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10   Selected Applications Related to Control of 
Offshore Structures 

Dynamic analyses of mechanical systems are often considered together with 
problems related to their control. With traditional ways of operating machines it 
the operator who decides what the working motions are. In contemporary 
machines, it is becoming commonplace to support the process of control. Control 
systems based on microprocessor technology (programmable drivers, onboard 
computers) are supposed to facilitate human work or even replace it. They enable 
realization of various strategies unachievable with manual control. Automated 
control is used also in offshore structures, including cranes. The criteria of control 
strategies may be different, for example: 

 minimal duration of motion,  
 minimal consumption of energy,  
 accuracy of load positioning, including minimization of oscillations after the 

motion has ended, 
 minimization of dynamic loads, 
 stabilization of the load's position, 
 minimization of the influence of sea waves on the device's dynamics. 

The present chapter describes the basics of the method of selecting the drive 
functions based on dynamic optimization. Control of the drum of a winch of an A-
frame type crane allowing it to compensate for vertical movements of the base due 
to sea waves is presented. For an offshore jib crane, an auxiliary system is 
proposed enabling the load to be positioned in three directions. In the last part, 
a concept of active compensation of waves for a drum's drive of a device for 
laying pipelines is discussed. 

10.1   Dynamic Optimization 

As former considerations imply, the equation of dynamics of a multibody system 
may be presented in the following: 

( )Mt ,,, qqfqA &&& = , (10.1) 

( ) 00 qq = , (10.2.1) 

( ) 10 qq =& , (10.2.2) 
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where [ ] T
nqq L1=q  –  vector of generalized coordinates of the system, 

 f  – excitation vector due to these forces: elasticity, damping, 
centrifugal, Coriolis, gyroscopic, and to the drives, 

 M  – function giving the drive force or moment thereof, 
henceforth assumed to be a specified function of time, 

 10 , qq  – vectors of initial values of generalized coordinates and velocities. 

 
The equations (10.1) are typically nonlinear and require numerical integration. 
Duration of their integration is closely related to the number n of generalized 
coordinates. Assuming large n considerably lengthens the calculations, whereas n 
being too small disables the mathematical model from adequately reflecting the 
dynamic properties of the system. The number n of generalized coordinates should 
therefore hit the balance between computation time and accuracy. Its choice 
depends largely on the purpose of the model. 

In some cases, which are described in chapter 6, it is possible to write the 
equations (10.1) as a combined system of ordinary differential and nonlinear 
algebraic equations: 

( )Mt ,,, qqfRDqA &&& =− , (10.3.1)

( ) 0qqΛ =&, , (10.3.2)

gdzie fqA ,,  – defined as in (10.1), 

 [ ] T
mRR L1=R   –  vector of constraint reactions, 

 ( )qDD = –  matrix of coefficients, 

 ( ) ( )[ ] T
m qqqqΛ &L& ,,1 λλ=   –  vector of constraint equations, 

 m – number of components of the vector of constraint reactions. 
 

To solve the equations (10.3) completed with initial conditions, a procedure is 
often applied whereby the constraint equations (10.3.2) are put in accelerative 
form by differentiation: 

( )qqWqD &&& ,,tT = .  (10.4)

The equations (10.3.1) and (10.4) replace (10.3.2) and may be written as: 
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Further reasoning assumes that the equations of dynamics of the system take the 
form (10.1). For such equations, as just shown, can be easily extended to a system 
with constraints. 

In the case of controlling working motions of machines, it is important to 
choose the drive function in such a way dependent on time that the intended goal 
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is achieved according to the set criteria. One method of finding appropriate drive 
functions is by optimization. The optimization task in this case is to choose the 
drive function M(t) satisfying: 

 

minimization of the functional:  

( )M,,qq &Ω , (10.6)

maintaining the boundary conditions: 

( ) ei nie ,...,1for0, =≤qq & , (10.7.1)

( ) ( ) ( )tMtMtM RL ≤≤ , (10.7.2)

where en   –  number of boundary conditions, 

 ( ) ( )tMtM RL ,   –  known conditions constraining the drive function ( )tM .  

 
Note that it is necessary to know the vectors qq &,  corresponding to the function ( )tM  

in order to determine the functional Ω and the function ei. This requires integration of the 
system's equations of motion (10.1) in each optimisation step. An optimization task 
formulated in this way is called a dynamic optimization task [Kręglewski T., et al., 
1984], since its focus is the integration of equations of dynamics.  

The problem of choosing the function M(t) can be reduced to a classical 

optimization problem by discretisation. Let Tt ,0∈  and: 

( ) ,,...,1for pitMM ii ==  (10.8) 

where p is defined in Fig. 10.1. 

The value of M(t) for ii ttt ,1−∈  may then be determined with cubic splines 

(Fig. 10.1), using the formula: 

( ) ( ) ( ) ( ) ( ) ,11
2

1
3

1 −−−− +−+−+−= iiiiiii
i MttcttbttatM  (10.9)

whereby the coefficients iii cba ,,  are chosen such that: 

( )( ) piMtM ii
i ,...,1for == , (10.10.1)

( ) ( ) ( ) ( ) 1,...,1for'1' −== + pitMtM i
i

i
i , (10.10.2)

( ) ( ) ( ) ( ) 1,...,1for''1'' −== + pitMtM i
i

i
i , (10.10.3)

and: 

( ) ( ) ( ) ( ) 0or0 0
''0

0
'0 == tMtM , (10.10.4)

( ) ( ) ( ) ( ) 0or0 ''' == p
p

p
p tMtM . (10.10.5)
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Fig. 10.1. Approximation of the function M(t) with cubic splines 

Equations (10.10) form a system of 3p linear algebraic equations with 3p 
unknowns ( )ppp cbacba ,,,...,,, 111 . Its solution may be obtained easily by 

a recursive procedure. 
If the drive function M(t) is approximated by splines (10.9), then the optimization 

task consists in determining the p+1 values specified in (10.8). The decision 
variables in the considered task are therefore the components of the vector: 

[ ]TpMM K0=M . (10.11)

Eventually, the problems of defining the optimization tasks of drive functions, 
considered in further examples, reduce to finding values M0,…,Mp which constitute 
the coordinates of the vector of decision variables (10.11) minimizing the functional: 

( )pMM ,...,,, 0qq &Ω , (10.12)

and also satisfying the conditions: 

( ) ei nie ,...,1for0, =≤qq & , (10.13.1)

( ) ( ) pitMMtMMMMM iRiRiLiLiRiiL ,...,1for,, ===≤≤  (10.13.2)

The vectors q  and q&  are obtained by integrating the initial problem: 

( )pMMt ,...,,,, 0qqfqA &&& = , (10.14.1)

( ) ( ) 10 0,0 qqqq == & , (10.14.2)

for t  œ T,0 .  

Various methods may be used to solve this task. However, all of them are 
sensitive to the choice of the starting point, i.e. the initial values of M0,…,Mp. 

It can be easily noticed that the time cost of the optimization process directly 
depends on the time of integration of the equations of motion (10.14). Using for this 
case the mathematical models of the systems presented in preceding chapters would 
cause unacceptably long computations. It is the reason why the drive functions M(t) 
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are usually determined according to simplified models whose degrees of freedom 
are possibly few. This enables their possible application in real-time control. 
Verifying calculations which allow to assess the usefulness of the developed 
simplified models and control algorithms are carried out with respect to combined 
basic models, thus analogous to those described in earlier chapters. 

10.2   Vertical Stabilization of Load of an A-Frame 

In this chapter, two dynamic models of an A-frame are presented. In the first one, 
the flexibility of a frame is taken into account, while in the second this flexibility 
is omitted. In both cases the flexibility of rope is considered. The classical Rigid 
Finite Element Method has been used to discretise the frame – chapter 8.1. The 
algorithm of optimisation of the drive function for the drum of the hoisting winch 
is proposed. The goal of the optimisation is to ensure the stabilization of the load’s 
position, i.e. to hold it at the required depth regardless of the ship’s motion. In 
order to achieve appropriate numerical effectiveness, the optimisation problem has 
been solved using a simplified model of an A-frame. 

10.2.1   A-Frame Model 

The scheme of an A-frame and the most important points of it are presented in  
Fig. 10.2. The following denotations are used: F – supporting structure, P – pulley,  
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Fig. 10.2. A-frame scheme 
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R – rope, H – drum of the hoisting winch, L – load, SR, SL – right and left servomotor 
forces, NR, NL – connection points of servomotors to the A-frame, AR, AL – 
connection points of the A-frame to the deck, xF, yF, zF and xD, yD, zD – coordinate 
systems assigned to the supporting structure (frame) and to the deck, respectively. 

The frame is the main element of the supporting structure in such cranes. In 
order to discretize the frame, the rigid finite element method can be applied.  

In doctoral thesis [Fałat P., 2004], at first three beams were distinguished 
(right-1, top-2, left-3) in the frame. Then, each beam was divided into rigid finite 
elements and spring-damping elements (Fig. 10.3). This necessitates taking into 
account the reaction forces and moments at points BL and BB, and increases the 
number of constraint equations.  
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Fig. 10.3. A-frame divided into three beams which were divided into RFEs and SDEs 

In this work we present a different approach. The frame is treated as one beam, 
which is divided into RFEs and SDEs. The obtained chain of rfes and sdes is 
presented in Fig. 10.4. 

The position of each rfe of the undeformed beam is defined by the coordinate 
system }{iE  with respect to the coordinate system {0} of RFE 0, by 

a transformation matrix with constant components:  









=

1

00
0

0

sΘ
T iEiE

iE , (10.15)

where iEΘ
0  is the matrix of cosines of the system }{iE  with respect to {0}, and iE s0  is 

the vector of coordinates of the origin of the system }{iE  in {0} (Fig. 10.5). 
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Fig. 10.4. A-frame as one beam, and its division into RFEs and SDEs 

The coordinate system {i} rigidly attached to RFE i moves together with the RFE 
when the beam is deformed. Its position in the coordinate system }{iE  is defined 

by generalized coordinates of the ith element, which are the components of the 
vector:  









=

i

i
i φ

r
q , (10.16) 

where [ ]T
iiii zyx=r  and [ ]T

iiii ψθϕ=φ  are vectors of 

displacements and rotation angles presented in Fig. 10.5.   
 
If we assume that angles iii ψθϕ ,,  are small, then the transformation matrix from 

the local coordinate system {i} to the system E{i} takes the following form:  
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where [ ]Tiiiiiii zyx ψθϕ=q ,  
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iŷ

iẑ
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Fig. 10.5. The systems of thi RFE and generalized coordinates  
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The transformation matrix iB  that allows us to transform coordinates from the 

local coordinate system {i} to the inertial coordinate system {} according to the 
relation:  

ii rBr = , (10.18) 

where ir   
–  vector of coordinates in local system }{i , 

          r   –  vector of coordinates in base system {} , 

has the form: 

)()(),( 0
iiiiEFDiii tt qPATTTTqBB === , (10.19)
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where )(tDD TT =  – defines the motion of the ship deck with respect to 

the base system {} , 

 ))(( tFF ϕTT =   – describes the rotation of the frame in the coordinate 

system of the deck }{D , 

 const0 =iE T   – defined in (10.15), 

 )( iii qTT =   – presented in (10.17), 

 FD)t( TTA = , 

 iiEi TTP 0= . 

 
In the case when the axes of the local coordinate system {i} are chosen as 
principal central axes of the RFE, the mass and inertial features of the RFE i are 
defined by: its mass, mi, and jiJ , )3,2,1( =j  which are mass moments of inertia 

with respect to the axis iii zyx ˆ,ˆ,ˆ . 

The equations of motion of the system considered can be obtained from 
Lagrange equations. This approach requires the kinetic and potential energy of the 
system to be defined. The kinetic energy of the RFE i can be calculated as: 

}{tr
2

1 T
iiiiE BHB &&= , (10.20)

where iH  – the pseudo-inertia matrix defined as in (5.11). 

Following the considerations, we can obtain: 
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where [ ]xyziiii JJJmmmdiag ,,,,,=M , 
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The kinetic energy of the frame can be expressed by:  


=

=
n

i
iEE

0

, (10.22) 

where 1321 +++= nnnn ,  
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and it is possible to calculate: 

FFF
FF

EE

dt

d
eqM

qq
+=

∂
∂−

∂
∂

&&
&

, (10.23)

where [ ]nF MMM ,,diag 0 K= , 

 [ ]TT
n

T
F eee K0= ,  

[ ]TT
n

T
F qqq K0= . 

The potential energy of deformation of SDEs can be expressed as follows: 

FF
T
FFV qKq

2

1= , (10.24)

where FK  – the stiffness matrix with constant coefficients.  

Similarly, one can calculate the dissipation of energy as: 

FF
T
FFD qLq &&

2

1= , (10.25)

where LF – the damping matrix with constant elements.  
From what has been written above, one can calculate: 

FF
F
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q
=
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∂

, (10.26.1)

FF
F

FD
qL

q
&

&
=

∂
∂

. (10.26.2)

The potential energy of gravity forces of the frame can be calculated as: 

iCi

n

i
i

F
g gmV ,3

0

rBθ
=

= , (10.27)

where  ]1000[, =iCr . 

So: 
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q

=
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∂

, (10.28) 

where [ ]TT
n

T
F GGG ,...,0= , 

 [ ]Tiii G 6,1, ,..., GG = , 

 iCjiji gmG ,3, rDθ= , 

 jD    –  defined in (10.17). 
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Energy of Load and Drum of the Hoisting Winch 

The load is modelled as a particle. The vector of its generalized coordinates is 

expressed in the following form [ ]TLLLL zyx=q . The angle of rotation of 

the drum of the hoisting winch is denoted as ϕH. Kinetic energy of the load and the 
drum can then be calculated as: 

22

2

1

2

1
HHLLR IrmT ϕ&& += , (10.29) 

where HI   –  moment of inertia mass of the drum, 

 
2222
LLLL zyxr &&&& ++= .  

 
Potential energy of the load is determined as:  

LL
L

g zgmV = . (10.30) 

Elastic Deformation of the Rope 

The rope system of the A-frame is presented in the Fig. 10.6. It is assumed that the 
radii of pulleys are small compared to the dimensions of the whole mechanism, 
and also that the rope passes through points S and H – centres of the pulley and 
the drum, respectively. Because the radii of pulleys are small and the length of the 
rope may be hundreds of meters, this simplification can be seen as admissible.  
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Fig. 10.6. Rope system of the A-frame 
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Potential energy of elastic deformation of the rope and its dissipation can be 
expressed in the following forms: 

2

2

1
RRRR cV Δ= δ , (10.31)

2

2

1
RRRR dD Δ= &δ , (10.32)

where 

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Rδ , 

 20
H

HR

d
lSHLS ϕ−−+=Δ , 

 
SLLS rr −= , 

 
HSSH rr −= , 

 l

FE
c RR

R =   –   stiffness coefficient of the rope, 

 Rd  – damping coefficient of the rope, 

 
ll ,0    – initial and current length of the rope, respectively, 

 ER – Young’s modulus of the rope material, 
 FR – cross-section of the rope, 

 Hd  –   diameter of the drum. 

Motion Equations 
The vector of A-frame generalised coordinates can be presented in the form: 






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
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q

q
q , (10.33) 

where Fq  – the vector of generalised coordinates of the discretised frame defined 

in (10.23) and vector [ ]THLLLR zyx ϕ=q  contains generalised 

coordinates of the load and the angle of rotation of the drum.  
 

Then, the equations of motion of the system can be written as: 

DRQKqqLqM +=++ &&& , (10.34) 
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 D, R   –  matrix and vector of reaction forces, 
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 can be calculated as in chapter 9.1.1 

and involves nonlinear terms. 
 
Forces of reactions on the frame are presented in Fig. 10.4. Vector R of 
generalised forces then specifically includes: 
 

 reaction [ ]T

zALyALxALAL RRR ,,,=R , 

 reaction
 

[ ]T

zARyARxARAR RRR ,,,=R , 

 and forces in servomotors SL and SR. 
 

These forces can be written in the vector form: 

[ ]TT
AL

T
ARLR SS RRR = . (10.35)

Finally, the mathematical model of an A-frame has been written in the form of 
a system of differential equations of the second order (10.34) and constraint 
equations in acceleration form:  

WqD =&&T , (10.36) 

where ( )qqWW &,= . 

 
In these equations, there are: ( ) 416 ++= nnq  (components of vector q) plus  

8322 =⋅+=Rn  (components of vector R) unknowns. So, the number of 

unknowns is equal to the sum of numbers of equations (10.34) and (10.36). 

10.2.2   Optimisation Problem 

One of the major problems connected with the design and control of cranes is the 
choice of the drive functions which ensure proper motion of the system. In the 
case of A-frame, a very important problem is the stabilisation of load position, 
regardless of motion of the ship caused by sea waves. Using the drive of the drum 
of the hoisting winch we can try to solve this problem. Time courses of drive 
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functions can be defined in the optimisation process. In the book, the objective 
function is assumed to be in one of the following forms: 

[ ] min
0

2

1 →−=Ω 
kt

L hz , (10.37.1)

minmax
0

2 →−=Ω
≤≤

hzL
tt k

, 
(10.37.2)

where Lz  – load coordinate, 

 h  – required depth.  
 

This means that one expects that as the result of optimisation the course of the 
function φH(t) will be obtained which minimizes the average or maximal value of 
deviation of load position from the required amount. During the optimisation 
process, the parameters of ship hull movement and coordinates of the winch 
position have been assumed to be known. 
 

0
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Fig. 10.7. The decisive variables 

In this chapter, we assume that the function φH which describes the function 
φH(t) defining the rotation angle of the winch drum has either the form: 

>∈<+++= − iiiiiiH tttdtctbtat ,for,)( 1
23ϕ , (10.38.1)

where  mi ,,1K= , 

 iiii dcba ,,,   – coefficients taken as shown in chapter 10.1 for spline 

functions of the third order,  
 it   – point in interval >< kt,0  (Fig. 10.7), 
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or that introduced by [Maczyński A., 2005]: 

( ) ( )
=−

−∈++=
s

i
iiiiiH ttttAAt

1
10,0 ,forsin αωϕ , (10.38.2)

where iA   –  amplitudes, 

 iω  –  frequencies, 

 0,iα  –  phase angles. 
 

As the decisive variables in the optimisation task we can choose: 

[ ]Tm
HHH ϕϕϕ ,,, 10 K=X           (10.39.1)

in the case (10.38.1), i.e. when spline functions are applied (Fig. 10.7), or: 

[ ]TsssAAAX 0,0,1110 ,,,...,,, αωαω=  (10.39.2)

in the case when a pseudo-harmonic response is assumed. 
In either case, at every step of the optimisation, the equations of motion of the 

system have to be integrated for ktt ,0∈  in order to calculate the value of the 

functional Ω1,2 from (10.37). Such an approach requires high numerical efficiency 
in solving A-frame equations of motion. For that reason, the optimisation problem 
has been solved for the simplified model of an A-frame. 
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Fig. 10.8. Scheme of the simplified model 

 



218 10   Selected Applications Related to Control of Offshore Structures
 

 

In the simplified model of an A-frame, ideal stiffness of the frame has been 
assumed (Fig. 10.8). However, flexibility of the rope has been taken into 
consideration. The water damping ratio has not been taken into account. Ship motion 
has been assumed to be determined, by known functions: 
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t

tzz
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cc
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=
=
=
=
=
=

. (10.40) 

This means that matrix DT , from (10.19), has the form: 
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ϕθϕθθ
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ϕψϕθψϕψϕθψθψ

T , (10.41) 

where c()=cos() and s()=sin().  
 

The frame angles are assumed to be constant. 
Kinetic and potential energy of the system can be expressed in the form: 

( )222

2

1
LLLL zyxmT &&& ++= , (10.42.1)

LLRRR zgmcV +Δ= 2

2

1 δ , (10.42.2)

RRR dD Δ= &δ
2

1
, (10.42.3)

where RRRL dcm ,,,δ  – defined in (10.31), 

 HHR rlBNDB ϕ+−+=Δ 0 . 
 

Lagrange’s equations of the second order have been used to determine the 
equations of motion of the system. The details are presented in [Fałat P., et al., 
2005]. These differential equations of the second order have been integrated using 
the Runge-Kutta method. The Nelder-Meads method has been applied in order to 
solve the optimisation task.  



10.2   Vertical Stabilization of Load of an A-Frame 219
 

 

10.2.3   Numerical Simulations 

It should be mentioned that the numerical model of the A-frame presented in 
chaper 10.2.2 has been used in the Norwegian company TTS-Aktro from Molde  
for a fast analysis of forces and stresses at the initial stage of choosing parameters 
of the system and for cost calculations. In order to verify the model, the results 
obtained using our program (RFEM) have been compared with those obtained 
using commercial FEM program (NASTRAN package) [Fałat P., et al., 2001]. 
There have been compared reactions in joints, stresses and deflections of beams 
obtained. Some examples are presented in Fig. 10.9. 
 

 

 

Fig. 10.9. Comparison of FEM and RFEM models 

A comparison of  the results obtained using RFEM model with those from 
Ansys-Adams systems in dynamical conditions can be find in [Fałat P., 2004] and 
same of them are presented Fig. 10.10. 

 
 

 

Fig. 10.10. Comparison of RFEM and Ansys-Adams models: a) vertical reaction in the A-
frame leg, b) force in the servo-motor 

Numerical simulations related to the load stabilisation problem have been 
carried out for the rectangular A-frame with lifting capacity up to 100 Mg. The  
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main geometrical parameters of the crane are presented in Fig 10.11. The value of 
load coordinates zL, for which the optimisation process has been carried out is  
h=-300 m, mass of load mL=100 Mg, and the motion of the ship is defined as: 
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Fig. 10.11. Geometrical parameters of the A-frame 

In the figures the following denotations are used: Ω1, Ω2 – curves obtained 
according to (10.37.1) and (10.37.2), respectively, S, H - curves obtained 
according to (10.39.1) and (10.39.2). Time courses of coordinate  zL obtained 
according to the full and the simplified model are shown in Fig. 10.12. In this 
case, the hoisting winch was motionless. The results of simulations are almost the 
same. 
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Fig. 10.12. Time courses of coordinates zL 

Because the simplified model is much more numerically efficient, the 
optimisation process has been solved for this model. Time courses of drive functions 
of the drum defined during the optimisation process are presented in Fig 10.13.  

 

 

Fig. 10.13. Drive functions of drum after optimisation 

As we can see, insignificant differences occurred between these drive 
functions. Drive functions obtained during optimisation have been taken as inputs 
of drum motion in the full model, so simulations presented below have been 
carried out according to the full model. Time courses of the coordinate zL obtained 
when the drum of the hoisting winch was motionless and when its motion was 
determined by the function after optimisation (regardless of the type of the 
objective function and type of the drive function) are shown in Fig. 10.14. 
Amplitude of load oscillations has been decreased from 2 m to near zero.  

z L
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m
] 
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Fig. 10.14. Coordinate xL3 before and after optimisation 

 
Fig. 10.15. Coordinate xL,3 after optimisation for different type of objective and drive 
functions 

Time courses of the coordinate zL obtained for different types of objective 
functions and drive functions are presented in Fig. 10.15. The courses for the 
pseudo-harmonic drive function (10.38.2) and different types of objective 
functions are presented, in detail, in Fig. 10.16. 

The model of an A-frame based on the finite element method has proved to be 
a useful instrument for carrying out dynamic analyses of this kind of cranes. This 
model is more numerically effective than the previous model presented in [Fałat 
P., 2004] (Fig. 10.3).  

Numerical simulations presented in the chapter confirm the significant 
efficiency of the proposed method of optimisation drive function of the drum  
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Fig. 10.16. Coordinate xL,3 after optimisation for pseudo-harmonic drive function 

where the main goal of the optimisation process is the stabilisation of the load 
position. Because the optimisation task has been carried out for the simplified 
model, the method is sufficiently effective. 

For the motion of the ship discussed, the pseudo-harmonic drive functions are 
slightly better than spline functions. Amplitudes of load oscillations in the zL 
direction are, for pseudo-harmonic functions, about 8 times smaller then for the 
spline function and the objective function Ω1. When the objective function Ω2 is 
taken, the results obtained are worst. However, when the system of waves is more 
complicated, the spline functions may be more useful. 

Both objective functions, that is average and maximal value of deviation of 
load position from the demanded level, are acceptable in practice. There are no 
significant differences between results obtained for the two functions.  

In real conditions, there are additional phenomena that can influence the 
quality of the stabilisation of the load position. There may be, for example, 
inaccurate definition of parameters of the crane. We should also remember that the 
rope interacts with the load and the environment mainly at low levels of depths, 
where water currents and waves are strong. Especially, in some conditions, a taut-
slack phenomenon of a marine cable-body system can be significant [Huang S., 
1999], [Jordan M. A., Bustamante J. L., 2007]. Vertical oscillations of the load 
induced by taut-slack phenomenon makes it more difficult to stabilise the load. An 
error-actuated control system for motion of the drum of the hoisting winch can 
minimise the impact of all those phenomena.  

10.3   Stabilization of Crane Load with the Use of an Auxiliary 
System 

In the present chapter,  the authors take on the problem of load stabilization for a 
crane installed on a ship. The solution analyzed is inherently similar to the 
Knuckle Boom Telescopic Offshore Crane concept of TTS-Aktro. The base of the 

t [s] 

z L
[m

m
] 
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crane (i.e. the ship) is subject to general type of motion as a rigid body whose 
components are defined by pseudo-harmonic functions. Two dynamical models of 
a crane have been developed: a simplified one, suitable for determining drive 
functions, and a basic one, for which more accurate dynamical analyses are 
possible. Furthermore, two methods of determining drive functions of the crane's 
mechanisms ensuring stabilization of load's position are proposed. The first one 
involves solving the inverse kinematics problem for quasi-static conditions, the 
second one is based on dynamic optimization. Results of sample numerical 
simulations are included. 

10.3.1   Auxiliary System for Stabilization of Load Position 

Complete stabilization of load's position requires the ability to exert force on the 
load in three independent directions. In the vertical direction it is natural to use the 
hoisting winch drum's drive. For the stabilization in two remaining directions, the 
authors propose using an additional auxiliary system (Fig. 10.17). Its main 
component is a stiff element leading the rope along the GD segment. By inclining 
this element it is possible to move the point D of the hoist rope in two directions: 
tangential (τ) and radial (n). The directions τ  and n have been defined relative to 
the trajectory of point G of the jib in its rotating motion. Dislocating point D is the 
means for influencing the load's motion and thus an attempt to stabilize it in the 
aforementioned directions becomes feasible. The proposed solution has the 
advantage of being applicable to stabilization of load's position or, when another 
strategy is selected, to other tasks, e.g. limiting swaying of the load during rotating 
movement of the crane's upper structure. 
 
 

 

Fig. 10.17. Auxiliary system reducing load oscillations 
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10.3.2   Models of an Offshore Crane with the Auxiliary System 

Depending on the purpose models of equipment are built which vary in 
complexity. Thus they represent the dynamic properties of the modelled object 
with different fidelity. In problems of control the speed of computation is very 
important. Real-time control is often required. This leads to possibly simple 
models being used which enable numerical efficiency. On the contrary, when the 
model is to be suitable for asserting validity of the equipment's operation, its basic 
dynamical behaviour must be reflected more accurately. Accuracy of the results 
obtained and their correspondence to reality is much more important than the time 
of computation in this case. 

The authors have developed two models of an offshore crane with the auxiliary 
system: a simplified one, suitable for determining drive functions, and a basic one, 
for which more accurate dynamical analyses are possible. Simulations using the 
basic model enabled carrying out tests to confirm the suitability of the method 
proposed to the problem of load's position stabilization. In Table 10.1, there are 
compared the basic properties of both models. An outlined scheme of the 
simplified model is shown in Fig. 10.18. 

The equations of motion in the basic model have been derived along the lines 
of [Wittbrodt E., et al., 2006] and [Adamiec-Wójcik I., et al., 2008]. Lagrange's 
equations of the second order have been used. The vector q of the generalized 
coordinates can be written as: 

 ( ) ( ) ( )[ ]TLJA TTT

qqqq θγαψϕ= , (10.44) 

where  ( ) ( ) ( ) ( )[ ] TAAAA
org

A
org

A
org

A zyx ψθϕ)()()(=q  – vector of 

generalized coordinates of the base (deck), 

 ( ) ( ) ( ) ( )[ ] TJ
m

J
k

JJ qqq KK1=q  – vector of generalized coordinates 

of the jib, 
 ( ) [ ] T

LLL
L zyx=q  – vector of generalized coordinates of the load, 

 ϕ – rotation angle of the crane's pedestal (upper structure) – 
slewing angle, 

 ψ – inclination angle of the undeformed jib,   
 α – rotation angle of the hoisting winch's drum.  
 θγ ,  – angles of inclination of auxiliary system (Fig. 10.18). 

 
Relationships which determine individual terms of the Lagrange's equations are 
obtained similarly as in the case of a mobile crane treated in [Maczyński A., 
Wojciech S., 2003].  

To ensure that the crane's base moves according to the provisions of Table 10.1, 
the following condition must hold: 

( ) ( )tq A
i

A
i

)(α=  for i = 1,...,6. (10.45) 
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Table 10.1. Comparison of models: simplified and basic 

 
Simplified model Basic model 

Form of description for 
system's points 

absolute coordinates coordinates relative to joints 

Method of obtaining 
equations of motion 

second Newton's law Lagrange's equations of second order 

Number of degrees of 
freedom 

3 
14+m 

where m is the total number of modes 
considered in the jib's model 

Drives considered 
1. hoisting winch drum's 
2. auxiliary system's in directions τ and n

1. hoisting winch drum's 
2. auxiliary system's in 

directions τ  and n 
3. of crane's upper structure's 

slewing 
4. of reach changing (reach 

changing actuator) 

Drive modeling method kinematic driving 
kinematic driving by a parallel 

system of a spring and a damper 
Pedestal modeled as a rigid body, fixed to the base (ship's deck) 

Load modeled as an concentrated mass 
Rope flexible flexible with damping 

Jib rigid 
capable of flexing – the jib has been 

discretized using modal method 

Description of base's motion 

pseudo-harmonic: 
=
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A
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A
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)(
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A
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where 

( ) ( )BDLlBDDLl rLbrLLLcS ⋅++⋅+−+= αα &&
0

, 

( ) ( ) (222
DLDLDDL zzyyxxL −+−+−=

, 
cl, bl  – stiffness and damping 
coefficients of the rope, respectively,
α – rotation angle of the 
hoisting winch's drum, 
rB – radius of the hoisting 
winch's drum, 
L0 – initial length of the rope.

Described later 

Integration method for the 
equations of motion 

Runge-Kutta method of fourth order 
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Fig. 10.18. Simplified model of an offshore crane 

Forces and moments of force acting on the crane's base to make it move according 
to relationships (10.45) must be therefore introduced into the system. They are 
assumed to form the following vector: 
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z

A
y

A
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A
z

A
y

A
x

A MMMFFF=R  (10.46)

Forces and moments of force are depicted in Fig. 10.19. 
 

 

Fig. 10.19. External forces and their moments acting on the crane's base 

The model of an offshore crane is ultimately described by the following 
equations of motion: 

,)( FDRqA =− A&&  (10.47)

where  A – mass matrix,   
            R(A) – vector defined in (10.46), 
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 614 −+= mm , 
 66×I  – identity matrix of dimension 6x6, 

  F – vector on the right side of the equation of motion including 
among others the terms of Lagrange's equation related to 
velocities and generalized coordinates as well as non-potential 
forces not accounted for in vector R(A), 

which must be supplemented by constraint equations:  

( ) ( )AA αq = . (10.48) 

10.3.3   Drive Functions Stabilizing Load's Position: The Inverse 
Kinematics Problem  

The first of the methods considered by the authors to determine drive functions 
which ensure stabilization of crane load's position is solving the inverse 
kinematics problem for quasi-static conditions. This task consists in choosing 
functions for the auxiliary system's and hoisting winch drum's motions so that the 
load stays in its initial position when the motion of the crane's base is taken into 
account. However, dynamic effects are not considered. 

Before the desired drive functions can be determined, it is necessary to set the 

initial position of the mass mL, i.e. the initial values of the coordinates 000 ,, LLL zyx  

that they have at the beginning of the stabilization. They provide the initial 
conditions for the problem of determining drive functions in quasi-static 
conditions. The equations of static equilibrium for the simplified model are: 
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where [ ] ,0
0 BDDLL rLLLcS α+−+=  

 ( ) ( ) ( ) ,222
LDLDLDDL zzyyxxL −+−+−=  
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l rL
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c

α−
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0

, 

 
rE  − Young’s modulus, 

 ( )trB  −  radius of the drum, 

 
rA  − cross-sectional area of the rope. 
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Coordinates xD, yD, zD can be obtained from: 
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where 
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 γtgzy DD ''= , 

 [ ]TDDD zyx 1,',','='rD , 

 TP – transformation matrix from {P} coordinate system to the inertial 
coordinate system {0},  

 TG – transformation matrix from {G} to {P} coordinate systems.  
 
The matrices  TP and TG appearing in (10.50) are defined as: 
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where d  – length of the jib (Fig. 10.18), 
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The unknown values of the coordinates 000 ,, LLL zyx  are determined from (10.50) 

assuming t = t0, 
00 , θθαα ==  and  0γγ = , where 000

0 ,,, γθαt  are, 

respectively, the initial time (moment) of starting the stabilization and the values 
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of angles α, γ,  θ  at the time t = t0. Equations (10.50) form a system of 3 nonlinear 
equations with 3 unknowns ,0

LL xx = ,0
LL yy = ,0

LL yy =  which is solved with 

Newton's iteration method. 

Having determined ,0
LL xx = 0

LL yy =  and 0
LL zz = , the procedure continues 

determining the drive functions for quasi-static conditions. Let: 

titti Δ+= 0                                i = 1,...,p, (10.53) 
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 tk – end time of load stabilization, 
 p – number of intervals into which the time interval ktt ,0  has 

been divided. 
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equations (10.49) of static equilibrium for itt = can be written as: 
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 S   – defined in (10.49). 
 

Equations (10.55) form a system of 3p nonlinear algebraic equations with 3p 

unknowns ( ),iα ( ) ,iγ ( )iθ . These equations have also been solved by applying 

Newton's iteration method taking the starting point for subsequent iterations to be: 
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The continuous functions ( ) ( ) ( )ttt θθγγαα === ,,  have been obtained by 

connecting points  with splines. 
As it has been described above, the courses angles of the hoisting winch and the 

auxiliary system  are calculated using the simplified model and omitting dynamic 
phenomena. However, these courses compensating sea waves can be successfully 
applied in dynamic simulations using both models. The further calculations are 
carried out using the basic model of the crane. The crane is assumed to have a 14 
m long jib and an LD = 5 m long auxiliary system. The angle ψ was 50o, the load's 
mass 10000 kg, its z coordinate -20 m. For this data, the distance from point G of 
the jib to the load is 31.75 m. Although, as previously mentioned, offshore cranes 
usually operate from watercrafts conveniently positioned against waves, a general 
motion of the base has been considered for sample excitations. The results follow 
[Balachandran B., et al., 1999]: 
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By the assumption of such motion of the crane's base, the analysis of the general 
case was possible to perform, which required using auxiliary system's drives in 
both directions: radial and tangential. The time of stabilization (observation of the 
load) was 60 s. The coordinates x, y, z of the load, respectively, for the auxiliary 
system and hoisting winch's drum both idle and controlled according to the drive 
functions determined are shown in Figs. 10.20, 10.21 and 10.22. Time courses of 
dynamic coefficient of the force in the rope for both cases are presented in Fig. 
10.23. The dynamic coefficient is defined as: 

gm

S

L

=η , (10.58) 

where S is the force in the rope. 
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Fig. 10.20. Time course of xL coordinate for 
general motion of the base 

Fig. 10.21. Time course of yL coordinate for 
general motion  

 
The results obtained show that using the proposed method yields highly 

effective stabilization of the load. The outstanding quality of stabilization along 
the axes X and Z is worth emphasizing. Stabilizing the load's position has also 
decreased the dynamic coefficient of the force in the rope, thus alleviating 
dynamic strains in the crane's structure. 

 
 

 

Fig. 10.22. Time course of zL coordinate for 
general motion 

Fig. 10.23. Time course of the dynamic 
coefficient  

10.3.4   Optimizing Drive Functions 

Optimization is a method often applied in determining drive functions for a range 
of mechanisms and machines. Naturally, the optimization criteria may vary. Some 
examples are: minimal duration of motion, minimal energy consumption, minimal 
dynamic strains, approximating desired trajectories for selected points, etc. 

In the considered case of stabilizing offshore crane load's position, the 
optimization task is to determine the functions ( ),tαα = ( ),tγγ = ( )tθθ = , so 

that despite the crane base's motion (i.e. despite the variability of the matrix T(t)  
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of (10.50)) the load remains possibly close to its initial position. Hence the 
definition of the goal function: 

( ) ( ) ( ) ( ) dtzzyyxx
kt

t
LLLLLL 


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 −+−+−=Ω

0

202020,, θγα , (10.59) 

where 000 ,, LLL zyx  are initial coordinates of the load determined as in the previous 

section, from (10.49). 
Since it has been assumed that the crane base's motion is defined by pseudo-
harmonic functions, it seems natural to seek the drive functions 
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where  000 ,, θγα  – initial values of angles θγα ,, , 

 ijijijA ,,, ,, ϕω  – ith amplitude, angular frequency and phase angle of 

the jth drive, satisfying { }θγα ,,∈j . 

 
Decision variables of an optimization task thus stated can be written as vectors: 
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and finally: 
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Vector (10.64) has: 

( )θγα nnnn ++= 3  (10.65)

coordinates. The optimization consists in determining such combination of 
decision variables satisfying these constraints: 
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that the goal function (10.59) attains its minimal value.  
To calculate the goal function, the coordinates xL, yL, zL must be defined. This 

requires integration of the crane model's equations of motion for kttt ,0∈ . As 

mentioned before, to achieve reasonable numerical efficiency the optimization 
task was solved using the simplified model. Nelder-Mead simplex method was 
employed for the optimization [Wit R., 1986].  

Judicious choice of initial approximations of functions to optimize is an 
important requirement. They should already be near the solution. The case of 
pseudo-harmonic functions involves an additional difficulty in selecting the 
number of harmonic components, i.e. the values ,αn ,γn θn . This problem is 

briefly accounted for in the following. The initial approximation was chosen to be 
defined as a sum of nj harmonic components ( { }θγα ,,∈j ) obtained from 

Fourier analysis applied to drive functions which are the solutions of the inverse 
kinematics problem for quasi-static conditions. It should be clearly stated that the 
method proposed for determining optimized drive functions requires that they be 
preset with the procedure of chaper 10.3.3 beforehand. 

With Fourier analysis [Kruszewski J., Wittbrodt E., 1992], an arbitrary periodic 
function can be represented as a series: 
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where  l – number of terms (harmonic components) in the series, 
 ν – index of harmonic component, 
 t – time, 

 
0
0x  – constant term of the series, 

 νν ϕ xx ,0  – amplitude and phase angle of the νth component, 

respectively, 

 
T

πω 2=  – lowest angular frequency, 

 T – function's period. 
 

Individual coefficients of a Fourier series are given by the following formulae: 
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 N – number of sampling points for the function x(t), 
 

whereas l, the number of harmonic components, must satisfy this condition: 

.12 Nl <+  (10.71) 

The hoisting winch drum's drive may obviously have different number of 
harmonic components in the initial approximation from either radial or tangential 
direction of the auxiliary system. It is, however, natural to assume that the number 
of components present in the initial approximation remains the same in the 
optimized function. 

Drive functions optimized using different numbers of harmonic components  
(nj = 2 and nj = 4) with the method of chaper 10.3.3 (being the input of Fourier 
analysis) are compared below to their initial approximations. Parameters describing 
geometry and mass distribution of the crane were identical to those considered in 
chaper 10.3.3 and the excitation of the base was given by (10.57). The graphs in 
Figs. 10.24, 10.25 are for the drive function of the hoisting winch's drum, those in 
Figs. 10.26, 10.27 for the rotation of the auxiliary system's rigid component in the 
radial plane and those in Figs. 10.28 and 10.29 in the tangential plane. 
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Fig. 10.24. Comparison of the hoisting 
winch drum's analytic drive function and its 
initial approximation (2 components) 

Fig. 10.25. Comparison of the hoisting winch 
drum's analytic drive function and its initial 
approximation (4 components) 

  

Fig. 10.26. Comparison of the θ angle's 
analytic drive function and its initial 
approximation (2 components) 

Fig. 10.27. Comparison of the θ  angle's 
analytic drive function and its initial 
approximation (4 components) 

  

Fig. 10.28. Comparison of the γ  angle's 
analytic drive function and its initial 
approximation (2 components) 

Fig. 10.29. Comparison of the γ  angle's 
analytic drive function and its initial 
approximation (4 components) 
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As it can be seen, taking nj = 4 leads to very good approximation of drive 
functions with a Fourier series. Thence follows reasonableness of seeking the 
initial approximation in the class of functions of the form (10.60). 

Next, stabilization of load's position was considered for durations of 20 
and 60 s. The value of the goal function (10.59) for idle auxiliary system and 
hoisting winch's drum was 47.07 for stabilization time 20 s and 142.10 for 60 s. 
Comparison of the goal function's values for initial approximations and their 
corresponding optimized drive functions for different numbers of harmonic 
components are presented in Table 10.2. Number of iterations and time of 
computation used by the optimization process are also compared. 

Table 10.2. Comparison of the goal function's values 

Duration of 
stabilization 

[s] 

Number of components
Value of the goal 

function 
Number 

of 
iterations

Approximated 
computation 
time taken by 

the 
optimization 

hoisting 
winch's 
drum 

θ angle γ  angle
initial 

approxi-
mation 

optimized 
function 

20 2 2 2 0.579625 0.388667 3053 6.5 min 

20 4 4 4 0.000571 0.000208 3835 9 min 

20 6 6 6 0.000054 0.000011 10894 33 min 

60 2 2 2 1.677738 1.226042 1699 13 min 

60 4 4 4 0.001667 0.000555 3673 27 min 

60 6 6 6 0.000121 0.000490 10369 85 min 

 
The results presented (of calculations for the simplified model) made it 

possible to draw the following conclusions: 
 

 in the Fourier analysis taking into consideration 4 harmonic components is 
sufficient for obtaining satisfying drive functions determined for quasi-static 
conditions, 

 initial approximations stabilize the load's position well; indeed, taking as few 
as 2 harmonic components of each initial approximation gives a reduction of 
the goal function's value by a factor of about 100 compared to the case of idle 
hoisting winch's drum and auxiliary system, 

 substantial influence of the number of components in the initial 
approximation on the quality of stabilization is clearly noticeable, 

 only slightly does optimization improve stabilization of the load. 
 
These conclusions led the authors to abandoning further work with the idea of 
determining drive functions for stabilization of load's position using optimization.  
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The reason is that the process is lengthy, requires determining drive functions for 
quasi-static conditions, and the improvement obtained in the quality of load 
stabilization is modest. 

We would like to underlain that above conclusions are valid only for the 
assumed pseudo-harmonic base motion. In the case of more complicated functions 
defining base motion, the second approach, when optimization methods are 
applied, seems to be better, since it is more general. The decision variable could 
be the values of spline functions defining drives [Maczyński A., Wojciech S., 
2003]. 

10.3.5   Control System 

The proposed system of stabilization of load's position could be augmented with a 
closed-loop control system. Its task would be to minimize the influence of the jib 
and the hoisting system's flexibility neglected in the model, of inaccurate 
knowledge of parameters describing the geometry and mass distribution of the 
crane as well inaccurate knowledge of waves parameters, eventually of potential 
external disturbances.  
 

 

Fig. 10.30. Block diagram of control system: γO, θO, αO  – drive functions determined 
according the simplified model, γt, θt, αt – input signals determined according the simplified 
model, γb, θb, αb – current values of controlled signals, eγ, eθ, eα – dynamic errors, uγ, uθ, uα 

– output signals, z – disturbance 

A block diagram of  the considered control system is shown in Fig. 10.30. 
Three independent controllers, one for rotation of the drum and two for rotational 
motions of the stiff element of the auxiliary system, are used. The control system 
contains feed-back loops as well feed-forward loops. Time courses of the inputs 
signals (αt = αt(t), γt = γt(t), θt = θt(t)) have to be determined simultaneously with 
the drive functions (α0= α0(t), γ0 = γ0(t), θ0 = θ0(t)) according to the simplified 
model. It is worth to be mentioned that in a standard stabilization task the 
following relationships are fulfilled: 
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Time courses of load coordinates, xL, yL, zL respectively, for waves increased about 
10% in relation to the nominal defined in (10.57), are shown in Figs. 10.31, 10.32 
and 10.33. Numerical calculations were carried out according to the basic model, 
drive functions were determined from chaper 10.3.3. Two cases were considered: 
with and without control system. The P controller was used in analyzed control 
system. The obtained results are very promising. 
 
 

 

Fig. 10.31. Time course of xL coordinate Fig. 10.32. Time course of yL coordinate 

 

Fig. 10.33. Time course of zL coordinate 

10.4   Active Waves Compensation System for the Reel's Drive 

Practice and the results of numerical simulations (chapter 9.3) show that during 
operation of a reel device for laying pipelines under sea waves its uneven work 
may occur. To reduce this undesirable effect, a modification of the reel's drive 
system is proposed. In place of a passive system (in which the braking force of the 
reel is a constant set by the operator) an active system may be installed with 
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controllable value of the force. That value would be chosen so that the moment 
maintains the assumed velocity of the reel and constant tension in the pipeline 
despite the occurrence of additional dynamic loads caused by sea waves. That 
would be a new solution, as yet unseen in existing drives, however, it would 
require a change of the way the drive system is designed: the engines (hydraulic or 
electric) would need the ability of exerting moments in both directions (classical 
passive systems are only capable of braking the reel during normal operation). The 
concept is discussed in details by [Szczotka M., 2010], [Szczotka M., 2011b]. 

10.4.1   Model of the Control System 

Frequency converters are commonly used to control velocity and drive moment of 
electric engines [Olsson G., Piani G., 1998]. The drive moment ME created by the 
engine is passed to the reel by a system of gears. The value of the moment ME  is 
determined in the control system presented in Fig. 10.34. 
 
 

 

Fig. 10.34. Reel's drive control system 

In the computer model, a drive system is represented by a differential equation 
describing the motion of  the reel with pipeline wound onto it and a block 
performing the calculations of forces and moments caused by the action of the 
pipeline on the reel (denoted as FP, MP). In the concerned application, the 
operation of this block is based on a model using an artificial neural network. One 
of the advantages of this approach is short computation time due to the fact that 
the programme executes only simple operations of multiplication of matrices 
(containing weight coefficients of the trained network) whose dimensions depend  
on the numbers of layers and neurons [Osowski S., 1996], [Żurada J., et al., 1996]. 
To collect data necessary to train the network, a series of simulations was 
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performed in which the equations (9.95) were integrated for different parameters 
describing waves. The obtained results were saved as a data set. It is worth to note 
that the training data was obtained for a model taking into account nonlinear 
material and geometric models. Details of the mathematical model, architecture of 
the neural network used, the process of generating training data and its application 
to determining forces and moments exerted by a pipeline being unwound from 
a reel are presented in [Szczotka M., 2010].  

Practical realization of the proposed control system requires, in addition to 
replacing the drive with an electric one, measuring the winding diameter rR of the 
pipe, the reel's velocity ωE and the vessel's motion (components of the vector qD 
and its derivative). Control is performed in a feedback loop with a PID controller. 
The system features also an additional PID controller which introduces an 
adjustment to the previous PID's response. The additional PID controller enables 
quick reaction of the system to changes input by the operator and excitation 
caused by waves. It is an example of a feedforward system which in many cases 
improves stability and accuracy [Olsson G., Piani G., 1998]. 

As mentioned, further calculations assume an equivalent model of a pipeline 
implemented with an artificial neural network. To verify the correctness of 
obtained results, a comparison is made in Fig. 10.35 between simulations using 
the full model (a pipeline discretized with the RFE method, discussed in chapter 
9.3) ant the functional one. On the graphs, the following denotations are present: 
SSN –  results yielded by an artificial neural network, SES – a pipeline discretized 
with the RFE method. Computation time for a motion lasting 50 s equalled 5 s 
approximately, whereas calculations according to the full RFE model with the 
number of RFEs being 100 take roughly 15 min.  

 

Fig. 10.35. Results of simulation in a passive system: a) reel's velocity, b) tension 

10.4.2   Installation of a Pipeline Using the Reel Method with 
Active Drive System 

Sample results of calculations for devices with passive and active reel's drive 
system are shown in Fig. 10.36. Harmonic excitation of the swaying angle with 
amplitude Aψ = 4o  and period T = 8 s was assumed. Due to structural limitations, 

a) b) 

time [s] time [s] 
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the proposed system cannot fully compensate for the influence of dynamic forces 
caused by waves in cases when occurring forces exceed some limit values. This 
shows as variations visible on the graphs of force and angular velocity of the reel. 
 

 
Fig. 10.36. Comparison for passive and active reel drive: a) angular velocity of the reel, b) 
axial force in the pipeline 

 
Fig. 10.37. Influence of the speed of laying the pipeline on the behaviour of the system with 
active compensation for waves: a) reel's velocity, b) tension 

One of the limitations not to be forgotten is the available power which can be 
used to compensate for waves. In the system, successive reduction of drive force 
after exceeding admissible forces is used. This causes an increase in the reel's 
velocity (due to forces of inertia caused by the vessel's motion), and further decrease 
in the moment caused by limited power. The system is capable of returning to the 
nominal conditions (tension in the pipeline and velocity of the reel) if the operator 
decreases the tension or waves weakens. Sample results for different settings of the 
velocity of unwinding the pipeline are summarized by Fig. 10.37.  

Note that the assumed power of the drive system (670 kW) is sufficient to 
operate with constant tension of about 1300 kN when the amplitude Aψ = 4o, that is 
under intense wave action. For the vessel's operator also calculating the range of 
safe, stable operation under variable waves conditions may be of interest. 

a) b) 

time [s] time [s] 

a) b) 

time [s] time [s] 

passive
active 

passive
active 
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The parameters of the device's operation (peak changes of the reel's velocity and 
the axial force in the pipeline) in the selected range of swaying amplitudes from 1o 
to 4o for periods of waves in the interval between 6 s and 12 s are shown in Fig. 
10.38. The values of increment of the angular velocity ΔωE  are given as follows: 

( ) ( )

( ) ,%100
0

minmax

E

EE
E ω

ωωω −=Δ  (10.73) 

where ( ) ( )minmax , EE ωω  –  maximal and minimal velocity of the reel, 

 ( )0
Eω  –  nominal velocity of the reel. 

 

Change in the axial force EUΔ  (Fig. 10.88 c and d) is expressed by: 

( ) ( ) ( ) ( ){ }EEEEE UUUUU min,maxmax 00 −−=Δ , (10.74)

where  ( )0
EU   –  axial force at the moment t = 0 (nominal value), 

 ( )tUU EE =   –  current value of the force. 

 

 

Fig. 10.38. Surfaces describing changes of dynamic parameters with passive and active reel 
drives a) percentage increments of the reel's velocity in an active system, b) percentage 
increments of the reel's velocity in a passive system, c) percentage increments of the 
tension in an active system, d) percentage increments of the tension in an passive system  

a) b) 

c) d) 
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As the presented graphs indicate, using a system for compensation of waves 
makes it possible to achieve reduction by a factor greater than three of the 
dynamic forces and limitation of oscillations of the reel's angular velocity a few 
times. The graphs were produced for one fixed speed of laying the pipeline equal 
to 2000 m/h and assumed limits (maximum force passed by the structure of the 
drive system being 2000 kN and available power 670 kW). The practical effect of 
employing such a system would be significantly increased efficiency (speed of 
laying the pipeline) which is a considerable improvement.  

The analyses presented are only examples of possible applications of the 
developed models, algorithms and programmes. It seems particularly useful to 
employ the model of a drive with automatic adjustment of the force applying 
tension to the pipeline which allows one to entirely eliminate large overloads in 
the system with sufficient power. Measuring the vessel's motion is fairly simple. It 
requires a sensor (e.g. Konsberg Seatex's MRU) to be installed and the reel's 
angular velocity and winding diameter to be measured. Short computation time, 
especially when the programme is based on a neural network, is a significant 
advantage. 
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