer look at the algorithm reveals that the O(|I| · |M|) space bound comes about by
the necessity of a 2-pass processing of the implication set. Note that both passes can be
performed in situ (i.e., by overwriting the input with the output) which would require
only O(|M|) additional memory.

3 Size Comparisons

Given these two encodings which are very alike with respect to the complexities of
computing closures and minimization, a question which arises naturally is whether one
encoding is superior to the other in terms of memory required to store it. First of all,
note that for a given M, the size of both representations is bounded by 2|M| · |M|, i.e. at
most exponential in the size of M.

The following proposition shows that for some ϕ, #F (ϕ) is exponentially larger than
#I(ϕ).

Proposition 5. There exists a sequence (ϕn)n∈N of closure operators such that #F (ϕn) ∈
Θ(2n) whereas #I(ϕn) ∈ Θ(n2).

Proof. We define ϕn as the closure operator on the set Mn = {1, . . . , 2n} that corresponds
to the implication set Ib containing the implication {2i − 1, 2i} → Mn for every i ∈
{1, . . . , n}. Then, we obtain #I(ϕn) = 2n2. On the other hand, F (ϕn) = {{2k − ak|1 ≤
k ≤ n} | 〈a1, . . . , an〉 ∈ {0, 1}n} (as schematically displayed in Fig. 1) whence we obtain
#F (ϕn) = 2n · 2n. "#
On the other hand, as a consequence of a result on the number of pseudo-intents [13,17],
we know that the converse is true as well: for some ϕ, #I(ϕ) is exponentially larger than
#F (ϕ).

Some Notes on Managing Closure Operators 283

1 2 . . . 2n−3 2n−2 2n−1 2n

g1 × . . . × ×
g2 × . . . × ×
g3 × . . . × ×
g4 × . . . × ×
...
...
...
...
...

...
...
...

g2n−1 × . . . × ×
g2n × . . . × ×

Fig. 1. Example for a context that is exponential in the size of its stem base

Proposition 6 (Kuznetsov 2004, Mannila & Räihä 1992). There exists a sequence
(ϕn)n∈N of closure operators such that #F (ϕn) ∈ Θ(n2) but #I(ϕn) ∈ Θ(2n).

This result seems to imply that in general, one cannot avoid the exponential blowup if a
contextually represented closure operator is to be represented by means of implications.

However, as the following definition and theorem show, this only holds if M is sup-
posed to be fixed. If we allow for a bit more freedom in terms of the used attribute set,
this blowup can be avoided.

Definition 7. Given a context F on a set M, let M+ denote the set M extended by a
one new attribute mF for each F ∈ F . Then we define IF as implication set on M+

containing for every m ∈ M the two implications {m} → {mF | F ∈ F ,m � F} and
{mF | F ∈ F ,m � F} → {m}.
Theorem 7. Given a context F on a set M, the following hold

1. #IF = 2 · |M| · |M+| = 2 · |M| · (|M| + |F |) ≤ (#F)2.
2. (·)F ≡ (·)IF |M, that is, AF = AIF ∩ M for all A ⊆ M.

Proof. The first claim is obvious.
For the second claim, we first show that for an arbitrary set A ⊆ M holds AIF = B∪C

with B := {mF | F ∈ F , A � F} and C := {m | {mF | F ∈ F ,m � F} ⊆ B}. To show
AIF ⊆ B ∪ C we note that A ⊆ B ∪ C and that B ∪ C is IF -closed: B ∪ C satisfies
all implications of the type {mF | F ∈ F ,m � F} → {m} by definition of C. To check
implications of the second type, {m} → {mF | F ∈ F ,m � F}, we note that

C := {m | {mF | F ∈ F ,m � F} ⊆ B}
= {m | {mF | F ∈ F ,m � F} ⊆ {mF | F ∈ F , A � F}}
= {m | ∀F ∈ F : m � F → A � F}

Now, picking an m ∈ C, we find that every mF for which m � F must also satisfy A � F
and therefore mF ∈ B so we find all implications of the second type satisfied.

Further, we show B ∪C ⊆ AIF , by proving B ⊆ AIF and C ⊆ AIF separately.
We obtain B = {mF | F ∈ F , A � F} ⊆ AIF due to the following: given an F ∈ F

with A � F, we find an m ∈ A with m � F and thus an implication m → {mF , . . .}
contained in IF , therefore AIF must contain mF .

284 S. Rudolph

We then also obtain C := {m | {mF | F ∈ F ,m � F} ⊆ B} ⊆ AIF by the following
argument: picking an m ∈ C, we find the implication {mF | F ∈ F ,m � F} → {m}
contained in IF . On the other hand, we already know B ⊆ AIF and B ⊇ {mF | F ∈
F ,m � F}, hence m ∈ AIF .

Finally, we obtain AIF |M = AIF ∩ M = C = {m | ∀F ∈ F : m � F → A � F} = {m |
∀F ∈ F : A ⊆ F → m ∈ F} = ⋂F∈F ,A⊆F F = AF for any A ⊆ M. "#
Thus, we obtain a polynomially size-bounded implicational representation of a con-
text. In our view this is a remarkable – although not too intricate – insight as it seems
to challenge the practical relevance of computationally hard problems w.r.t. pseudo-
intents (recognizing, enumerating, counting), on which theoretical FCA research has
been focusing lately [14,19,15,21,20,2].

4 Algorithms for Managing Closure Operators

4.1 Finer or Coarser?

Depending on how closure operators are represented, there are several ways of checking
if one is finer than the other. As the general case, we consider the situation where both
closure operators are given in a “black-box” manner, i.e. as opaque functions that we
can call and that come with runtime guarantees.

Theorem 8. Let ϕ and ψ be closure operators on a set M for which computing of clo-
sures can be performed in time tϕ and tψ, respectively and space sϕ and sψ, respectively.
Moreover, let clϕ = |{ϕ(A) | A ⊆ M}|.

Then, ϕ � ψ can be decided in O(clϕ · (|M| · tϕ + tψ)) and in O(2|M| · (tϕ + tψ)). The
space complexity is bounded by O(sϕ + sψ).

Proof. For the O(clϕ · (|M| · tϕ + tψ)) time bound, we employ Ganter’s NextClosure
algorithm [6,7] for enumerating the closed sets of ϕ. We note that (i) it only makes
use of the closure operator in a black-box manner (that is, it does not depend on a its
specific representation) by calling it as a function and (ii) it has polynomial delay, more
precisely the time between two closed sets being output is O(|M| · tϕ). For each delivered
closed set, we have to additionally check if it is ψ-closed, hence the overall time needed
per ϕ-closed set is O(|M| · tϕ + tψ).

The O(2|M| · (tϕ + tψ)) bound can be obtained by naı̈vely checking all subsets of M
for ϕ-closedness and ψ-closedness.

In both cases, no intermediary information needs to be stored between testing suc-
cessive sets which explains the space complexity. "#
Note that all known black-box algorithms require exponentially many closure computa-
tions w.r.t. to |M|. This raises the question whether this bound can be improved if one or
both of the to-be-compared closure operators are available in a specific representation.
The subsequent theorem captures the cases where polynomially many calls suffice.

Theorem 9. Let ϕ be a closure operator on a set M for which computing of closures
can be performed in tϕ time and sϕ space. Then, the following hold:

Some Notes on Managing Closure Operators 285

Algorithm 3. finerThanContext
Input: closure operator ϕ on set M,

context F
Output: YES if ϕ � (·)F , NO otherwise
1: for each A ∈ F do
2: if A � ϕ(A) then
3: output NO
4: exit
5: end if
6: end for
7: output YES

Algorithm 4. coarserThanImpSet
Input: closure operator ϕ on set M,

implication set I
Output: YES if (·)I � ϕ, NO otherwise
1: for each A → B ∈ I do
2: if B � ϕ(A) then
3: output NO
4: exit
5: end if
6: end for
7: output YES

– for a context F on M, the problem ϕ � (·)F can be decided in |F | · tϕ time and sϕ
space and

– for an implication set I on M, the problem (·)I � ϕ can be decided in |I| · tϕ time
and sϕ space.

Proof. Algorithm 3 provides a solution for the first case. It verifies that every element
(in other words: every object intent) of F is ϕ-closed, this suffices to guarantee that all
F -closed sets are ϕ-closed since every F -closed set is an intersection of elements of
F and ϕ-closed sets are closed under intersections (since this holds for every closure
operator).

Algorithm 4 provides a solution for the second case. To ensure that every ϕ-closed
set is also (·)I-closed, it suffices to show that every ϕ-closed set respects all implications
from I. If every ϕ-closed set respects an implication A → B ∈ I can in turn be verified
by checking if B ⊆ ϕ(A). "#
The results established in the above theorem give rise to precise polynomial complex-
ity bounds for three of the four possible comparisons of closure operators which are
contextually or implicationally represented.

Corollary 10. Given contexts F ,F ′ and implication sets I,I′ on some set M, it is
possible to check

– (·)F � (·)F ′
in time O(|F | · |F ′| · |M|),

– (·)I � (·)I′ in time O(|I| · |I′| · |M|), and
– (·)F � (·)I in time O(|F | · |I| · |M|).

Surprisingly, the ensuing question – whether it is possible to establish a polynomial
time complexity bound for the missing comparison case – has to be denied assuming
P � NP, as the following theorem shows.1

1 As indicated by a reviewer, this result in a slightly different formulation is already known in
other communities, cf. [9].

286 S. Rudolph

Theorem 11. Given a context F and an implication set I on some set M, deciding if
(·)I � (·)F is coNP-complete.

Proof. To show coNP membership, we note that (·)I � (·)F if and only if there is a
set A and which is (·)I-closed but not (·)F -closed. Clearly, we can guess such a set and
check the above properties in polynomial time.

We show coNP hardness, by a polynomial reduction of the problem to 3SAT [11].
Given a set C = {C1, . . . ,Ck} of 3-clauses (i.e. |Ci| = 3) over a set of literals L =
{p1,¬p1, . . . p�,¬p�}, we let M = L and define

I :=
{{pi,¬pi} → M | pi ∈ L

}
as well as

F :=
{
M \ (Ci ∪ {m}) | Ci ∈ C,m ∈ M

}
.

We now show that there is a set A with AI = A but AF � A exactly if there is a valuation
on {p1, . . . , p�} for which C is satisfied.

For the “if” direction assume val : {p1, . . . , p�} → {true, f alse} to be that valuation
and define A := {pi | val(pi) = true} ∪ {¬pi | val(pi) = f alse}. Obviously, A is (·)I-
closed. On the other hand, since by definition A must contain one element from each
Ci ∈ C, we have that F � A for all F ∈ F and hence AF = M � A.

For the “only if” direction, assume AI = A but AF � A. By construction of F , the
latter can only be the case if A contains one element of each Ci ∈ C. Thus, the valuation
val : {p1, . . . , p�} → {true, f alse} with

val(pi) =

{
true if pi ∈ A
f alse otherwise

witnesses the satisfiability of C. "#
Drawing from the above black-box case, a straightforward deterministic algorithm for
testing (·)I � (·)F would need to subsequently generate all closed sets of I (e.g. by
Ganter’s algorithm [6,7]) and check closedness w.r.t. F . This algorithm would, how-
ever, require exponential time w.r.t. |M| in the worst case.

4.2 Adding a Closed Set

We now consider the task of making a closure operator ϕminimally “finer” by requiring
that a given set A be a closed set.

Definition 8. Given a closure operator ϕ on M and some A ⊆ M, the A-refinement of
ϕ (written ϕ↓A) is defined as the coarsest closure operator ψ with ψ � ϕ and ψ(A) = A.

It is straightforward to show that B is a ϕ↓A-closed set exactly if it is ϕ-closed or the
intersection of A and a ϕ-closed set. Clearly, if a closure operator is represented as for-
mal context, refinements can be computed by simply adding a row, i.e. for any context
F on M and set A ⊆ M we have for F ′ := F ∪ {A} that (·)F ↓A ≡ (·)F ′

. Of course, F ′
will in general not be size-minimal even if F is.

Some Notes on Managing Closure Operators 287

Fact 12. Given a context F on M and some A ∈ M, an F ′ with (·)F ′ ≡ (·)F ↓A can be
computed in O(|M|) time and constant space. Moreover, we have |F ′| ≤ |F | + 1.

If the closure operator is represented in terms of implications, a little more work is
needed for this task.

Proposition 13. Given an implication set I on M and some A ∈ M, an I′ with (·)I′ ≡
(·)I↓A can be computed in O(|I| · |M|2) time. Moreover, we have |I′| ≤ |I| · |M|.
Proof. Algorithm 5 ensures the claimed complexity behavior. We now show that it is
correct by proving that a subset of M is (·)I′-closed iff it is (·)I-closed or the intersection
of A and some (·)I-closed set.

For the “if” direction, note that all implications from I′ are entailed by I, therefore
all (·)I-closed sets are (·)I′-closed. Further we note that A is obviously (·)I′-closed. As
intersections preserve closedness the above implies that all intersections of A and an
I-closed sets must be (·)I′-closed.

For the “only if” direction, let S be a (·)I′-closed set. If we assume S ⊆ A we find
that S I

′
= S I ∩ A. If S � A, there exists an m ∈ S \ A. But then we find S I

′
= S I. "#

4.3 Adding an Implication

The task dual to the one from the preceding section is to make a given closure oper-
ator coarser by requiring that all closed sets of the coarsened version respect a given
implication. In other words, all closed sets not respecting the implication are removed.

Definition 9. Given a closure operator ϕ on M and some implication i = A → B with
A, B ⊆ M, the i-coarsening of ϕ (written ϕ↑i) is defined as the finest closure operator ψ
with ϕ � ψ and B ⊆ ψ(A).

Clearly, if a closure operator is represented as implication set, coarsenings can be com-
puted by simply adding the implication to the set. Note that I′ := I∪ {i} will in general
not be size-minimal.

Fact 14. Given an implication set I on M and some implication i on M, an I′ with
(·)I′ ≡ (·)I↑i can be computed in O(|M|) time and constant space. Moreover, we have
|F ′| ≤ |F | + 1.

If the closure operator is represented by a context, a little more work is needed for this
task.

Proposition 15. Given a context F on M and some implication i on M, an F ′ with
(·)F ′ ≡ (·)F ↑i can be computed in O(|F |2 · |M|) time. Moreover, we have |F ′| ≤ |F |2.

Proof. It is easy to check that Algorithm 6 satisfies the given complexity bounds. We
show its correctness by verifying that a set is (·)F ′

-closed exactly if it is (·)F -closed and
respects A → B.

For the “if” direction, let S be an (·)F -closed set that respects A → B. This means
that either B ⊆ S or A � S . In the first case, note that every F ∈ F with S ⊆ F respects

288 S. Rudolph

Algorithm 5. addClosedSet
Input: implication set I on M, set A ⊆ M
Output: implication set I′ with (·)I′ ≡ (·)I↓A
1: I′ := ∅
2: for each B → C ∈ I do
3: if B → C is respected by A then
4: I′ := I′ ∪ {B → C}
5: else
6: I′ := I′ ∪ {B → C ∩ A}
7: for each m ∈ M \ A do
8: I′ := I′ ∪ {B ∪ {m} → C}
9: end for

10: end if
11: end for
12: output I′

Algorithm 6. addImplication
Input: context F on M,

implication i = A → B on M
Output: context F ′ with (·)F ′ ≡ (·)F ↑i
1: F ′ := ∅
2: for each C ∈ F do
3: if C respects A → B then
4: F ′ := F ′ ∪ {C}
5: else
6: for each D ∈ F with A � D do
7: F ′ := F ′ ∪ {C ∩ D}
8: end for
9: end if

10: end for
11: output F ′

A → B and thus each such F is contained in F ′ as well. Since S is the intersection of
all these F it must itself be (·)F ′

-closed. In the second case, there must be some F ∈ F
with S ⊆ F with A � F. Thus we obtain

S =
⋂

S⊆F′∈F F′
= (
⋂

S⊆F′∈F ,S respects A→B F′) ∩ (
⋂

S⊆F′∈F ,S violates A→B F′) ∩ F
= (
⋂

S⊆F′∈F ,S respects A→B F′) ∩ (
⋂

S⊆F′∈F ,S violates A→B F′ ∩ F)

and see that S is an intersection of (·)F ′
-closed sets and hence itself (·)F ′

-closed.
For the “only if” direction, consider an arbitrary (·)F ′

-closed set S . It can be easily
checked that all F ∈ F ′ respect A → B, hence also S does. Moreover, by definition,
every F ∈ F ′ is an intersection of elements of F and thus (·)F -closed. "#

4.4 Conversion of Representations

We conclude this paper by considering the problem of extracting minimal implicational
or contextual representations from black-box closure operators. While the problem of
finding a minimal implication base has been considered extensively, the dual task has
hardly been considered so far. In both cases, however, no output-polynomial algorithm
could be established.

We start by considering the dual task: given a black-box closure operator ϕ, how
can we compute F (ϕ)? Algorithm 7 displays a semi-naı̈ve approach which essentially
computes the row-reduced version of the context containing all ϕ-closed sets, but size-
minimizes the context on the way by progressing in reverse lectic order. This yields
us with an algorithm requiring O(2|M| · (tϕ + #F (ϕ)) time but only |M| space. If ϕ is
represented by an implication set I, this amounts to a time complexity of O(2|M| · |M| ·
(|I| + |F (ϕ)|)

Some Notes on Managing Closure Operators 289

Algorithm 7. extractContext
Input: closure operator ϕ on set M
Output: context F (ϕ)
1: F = ∅
2: for each F ⊆ M, enumerated

in inverse lectic order do
3: if F = ϕF then
4: if F � FF then
5: F = F ∪ {F}
6: end if
7: end if
8: end for
9: output F

Algorithm 8. contextToImpSet
Input: context F on set M
Output: implication set I((·)F)
1: compute IF
2: I = IF
3: for each mF ∈ M+ \ M do
4: I′ = ∅
5: for each A → B ∈ I do
6: I′ := I′ ∪ {A → B \ {mF}}
7: if mF ∈ B \ A then
8: for each C → D ∈ I with mF ∈ C do
9: I′ := I′ ∪ {A ∪ C \ {mF } → D}

10: end for
11: end if
12: end for
13: I := minimizeImpSet(I′)
14: end for
15: output I

Unfortunately, this still means that the algorithm is worst-case time-exponential w.r.t.
|M|, even if #F (ϕ) is “small” (i.e., polynomially bounded w.r.t. |M|). As a straightfor-
ward example, consider the closure operator ϕid with ϕid(A) = A for all A ⊆ M, for
which F (ϕid) = {M \ {m} | m ∈ M}. In fact, the question whether a better, tractable
behavior can be obtained at all has to be refuted: it follows rather directly from Thm 5.2
of [5], that no output-polynomial algorithm for this task can exist.2

Finally reviewing the more popular task of determining the stem base of a given
formal context, the following can be shown by an inspection of Ganter’s algorithm for
enumerating all pseudo-closed sets of a closure operator [6,7].

Proposition 16 (essentially Ganter 1984). Let ϕ be a closure operator on a set M for
which computing of closures can be performed in time tϕ and space sϕ. Then I(ϕ) can
be computed in time O(2|M| · (tϕ + #I(ϕ))) = O(2|M| · (tϕ + |M| · |I(ϕ)|)) and space O(sϕ).

For the case of ϕ being explicitly represented by a context, this implies that converting
a contextual representation into an implicational one can be done in time O(2|M| · (#F +
#I((·)F))) = O(2|M| · |M| · (|F | + |I((·)F)|)).

The results from Section 3 give rise to a quite different approach of computing
I((·)F) from a given F . Starting from the polynomial-size implicational representation
IF of a context F , one can one-by-one remove the auxiliary attributes mF by a reso-
lution procedure, while minimizing the intermediate implicational representations via

2 More precisely, the authors of [5] provide a representation of propositional Horn theories that
admits for polynomial computation of the associated closure operator but does not allow for
polynomial delay enumeration of “‘characteristic models”, that is intents of the corresponding
reduced context.

290 S. Rudolph

minimizeImpSet. This method is formally specified in Algorithm 8. While the correct-
ness of the algorithm is a rather immediate, establishing complexity results is the sub-
ject of ongoing work. Whether the algorithm turns out to be output-polynomial must,
however, be doubted given that this would imply the existence of an output-polynomial
algorithm for finding the transversal hypergraph of a given hypergraph (as first ob-
served in [12] and put in FCA terms in [3]), which has been an open problem for over
20 years now (see [4] for a comprehensive overview). Moreover, it has been shown that
no polynomial-delay algorithms for enumerating the stembase in lectic [2] or inverse
lectic [18] order can exist unless P = NP.

5 Conclusion

We have investigated runtime and memory requirements for diverse tasks related to
closure operators. The overview displayed in Table 1 reveals a certain duality between
the two representations forms – context or implication set – and ascertains that none
can be generally preferred to the other.

Table 1. Time complexities for different representations and tasks

context F implication set I

closure O(|F | · |M|) O(|I| · |M|)
turn to minimal F ′ O(|F |2 · |M|) O(2|M| · |M| · (|I| + |F ((·)I)|)
turn to minimal I′ O(2|M| · |M| · (|F | + |I((·)F)|)) O(|I|2 · |M|)
check if I′ finer O(|F | + |I′|) · |M| · 2|M| O(|I| · |I′| · |M|)
check if F ′ finer O(|F | · |F ′| · |M|) O(|F ′| · |I| · |M|)
check if I′ coarser O(|F | · |I′| · |M|) O(|I| · |I′| · |M|)
check if F ′ coarser O(|F | · |F ′| · |M|) O(|F ′| + |I|) · |M| · 2|M|

extract from ϕ O(|M| · |F (ϕ)| O(|M| · |F (ϕ)|
·(tϕ + |M| · |I(ϕ)|)) ·(tϕ + |M| · |I(ϕ)|))

add implication O(|F |2 · |M|) O(M)
add closed set O(M) O(|I| · |M|2)

There are many open questions left. On the theoretical side, central open problems
are if there are algorithms transforming contextual into implicational representations
and vice versa in output polynomial time. Note that a negative answer to this question
would also disprove the existence of polynomial-delay algorithms.

On the practical side, coming back to our initial motivation, it should be experimen-
tally investigated if variants of standard FCA algorithms can be improved by adding the
option of working with alternative closure operator representations.

Moreover, the proposed alternative algorithm for computing the Duquenne-Guigues
base should be evaluated against Ganter’s algorithm on typical datasets from practical
use cases, in order to assess its practical use.

Acknowledgements. The author is deeply indebted to the reviewers who gave ex-
tremely valuable hints to existing related work. This work has been supported by the
project ExpresST funded by the German Research Foundation (DFG).

Some Notes on Managing Closure Operators 291

References

1. Day, A.: The lattice theory of functional dependencies and normal decompositions. Interna-
tional Journal of Algebra and Computation 2(4), 409–431 (1992)

2. Distel, F.: Hardness of Enumerating Pseudo-intents in the Lectic Order. In: Kwuida, L.,
Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 124–137. Springer, Heidelberg (2010)

3. Distel, F., Sertkaya, B.: On the complexity of enumerating pseudo-intents. Discrete Applied
Mathematics 159(6), 450–466 (2011)

4. Eiter, T., Gottlob, G.: Hypergraph Transversal Computation and Related Problems in Logic
and AI. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI),
vol. 2424, pp. 549–564. Springer, Heidelberg (2002)

5. Eiter, T., Ibaraki, T., Makino, K.: Computing intersections of Horn theories for reasoning
with models. Tech. Rep. IFIG research report 9803, Universität Gießen (1998),
http://bibd.uni-giessen.de/ghtm/1998/uni/r980014.html

6. Ganter, B.: Two basic algorithms in concept analysis. Tech. Rep. 831, FB4, TH Darmstadt
(1984)

7. Ganter, B.: Two Basic Algorithms in Concept Analysis. In: Kwuida, L., Sertkaya, B. (eds.)
ICFCA 2010. LNCS, vol. 5986, pp. 312–340. Springer, Heidelberg (2010)

8. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer (1997)
9. Gottlob, G., Libkin, L.: Investigations on armstrong relations, dependency inference, and

excluded functional dependencies. Acta Cybernetica 9(4), 385–402 (1990)
10. Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un

tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)
11. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W.

(eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press (1972)
12. Kavvadias, D., Papadimitriou, C.H., Siedri, M.: On Horn Envelopes and Hypergraph Traver-

sals (Extended abstract). In: Ng, K.W., Balasubramanian, N.V., Raghavan, P., Chin, F.Y.L.
(eds.) ISAAC 1993. LNCS, vol. 762, pp. 399–405. Springer, Heidelberg (1993)

13. Kuznetsov, S.O.: On the intractability of computing the duquenne-guigues base. Journal of
Universal Computer Science 10(8), 927–933 (2004)

14. Kuznetsov, S.O., Obiedkov, S.: Counting Pseudo-intents and #P-completeness. In: Missaoui,
R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 306–308. Springer, Hei-
delberg (2006)

15. Kuznetsov, S.O., Obiedkov, S.A.: Some decision and counting problems of the duquenne-
guigues basis of implications. Discrete Applied Mathematics 156(11), 1994–2003 (2008)

16. Maier, D.: The Theory of Relational Databases. Computer Science Press (1983)
17. Mannila, H., Räihä, K.J.: Design of Relational Databases. Addison-Wesley (1992)
18. Babin, M.A., Kuznetsov, K.O.: Recognizing pseudo-intents is conp-complete. In:

Kryszkiewicz, M., Obiedkov, S. (eds.) Proc. 7th Int. Conf. on Concept Lattices and Their
Applications (CLA 2010). CEUR Workshop Proceedings, vol. 672. CEUR-WS.org (2010)

19. Rudolph, S.: Some Notes on Pseudo-closed Sets. In: Kuznetsov, S.O., Schmidt, S. (eds.)
ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 151–165. Springer, Heidelberg (2007)

20. Sertkaya, B.: Some Computational Problems Related to Pseudo-intents. In: Ferré, S.,
Rudolph, S. (eds.) ICFCA 2009. LNCS(LNAI), vol. 5548, pp. 130–145. Springer, Heidel-
berg (2009)

21. Sertkaya, B.: Towards the Complexity of Recognizing Pseudo-intents. In: Rudolph, S., Dau,
F., Kuznetsov, S.O. (eds.) ICCS 2009. LNCS, vol. 5662, pp. 284–292. Springer, Heidelberg
(2009)

22. Wild, M.: Implicational bases for finite closure systems. In: Lex, W. (ed.) Arbeitstagung
Begriffsanalyse und Künstliche Intelligenz, pp. 147–169. Springer (1991)

http://bibd.uni-giessen.de/ghtm/1998/uni/r980014.html

Distributed Formal Concept Analysis

Algorithms Based on an Iterative MapReduce
Framework

Biao Xu, Ruaiŕı de Fréin, Eric Robson, and Mı́cheál Ó Foghlú

Telecommunications Software & Systems Group,
Waterford Institute of Technology, Ireland

{bxu,rdefrein,erobson,mofoghlu}@tssg.org

Abstract. While many existing formal concept analysis algorithms are
efficient, they are typically unsuitable for distributed implementation.
Taking the MapReduce (MR) framework as our inspiration we intro-
duce a distributed approach for performing formal concept mining. Our
method has its novelty in that we use a light-weight MapReduce run-
time called Twister which is better suited to iterative algorithms than
recent distributed approaches. First, we describe the theoretical foun-
dations underpinning our distributed formal concept analysis approach.
Second, we provide a representative exemplar of how a classic central-
ized algorithm can be implemented in a distributed fashion using our
methodology: we modify Ganter’s classic algorithm by introducing a
family of MR� algorithms, namely MRGanter and MRGanter+ where
the prefix denotes the algorithm’s lineage. To evaluate the factors that
impact distributed algorithm performance, we compare our MR∗ algo-
rithms with the state-of-the-art. Experiments conducted on real datasets
demonstrate that MRGanter+ is efficient, scalable and an appealing al-
gorithm for distributed problems.

Keywords: Formal Concept Analysis, Distributed Mining, MapReduce.

1 Introduction

Formal Concept Analysis (FCA), pioneered in the 80’s by Wille [1], is a method
for extracting formal concepts –natural clusters of objects and attributes– from
binary object-attribute relational data. FCA has great appeal in the context of
knowledge discovery [2], information retrieval [3] and social networking analysis
applications [4] because arranging data as a concept lattice yields a powerful and
intuitive representation of the dataset [1,5].

The main short-coming of FCA –which has curtailed a more widespread up-
take of the approach– is that FCA becomes prohibitively time consuming as the
dataset size increases. However, association rules mining tends to deal with large
datasets. FCA relies on the fact that the set of concept intents is closed under
intersection [6], namely, a closure system. Appealingly, using this property, new
formal concepts may be extracted iteratively by extending an existing intent,

F. Domenach, D.I. Ignatov, and J. Poelmans (Eds.): ICFCA 2012, LNAI 7278, pp. 292–308, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributed FCA Algorithms: MRGanter 293

in practice, by intersecting it with a new attribute and shrinking the extent in
an iteration. While existing FCA algorithms perform this iterative procedure
efficiently for small centralized datasets, the recent explosion in dataset sizes,
privacy protection concerns, and the distributed nature of the systems that col-
lect this data, suggests that efficient distributed FCA algorithms are required.
In this paper we introduce a distributed FCA approach based on a light-weight
MapReduce runtime called Twister [7], which is suited to iterative algorithms,
scales well and reduces communication overhead.

1.1 Related Work

Some well-known algorithms for performing FCA include Ganter’s algorithm [8],
Lindig’s algorithm [9] and CloseByOne [10,11] and their variants [12,13]. Gan-
ter introduces lectic ordering so that all possible attribute subsets of the data
do not have to be scanned when performing FCA. Ganter’s algorithm computes
concepts iteratively based on the previous concept without incurring exponential
memory requirements. In contrast, CloseByOne produces many concepts in each
iteration. Bordat’s algorithm [14] runs in almost the same amount of time as Gan-
ter’s algorithm, however, it takes a local concept generation approach. Bordat’s
algorithm introduces a data structure to store previously found concepts, which
results in considerable time savings. Berry proposes an efficient algorithm based
on Bordat’s approach which requires a data structure of exponential size in [15].
A comparison of theoretical and empirical complexity of many well-known FCA
algorithms is given in [16]. In addition, some useful principles for evaluating al-
gorithm performance for sparse and dense data are suggested by Kuznetsov and
Obiedkov; We consider data density when evaluating our approach.

The main disadvantage of the batch algorithms discussed above is that they re-
quire that the entire lattice is reconstructed from scratch if the database changes.
Incremental algorithms address this problem by updating the lattice structure
when a new object is added to database. Incremental approaches have been
made popular by Norris [17], Dowling [18], Godin et al. [19], Capineto and Ro-
mano [20], Valtchev et al. [21] and Yu et al. [22]. In recent years, to reduce
concept enumeration time, some parallel and distributed algorithms have been
proposed. Krajca et al., proposed a parallel version based on CloseByOne [13].
The first distributed algorithm [23] was developed by Krajca and Vychodil in
2009 using the MapReduce framework [24]. In order to encourage more wide-
spread usage of FCA, beyond the traditional FCA audience, we propose the
development and implementation of efficient, distributed FCA algorithms. Dis-
tributed FCA is appealing as distributed approaches that can take advantage of
cloud infrastructures to reduce enumeration time, are attractive for practitioners.

1.2 Contributions

We utilize the MapReduce framework in this paper to execute distributed al-
gorithms on different nodes. Several implementations of MapReduce have been

294 B. Xu et al.

developed by a number of companies and organizations, such as Hadoop MapRe-
duce by Apache1, and Twister Iterative MapReduce2, since its introduction by
Google in 2004. A crucial distinction between the present paper and the work of
Krajca and Vychodil [23] is that we use a Twister implementation of MapReduce.
Twister supports iterative algorithms [7]: we leverage this property to reduce
the computation time of our distributed FCA algorithms. In contrast, Hadoop
architecture is designed for performing single step MapReduce. We implement
new distributed versions (MRGanter and MRGanter+) of Ganter’s algorithm
and empirically evaluate their performance. In order to provide an established
and credible benchmark under equivalent experimental conditions, MRCbo, the
distributed version of CloseByOne is implemented as well using Twister.

This paper is organized as follows. Section 2 reviews Formal Concept Analysis
and Ganter’s algorithm. The theoretical underpinnings for implementing FCA
using distributed databases are described in Section 3 to support our approach.
Our main contribution is a set of Twister-based distributed versions of Gan-
ter’s algorithm. Section 4 presents an implementation overview and comparison
of MapReduce, Hadoop and Twister. Empirical evaluation of the algorithms
proposed in this paper is performed using datasets from the UCI KDD machine
learning repository; experimental results are discussed in Section 5. In summary,
MRGanter+ performs favourably in comparison to centralized versions.

2 Formal Concept Analysis

We continue by introducing the notational conventions used in the sequel. Let
O and P denote a finite set of objects and attributes respectively. The data
ensemble, S, may be arranged in Boolean matrix form as follows: the objects
and attributes are listed along the rows and columns of the matrix respectively;
The symbol × is entered in a row-column position to denote an object has that
attribute; An empty entry denotes that the object does not have that attribute.
Formally, this matrix describes the binary relation between the sets O and P .
The object X has attribute Y if (X,Y) ∈ I, X ⊆ O and Y ⊆ P . The triple
(O,P, I) is called a formal context. For example, in Table 1, O = {1, 2, 3, 4, 5, 6}
and P = {a, b, c, d, e, f, g}, thus object {2} has attributes {a, c, e, g}. We define
a derivation operator on X and Y where X ⊆ O and Y ⊆ P as:

X ′ = {p ∈ P | ∀t ∈ O : (t, p) ∈ I} (1)

Y ′ = {t ∈ O | ∀p ∈ P : (t, p) ∈ I}. (2)

The operation X ′ generates the set of attributes which are common to objects
in X . Similarly, Y ′ generates the set of objects which are common to attributes
in Y . A pair 〈X,Y 〉 is called a formal concept of (O,P, I) if and only if X ⊆ O,
Y ⊆ P , X ′ = Y , and Y ′ = X . Given a formal concept 〈X,Y 〉, X and Y are its
extent and intent. The crucial property here is that the mappings X �→ X ′′ and
1 http://hadoop.apache.org/mapreduce/
2 http://www.iterativemapreduce.org/

Distributed FCA Algorithms: MRGanter 295

Table 1. The symbol × indicates that an object has the corresponding attribute

a b c d e f g

1 × × × ×
2 × × × ×
3 × × × × ×
4 × × ×
5 × × × ×
6 × × × ×

Y �→ Y ′′, commonly known as closure operators, hold. The closure operator can
be used to calculate the extent and intent that form a formal concept.

Establishing some notion of concept ordering, that is engendering a sub/super-
concept hierarchy, is crucial in what follows. Given X1, X2 ⊆ O and Y1, Y2 ⊆ P
the concepts of a context are ordered as follows: 〈X1, Y1〉 � 〈X2, Y2〉: ⇐⇒ X1 ⊆
X2 ⇐⇒ Y2 ⊆ Y1, an ordering which is interesting because it facilitates the
iterative formation of a complete lattice which is called the concept lattice of
the context [6]. In the following sections we describe algorithms for concept
lattice formation, namely Ganter’s algorithm (also known as NextClosure) and
CloseByOne. We then introduce our distributed extensions of these approaches.

2.1 Ganter: Iterative Closure Mining Algorithm

The NextClosure algorithm describes a method for generating new closures which
guarantees every closure is enumerated once. Closures are generated iteratively
using a pre-defined order, namely lectic ordering. The set of all formal concepts
is denoted by F . Let us arrange the elements of P = {p1, · · · , pi, · · · , pm} in an
arbitrary linear order p1 < p2 < · · · < pi < . . . < pm, where m is the cardinality
of the attribute set, P . The decision to use lectic ordering dictates that any
arbitrarily chosen subset of P is also ordered according to the lectic ordering
which was defined ab initio. Given two subsets Y1, Y2 ⊆ P , Y1 is lectically
smaller than Y2 if the smallest element in which Y1 and Y2 differ belongs to Y2.

Y1 ≤ Y2 :⇐⇒ ∃pi(pi ∈ Y2, pi /∈ Y1, ∀pj<pi(pj ∈ Y1 ⇐⇒ pj ∈ Y2)). (3)

NextClosure uses (Eqn. 3) as a feasibility condition for accepting new candidate
formal concepts. Typically this difference in set membership is made more ex-
plicit by denoting the smallest element, pi, in which the set Y1 and Y2 differ.

Y1 ≤pi Y2 :⇐⇒ ∃pi(pi ∈ Y2, pi /∈ Y1, ∀pj<pi(pj ∈ Y1 ⇐⇒ pj ∈ Y2)). (4)

To fix ideas, if the order of P = {a, b, c, d, e, f, g} is defined as a < b < c < d <
e < f < g, and two subsets of P , or itemsets, Y1 = {a, c, e, g} and Y2 = {a, b, e, g}
are examined then Y1 ≤ Y2 because the smallest element in which the two sets
differ is b and this element belongs to Y2.

Each subset Y ⊆ P may yield a closure, Y ′′ ⊆ P ; The NextClosure algo-
rithm attempts to find all closures systematically by exploiting lectic ordering.

296 B. Xu et al.

Table 2. Formal concepts mined from Table 1, including empty concepts

F1: 〈{1, 2, 3, 4, 5, 6}, {}〉 F8: 〈{1, 3, 4, 6}, {b}〉 F15: 〈{1, 2, 5}, {a}〉
F2: 〈{1, 3, 5, 6}, {f}〉 F9: 〈{1, 3, 6}, {b, f}〉 F16: 〈{2, 5}, {a, e}〉
F3: 〈{2, 4, 5}, {e}〉 F10: 〈{1, 3, 4}, {b, d}〉 F17: 〈{1, 5}, {a, d, f}〉
F4: 〈{1, 3, 4, 5}, {d}〉 F11: 〈{1, 3}, {b, d, f}〉 F18: 〈{5}, {a, d, e, f}〉
F5: 〈{1, 3, 5}, {d, f}〉 F12: 〈{4}, {b, d, e}〉 F19: 〈{2}, {a, c, e, g}〉
F6: 〈{4, 5}, {d, e}〉 F13: 〈{3 6}, {b, c, f, g}〉 F20: 〈{1}, {a, b, d, f}〉
F7: 〈{2, 3, 6}, {c, g}〉 F14: 〈{3}, {b, c, d, f, g}〉 F21: 〈{}, {a, b, c, d, e, f, g}〉

Let the ordering of P be p1 < p2 < . . . < pi < . . . < pm, and consider the subset
Y ⊆ P . The generative operation is the ⊕-operation: a new intent is generated
by applying ⊕ on an existing intent and an attribute, and is defined as

Y ⊕ pi := ((Y ∩ {p1, . . . , pi−1}) ∪ {pi})′′, where Y ⊆ P and pi ∈ P. (5)

NextClosure then compares the new candidate formal concept with the previous
concept. If the condition in (Eqn. 4) is satisfied the candidate concept produced
by (Eqn. 5) is kept and added to the lattice.

The ⊕-operator in (Eqn. 5) consists of intersection, union and closure opera-
tions; Lectic ordering and the associated complexity of these operations explains
why NextClosure’s ordered approach incurs high computational expense. Con-
sequently the largest dataset-size NextClosure can practically process is small.

Example 1. Consider the formal context in Table 1. Assume we have a con-
cept 〈{1, 5}, {a, d, f}〉. We take the attribute set, Y = {a, d, f}, and calculate,
Y ⊕ e. First, we compute, {a, d, f} ∩ {a, b, c, d} = {a, d}, then we append e
and generate {a, d} ∪ {e} = {a, d, e}. Performing {a, d, f} ⊕ e = {a, d, e}′′
yields the set, {a, d, e, f}. To demonstrate the role of lectic ordering, we compute
Y ⊕c = {a, c, e}. According to the feasibility condition in (Eqn. 4), {a, d, e, f} ≤c

{a, c, e}. Thus, the set, {a, c, e}, is added to the concept lattice, F . By repeat-
ing this process, NextClosure determines that there are 21 formal concepts in
the concept lattice representation of the formal context in Table 1. The set of
concepts, F , is listed in Table 2.

Pseudo code for NextClosure is described in the Algorithm 1 and 2 as back-
ground to our distributed approach. Algorithm 1 applies the closure operator
on the null attribute set and generates the first intent, Y , which is the base
for all subsequent formal concepts. New concepts are generated in turn by call-
ing Algorithm 2 and concatenating the resultant concepts to the set of formal
concepts, F . As each candidate intent is extended with new attributes, the in-
tent for the last iteration of this loop consists of the complete set of attributes.
This feature is used to terminate the loop (in Line 2 of the Algorithm 1). Al-
gorithm 2 accepts the formal context triple, (O,P, I) and current intent, Y , as
inputs. By convention, the attribute set P is sorted in descending order. The
⊕-operator described in (Eqn. 5) is applied to produce candidate formal con-
cepts. The concept feasibility condition (Eqn. 4) is used to verify whether a

Distributed FCA Algorithms: MRGanter 297

Algorithm 1. AllClosure
Input: ∅: null attribute set.
Output: F : Formal concepts set.
1: Y ← ∅′′;
2: while Y is not the last closure do
3: Y ← NextClosure();
4: F ← F ∪ Y ;
5: end while
6: return F

Algorithm 2. NextClosure
Input: O,P, I, Y : formal context & current

intent.
Output: Y .
1: for pi from pm down to p1 do
2: if pi /∈ Y then
3: candidate ← Y ⊕ pi;
4: if candidate ≤pi

Y then

5: Y ← candidate;
6: break;
7: end if
8: end if
9: end for
10: return Y

new candidate should be added to the set of formal concepts, F . The approach
taken in the CloseByOne algorithm is similar in spirit to the approach taken by
the NextClosure algorithm: CloseByOne generates new formal concepts based
on concept(s) generated in the previous iteration and tests their feasibility us-
ing the operator, ≤pi . The crucial difference is that the CloseByOne algorithm
generates many concepts in each iteration. CloseByOne terminates when there
are no more concepts that satisfy (Eqn. 4). In short, NextClosure only finds the
first feasible formal concept in each iteration whereas CloseByOne potentially
generates many. As a consequence, CloseByOne requires far fewer iterations.

The appeal of NextClosure, and explanation for our desire to make it more
efficient lies in its thoroughness; the guarantee of a complete lattice structure
which is a consequence of the main theorem of Formal Concept Analysis [6].
This thoroughness is due to lectic ordering and the iterative approach deployed
by NextClosure; however, thoroughness comes at the cost of high complexity.
The advent of efficient mechanisms for dealing with iterative algorithms using
MapReduce captured by Twister allow us to couple NextClosure’s thoroughness
with a practical distributed implementation in this paper.

3 Distributed Algorithms for Formal Concept Mining

We continue by describing two methods for performing distributed NextClosure,
namely, MRGanter and MRGanter+. An introduction to Twister is deferred
to Section 4. We start by describing the properties of a partitioned dataset
compared to its unpartitioned form. In many cases these properties are simply
restatements of the properties of the derivations operators.

Given a dataset S, we partition its objects into n subsets and distribute the
subsets over n different nodes. Without loss of generality, it is convenient to limit
n = 2 here. We denote the partitions by S1 and S2. Alternatively we can think
in terms of formal contexts and write the formal context, (O,P, I), in terms of
the partitioned formal contexts (OS1 , P, IS1) and (OS2 , P, IS2). To fix ideas, we
use the dataset in Table 1 as an exemplar and generate the partitions in Table 3.

298 B. Xu et al.

Table 3. Partitioned datasets derived from Table 1, S1 and S2

S1 or (OS1 , P, IS1)

a b c d e f g

1 × × × ×
2 × × × ×
3 × × × × ×

S2 or (OS2 , P, IS2)

a b c d e f g

4 × × ×
5 × × × ×
6 × × × ×

The partitions are non-overlapping: the intersection of the partitions is the null
set, S1∩S2 = ∅ and their union gives the full dataset S = S1∪S2. It follows that
the partitions, S1, S2, have the same attributes sets, P , as the entire dataset S,
however, the set of objects is different in each partition, e.g. OS1 and OS2 . Let
YS , YS1 and YS2 denote an arbitrary attribute set Y with respect to the entire
dataset S, and each of its partitions S1 and S2 respectively. By construction
they are equivalent: YS ≡ YS1 ≡ YS2 . Similarly, Y ′

S , Y
′
S1

and Y ′
S2

are the sets of
objects derived by the derivation operation in each of the partitions S1, S2 and
the entire dataset S respectively.

Property 1. Given the formal context, (O,P, I), the two partitions (OS1 , P, IS1)
and (OS2 , P, IS2) and an arbitrary itemset, Y ⊆ P , the property Y ′

S = Y ′
S1
∪ Y ′

S2

holds: the union of the sets of objects generated by the derivation of the attribute
set Y in each of the partitions is equivalent to the set of objects generated by the
derivation of the attribute set over the entire dataset, S.

Appealing to the definition of the derivation operator proposed by Wille in [1],
the set, Y ′

S , is a subset of O, Y ′
S ⊆ O. Moreover, Y ′

S1
⊆ OS1 and Y ′

S2
⊆ OS2 .

Given S1 ∪ S2 = S and S1 ∩ S2 = ∅, it follows that, OS1 ∪ OS2 = O and
OS1 ∩OS2 = ∅; Therefore, Y ′

S1
⊆ Y ′

S and Y ′
S2
⊆ Y ′

S . Finally, Y
′
S1
∪ Y ′

S2
≡ Y ′

S . As
a counterexample, an object t that exists in Y ′

S , but not in Y ′
S1

or Y ′
S2
, cannot

exist because OS1 ∪ OS2 = O and OS1 ∩ OS2 = ∅ and YS = YS1 = YS2 . If t is
in Y ′

S it must appear in Y ′
S1

or Y ′
S2
. In short, Property 1 allows us to process

all objects independently: the objects can be distributed and processed in an
arbitrary order and this will not affect the result of Y ′. Property 1 is trivially
extended to the case of n partitions. Now we describe how formal concepts can
be combined from different partitions.

Property 2. Given the formal context, (O,P, I), the two partitions (OS1 , P, IS1)
and (OS2 , P, IS2) and an arbitrary itemset, Y ⊆ P , the property Y ′′

S = Y ′′
S1
∩ Y ′′

S2

holds: The intersection of the closures of the attribute set, Y , with respect to
each of the partitions S1 and S2 is equivalent to the closure of the attribute set,
Y , with respect to the entire dataset S.

By the definition of the partition construction method above, S1 ∪ S2 = S,
which implies that, S1 ⊂ S and S2 ⊂ S. Recall that, Y ′

S1
⊂ Y ′

S and Y ′
S2
⊂ Y ′

S ,
and from Property 1 we have that Y ′

S = Y ′
S1
∪ Y ′

S2
. Appealing to the properties

of the derivation operators, in [1], we have, Y ′′
S1

⊇ Y ′′
S and Y ′′

S2
⊇ Y ′′

S . It is
clear that Y ′′

S1
and Y ′′

S2
need not equal Y ′′

S , but by the definition of a closure

Distributed FCA Algorithms: MRGanter 299

(Y ′
S1
∪ Y ′

S2
)′ = (Y ′

S)
′ = YS , thus, (Y

′
S1
∪ Y ′

S2
)′ = Y ′′

S1
∩ Y ′′

S2
follows trivially from

the definition of the derivations operators.

Example 2. Consider the following example. Taking itemset Y = {b, d}. We
derive Y ′′

S1
= {b, d, f} from the first partition S1, and Y ′′

S2
= {b, d, e} from S2.

We derive Y ′′
S = {b, d} for the entire dataset S. Therefore Y ′′

S = Y ′′
S1
∩ Y ′′

S2
.

Theorem 1. Given a set of attributes Y , Y ⊂ P . Let FY
S1

and FY
S2

be the sets
of closures based on Y in relation to S1 and S2 respectively. Then the closure
set of Y in relation to S can be calculated from: FY

S = FY
S1
∩ FY

S2

This is simply a consequence of Property 2 as, FY
S = Y ′′

S = Y ′′
S1
∩Y ′′

S2
= FY

S1
∩FY

S2

and YS ≡ YS1 ≡ YS2 by definition of the partition.

Example 3. Consider again Example 2. Appealing to Theorem 1, the formal
concept with respect to the entire data set is the intersection of the formal con-
cepts from each partition FY

S = FY
S1
∩ FY

S2
= {b,d,f} ∩ {b,d,e}={b,d}.

We denote the k-th partition as Sk and then propose:

Theorem 2. Given the closures FY
S1
, . . . , FY

Sn
from n disjoint partitions, FY

S =

FY
S1
∩ . . . ∩ FY

Sn
.

A trivial inductive argument establishes that Theorem 2 holds. Theorem 1 proves
the n = 2 case. Theorem 2 follows by recognizing that the dataset S at the (k−1)-
th step of the proof can be thought as of consisting of two partitions only, the
partition S1 ∪ · · · ∪ Sk−1 and a second partition Sk.

Calling on nothing more complex than: 1) the properties of the derivation
operators, and 2) construction of non-overlapping partitions, we leverage The-
orem 2 in order to apply the MapReduce, specifically the Twister variant, to
calculate closures from arbitrary number of distributed nodes sure in the knowl-
edge that the thoroughness of NextClosure is preserved.

3.1 MRGanter

To address the dataset size limitations imposed on NextClosure –owing to the
complexity of the ⊕-operation– we deploy FCA across multiple nodes to reduce
the execution time. We demonstrate how decompose NextClosure so that each
sub-task is executed in parallel. In Algorithm 2, there were two stages involved in
computing NextClosure: 1) computing a new candidate closure, and 2) making a
judgment on whether to add it to the evaluated formal concepts. In MapReduce
parlance, computing a new candidate closure corresponds to the map stage, and
validating its feasibility corresponds to the reduce phase. In this paper, we only
calculate the intent of a formal concept. The variables and constants used by
distributed algorithms are summarized in Table 4. The main operation in the
merging function is the intersection operator, which is applied on the set of local
closures L k generated at each node. Algorithm 3 gives the pseudo code for the
merging function based on Theorem 2. To describe the merging operation, we

300 B. Xu et al.

Table 4. Variables and constants used in distributed FCA

Variables/Constants Description

p i an attribute in P, where i = 1, · · · ,m
L k complete set of local closures in data partition k, k =

1, · · · , n.
l i an intent in L k which is derived from p i
d the intent produced in the previous iteration
f the newly generated intent
G a container for storing newly generated intents

Algorithm 3. Merging function
Input: p i, L k, f.
Output: f .
1: l i ← the local closure in L k in terms of

p i;
2: f ← Ψ(l i, f);
3: return f

Algorithm 4. Map: MRGanter
Input: d.
Output: (d, L k).
1: for p i from p m down to p 1 do
2: if p i is not in d then
3: l i ← d ⊕ p i;
4: associate l i with p i;
5: L k ← L k ∪ l i;
6: end if
7: return (d, L k);
8: end for

Algorithm 5. Reduce: MRGanter
Input: (d,L k).
Output: f.
1: for p i in P do
2: f ← initialize new intent;
3: for i from 1 up to m do
4: f ← merging(p i, L k, f);
5: end for
6: if f ≤p i d then
7: break;
8: else
9: continue;
10: end if
11: end for
12: return f

Algorithm 6. Reduce: MRGan-
ter+
Input: (d, L k).
Output: G.
1: H ← initialize a two-level hash table;
2: for pi in P do
3: f ← initialize new intent;
4: for i from 1 up to m do
5: f ← merging(p i, L k, f);
6: end for
7: if f is not in H then
8: add f into H;
9: add f into G;
10: end if
11: end for
12: return G

introduce the notation, Ψ(l i, f) =l i ∩ f, which acts on two intents. The merging
function is deployed at the reduce phase and only processes local closures derived
from the same attribute (Line 1).

The Map phase described in the Algorithm 4 produces all local closures. The
output consists of the previous intent d and a set of local intents L k. In order
to be used in the merging function the attribute which was used to form local
closures should be recorded and passed (Line 4). All pairs with the same key,
d, are sent to the same reducer. All local intents are used to form global intents
and then filtered by the closure validation condition (Line 6 in Algorithm 5).
Algorithm 5 accepts (d,L k) from the k-th mappers (see Section 4), where k =
1, · · · , n. Only pairs with the same key, d, are accepted by a Reducer. Line 4

Distributed FCA Algorithms: MRGanter 301

〈atr1, localClosure1〉

〈atrj, localClosurej〉

〈atr1, localClosure1〉

〈atri, localClosurei〉

Fig. 1. MRGanter work flow: static data is loaded at the start of the procedure (labeled
by S) and the dynamic data (Closures produced during each iteration) is passed and
used in the next iteration (labeled by D)

generates an candidate closure f. This candidate is then validated. Successful
candidates are outputted as a global closure f.

Fig. 1 depicits the iterative flow of control of MRGanter; the lines marked
with “S” import static data from each partition, while the lines marked with
“D” configure each map with the previous closure. Each new closure is tested
to see if it is the last, e.g. it contains all attributes, P . If this condition is not
met MRGanter continues. We present a worked example using the dataset in Ta-
ble 3. Table 5, does not illustrate all results due to space limitations. MRGanter
performs 20 iterations to determine all concepts.

3.2 MRGanter+

NextClosure calculates closures in lectic ordering to ensure every concept appears
only once. This approach allows a single concept to be tested with the closure
validation condition during each iteration. This is efficient when the algorithm
runs on a single machine. For multi-machine computation, the extra computation
and redundancy resulting from keeping only one concept after each iteration
across many machines is costly. We modify NextClosure to reduce the number
of iterations and name the corresponding distributed algorithm MRGanter+.

Rather than using redundancy checking, we keep as many closures as possi-
ble in each iteration; All closures are maintained and used to generate the next
batch of closures. To this end, we modify Algorithm 5: the Map algorithm re-
mains the same as in Algorithm 4. Algorithm 6 describes the ReduceTask for

302 B. Xu et al.

Table 5. MRGanter: Only single a in-
tent (bold) produced per iteration.

d p i l i from S1 l i from S2 f

∅
g {c,g} {b,c,f,g} {c,g}
f {b,d,f} {f} {f}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{f}
g {b,c,d,f,g} {b,c,f,g} {b,c,f,g}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{e}
g {a,c,e,g} {a,. . . ,g} {a,c,e,g}
f {a,. . . ,g} {a,d,e,f} {a,d,e,f}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{d}
g {b,c,d,f,g} {a,. . . ,g} {b,c,d,f,g}
f {b,d,f} {a,d,e,f} {d,f}
e {a,. . . ,g} {d,e} {d,e}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

Table 6. MRGanter+: Many intents
(bold) produced per iteration

d p i l i from S1 l i from S2 f

∅
g {c,g} {b,c,f,g} {c,g}
f {b,d,f} {f} {f}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{cg}
f {b,c,d,f,g} {b,c,f,g} {b,c,f,g}
e {a,c,e,g} {a,. . . ,g} {a,c,e,g}
d {b,c,d,f,g} {a,. . . ,g} {b,c,d,f,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{f}
g {b,c,d,f,g} {b,c,f,g} {b,c,f,g}
e {a,c,e,g} {d,e} {e}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

{e}
g {a,c,e,g} {a,. . . ,g} {a,c,e,g}
f {a,. . . ,g} {a,d,e,f} {a,d,e,f}
d {b,d,f} {d,e} {d}
c {c,g} {b,c,f,g} {c,g}
b {b,d,f} {b} {b}
a {a} {a,d,e,f} {a}

MRGanter+. The Reduce in MRGanter+ merges local closures first in Line 5,
and then recursively examines if they already exist in the set of global formal
concepts H (Line 7). The set H is used to fast index and search a specified clo-
sure; it is designed as a two-level hash table to reduce its costs. The first level is
indexed by the head attribute of the closure, while the second level is indexed
by the length of the closure. New closures are stored in G. We present a running
example based on the dataset in Table 3 for comparison. MRGanter+ produces
many intents in each iteration. New intents are kept if they are not already in
H. Notably, MRGanter+ requires 3 iterations to mine all concepts. Moreover,
we implement CloseByOne proposed by Krajca and Vychodil in [23] based on
the MapReduce framework and call it, MRCbo. Comparing MRGanter+ with
MRCbo, we demonstrate that MRGanter+ typically generates more concepts in
each iteration and uses fewer iterations. Detailed analysis is given in Section 5.2.

4 Twister MapReduce

The MapReduce framework adopts a divide-conquer strategy to deal with huge
datasets and is applicable to many classes of problems [25]. A large number of
computers, collectively referred to as a cluster, are used to run the algorithm.

Distributed FCA Algorithms: MRGanter 303

MapReduce was inspired by the map and reduce functions commonly used
in functional programming, for example Lisp. It was introduced by Google [24]
and then implemented by many companies (Google, Yahoo!) and organizations
(Apache). These implementations provide automatic parallelization and distri-
bution, fault-tolerance, I/O scheduling, status and monitoring. The only demand
made of the user is the formulation of the problem in terms of map and reduce
functions. We use the terminology mapper and reducer when we refer to the
map and reduce function respectively. The map function takes an input pair and
produces a set of intermediate key/value pairs. The MapReduce library provides
the ability to acquire input pairs from files or databases which are stored in dis-
tributed way. Additionally, it can group all intermediate values associated with
the same intermediate key I and pass them to the same reducer. The reduce
function accepts an intermediate key I and a set of values associated with I. It
merges these values to form a possibly smaller set of values.

Twister [7] was designed to enhance MapReduce’s functionality by efficiently
supporting iterative algorithms. Twister uses a public/subscribemessaging infras-
tructure for communication and data transfer, and introduces long running map/
reduce tasks which can be re-used in different iterations. These long running tasks,
which last for the duration of the entire computation, ensures that Twister avoids
reading static data in each execution of MapReduce; a considerable saving. For
iterative algorithms, Twister categorizes data as being either static or dynamic.
Static data is the distributed data in local machines. Dynamic data is typically
the data produced by the previous iteration. Twister’s configure phase allows the
specification of where the mapper reads the static data. Calculation is performed
cyclically based upon the dynamic and static data. All communication between
the mappers and the reducers is handled by a broker network3.

Unlike Twister, Hadoop focuses on single step MapReduce and lacks built-in
support for iterative programs. For iterative algorithms, Hadoop MapReduce
chains multiple jobs together. The output of a previous MapReduce task is used
as the input for the next MapReduce task4. This approach is suboptimal; it
incurs the additional cost of repetitively applying MapReduce –the disadvantage
is that new map/reduce tasks are created repetitively for different iterations.
This incurs considerable performance overhead costs.

5 Evaluation

We provide evidence of the effectiveness and scalability of our algorithm in this
section. First we describe the experimental environment and the dataset char-
acteristics for the datasets used. Then, we describe our experimental results.

5.1 Test Environment and Datasets

MRGanter and MRGanter+ are implemented in Java using the Twister runtime
as the distributed environment. In addition, MRCbo, a distributed version of

3 NaradaBrokering is used in this paper http://www.naradabrokering.org/
4 http://hadooptutorial.wikispaces.com/Iterative+MapReduce+and+Counters

304 B. Xu et al.

Table 7. UCI dataset characteristics: numbers of objects, attributes, and density

Dataset mushroom anon-web census-income

objects 8124 32711 103950

attributes 125 294 133

density 17.36% 1.03% 6.7%

Table 8. Execution time: Distributed algorithms are the fastest (in seconds)

Dataset mushroom anon-web census-income
concepts 219010 129009 96531

NextClosure 618 14671 18230
CloseByOne 2543 656 7465
MRGanter 20269(5 nodes) 20110 (3 nodes) 9654 (11 nodes)

MRCbo 241 (11 nodes) 693 (11 nodes) 803 (11 nodes)
MRGanter+ 198 (9 nodes) 496 (9 nodes) 358 (11 nodes)

CloseByOne proposed by Krajca and Vychodil [23] is implemented using the
Twister model in order to provide a fair comparison with the algorithms pro-
posed in the present paper. To illustrate the performance improvement of our
distributed approach, we also evaluate NextClosure and CloseByOne.

The experiments were run on the Amazon EC2 cloud computing platform.
We used High-CPU Medium Instances which had 1.7 GB of memory, 5 EC2
Compute Units (2 virtual cores with 2.5 EC2 Compute Units each), 350 GB of
local instance storage, and a 32-bit platform. We selected 3 datasets from UCI
KDD machine learning repository, mushroom, anon-web, and census-income for
this evaluation5. These datasets have 8124, 32711, 103950 records and 125, 294,
133 attributes respectively. We used the percentage of 1s to measure the dataset
density (see row 4 in Table 7). CPU time was used as the metric for comparing
the performance of each of the algorithm. The number of iterations used by each
algorithms was also recorded in Table 9.

5.2 Results and Analysis

In Table 8, we present the best test results for the centralized algorithms,
NextClosure and CloseByOne, and the distributed algorithms, MRGanter, MR-
Cbo and MRGanter+. In short, it is clear that MRGanter+ has the best overall
performance for the mushroom, anon-web and census datasets when 9 nodes and
11 nodes are used respectively. In comparison with NextClosure, MRGanter+
demonstrates a 97.6% time saving improvement. MRGanter+ runs 102 times
faster than MRGanter and 1.4 times faster than MRCbo. MRCbo runs much
faster than CloseByOne when 11 nodes are used. It presents a 90.5% saving in
time when dealing with the mushroom dataset compared to CloseByOne, but

5 http://archive.ics.uci.edu/ml/index.html

Distributed FCA Algorithms: MRGanter 305

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

Nodes (Count)

C
P

U
 T

im
e

(S
ec

on
d)

MRGanter+

MRCbo

MRGanter

Fig. 2. Mushroom dataset: comparison
of MRGanter+, MRCbo and MRGanter.
MRGanter+ outperforms MRCbo and
MRGanter when dense data is processed.

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

Nodes (Count)

C
P

U
 T

im
e

(S
ec

on
d)

MRGanter+

MRCbo

MRGanter

Fig. 3. Anon-web dataset: comparison
of MRGanter+, MRCbo and MRGanter.
MRGanter+ is faster when more than 3
nodes are used.

there is not much of difference when the anon-web dataset is processed. MR-
Ganter takes the longest time to calculate the formal concepts for both the
mushroom and anon-web datasets. It is much slower than even the centralized
version, NextClosure. The census-income dataset is an exception because MR-
Ganter saves up to half the time with 11 nodes. Among the MR∗ algorithms and
centralized algorithms, MRGanter+ achieves the best performance.

Taking scalability into account, we tested MR∗ algorithms on a range of nodes
to demonstrate the ability of the algorithms to decrease computation time by
utilizing more computers. These results are presented in Fig. 2, 3 and 4 for each
dataset.

In Fig. 2, MRCbo is slower than MRGanter+ although this curve decreases
faster than MRGanter+ when we increase the number of nodes. The execu-
tion time of MRGanter+ is fast even on a single node and the execution time
keeps decreasing up to the maximum number of nodes, 11. The performance of
MRGanter is not beneficially affected by increasing the number of nodes. One
explanation for this is the overhead incurred by distributing the computation, for
example network communication overhead. This is markedly different from MR-
Ganter+, because MRGanter+ produces substantially more intermediate data
than MRGanter and MRCbo. Moreover, there is additional computation in-
volved in the distributed algorithms in comparison with the centralized versions
of these algorithms. Consider, for instance, the extra operation needed by the
merging operation. The best number of nodes, in terms of performance speed,
depends on the density characteristics of the dataset.

Fig. 3 demonstrates that MRGanter+ outperforms MRGanter for the
anon-web dataset. One reason for this performance improvement is that both al-
gorithms produce different numbers of concepts during each iteration. Table 9 in-
dicates that MRGanter+ requires 12, 11 and 9 iterations for each of the datasets,
whereas MRGanter requires 219010, 129009 and 96531 iterations to obtain all

306 B. Xu et al.

0 2 4 6 8 10 12
10

2

10
3

10
4

10
5

Nodes (Count)

C
P

U
 T

im
e

(S
ec

on
d)

MRGanter+

MRCbo

MRGanter

Fig. 4. Census dataset: comparison of MR-
Ganter+, MRCbo and MRGanter. MRGan-
ter+ is fastest when a large dataset is
processed.

Table 9. Number of iterations required
for each of the three datasets

Dataset mushroom anon-web census-
income

concepts 219010 129009 96531

NextClosure 219010 129009 96531
CloseByOne 14 11 11
MRGanter 219010 129009 96531

MRCbo 14 11 11
MRGanter+ 12 11 9

concepts. These additional iterations incur higher network communication costs.
Fig. 4 demonstrates that this is also the case for the census dataset. In addition,
the curves in Fig. 4 are steeper than the curves in Fig. 2 and 3. These figures
give evidence that the performance of the MR∗ algorithms is related to size and
density of the data. Based on these results we posit that MR∗ algorithms scale
well for large and sparse datasets. This evidence suggests that MR∗ algorithms
may be a viable candidate tool for handling large datasets, particularly when it
is impractical to use a traditional centralized technique.

Classical formal concept computing methods usually act on, and have local ac-
cess to the entire database. Network communication is the primary concern when
developing distributed FCA approaches: Frequent requests to remote databases
incur significant time and resource costs. Performance improvements of the al-
gorithms proposed in this paper may potentially arise from preprocessing the
dataset so that the dataset is partitioned in a more efficient manner. One direc-
tion for improving these algorithms lies in making the partitions more even, in
terms of density, so that the complexity is distributed more equably. In future
work we we intend to explore the effect of data distribution between cluster
nodes in more detail. We propose to extend this empirical study in a companion
paper which examines algorithm performance on larger dataset sizes. We will
also study the affects the data distribution has on the optimal number of nodes.
In addition, we intend to extend these methods so that they reduce the size of
intermediate data produced in each iteration. We posit that further improve-
ment of the methods proposed here could motivate a more widespread adoption
of FCA using the Map-Reduce framework.

6 Conclusion

In this paper we considered methods for extending the NextClosure FCA algo-
rithm. A formal description of dealing with distributed datasets for the

Distributed FCA Algorithms: MRGanter 307

NextClosure FCA was discussed. Two new distributed FCA algorithms, MR-
Ganter and MRGanter+, were proposed based on this discussion. Various im-
plementation aspects of these approaches were discussed based on empirical eval-
uation of the algorithms. These experiments demonstrated the advantages of our
approach and the scalability in particular of MRGanter+. By comparing MR-
Ganter+ with MRCbo and MRGanter, we found that the number of iterations
significantly impacted the performance of distributed FCA, a promising result.
In future work we hope to capitalize on this by improving the MR∗ methodology
by reducing the number of iterations of these approaches and to further reduce
computation time.

References

1. Wille, R.: Restructuring Lattice Theory: an Approach Based on Hierarchies of
Concepts. In: Rival, I. (ed.) Ordered Sets, pp. 445–470. Reidel (1982)

2. Lakhal, L., Stumme, G.: Efficient Mining of Association Rules Based on Formal
Concept Analysis. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept
Analysis. LNCS (LNAI), vol. 3626, pp. 180–195. Springer, Heidelberg (2005)

3. Polaillon, G., Aufaure, M.-A., Le Grand, B., Soto, M.: FCA for Contextual Seman-
tic Navigation and Information Retrieval in Heterogeneous Information Systems.
In: DEXA Workshops 2007, pp. 534–539 (2007)

4. Snásel, V., Horak, Z., Kocibova, J., Abraham, A.: Analyzing Social Networks Using
FCA: Complexity Aspects. In: Web Intelligence/IAT Workshops 2009, pp. 38–41
(2009)

5. Caspard, N., Monjardet, B.: The Lattices of Closure Systems, Closure Operators,
and Implicational Systems on a Finite Set: A Survey. Discrete Applied Mathemat-
ics, 241–269 (2003)

6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations.
Springer, Heidelberg (1999)

7. Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J., Fox, G.:
Twister: a Runtime for Iterative MapReduce. In: Hariri, S., Keahey, K. (eds.)
HPDC, pp. 810–818. ACM (2010)

8. Ganter, B.: Two Basic Algorithms in Concept Analysis. In: Kwuida, L., Sertkaya,
B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 312–340. Springer, Heidelberg (2010)

9. Lindig, C.: Fast Concept Analysis. In: Working with Conceptual Structures-
Contributions to ICCS, pp. 235–248 (2000)

10. Kuznetsov, S.O.: A Fast Algorithm for Computing All Intersections of Objects
in a Finite Semi-Lattice. Automatic Documentation and Mathematical Linguis-
tics 27(5), 11–21 (1993)

11. Andrews, S.: In-Close, a Fast Algorithm for Computing Formal Concepts. In: The
Seventeenth International Conference on Conceptual Structures (2009)

12. Vychodil, V.: A New Algorithm for Computing Formal Concepts. Cybernetics and
Systems, 15–21 (2008)

13. Krajca, P., Outrata, J., Vychodil, V.: Parallel Recursive Algorithm for FCA. In:
CLA 2008, vol. 433, pp. 71–82. CLA (2008)

14. Bordat, J.-P.: Calcul pratique du treillis de Galois d’une correspondance.
Mathématiques et Sciences Humaines 96, 31–47 (1986)

15. Berry, A., Bordat, J.-P., Sigayret, A.: A Local Approach to Concept Generation.
Ann. Math. Artif. Intell. 49(1), 117–136 (2006)

308 B. Xu et al.

16. Kuznetsov, S.O., Obiedkov, S.A.: Comparing Performance of Algorithms for Gen-
erating Concept Lattices. J. Exp. Theor. Artif. Intell. 14, 189–216 (2002)

17. Norris, E.M.: An Algorithm for Computing the Maximal Rectangles in a Binary
Relation. Rev. Roum. Math. Pures et Appl. 23(2), 243–250 (1978)

18. Dowling, C.E.: On the Irredundant Generation of Knowledge Spaces. J. Math.
Psychol. 37, 49–62 (1993)

19. Godin, R., Missaoui, R., Alaoui, H.: Incremental Concept Formation Algorithms
Based on Galois (Concept) Lattices. Computational Intelligence 11, 246–267 (1995)

20. Carpineto, C., Romano, G.: A Lattice Conceptual Clustering System and Its Ap-
plication to Browsing Retrieval. Machine Learning, 95–122 (1996)

21. Valtchev, P., Missaoui, R., Lebrun, P.: A Partition-based Approach Towards Con-
structing Galois (concept) Lattices. Discrete Mathematics, 801–829 (2002)

22. Yu, Y., Qian, X., Zhong, F., Li, X.-R.: An Improved Incremental Algorithm for
Constructing Concept Lattices. In: Proceedings of the 2009 WRI World Congress
on Software Engineering, WCSE 2009, vol. 04, pp. 401–405. IEEE Computer So-
ciety, Washington, DC (2009)

23. Krajca, P., Vychodil, V.: Distributed Algorithm for Computing Formal Concepts
Using Map-Reduce Framework. In: Adams, N.M., Robardet, C., Siebes, A., Bouli-
caut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg
(2009)

24. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-
ters. In: OSDI, p. 13 (2004)

25. Chu, C.T., Kim, S.K., Lin, Y.A., Yu, Y., Bradski, G.R., Ng, A.Y., Olukotun, K.:
Map-Reduce for Machine Learning on Multicore. In: Schölkopf, B., Platt, J.C.,
Hoffman, T. (eds.) NIPS, pp. 281–288. MIT Press (2006)

Author Index

Adam, Ruth 96
Allard, Pierre 112

Babin, Mikhail A. 7
Bartl, Eduard 16
Belohlavek, Radim 28
Berry, Anne 45

Chen, Hsinchun 1
Chollet, Stéphanie 61

De Raedt, Luc 2
Doerfel, Stephan 77

Elzinga, Paul 3
Endres, Dominik 96

Ferré, Sébastien 112
Fréin, Ruaiŕı de 292

Gandrille, Etienne 61
Ganter, Bernhard 128
Giese, Martin A. 96
Glodeanu, Cynthia Vera 128
Goethals, Bart 4

Haraguchi, Makoto 244

Jäschke, Robert 77

Kaiser, Tim B. 140
Kerkhoff, Sebastian 148
Kirchberg, Markus 164
Ko, Ryan K.L. 164
Krupka, Michal 16, 180
Kuznetsov, Sergei O. 7

Lalanda, Philippe 61
Lastovicka, Jan 180
Lee, Bu Sung 164
Leonardi, Erwin 164
Lestideau, Vincent 61
Link, Sebastian 164

Macko, Juraj 195
Maurel, Yoann 61

Naidenova, Xenia A. 211
Noppeney, Uta 96

Obiedkov, Sergei 227
Ó Foghlú, Mı́cheál 292
Okubo, Yoshiaki 244

Pavlovic, Dusko 260
Peters, Ir. Edward 5

Raynaud, Olivier 61
Ridoux, Olivier 112
Robson, Eric 292
Rudolph, Sebastian 278

Schmidt, Stefan E. 140
Sigayret, Alain 45
Śl ↪ezak, Dominik 6
Stumme, Gerd 77

Tan, Yu Shyang 164
Trnecka, Martin 28

Xu, Biao 292

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	Dark Web: Exploring and Mining the Dark Side of theWeb
	Declarative Modeling for Machine Learning and Data Mining
	References

	Can Concepts Reveal Criminals?
	Cartification: From Similarities to Itemset Frequencies
	Processes Are Concepts, Aren’t They?
	Rough Sets and FCA – Scalability Challenges
	References

	Regular Papers
	Approximating Concept Stability
	Introduction
	Main Definitions
	FCA
	Stability

	Approximation of the Number of Closed and Nonclosed Sets
	Computation of Stability
	Experimental Results
	Conclusion
	References

	Logical Analysis of Concept Lattices by Factorization
	Introduction
	Preliminaries
	Formal Concept Analysis
	Complete Tolerances and Block Relations
	Residuated Lattices

	Main Results
	Tolerance Residuated Lattice
	First-Order Fuzzy Logic for Factorizing Concept Lattices

	Illustrative Example
	Conclusion
	Future Work
	References

	Basic Level of Concepts in Formal Concept Analysis
	Introduction
	Motivation
	Paper Overview
	Related Work
	Preliminaries and Notation

	Basic Level of Concepts in the Psychology of Concepts
	An Approach to Basic Level in FCA
	Experiments
	Experiment 1
	Experiment 2

	Conclusions and Future Research
	References

	A Peep through the Looking Glass: Articulation Points in Lattices
	Introduction
	Preliminaries
	Relations, Concepts and Lattices
	Graphs
	Bipartite Graphs
	Co-bipartite Graphs
	Lattices and Co-bipartite Graphs
	Example

	Lattices with an Articulation Point
	Cases Where the Lattice Has an Articulation Point
	Expressing the Mirror Articulation Point
	Impact on the Co-bipartite Graph
	Artificially Creating an Articulation Point of the Lattice

	Finding the Articulation Points of a Lattice
	Computing a Maximal Chain of the Lattice
	Computing the Articulation Points from a Maximal Chain of the Lattice
	Finding the Clique Minimal Separator Decomposition of a Co-bipartite Graph

	Lattices Where Every Concept Is an Articulation Point
	Chain Lattices and the Corresponding Graphs
	Recognizing Chain Lattices and the Corresponding Graphs
	Creating a Chain Lattice and Corresponding Graph Embeddings

	Conclusion and Perspectives
	References

	Practical Use of Formal Concept Analysis in Service-Oriented Computing
	Introduction
	Challenges of Service Selection
	Theoretical Fundations: Formal Concept Analysis
	Global Approach
	Application to Services
	Service Registry
	Decision Structure
	Algorithms for Selection

	Reacting to Service Availability at Runtime
	Implementation and Validation
	Implementation
	Experimental Results

	Related Work
	Conclusion
	References

	Publication Analysis of the Formal Concept Analysis Community
	Introduction
	Related Work
	Dataset
	Gathering and Preprocessing
	Notations and Derived Data Structures

	Definitions and Methodology
	Results
	Conferences
	Authors
	Publications

	Future Work
	References
	References of the Analyzed Publications

	Understanding the Semantic Structure of Human fMRI Brain Recordings with Formal Concept Analysis
	Introduction
	Organization of Visual Processing in Humans and Previous Research
	Formal Concept Analysis
	fMRI Experiment
	Experimental Methods and Data Preprocessing
	Search Volumes and Voxel Selection

	Learning the Formal Context with a Hierarchical Bayesian Classifier
	Results
	Conclusion
	References

	Cubes of Concepts: Multi-dimensional Exploration of Multi-valued Contexts
	Introduction
	Preliminaries
	Multi-valued Contexts
	Value Domains and Attribute-Value Schemas
	Attribute Contexts and Feature Context

	Cubes of Formal Concepts as Navigation Places
	Representation and Interaction in Abilis
	Comparison with OLAP
	Related Work
	Conclusion
	References

	Ordinal Factor Analysis
	Introduction
	Conceptual Factorisation
	Ordinal Factors
	Conclusion
	References

	A Macroscopic Approach to FCA and Its Various Fuzzifications
	Introduction
	Biresiduation
	Biadditivity
	Abstract Concepts and Maximal Rectangles
	Macroscopics: Combining Biresiduation and Biadditivity
	Conclusion
	References

	A Connection between Clone Theory and FCA Provided by Duality Theory
	Introduction
	Preliminaries
	Category Theory
	Clones
	Hartung's Duality for Lattices

	Duality Theory for Clones
	Clones over Bounded Lattices
	A Small Illustration of the Duality
	Conclusion
	References

	Formal Concept Discovery in Semantic Web Data
	Introduction
	Related Work
	Semantic Web Data
	FCA Algorithms and Benchmarks
	FCA and the Semantic Web

	Towards a Concept Layer for the Semantic Web
	Applying FCA to Semantic Web Data
	Concept Computation Process Overview
	Extracting Contexts from the Semantic Web
	Computing Concepts
	Semantic Web Data Properties

	Experiments
	Web Data Extraction and Preparation
	FCA Algorithms: Ensuring Fairness
	FCA Algorithms Performance: Traditional vs. Web Data
	FCA Algorithms Performance: Web-Scale Data

	Conclusion
	References

	Concept Lattices of Incomplete Data
	Introduction
	Preliminaries
	Concept Lattices
	Boolean Algebras and Residuated Lattices
	L-sets and L-relations

	Boolean Algebras with Variables
	Incomplete Contexts
	Formal Concept Analysis in Fuzzy Setting
	Concept Lattices of Incomplete Contexts
	An Illustrative Example
	Experiments
	Conclusion and Future Research
	References

	Formal Concept Analysis as a Framework for Business Intelligence Technologies
	Introduction
	Preliminaries
	Formal Concept Analysis in Crisp and Fuzzy Settings
	Classical Measure WaKli:Gen and Aggregation Operators CKKM:AO
	On Line Analytical Processing (OLAP)

	Formal Concept Analysis with Measures
	Formal Concept Analysis with Measures - Theory
	FCA with Measures - Comprehensive Example

	Applications of Formal Concept Analysis with Measures
	Extent Values and Generalized OLAP Cube
	Constraints of Lattice with Values via Closure Operators
	FCA in Fuzzy Settings with Measures and Fuzzy OLAP

	Conclusion and Future Research
	References

	Good Classification Tests as Formal Concepts
	Introduction
	The Basic Terminology of Formal Concept Analysis
	Good Diagnostic Test Definition in Terms of FCA
	Good Diagnostic Tests and Inference FunctionalDependencies
	Conclusion
	References

	Modeling Preferences over Attribute Sets in Formal Concept Analysis
	Introduction
	Universal Preferences
	Existential Preferences
	Conclusion
	References

	Finding Top-N Colossal Patterns Based on Clique Search with Dynamic Update of Graph
	Introduction
	Preliminaries
	Pattern Graph
	Top-N Colossal Frequent Pattern Mining
	Finding Top-N Colossal Patterns with Pattern Graph
	Fundamental Idea
	More about Prunings of Useless Cliques
	Expanding Clique with Pruning Rules
	Algorithm for Finding Top-N Colossal Patterns

	Experimental Results
	Concluding Remarks
	References

	Quantitative Concept Analysis
	Introduction
	Proxets
	Definition, Intuition, Examples
	Derived Proxets and Notations

	Vectors, Limits, Adjunctions
	Upper and Lower Vectors
	Limits
	Completions
	Adjunctions
	Projectors and Nuclei
	Cones and Cuts

	Proximity Matrices and Their Decomposition
	Definitions, Connections
	Matrix Decomposition through Nucleus
	Universal Properties

	Representable Concepts and Their Proximities
	Decomposition without Completion
	Computing Proximities of Representable Concepts

	Discussion and Future Work
	References

	Some Notes on Managing Closure Operators
	Introduction
	Preliminaries
	Closure Operators
	Contexts
	Implications

	Size Comparisons
	Algorithms for Managing Closure Operators
	Finer or Coarser?
	Adding a Closed Set
	Adding an Implication
	Conversion of Representations

	Conclusion
	References

	Distributed Formal Concept Analysis Algorithms Based on an Iterative MapReduce Framework
	Introduction
	Related Work
	Contributions

	Formal Concept Analysis
	Ganter: Iterative Closure Mining Algorithm

	Distributed Algorithms for Formal Concept Mining
	MRGanter
	MRGanter+

	Twister MapReduce
	Evaluation
	Test Environment and Datasets
	Results and Analysis

	Conclusion
	References

	Author Index

