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8   The Rigid Finite Element Method 

Actual kinematic chains commonly contain links whose flexibility greatly exceeds 
that of other links. It may then be necessary to take that flexibility into account. 
Booms of cranes and certain links of manipulators count among those. A large 
number of approaches in analysis of multibody systems can be found in literature 
with with one and more flexible links [Zienkiewicz O. C., 1972], [Wittbrodt E., 
1983], [Wojciech S., 1984], [Huston R. L., Wanga Y., 1994], [Arteaga M. A., 
1998], [Zienkiewicz O. C., Taylor R. L., 2000], [Berzeri M., et al., 2001], 
[Adamiec-Wójcik I., 2003], [Wittbrodt E., et al., 2006]. Chapter 9 introduces 
models of offshore cranes (a column one and an A-frame) which enable taking 
into account the flexibility of the supporting structure. 

Let us consider a flexible link numbered p of a sample mechanism depicted in 
Fig. 8.1. Let {p,0} be the coordinate system attached to the link p as if it were 
rigid. Its position relative to the preceding link s is given by the coordinates of the 
following vector: 
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The number 0,
~

pn  of coordinates of the vector )0,(~ pq  is less than 6 and depends 

on the class of the kinematic joint connecting the links s and p. These coordinates 
will henceforth be called rigid (configuration) coordinates of the link p.  

In order to fully describe the relative motion of a flexible link, the vector (8.1) 
needs to be supplemented with a vector whose elements are called elastic 
coordinates. Their choice depends on the discretisation method used for the 
flexible link. Regardless of the method, the vector of generalized coordinates of 
the flexible link p describing its motion in the kinematic chain may be written as: 
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where )0,(~ pq  – vector of generalized configuration (rigid) coordinates of the 

link p, 
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Fig. 8.1. A flexible link p 

Let us also assume that the transformation of coordinates from the local coordinate 
system {p,0} to the preceding coordinate system (with index s) is given by the 
matrix: 

( ))0,(
)0,()0,(

~ ps
p

s
p qTT= . (8.3) 

One of many discretisation methods of flexible links will be presented below. This 
is the rigid finite element (RFE) method. It has two variants: classical and 
modified. 

8.1   The RFE Method: Classical Formulation 

The rigid finite element method has for many years been applied at the Gdańsk 
University of Technology, initially by Prof. Kruszewski, then by Prof. Wittbrodt, 
and their co-workers, to model multibody systems. The formulation of the method 
presented in [Kruszewski J., et al., 1975], in which each finite element is assumed 
to possess six degrees of freedom in its relative motion, is called classical. The 
description of the method expounded herein deviates from that which is found in 
papers by professor Kruszewski and his co-authors. Namely, joint coordinates and 
homogeneous transformations are used to derive the equations of motion, 
following [Adamiec-Wójcik I., 2003] and [Wittbrodt E., et al., 2006]. 
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8.1.1   Generalized Coordinates: Transformation Matrices 

Let p be a flexible beam link in a kinematic chain. That link is replaced with 
a series of rigid finite elements connected with spring-damping elements using 
discretisation which is detailed by Kruszewski and co-authors in [Kruszewski J., 
et al., 1975], [Kruszewski J., et al., 1999]. In the case of a beam with constant 
section, the procedure is as follows: first, this is the so-called primary division, the 
beam of length Lp is divided into mp equally long segments (Fig. 8.2a). 
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Fig. 8.2. Division of a flexible link: a) primary division, b) secondary division 

Flexibility traits of the elements are inherited by the spring-damping elements 
(SDE) placed at the centre of each segment of length Δ. In this way, one obtains 
a secondary division of the flexible link into mp+1 rigid finite elements (RFEs) 
connected by mp massless and dimensionless spring-damping elements (Fig. 8.2b).  

Division of beam links with variable sections and a method of determining 
characteristic parameters of RFEs and SDE are expounded, among other things, in 
the work [Wittbrodt E., et al., 2006]. Since each RFE (except RFE 0) has a 
coordinate system attached with origin in its centre of mass and axes coinciding 
with the principal axes of inertia (Fig. 8.3), the position of the element in 
undeformed state can be determined unambiguously relative to the system {p,0} 
of RFE 0, provided that the transformation matrices are known: 

const
~ ),( =′ipT . (8.4)

In the general case, the transformation matrices with constant coefficientstake the 
form: 
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where ),(~ ip ′R  – direction cosine matrix of the axes of the system {p,i'} 
relative to the system {p,0}, 

 )',(~ ipr  – vector of coordinates of the origin system of the system {p,i'} 

in {p,0}. 
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Fig. 8.3. Coordinate systems related to a flexible link: {} – the inertial system, {p,0} – the 
system attached to RFE 0, {p,i'} – the system attached to RFE i in undeformed state of  
the beam, {p,i} – the system attached in a fixed way to RFE i whose axes coincide with the 
principal central axes of inertia of the element, ),(),(),( ,, ipipip zyx  – coordinates of the 

origin of the coordinate system {p,i} in {p,i'}, ),(),(),( ,, ip
z

ip
y

ip
x ϕϕϕ  – ZYX Euler angles 

described in chapter 4 

If the system {p,i'} has axes parallel to the axes of the system {p,0}, the rotation 

matrix ),(~ ip ′R  is the identity matrix. Due to the lifting motion and external loads, 

individual RFEs are subjected to displacements. The generalized coordinates 
being the components of the vector:  
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decribe the motion of the i-th RFE (i = 1,...,mp) of the link p relative to the system 
{p,i'} attached to the RFE i in undeformed state. The transformation matrix )(~ pi

i T′  

from the system {p,i} to the system {p,i'} in the nonlinear model, allowing the 
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where
 { }.,, forsin,cos ),(),(),(),( zyxsc ipipipip ∈== αϕϕ αααα . 
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When small rotation angles of RFEs are assumed, leading to omission of higher 
rank small terms from the approximations of trigonometric functions of the angles 
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x ϕϕϕ  (the linear model), the matrix )(~ pi

i T′  may be written 

[Adamiec-Wójcik I., 2003] as:  
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The transformation matrix from the system },{ ip  to the system }0,{p , whether 

the model is linear or nonlinear, has this form:  

( ) )(),(),(),(),( ~~~~~ pi
i

ipipipip TTqTT
′′== . (8.9)

8.1.2   Kinetic Energy of a Flexible Link 

Let us assume, as in chapter 5, that the concerned multibody system is situated on 
a movable base {A} (Fig. 5.1) whose motion relative to the inertial (global) system 
{0} = {} is known.  

Rigid finite elements of the link p may be treated as mp+1 consecutive bodies 
appended to the link s of the kinematic chain. In further considerations, the first 
rigid finite element in the chain (RFE 0) is treated separately, because the 
generalized coordinates describing the relative motion of this RFE depend on the 
type of the kinematic joint connecting the link p with its preceding link s and their 
number is less than 6. The coordinate system {p,0} plays the role of the 
configuration system of the link p. 

Let the vector of generalized coordinates )( pq  contain the coordinates of RFE 

0 of the link p and the coordinates of the link s which precedes the link p. Let also 

the transformation matrix )0,( pT  define the transformation from the system {p,0} 
attached to RFE 0 of the flexible link p to the inertial system. The following 
notation is introduced:  
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The kinetic energy of RFE 0 of the link p is given by the expression: 
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where )0,( pH  – matrix of inertia of RFE 0 of the link p. 
A derivation similar to that in chapter 5 yields: 
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The equation (8.12) may be put in a matrix form: 
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The remaining RFEs of the flexible link are treated as elements of the kinematic 
chain  appended to RFE 0. Hence, the coordinates of an arbitrary point in the local 
system {p,i} of RFE i of the link p (i = 1,...,mp) may be transformed, following the 
procedure presented in chapter 5, to the inertial system. The following equality is 
used: 

),(),(),( ~ ipipip rTr = , (8.14) 

where ),()0,(),( ~ ippip TTT =  

 ),( ipr  – vector of coordinates in the inertial system {}, 

 ),(~ ipr  –  vector of local coordinates in the system {p,i}. 

The kinetic energy of REF i of the link p equals: 
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where ),( ipH  – matrix of inertia of RFE i of the link p. 
Defining a vector with 66~
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the following may be written: 
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The same may be expressed in the block form, thus: 
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8.1.3   Potential Energy of Gravity Forces and Deformations  
of a Flexible Link p 

The potential energy of gravity forces of the RFE i is given by: 
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where ),(~ ip
Cr  – vector determining the position of the centre of mass of the 

RFE i in the local coordinate system },{ ip , 

 ),( ipm  – mass of REF i. 

Hence, after ironing out the differences in the definitions of matrices )0,( pT  and 
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Since the considered link is flexible, before formulating its equations of motion 
the expressions resulting from the energy of elastic deformation of SDE must be 
determined. Their derivations in the case of linear physical dependencies 
describing the properties of the material are presented below. The way with 
nonlinear physical dependencies will be discussed later. In the considerations 
pertaining to the deformation of spring-damping elements the reference coordinate 
system is assumed to be {p,0}, which is attached to RFE 0, and the matrices  

),(~ ip ′R , which occur in (8.5), to be identity matrices. A consequence of this is the 
proposition that in the undeformed state of the link p the axes of all the coordinate 
systems attached to RFEs from 0 to mp are parallel. A general algorithm omitting 
this assumption is presented in [Wittbrodt E., et al., 2006]. A numerically efficient 
modification of the algorithm will also be described later in this chapter.  

Let SDE e connect the RFEs l and r of a flexible link p (Fig. 8.4).  
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Fig. 8.4. A model of a spring-damping element: a) connection of RFEs l and r by SDE e, b) 
notation assumed 

 
The energy of elastic deformation of this element is given by the formula: 
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where )(
,
p
jec   for j=1,2,3 – coefficients of translational stiffness of the SDE e 

of the link p, 
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p
jec   for j=4,5,6  – coefficients of rotational stiffness of the SDE e of 

the link p, 
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In Fig. 8.4 and formula (8.21), the axes of the coordinate system are denoted with 
(1, 2, 3) instead of (X ,Y, Z) used hitherto. This shortens the formulas 
considerably. 

The coordinates of the SDE e in the systems attached to the RFEs l and r are 
assumed to be represented by vectors ),(),( ~  and ~ rp

e
lp

e rr in Fig. 8.4, respectively. 

Consequently, the coordinates of this spring-damping element in the reference 
coordinate system {p,0} are expressed by:   
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and the potential energy of elastic deformation of the SDE e may be put in the 
following form: 
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The above considerations pertain to the general case in which the transformation 
matrices { }rliip ,dla

~ ),( ∈T  are nonlinear. When small oscillations are considered, 

i.e. when the transformation matrices )(~ pi
i T′

 conform to the formula (8.8), the 
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transformation formula taking the system {p,i} to the system {p,0} may be 
represented thusly:  
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– coordinates of considered point in {p,i}. 
 

The formula (8.21) for small deformations takes the form:  
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where ),(),()( ~~' lp
e
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p
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In the case of beam links, the SDE i connects the RFE i–1 with the RFE i, 

therefore )1,(),( ~~ −= iplp qq  and ),(),( ~~ iprp qq = . 

The potential energy of elastic deformation of the link p equals the sum of 
energies of all the SDE: 


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=
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s
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s
p VV

1
, . (8.27) 

One should take into account that the formula expressing the elastic energy of SDE 
1 of the link p is a variant of the formulas (8.21) and (8.24), and it takes the form: 
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where )0,(
1

)1,(
1

)1,()(
1

~~~ pppp rrTr −=Δ . 
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Taking (8.27) into account leads to: 
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Let us remark that for i = 0 and i = mp the following should be assumed, 

respectively: 0C =)0,( p
R , 0CC == ++ )1,()1,( pp ip

T
ip

R . The formula (8.29) is valid 

both for linear and nonlinear oscillations. The form of the vectors ),(~ ipS  in the 
linear case may be determined easily by means of the formula (8.26). Problems 
related to the choice of stiffness coefficients when analysing large deflections are 
discussed in the following papers: [Adamiec-Wójcik I., 1992], [Wojciech S., 
Adamiec-Wójcik I., 1993], [Wojciech S., Adamiec-Wójcik I., 1994] and 
[Wittbrodt E., et al., 2006].  

8.1.4   Generalized Forces: Equations of Motion 

Let us assume that the following act upon the RFE i: a force ),(~ ipF  and a pair of 

forces whose moment ),(~ ipM  has the components:   
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ip MMM 0
~~~~ ),(),(),(),( =M . (8.30.2) 

Applying the formulas (5.40) and (5.42) along with the procedure presented in 
[Adamiec-Wójcik I., et al., 2008] yields these forms of generalized forces due to 
their presence: 
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 (8.31) 

When forces acting on RFE 0 are considered, it may be written: 


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Q

Q
Q , (8.32.1) 

whereas for a force ),(~ ipF  and a pair of forces with moment ),(~ ipM  acting on 
RFEs from 1 to mp the following holds:  
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In the case of a flexible link decomposed into mp+1 rigid finite elements, the 
following vector of generalized coordinates of the link and expressions giving the 
kinetic energy and the potential energy of the gravity forces may be defined: 
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From the equations (8.13), (8.18), (8.20), (8.29) and (8.32) it follows that the 
equations of motion of the link p, including the term due to the energy of elastic 
deformation, take the form: 
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A remark is due that the matrices )( pA  and )( p
RK  contain many zeroes. This fact 

may be leveraged in an implementation of the algorithm on a computer. The 
equations of motion of the system's links from 1 to p, forming a kinematic chain, 
may be generated in the way described in section 5.4. The equations for a rigid 
link may be obtained as a special case of a flexible link taking mp = 0. The rigid 
link may then be treated as RFE 0.   

When a link p follows a flexible link in a kinematic chain, the model includes 
a connection between the last RFE of the flexible link s and the next link (namely, 
with RFE 0 of the next link). If linear oscillations are considered, i.e. the 
transformation matrix for the RFE i of the flexible link takes the form (8.18), the 

matrix of masses )( pA  is a diagonal matrix in the fragment from RFE 1 to RFE 
mp of the link p. Calculations are considerably simples when this fact is used in the 
integration of the equations (8.34). Additionally, the stiffness matrix )( p

RK  is 

a block-tridiagonal matrix, which is also helpful in solving the equations of 
motion. A product of matrices with constant coefficients may be distinguished in 

the vector [ ]Tmppfp p ),()1,(),( ~~
SSS K=  in the linear case [Wojnarowski J., 

Adamiec-Wójcik I., 2005], thus assuming:  

),(),(),(),( ~ fp
c

fpfp
T

fp SqKS += , (8.35)

where ),( fp
TK , ),( fp

cS – a matrix and a vector with constant coefficients, 

 
TTnpTpfp p





= )~,()1,(),( ~~~ qqq L . 

 
The presented model includes all possible displacements of the RFEs into which 
a flexible link is divided. If just one type of flexibility (e.g. to bending in one 
plane or torsion) is dominant in the link, models with fewer degrees of freedom of 
the RFEs may be easily obtained as a special case of the given formulas by 
appropriately fixing the vector of generalized coordinates of the rigid element.  
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8.2   Modification of the Rigid Finite Element Method 

The classical rigid finite element method enables taking into account arbitrary 
displacements of finite elements and therefore analysis of the following 
deformations: lateral, longitudinal, rotational and shear. The displacements of each 
element are considered relative to the reference coordinate system attached to RFE 
0. In this section, a modification of the rigid finite element method is presented 
which also has applications to discretisation of flexible beam links. In the 
modification only lateral and rotational deformations are assumed, and 
displacements of each RFE are defined relative to its preceding RFE. The method 
is presented in [Wojciech S., 1984] for planar systems and in the papers [Wojciech 
S., 1990], [Adamiec-Wójcik I., 1992], [Adamiec-Wójcik I., 1993] and [Adamiec-
Wójcik I., 2003] as well as in [Wittbrodt E., et al., 2006] for spatial systems. The 
modification allows large deflections of flexible links to be analysed. 

8.2.1   Generalized Coordinates: Transformation Matrices 

Discretisation of a flexible beam link is performed in the same way as in the 
classical rigid finite element method, i.e. with primary and secondary divisions 
(Fig. 8.4). To each rigid finite element, a coordinate system is attached whose 
origin is located in its preceding spring-damping element (Fig. 8.5). 
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Fig. 8.5. Generalized coordinates of the i-th RFE and local coordinate systems 

The generalized coordinates describing the position of the i-th RFE relative to 

the preceding i-1-th RFE of the flexible link p are the angles ),(),(),( ,, ip
z

ip
y

ip
x ϕϕϕ , 
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of which the latter two correspond to bending and the first one to torsion of the 
element. Upon discretisation, the flexible link may be viewed as a system of rigid 
links connected by joints of the 3rd class. Similarly to the model formed using 
classical finite elements, a rigid link is a special case of a flexible link (mp = 0). 

The transformation matrix ),(~ ipT  from the system {p,i} attached to RFE i 
(i = 1,...,mp) to the system {p,i–1} in the nonlinear model, i.e. allowing the angles 

),( ip
αϕ  for { }zyx ,,∈α  to be large, takes the form:  
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(8.36.1)

where { },,,for sin,cos ),(),(),(),( zyxsc ipipipip ∈== αϕϕ αααα  

 
)1,( −ipl  – length of RFE i–1 of the link p. 

 
When the angles ),( ip

αϕ  are small, the following may be assumed: 
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When all three types of oscillations are considered (rotational and lateral in two 
planes), the generalized coordinates describing the motion of the i-th RFE of the 
link p relative to its predecessor may be written as components of the following 
vector: 

( , ) ( , ) ( , ) ( , ) for  1, ,
Tp i p i p i p i

x y z pi mφ φ φ = = q% K . (8.37)

RFE 0 is treated like in the classical rigid finite element method, its generalized 

coordinates being given by the vector )0,(~ pq . A series of intermediate 

transformations yields the transformation matrix from the local system {p,i} 
(i=1,...,mp) to the global system:  

),()1,(),( ~ ipipip TTT −= , (8.38) 

where )1,()1,()0,()1,( ~~ −− = ipppip TTTT K  

 )0,( pT  – matrix given by (8.10.2), 

 ),(~ ipT  – matrix defined by the formula (8.36) for i=1,...,mp. 
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The kinetic energy, the potential energy of gravity forces and the generalized 
forces caused by external forces and moments thereof acting on the flexible link 
are calculated as in section 5.3.  

An important property of formula (8.38) is that the matrix ),( ipT  depends not 
only on the vector )( sq  of generalized coordinates of the link which precedes the 

flexible link, but also on all the RFEs preceding the RFE i. Defining the vectors:  
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and taking (8.2) into account allows us to write: 
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where 
TTmpTpfp p





= ),()1,(),( ~~~ qqq L . 

8.2.2   Kinetic Energy: Lagrange Operators 

From (8.38) it follows: 

( )),()1,(),()0,(),( ~,,~ˆ ippippip qqTTT K= , (8.41) 

where ( )∏
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Since the kinetic energy of the link p may be written as: 
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, , (8.42)

where
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calculations analogous to those presented in chapter 5 give: 
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(8.43)

where ),(
,

ip
βαA  – appropriate blocks of the matrix 
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As before, the gravity forces of the RFEs and their derivatives may be put in the 
form: 
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and further:  
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The generalized forces may be similarly presented. If ),(~ ipF  and ),(~ ipM  specified 
in (8.30) act on RFE i of the link, then:  
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where ),( ip
αQ – appropriate blocks of the vector 
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 ),(~ ipr – vector giving the coordinates of the point to which the force in 
the system },{ ip . 

Formulation of the equations of motion further requires the determination of the 
elastic energy and its derivatives. The reasoning below pertains to linear physical 
dependencies. 

8.2.3   Energy of Elastic Deformation 

The potential energy of elastic deformation of an SDE of a flexible link is 
calculated based on the fact that the generalized coordinates specify relative 
angles. For the spring-damping element connecting the RFEs i–1 and i it is given 
by the formula: 

[ ]2),(
3

1

)(
3,, 2

1 ip
j

j

p
ji

s
ip cV ϕ

=
+= , (8.47)

where )(
3,
p

jic +  are the appropriate coefficients of rotational stiffness defined 

in (8.21). 
The formula (8.47) may be rewritten as: 
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The derivatives of the potential energy of elastic deformation relative to the 
generalized coordinates have the form: 
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8.2.4   Equations of Motion 

Whereas the kinetic energy and the potential energy of gravity forces of the link p 
are given by the formulas:  
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and taking (8.43), (8.45), (8.46) and (8.49) into account, equations of motion of 
the link p may be written as: 

)()()( ppp fqA =&& , (8.51.1) 

or decomposed with blocks: 
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8.3   Modelling of Planar System 

By means of the rigid finite element method, an arbitrary description of the 
geometry of a system may be given. The traditional approach may be used instead 
of homogeneous transformations and joint coordinates proposed in earlier 
chapters. In the present chapter an example is given of modelling a planar system 
using the rigid finite element method in its modified form and a classical 
description of the system's geometry. 

8.3.1   Determination of Generalized Coordinates 

In Fig. 8.6, a sample decomposition of a k-th flexible links into nk+1 rigid finite 

elements connected at points )()(
1 ,, k

n
k

k
AA K  by nk massless spring-damping 

elements is presented. Since the problem considered is plane, in the relative 
motion each RFE enjoys one degree of freedom which is the inclination angle of 
the axis (k,i)X of the RFE i to the axis X of the global system (Fig. 8.7). Further 
analysis assumes the angles to be measured relative to the global system.   

The position of the link k being discredited is therefore described by nk+3 

coordinates. Two of them, (xk, yk), are the coordinates of the point )(kA  which 

equals the point )(
0

kA  of the first RFE (usually being one of the nodes of the 

whole mechanism). The remaining coordinates are the angles already mentioned 

which will be denoted ),()0,( ,, knkk ϕϕ K . As a noteworthy observation, these 

angles  correspond to those from (8.37) – ),( ip
yϕ . Thus, the vector of coordinates 

of the link k may be defined:  

( ) [ ]Tnkkk
kk

k kyx ),()1,()0,( ,,,,, ϕϕϕ K=q . (8.52)

Following [Wojciech S., 1984], [Szczotka M., 2011b], when introducing 

denotations for coordinates of the point ( ))(
,

)(
,

)( , k
ii

k
ii

k
i baA  and ( ))(

1,
)(
1,

)(
1 , k

ii
k
ii

k
i baA +++  

in the local coordinate system ( )k
i

k
i

k
i ηξ )()(0  attached to the centre of mass of the  
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Fig. 8.6. Decomposition of a flexible link into rigid finite elements 
 

 

Fig. 8.7. Inclination angles of an RFE to the axes of a stationary coordinate system 
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Fig. 8.8. Coordinates of a point in the local coordinate system 

RFE i (Fig. 8.8) we may write the coordinates of the centre of mass of the RFE i in 
the coordinate system {A} as follows:  
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8.3.2   Equations of Motion of a Link 

The kinetic energy of the i-th RFE equals: 
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where ( )k
im  – mass of the i-th RFE, 

 ( )k
iJ  – moment of inertia of the i-th RFE relative to the central axis 

perpendicular to the plane XY, 

and then the following sum gives the energy of the entire link k: 
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Using (8.53), (8.54) and the following identities, which may be proved by 
induction: 
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we may express the kinetic energy of the link k as: 
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This enables transforming the Lagrange equation of the link k to: 
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– dissipation function of the k link's energy,
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– potential energy of deformation and gravity forces of the link k,
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– vector of generalized forces. 
 
By taking into account (8.57), the following is obtained: 
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The following formula gives the potential energy of gravity forces: 
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It then follows from (8.53): 
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The expression giving the energy s
kV  of elastic deformation and the dissipation 

function ( )kD  of the k link's energy depend on the form of assumed physical 
dependencies between the deformations and stresses characteristic to the spring-
damping elements. In the case of linear Kelvin-Voigt model, counting s

kV  and 
( )kD  as components due to deformation of the spring-damping elements (Fig. 

8.6), it may be written:  
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where ( )kC  and ( )kD  are the stiffness and damping matrix, respectively, whose 
coefficients are constant and dependent on the geometry of the link and the 
constants determining the stiffness and the damping of the SDE. 

The vector of generalized forces ( )kQ  is formed by the values of forces caused 

by external loads and reactions in the joints. If load shown in Fig. 8.9 is applied to 
the i-th RFE, the components of the generalized forces due to the loads take the 
form:  
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where ( ) ( )k
ji

k
jih ,, ,ϕ

 
– defined as in formula (8.53), 

 ( ) ( )k
i

k
ir γ,    – polar coordinates (relative to the middle ( )k

iC  of the i-th 

RFE of the link) of the point to which the load is applied. 
 
 

 

Fig. 8.9. Coordinates of the point of application of external load in the local coordinate 
system of the i-th RFE of the k-th link  

Summing: 
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yields the components of the vector of generalized forces. Furthermore, with 
(8.58), (8.59), (8.61), (8.62), (8.63) the equations of motion may be rewritten: 
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where ( ) ( ) ( )kkk DBB += . 

In the vector of generalized forces 
( )kQ  both the reactions of constraints and 

known loads are included. For some operations, it is convenient to have this vector 
written as:  
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P

kkk QRKQ +−= , (8.67)

where ( )kK
 

– matrix with nk+3 rows whose elements depend on ( )kq , 
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– vector of reaction (its elements are the components of 
reaction in revolute and translational connections and forces 
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occurring therein as well as moments of undeveloped 
friction),  

 ( )k
PQ

 
– vector of generalized forces due to known external loads, 

reactions in flexible connections and forces of developed dry 
friction and viscous friction.  

Given the form of the vector (8.67), the equations of motion of the link k may be 
written as follows: 
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The elements of the matrices ( ) ( ) ( )kkk KCA ,,  depend on ( )kq  and the elements 

of the matrix ( )kB  and the vector ( )kF  depend on  and ( )kq& . In the special 

case of nk=0, the concerned link is modelled as rigid.  
Motion of the base {A} may be taken into consideration by assuming it to be 

the RFE 0 whose motion is described by: 
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A
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The vector of reaction in the connection is thence defined by the vector: 

( ) ( ) ( ) ( )[ ]Tzyx MFF 0000 =R , (8.70)

whose components describe the forces and moment which realize the excitation 
(8.69). 

A detailed description of the algorithm of combining the equations of subsystems 
for revolute and translational connections is presented in [Wojciech S., 1984]. 
8.4   Modelling Large Deflections and Inclusion 

8.4   Modelling Large Deflections and Inclusion of Nonlinear 
Physical Dependencies 

8.4   Modelling Large Deflections and Inclusion  

Most of the applications already discussed in which the RFE method is used 
pertain to systems containing beam links. Some of the considerations in this book 
are for pipelines which may be subjected to deflections much larger than typical 
beam systems. Although the RFE method enables analysis involving large 
deflections, the specific dynamic behaviour of offshore pipelines and cableswhen 
laid on the bottom of a sea, calls for considerable modifications in the formulation 
of the equations of motion according to this method [Szczotka M., 2011b]. They 
will be later applied in some of the examples presented.  

( )kq
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When the deflections of the link are large, the length of the chord AB’ may 
differ (be smaller) from its primary length AB=l (Fig. 8.10). Let us remind that, 
according to (5.5), the motion of the base (the vessel's hull) is known to be given 
by the vector: 
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A
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A
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A
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A zyx ϕϕϕ=q  (8.71) 

 

 
Fig. 8.10. Division of a beam with length l into RFEs and SDE: a) primary beam, b) 
equivalent system of RFEs and SDE 

Let the components of the following vector determine the displacements and 
orientation of the RFE i in the system {A}: 
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{A}, 
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 – ZYX Euler angles determining the 

orientation of the axes of the system {i} 
relative to {A}.  

Based on the information from previous chapters, let us write the transformation 
matrices from the system {i} to the base system {A} in the form: 
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and the transformation matrices from the system {i} to the global system, 
according to (5.4.1) and (5.6), are as follows:  

( ) ( ) ( )( ) ( ) ( ) ( )( ).~~
,~ 0 ii

A
iii tt qTTqTT ==  (8.74)

 

  
Fig. 8.11. The primary element i, RFEs i-1 and i having load applied to the beam 

Large displacements of the links cause the primary element as well as the 
RFEs i and i-1 created in the secondary division to be in the configuration 
depicted in Fig. 8.11. 

The coordinate systems {i-1} and {i} are attached to RFEs i-1 and i. On the 
other hand, to the primary element i the coordinate system {i’} is attached. The 
coordinate system {A} may in further considerations be the global system or one 
attached to the deck of a vessel or platform. 

 
 

 
Fig. 8.12. Position and orientation of the system }'{i  
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If division of a beam into rigid finite elements is fine enough, differences 

between the angles ( ) ( ) ( ) ( ) ( ) ( )111 ,, −−− −−− i
x

i
x

i
y

i
y

i
z

i
z ϕϕϕϕϕϕ  which are components of 

the vector:  
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ϕϕ
ϕϕ

ΦΦΦΔ  (8.75) 

may be assumed to be small. Let us assume that the origin of the coordinate 
system {i’} (of the primary element) coincides with the right end of the RFE i-1 
and its orientation to is determined by ZYX Euler angles being the arithmetic 
means of the Euler angles of the RFEs i-1 and i – Fig. 8.12. Therefore: 

( ) ( ) ( ) ( ),~~~ '111' −−− += i
R

iii rRrr  (8.76)

where 
( ) [ ]Ti

R 00~
2

'1 Δ− =r , 

 
and:  
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ϕ
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. (8.77) 

The coordinates of the right end of the RFE i-1 (point ( )iL ) and the left RFE i 
(point ( )iR ) in the base system {A} are determined thus:  

( ) ( ) ( ) ( ),~~~~ '111 −−− += i
R

iii
L rRrr  (8.78)

( ) ( ) ( ) ( ) ,~~~~ '111 −+= i
L

iii
R rRrr  (8.79)

where  ( )'1~ −i
Rr  – defined in (8.76),  

 
( )

T
i

L 



 Δ−=− 00

2
~ '1r . 

These vectors may be represented in the system {i’}: 

( ) ( ) ( ) ( )( ),~ '' ii
L

Ti'i
L rrRr −=  (8.80)

( ) ( ) ( ) ( )( ),~ '' ii
R

Ti'i
R rrRr −=  (8.81)

where ( )i'R  –  rotation matrix corresponding to the angles ( ) ( ) ( )''' ,, i
z

i
y

i
x ϕϕϕ , 
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whereas, considering (8.77),  the vectors ( )'i
LΦ  and ( )'i

RΦ  are:  

( ) ( ) ( ) ( ),
~

2

1~~ '1' iiii
L ΦΔΦΦΦ −=−= −  (8.82) 

( ) ( ) ( ) ( ).
~

2

1~~ '' iiii
R ΦΔΦΦΦ =−=  (8.83) 

The vector of deformation of the SDE i takes the form: 
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where ( ) ( ) ( )''' i
L

i
R
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Taking (8.80) – (8.83) into account: 
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The axes of the SDE are the principal deformation axes, hence the following 
formulas for the forces and moments caused by the deformation of the SDE i: 

( ),
~ ')()( ii

r
i rCF Δ=  (8.86)

( ),
~ ')()( iii ΦCM Δ= Φ  (8.87)

where [ ]Ti
z

i
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i
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i FFF )()()()( ~~~~ =F , 
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i
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i
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i MMM )()()()( ~~~~ =M , 

 { })()()()( ,, i
z

i
y

i
x

i
r cccdiag=C , 

 { })()()()( ,, iiii cccdiag ϕθψ=ΦC , 

 )()( ,, ii
x cc ϕK

  
– stiffness coefficients. 
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Fig. 8.13. Values of shear coefficients according to (8.88) and (8.89) 

In [Kruszewski J., et al., 1999] the following formulas for stiffness coefficients of 
the elements are given: 
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The work [Szczotka M., 2011b] takes another approach to defining the shear 
stiffness coefficients cy and cz by assuming: 

,
12

,
12

33 Δ
=

Δ
= y

z
z

y

EJ
c

EJ
c  (8.89) 

and maintaining the conformance of the values of remaining coefficients to (8.88). 
The above modification of the coefficients cy and cz enables the same expressions 
to give the potential energy of elastic deformation of the primary element obtained 
with the RFE method and the energy of elastic deformation of the deformable 
element considered in FEM. 

The values of shear stiffness coefficients determined by formulas (8.88) and 
(8.89) are shown in Fig. 8.13 for different lengths of the element. Calculations 
were performed for two different sections of pipes which are analysed in later 
chapters of this volume. Appropriate division into finite elements enables both 
coefficients to share the same value. The stiffness coefficients cy and cz  in the 
formulas (8.89) have smaller values when the elements resulting from the division 
are longer. 

Forces )(~ i
estF+  applied to the point whose coordinates are given by (8.78) and 

pairs of forces )(~ i
estM+  act on the RFE i-1. Forces )(~ i

estF−  applied to the point 

whose coordinates are given by (8.79) and pairs of forces )(~ i
estM−  act on the 

RFE i. (Fig. 8.14).  
The forces (8.86) and the moments (8.87) are given in the coordinate system 

{i’}. Their transformation to the global system is done as follows: 

( ) ,
~ )(')( iii FRF =  (8.90.1) 

( ) ,
~ )(')( iii MRM =  (8.90.2) 

and in the following way to the coordinate systems of the RFEs i and i-1: 

( ) ,
~ )(1)1( iTii

est FRF −− =  (8.91.1) 

( ) ,
~ )()( iTii

est FRF =  
(8.91.2) 

( ) ,
~ )(1)1( iTii

est MRM −− =  (8.91.3) 

( ) .
~ )()( iTii

est MRM =  (8.91.4) 

The presented discussion shows that the crucial change introduced with respect to 
the original formulation of the RFE method (section 8.1) is having the system  
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Fig. 8.14. Forces and moments acting on the RFEs i-1 and i caused by deformation of the 
SDE i 

of principal deformation of the SDE {i’} “follow” large displacements of the finite 
elements. A similar approach to planar systems with variable configuration is 
presented in [Wittbrodt E., 1983]. Furthermore, the modification of shear stiffness 
coefficients enables the energy of an element's deformation to be expressed in the 
same form as in the method of deformable finite elements. This conclusion holds 
for linear physical dependencies. Also of importance is an observation that since 
the presented proposal assumes the vectors of generalized coordinates of the RFEs 
take forms described by (8.84), no distinction is made among the variables to 
configuration (describing the motion of the beam as a rigid body) and flexible 
ones, as in section 8.1. 

8.4.1   Equations of Motion When Using the Classical RFE 
Method 

The equations of motion of a system taking into account the dependencies from 
previous chapters may be put in the form: 
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 n  –  number of RFEs in the concerned model. 

Note that the matrix A is diagonal, which is of great importance when integrating 
the system's equations of motion. Such form is characteristic of systems modelled 
with the classical RFE method. 

Let us assume that at the point whose coordinates are given by the vector 

in the local system of the RFE i there act: an external force and a pair of forces 
given by: 
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 (8.93)

Their corresponding generalized forces may then be determined from the formulas 
[Wittbrodt E., et al., 2006]: 
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(8.94)

The relations (8.94) allow us to determine the generalized forces and moments 
pertaining to the impact of the sea environment: 
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where h
i

h
i MF

~
,

~
  – vectors of forces and moments due to interaction of the 

element i with the liquid (including the influence of waves, 
sea currents and hydrodynamics), 

 
b
i

b
i MF

~
,

~
–  vectors of forces and hydrostatic buoyancy moments 

(hydrostatic buoyancy of the pipeline and additional buoyant 
modules), 

 
t
i

t
i MF

~
,

~
 – vectors of forces and moments of the action of guiding 

structures (e.g. reel, guiding ramp, mechanisms),  

 
d
i

d
i MF

~
,

~
–  vectors of forces and moments due to the action of the 

seabed.  

The forces and moments caused by the deformation of the SDE may be included 
similarly. According to (8.86) and (8.87), forces and moments caused by the 
deformation of the SDE i (left end of the RFE i) and the SDE i+1 (right end of the 
RFE i) act upon the RFE i. Hence: 

ir ′~
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8.4.2   Inclusion of Nonlinear Physical Dependencies 

In the rigid finite element method, flexibility is described in an approximate 
manner (displacements are realized in the SDE only). Therefore, the tensor )(i

jkσ  

present in (7.1), defined for each SDE i in the plane normal to the beam's axis, is 
given as [Szczotka M., 2011b]:  
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M=τ  – stress tangent to the torque, 

)(
min
it  – minimal thickness of the section's side.  

The form of the stress tensor in a flexible beam modelled with the RFE method is 
similar to the tensor obtained in the Saint-Venant problem for torsion and bending  
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of beams [Nowacki W., 1970]. The stresses )(
,
i

ygσ , )(
,
i

zgσ  due to the bending 

moments at which the transition from elasticity to plasticity occurs, may be 
determined from the following equation taking (7.1) into account:  

( ) ,0~3 0
2)()(

2 =−+ σσ i
g

iJ  (8.98)

where )(~ i
gσ

 
– equivalent bending stress, 

)(
2
iJ  – specified as in (7.1). 

Some models of pipelines presented later use the given dependencies to construct 
a module allowing us to determine the forces and moments in the SDE when 
occurrence of elasto-plastic deformations is possible. Fig. 8.15 schematically 
shows a flowchart of actions comprising the procedure of determining the bending 
moment acting on the RFE on the assumption that { }ziyii ϕϕϑ ,∈ .  

The diagram uses the following notation:  

iF   – mark specifying the state of the material, 

sX   – maximal deformation which causes the phase to change from elastic 
to plastic,  

0~
iϑ   – neutral value of displacement (at which 0)( =imϑ ), 

)( i
eC   – stiffness coefficient of the SDE within the elastic region, 

)(i
pC   – stiffness coefficient of the SDE within the plastic region, 

)()( i
e

i
p CC μ= , ..., ,1.0 ,01.0=μ  

( )matf  – function describing the shape of the characteristic ( )pf εσ =  within 

the plastic region,  
)( i

BM   – value 
)(imϑ  determined in the previous step ht − , 

)(i
Bϑ   – plastic deformation in the previous step ht − . 

 
A control procedure for the mark Fi and for calculating the values )(i

Bϑ  and )( i
BM  

(Fig. 8.16) is also necessary.   
Approximation of the characteristic of a material may be performed for 

arbitrary data obtained e.g. from measurements. The linear segments (elastic 
region, linear reinforcement in the plastic region) may be interspersed  with 
nonlinear ones, thus leading to significantly greater stability of the calculations. 
An example of such characteristic can be found in [Szczotka M., 2010]. 
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Fig. 8.15. Flow diagram of the algorithm determining the value 
)(imϑ  

 
 

Tags Fi (fig 8.16) 

Tags Fi (fig 8.16) 



8.4   Modelling Large Deflections and Inclusion 137
 

 

 

Fig. 8.16. Flow diagram of state markers control, Fi and calculations of the values )(i
Bϑ  

and )( i
BM   
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