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9   Applications of Models of Offshore 
Structures 

Each offshore structure is unique in the sense that it is built only after a customer 
with a specific need actually places an order. Design companies and 
manufacturers of engineering systems of this type are often small and medium 
enterprises, which cannot afford purchasing costly computer software packages 
for numerical computation involved in dynamics of mechanical systems. 
Therefore, they often employ custom, in-house dynamic models of the structures 
designed. In the present chapter, dynamic models of the following are presented: a 
gantry suited for relocating sets of BOP valves on an extraction platform, a 
column crane and a device for laying pipes on the seabed. The formulation of 
models thereof leverages the methods described in earlier chapters. 

9.1   BOP Transportation Gantry 

One of the types of offshore cranes is a BOP crane. The construction of Protea 
from Gdańsk is presented in Fig. 9.1. It is a gantry crane installed on a drilling 
platform designed to transport a system of valves named BOP (Blowout 
Preventor). BOP is used to block an uncontrolled outflow of oil or natural gas 
from a wellbore at the seabed. After drilling the wellbore, the BOP is put inside it, 
and afterwards risers are being connected to the BOP. The risers drain off oil or 
gas into suitable tanks. In view of the plug task, weight of the BOP reaches 
hundreds of tons. During the transportation process (during the travel of a gantry 
crane) the BOP is protected by a system of guides presented in Fig. 9.2.  

Clearance between the load and the guide system equals a few centimetres. 
Weight of the presented crane is 200 T, hoisting capacity 550 T and height about 
30 m. The analysis of a travel system is an interesting and important problem 
concerning the dynamics of a BOP crane. The crane is supported on rails and its 
motion is realized by the means of a rack and a toothed wheel (Fig. 9.3). 
Maximum velocity of travel of the crane is equal to 3 m/min. Due to the 
movement of the platform’s deck caused by sea weaving and wind forces, the 
protection systems are used. These systems limit the movement of the crane in 
vertical direction and horizontal one, perpendicular to the longitudinal axis of 
rails. This task is particularly realized by an anti-lift system presented in Fig. 9.4. 

3
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Fig. 9.1. BOP crane Fig. 9.2. Guide system 

Fig. 9.3. Rack travel system Fig. 9.4. Anti-lift system 

9.1.1   Mathematical Model of the System 

The schema of the model of the BOP crane together with more important 
coordinate systems is presented in Fig. 9.5. The following basic assumptions for 
modelling are established: 

 movement of the base (system {A}) is known and described by functions: 
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Fig. 9.5. A model of a BOP gantry with load 

 structure of the crane (frame) is treated as a rigid body – it should be noticed 
that the construction of the BOP crane is a kind of combination of two A-
frames; an A-frame has been a subject of many analyses presented in [Fałat 
P., 2004]; these analyses have shown that the influence of flexibility of the 
frame on dynamics of the whole system (on motion of the load) is slight, 

 load is a rigid body of rectangular shape, 
 load is suspended on two ropes – their flexibility and damping are taken into 

account, 
 load can touch the guides only along its edges,   
 clearance and flexibility between the load and  guides are taken into 

consideration,  
 frame is fixed flexibly to the deck and, additionally, in ( )AŶ  direction 

clearance can occur, 
 input in the drive system has been modelled in two ways: a kinematic input 

via a spring-damping element and a force input, 
 wind force can be taken into consideration, 
 homogenous transformations are used to describe the system’s geometry. 
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Both the load (system {L} in Fig. 9.5) and the frame (system {F}) have 6 degrees of 
freedom in respect to the deck (system {A}). So, the model has 12 degrees of freedom 
and the vector of generalized coordinates of the system has a following form: 
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It has been mentioned that the motion of the base (deck of the platform), that 
means the motion of the system {A}, in respect to the inertial coordinate system {} 
has been assumed as known, described by pseudo-harmonic functions: 
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where ( ) ( ) ( )A
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A
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A
jiA ,,, ,, ϕω  – amplitude, angular frequency and phase angle of the 

input, respectively,  

 ( )A
in   − number of harmonics of the series. 

 
The application of homogenous transformations allows converting a position 
vector of the point defined in the system {A} to system {} according to relation: 
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– position vector of point P in the inertial 

system {}, 
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P zyx 1=r  –  position vector of point P in the system 

{A}, 

 T0
A  – matrix of a homogenous transformation from the system {A} to 

the system {}. 

The matrix T0
A  can be presented as product of six matrices, where each of them is 

a function of one variable dependent on time (9.4). Order of rotations included in 

the matrix T0
A  corresponds to Euler angles ZYX.  

Kinetic and Potential Energy of the Frame and the Load 

Kinetic and potential energy of the frame, as well as the load, can be determined 
using general algorithms presented in chapter 5. If one denotes the homogenous 
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transformation matrix from the frame system {F} to the deck system {A} as ( )FT
~

 

and from the load system {L} as ( )LT
~

, the transformation matrices from the 

frame system and from the load system to the system {} can be calculated as:  
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~0 F

A
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where k is the number of the generalized coordinate, { }LFb ,∈ , 

and using the transformation presented in chapter 5 one can obtain: 
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The above form requires repeated multiplication of matrices of 4×4 dimensions 
and then the calculation of the trace of the result matrices. In order to decrease the 
number of required numerical operations, the authors decided to derive formulae 
describing Lagrange operators in the explicit form. 

The relation (9.8) can be presented in the following form: 
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Assuming that rotation angles of the frame and the load are small, the matrix 
)(~ bT  can be written as:  
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or: 
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In the paper [Urabś A., et al., 2010] it has been shown that: 
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where )(bm  − mass of the body { }LFb ,∈ , 
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Derivatives of potential energy of gravity forces of element of mass m(b) can be 
presented in the form of the vector: 

 [ ] ,00033
)(

32
)(

31
)(

)(

)(
Tbbb

b

b
g tgmtgmtgm

V
=

∂

∂

q                
(9.20) 

where )(bq  –  vector of coordinates of the frame or the load (defined in 

(9.2)), respectively, 
 m(b)  – mass of the frame or the load, 

 333331 ,, ttt  –  proper elements of the third row of the matrix T0
A . 
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Model of the Support 
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Fig. 9.6. Flexible connection of the frame to the deck 

It has been assumed that the frame of the BOP crane is supported flexibly in 

four points denoted as )4,3,2,1()( =kP k . The crane is moving on a dedicated rail 

system in direction parallel to ( )AX̂  axis (Fig.9.6). Additionally, a constructional 
clearance can occur in ( )AŶ  direction.  
The reaction force, i. e. the reaction force of the base on the frame, is depicted by 
the vector:  

 [ ]TzF

P

yF

P

xF

P

F

P kkkk FFF ),(),(),()(
)()()()( =F .                       (9.21) 

The ),(
)(
zF

P kF component can be calculated as: 

 ),(
,

),(
,

),(
)()()(

zF

PD

zF

PS

zF

P kkk FFF += ,                                    (9.22) 

where
 

),(
, )(

zF
PS kF

 
– stiffness force, 

 
),(

, )(
zF

PD kF
 
–  damping force. 

 
 



9.1   BOP Transportation Gantry 147
 

 

The stiffness and damping forces are determined by relations:  
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In the case of the component ),(
)(
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P kF , the possibility of occurrence of clearance in 

the anti-lift system is taken into account. Due to modelling clearance, two spring-

damping elements acting in the ( )AŶ  direction are introduced, as described in 
chapter 6.2.   
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–  resisting force caused by rolling or sliding friction, 
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After calculating suitable coordinates and velocity of points of support, 
generalized force of flexible connection of the frame and the deck can be written 
as:  
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Generalizing the relation (9.25) to four supports one can obtain: 
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Modelling Clearance between the Load and Guides 
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Fig. 9.7. Load and spring-damping elements with clearance 

 
 
The guides have been replaced by spring-damping elements with clearance 

(SDE E(kp)) that limited the movement of the load in )(ˆ AX  and )(ˆ AY  directions 
(Fig. 9.7). It has been assumed that the load can contact with guides only along its 
edges and the number of spring-damping elements can be different for each edge. 
The manner of calculation of stiffness and damping forces coming from the each 
side is analogical to the one presented in chapter 5.3. Additionally, one has to 
determine equivalent coefficients of flexibility of elements modelling the guides. 
Suitable calculations have been executed by the means of the Finite Elements 
Method. They were presented in details in the doctoral thesis [Urbaś A., 2011].   
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Drive of Travel System 

The input in the drive of the travel system has been modelled in two ways  
(Fig. 9.8): a kinematic input via a spring-damping element (flexible) and a force 
input (rigid). It has been assumed that the drive acts in points P(1) and P(4).  
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Fig. 9.8. The travel system of the crane: a) flexible, b) rigid 

1. Kinematic input 
In this case, the potential energy of elastic deformation and the dissipation 
function of the drive system can be calculated as: 
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 – stiffness and damping coefficients of the drive of the 

travel system, respectively. 

After determining coordinates ( )
( )A

P ix  as function of elements of vector ( )Fq , one 

should place suitable derivatives in the equations of motion of the system.  
2. Force input 

In the case of force input, the unknown forces )()(
)4()1( , F

P

F

P
FF  and suitable constrains 

equations have been introduced. Generally, the forces can be placed on the left 
side of the equations of motion of the system which can be written as:  
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In the analysed problem, the constrains equations have the form: 
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Due to convenience of the computer implementation, they can be presented in the 
matrix and acceleration form: 
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Energy of Elastic Deformation and Energy Dissipation of the Ropes 

The load is suspended on two ropes, so their energy of elastic deformation can be 
written as: 
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The derivatives of the potential energy of elastic deformations of the ropes have 
the form: 
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A similar reasoning may be conducted in the case of determining the dependency 
describing the energy dissipation function: 

 [ ]
=

Δ=
2

1

2)()()()(

2

1

p

p
BA

p
r

p
r

p
r pp

lbD &δ ,                              (9.33) 

where 
)( p

rd  –  damping coefficients of the rope p. 

Hence the formulas: 
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Taking into consideration all components of the Lagrange equations, we obtain the 
system of differential equations: 

 ),,( qqfqA &&& t= ,                                          (9.35) 

where ),( qAA t=  – a mass matrix. 

In the case when the input in the drive of the travel system has been modelled as 
force input, equations (9.35) have to be completed by the constrains equations 
(9.30) and equations of motion have to be presented in the form (9.28). The fourth 
order Runge-Kutta method has been used to solve the system of equations. 

9.1.2   Example of Numerical Calculations 

The presented dynamic model of a BOP gantry allows for comprehensive analyses 
of the device's operation both under usual working conditions and intense waves. 
Much detailed discussion is contained in the thesis [Urbaś A., 2011].  

In the current book, sample results of numerical simulations for phenomena 
occurring in a gantry's supporting structure are presented. Masses and geometrical 
parameters of the crane have been chosen based upon technical documentation  
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(2007). The main parameters are given below: mass of the frame 110 000 kg, mass 
of the load 550 000 kg, dimension of the load 4,8 m x 5,5 m x 20,3 m. Data 
concerning the motion of the deck that should be taken into calculation are also 
provided in the technical documentation (2007) (Table 9.1). In our simulations, 
the operational conditions have been assumed. 

Table 9.1. Deck motion due to waves 

Condition 
Heading
[deg] 

Heave 
[m] 

Pitch 
[rad] 

Roll 
[rad] 

Z1 0 0,1343 0,0023 0 
Z2 45 0,1115 0,0008 0,0023 
Z3 90 0,1140 0 0,0045 

Table 9.2. Load cases analysed - gantry crane not moving 

Symbol Description Clearance Deck motion 
Z1-M0-C0 

No clearance in travel system 
0 Z1 

Z2-M0-C0 0 Z2 
Z3-M0-C0 0 Z3 
Z1-M0-C1 

With clearance in travel system 
1cm Z1 

Z2-M0-C1 1cm Z2 
Z3-M0-C1 1cm Z3 

 
Calculations for the BOP crane that does not move on the deck have been 

denoted according to the Table 9.2. The same denotations are used in the graphs. 

In Fig. 9.9 there are presented time courses of general coordinates  of the 

load of the BOP crane with and without clearance in the travel system.  
The influence of clearance in the travel system for the reaction forces in the 

support system (the leg no. 1) is shown in Fig 9.10. The deck motions Z2 and Z3 
are taken into consideration. 

The biggest influence of clearance in the travel system on the dynamics of the 
BOP crane occurs for input Z3, so this input is taken into account for the next 
calculations. The influence of clearance in the travel system on the reaction forces 
will be analyzed. The travel velocity is defined by the relation:  

                               

(9.36) 

where . 
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The main part of the force S on the piston, is balanced by the gas pressure in the 
accumulator. In addition, there is some oil pressure drop due to restriction when 
the oil passes the valves between the piston and the accumulator. This is illustrated 
in Fig. 9.14. 

9.2.1   Model of the Offshore Crane 

The subject of this section is the offshore pedestal crane equipped with the system 
reducing dynamic overload, situated on the boom (Fig. 9.15). The analysed crane 
type is, according to EN 13852-1 Annex L, the “Lattice boom type crane” or API 
Spec. 2C, type C. The main assumptions adopted at the design stage and the most 
important connections used during the derivation of equation of motion will be 
given below. Modelling the shock absorber was particularly emphasised. For the 
description of the system, joint coordinates and homogenous transformations were 
used based on Denavit-Hartenberg convention. The equations of motion were 
obtained using the Rigid Finite Element Method and the Lagrange equations of the 
second order. 
 
 

 
Fig. 9.15. Scheme of an offshore pedestal crane 

While preparing the model, the following assumptions and subsystems were 
taken into consideration: 

 the base of the crane (the platform of vessel) is a rigid body with 6 degrees of 
freedom; the movement is caused by the sea waves defined by pseudo-
harmonic functions, 
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 the pedestal is modelled by means of the Rigid Finite Element Method using 
a modified approach (MRFEM) – chapter 8.2; hence, the flexibility of the 
pedestal could be included but also the treatment of the pedestal as a rigid 
structure is possible, 

 the king frame, including the slewing part, is treated as a rigid structure with 
one degree of freedom with respect to the pedestal – the slew angle, 

 the A-frame is modelled by means of MRFEM as a simplified, one-beam 
system having bending flexibility in the perpendicular direction to the A-
frame plane; similarly to pedestal model, the A-frame can be treated as a rigid 
subsystem, 

 the boom is modelled as a continuous system by means of the MFREM, 
 the basic element of the shock absorber is the hydraulic cylinder, which is 

modelled as point mass (additionally including the mass of the moving 
sheave) connected to the boom by means of a spring damping system; the 
mass may slide only along the longitudinal axis of the boom; it is assumed 
that the characteristics of the spring is nonlinear, 

 the hoist rope is modelled as a massless element with equivalent longitudinal 
flexibility; the damping is taken into account, with the assumption it is 
viscous, and that the damping coefficient has a constant value; with regards to 
significant changes of the hoist rope during crane operations, the value of 
rope stiffness coefficient has been made depended on the current rope length, 

 the luffing rope is modelled similarly to the hoist rope; as a matter of fact that 
change of the rope length during crane operations is small, the rope stiffness 
coefficient is assumed to be constant, 

 the load is treated as a material point; its contact with the deck of the supply 
vessel is taken into account, 

 the drive function of the hoist winch can be assumed in two ways: as 
a kinematic excitation or force excitation by a given moment, 

 the luffing winch drive and the slew of the crane has been adopted as 
a kinematic drive, 

 the supply vessel is modelled identical to the crane base. 

Modelling of the Crane and Cargo Base Motion 

It is assumed that crane base motion and thus movement of the system {A} with 
respect to the system {0} is known and described by functions similar to (9.3): 
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Movement of the cargo base, i.e. that of system {A}, will be described in the same 
way. 

In further considerations, the coordinate system {0} will be identified with the 
inertial coordinate system {} and the following notation will be used for the 
homogeneous transformation matrix from coordinate system {p} to the coordinate 
system {0}: 

)(0 p
p TT = ,                                            (9.38) 

where p is the number of the member in the kinematic chain. 

Homogeneous transformation matrix , taking into account the motion of the 

system {A} in {}, can be presented as a product of six matrices, each being the 
function of only one variable dependent on time as described in chapter 5. It is to 

be noticed that if  is a vector describing coordinates of the 

dm mass (point) in the local system {}’, connected to any part of the system, the 
coordinates of such mass in the system {} may be described with the equitation: 

 '')()(0 rTrqTTr == tA ,                                 (9.39) 

where ( ) ),,( 1{}~ n
A qq KTqT =

 
– transformation matrix of coordinates from local 

coordinate system {}’ into the {A} coordinate system, dependent 
on the generalized coordinates  of the body, 

 )()(0 qTTT tA= . 

Crane Pedestal 

As mentioned before, the crane pedestal was discretized by means of MRFEM. 
The number of rigid finite elements, on which the pedestal was divided, equals 
n1+1, where the first rigid finite element of the pedestal, RFE (1,0), is added to the 
vessel body. The generalized coordinates, describing the location of the second 
and other rigid elements modelling the pedestal with respect to its predecessors 
(coordinates describing mutual location of the rigid finite elements some times 
called flexible or elastic coordinates), may be presented as vectors: 

,                  (9.40) 

where , ,  are the rotation angles presented in Fig. 9.16. 

The vector of generalized coordinates of the RFE yields: 

                        (9.41.1) 
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Fig. 9.16. Pedestal discretized by mean of MRFEM 

   for i = 2,..., .         (9.41.2) 

In accordance to above consideration, during the derivation of the equations of 
motions, kinetic and potential energy of the RFE (1,0) have been omitted. On the 
basis of equations presented in previous sections, the kinetic energy of the body 
discretised by the MRFEM can be calculated as: 
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TTTTTTTT −− ⋅⋅== K    for i = 1,.., 1n , 

 ( )i,1~
T  – transformation matrix from coordinate system of RFE (1,i) into 

coordinate system of RFE (1,i-1).  

For the Lagrange equations of the second order, the concept of Lagrange operators 
is introduced: 
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Such operators for other RFE (1,i) (i=1,...,) of the pedestal, can be written in the 
vector form as: 

 ( )( ) ,),1(),1(),1(
,1),1(

iii
iEi eqAε

q
+== &&

                          
(9.44) 

where ( ) { }Ti
j

ii
knjk

i
jk

i a ),1(),1(),1(

3,..,1,

),1(
,

),1( tr
1

THTA ==
=

, 

 
( ) { }

[ ] ,2tr

tr

),1(0),1(0),1(),1(

),1(),1(
3

1

3

1

),1(
,

),1(),1(
3,...,1

),1(),1(
1 1

1







 ++

+== 
= =

=

T
i

A
i

A
ii

k

i
l

i
j

n

j

n

l

i
lj

ii
knk

i
k

i qqe

TTTTHT

THTe

&&&&

&&
 

 ∏
=

=
i

j

ji

0

),1(),1( ~
TT ,                  

 ( )i
k

i
i

k q ,1

),1(
),1(

∂
∂

=
T

T ,    

 ( ) ( ) 










∂
∂

∂
∂=

i
l

i

i
j

i
lj

qq ,1

),1(

,1
),1(

,

T
T . 

The potential energy due to gravity forces of the pedestal’s rigid finite elements is 
described by the relation: 
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where ),1( im  – mass of the RFE (1,i), 

 ),1(~ i
Cr  – vector of the mass centre of RFE (1,i) expressed in its own 

coordinate system.  
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The corresponding derivatives, which are the elements of the Lagrange equations, 
are: 
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It is known that in MRFEM the successive RFE are connected with each other by 
means of massless, elasto-damping elements (SDE). Potential energy of the elastic 
deformation SDE (1,i) is defined as follows: 
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rotational stiffness of SDE (1,i).  

Equation (9.47) can be presented in the form: 
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The required derivatives of the potential energy of elastic deformation with 

respect to generalized coordinates , have a simple form: 
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It may additionally be assumed that in SDE (1,i) dissipation of the energy appears, 
which is described by means of equations: 
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Equation (9.50) may be also written as: 
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and the adequate derivatives can be obtained from: 
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King Frame/Slewing Part 

Let us define the following vector of generalized coordinates for the slewing part: 
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where ( )2
zϕ  symbolizes the angle of rotation of the slewing part with respect to the 

pedestal. 

The kinetic energy of the slewing part can be described as: 
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where ( )2H  – the inertial matrix of the slewing part. 

Lagrange operators for the slewing part are formulated in the form: 
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n ϕT   – the transformation matrix form coordinate system of 
slewing part {2} to the last rfe coordinate system of 
pedestal {1,n1}.  

Potential energy of the gravity forces of the slewing body equals: 

 )2()2(
3

)2(
2

~
C

g gmV rTθ= ,                                 (9.56) 

where ( )2m  – mass of the slewing part, 

 
)2(~

Cr  –  position vector of the center of slewing part mass, expressed in 
the system {2}.  

The necessary derivatives are defined bellow: 
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2 G
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,                                           (9.57) 

where ( )( )
2,...,1

2)2(
nkkg ==G , 

 ( ) ( ) )2(2
3

)2(2 ~
Ckk gmg rTθ= . 

A-Frame and Boom 

As mentioned above, the A-frame is modelled by means of the MRFEM in 
compliance with only bending flexibility in the perpendicular direction to the 
plane of the A-frame. Additionally, as for the pedestal, RFE (3,0) is added to the 
slewing part, and as a result, it does not have its own generalized coordinates 
(Fig. 9.17). Consequently, the following vectors of generalized coordinates for 
each rfe of the A-frame are defined: 

 one-element vectors of the flexible coordinates: 

 ,                     (9.58) 

 coordinate vectors describing position of the rigid element with respect to the 
base coordinate system: 

  for i=1,2,..., .(9.59) 
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Fig. 9.17. Simplified model of flexible A-frame 

 
Fig. 9.18. Flexible boom discretized by mean of the MRFEM 

In contrast to the pedestal and A-frame, in the case of boom it was assumed that 
there is a rotational connection defined by the boom angle ψ  between the rotating 
part {2} and the RFE (4,0) (Fig 9.18). We can define the following vectors of 
generalized coordinates for the boom: 
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 vectors of the rigid and flexible coordinates:  

( ) [ ] ( )[ ] ( ) ( ) ( ) ( )[ ]Ti
z

i
y

i
x

,i
y

, ,4,4,440,404 ~;...;~ ϕϕϕϕψ === qq  for i=1,2,..., 4n ,(9.60)  

 coordinate vectors describing position of the rigid element with respect to the 
base coordinate system:  

( ) ( ) ( ) ( ) ( ) ( )[ ]Ti
ni

i
TTiT,Ti qq ,4

13
,4

1
,4042,4

2

~~
++=



= KK qqqq   for i=0,1,..., 4n . (9.61)  

The necessary elements of the Lagrange equations related to the A-frame and 
boom subsystems were calculated in the same way as presented for the crane 
pedestal. 

The Model of Shock Absorber  

The model of shock absorber is presented in Fig. 9.19. Its basic element is sheave 
(3) possessing the mass msA mounted to the boom by means of a parallel spring-
damping system. Relative motion of the sheave (3) is possible only along the 
longitudinal axis of the boom. The mass msA is enlarged due to movable parts of 
the hydraulic cylinder.  
 
 

 

Fig. 9.19. Model of the shock absorber 

The shock absorber is activated only if the hoist rope tension reaches specific 
value (and does not exceed design limits). Usually, in practical hand calculations, 
one assumes a multilinear characteristic (Fig. 9.14), but its first derivative is not 
determinable in points defining the working range. This is unfavourable in 
numerical simulations. 

(1)

(2)

(4)

(6)

msA

bsA

csA

(3)

(5)
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Fig. 9.20. Characteristic of an elastic element csA=csA(x) 

In the presented model, characteristic shown in Fig. 9.20 was assumed 
[Krukowski J., Maczyński A., 2011]. It represents the characteristic of elastic 
element csA=csA(x), and does not take into account the situation when the shock 
absorber sheave (3) is fixed to the boom structure. The curve given in Fig. 9.20 
can be described as follow: 
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.                (9.62) 

By selecting appropriate values of α and β, one obtains a smooth transition curves 
at the point x = aΔ (and x = –aΔ). Then, the following conditions must be fulfilled: 

 ( ) ( ) ( )Δ−+Δ=Δ−Δ+=Δ+Δ Δ 12 ackacSeaak aβα ,            (9.63.1)  

 ceaeak aa =Δ+Δ+ ΔΔ ββ βαα 222 .                     (9.63.2) 

After some transformation, parameters α  and β  are obtained: 
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aβ ,                                       (9.64.1) 
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The shock absorber is designed in such a way that it works only under the 
tensioning load. Up to the value of force S1, the stiffness has a very high value. 
Within the limit of forces S1 to S2, the stiffness decreases (shock absorber working 
range), and beyond force S2 the stiffness increases significantly. The characteristic 
of an elastic element from Fig. 9.20 must be appropriately scaled to the form 
shown in Fig. 9.21. 

Shock absorber working parameters are defined by the following variables: 

1S , 2S  − minimum/maximum force from which shock absorber is active, 

1Δ , 2Δ  − displacement of the shock absorber sheave corresponding to the force 

1S , 2S , 

a  − parameter specifying where the point of curvilinear part of 
characteristic is becoming rectilinear, α > 1,  

βα ,  − parameters defining the shape of the characteristic described in 

equation (9.64). 
 
 

 

Fig. 9.21. Characteristic of shock absorber 

From Fig. 9.21 it is easy to read, that the constans c and k are described by means 
of: 

 ,
1

1

Δ
= S

c
                                            

(9.65.1) 
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12

12

Δ−Δ
−= SS

k ,                                         (9.65.2) 

and the values of x  and y  are determined as: 

 




Δ−=
−=

xx

Syy
.                                                 (9.66) 

where x , y , Δ  and S  are shown in Fig. 9.21. 

Hoisting and Luffing Ropes 

The potential energy of elastic deformation and function of dissipation energy of 
the hoist rope and luffing rope can be described by the following equations: 

 
( ) 2

2

1
l

l
l cV Δ= δ ,                                        (9.67) 

 
( ) ,

2

1 2
l

l
l bD Δ= &δ

                                      
 (9.68) 

where 




>Δ
≤Δ

=
0for1

0for0

l

lδ , 

 lΔ  –  elongation of the hoist rope or luffing rope, 

 ( )lc , ( )lb  –  stiffness and damping coefficients of rope, respectively. 

Because of the possibility of the significant changes in the active length of the 
hoist rope during crane operation, the stiffness coefficient of the hoist rope is 
determining by means of: 

 ( )

( ) ( )660,6

66

rL

FE
c l

α−
= ,                                   (9.69) 

where 0,6L   –  the initial length of hoist rope, 
 6E  – Young’s modulus of the wire rope core, 

 6F  – cross section of the wire rope, 

 ( )6α  – rotation angle of the hoist winch drum, 

 ( )6r  – radius of the hoist winch drum. 

The stiffness coefficient )( lc  of the luffing rope is considered as a constant value. 
A method for determining the necessary derivatives of equations (9.67) and (9.68) 
was described in chapter 9.1.  
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Load 

The load was modelled as a material point. The weight of the hook block was 
added to the weight of the load. The vector of the generalized coordinates is 
defined as: 

 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]TLLLTLLLL qqqzyx 321==q .             (9.70) 

The kinetic and potential energy of the load are described by means of: 
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L zyxmE &&& ,                    (9.71) 

 ( ) ( )LLg
L zgmV = ,                                   (9.72) 

where ( )Lm  is the mass of the load.  

On this basis, it is possible to write: 

 ( )
( ) ( )LL

L qAε
q

&&⋅= ,                                        (9.73) 

 ( )
( )[ ] ,00

TL
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g
L gm

V =
∂
∂
q                                 

(9.74) 

where ( ) ( ) ( ) ( )[ ]LLLL mmmdiag ,,=A . 

The developed computer software allows us to simulate the following cases: 

1. load is in the air (water) – does not remain in contact with the deck of a supply 
vessel, 

2. load remains stationary on board of the supply vessel; its coordinates are 
defined by the motion of the supply vessel, 

3. load can by frozen to the deck, or other reason cause that the load is 
permanently connected to the supply vessel.  

Drive Systems 

Slewing, hoisting and luffing drive systems are modelled as the kinematic inputs. 
Therefore, the following function is known: 

( )tdd φφ = ,                                                  (9.75) 

where dφ
 
is respectively: slewing angle, hosting winch or luffing winch rotation 

angle.  
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From the perspective of 
planned applications of the 
presented model, the hosting 
machinery is one of the most 
significant drive system. Therefore, 
a second method of its modelling, 
using the force excitation, has been 
developed. Based on the analysis 
of literature (for example [Osiński 
M. et al., 2004]) as well as 
experience acquired from crane 
operators and designers, the hoist 
winch characteristic was assumed 
as shown in Fig. 9.22. 

Agregation of the Equations of Motion 

The equations of motion of the whole crane can be written as: 

FqA =&& ,                                                (9.76) 

where A  − mass matrix,  
 q − vector of generalized coordinates, 
 F − the right side vector; its elements are designated as the partial 

derivatives of the kinetic energy, potential forces of gravity and 
flexibility, partial derivatives of function of dissipation energy 
and units derived from external forces.   

The equations (9.76) were solved by a computer program using the fourth order of 
the Runge-Kutta method with fixed step integration. Before the integration of 
(9.76), initial conditions were calculated by solving the above equations assuming 

0qq == &&& . The resulting system of nonlinear algebraic equations was solved 

using the Newton’s method.  

9.2.2   Examples of Numerical Calculations  

Example of simulation results obtained from the developed computer programme 
are presented in this section. Two load cases are considered: 

LC-1: Hoisting of the load from a stationary deck. 
LC-2: Hoisting from the deck which movement is described by the function:
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.                                     (9.77) 
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Fig. 9.22. Hoist winch characteristic 
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A load of 18000 kg (including wire rope and hook block mass) is lifted from 
a supply boat deck. Assuming that the wire rope is loose at the beginning of the 
cycle (by a length of 1 m), some dynamic overload can be expected. The hoisting 
speed is assumed 0.4 m/s for quadruple operation, with the drum rotation 
characteristics consistent with Fig. 9.22. The shock absorber was defined by  
the following parameters: N005971 =S , 12 4.1 SS = , m 02.01 =Δ , 

m 52.02 =Δ , 1.1=a . 

 

 

Fig. 9.23. LC-1 load case results: a) hoist rope force, b) luffing rope force,c) z coordinate of 
the load 

In Fig. 9.23, there are presented time courses of the main hoist wire tension 
force, luffing wire force and z-coordinate of the load during lifting operation. Two 
crane models: working with and without shock absorber, are compared. The whole 
crane structure was assumed rigid. 

The conditions assumed in the presented examples are rather theoretical – the 
winch acceleration during the first phase (when the rope is loose) produces a high 
dynamic peak load when the wire is suddenly pre-tensioned. This is one of the 
reason why a DAF (dynamic amplification factor) is applied when selecting 
various crane components. However, this scenario is simulated in order to show 
how effective the shock absorber could be. Even if the operator runs, be mistake, 
the winch without load (or there could be an imperfection in a drive system), 
thanks to the automatic overload protection system dynamic load in the hoist rope  
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Fig. 9.24. LC-2 load case results: a) hoist rope force, b) luffing rope force, c) z coordinate 
of the load, d) hoist rope force (rigid and flexible crane jib), e) luffing rope force (rigid and 
flexible crane jib) 

is reduced by approximately 100%. In some cases, without such a systems, the 
tension can be close to the breaking load of the wire, which if not breaks it at the 
accident time, makes its life time much shorter. 

The plots shown in Fig. 9.24 were obtained for the load case LC-2. The results for 
the rigid crane gantry was compared with those obtained with flexible structure. 
Discretisation of the crane boom was performed using 74 =n  rigid finite elements.  

The results of numerical simulations performed using the crane model having 
shock absorber installed confirm a significant decrease of dynamic overload 
experienced by the structural systems. Application of the shock absorber 
subsystem in real constructions would allow the crane to work in much more 
difficult conditions. Without such a systems, the same crane has to be de-rated, 
which makes it in a higher sea state less efficient handling tool, causing that the 
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whole vessel or platform can not perform planned lifts, until the weather 
conditions improve. Consequently, the load chart of a crane equipped with an 
overload protection system will be much more different than the same 
construction without such a control device. Therefore, properly working shock 
absorber is now a relatively new technique in the offshore industry. 

Taking into consideration flexibility of the boom does not significantly change 
the obtained results. Some slight differences are observed in the time history of the 
luffing rope force. It therefore appears that, for the preliminary calculations or for 
the bids purpose, the flexibility of the boom can be omitted. On the basis of 
a model with few degrees of freedom, an engineer obtains a quick software tool, 
supporting him during the design process. The calculation model presented enable 
us to determine the crane overload in various working conditions. That makes it 
possible to predict limiting weather conditions for a given crane design and 
specific operation scenarios. Implementation of the model in a standalone desktop 
application makes it attractive for various conceptual ad-hoc analyses. 

9.3   Laying of Pipelines 

The methods of analysing multibody systems, models of connections and 
materials presented in previous chapters were implemented in software suited for 
static and dynamic analyses of the installation process of pipelines for transporting 
oil and gas, of transfer lines (cables) and other types of infrastructure related to 
exploiting deposits of the seabeds. The current section discusses models 
operations commonly performed in reality. The constructed models and software 
are also indirectly verified. For this purpose, additional models in the ANSYS 
package are formulated and the results of calculations compared. Detailed 
derivations and a description of those models are offered in [Szczotka M., 2011b]. 

 

The Programme Pipelaysim 

Based on the presented models, a computer programme supporting static and 
dynamic analysis of basic operations related to installing pipes. The programme is 
written in the C++ language (Microsoft Visual Studio 2008 IDE), using elements 
of the Delphi package which are parts of Borland Developer Studio 2006. To 
produce graphics Silicon Graphics Inc's OpenGL library is used. 

The main window of the programme PipeLaySim is shown in Fig. 9.25. It acts 
as a preprocessor. The user can, by means of standard interface components 
(GUI), define (or load from an external file) any parameters of the models and 
analysis options. In the main panel of the programme there are buttons assembled 
which enable running subsequent simulations for supported installation methods. 

Results obtained from the calculations may be analysed in a built-in module for 
creating graphs or exported as text files and further processed in other 
programmes (e.g. in Excel). A functionality which may be found useful is passing 
the results of calculations in the form of scripts to the engineering computation 
system MATLAB. The software also supports concurrently displaying an 
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Fig. 9.25. Main window of the programme PipeLaySim 

animation of the simulated system and saving it to multimedia files (for example 
*.avi). Sample postprocessor window with an animation produced using the 
OpenGL libraries is shown in Fig. 9.26.  

 

 

Fig. 9.26. Sample animation window in the programme PipeLaySim 
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9.3.1    Mathematical Model of the J-Lay Method 

For the model used to simulate an installation process with the J-lay method  
(Fig. 9.27) the pipeline is assumed to be ejected from a guiding ramp whose 
inclination angle relative to the deck is constT =α . It is further assumed that 

RFE 0 is ejected with a known velocity ( )tv T  of laying which corresponds to the 

vessel's velocity. Because of the lifting movements caused by waves, the pipeline 
is subjected to forces due to the difference of velocities of laying and of the point 
S. In addition to that, hydrodynamic forces caused by waves and sea currents act 
on the pipeline. A detailed derivation of the equations of motion for the considered 
system can be obtained by using the dependencies from previous chapters. 
Therefore below only selected formulas related to modelling constraints imposed 
on the pipeline are given. 

Equations of constraints related to the connection of the RFE 0 with the base by 

a spherical joint at the point H and the reactions )0(P may be introduced into the 
system directly by using the dependencies for a spherical joint. The components of 
the reaction )0(P  in the system {}A may be calculated from the formula:  

 
,

~ )0()0( PRP T
AA =

                                            (9.78) 

where AR   – rotation matrix of the system {}A relative to {},  

)0(~
AP  – reaction vector at the point H expressed in {}A, 

 )0(P   – reaction vector at the point H expressed in the system {}. 

The RFE with number n is placed in the ramp's guide. As the pipeline is ejected 
from the guide, the length of the segment off the vessel increases. When RFEs of 
constant length are used, incrementing the number (of RFEs and SDE in the 

system) is necessary. The general form of constraint equations imposed on the 
RFE n is:  

 ,                                       (9.79) 

where   – vector describing the position of the point S in , 

   – vector describing the orientation of the guide in , 

   – vector describing the coordinates of the point S in the 

system , 

   –  components of the vector   of generalized 

coordinates of the RFE n, 
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Fig. 9.27. Scheme of the system for installation of pipelines with the J-lay method 

Differentiating (9.79) twice makes it possible to put the constraint equations in the 
accelerative form: 
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Since constsn ==ΛΦ ~~
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so the equations (9.80) take the form: 
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The equations of motion of the RFE n may be written as: 
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where  ( ) 3,2,1
)(

== inn QQ r , 

( ) 6,5,4
)(

== inn QQ Φ . 

From (9.83) it follows: 
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Components of the reaction )(~ nP  in the system of RFE n (which are needed e.g. to 
determine the tension) may be obtained from:  

 .
~~~ )()( nT

n
n

n PRP =
                                            (9.85) 

The way of defining the vector sr ′~  giving the coordinates of the point S in the 

system n{}  (Fig. 9.28) merits a further comment.  

 
 

 
Fig. 9.28. Connection of the RFE n with the guide 
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In the situation of Fig. 9.28, the following holds: 
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(9.86) 

where ( )tss χχ =  is a function describing how the n-th RFE is ejected from the 

guide (velocity and possibly acceleration).  
 

Static Analysis 

Indirect verification was performed (by comparison with the calculations done 
employing the ANSYS package) on the J-lay system shown in Fig. 9.29. The total 
length of the analysed pipeline was 1000 m. Due to different positions of the 
initial point (H) of the pipeline attached with a joint to a rigid structure on the 
bottom the obtained curvatures of the pipeline and values of the forces and 
stresses differ. The models used are spatial, however, all the static forces act in the 
plane yxˆˆ . Zero excitations were assumed ( consts =χ , 0q =D , 0=SH , no 

currents). The only forces acting on the pipeline were gravity and hydrostatic 
buoyancy. Data shown in Table 9.3 were assumed as input. 

 
Fig. 9.29. Main parameters of a system in static analyses 

Discretisation of the pipeline was performed for a few different numbers of 
finite elements (both for the programme PipeLaySim and the ANSYS package). 
Satisfactory correspondence was obtained already for the division into n = 100 
elements (the results given below are for this number of elements). In ANSYS 
PIPE288, finite elements were used which are based on the BEAM188 element  
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[Ansys Documentation, 2009] as well as linear shape functions. The element 
PIPE288 supports input of hydrodynamic loads modelled using the commands: 
OCDATA, OCTABLE, SOCEAN. Results are shown on graphs and in tables using 
notation as in the following scheme (Fig. 9.30). 

Table 9.3. Basic parameters assumed for static calculations 

Parameter Variant A Variant B 
Outer diameter of the 

pipeline [in]/side 
thickness [mm]  

4/5.95 12/16.05 

Content of the pipeline 
Empty (air at atmospheric pressure) or filled (water 
under pressure equal to that outside) 

Distance HL  [m] 700)1( =HL , 725)2( =HL , 750)3( =HL  

 
 

 
Fig. 9.30. Notation for cases of calculations 

The analysis was performed with identical scenarios in both programmes. At 
the initial moment the pipeline was on the surface of water in undeformed state. In 
the first step, balance of the system was considered with gravity and buoyancy 
forces applied due to deflection and immersion of the pipeline's elements (with H 
being the loose end of the pipeline). Next, the point H  of the pipeline was moved 
in multi-step static analysis to the destination point while keeping the point S 
motionless. Spherical joints were assumed in both points H and S. The results 
presented below correspond to the state of the system in the final step of 
computation. The reactions in the points H and S for a pipeline with diameter of 4 
inches are shown in Table 9.4. Likewise, Table 9.5 contains the determined 
reactions of constraints for a pipeline with diameter of 12 inches. 

Based on the performed comparative analyses a conclusion can be drawn that 
the results produced by the developed software are correct. The differences of 
forces calculated in the point S and of horizontal reactions in the point H are on 

average less than 0.5%. Also the values of the vertical reaction 
)0(~

YP  are in 

a satisfactory degree of accordance (the differences being 2–14% for pipes with 
diameters of 4 inches and 1–7%  with diameters of 12 inches). The stated 
discrepancies are caused mainly by difficulties in modelling contact with the 
bottom which occur in the ANSYS environment.   

[A|P]-Rx-Sx-Lx

pipe size [‘’] 

pipe condition: P-empty, N-water filled 

distance HL [m] 

programe: A-ANSYS, P-PipelaySim 
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Table 9.4. Reactions of constraints in points H and S, pipeline of 4 inches 

Empty [A|P]-R4-SP-L700 [A|P]-R4-SP-L725 [A|P]-R4-SP-L750 
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Filled [A|P]-R4-SN-L700 [A|P]-R4-SN-L725 [A|P]-R4-SN-L750 
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The shape of the pipeline in the  plane is shown in Fig. 9.31. The 

presented results are for the empty pipeline with a diameter of 4 inches. 
Differences in the values are small and do not exceed 0.1%. Similar results were 
obtained for the pipeline with a diameter of 12 inches.  

The influence of the pipeline's shape on the reduced stresses for the considered 
cases is presented in Fig. 9.32 (for a pipeline with diameter of 4 inches) and  
Fig. 9.33 (for a pipeline with diameter of 12 inches). In the analyses, the Huber-
Mises-Hencky (HMH) hypothesis was assumed for the calculation of reduced 
stresses. The graphs show bending moments, axial forces and reduced stresses in 

sections along the relative length defined by the coordinate  (  in  

 

yx ˆ ˆ

T

T

L

x=γ 0=γ
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Table 9.5. Reactions of constraints in points H and S, pipeline of 12 inches 

Empty [A|P]-R12-SP-
L700 

[A|P]-R12-SP-
L725 

[A|P]-R12-SP-
L750 

ANSYS    

PipeLay
Sim   

Filled [A|P]-R12-SN-
L700 

[A|P]-R12-SN-
L725 

[A|P]-R12-SN-
L750 

ANSYS    

PipeLay
Sim   

 
 

the point  and  for the point S, Fig. 9.29). As it can be seen from the 

graphs, the RFE method gives close results also for reduced stresses, bending 
forces and moments in sections of the pipeline. Relative errors in all cases are 
below 1–1.5% (for the given number of elements) and definitely diminish with 
condensation of the division.  

Analysing the graphs in Fig. 9.32 and Fig. 9.33 indicates that filling the 
pipeline with a liquid does not influence the forms of the bending moment (in the 
considered cases similar curvatures were obtained for an empty and filled 
pipeline). The axial force, which depends on the position of the vessel against the 
waves and density of the pipeline, has significant influence on the values of 
reduced stresses. Installation of pipelines when they are filled with air allows for 
reducing the axial forces and stresses. 
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Fig. 9.31. Shape of a pipeline with diameter of 4 inches having reached static balance: 
a) shape of the pipeline obtained for different values of HL , b) magnified fragment of the 

graph  

The described method of static analysis and the obtained results may inform the 
determination of installation parameters of the pipeline concerned, taking into 
consideration the influence of depth, buoyancy and geometric traits of the system 
[Mohitpour M., et al., 2003], [Bai Y., Bai Q., 2005], [Palmer A. C., King R. A., 
2008]. 

 
 
 
 

)3(
HL

)2(
HL

)1(
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Fig. 9.32. A pipeline with diameter of 4 inches – values of moments, forces and stresses: 
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled 
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline 

 

 

a) b) 

c) d) 

e) f) 
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Fig. 9.33. A pipeline with diameter of 12 inches – values of moments, forces and stresses: 
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled 
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline 

 

 

 

a) b) 

c) d) 

e) f) 
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Dynamic Analysis 

This part of the book contains a brief overview of the results of analyses 
pertaining to the dynamics of the analysed system. Again, the programmes 
PipeLaySim and ANSYS were used and the obtained results compared. The same 
geometry and mass parameters were assumed as for the static analyses. As the 
initial conditions in the dynamic problem (at time t = 0) the values yielded by the 
last step of the static analysis were taken. The fourth-order Runge-Kutta method 
with constant integration step was used in the PipeLaySim programme to integrate 
the equations of motion [Press W. H., 2002], whereas in the ANSYS package the 
Newmark method [Bathe K. J., 1996] was used. 

Two types of excitation were applied. In the first case (W1), no waves 
( )m0=SH  was assumed and a harmonic excitation of the vessel's immersive 

motion (Fig. 9.34a) with amplitudes and periods listed in Table 9.6. This case 
corresponds to motion of the system immersed in a motionless liquid. The second 
type of excitation (W2) included both the motion of the vessel and waves of the 
water (calculations in both programmes were performed according to the Airy 
model of the wave). Graphs of the excitations are shown in Fig. 9.34b, assuming 
appropriate resizing of amplitudes in the initial phase of calculations and a phase 

shift for the variable Dx  equal °=90)0(
Xϕ . The lower rows of Table 9.6 contain 

the remaining parameters, which are common to the cases W1 and W2. 
consts =χ  was assumed in both programmes.  

Table 9.6. Parameters assumed in the dynamic analysis 

Excitation SH  [m] 
XA [m], 

 
)0(

Xϕ  [deg] 

YA [m],  

)0(
Yϕ  [deg] 

Period  
T  [s] 

W1 0.0 0; 0 1; 0 8.0 

W2 5.0 1; 90 2; 0 8.0 

Coeff. AD CC /  from  

(3.33) 
1.0/1.0 Stiffness coeff. of 

the seabed 
1.1e5 N/m

 

Data set (geometry, 
diameter, content of the 

pipeline) 
R4-SP-L700 

Tangent resistance 
coefficients m and 

n (Table 3.3) 

02.0=m  
04.0=n  

Fig. 9.35 presents time courses of coordinates of the point  of the pipeline at 

the maximum of curvature (Fig. 9.29) determined by the coordinate xT = 250 m. In 
both cases of the vessel's motion and waves, the graphs of displacements of the 
point are similar. Relative errors do not exceed 1%.  

In Fig. 9.36, the velocities P1 obtained from both programmes are presented. 
The produced graphs are virtually identical. The differences are due to integration 
methods and also to the accuracy with which the excitation is realized. In ANSYS, 

1P



9.3   Laying of Pipelines 187
 

 

it was interpolated with a piecewise linear function (boundary conditions for the 
displacements given as tables). 

 
 

 

 
Fig. 9.34. Excitations of the vessel's motion in dynamic analysis: a) assumed conditions of 
waves and vessel's motion, b) graphs of longitudinal rolling Ax  and heave Ay   

Dynamic reactions at the point S  (the point of connection with the guiding 
device onboard the vessel) are shown in Fig. 9.37. In the case of vertical reaction 

)(S
YR  the maximal relative error does not exceed 10% (W2 excitation).  

The reduced stresses calculated along the pipeline's axis are shown in 
Fig. 9.38. The graphs were produced for the time t = 10 s taking dynamic forces 
into account. 

On the comparative results of static and dynamic analyses presented 
a conclusion can be based that the proposed model and software are correct. Since 
actual objects (ships for laying pipelines) are hardly available and laboratory 
research is very costly and requires large pools and devices producing artificial 
waves, performing empirical tests is rather difficult. The authors are aware that 
results of measurements obtained from tests on actual objects may deviate from 
the values yielded by the process of numerical simulation, among other things due 
to the simplified description of interaction in the liquid – solid body system and 
the approximate model of waves. Yet, some verification is assured by comparing 
the results with that from another environment aimed at modelling and analyses 
(e.g. of the ANSYS type) which is commonly used and has been verified multiple 
times. This allows us to eliminate some possible errors in modelling and 
programming. 

9.3.2   Installation of a Pipeline with the S-Lay Method 

A mathematical model of a system for simulating the dynamics of the installation 
process with the S-lay method can be formulated by augmenting the model of the 

( ))0(2sin XTXD tAx ϕπ +=

{} x̂ŷ

SH

( ))0(2sin YTYD tAy ϕπ +=

t

t

wave 
direction

d
xv

)a )b
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A
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J-lay method. The additional element is a specialized ramp guiding the pipeline (a 
stinger) (Fig. 9.39). In the model presented herein, the ramp is assumed to be a 
bent beam with variable section modelled with the classical finite element method 
connected by a joint to the vessel's deck at the point U and additionally with two 
supporting ropes.  

 

 

Fig. 9.35. Coordinates of the point xx of the pipeline: a) coordinate x (W1), b) coordinate y 
(W1), c) graph of the coordinate x (W2), d) graph of the coordinate y (W2)  

 

Fig. 9.36. Velocities of the point 1P : a) W1 excitation, b) W2 excitation 
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Fig. 9.37. Dynamic reactions at the point S: a) W1 excitation, b) W2 excitation 

 

Fig. 9.38. Reduced stresses for the time t=10s: a) W1 excitation, b) W2 excitation 

The model of the pipeline is similar to that used for the J-lay method. It is 
described in the previous chapter. A model of the ramp connected with the deck 
by a joint U and supporting ropes needs to be additionally formulated. Hence, the 
equations of motion of the system may be written in the form [Szczotka M., 
2011b]: 

                               (9.87) 

                  (9.88) 

where   – matrix of masses of the pipeline, 

 –  vector of generalized coordinates of the pipeline, 

   –  vector of generalized forces acting on the pipeline, 
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Fig. 9.39. Scheme of the model for the analysis of installing a pipeline with the S-lay 
method: a) positioning of the coordinate systems, b) reactions of constraints 

  

 
),( CJQ   – vector of generalized forces exerted by the ramp, 
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)(RQ   – vector of generalized forces acting on the ramp, 

 ),( CRQ   – vector of generalized forces exerted by the pipeline, 
),( LRQ  – vector of generalized forces due to the actions of forces 

supporting the structure of the ramp. 

The equations and reactions of constraints imposed on the pipeline are identical to 
those of the J-lay model. Whereas the joint at the connection of the ramp with the 
deck (a revolute connection) makes it necessary to include the reaction vector: 

 [ ]TU
Z

U
Y

U
X

U PPP )()()()( ~~~~ =P ,                       (9.89) 

and a vector of the pair of forces whose moment is: 

 [ ] .
~~~ )()()( TU

Y
U

X
U MM=M                              (9.90) 

By neglecting friction in the connection, 0
~ )( =U

ZM  is assumed.  

The constraint equations take the form: 
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(9.91) 
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(9.92) 

where )(~ U
nR

r′   – vector of generalized coordinates of the point U  in the system 

of the RFE Rn  of the ramp, 
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R   – rotation matrix of the Rn  of the ramp, 
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Following the procedure presented in the previous chapter the constraint equations 

may be put in an accelerative form allowing us to determine the vectors )(~ UP , 
)(~ UM  and )(~ R

nR
q&& . Actions of the following forces are also taken into account:  

 in the ropes 
)(R

SF , 
)(R

PF  acting on )(REF R
js

 introduced by the vector 
),( LRQ ,  

 contact forces, acting on elements of the pipeline and on the ramp, derived 

from 
),( CJQ  and 

),( CRQ .  
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Forces in the ropes may be determined using the model of a flexible rope with 
damping. The contact forces between the ramp and the pipeline are determined by 
assuming a series of spring-damping elements with clearance modelling the rollers 
guiding the pipeline. The forces of interaction of the ramp's structure with the 
water environment are approximated with the Morison equation keeping in mind 
the additional interactions occurring at the transition through the water surface. 
 

 

Fig. 9.40. Results obtained from static analysis of the S-lay system: a) shape of the pipeline, 
b) reduced stresses, c) graph of the axial force, d) bending moment 

Sample calculations contained in this section were performed for an installation of 
a pipeline of 4 inches at the depth of 100=d  m. The shape of the pipeline after it 
has reached static balance is shown in Fig. 9.40a, where the coordinates on the 
graph are expressed in the inertial system {} depicted in Fig. 9.39a. Two options 
were considered: on the graphs P denotes a pipeline filled with air, N – a pipeline 
filled with water. Graphs of reduced stresses along the pipeline's axis (Fig. 9.40b) 
are different to those obtained in the J-lay method. Two places occur with 
considerable stresses due to bending. The first one is caused by the ramp's 
curvature (a section called overbend), the second results from the curvature of the 
pipeline above the bottom (sagbend).  

Stresses in the pipeline may be controlled by changing: the immersion of the 
ramp, its shape and the value of the force stretching the pipeline. The bending 
moment being zero at some point (Fig. 9.40d) is also characteristic of this method. 

a) b) 

c) d) 



9.3   Laying of Pipelines 193
 

 

Sample results of calculations of the dynamics are shown in Fig. 9.41. 
Harmonic motion of the vessel with period s 8=T  and amplitudes m 5.0=Ax , 

m 0.1=Ay  was taken as the excitation. The coefficients of the Morison equation 

were assumed as in previous analyses.  
 
 

 

Fig. 9.41. Simulation of the dynamics of a system for S-lay installation: a) dynamic 
reactions at the point S, b) reduced stresses in selected points of time, c) graphs of the 
horizontal component of velocity in time, d) graphs of the vertical component of velocity in 
time  

The dynamic reactions at the point S (Fig. 9.41a) (guiding the RFE n in the 
tensioner's mechanism) are not significantly different from the values obtained in 
the static problem due to the assumed length and size of the pipeline (the mass is 
fairly small). Additionally, as Fig. 9.41b implies, in which graphs of the reduced 
stresses at different points in time are presented, with a relatively rigid system of 
ramps the change of values of the stresses occurs in the lower segment of the 
pipeline only. The changes would be greater with a more flexible ramp (or 
suspension system), which may result, when the length of the system is 
significant, in considerable differences in the geometry of the lower segment of 
the pipeline (sagbend). A possibility also exists of controlling the lengths of the 
ropes in such a way that the growth of stresses caused by waves is eliminated. The 
velocities of the centre of mass of the RFE located approximately 4 m above the 

option 
(N)a) b) 

c) d) 

time [s] 

time [s] 

time [s]



194 9   Applications of Models of Offshore Structures
 

 

bottom of the sea are shown on graphs (Fig. 9.41 c and d). In the case of the S-lay 
method, the differences in the velocities of the pipeline in the lower part are 
greater for different contents of the pipeline (densities) than with the J-lay method. 

9.3.3   Dynamics of a System for Installing Pipelines with  
the Reel Method 

Dependencies presented in the preceding chapters allow us to formulate 
mathematical models and a computer programme suitable for simulating the 
operation of a device for laying pipelines with the reel method. The section 
presents a model for the analysis of the dynamics of a system equipped with 
a passive reel drive system. To discretize the pipeline the modified RFE method is 
used and the nonlinear dependency of stresses on deformations is described by an 
elasto-plastic characteristic. Models contained herein are investigated in [Szczotka 
M., 2010], [Szczotka M., 2011b]. 

9.3.3.1   Mathematical Model 

In Fig. 9.42, a scheme is shown of a system consisting of a reel onto which the 
pipeline is wound and a specialized guiding ramp through which the pipe passes 
as it is unwound and lowered to the seabed. The ramp is equipped with devices 
controlling the tension and the speed of laying. 

The following simplifying assumptions are made: 

 the motion of the pipeline being unwound from the reel is kinematically 
forced by a device providing tension and guidance; influence of the immersed 
part of the pipeline on the motion may be neglected, 

 swaying angle Aψ  of the vessel is the most important parameter of the lifting 

motion, therefore a simplification is proposed which reduces the problem to 
a planar system in which the vessel can move according to the known 
functions:  

 ( )( ),,,,,, ωβ STHtx fZSA RAOℑ=  

      
( )( ),,,,,, ωβ STHty fZSA RAOℑ=                     

(9.93) 

 
( )( ),,,,,, ωβψ STHt fZSA RAOℑ=  

 ( ) ,0=tzA    ( ) ,0=tAθ   ( ) ,0=tAϕ  

where   ℑ  – operator of transformation of the motion from the domain of 
frequency to the domain of time, 

 ZS TH ,  – height and period of waves, 

 fβ  
– wave's angle of attack, 

 ( )ωS   – defined by (3.27) or (3.28), 

 RAO  – operator of the transition function, 
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 large deflections of the pipeline are taken into account by applying the 
modified RFE method including bending in the longitudinal plane of the 
vessel. 
 
 

 

Fig. 9.42. Scheme of the reel system 

The generalized coordinates of the considered system are therefore components 
of the following vector q, (an appropriate choice of mass, inertia and geometric 
parameters allows the reel to be treated as RFE 0):  

 [ ] ,,,...,,...,0
T

Tni αψψψ=q                               (9.94) 

where iψ   – inclination of the axes of the RFE i to the axes Bx̂  of the inertial 

system, 
 Tα   – inclination angle of the ramp's axis. 

The equations of motion along with the constraint equations may be written as 
(detailed derivations are presented in the papers [Szczotka M., 2010], [Szczotka 
M., 2011b]): 

 
,

,

WqS

HGQDPqBqA
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−−=−+
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&&&

                           (9.95)
 

where ( )qAA ,t=   – matrix of inertia of the system, 

( )qqBB &,,t= , 

 ( ) ( )qSqD ,   – matrices of coefficients of reactions and constraint 

equations, 
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( )qqQ &,,t   – vector of generalized forces, 

 G    –    vector taking the potential of gravity forces into account, 
 ( )tHH =   – vector whose components depend on the base's lifting 

motion, 

 ( )qqW &,,t   – vector of the right-hand sides of the constraint equation, 

 P    –   vector of unknown reactions of the constraints. 

The equations (9.95) were integrated with the fourth-order Runge-Kutta method 
with a constant step of integration. Determination of the initial conditions for the 
system's equations of motion requires solving sequentially a few static and quasi-
static problems. If in the equations (9.95) the following is assumed: 

 ,0qq == &&&                                                  (9.96) 

then the static problem requires solving a system of nonlinear algebraic equations 
of the form: 

 
( )
( ) ,

,

0RΦ
0qΨ

=
=

s

s

                                            

(9.97) 

where ( ) 0qΨ =  – equations of balance of the RFEs 1,...,n and the guiding 

ramp,  

 [ ]T
Tns ψψψ ,,...,1=q , 

 [ ]T
nEEs MNU ,,=R , 

 ( ) 0RΘ =s  – constraint equations. 

Solving the system of equations (9.97) was done with the Newton method. The 
procedure preceding the calculations of the dynamics is depicted in Fig. 9.43. In 
the first stage, the pipeline is wound onto the reel. At this time plastic 
deformations may occur. The end of the pipe is transferred to the guiding ramp in 
the next stage. Having performed these calculations, we obtain the initial 
conditions assumed as the starting point of the dynamics. 

In the computer programme, a possibility is also included to perform dynamic 
analysis with a simplified model in which oscillations (dynamics) are not included 
(the model is introduced in [Szczotka M., et al., 2007). In such case, an internal 
procedure solving the equations (9.97) with the Newton method determines the 
forces occurring during the unwinding of the pipeline when integrating the reel's 
equations of motion. The equation of the reel's dynamics may be obtained from 
the equations (9.95) assuming  and taking into account the forces caused by 
deformations of the pipeline described by the system of equations (9.97). Note, 
however, that despite the minimal dimension of the model, the necessity of using 
the Newton method, which is sensitive to nonlinearity of the problem considered,  
 

0=n
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Fig. 9.43. Quasi-static analyses for determining the initial conditions: a) stage of winding 
the pipe onto the reel, b) transferring the pipe to the ramp, c) stretching the system to the 
nominal tension 

lengthens the durations of computer simulations with respect to the full model of 
the dynamics. Those durations are approximately ten times longer, therefore using 
this model does not seem prudent. Hence, another approach to employing the 
simplified model is proposed. The discrete model of the pipeline is thereby 
replaced with an artificial neural network [Szczotka M., 2010]. Minimal 
computation time is then required to determine the forces due to the pipeline's 
work as it is being unwound, and use them in the equation of the reel's dynamics. 
Computational efficiency of a such model is particularly appealing. It also lends 
itself somewhat to real-time control. The results obtained from both variants of the 
model are presented later in this chapter. 

9.3.3.2   Calculations for a Passive Drive of the Reel 

The results of calculations performed for the system shown in Fig. 9.42 are 
presented below. The drive of the reel from which the pipeline is unwound is 
assumed to be passive and to exert a constant force applied at a dividing radius of 
the clockwork. To make the interpretation of the results more convenient, the 
simulations were performed assuming the following functions describing the 
motion of the vessel: 

 

( )
( )
( ),sin

,sin

,sin

ψψ γωψ
γω
γω

+=
+=
+=

tA

tAy

tAx

A

YYA

XXA

                                     

(9.98) 
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where ψAAA YX ,,  –  amplitudes of motion in the appropriate directions,  

 ψγγγ ,, YX   –  initial phases, 

 ω  –  angular frequency of excitation. 

Basic assumed parameters of the device are based on the documentation of one of 
the devices operating on the North Sea. The characteristic values are gathered in 
Table 9.7 (the dimensions and parameters are shown in Fig. 9.42). The objective 
of the performed simulations was to determine the influence of waves and braking 
force of the reel on the operation of the considered system. Typical settings and 
data used when installing pipelines were chosen. Table 9.8 shows the parameters 
of regular excitation of the vessel's motion according to (9.98), taking into account 
the mentioned characteristics of the vessel. All calculations were performed 
assuming a constant step of integration in the Runge-Kutta method Δh=0.001 s. 
The notational system used in the subsequent graphs is explained on the scheme 
presented in Fig. 9.44. 

 

 

Fig. 9.44. Notations in the results presented on graphs 

In Fig. 9.45, the results of calculations for a pipeline with diameter of 4 inches 
are shown. Graphs of tension indicate significant instability of operation caused by 
waves and lack of possibility to eliminate undesirably large overloads by changing 
the braking force of the reel (Fig. 9.45b and c). Fairly stable operation is 
guaranteed only for modest values of the amplitude of the swaying angle ψD when 
the braking force of the reel is increased (Fig. 9.45a and d). The decay of tension 
(values of the force UE near zero in Fig. 9.45b and c) is due to excessive 
unwinding of the pipe from the reel caused by the increase in the reel's angular 
velocity (Fig. 9.46). 

The graphs of the reel's velocity are shown in Fig. 9.46. The results obtained 
for F1 and F4 waves (little swaying, Fig. 9.46a and Fig. 9.46d) indicate fairly 
stable operation of the device in the range of swaying amplitudes from 0 to 1°. 
Lack of control of the reel's velocity under more intense waves leads to unwinding 
of great amounts of the pipeline and subsequently to abrupt arrest of the reel 
(jerk). Increasing the braking force makes it possible to reduce the maximum 
speed of the reel but it also causes high values of the axial forces which are 
dangerous to the personnel and the device. 

 
 
 

Rx-Fx-Ux-Vx-Cx
pipe size [‘’] 

                         assumed vessel input 

initial pipe pretension [kN] 

laying speed [m/h] 
lay ramp stiffness [MN/rad] 
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Table 9.7. Main parameters of the device and sizes of pipelines used 

Parameter Value 
Admissible mass of the reel together with the 
wound pipe kg102500 3⋅  

Range of diameters of steel pipes installed "18"4 −  
Designed value of pipes' tension kN2500
Capacity of the reel: (for max/min. diameter of the 
pipeline) 

km7/km150  

Max/min. Winding diameter of pipes m15/m25 == IO DD  

Moment of inertia of the reel with the wound 
pipeline 

28 kgm100.35.2 ⋅÷  

Length of the vessel ~ m100  

Diameter of the gear wheel m7.25=pD  

Link mass um  of the pipeline for pipe diameter D  

"4=D , kg16=um  

"8=D , kg42=um  

"12=D , kg128=um  

"16=D , kg240=um  

"18=D , kg340=um  

Length of the guiding ramp m20=RL

Radius of the ramp's guiding wheel m8=hr

Mass of the ramp with devices kg10120 3⋅  

Distance between the reel and the joint attaching 
the ramp 

m55=HL  

Ramp inclination angle 060=Rα  

Table 9.8. Assumed parameters of the vessel's lifting motion 

Description
XA / Xγ , 

[m]/[o] 
YA  / , 

[m]/[o] 
 / , 

[m]/[o] 

Period of 

the wave 

[s] 

Height of the 

wave 

Hs [m] 

Direction of the 

wave 

βf [
o]

 

F1 0.12/90 0.4 / 75 0.15 / -45 6 3.0 30 
F2 0/0 0.45 / 90 2.55 / 20 7 3.0 0 
F3 1.0/-100 2.2 / 0 4.1 / 60 8 5.0 60 
F4 0.27/-95 0.27 / 0 0.85 / 70 10 1.0 0 

 

Yγ ψA ψγ
T
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Fig. 9.45. Graphs of tension in the pipeline as it is unwound under waves and with different 
values of the barking force of the reel: a) ÷ d) correspond to F1 ÷ F4 

Multiple factors influence the values of dynamic forces during the device's 
operation. Among those considered are: flexibility of the guiding ramp's 
suspension, speed of laying the pipeline, different diameters and load degrees of 
the reel, value of tension. The results are presented, among other things, in the 
papers [Szczotka M., 2010], [Szczotka M., 2011a]. In many cases it is impossible 
to eliminate or significantly reduce dangerously large dynamic forces under wave 

action with waves of height Hs > 1m without using an auxiliary control system. 
One is proposed in section 10.4.  

 
 

F1 waves 

F2 waves 

F3 waves F4 waves

a) b) 

d) c) 
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Fig. 9.46. Angular velocity of the reel for different waves conditions and values of braking 
forces of the reel: a) ÷ d) correspond to F1 ÷ F4 

c) 
d) 

a) b) 

F4 waves F3 waves 

F1 waves F2 waves 
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