9 Applications of Models of Offshore
Structures

Each offshore structure is unique in the sense that it is built only after a customer
with a specific need actually places an order. Design companies and
manufacturers of engineering systems of this type are often small and medium
enterprises, which cannot afford purchasing costly computer software packages
for numerical computation involved in dynamics of mechanical systems.
Therefore, they often employ custom, in-house dynamic models of the structures
designed. In the present chapter, dynamic models of the following are presented: a
gantry suited for relocating sets of BOP valves on an extraction platform, a
column crane and a device for laying pipes on the seabed. The formulation of
models thereof leverages the methods described in earlier chapters.

9.1 BOP Transportation Gantry

One of the types of offshore cranes is a BOP crane. The construction of Protea
from Gdansk is presented in Fig. 9.1. It is a gantry crane installed on a drilling
platform designed to transport a system of valves named BOP (Blowout
Preventor). BOP is used to block an uncontrolled outflow of oil or natural gas
from a wellbore at the seabed. After drilling the wellbore, the BOP is put inside it,
and afterwards risers are being connected to the BOP. The risers drain off oil or
gas into suitable tanks. In view of the plug task, weight of the BOP reaches
hundreds of tons. During the transportation process (during the travel of a gantry
crane) the BOP is protected by a system of guides presented in Fig. 9.2.

Clearance between the load and the guide system equals a few centimetres.
Weight of the presented crane is 200 T, hoisting capacity 550 T and height about
30 m. The analysis of a travel system is an interesting and important problem
concerning the dynamics of a BOP crane. The crane is supported on rails and its
motion is realized by the means of a rack and a toothed wheel (Fig. 9.3).
Maximum velocity of travel of the crane is equal to 3 m/min. Due to the
movement of the platform’s deck caused by sea weaving and wind forces, the
protection systems are used. These systems limit the movement of the crane in
vertical direction and horizontal one, perpendicular to the longitudinal axis of
rails. This task is particularly realized by an anti-lift system presented in Fig. 9.4.
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Fig. 9.3. Rack travel system Fig. 9.4. Anti-lift system

9.1.1 Mathematical Model of the System

The schema of the model of the BOP crane together with more important
coordinate systems is presented in Fig. 9.5. The following basic assumptions for
modelling are established:

= movement of the base (system {A}) is known and described by functions:

N =x£lfg)(t); Y2 =x£fg)(t); Y3 =x£fg)(f);

9.1)
=y y=00w: yi=ell)o),
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Fig. 9.5. A model of a BOP gantry with load

= structure of the crane (frame) is treated as a rigid body — it should be noticed
that the construction of the BOP crane is a kind of combination of two A-
frames; an A-frame has been a subject of many analyses presented in [Fatat
P., 2004]; these analyses have shown that the influence of flexibility of the
frame on dynamics of the whole system (on motion of the load) is slight,

= Joad is a rigid body of rectangular shape,

= Joad is suspended on two ropes — their flexibility and damping are taken into
account,

= ]oad can touch the guides only along its edges,

= clearance and flexibility between the load and guides are taken into
consideration,

= frame is fixed flexibly to the deck and, additionally, in Y ) direction
clearance can occur,

= input in the drive system has been modelled in two ways: a kinematic input
via a spring-damping element and a force input,

= wind force can be taken into consideration,

* homogenous transformations are used to describe the system’s geometry.
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Both the load (system {L} in Fig. 9.5) and the frame (system {F}) have 6 degrees of
freedom in respect to the deck (system {A}). So, the model has 12 degrees of freedom
and the vector of generalized coordinates of the system has a following form:

(F)
q

T
(F)=[x<F> (F)  (F) (F)  g(F) q)(F)] ’

where y Z v
q(L)=[x<L> YO LBy gL ¢<L>]T

It has been mentioned that the motion of the base (deck of the platform), that
means the motion of the system {A}, in respect to the inertial coordinate system { }
has been assumed as known, described by pseudo-harmonic functions:

Z sm( ,/t+(p,(j)) i=1...,6, (9.3)

(4)

where A,(A , , ¥ , @; ;> — amplitude, angular frequency and phase angle of the
input, respectively,

n»(A) — number of harmonics of the series.

1

The application of homogenous transformations allows converting a position
vector of the point defined in the system {A} to system {} according to relation:

r\)=T ri 9.4)

D_ [ ]T .. . . .
where r =|x, y, 2, 1] - position vector of point P in the inertial

p

system { },
rI{)A} = [X;A} yi)A} zi,A} 1]r — position vector of point P in the system
{A},
‘;T - matrix of a homogenous transformation from the system {A} to

the system { }.

The matrix ‘;T can be presented as product of six matrices, where each of them is
a function of one variable dependent on time (9.4). Order of rotations included in

the matrix gT corresponds to Euler angles ZYX.

Kinetic and Potential Energy of the Frame and the Load

Kinetic and potential energy of the frame, as well as the load, can be determined
using general algorithms presented in chapter 5. If one denotes the homogenous
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transformation matrix from the frame system {F'} to the deck system {A} as T)

and from the load system {L} as T ), the transformation matrices from the
frame system and from the load system to the system {} can be calculated as:

TE =TT, (9.5)
TW=0T T, (9.6)
Introducing notation of the Lagrange operator:

RO oE® g™
€ dt aq(b) aq(h) ’

9.7)

where k is the number of the generalized coordinate, b e {F , L},

and using the transformation presented in chapter 5 one can obtain:

()—tr{T(”)H“’){OTT(”) +2OTT(b)+ZZT(];)q,(b) (h)+zT(h) (h):|}, (9.8)

i=1 j=1

aT(b)

where T,ib) == o
aCIk

Y 9gPag®

The above form requires repeated multiplication of matrices of 4x4 dimensions
and then the calculation of the trace of the result matrices. In order to decrease the
number of required numerical operations, the authors decided to derive formulae
describing Lagrange operators in the explicit form.

The relation (9.8) can be presented in the following form:

~ .o~ . I T
EI(Cb) {%TTIEb)H(b)[%TT(b) +22‘TT(b)+gTT(b)} } =
tr{ ATT OTT(b)H(b) |:T(b)} } +tr {gTT %TT(b)H(b) [T(b) ]T} 9.9)
(b)
(b) £
8k’2 k,0

+ 2tr{ 7TV [T“’)JT} .

(b)
€kl
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Assuming that rotation angles of the frame and the load are small, the matrix

T® can be written as:

1 —l//(b) 210 )
gor_|v” 1 = Y ©.10)
v o 1 ®) :
0 0 0 1
or:
(b : b
T =1+% D4}, (9.11)
j=1
where qg”) — suitable elements of vectors q'*) or q‘*,
and matrices D ; can be defined as:
for j=1,2,3:
D 0 a;
P = , 9.12
“lo o O12
1 0 0
where a, ={0}; a,=|1|; a;=|1]|,
0 0 0
for j=4,5,6:
b _|Ri 0
P = , 9.13
00 O 0 01 0 -1 0
where R, =0 0 -1|, Rs={0 0 O, Rs=1 0 O}
01 O -1 0 0 0 0 O

In the paper [Urab$ A., et al., 2010] it has been shown that:

for k=1,2,3:

b b) (b
e =m"G", (9.14)
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3
) =3 4m" (@) . 9.15)
=
gro=m", (9.16)
for k=4,5,6:
b & b T b)y(b b
£l =24 )tf(q%(l)oRi JO[RY )r) : 9.17)
j=4 ok
el) = (10 +a )i - s RGP — 1§, 9.18.1)
) =100 + (10 + 1B )i — DG, 9.18.2)
b b) ++(b b) (b b b)) oo
e =GP 10 G0 + (1D + 18 )i 9.183)
b T b) Y& & T b)) [
el =tr{<p2<p0 RYJ )}+Z‘1§' )tr{(I)Z(I)O ROJ )[R§ )}T} ©.19)

j=4
where  m”) — mass of the body be {F, L},
b b b
i
IV =1y ;’? J ;’Q J ;’? — elements of the matrix are defined in (5.11),
b b b
VA
D,,P,,9,,S,,S,,S, — submatrices of (AT, OT, oT respectively,
®, S . |®D, S . |®, S
gT —| o Doy gT | o gT _| T2 D2
0 1 0 O 0 0

(b)

Derivatives of potential energy of gravity forces of element of mass m'” can be
presented in the form of the vector:
Qv ®
ﬁ = [m(b)g ty mPgty, mPgt; 00 O}T’ (9.20)
where q(b) - vector of coordinates of the frame or the load (defined in
(9.2)), respectively,
m? mass of the frame or the load,

13,133,133 — proper elements of the third row of the matrix gT .
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Model of the Support

7o A 1A}

(k) ¢ (F) (F) (F)
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Fig. 9.6. Flexible connection of the frame to the deck

It has been assumed that the frame of the BOP crane is supported flexibly in

four points denoted as P*) (k =1,2,3,4) . The crane is moving on a dedicated rail

(4)

system in direction parallel to XM axis (Fig.9.6). Additionally, a constructional

clearance can occur in Y direction.
The reaction force, i. e. the reaction force of the base on the frame, is depicted by

the vector:

(F) _ | (F.%) (F.) Fo|T
Foo=lFw" Fu' Fuol . 9:21)

The F ;5;2) component can be calculated as:

(F.z) _ p(F.2) (F.2)
Fu? =Fg o +F 0 (9.22)
where F S“;sz — stiffness force,
F*-2) damping force.

D,P(k) -
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The stiffness and damping forces are determined by relations:

F.z
Fiph ==Chu0; <“AZP(“, (9.23.1)
F(FP<ZA)> = P(k)é‘P(k) 2 ph) > (9.23.2)

1 when Az, <0
where &4, =
0 when Az, 20

AZPW = Z;,f‘k)) - Z;ﬁ??) where Z(/(‘k)) =0, and Z' (k) is the z coordinate of
the point P* in the system {A}, AZ oo = ;ﬁ)) ,

by

Z
¢ )

P — stiffness and damping coefficients of the connection in the

AR direction, respectively.

In the case of the component F;i;y) , the possibility of occurrence of clearance in

the anti-lift system is taken into account. Due to modelling clearance, two spring-

< (4)

damping elements acting in the Y
chapter 6.2.

direction are introduced, as described in

The component F[E(i;x) from (9.21) can be expressed by:

(F.x) _ (Ax) N o(F.x) e pp(FLy) p(F.2)
Foo™ ==sgn(y) S i (F™ s Fow™) (9.24)
where S, P“) resisting force caused by rolling or sliding friction,
U;ﬁ,’f - component x of the velocity of the point P " in the coordinate

system {A}.

After calculating suitable coordinates and velocity of points of support,
generalized force of flexible connection of the frame and the deck can be written
as:

(F) (F) o (F)
QP(k> _UP(k) Fpm ) (9.25)
F F
1 00 _y;;.(k)) Z;;.(k)) 0
F F F
where U;(k)) =0 1 0 x;(k)) 0 —z;(k))

001 0 X v

P(k)
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Generalizing the relation (9.25) to four supports one can obtain:

4 4
(F) _ (F) _ (F) (F)
Qp _ZQPU‘) _ZUP(‘\') FP(k) .
= k=1

Modelling Clearance between the Load and Guides

b’ Y
gk CE“"”

X(A)

Fig. 9.7. Load and spring-damping elements with clearance

(9.26)

The guides have been replaced by spring-damping elements with clearance

(SDE E™*) that limited the movement of the load in X and Y directions
(Fig. 9.7). It has been assumed that the load can contact with guides only along its
edges and the number of spring-damping elements can be different for each edge.
The manner of calculation of stiffness and damping forces coming from the each
side is analogical to the one presented in chapter 5.3. Additionally, one has to
determine equivalent coefficients of flexibility of elements modelling the guides.
Suitable calculations have been executed by the means of the Finite Elements
Method. They were presented in details in the doctoral thesis [Urba$ A., 2011].
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Drive of Travel System

The input in the drive of the travel system has been modelled in two ways
(Fig. 9.8): a kinematic input via a spring-damping element (flexible) and a force
input (rigid). It has been assumed that the drive acts in points P'" and P®.

a)

P®

o

P@

Fig. 9.8. The travel system of the crane: a) flexible, b) rigid

1. Kinematic input

In this case, the potential energy of elastic deformation and the dissipation
function of the drive system can be calculated as:

1 2
Yo = o [5;(,.) 0 —x\)
=14 9.27)
y o1 : ) |2
D =2bj |62, (-

where 5;(1) (1), 5;(4) (t) — assumed displacement (kinematic input),

c ; 0 b; . — stiffness and damping coefficients of the drive of the

travel system, respectively.
. . A .
After determining coordinates xl(p(;)) as function of elements of vector q(F ), one
should place suitable derivatives in the equations of motion of the system.
2. Force input

In the case of force input, the unknown forces F IE(FI)) , F ;53 and suitable constrains

equations have been introduced. Generally, the forces can be placed on the left
side of the equations of motion of the system which can be written as:
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Aq-DF =f, (9.28)
0 0
where D= T T,
Uy U
o [F0
- FE 0
L pw

T T
Upff )1 ,Upff) )1 — the first rows of the matrices from (9.25).

In the analysed problem, the constrains equations have the form:

X0 =85, ), 9.29.1)
X0 = O (1). (9.29.2)

Due to convenience of the computer implementation, they can be presented in the

matrix and acceleration form:

I SN ()
Dig=6=|." ) 9.30
1 [5;4)0)} 030

Energy of Elastic Deformation and Energy Dissipation of the Ropes

The load is suspended on two ropes, so their energy of elastic deformation can be

written as:
» 21()()[ <)]2
A zzzcr” o.r AlA’;BP , (9.31)
p=1

where ci” ) — stiffness coefficient of the rope p,

AZX: l)?p — deformation of the rope p,

0, when Al'") <0
oW = »ep
=

1, when AL} >0
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The derivatives of the potential energy of elastic deformations of the ropes have
the form:

(p)
v, ¢ g Al A G E )
Sy =8 U (9.32.1)
A B
(p) AZ(P)
g’ o=—c"8" l(p'; L UulED 9.32.2)
q A B I’

PP

A similar reasoning may be conducted in the case of determining the dependency
describing the energy dissipation function:

Dip) Z b(p)5(p)[A (p) ]2, (9.33)
where d f” )~ damping coefficients of the rope p.
Hence the formulas:
(p)
oD T.
aqr(F) - (P)é‘(P)U(f‘:) /(AP; , (9.34.1)
(p)
oD, T
—aq(L) =578, U T, (9.34.2)

Taking into consideration all components of the Lagrange equations, we obtain the
system of differential equations:

AG=£(.q.9), (9.35)
where A = A(¢z,q) —a mass matrix.

In the case when the input in the drive of the travel system has been modelled as
force input, equations (9.35) have to be completed by the constrains equations
(9.30) and equations of motion have to be presented in the form (9.28). The fourth
order Runge-Kutta method has been used to solve the system of equations.

9.1.2 Example of Numerical Calculations

The presented dynamic model of a BOP gantry allows for comprehensive analyses
of the device's operation both under usual working conditions and intense waves.
Much detailed discussion is contained in the thesis [Urbas A., 2011].

In the current book, sample results of numerical simulations for phenomena
occurring in a gantry's supporting structure are presented. Masses and geometrical
parameters of the crane have been chosen based upon technical documentation
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(2007). The main parameters are given below: mass of the frame 110 000 kg, mass
of the load 550 000 kg, dimension of the load 4,8 m x 5,5 m x 20,3 m. Data
concerning the motion of the deck that should be taken into calculation are also
provided in the technical documentation (2007) (Table 9.1). In our simulations,
the operational conditions have been assumed.

Table 9.1. Deck motion due to waves

Condition Heading | Heave | Pitch | Roll
[deg] [m] [rad] | [rad]
Z1 0 0,1343 | 0,0023 0
72 45 0,1115 | 0,0008 | 0,0023
Z3 90 0,1140 0 0,0045

Table 9.2. Load cases analysed - gantry crane not moving

Symbol Description Clearance | Deck motion
Z1-M0-C0O 0 Z1
Z2-MO0-CO0 | No clearance in travel system 0 72
73-M0-C0 0 73
Z1-M0-C1 lem Z1
72-MO0-C1 | With clearance in travel system lcm 72
73-M0-C1 lem Z3

Calculations for the BOP crane that does not move on the deck have been
denoted according to the Table 9.2. The same denotations are used in the graphs.

In Fig. 9.9 there are presented time courses of general coordinates W(L) of the

load of the BOP crane with and without clearance in the travel system.

The influence of clearance in the travel system for the reaction forces in the
support system (the leg no. 1) is shown in Fig 9.10. The deck motions Z2 and Z3
are taken into consideration.

The biggest influence of clearance in the travel system on the dynamics of the
BOP crane occurs for input Z3, so this input is taken into account for the next
calculations. The influence of clearance in the travel system on the reaction forces
will be analyzed. The travel velocity is defined by the relation:

v=3at’—4b> whent<T,,

(9.36)
vV=v, whent >T,
where v, =3£', T =6sec, a= ;"2 , b= 2‘;2'3 .
min ;
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Fig. 9.9. Influence of clearance on roll angle of BOP
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Fig. 9.10. Lateral reaction in leg no.1 (left - in sea conditions Z2, right - in sea conditions
Z3)

On the up graph in Fig. 9.11, there is shown the drive force on the first gear
(support no. 1) for kinematic and force input and for the case when no clearance
occurs in the system. On the bottom graph, there is presented the influence of
clearance on the drive force. One can notice that the clearance causes the
occurrence of significant dynamic forces of short duration.

Required courses of drive forces acting on the legs 1 and 4 realizing the
established travel of the crane are presented in Fig. 9.12. Kinematic and force
inputs have been simulated.

The obtained results (values of forces) for assumed parameters are similar, but
for kinematic input peak values they are bigger. These values depend on stiffness
and damping coefficients taken into account during calculations.

Additional clearance in supporting system for the legs that aren’t driven (i. e. 2
and 3), equal to 2 cm, has been taken into consideration, and the results are in
Fig 9.13. The obtained values of dynamic forces prove significant influence of
clearance on dynamic load of the drive system, the track-way and the whole
construction of the crane.
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Fig. 9.11. Drive force on gear no. 1 when flexible and rigid model applied (up) influence of
different clearances on drive force (bottom)

The mathematical models and the computer programs presented in this section
make it possible to execute dynamical analysis of BOP cranes mounted on the
floating base. They can be useful in calculating dynamic loads, dimensioning
bearing elements of the crane and the track-way. They enable determination of
static and dynamic loads by simulation for arbitrarily chosen sea waves
conditions.

9.2 Offshore Column Crane with a Shock Absorber

This section discusses a mathematical model of an offshore column crane with
a shock absorber [Krukowski J., Maczynski A., 2009], [Krukowski J., Maczynski
A., 2010]. As already stated (chapter 2.4.2), in offshore crane design, two kinds of
a shock absorber systems are used most commonly. The first one is mounted on
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Fig. 9.12. Rigid and flexible drive, leg no. 1 (up) and no. 4 (bottom)

the crane’s boom structure. The minimization of dynamic overload is obtained by
leading the hoist rope through an additional sliding sheave connected with
a hydraulic system. The other one, constituting the system of hydraulic
accumulators, is mounted in the hook block.

The subject of the analyses presented in this book is the first type of the shock
absorber because of its effectiveness, simple and compact construction. The
hydraulic part of the shock absorber is shown in principle in Fig. 2.15. Let us
remind that it is the system consisting of accumulator filled with gas and hydraulic
cylinder. When force S applied to the piston is big enough, the piston is pulled out
and oil is streaming from the cylinder to the accumulator. The end piston stroke
length, A,, must normally be shorter than the maximal possible piston stroke
length, A,.x minus a safety piston stroke length, Ay, to make sure there is no risk
for the piston to reach the bottom at normal operation. The safety piston stroke
length, Ay, shall normally not be less than about 50 mm.
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Fig. 9.14. Shock absorber characteristic
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The main part of the force S on the piston, is balanced by the gas pressure in the
accumulator. In addition, there is some oil pressure drop due to restriction when
the oil passes the valves between the piston and the accumulator. This is illustrated
in Fig. 9.14.

9.2.1 Model of the Offshore Crane

The subject of this section is the offshore pedestal crane equipped with the system
reducing dynamic overload, situated on the boom (Fig. 9.15). The analysed crane
type is, according to EN 13852-1 Annex L, the “Lattice boom type crane” or API
Spec. 2C, type C. The main assumptions adopted at the design stage and the most
important connections used during the derivation of equation of motion will be
given below. Modelling the shock absorber was particularly emphasised. For the
description of the system, joint coordinates and homogenous transformations were
used based on Denavit-Hartenberg convention. The equations of motion were
obtained using the Rigid Finite Element Method and the Lagrange equations of the
second order.

luffing rope ‘\

luffing winch

A-frame hoist rope

hook/hook block
. R shock absorber
king frame
boom

pedestal

load base

crane base

Fig. 9.15. Scheme of an offshore pedestal crane

While preparing the model, the following assumptions and subsystems were
taken into consideration:

= the base of the crane (the platform of vessel) is a rigid body with 6 degrees of
freedom; the movement is caused by the sea waves defined by pseudo-
harmonic functions,
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= the pedestal is modelled by means of the Rigid Finite Element Method using
a modified approach (MRFEM) — chapter 8.2; hence, the flexibility of the
pedestal could be included but also the treatment of the pedestal as a rigid
structure is possible,

= the king frame, including the slewing part, is treated as a rigid structure with
one degree of freedom with respect to the pedestal — the slew angle,

= the A-frame is modelled by means of MRFEM as a simplified, one-beam
system having bending flexibility in the perpendicular direction to the A-
frame plane; similarly to pedestal model, the A-frame can be treated as a rigid
subsystem,

= the boom is modelled as a continuous system by means of the MFREM,

= the basic element of the shock absorber is the hydraulic cylinder, which is
modelled as point mass (additionally including the mass of the moving
sheave) connected to the boom by means of a spring damping system; the
mass may slide only along the longitudinal axis of the boom; it is assumed
that the characteristics of the spring is nonlinear,

= the hoist rope is modelled as a massless element with equivalent longitudinal
flexibility; the damping is taken into account, with the assumption it is
viscous, and that the damping coefficient has a constant value; with regards to
significant changes of the hoist rope during crane operations, the value of
rope stiffness coefficient has been made depended on the current rope length,

= the luffing rope is modelled similarly to the hoist rope; as a matter of fact that
change of the rope length during crane operations is small, the rope stiffness
coefficient is assumed to be constant,

= the load is treated as a material point; its contact with the deck of the supply
vessel is taken into account,

= the drive function of the hoist winch can be assumed in two ways: as
a kinematic excitation or force excitation by a given moment,

= the luffing winch drive and the slew of the crane has been adopted as
a kinematic drive,

= the supply vessel is modelled identical to the crane base.

Modelling of the Crane and Cargo Base Motion

It is assumed that crane base motion and thus movement of the system {A} with
respect to the system {0} is known and described by functions similar to (9.3):
n(A)
(A) _ (A) (A) (Ay. -
= ;Aw sin@Vr+¢'7); i=1...6, 9.37)

(A)

P
ij

where A‘(/‘*), [ (/)F’/;) — respectively: amplitude, phase, frequency and forcing
phase angle,

7)) — number of harmonic series.

i
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Movement of the cargo base, i.e. that of system {A}, will be described in the same
way.

In further considerations, the coordinate system {0} will be identified with the
inertial coordinate system {} and the following notation will be used for the
homogeneous transformation matrix from coordinate system {p} to the coordinate
system {0}:

T=T", (9.38)
where p is the number of the member in the kinematic chain.

Homogeneous transformation matrix gT, taking into account the motion of the

system {A} in {}, can be presented as a product of six matrices, each being the
function of only one variable dependent on time as described in chapter 5. It is to

be noticed that if T = [E y Z I]T is a vector describing coordinates of the

dm mass (point) in the local system {}’, connected to any part of the system, the
coordinates of such mass in the system {} may be described with the equitation:

r=%T@#)T(q)r'=Tr', (9.39)

where T(q)= {?T(ql ,..-»q,) — transformation matrix of coordinates from local

coordinate system {}’ into the {A} coordinate system, dependent
on the generalized coordinates (g,,...,q,) of the body,

T=T()T(q)-

Crane Pedestal

As mentioned before, the crane pedestal was discretized by means of MRFEM.
The number of rigid finite elements, on which the pedestal was divided, equals
n;+1, where the first rigid finite element of the pedestal, RFE (1,0), is added to the
vessel body. The generalized coordinates, describing the location of the second
and other rigid elements modelling the pedestal with respect to its predecessors
(coordinates describing mutual location of the rigid finite elements some times
called flexible or elastic coordinates), may be presented as vectors:

S A ) I

where (pfcl’i), (pf,l’i), ¢7§1’i)

are the rotation angles presented in Fig. 9.16.

The vector of generalized coordinates of the RFE yields:

q =g = [ql(l,l) g qgl,l)]r’ ©.41.1)
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{O@X

RFE(1,0)

Fig. 9.16. Pedestal discretized by mean of MRFEM

. (1,i-1) ‘ ‘ .
L ] i oa

In accordance to above consideration, during the derivation of the equations of
motions, kinetic and potential energy of the RFE (1,0) have been omitted. On the
basis of equations presented in previous sections, the kinetic energy of the body
discretised by the MRFEM can be calculated as:

E =Y E. (9.42)
i=1

. . . T
where E(Li) = tr{T(l,z) g ) }’
H") _inertia matrix of the RFE (1.i) defined in its own coordinate
system,

T(l’i) — transformation matrix from coordinate system {1,i} of RFE
(1,i) into the coordinate system { },
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) = ) FOOOp FOOFO O FOD oy gy

T _ transformation matrix from coordinate system of RFE (1,i) into
coordinate system of RFE (1,i-1).

For the Lagrange equations of the second order, the concept of Lagrange operators
is introduced:

E)=——r—"". (9.43)

Such operators for other RFE (1,i) (i=1,...,) of the pedestal, can be written in the
vector form as:

600 () = A4+, (9.4)

. . . . T
where A" = (a,gl’{)) A = tr{T,fl”) H") T } ,
k=13 j

3n; 3ny

(1,i) _( (l,i)) _ { (1,0) (1,i) (l,i)}'(l,i) - (1,i)
e =ler o am =2 2 e HOOTEY g5 ¢ +

j=1 1=1

+tr{T£1"')H(“) om0 + zgﬁﬂv“]f} ,

i
I
b
Jj=0
oT"”

Li) °

aCIk
(1)
iy _ 0 JoT

T, A A
Jil aq.iil,l aqlh’l

T =

The potential energy due to gravity forces of the pedestal’s rigid finite elements is
described by the relation:

VEy = m"g 0. T"EM  fori=12,.., n,, (9.45)

where  m" — mass of the RFE (1,i),

~(Li . .
I‘C( ) _ vector of the mass centre of RFE (1,i) expressed in its own
coordinate system.
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The corresponding derivatives, which are the elements of the Lagrange equations,
are:

Viy _

(1, l)
3407 =G (9.46)

Li
where . G =(gf), .
g](( i) _ =m*g0, T(lz) (1)
It is known that in MRFEM the successive RFE are connected with each other by

means of massless, elasto-damping elements (SDE). Potential energy of the elastic
deformation SDE (1,i) is defined as follows:

Vi= 2l T el o o) -

where C() =Cl(11), C(D :C,(lz)’ Cl(lz) =Cl(l3) where the adequate coefficients of the

rotational stiffness of SDE (1,i).

13 [~
2Zc,j[qj ] . (9.47)
j=1

Equation (9.47) can be presented in the form:

Viy= ;~<1z)TC<1z>~<1z) 0.48)
Ci(,ll) 0 0
where C"'=| 0 cl(lz) 0
0 0 ol

The required derivatives of the potential energy of elastic deformation with

respect to generalized coordinates (](l’i) , have a simple form:

v
(1,i) (11) (11)
500 - =C (9.49)

It may additionally be assumed that in SDE (1,7) dissipation of the energy appears,
which is described by means of equations:

(el ol T ol T )= >l T o0

j=1

D, . =
L) = 2

where bi(l) bl(ll) , bl(l\) bi(lz), bi(lz) :bl.a; are respective damping coefficients of the
SDE (1,5).
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Equation (9.50) may be also written as:

1;. iT i) ~(Li
D(l,i)=5q(1’) B g, ©.51)
) 0 o0
where B"" =| 0 bi(,lz) 0 [,
o o B

and the adequate derivatives can be obtained from:

D ; i
—aégji =B*g"". 9.52)
G

King Frame/Slewing Part

Let us define the following vector of generalized coordinates for the slewing part:

(1,111) T
qm:{q (z)}[qu) ¢ .. ] 9.53)

Z

where (pgz) symbolizes the angle of rotation of the slewing part with respect to the

pedestal.

The kinetic energy of the slewing part can be described as:
E, = tr{T(z) H? 7@ } (9.54)

where H®) — the inertial matrix of the slewing part.

Lagrange operators for the slewing part are formulated in the form:

£ 0 (Ey) = AP§%) +e?, 9.55)

.....

=) =l TS T

i
J=1

T
+2.2.6, TI(,.Z/) ‘?1(2) ‘}5'2)} ,

=1 j=I
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5_1 for =]
Y2 for 1# ]

TC)

= T FO0 . ) Gn)p
1”1% ( (

) — the transformation matrix form coordinate system of

slewing part {2} to the last rfe coordinate system of
pedestal {1,n,}.

Potential energy of the gravity forces of the slewing body equals:
VE=mP g0, T¥E?, (9.56)

where m®)  — mass of the slewing part,

=(2)
fe _ position vector of the center of slewing part mass, expressed in

the system {2}.

The necessary derivatives are defined bellow:

Y _go, (9.57)

A-Frame and Boom

As mentioned above, the A-frame is modelled by means of the MRFEM in
compliance with only bending flexibility in the perpendicular direction to the
plane of the A-frame. Additionally, as for the pedestal, RFE (3,0) is added to the
slewing part, and as a result, it does not have its own generalized coordinates
(Fig. 9.17). Consequently, the following vectors of generalized coordinates for
each rfe of the A-frame are defined:

=  one-element vectors of the flexible coordinates:

q(g,l)z[is,l)];_ =(m) [(p“s] (9.58)

= coordinate vectors describing position of the rigid element with respect to the
base coordinate system:

¢*=[g® G0 L goT =gt O forim1 2. n,.0.59)
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luffing rope

~(3,i 3,
GO = 0
3,i—1
ai | q%
e
q

RFE (3,1)

RFE (4,0) RFE (4,1)

Fig. 9.18. Flexible boom discretized by mean of the MRFEM

In contrast to the pedestal and A-frame, in the case of boom it was assumed that
there is a rotational connection defined by the boom angle ¥ between the rotating
part {2} and the RFE (4,0) (Fig 9.18). We can define the following vectors of
generalized coordinates for the boom:
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= vectors of the rigid and flexible coordinates:

§“0 =[y]=| ff"o)];...; G40 = [pi) 4 q)gw]’ for i=1,2,..., n, ,(9.60)

= coordinate vectors describing position of the rigid element with respect to the
base coordinate system:

i T ~(40)7 ~@ar " i i i
q<4,)=[q(z> qeor q<4,>} =g ... qg;'q)zﬂ]f for i=0,1,..., n, . (9.61)

The necessary elements of the Lagrange equations related to the A-frame and
boom subsystems were calculated in the same way as presented for the crane
pedestal.

The Model of Shock Absorber

The model of shock absorber is presented in Fig. 9.19. Its basic element is sheave
(3) possessing the mass m;, mounted to the boom by means of a parallel spring-
damping system. Relative motion of the sheave (3) is possible only along the
longitudinal axis of the boom. The mass my, is enlarged due to movable parts of
the hydraulic cylinder.

(6)

Fig. 9.19. Model of the shock absorber

The shock absorber is activated only if the hoist rope tension reaches specific
value (and does not exceed design limits). Usually, in practical hand calculations,
one assumes a multilinear characteristic (Fig. 9.14), but its first derivative is not
determinable in points defining the working range. This is unfavourable in
numerical simulations.



9.2 Offshore Column Crane with a Shock Absorber 167

Y A

-aA -A

v

Fig. 9.20. Characteristic of an elastic element c,y=cga(x)

In the presented model, characteristic shown in Fig. 9.20 was assumed
[Krukowski J., Maczynski A., 2011]. It represents the characteristic of elastic
element cga=css(x), and does not take into account the situation when the shock
absorber sheave (3) is fixed to the boom structure. The curve given in Fig. 9.20
can be described as follow:

S+c(x-A) for x=2aA
kx+ax®e™ for 0<x<aA
y= 9.62)
—S+c(x-A) for x<-aA
kx—ax’e ™ for —aA<x<0

By selecting appropriate values of &rand £, one obtains a smooth transition curves
at the point x = @A (and x = —aA). Then, the following conditions must be fulfilled:

kaA + o(aA) e?® =S + c(aA - A)=kA +cla-1)A, (9.63.1)
k + 20ahe”™ + aazAzﬁeﬂ“A =c. (9.63.2)

After some transformation, parameters ¢ and [ are obtained:

2—a
B = ada1) (9.64.1)

o= % . (9.64.2)
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The shock absorber is designed in such a way that it works only under the
tensioning load. Up to the value of force S, the stiffness has a very high value.
Within the limit of forces S; to S,, the stiffness decreases (shock absorber working
range), and beyond force S, the stiffness increases significantly. The characteristic
of an elastic element from Fig. 9.20 must be appropriately scaled to the form
shown in Fig. 9.21.

Shock absorber working parameters are defined by the following variables:

S , 52 — minimum/maximum force from which shock absorber is active,

A,,A, — displacement of the shock absorber sheave corresponding to the force
S, S5,

a — parameter specifying where the point of curvilinear part of
characteristic is becoming rectilinear, ot > 1,

o, — parameters defining the shape of the characteristic described in

equation (9.64).

il
>

fee!
=t
[}

[

]

Bpduus

¥ >

A A+ Ay A,

=l
Il

Fig. 9.21. Characteristic of shock absorber

From Fig. 9.21 it is easy to read, that the constans ¢ and k are described by means
of:

S

c=—, 9.65.1
A ( )
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S,—=S
k=—2—-"L, (9.65.2)
A, —A,
and the values of x and y are determined as:
_5-§
’ i) —- (9.66)
x=x—-A

where X, y, A and S are shown in Fig. 9.21.

Hoisting and Luffing Ropes

The potential energy of elastic deformation and function of dissipation energy of
the hoist rope and luffing rope can be described by the following equations:

1
v, :56(;(’)&,, (9.67)
Lo a2
D, =§5b A, (9.68)
0 for A, £0
where O = oS ,
1 forA, >0
A, — elongation of the hoist rope or luffing rope,

v , b _ stiffness and damping coefficients of rope, respectively.

Because of the possibility of the significant changes in the active length of the
hoist rope during crane operation, the stiffness coefficient of the hoist rope is
determining by means of:

LS L7 S (9.69)
Le o — O6)i6)
where Lﬁ,o — the initial length of hoist rope,
E, — Young’s modulus of the wire rope core,
F — cross section of the wire rope,
O — rotation angle of the hoist winch drum,
Ne) — radius of the hoist winch drum.

The stiffness coefficient ¢’ of the luffing rope is considered as a constant value.
A method for determining the necessary derivatives of equations (9.67) and (9.68)
was described in chapter 9.1.



170 9 Applications of Models of Offshore Structures

Load

The load was modelled as a material point. The weight of the hook block was
added to the weight of the load. The vector of the generalized coordinates is
defined as:

gV =[x 0 O] [0 o 0] 9.70)

The kinetic and potential energy of the load are described by means of:
E, = —m(L)()'c(L)z +3 07 4 z(”zj 9.71)

vE=mW g ), 9.72)

(L)

where m'™’ is the mass of the load.

On this basis, it is possible to write:

g = AW g®), 9.73)
oV
7 =l o mwgf, (9.74)

where AV = diag [m(L),m(L),m(L)].
The developed computer software allows us to simulate the following cases:

1. load is in the air (water) — does not remain in contact with the deck of a supply
vessel,

2. load remains stationary on board of the supply vessel; its coordinates are
defined by the motion of the supply vessel,

3. load can by frozen to the deck, or other reason cause that the load is
permanently connected to the supply vessel.

Drive Systems

Slewing, hoisting and luffing drive systems are modelled as the kinematic inputs.
Therefore, the following function is known:

Py =9y (t)’ 9.75)

where @, is respectively: slewing angle, hosting winch or luffing winch rotation
angle.
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From the perspective of
planned applications of the
presented model, the hosting
machinery is one of the most
significant drive system. Therefore,
a second method of its modelling,
using the force excitation, has been
developed. Based on the analysis

of literature (for example [Osinski

»
»

M. et al, 2004]) as well as o, 1o,
experience acquired from crane
operators and designers, the hoist Fig. 9.22. Hoist winch characteristic

winch characteristic was assumed
as shown in Fig. 9.22.

Agregation of the Equations of Motion

The equations of motion of the whole crane can be written as:

Aq=F, (9.76)
where A — mass matrix,
q - vector of generalized coordinates,
F - the right side vector; its elements are designated as the partial

derivatives of the kinetic energy, potential forces of gravity and
flexibility, partial derivatives of function of dissipation energy
and units derived from external forces.

The equations (9.76) were solved by a computer program using the fourth order of
the Runge-Kutta method with fixed step integration. Before the integration of
(9.76), initial conditions were calculated by solving the above equations assuming

¢ =q=0. The resulting system of nonlinear algebraic equations was solved

using the Newton’s method.

9.2.2 Examples of Numerical Calculations

Example of simulation results obtained from the developed computer programme
are presented in this section. Two load cases are considered:

LC-1: Hoisting of the load from a stationary deck.

LC-2: Hoisting from the deck which movement is described by the function:

zp =0.75 sin(%”t] [m]. (9.77)
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A load of 18000 kg (including wire rope and hook block mass) is lifted from
a supply boat deck. Assuming that the wire rope is loose at the beginning of the
cycle (by a length of 1 m), some dynamic overload can be expected. The hoisting
speed is assumed 0.4 m/s for quadruple operation, with the drum rotation
characteristics consistent with Fig. 9.22. The shock absorber was defined by
the following parameters: §, =97 500 N, S,=145,, A, =0.02m,

A,=052m,a=1.1.

a)

80000 1000000 ‘

—without shock absorber —with shock absorber b) —without shock absorber —with shock absorber

70000 +

80000 | 800000 |

50000 +

40000 1 600000 +

force [N)
force [M]

30000 |
20000 + 400000 +

10000 +

200000 + v - . {
o 2 4 3 8 10

time [s] fime [s]

C) —uwithout shock absorber =uwith shock absorber

0 1 2 3 4 5 L} 7 8 9 10
time [s]

Fig. 9.23. LC-1 load case results: a) hoist rope force, b) luffing rope force,c) z coordinate of
the load

In Fig. 9.23, there are presented time courses of the main hoist wire tension
force, luffing wire force and z-coordinate of the load during lifting operation. Two
crane models: working with and without shock absorber, are compared. The whole
crane structure was assumed rigid.

The conditions assumed in the presented examples are rather theoretical — the
winch acceleration during the first phase (when the rope is loose) produces a high
dynamic peak load when the wire is suddenly pre-tensioned. This is one of the
reason why a DAF (dynamic amplification factor) is applied when selecting
various crane components. However, this scenario is simulated in order to show
how effective the shock absorber could be. Even if the operator runs, be mistake,
the winch without load (or there could be an imperfection in a drive system),
thanks to the automatic overload protection system dynamic load in the hoist rope
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Fig. 9.24. LC-2 load case results: a) hoist rope force, b) luffing rope force, c) z coordinate
of the load, d) hoist rope force (rigid and flexible crane jib), e) luffing rope force (rigid and
flexible crane jib)

is reduced by approximately 100%. In some cases, without such a systems, the
tension can be close to the breaking load of the wire, which if not breaks it at the
accident time, makes its life time much shorter.

The plots shown in Fig. 9.24 were obtained for the load case LC-2. The results for
the rigid crane gantry was compared with those obtained with flexible structure.
Discretisation of the crane boom was performed using n, = 7 rigid finite elements.

The results of numerical simulations performed using the crane model having
shock absorber installed confirm a significant decrease of dynamic overload
experienced by the structural systems. Application of the shock absorber
subsystem in real constructions would allow the crane to work in much more
difficult conditions. Without such a systems, the same crane has to be de-rated,
which makes it in a higher sea state less efficient handling tool, causing that the
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whole vessel or platform can not perform planned lifts, until the weather
conditions improve. Consequently, the load chart of a crane equipped with an
overload protection system will be much more different than the same
construction without such a control device. Therefore, properly working shock
absorber is now a relatively new technique in the offshore industry.

Taking into consideration flexibility of the boom does not significantly change
the obtained results. Some slight differences are observed in the time history of the
luffing rope force. It therefore appears that, for the preliminary calculations or for
the bids purpose, the flexibility of the boom can be omitted. On the basis of
a model with few degrees of freedom, an engineer obtains a quick software tool,
supporting him during the design process. The calculation model presented enable
us to determine the crane overload in various working conditions. That makes it
possible to predict limiting weather conditions for a given crane design and
specific operation scenarios. Implementation of the model in a standalone desktop
application makes it attractive for various conceptual ad-hoc analyses.

9.3 Laying of Pipelines

The methods of analysing multibody systems, models of connections and
materials presented in previous chapters were implemented in software suited for
static and dynamic analyses of the installation process of pipelines for transporting
oil and gas, of transfer lines (cables) and other types of infrastructure related to
exploiting deposits of the seabeds. The current section discusses models
operations commonly performed in reality. The constructed models and software
are also indirectly verified. For this purpose, additional models in the ANSYS
package are formulated and the results of calculations compared. Detailed
derivations and a description of those models are offered in [Szczotka M., 2011b].

The Programme Pipelaysim

Based on the presented models, a computer programme supporting static and
dynamic analysis of basic operations related to installing pipes. The programme is
written in the C++ language (Microsoft Visual Studio 2008 IDE), using elements
of the Delphi package which are parts of Borland Developer Studio 2006. To
produce graphics Silicon Graphics Inc's OpenGL library is used.

The main window of the programme PipeLaySim is shown in Fig. 9.25. It acts
as a preprocessor. The user can, by means of standard interface components
(GUI), define (or load from an external file) any parameters of the models and
analysis options. In the main panel of the programme there are buttons assembled
which enable running subsequent simulations for supported installation methods.

Results obtained from the calculations may be analysed in a built-in module for
creating graphs or exported as text files and further processed in other
programmes (e.g. in Excel). A functionality which may be found useful is passing
the results of calculations in the form of scripts to the engineering computation
system MATLAB. The software also supports concurrently displaying an
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Fig. 9.25. Main window of the programme PipeLaySim

animation of the simulated system and saving it to multimedia files (for example

*.avi). Sample postprocessor window with an animation produced using the
OpenGL libraries is shown in Fig. 9.26.
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Fig. 9.26. Sample animation window in the programme PipeLaySim
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9.3.1 Mathematical Model of the J-Lay Method

For the model used to simulate an installation process with the J-lay method
(Fig. 9.27) the pipeline is assumed to be ejected from a guiding ramp whose
inclination angle relative to the deck is ¢, = const . It is further assumed that

REFE 0 is ejected with a known velocity v, (¢) of laying which corresponds to the

vessel's velocity. Because of the lifting movements caused by waves, the pipeline
is subjected to forces due to the difference of velocities of laying and of the point
S. In addition to that, hydrodynamic forces caused by waves and sea currents act
on the pipeline. A detailed derivation of the equations of motion for the considered
system can be obtained by using the dependencies from previous chapters.
Therefore below only selected formulas related to modelling constraints imposed
on the pipeline are given.

Equations of constraints related to the connection of the RFE 0 with the base by

a spherical joint at the point H and the reactions P ) may be introduced into the
system directly by using the dependencies for a spherical joint. The components of

the reaction P‘” in the system {}, may be calculated from the formula:

50) _ pTp0)
P =R\P”,

(9.78)
where R, - rotation matrix of the system {}, relative to {},
ESAO) — reaction vector at the point H expressed in { }4,
P©  _ reaction vector at the point H expressed in the system { }.

The RFE with number 7 is placed in the ramp's guide. As the pipeline is ejected
from the guide, the length of the segment off the vessel increases. When RFEs of
constant length are used, incrementing the number n ;,, (of RFEs and SDE in the
system) is necessary. The general form of constraint equations imposed on the
RFE n is:

=L +R,T=4

s

~ ~ , (9.79)
D, =A,
where a4, =const — vector describing the position of the point S'in {} , ,
A =consi — vector describing the orientation of the guide in {} A
¥/ =F/(r) — vector describing the coordinates of the point S in the
system {} ,
f‘;l,(l)n — components of the vector q, of generalized

coordinates of the RFE n,
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Fig. 9.27. Scheme of the system for installation of pipelines with the J-lay method

Differentiating (9.79) twice makes it possible to put the constraint equations in the
accelerative form:

_:,' (9.80)
D, =0
Since &)n =1~\S =consi
R, =0,
- (9.81)
R,=0
so the equations (9.80) take the form:
T =R,
(9.82)
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The equations of motion of the RFE n may be written as:

m, 0T [B"] [Q¥
0 B Ja | 5| |o® ] 0:8)

where QE;) = (Qn )i:1,2,3 ’

Q" =(Q,)yse-
From (9.83) it follows:

(9.84)

Components of the reaction P" in the system of RFE n (which are needed e.g. to
determine the tension) may be obtained from:

P =R'P™. (9.85)

~7

The way of defining the vector ¥, giving the coordinates of the point Sin the

system {} , (Fig. 9.28) merits a further comment.

v

Fig. 9.28. Connection of the RFE n with the guide
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In the situation of Fig. 9.28, the following holds:

£=|0| (9.86)

where y = y () is a function describing how the n-th RFE is ejected from the
guide (velocity and possibly acceleration).

Static Analysis

Indirect verification was performed (by comparison with the calculations done
employing the ANSYS package) on the J-lay system shown in Fig. 9.29. The total
length of the analysed pipeline was 1000 m. Due to different positions of the
initial point (H) of the pipeline attached with a joint to a rigid structure on the
bottom the obtained curvatures of the pipeline and values of the forces and
stresses differ. The models used are spatial, however, all the static forces act in the
plane 3. Zero excitations were assumed ( y = const ,q, =0,H =0, Nno

currents). The only forces acting on the pipeline were gravity and hydrostatic
buoyancy. Data shown in Table 9.3 were assumed as input.

d =600m

Fig. 9.29. Main parameters of a system in static analyses

Discretisation of the pipeline was performed for a few different numbers of
finite elements (both for the programme PipeLaySim and the ANSYS package).
Satisfactory correspondence was obtained already for the division into n = 100
elements (the results given below are for this number of elements). In ANSYS
PIPE288, finite elements were used which are based on the BEAM88 element
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[Ansys Documentation, 2009] as well as linear shape functions. The element
PIPE288 supports input of hydrodynamic loads modelled using the commands:
OCDATA, OCTABLE, SOCEAN. Results are shown on graphs and in tables using
notation as in the following scheme (Fig. 9.30).

Table 9.3. Basic parameters assumed for static calculations

Parameter Variant A Variant B
Outer diameter of the
pipeline [in]/side 4/5.95 12/16.05
thickness [mm]

Empty (air at atmospheric pressure) or filled (water
under pressure equal to that outside)

Distance L, [m] L) =700, LY =725, L) =750

Content of the pipeline

[AIP]-Rx-Sx-Lx

programe: A-ANSYS, P—PipelaySim; T
distance L [m]

pipe size [“’]

pipe condition: P-empty, N-water filled

Fig. 9.30. Notation for cases of calculations

The analysis was performed with identical scenarios in both programmes. At
the initial moment the pipeline was on the surface of water in undeformed state. In
the first step, balance of the system was considered with gravity and buoyancy
forces applied due to deflection and immersion of the pipeline's elements (with H
being the loose end of the pipeline). Next, the point H of the pipeline was moved
in multi-step static analysis to the destination point while keeping the point S
motionless. Spherical joints were assumed in both points H and S. The results
presented below correspond to the state of the system in the final step of
computation. The reactions in the points A and S for a pipeline with diameter of 4
inches are shown in Table 9.4. Likewise, Table 9.5 contains the determined
reactions of constraints for a pipeline with diameter of 12 inches.

Based on the performed comparative analyses a conclusion can be drawn that
the results produced by the developed software are correct. The differences of
forces calculated in the point S and of horizontal reactions in the point H are on

average less than 0.5%. Also the values of the vertical reaction PY(O) are in

a satisfactory degree of accordance (the differences being 2-14% for pipes with
diameters of 4 inches and 1-7% with diameters of 12 inches). The stated
discrepancies are caused mainly by difficulties in modelling contact with the
bottom which occur in the ANSYS environment.
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Table 9.4. Reactions of constraints in points H and S, pipeline of 4 inches

Empty [AIP]-R4-SP-1.700 | [AIP]-R4-SP-L725 [AIP]-R4-SP-L750
P =19.64 B =250 Py =323
ANSYS B™ =482 B =51.66 B =56.16
P =-19.79 B =251 P =-324
B© =054 P;°> =0.53 P}‘” =2.18
B =1958 | P =24.86 Py =32.15
B™ =4838 B =51.89 A" =56.24
PipeLaySim | . 50) _ BO) _
A" =-1958 | P =-24.86 Py" =-32.15
B =0.49 B =049 P =223
Filled | [AIP]-R4-SN-L700 | [AIP]-R4-SN-L725 | [AIP]-R4-SN-L750
P =49.07 By =62.55 Py =80.89
. B™ =121.6 B =1294 B =1406
PO = 49 P =625 P =-80.8
PO =031 P9 =048 P =-6.23
B =4899 | B =6249 Py =80.78
B =122.06 B =130.0 P =1412
PipeLaySim 50) _ 50) _ 50) _
P =-4899 | PO =-62.49 Py =-80.78
B =027 B =0.46 B =642

The shape of the pipeline in the % § plane is shown in Fig. 9.31. The

presented results are for the empty pipeline with a diameter of 4 inches.
Differences in the values are small and do not exceed 0.1%. Similar results were
obtained for the pipeline with a diameter of 12 inches.

The influence of the pipeline's shape on the reduced stresses for the considered
cases is presented in Fig. 9.32 (for a pipeline with diameter of 4 inches) and
Fig. 9.33 (for a pipeline with diameter of 12 inches). In the analyses, the Huber-
Mises-Hencky (HMH) hypothesis was assumed for the calculation of reduced
stresses. The graphs show bending moments, axial forces and reduced stresses in

X
sections along the relative length defined by the coordinate ¥ =-- (¥ =0 in



182 9 Applications of Models of Offshore Structures
Table 9.5. Reactions of constraints in points H and S, pipeline of 12 inches
Empty [AIP]-R12-SP- [AIP]-R12-SP- [AIP]-R12-SP-
L700 L725 L750
P =130 P =165.7 P =214.1
P =319.3 P =3422 P =3714
ANSYS - ~ ~
P =-131 P =-166.1 P =-214.2
P =372 P =2.65 P =-14.28
P =128.7 P =165.1 P =213.8
PipeLay | B =320.0 B =3431 P =3715
Sim P"=-1287 | B =-1651 B =-2138
P =358 B =248 P® =-15.1
Filled [AIP]-R12-SN- [AIP]-R12-SN- [AIP]-R12-SN-
L700 L725 L750
P =394 P" =502.3 P =649.15
B =969.9 B =1038.1 B™ =1129.3
ANSYS - - ~
P =-3935 P =-501.8 P =-648.9
B" =555 P =59 PO =—-41.6
P{" =3934 P =501.7 Py =648.78
PipeLay | P =967.87 B™ =1040.2 B =1032.1
Sim P"=-3934 | P"=-5017 | P =-64878
P =588 P =6.01 B =-419

the point H and ¥ =1 for the point S, Fig. 9.29). As it can be seen from the

graphs, the RFE method gives close results also for reduced stresses, bending
forces and moments in sections of the pipeline. Relative errors in all cases are
below 1-1.5% (for the given number of elements) and definitely diminish with
condensation of the division.

Analysing the graphs in Fig. 9.32 and Fig. 9.33 indicates that filling the
pipeline with a liquid does not influence the forms of the bending moment (in the
considered cases similar curvatures were obtained for an empty and filled
pipeline). The axial force, which depends on the position of the vessel against the
waves and density of the pipeline, has significant influence on the values of
reduced stresses. Installation of pipelines when they are filled with air allows for
reducing the axial forces and stresses.
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Fig. 9.31. Shape of a pipeline with diameter of 4 inches having reached static balance:
a) shape of the pipeline obtained for different values of L, , b) magnified fragment of the

graph

The described method of static analysis and the obtained results may inform the
determination of installation parameters of the pipeline concerned, taking into
consideration the influence of depth, buoyancy and geometric traits of the system
[Mohitpour M., et al., 2003], [Bai Y., Bai Q., 2005], [Palmer A. C., King R. A.,

2008].
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Fig. 9.32. A pipeline with diameter of 4 inches — values of moments, forces and stresses:
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline
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Fig. 9.33. A pipeline with diameter of 12 inches — values of moments, forces and stresses:
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline
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Dynamic Analysis

This part of the book contains a brief overview of the results of analyses
pertaining to the dynamics of the analysed system. Again, the programmes
PipeLaySim and ANSYS were used and the obtained results compared. The same
geometry and mass parameters were assumed as for the static analyses. As the
initial conditions in the dynamic problem (at time ¢ = 0) the values yielded by the
last step of the static analysis were taken. The fourth-order Runge-Kutta method
with constant integration step was used in the PipeLaySim programme to integrate
the equations of motion [Press W. H., 2002], whereas in the ANSYS package the
Newmark method [Bathe K. J., 1996] was used.

Two types of excitation were applied. In the first case (W1), no waves
(Hy =0m) was assumed and a harmonic excitation of the vessel's immersive

motion (Fig. 9.34a) with amplitudes and periods listed in Table 9.6. This case
corresponds to motion of the system immersed in a motionless liquid. The second
type of excitation (W2) included both the motion of the vessel and waves of the
water (calculations in both programmes were performed according to the Airy
model of the wave). Graphs of the excitations are shown in Fig. 9.34b, assuming
appropriate resizing of amplitudes in the initial phase of calculations and a phase

shift for the variable x, equal @?) =9(. The lower rows of Table 9.6 contain

the remaining parameters, which are common to the cases W1 and W2.
%, = const was assumed in both programmes.

Table 9.6. Parameters assumed in the dynamic analysis

Ay [m], Ay [m], .
Excitation H g [m] (g) (Oy) Bty
Px [deg] @ [deg] T Isl
Wi 0.0 0;0 1;0 8.0
W2 5.0 1; 90 2;0 8.0
. 5
Coeff. C,, /C, from LO/LO Stlffﬁzsssezg:gf. of 1.1e’ N/m
(3.33)
Data set (geometry, Tangent resistance | m = 0.02
diameter, content of the R4-SP-L700 | coefficients m and n=0.04
pipeline) n (Table 3.3)

Fig. 9.35 presents time courses of coordinates of the point P, of the pipeline at

the maximum of curvature (Fig. 9.29) determined by the coordinate x7 = 250 m. In
both cases of the vessel's motion and waves, the graphs of displacements of the
point are similar. Relative errors do not exceed 1%.

In Fig. 9.36, the velocities P; obtained from both programmes are presented.
The produced graphs are virtually identical. The differences are due to integration
methods and also to the accuracy with which the excitation is realized. In ANSYS,
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it was interpolated with a piecewise linear function (boundary conditions for the
displacements given as tables).

a)

!
Y4 =Ay sin(zT”t + gol(/o)) b) -

iy (W1
¥p (W1
—— = (W2
¥p (42) RN /f\

Fig. 9.34. Excitations of the vessel's motion in dynamic analysis: a) assumed conditions of
waves and vessel's motion, b) graphs of longitudinal rolling x, and heave y,

Dynamic reactions at the point S (the point of connection with the guiding
device onboard the vessel) are shown in Fig. 9.37. In the case of vertical reaction

RI(/S) the maximal relative error does not exceed 10% (W2 excitation).

The reduced stresses calculated along the pipeline's axis are shown in
Fig. 9.38. The graphs were produced for the time 7= 10 s taking dynamic forces
into account.

On the comparative results of static and dynamic analyses presented
a conclusion can be based that the proposed model and software are correct. Since
actual objects (ships for laying pipelines) are hardly available and laboratory
research is very costly and requires large pools and devices producing artificial
waves, performing empirical tests is rather difficult. The authors are aware that
results of measurements obtained from tests on actual objects may deviate from
the values yielded by the process of numerical simulation, among other things due
to the simplified description of interaction in the liquid — solid body system and
the approximate model of waves. Yet, some verification is assured by comparing
the results with that from another environment aimed at modelling and analyses
(e.g. of the ANSYS type) which is commonly used and has been verified multiple
times. This allows us to eliminate some possible errors in modelling and
programming.

9.3.2 Installation of a Pipeline with the S-Lay Method

A mathematical model of a system for simulating the dynamics of the installation
process with the S-lay method can be formulated by augmenting the model of the
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J-lay method. The additional element is a specialized ramp guiding the pipeline (a
stinger) (Fig. 9.39). In the model presented herein, the ramp is assumed to be a
bent beam with variable section modelled with the classical finite element method
connected by a joint to the vessel's deck at the point U and additionally with two

supporting ropes.

35,95 34
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Fig. 9.35. Coordinates of the point xx of the pipeline: a) coordinate x (W1), b) coordinate y
(W1), c) graph of the coordinate x (W2), d) graph of the coordinate y (W2)
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Fig. 9.36. Velocities of the point P, : a) W1 excitation, b) W2 excitation
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Fig. 9.38. Reduced stresses for the time r=10s: a) W1 excitation, b) W2 excitation

The model of the pipeline is similar to that used for the J-lay method. It is
described in the previous chapter. A model of the ramp connected with the deck
by a joint U and supporting ropes needs to be additionally formulated. Hence, the
equations of motion of the system may be written in the form [Szczotka M.,
2011b]:

A(Di‘i(f) — Q(J> +Q(J,C) 9.87)
A(R) “(R) _ Q(R) +Q(R ,0) +Q(R ,L) (9.88)
where AY)  — matrix of masses of the pipeline,
i
q” = |- vectorof generalized coordinates of the pipeline,
o)
qil

QY — vector of generalized forces acting on the pipeline,
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supporting ropes

stinger

stinger

Fig. 9.39. Scheme of the model for the analysis of installing a pipeline with the S-lay
method: a) positioning of the coordinate systems, b) reactions of constraints

QY© _ vector of generalized forces exerted by the ramp,
A®  _ matrix of masses of the ramp,

~(R)

9o
(](R) =| : |- vector of generalized coordinates of the ramp,

~(R)

q,,
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R . .
Q( - vector of generalized forces acting on the ramp,
QR© vector of generalized forces exerted by the pipeline,

QL _ vector of generalized forces due to the actions of forces

supporting the structure of the ramp.

The equations and reactions of constraints imposed on the pipeline are identical to
those of the J-lay model. Whereas the joint at the connection of the ramp with the
deck (a revolute connection) makes it necessary to include the reaction vector:

po=[pv BY BOJ (9.89)

and a vector of the pair of forces whose moment is:
MY =iy gl (9.90)

. e . 7 (U .
By neglecting friction in the connection, M é ) =0 is assumed.

The constraint equations take the form:

=WU) _z=® L gRzU) _
ro=r, +RnR r, ~~ =const, (9.91)
OB —
Az(I)nR = const, (9.92)
where T — vector of generalized coordinates of the point U in the system

ng

of the RFE n, of the ramp,

ER @ _ vectors of components of the vector §F =|
R R ng O
ng

s

Rflf) — rotation matrix of the n, of the ramp,

100
A, = .
010

Following the procedure presented in the previous chapter the constraint equations
may be put in an accelerative form allowing us to determine the vectors P(U),

MY and (hjilf) . Actions of the following forces are also taken into account:

R,.L
= intheropes F, S(R) , F ISR) acting on REF (jR) introduced by the vector Q( ),

= contact forces, acting on elements of the pipeline and on the ramp, derived

from Q(J’C) and Q(R’C).
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Forces in the ropes may be determined using the model of a flexible rope with
damping. The contact forces between the ramp and the pipeline are determined by
assuming a series of spring-damping elements with clearance modelling the rollers
guiding the pipeline. The forces of interaction of the ramp's structure with the
water environment are approximated with the Morison equation keeping in mind
the additional interactions occurring at the transition through the water surface.
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Fig. 9.40. Results obtained from static analysis of the S-lay system: a) shape of the pipeline,
b) reduced stresses, c) graph of the axial force, d) bending moment

Sample calculations contained in this section were performed for an installation of
a pipeline of 4 inches at the depth of d =100 m. The shape of the pipeline after it
has reached static balance is shown in Fig. 9.40a, where the coordinates on the
graph are expressed in the inertial system {} depicted in Fig. 9.39a. Two options
were considered: on the graphs P denotes a pipeline filled with air, N — a pipeline
filled with water. Graphs of reduced stresses along the pipeline's axis (Fig. 9.40b)
are different to those obtained in the J-lay method. Two places occur with
considerable stresses due to bending. The first one is caused by the ramp's
curvature (a section called overbend), the second results from the curvature of the
pipeline above the bottom (sagbend).

Stresses in the pipeline may be controlled by changing: the immersion of the
ramp, its shape and the value of the force stretching the pipeline. The bending
moment being zero at some point (Fig. 9.40d) is also characteristic of this method.
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Sample results of calculations of the dynamics are shown in Fig. 9.41.
Harmonic motion of the vessel with period 7 =8s and amplitudes x, =0.5m,

y4 =1.0m was taken as the excitation. The coefficients of the Morison equation
were assumed as in previous analyses.
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Fig. 9.41. Simulation of the dynamics of a system for S-lay installation: a) dynamic
reactions at the point S, b) reduced stresses in selected points of time, c) graphs of the
horizontal component of velocity in time, d) graphs of the vertical component of velocity in
time

The dynamic reactions at the point S (Fig. 9.41a) (guiding the RFE r in the
tensioner's mechanism) are not significantly different from the values obtained in
the static problem due to the assumed length and size of the pipeline (the mass is
fairly small). Additionally, as Fig. 9.41b implies, in which graphs of the reduced
stresses at different points in time are presented, with a relatively rigid system of
ramps the change of values of the stresses occurs in the lower segment of the
pipeline only. The changes would be greater with a more flexible ramp (or
suspension system), which may result, when the length of the system is
significant, in considerable differences in the geometry of the lower segment of
the pipeline (sagbend). A possibility also exists of controlling the lengths of the
ropes in such a way that the growth of stresses caused by waves is eliminated. The
velocities of the centre of mass of the RFE located approximately 4 m above the
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bottom of the sea are shown on graphs (Fig. 9.41 c and d). In the case of the S-lay
method, the differences in the velocities of the pipeline in the lower part are
greater for different contents of the pipeline (densities) than with the J-lay method.

9.3.3 Dynamics of a System for Installing Pipelines with
the Reel Method

Dependencies presented in the preceding chapters allow us to formulate
mathematical models and a computer programme suitable for simulating the
operation of a device for laying pipelines with the reel method. The section
presents a model for the analysis of the dynamics of a system equipped with
a passive reel drive system. To discretize the pipeline the modified RFE method is
used and the nonlinear dependency of stresses on deformations is described by an
elasto-plastic characteristic. Models contained herein are investigated in [Szczotka
M., 2010], [Szczotka M., 2011b].

9.3.3.1 Mathematical Model

In Fig. 9.42, a scheme is shown of a system consisting of a reel onto which the
pipeline is wound and a specialized guiding ramp through which the pipe passes
as it is unwound and lowered to the seabed. The ramp is equipped with devices
controlling the tension and the speed of laying.

The following simplifying assumptions are made:

= the motion of the pipeline being unwound from the reel is kinematically
forced by a device providing tension and guidance; influence of the immersed
part of the pipeline on the motion may be neglected,

* swaying angle y, of the vessel is the most important parameter of the lifting

motion, therefore a simplification is proposed which reduces the problem to
aplanar system in which the vessel can move according to the known
functions:

x4 =30, RAO H.T,.5,.5))
va=30.RAO [H.T,.B,.5(®)) (9.93)

v, =3(LRAO, H T, B,,5(w))

24()=0. 8,()=0. ¢,(r)=0,

where 3 — operator of transformation of the motion from the domain of
frequency to the domain of time,
H,T, — height and period of waves,

By — wave's angle of attack,
S(w) — defined by (3.27) or (3.28),
RAO - operator of the transition function,
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= Jarge deflections of the pipeline are taken into account by applying the
modified RFE method including bending in the longitudinal plane of the
vessel.

Fig. 9.42. Scheme of the reel system

The generalized coordinates of the considered system are therefore components
of the following vector ¢, (an appropriate choice of mass, inertia and geometric
parameters allows the reel to be treated as RFE 0):

q= [V’o’"-’ Vi W,y ]T ) 9.94)
where ¥, — inclination of the axes of the RFE i to the axes %, of the inertial
system,
o, — inclination angle of the ramp's axis.

The equations of motion along with the constraint equations may be written as
(detailed derivations are presented in the papers [Szczotka M., 2010], [Szczotka
M., 2011b]):

A§+B4q-DP=Q-G-H,

-8q=W, (9.95)
where A =A(f,q) - matrix of inertia of the system,
B=B(1.q.4),
D(q),S(q) — matrices of coefficients of reactions and constraint

equations,
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Q(t, q, q) — vector of generalized forces,

G — vector taking the potential of gravity forces into account,

H= H(t) — vector whose components depend on the base's lifting
motion,

W(t, q, q) — vector of the right-hand sides of the constraint equation,

P — vector of unknown reactions of the constraints.

The equations (9.95) were integrated with the fourth-order Runge-Kutta method
with a constant step of integration. Determination of the initial conditions for the
system's equations of motion requires solving sequentially a few static and quasi-
static problems. If in the equations (9.95) the following is assumed:

q=q=0, (9.96)

then the static problem requires solving a system of nonlinear algebraic equations
of the form:

¥(q,)=0,

9.97
®(R,)=0, O

N

where ¥ (q)=0 - equations of balance of the RFEs 1,...,n and the guiding
ramp,

4, =iy, vl

R, =[U,. N, m,]T.

©(R,)=0 — constraint equations.

Solving the system of equations (9.97) was done with the Newton method. The
procedure preceding the calculations of the dynamics is depicted in Fig. 9.43. In
the first stage, the pipeline is wound onto the reel. At this time plastic
deformations may occur. The end of the pipe is transferred to the guiding ramp in
the next stage. Having performed these calculations, we obtain the initial
conditions assumed as the starting point of the dynamics.

In the computer programme, a possibility is also included to perform dynamic
analysis with a simplified model in which oscillations (dynamics) are not included
(the model is introduced in [Szczotka M., et al., 2007). In such case, an internal
procedure solving the equations (9.97) with the Newton method determines the
forces occurring during the unwinding of the pipeline when integrating the reel's
equations of motion. The equation of the reel's dynamics may be obtained from
the equations (9.95) assuming »n = 0 and taking into account the forces caused by
deformations of the pipeline described by the system of equations (9.97). Note,
however, that despite the minimal dimension of the model, the necessity of using
the Newton method, which is sensitive to nonlinearity of the problem considered,
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Step a)
quasi-static
spooling Initial analyses, statics
Dynamic analysis
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transporting — /
Simplified pipe
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quasi-s}at.iF s Quasi-static
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Full dynamic
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N Neural network
model of pipe

: Initial conditions

Fig. 9.43. Quasi-static analyses for determining the initial conditions: a) stage of winding
the pipe onto the reel, b) transferring the pipe to the ramp, c) stretching the system to the
nominal tension

lengthens the durations of computer simulations with respect to the full model of
the dynamics. Those durations are approximately ten times longer, therefore using
this model does not seem prudent. Hence, another approach to employing the
simplified model is proposed. The discrete model of the pipeline is thereby
replaced with an artificial neural network [Szczotka M., 2010]. Minimal
computation time is then required to determine the forces due to the pipeline's
work as it is being unwound, and use them in the equation of the reel's dynamics.
Computational efficiency of a such model is particularly appealing. It also lends
itself somewhat to real-time control. The results obtained from both variants of the
model are presented later in this chapter.

9.3.3.2 Calculations for a Passive Drive of the Reel

The results of calculations performed for the system shown in Fig. 9.42 are
presented below. The drive of the reel from which the pipeline is unwound is
assumed to be passive and to exert a constant force applied at a dividing radius of
the clockwork. To make the interpretation of the results more convenient, the
simulations were performed assuming the following functions describing the
motion of the vessel:

x, = Ay sin(at+ yy ),
ya = Aysin(ar+yy), (9.98)
Ya=A4, sin(a)t + 71//)’
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where AX ,Ay,A,/, — amplitudes of motion in the appropriate directions,

Vx»Yy»>Y, - initial phases,
@ — angular frequency of excitation.

Basic assumed parameters of the device are based on the documentation of one of
the devices operating on the North Sea. The characteristic values are gathered in
Table 9.7 (the dimensions and parameters are shown in Fig. 9.42). The objective
of the performed simulations was to determine the influence of waves and braking
force of the reel on the operation of the considered system. Typical settings and
data used when installing pipelines were chosen. Table 9.8 shows the parameters
of regular excitation of the vessel's motion according to (9.98), taking into account
the mentioned characteristics of the vessel. All calculations were performed
assuming a constant step of integration in the Runge-Kutta method A/=0.001 s.
The notational system used in the subsequent graphs is explained on the scheme
presented in Fig. 9.44.

Rx-Fx-Ux-Vx-Cx
pipe size [’] g ;lay ramp stiffness [MN/rad]
assumed vessel input laying speed [m/h]

initial pipe pretension [kN]
Fig. 9.44. Notations in the results presented on graphs

In Fig. 9.45, the results of calculations for a pipeline with diameter of 4 inches
are shown. Graphs of tension indicate significant instability of operation caused by
waves and lack of possibility to eliminate undesirably large overloads by changing
the braking force of the reel (Fig. 9.45b and c). Fairly stable operation is
guaranteed only for modest values of the amplitude of the swaying angle y,, when
the braking force of the reel is increased (Fig. 9.45a and d). The decay of tension
(values of the force Ug near zero in Fig. 9.45b and c) is due to excessive
unwinding of the pipe from the reel caused by the increase in the reel's angular
velocity (Fig. 9.46).

The graphs of the reel's velocity are shown in Fig. 9.46. The results obtained
for F1 and F4 waves (little swaying, Fig. 9.46a and Fig. 9.46d) indicate fairly
stable operation of the device in the range of swaying amplitudes from O to 1°.
Lack of control of the reel's velocity under more intense waves leads to unwinding
of great amounts of the pipeline and subsequently to abrupt arrest of the reel
(jerk). Increasing the braking force makes it possible to reduce the maximum
speed of the reel but it also causes high values of the axial forces which are
dangerous to the personnel and the device.
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Table 9.7. Main parameters of the device and sizes of pipelines used

Parameter

Value

Admissible mass of the reel together with the
wound pipe

2500 -10°kg

Range of diameters of steel pipes installed

4"_1 8"

Designed value of pipes' tension

2500 kN

Capacity of the reel: (for max/min. diameter of the
pipeline)

150 km / 7km

Max/min. Winding diameter of pipes

D,=25m/D,=15m

Moment of inertia of the reel with the wound
pipeline

2.5+3.0-10%kgm *

Length of the vessel

~100 m

Diameter of the gear wheel

D, =25.7m

Link mass m, of the pipeline for pipe diameter D

D=4", m, =16 kg
D=8", m, =42 kg
D=12", m, =128 kg
D=16", m, =240 kg
D=18", m, =340 kg

Length of the guiding ramp L, =20m
Radius of the ramp's guiding wheel r,=8m
Mass of the ramp with devices 120 -10°kg
Distance between the reel and the joint attaching _

Ly, =55m
the ramp
Ramp inclination angle ay =60°

Table 9.8. Assumed parameters of the vessel's lifting motion

A R / Yy AY , ‘ A ; ’ Period of Height of the Direction of the
Descrip S . }/12 7 7V/ the wave wave wave
(ml/[1 | [m]/[°] ml/°] | T [s] | H,[m] B [°
F1 0.12/90 04/75 |0.15/-45 6 3.0 30
F2 0/0 0.45/90 | 2.55/20 7 3.0 0
F3 1.0/-100 22/0 4.1/60 8 5.0 60
F4 0.27/-95 | 0.27/0 | 0.85/70 10 1.0 0
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Fig. 9.45. Graphs of tension in the pipeline as it is unwound under waves and with different
values of the barking force of the reel: a) + d) correspond to F1 + F4

Multiple factors influence the values of dynamic forces during the device's
operation. Among those considered are: flexibility of the guiding ramp's
suspension, speed of laying the pipeline, different diameters and load degrees of
the reel, value of tension. The results are presented, among other things, in the
papers [Szczotka M., 2010], [Szczotka M., 2011a]. In many cases it is impossible
to eliminate or significantly reduce dangerously large dynamic forces under wave

action with waves of height H; > I'm without using an auxiliary control system.
One is proposed in section 10.4.
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Fig. 9.46. Angular velocity of the reel for different waves conditions and values of braking
forces of the reel: a) + d) correspond to F1 + F4
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