5 Equations of Motion of Systems with Rigid
Links

In the current chapter the main steps of determining the components of the
equation of motion for open kinematic chains consisting of rigid links are
presented [Wittbrodt E., et al., 2006]. The method is based on the Lagrange
equations of the second order, homogeneous transformations and joint
coordinates.

The Lagrange equations of the second order may be written as:

oV ., dD _
Sq(E)+a—q+a—q—Q, 5.1

where g,(E)= (%S}TE;; - S}Tf;;jkl

a_V = (a_vj s a—D = (a—DJ ) Q = (Qk )k:l n '
k=l,....n k=1,...n

q D ..., a 94 ), ., T
q=[q1 Y P q"]T — vector of generalized coordinates,
(']=[c}1 cer G e q'"]T — vector of generalized velocities,
E - Kkinetic energy,
V- potential energy,
D - function of dissipation energy,
0O, — non-potential generalized force corresponding to the k-th

generalized coordinate,
n  — number of generalized.

In the following reasoning, the dissipation of energy is omitted (D=0) and the
multibody system is assumed to be situated on a movable base {A} (Fig. 5.1)
whose motion relative to the inertial (global) system {0} = {} is known.
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60 5 Equations of Motion of Systems with Rigid Links

Fig. 5.1. Coordinate systems: {} — stationary (inertial) global one, {A} — that of the
movable base, {}~ — local one attached to the considered link

For the sake of notation's clarity, the coordinate system {0} will for the
remaining part be identified with the inertial system {}. Additionally, the
following notation will be assumed:

T=T", (5.2)

where p — number of the link in the kinematic chain.
Let us introduce the following denotations:

(p) (p) (p)
'x()rg 4 yorg 4 Z()rg ° (53)

for the origin of the system {p} in the coordinate system of the preceding link and:

¢(p) () (D) , (5.4)

x 2Ty Y7z
for ZYX Euler angles determining the orientation of the axes of the system {p}
relative to the axes of the preceding system.

Matrix of the homogeneous transformation (/),T taking into account the motion

of the system {A} relative to the system {} may be represented as a product of six
matrices, each of which being a function of a single time-dependent variable only:

(/)AT(I) :(/)le (/)xTz (/)tT3 (/)AT() (/)sz gT4 ) (5.5
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where
10 0 10 0 0]
0 1 0 0 0 co™ —sp® 0
0T =0T Y )= . T, =0T, [ " .
((Vg) 0 0 | 0 (% ) 0 so®  cp® 0
0 0 0 1 _0 0 0 1]
10 o0 0 e 0 spM 0
0 1 0 yW 0 1 0 0
T T (A) org , OT (A) ,
bix)= 0o o0 1 oA L (o)) —sp™ 0 g™ 0
L0 0 0 1 . 0 0 0 1]
[ 1 0 0 0 cg™ —s¢M 0 0
0 1 0 0 spM cp® 0 0
OT ()T A))— , OT OT (A) Z ,
(me) 0 0 1 L:qg) AT6 (¢ ) 0 0 1 0
L0 0 o0 1 0 0 01
xii‘; i (2), Yo = yore ©), 2o = 247y (0),
Y= e o =0 () o =g ()

The order of rotations included in the matrix 4 T conforms to the convention for
7YX Euler angles presented in section 4.1.

~ [~ ~ =~ T . . .
If r= [x y z 1] is a vector determining the coordinates of a mass dm

in the local system {}" attached to given link of the system, then the coordinates of
this mass in the system {} can be given with this formula:

r=T®T(q)F=TF, (5.6)

where T(q):{?T(ql,...,qn) — matrix of coordinate transformation from the

local system {}~ to the system {A}, dependent on the generalized
coordinates of the link,

=T T(q) .
In a particular case whereby the base {A} of a multibody system is motionless, the

following may be assumed:
T =1, (5.7.1)

where I is the identity matrix.
Then:

T=T(q). (5.7.2)
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5.1 Kinetic Energy of a Link

Kinetic energy E of a link with mass m can be calculated using the trace of
amatrix [Paul R. P., 1981], [Jurewi¢ E. I., 1984]. The kinetic energy of an

elementary mass dm with coordinates (x, ¥, Z ) can then be represented as:

ik k9 %2 0
o

dEz%tr{i’l"T}dm ~lu yr o yyeye o |ram=
X zy iz 5.8)
0 0 0 0

_ 12, .2 .2 :lz
—2()6 + 3y +27)dm 2v dm,

u
where tr(A)= Zaii — trace of the matrix A, =(a;); ;-
i=1

9
AAAAA u

V=it + 37+

Since the vector ¥ which determines the position of the elementary mass dm in
the local coordinate system has constant coordinates (in time), then:

P =TF, (5.9)

and the expression giving the kinetic energy of the considered link takes the form:
1 .. o~ o~ .
E= Ejtr{rrT}lm = %Itr{Tr v’ TT}dm =

_l . ’:"’:"T .T _l . .T
= 2tr{TDrr dm:IT }_ Su{THT').

The matrix H occurring in the above formula is the matrix of inertia of the link
whose elements may be calculated thus:

(5.10)

]Ob?) v I Ik

. Joo Jeo Jon Jo
H:IFdemz v Tan vz Uy 5.11)

m oo T g I3

Ig gy om
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where  Jgo = J.i dm, T Jog = J. yidm, J 5 = IZ 2dm - planar moments of
m

m

inertia in the coordinate system {}~,
Jsg = Xydm, I = J‘}'Z'dm, Jo7 = J‘ﬁ'dm — centrifugal

m m m

(deviatoric) moments of inertia in the coordinate system {} ",

J~—J.xdm J~—J.ydm J~—J.de — static moments

m m

of inertia of the link in the coordinate system {}",

m — mass of the link.

The following relations hold:

|
Jisx) = E(J +7;-Tg) (5.12.1)
1~ - —
1
Jigz) =5 U +T5—T5) (5.12.3)

where .7;( ZJ‘(iZ +22)dm, ‘7\? :J.(EZ +22)dm, _2 :J‘(xz +§2)dm are mass

m m m

moments of inertia of the link relative to the axes X, Y, Z,

respectively.
Taking (5.6) into account, we may write the matrix T as:

_ Y _ 4 o) T(q)| =TT +°TT. (5.13)
Tdt
Since:
= dT &oT L
T="2o5% ST, 5.14
i Loyl Zl ;4 (5.14)
WhereT—a—T,
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the following is obtained:

T=TT+> Tg,, (5.15)

i=1

where T, =TT .
A reasoning analogous to that in [Wittbrodt E., et al., 2006] leads to:

tr THTT} i=1,.... (5.16)
The matrix T may be calculated by differentiating (5.13):
T=TT+2TT+4TT, (5.17.1)

where T is defined in (5.14).

The matrix T is obtained by differentiating by time the formula (5.14), giving:

" n dT _ n n aT _ non _ no_
T :Zl[ dll g;+ T, qu = Z{Z[aq{ q_j]qi +T, ql‘| = ZZTI, 4q;9; +ZlTi G, (5.17.2)
i= j i=

i=1| j=1 i=1 j=1

9T 2T

where T, ; =

gj_ a%’aq]' .

Taking (5.17) into account, we may rewrite the relation (5.16) as:

T
£(E)=t{T, H{ZTT+23TT+ZZT,J qq;+2.T, ql}
=1 j=1 I=1 (5.18)

= Zai,l (@) g, +e(q) for i=12,...,n,
=1
where a;,(q) = tr{Ti H TIT },

T
e(q)=tr 1}H{%TT+2%TT+ZZ']‘,J@ q]} =

=1 j=1
T
T,.H{zﬁuﬁzm,+zzfs,,,T,,,q-,q-,} |
=1 I=1 j=l

|1 when [=j
“712 when I#j’
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The above equation may be presented in a matrix form:

gE)=Aj+e, (5.19)

,,,,,

An important property of the matrix A is its symmetry. The dependencies (5.18)
and (5.19) will be used to formulate the equations of motion of analysed
multibody systems.

5.2 Potential Energy of Gravity Forces of a Link

Let the coordinates of the centre of mass of a given link in its local coordinate
system {}~ be specified by the vector:

E=x . z. 1. (5.20)

Assuming the axis °Z of the global (inertial) coordinate system {} to be
perpendicular to the Earth's surface, we obtain the following formula that gives the
potential energy of the gravity forces of the link:

VE&=mgz., (5.21)
where g — acceleration due to gravity,
Zc — component in the direction of the axis Z of the vector

I.= [xc Yo Zc¢ I]T specifying the position of the centre
of mass of the link in the inertial system.

By knowing the transformation matrix T from the local coordinate system {}~ to
the global one {} the following may be obtained from equation (5.21):

Ve
v G. (5.22)
where G = G(Q)= (gi)i:l ..... n’
8 :a_V:mgOSTir'C’
aqz'

0,=[0 0o 1 o]

Elements of the vector G depend therefore on the matrix T, and hence on time ¢
and the vector of generalized coordinates q.
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5.3 Generalized Forces: Equations of Motion of a Link

If non-potential forces or moments thereof act on a given link, they must be taken
into account in the equations of motion as generalized forces. When the
convention of homogeneous transformations and coordinates is applied, vectors of
forces and their moments, unlike those of positions, have zero as their fourth
coordinate:

F‘=[ﬁx F, F, O]T, (5.23)
M=, a1, 5. o (5.24)

Let us assume that a force F is applied to the link at the point N (Fig. 5.2).

L'z

=1
l

X

IJX

Fig. 5.2. Force acting in the local coordinate system

The force F is described in the inertial system by:
F=TF. (5.25)

The generalized force corresponding to the i-th generalized coordinate [Leyko J.,
1996] may be written thus:
rar

=F'"TF fori=1,..n (5.26)
dq

Q,(F)=F

i
Using (5.25), we may transform the formula (5.26) to obtain:

0.F=FT'T F. (5.27)
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If an external moment of force M specified by (5.24) is applied to a given link, it
is possible, by representing its components as pairs of forces [Grzegozek W., et
al., 2003] and performing appropriate transformations, obtain the formula for the
generalized force corresponding to the i-th generalized coordinate which is due to

the moment M:

~ ~ 3 ~ 3 ~ 3
OM)= ngitz,a LiatM, Eitz,l fiztM, Eitl,z Lisys (5.28)

......

and T, respectively.

Finally, using the Lagrange equations of the second kind, the equations of motion
of the link concerned are put in this form:

Aq=Q-G-e, (5.29)
where — matrix of inertia defined in (5.19),
— vector of gravity forces defined in (5.22),

A

G

e — vector of nonlinear forces defined in (5.19),
Q — vector of non-potential forces,
Q =
0, =

(Qi )i:l n’

,,,,,

; Qi(F)+ Qi(M)-

5.4 Generalization of the Procedure

The equations of motion for a single link having been determined, the equations of
motion of an arbitrary open kinematic chain (Fig. 5.3) can be formulated.

Since joint coordinates are used to describe motion, the motion of a link p
depends on its generalized coordinates, of which there are 7 »o and on the

generalized coordinates of its predecessor s in the chain. The total number
of generalized coordinates for a link p (including all the generalized coordinates of
preceding links) will be denoted by n,. The vector of generalized coordinates of

a link p may therefore be written:

(s)
q" = {?m} , (5.30)
q
where ¢ — vector of generalized coordinates describing the motion of the

link s preceding the link p,
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(~](p) = [Zjl(p ). 'q}Ep )]T — vector of generalized coordinates of the
»

link p describing its motion relative to the link s,
~(p) (p) (p) (p) (P) (P) (p)
q;"" € {x y z ?x L }’
P 1, (p)qT
Q" =lg"” ... ¢ T,

n,=n,+n,.

link p=1i__

link

hx

Fig. 5.3. A link p and links preceding it in a kinematic chain

The presented procedure takes the tree structure of kinematic chains into
consideration. Therefore, consecutive links in a chain need not be assigned
consecutive ordinal numbers. In such cases, one needs to define an ordered set of
indices of the preceding links in the kinematic chain along with the index of the
concerned link p:

N,= {ip,l""’ip,l""’ip’l\'}p}’ (5.31)
whereas:
N » — number of elements of the set N oo
Lg, =P
i g = (5.32)
N, =N;u{p},
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The vector q(” ) from the formula (5.30) may now be written as:

e

i)

i )7 iof U
) | g g g (5.33)

q

and the transformation from the coordinate system of the point p of the link to the
inertial system {} may be expressed as follows:

r? =T® §gP =6 TP g = %TT”’) £ , (5.34)
where T® Z%T(I)T(S)(q(s)),
T =07() T (qm )T(p) ((](P)): OT() T (q<p> )
T® =T® TW i

F¥” _ vector of coordinates of the point in the local coordinate
system {p}.

Following the reasoning in section 5.1, thus is the kinetic energy of the link p:

E,=Su(TVH" Ty (535)

where H” — defined as in (5.11),
and the Lagrange operator for the link p takes the form:

g (E,)=AP§" +&7, (5.36)

AP — (5(p)
where A =(a,"), i,

44444

~ T
(p) _ tr{T(p) H(p) T(p) }

T
(P) =tr T(P) H(p)|:0 TT® +2°0 TT({?)+ZZT(P)q q(p):l
J 9

=1 j=1

T aT" 0T {ZT(f)T;fS)TW for k=1,..n,
) = = -

aq]((p) T4 aql(cﬂ) - ZT(t)T(")T,ffL for k=n +1L..n,
STTYT?  for I j=
\J ’
(p) 2m(p) =
T gL’ =9T() o1 STTOT?  for =Lt
aq(maq(p) AT eng j=n, +l,...,np
0 TT(&)T(P) for lj= n, +1’m,np

l-ng,j—n
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This relation may also be written with a matrix and vector blocks:

2 A (P) A (P T Tawm T
Ai,,.l »i,u e Al‘,m *ipjc e Ai,,.l »i,y,ﬂ/p ~(l"'l) eip‘l
Py | AP A (P) AP (i, a» |,
g (B = Ai,,,j,i,,‘, Ai,,,j,i,,‘k Ai,,,j,i,,‘,\-,p q(’”) | &, (5.37)
AP AP AP | slis,) | (&P
P S R e P B | 1 L]
AP =(~(p> )_ N
where ip ol an,,,j+l,nak+m l_l"'“nfg S
m=l,...n;
ip.k
S(p) (~<p>)
€, =\e
Ip.j a1 1=1,..ji; .’
p.J
j-1
Mg, = i)y
v=I
or:
A(p) A(p) = (s5) &
(P)y _ 5,8 sp || 4 s
g (E)=] 4 + (5.38)

AP A(P) ("i'(p) e |’

pss p.p p
AP A AP
N ot L) LA
where A/ = : : Al = :

, > sp ’
(P) A () AW
ip.l*5 As,s S’i,,,ﬁ(ﬂ)

(p) _| A (p) A _ A

Aps = Ap,ipyl AP»X:| ’ A, =AY
=(p)
i » _ [z

éip) =t epp = [eﬂp ]’
’éA(p)

s, p —defined in (5.32).

Making use of the dependency (5.22) obtained in section 5.2, we may express the
derivative of potential energy of gravity forces of the link p with respect to
generalized coordinates as:

wveE
aqé) - (gl(p) )1:1,...,,.p , (5.39)

where g,l(p) =mP g93 Tl(p) i:c(p) )
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The dependency (5.39) may thus be rewritten:

[ éip)
Ve o -~
P m=G"= G | (5.40)
q >
G(p)
by i
where G(jm = (g'('fj)”),:l .
equivalently:
8 ~(p)
avp — (p) Gs (5 41)
aq™” Gw .
P
G»
i
where Gip) = , G;P) — G;p) )
éip)

The generalized forces due to external forces and moments thereof are calculated
like in section 5.3 giving:

fo® ]|
Q.
Q" = QE:,) ’ (5.42)
0O (P
L i”'ﬁn_
where QEP) :(Q,(,le (F(p))+Q,(,p_)+l (M(p))) ’
r “ % =i
n, —defined in (5.37),
7
or:
- Q(p)
Q" {AS ’ (5.43)
(p)
Q,
0 (P)
R
where Q' =| i |, Q' =Q\.
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Finally, the equations of motion of the link p may be written thus:

K(ﬂ) q(ﬂ) — f(P) , (5.44)

where f(p) — Q(p) _ ’é'(p) _G(p) ,

AP P GP QP _ defined by formulas (5.36), (5.40) and
(5.42), respectively.

The equations (5.44) describing the motion of the link p also indicate how its
motion depends on the generalized coordinates of the preceding links (i.e. the

ip1)

coordinates fj( son @ of the vector q*)) and its own coordinates, i.e. ' .

Therefore, those equations may be written in the form:

NN - (s) £(p)

AS,S AS,[) {q ! }_ fS

A =) |
q f,

, (5.45)

A A N A A A . A
where f;m =Q§p) _e§p> —Gip), fpp) _Qpp) _e(pp) _G(pp) )

The above equations of motion are obtained taking into account the kinetic energy
and the potential energy of gravity forces of a single link p as well as the force

F” and the moment of force M ”’ acting upon this link.
If a kinematic chain has links numbered 1 to p, the energies: kinetic and
potential of gravity forces of the system are given by the expressions:

)4
E=YE,, (5.46)
i=1
V4
VE=DVE. (5.47)
i=1

Let us assume that the equations of motion of the links 1 to p-1, which take into

account the kinetic energy E,, the potential energy V.*, the forces F® and the

moments of forces M (i=1,...,p—1), have the form:
APD q(p—l) =fr (5.48)

where A"V is a matrix of dimension N, XN, and q and f are

p-1
n,,= zni -element vectors.
i=1
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Adding a link p so that it connects with the link s< p—1 belonging to the

considered kinematic chain makes the equations of motion of the entire system of
links 1 to p expressible as:

AP q(p) =f(p)’ (5.49.1)

or:

_ e Iy e (pe _ =
A(ﬁ 1)+A(S{>S) | A(Sp) q(p D ~ f(p l)+fs(1>)

——— e el I = 5.49.2)
(p) A =(p) £(p) ’ (5.49.
Ap,s ! Ap,p q fp
h A(ﬂ) A(p) A(p) f(ﬁ) tri £ di . ~
where 55 Ay pa Ay 17 — matrices of dimensions n, ;xn, ,, n, xXn,,

1,%n, ; in which the appropriate submatrices with indices i, je N,

are calculated according to:

_ A" when k,le N,
(Aﬁ?)k, =k P forkl=1...n,,,
’ 0 otherwise,
_ AP when ke N ,
(Aiflz)kz k.p P for k=1,....n,_|,
0 otherwise,
_ A" when ke N ,
(A(,,’,’E)k: p-k p for k=1,...,n‘,,,l,

0 otherwise,

(fm) fk(”) when ke N, for k =1
. = ork=1,....n__,.
v 0 otherwise, -
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