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1 Introduction

Following the depletion of land natural resources (oil, gas, minerals etc.), methods
of obtaining them from beds of seas and oceans are gaining more and more
importance. However, exploiting undersea resources poses a number of challenging
technical problems pertaining to their extraction, transport and processing in a
specific, inhospitable environment. Important groups of machines used in offshore
engineering are cranes applied to reloading and assembly works and specialized
devices for laying pipes which transport oil and gas. A characteristic feature of their
working conditions is sea waves causing significant movement of the base on
which offshore structures are installed. This is a phenomenon which must be taken
into consideration in design of such machines.

The structures which are used in offshore engineering, very often have flexible
links and joints. This causes problems especially in the case then links deflections
are large. That is the reason why the computer methods are used in design process
of offshore machines and devices. On the market there is a significant number of
general commercial packages, mostly based on finite element method, such as
Nastran, Ansys, Abaqus. They have special modulus for modelling multibody
systems with flexible links, and enable to take into consideration mentioned above
phenomena, like base motion and large deflection of beam like links. Commercial
computer packages are mainly used in large designing and production centers
because they require from users special knowledge and experience. The small and
middle firms very often prefer less general computer models and programs. Less
general but better fitted to specific kind of designed structures, with limited data
necessary for performing calculations and dedicated interface. That is the reason
why some designers are still looking for models, methods and programs oriented
for their specific machines and structures. The examples of methods that can be
successfully applied in these cases are presented in the book.

The joint coordinates and homogenous transformations are applied to
modelling multibody system presented herein. In order to take into account
flexibility of beam like links, the rigid finite element method is proposed. These
methods for many years have been developed at the Gdansk University of
Technology and the University of Bielsko-Biata. The base and detailed description
of these methods is given in the book [Wittbrodt E., et al., 2006]. Hence in this
monograph the base of homogenous transformations and rigid finite element
method are presented succinctly, as necessary to understand the way in which the

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 1-B.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013



2 1 Introduction

models are formulated. More attention is devoted to new models and methods
developed for modelling offshore structures.

The present book contains new formulation of the rigid finite element method
which allows to take into consideration nonlinear physical relations, as well as
large deflections of links. The floating reference frames are introduced in this
case. As in base formulation, the beam like links are divided into rigid elements,
which reflect inertial features of links, and mass less spring-damping elements.
Each rigid element has six degrees of freedom (three translations and three
rotations). However, the flexible features of spring-damping elements are
introduced as external forces and moments calculated according to physical
dependencies. It allows to take into consideration different physical models of
materials: linear, elasto-plastic, visco-plastic and others.

The models and methods presented in the book are applied to description of
dynamics of some offshore structures, mainly cranes, ramps and pipes. Results of
numerical calculations concern: crane used for transportation of BOP, column
crane, A-frame. Also the results of numerical simulations for different methods of
laying pipes on the see bottom are presented. The J-lay, S-lay and reel method are
considered. The models, which allow their static and dynamic analysis to perform,
are developed. The models take into account large base motion of ships or
platform, on which considered structures are mounted, caused by sea waves.
Important problems related to the control of offshore structures ensuring their safe
operation are also discussed. Control enables compensation for the movement of
the base caused by waves and reduction of dynamic loads of the elements of
considered systems.

For selected models, their accuracy is verified by comparing their results with
those yielded by other methods, including commercial finite element method
packages.

In chapter 2 selected offshore engineering problems are briefly presented. Most
prominent elements of the infrastructure necessary for the extraction of oil and gas
as well as methods of offshore pipelines installation are introduced. Also given are
the specifics of operation of offshore cranes and their basic typology.

Chapter 3 is devoted to the description of the impact of water on offshore
structures. It includes basics of mechanics of the wave motion of water, the
problem of determination of the values of forces acting on elements immersed in
water and methods of simplified description of the motion of the base of offshore
structures.

Preliminary information about defining the positions and orientations of
coordinate systems, transformations of vectors and joint coordinates are contained
in chapter 4. It also deals with application of homogeneous transformations and
joint coordinates to describe the geometry of multibody systems.

In chapter 5, a method is presented to determine the elements of a Lagrange
equation of the second order in the case of description of the dynamics of open
kinematic chains consisting of rigid links. The equations of motion are obtained
taking into account the kinetic and potential energy of gravity forces as well as



1 Introduction 3

external forces and moments acting on the multibody system. It is further assumed
that the system is located on a movable base.

The next chapter treats the elements connecting links belonging to different
branches of the system (in particular, one of the links may be the base). Two
approaches to modelling constraints are also presented: the classical one
consisting in the introduction of constraint equations and another one whereby the
constraints are modelled as spring-damping elements with large stiffness and
damping coefficients.

Basic information related to elasto-plastic and visco-elastic models of materials
can be found in chapter 7.

The focus of chapter 8 is the rigid finite element method (the RFE method)
which serves to discretise flexible links. Its concepts are presented along with the
way of defining the generalized forces, formulating the equations of motion and
determining the following energies: kinetic, potential of the gravity forces and
elastic deformation of a link. The RFE method is described in two forms: classical
and modified. A new approach to modelling large deflections based on this
method is also discussed.

Chapter 9 contains examples of dynamic models of selected offshore structures.
In addition to basic assumptions and mathematical descriptions, results of selected
numerical simulations are also given. Presented are models of the following
machines: a gantry for transporting BlowOut Preventor valves, a column crane
with a shock absorber and the devices for laying pipes.

Problems pertaining to control are shown in chapter 10. The task of dynamic
optimization in device control is discussed. A method is presented enabling
vertical stabilization of the load of an offshore crane and its stabilization in three
directions using a specialized auxiliary system. Analyses related to a system of
active compensation for waves in the reel drive of the device for laying pipes are
also included.

The book leverages some previous results of the authors' work, especially those
present in Marek Szczotka's monograph entitled “The rigid finite element method
in modelling of nonlinear offshore systems” [Szczotka M., 2011 b].

The authors wish to thank the co-authors of their publications from which
some analyses presented in this volume are drawn, especially Dr. Pawel Fatat and
Dr. Andrzej Urbas.



2 Overview of Selected Problems in Offshore
Technology

Extraction of undersea natural resources, particularly oil and gas, has expedited
the progress in offshore technology for a few decades, including the construction
of platforms as well as the development of new extraction techniques and methods
of laying underwater pipelines. Various types of cranes are an important aid in the
construction of extraction infrastructure as well as its operation and servicing. The
current chapter describes some most important elements of the infrastructure
necessary for extracting oil and gas and methods of installation of offshore
pipelines. Specific conditions pertaining to offshore cranes' operation and their
basic typology are presented.

2.1 Platforms as One of the Main Features of Offshore
Infrastructure

The idea of extracting oil and gas from sea beds occurred over 100 years ago. The
first wooden drilling platform was applieded at the end of 19" century off the coast
of California. In 1911, the first installation to extract oil was engaged. It was
located on the Caddo lake (on the border between the states of Louisiana and
Texas) and yielded daily about 450 barrels [Wilson J. F., 2003]. The period
following the World War II was marked by unceasing growth in number of
offshore installations and as a consequence also in the amount of oil and gas being
extracted. At that time, the areas where deposits were exploited and sought
widened considerably. Presently, in many areas traditionally valued for such
opportunities the deposits are running out or even already have. This applies
particularly to the North Sea and the Norwegian Sea, where the existing deposits
consist mainly of natural gas [Dokka A., Midttun O., 2006]. This situation forces
companies to reach for resources located in less accessible areas featuring harder
weather or greater depths. In Europe, the Barents Sea and other polar seas offer
sample natural resources still remaining to be exploited. This opportunity doesn't
come without difficulties though, namely: depth, heavy weather conditions and low
temperatures. There has recently been a notable increase in amounts of resources
yielded from waters surrounding South America (especially Brazil), West Africa,
India, Australia and Oceania. Most of these endeavours are fairly new, thus

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 5-23.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013



6 2 Overview of Selected Problems in Offshore Technology

employing post-2000 technology enabling extraction of oil and gas from large
depths. Brazil in particular has shown considerable development of technology
related to extracting resources from 2000 m and deeper, due primarily to their oil
and gas search and extraction tycoon Petrobras. It is however worthy of notice that
the rate of discovering new deposits is dropping, whereas just the opposite is the
case with the demand for sources of energy and the pace at which known resources
are exploited. Some forecasts thus state that between 2010 and 2015 we are at the
peak amount of oil extracted from sea and ocean beds. Despite this, modern
technologies created for the extraction of hard to reach resources and experience
acquired may underlie new projects, including ones related to the production of
energy. It is in seas and oceans where vast supplies of energy are to be found
(waves, sea currents). Works aimed at exploiting them are gaining momentum.
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Fig. 2.1. Basic types of platforms

Drilling and extraction platforms are the most characteristic offshore structures
related to the extraction of oil and gas (Fig. 2.1). A drilling platform is a floating
structure equipped with a drilling rig, suited for making wells in the bottom of a
sea. Platforms of this type are sporadically used simultaneously to exploit the
deposits. An extraction (production) platform is suited for extraction of gas and oil
and their preliminary purification. From there the stock is loaded onto tankers or
transferred further by an underwater pipeline. These are usually structures
supported off the bottom, although recently they have more and more often been
constructed as floating or semi-floating.
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Platforms were initially built on shallow seas, up to about 100 m in depth
(Fig. 2.1a). They had a steel foundation lying on the bottom to which legs (three to
six) were attached. Gravity platforms (Fig. 2.1b) started to be used shortly
afterwards. Their foundations as well as legs were made of concrete. They enabled
reaching depths of 200 m to 300 m. The type of structure based on a truss is most
common nowadays (Fig. 2.1c). Of these the first to appear was a 30 m tall one in
1955. Their contemporary capability of operation in terms of depth reaches 400 m.
A variation thereof are truss platforms equipped with additional mooring lines (Fig.
2.1d). In extraction industry they have been in use since the beginning of 1980s
[Chakrabarti S. K., 2005]. They allow for extraction of deposits on seas with depths
up to about 800 m, simultaneously admitting significant movement of the platform
due to waves. Since the second half of 1980s, platforms lacking fixed connection
with the bottom and instead kept afloat by buoyancy forces have started to be widely
introduced. Their positioning with respect to the sea bottom requires additional
elements to be installed in the bottom (Fig. 2.1e). Platforms of this type, called
Tension Leg Platform (TLP), are installed mainly in areas 800 m to 1200 m deep.
As their advantages count stability and immunity to vertical and rotary movements.
Fig. 2.1f shows a scheme of a multihull semi-submersible platform used with depths
in the range of 2000 m (in extreme cases even up to 3000 m). Such platforms are
usually equipped with own propulsion assuring continual operation and stability
even under intense waves and avoidance of personnel evacuation. Similarly
constructed SPAR type platforms are shaped as vertical cylinders (Fig. 2.1g) with
profile diameters up to 30 m or 40 m and heights of hundreds of meters.

In many cases when depth exceeds 1000 m, an additional infrastructure aiding the
extraction of resources from a seabed is placed on the bottom which takes over some
of the platform's tasks. The necessity to built an expensive production platform is
thus avoided. Its role is fulfilled by specialized ships moored above the extraction
field, or the stock is transferred by pipelines to land stations or nearby platforms.

2.2 Offshore Pipelines: Applications and Sample Installations

For over 100 years, transport of oil, gas, derivative compounds and water has been
performed by means of pipelines. They are the most efficient way to transfer
continuous medium to large distances. Their role has greatly increased with the
development of extraction of resources from undersea deposits. Underwater
pipelines presently constitute a considerable part of the entire infrastructure
existing for oil and gas transportation. Because of the working environment, their
structure, installation and extraction are much different to the case of overland and
underground ones.
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/ platform

pipeline between
platforms

platform

pipelines transporting liquids

from well heads to shore

well head

well head

Fig. 2.2. Sample offshore infrastructure with miscellaneous pipelines

A sample gas field is shown in Fig. 2.2. The role of the production unit is
fulfilled by an extraction platform. On the platform the stock is processed into the
ready product, which is subsequently transferred by exporting pipelines to a
receiving station.

Offshore pipelines may be basically divided as follows (Fig. 2.2):

=  connecting heads of wells with collectors,

= collective — transferring resources from collectors to production platforms,

= transfer — connecting production platforms within a single oil or gas field or
neighbouring ones,

= export — transporting products from production units to receiving stations
(land bases, customer's receptive infrastructure),

= gerving to transport water or other chemical compounds from production units
(platforms or land facilities) to drilling heads,

= otherwise construed, often in the form of bundles of pipes or cables.

Large oil fields often have many platforms providing for different needs:
accommodation, production, storage. The Ekofisk field in the North Sea built in
1970s may serve as an example.
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Extraction and processing of oil and gas has lately more and more often been
supported by Floating Production Storage & Offloading (FPSO) vessels (Fig. 2.3).
Due to large dimensions (typically 300m to 500m in length), ships of this kind are very
stable. An FSPO vessel is held in the desired position by means of mooring lines. It
departs for a safe seclusion only under extreme storms. The extraction technique
employing FSPO vessels is a fairly new development. Its main application is on
smaller gas fields where periodic relocation of a vessel is desirable. Usually individual
wells are connected by special pipelines to risers, which are vertical segments of pipes
connecting collectors with a turret placed in the hull of an FSPO ship. Risers are highly
flexible and feature special loops to compensate for FSPO movements due to waves
and wind. In case of an FSPO vessel's emergency departure from a field the turret with
risers and mooring lines is lowered to the bottom. Its reinstallation requires using a
specialized winch with high capacity (800 T to 1000 T).

transmission

transmission

FPS0

storage buoy

l pipes  from collect

Fig. 2.3. Extraction and processing of oil or gas using an FPSO ship

In some cases only a processing station located on shore is used in the
extraction of a deposit. The stock is then transferred by pipelines directly from the
well to the land. The Ormen Lange gas field situated on the west coast of Norway
(Fig. 2.4) is one such example.

As already mentioned, risers (Fig. 2.3) are used to transport oil or gas, as well
as water and other substances, between the seabed and a drilling or production unit
on the surface of the sea (platform, ship, FSPO). Risers may be drilling risers used
for transport of fluids utilized in the process of making wells, or production risers
which transport the stock from wells to vessels or platforms. It ought to be
mentioned that the cost of risers may be comparable to that of a ship or a platform
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import of fluids preventing
condensation of gas

export to onshore production

Fig. 2.4. Ormen Lange gas field

Simple catenary Steep-S

Steep-wave Lazy-wave

Fig. 2.5. Systems of risers used in oil and gas extraction

in case of deep sea extraction [Bai Y., Bai Q., 2005], [Chakrabarti S. K., 2005].
Basic configurations of risers are schematically depicted in Fig. 2.5. The choice of
a given system depends on multiple factors: depth of the sea, structure and
functionality of the vessel (particularly its manoeuvrability under wave action),
number and setup of mooring lines, conditions present in the extraction area,
including the intensity of sea currents.
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A wide overview of the technology and elements of the infrastructure used in
offshore industry can be found among others in [Gerwick B. D., 2000], [Bai Y.,
Bai Q., 2005] and [Chakrabarti S. K., 2005].

2.3 Offshore Pipelines Installation Techniques

Installation of underwater pipelines is a technically difficult operation, which
differs substantially from the case of land ones. It requires using a separate set of
often innovative methods. Currently the following basic methods of laying
offshore pipelines may be distinguished:

= S-lay,
= J-lay,
= reel method,
=  tow method.

Each of them has both advantages and disadvantages and limitations. The criteria
for choosing the method for a particular case are following:

= sea depth,

= length of the segment to install,
= diameter of the pipeline,

= time allowed for the installation,
= total budget of the operation.

2.3.1 The S-Lay Method

The S-lay method is one of the oldest methods of laying underwater pipelines. It
was used mainly for installations in shallow seas. It can be performed from either
a specially equipped vessel or a platform. Low amplitudes of motion of multihull
semi-submersible platforms have made them an often preferred utility for laying
pipelines with the S-lay method. Such a solution is especially popular on seas with
intense waves for the most part of the year (e.g. the North Sea and the Norwegian
Sea). The schematic concept of the S-lay method is shown in Fig. 2.6. It is named
after the shape taken by the pipeline being laid on the segment between the unit
and the bottom. It resembles the letter S. A special structure called a stringer is
used to support the pipeline suspended from the deck.

For installing long and high capacity pipelines in seas up to 600 m deep the S-
lay method is most popular. It is applicable to pipelines of greatest diameters, even
exceeding 1m.

The length and geometry of the ramp guiding the pipe depend primarily on the
depth of the sea and the diameter of the pipeline. Control of the inclination angle of
the ramp, thus also the shape of the pipeline being laid, is provided by two means:
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=  built-in buoyant elements whose filling appropriately with water makes it
possible to regulate the immersion of individual segments of the ramp — such
are the multi-modular buoyancy ramps,

= Jeveraging systems of ropes and a winch or other mechanisms controlling the
inclination angle of the ramp.

— — tenisoner

overbend section

platform

welding stations

sagbend section

mooring lines

Fig. 2.6. Application of a semi-submersible platform to install o pipeline with the S-lay
method

Tension systems are used to prevent buckling of the pipe being laid in the lower
deflection and to keep the deformation of the material within the desired limits.
These are specialized mechanisms placed in front of the entry point of the pipe
onto the ramp guiding the pipeline and a set of anchor winches. Additional vessels
control the anchors. Appropriate tension may also be created with thrusters along
with sufficiently powerful engines. The necessity of creating an axial force in the
pipeline being installed is a rather significant disadvantage of the method
discussed. Its impact is more evident with greater depths, therefore the S-lay
method is limited to shallower seas. Laying pipelines with the S-lay method may
also be performed from ships or barges.

2.3.2 The J-Lay Method

Usage limitations of the S-lay method and simultaneously growing demand to lay
pipelines at greater depths motivated the development of the J-lay method. Its
name also reflects the shape of the pipe being laid. When suspended between the
unit and the bottom, it resembles the letter J.
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Similarly to the previous method, laying pipes with the J-lay method can be
performed from decks of multihull semi-submersible platforms as well as
monohull barges and ships. Its characteristic feature is a vertical guiding ramp.
Setting the ramp in an almost vertical position eliminates the problems with
exceeding admissible tensions in the material of the pipe in the area of the upper
deflection. Additionally the J-lay method allows for considerable reduction of
necessary forces to be exerted by tensioners and the unit itself. A disadvantage of
the J-lay method is the ability to use a single welding station only, thus limiting
the efficiency of laying pipelines. It typically reaches 1.5 km to 2 km per day,
whereas with the S-lay method 5 km to 6 km per day are usual values.

ramp —————p

pipe sections

mooring lines

Fig. 2.7. Scheme of laying a pipeline with the J-lay method

In Fig. 2.7, a scheme of a platform installing a pipeline with the J-lay method is
shown. The platform Saipem 7000 is one of the largest such units in the world. It
was used, among other things, to install a high capacity pipeline running across
the Black Sea with depths reaching 2200 m.

Whenever the inclination angle of the ramp can be controlled, the J-lay method
may also be used in shallower seas. Usually, the angle can be set between about
65° and 90°, however in some ramps it can even be 30°.

2.3.3 The Reel Method

Among the major drawbacks of the S-lay and J-lay methods is the necessity to
connect pipes on the platform or the vessel prior to laying them. Hence they
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require using transport ships supplying segments of pipes from the land, usually of
lengths between 12 m and 50 m. Those must be subsequently reloaded with an
offshore crane to the main unit. Therefore, in the case of pipelines with lower
diameters, the reel method is popularly chosen. A vessel used in this method
features a specialized reel. The pipe is wound onto the reel on the land, including
connecting its segments by welding. Next, the vessel transports the entire pipe to
its destination where it is installed. The reel method is used mainly on the North Sea.
Its primary usage domain is laying relatively short segments of pipelines, e.g. those
constituting elements of oil and gas fields infrastructure (Fig. 2.2). One of the
foremost advantages of the method is its high efficiency reaching 2 km per hour.

mian reel auxiliary reel
4" 100km 2" 50km
6" 64km "
. 3" 19km .
ramp 8" 30km + 13%m au”xmary reel
10" 24km 6" Tkm 2" 19km
12" 16km 3" 9km

14" 12km 4" 6km
16" 8km

\

e

Fig. 2.8. A ship with a reel to wind pipelines

First installations made with floating reels were performed already in 1994 by
the Allies during their invasion of France. In Fig. 2.8, a contemporary ship
Apache' is shown, whose purpose is to work with the reel method. It features a
main reel onto which 8 km to 100 km of pipes (depending on the diameter) can be
wound and two smaller ones for short fragments of pipes and risers.

Winding of pipes onto the reel may cause permanent plastic deformations. It is
the case with pipes with large outer diameters and small winding diameters of
reels. This may substantially and adversely influence the properties of the installed
pipeline. Therefore, only slight permanent plastic deformation of pipes being laid
is admissible. The magnitudes of these deformations depend on: dimensions of the
reel, outer and inner diameter of the pipes, tension during the winding.

At present, large reels are used, which can accommodate between 2000 T and
3500 T of a pipeline. Diameters of such reels exceed 30 m and the forces generated
by their drives surpass 200 T. Smaller reels may form sets (of two or three pieces)
which are supplied by transport vessels. An integral part of a ship suitable for laying

" The informations were taken from the operator’s web page, the Technim company.
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pipelines with the reel method is a guiding ramp, usually installed on the stern. Its
purpose is to give shape to the pipe leaving the ship, whereby typically the reel
method is combined with the J-lay method (Fig. 2.9). The ramp simultaneously
serves as the supporting structure for elements guiding and straightening the pipe. In
its upper part there is an aligner wheel, and following it a device straightening the
pipe, eliminating its permanent deformations caused during winding. Additionally
on the ramp, a set of devices is installed which control the speed at which the pipe
slides from the ramp and hold the weight of the pipeline suspended in the water.

-

Fig. 2.9. A ship unwinding a pipe from a reel and laying it with the J-lay method

A similar solution is a structure with a reel whose rotation axis is vertical.
Systems of this type are mainly used for installing bundles and cables. They are
unwound from the reel (called a carousel) and passing through a system of
tensioners are laid on the bottom. Another system in existence is one with the
reel's axis parallel to the ship's longitudinal axis, in which case the laying is
carried out from the vessel's side.

Limitation of the maximal outer diameter of the pipeline to be laid is the
primary disadvantage of the reel method related to plastic deformations. Pipes
installed using this technique have diameters up to 28 in. The reel method,
moreover, introduces relatively large deformations in the material of the pipe (up
to 5%) which may weaken the welds and deteriorate the pipeline's stability,
including the occurrence of a spiral line. Furthermore, there exists a risk of
ovalization of the pipeline's section leading to local instability. It may also occur
that a pipeline needs to contain segments with different diameters or other
components (e.g. valves, splitters and so on). These add to the difficulty of the
method discussed. When the base in which the winding of pipes onto the reel
takes place is distant from the destination, considerable growth of cost and time of
the operation is to be expected. Additionally, huge mass of the reel and pipes or
cables wound onto it exacerbates the dynamic forces caused by waves. Stability of
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the device and the whole ship is thus worsened. Despite all of these, the reel
method is, as mentioned, eagerly used.

2.3.4 Methods of Towing Pipelines

In cases of short segments of pipelines, a few kilometres in length, it is possible to
assemble them on the land and next to tow them wholly to the location where they
are installed. The longest segment to have been installed in this way had 7km [Bai
Y., Bai Q., 2005]. Towing is usually performed by two vessels, one towing the
beginning and the other the end of the pipeline (Fig. 2.10). Buoyant elements
placed along the pipeline are used to prevent damage. They are selected so that the
pipeline stays at a certain controlled depth beneath the water surface. The
influence of hydrodynamic forces due to waves is thus reduced. On arrival at the
destination, the buoyant modules are removed and the pipeline is lowered to the
bottom. Sometimes other towing techniques are used in which the pipeline floats
on the surface, or is dragged on the bottom [Chakrabarti S. K., 2005].

tow line pipeline section tow line

Fig. 2.10. Installing a pipeline using the towing method

Ease of preparation on the ground of the elements to be laid (which may be
complex bundles of various cables and pipes installed together) is definitely an
advantage here. The problems and costs related to the production of a pipeline or
bundle in offshore conditions are avoided. An undeniable disadvantage is the
difficulty of constructing longer pipelines with this method (control of forces and
displacements during towing is a problem) and great amount of work and costs in
cases of laying curved segments. For these reasons, the total number of kilometres
of pipelines laid with the towing method is modest.

2.3.5 Other Operations in Service of Pipeline

Other than the very process of laying a pipeline, there exists a multitude of
important operations forming comprehensive construction and extraction of
exploration infrastructure. Among them are the following:
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= gsecuring a pipeline on the bottom,
= winding of pipes onto reels in specialized bases,
= operations of lifting a pipeline from the bottom, repairing, de-installing etc.

Securing pipelines is done with specialized ploughs. After the pipe has been laid
on the bottom, the plough is lowered from the vessel and then towed by it. The
plough forms a ditch in the seabed and simultaneously inserts the pipe into it.
Another plough is used to bury the pipeline. When the diameter of the pipeline is
small, devices cutting the ditch in the seabed may be used directly before laying it.
The same devices usually install the pipe itself, provided that it is elastic enough.
Yet another solution is to use specialized machines powered with high pressure. In
some cases, the pipelines installed are buried with a layer of material supplied by
ships (pebbles, gravel).

An example spool base in which offshore pipelines are produced is Orkanger
base, Norway. Such bases must have the ability to store ready fragments of pipes
of length up to a few kilometres. They are located in areas of intense extraction,
where further works are planned for several years. Their advantages are low
production costs and immunity to weather conditions.

Repairs and servicing of underwater pipelines is performed using specialized
vessels capable of lifting pipes from the bottom. They are equipped with multiple reels
onto which pipes or cables can be wound when they are damaged or being removed.

2.4 Reloading and Assembly Works Using Cranes: Tasks,
Environmental Conditions, Types

Reloading and assembly works realised using various types of cranes are among
widely performed and highly important operations in offshore engineering. One of
the main features distinguishing offshore cranes from land ones are significant
movements of the base caused by sea waves. In the case whereby a load is lifted
from a supply ship also the load is in such motion. As a result, offshore cranes are
far more exposed to dynamic overloads than their land counterparts. Those
overloads have significant influence on the permissible operating range of the
device. Constructors aim at designing a device in such a way that it can operate
under wave action as intense as possible. Offshore cranes are therefore equipped
with specialized anti-overload systems which minimize load oscillations and
increase safety. It is also worth noting that weights of loads carried by offshore
cranes often reach hundreds of tonnes. Winds, which are common in maritime
areas, as well as extreme temperatures add further difficulty to their operation.

Taking the criterion of construction into account, the following types of
offshore cranes may be distinguished:

=  gantries,
=  A-frames,
=  boom cranes.
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rotary crane crane with "cutting [ej

A-frame crane

crane with "stiff leg"

Fig. 2.11. Examples of cranes installed on vessels

Offshore cranes are installed both on platforms and sea vessels (ships, specialized
barges). If they are equipped with a boom, it may be fixed or telescopic.

A common solution is to install offshore cranes on a special column.
Depending on the criterion, column cranes may be classified as featuring:

= rope overhang control system

»  hydraulic overhang control system
= truss boom

=  box boom

= telescopic boom

=  knuckle boom

Sample structures of offshore column cranes are depicted in Fig. 2.12.

Similarly to land technology, gantries are a popular choice. They often appear
on large container ships. They are also installed on other sea vessels and platforms
where they are used for assembly and service works. A gantry installed on
platforms and used to relocate and lower the valves of a BlowOut Preventor
(BOP) may serve as an example. Schemes of different installation possibilities of
offshore gantries are in Fig. 2.13.

The multitude of construction solutions of offshore cranes is a result of the
variety of their applications. Those range from reloading goods transported
overseas, constructing and operating offshore infrastructure, to scientific research
etc. In many cases such devices are constructed one-off for a particular order.
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~
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e)

————
Fig. 2.12. Column cranes: a) with a rope overhang control system and a truss boom, b) with

a rope overhang control system and a box boom, c¢) with a hydraulic overhang control
system and a box boom, d) with a telescopic boom, e) with a knuckle boom
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~ 4

L type crane ,U” type crane

,,C” type crane

Fig. 2.13. Structures of different types of offshore gantries

2.4.1 Stabilization of Load Position and Minimization of Its
Oscillations

When operating an offshore crane, the problem of load oscillations is of special
importance. Those oscillations, caused mainly by sea waves, not only make
reloading and assembly works more difficult, but also create an immediate danger
for the personnel. In extreme cases, the load may hit a side of the sea vessel
carrying the load or the supply vessel. Thus, market leaders endeavour to equip
their products with specialized anti-oscillation systems. A system of this type, the
SmartCrane™ Anti-Sway Crane Control for Rotating Boom Cranes, is offered by
SmartCrane. Its working principle is to move the suspension point of the rope at
the end of the boom. Li Y. and Balachandrana B. of the University of Maryland
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presented it at the symposiums MURI on Nonlinear Active Control of Dynamical
Systems (Virginia Polytechnic Institute and State University, 1998-2001) as well
as in their papers [Balachandran B., et al., 1999], [Li Y. Y., Balachandran B.,
2001]. This solution may be enhanced by a closed-loop control system. In the
mentioned papers, the mathematical models applied omitted the flexibility of the
supporting structure of the crane. At the MURI symposiums it was also proposed
that there exists another possibility of solving the problem of load oscillations. It
consists in adequately controlling (also by means of a closed-loop system) the
rotary motion and raising of the boom. The method was verified numerically and
experimentally on a test stand. [Masoud Z. N., 2000], [Nayfeh A., Masoud Z.,
2001], [Masoud Z., et al., 2004], [Nayfeh A., et al., 2005a]. The analyzed problem
required a spatial model of the crane. However, the created model ignored the
flexibility of the system. A feature worth mentioning is an additional provision for
minimizing the motions of both the supplying and the receiving vessel by means
of a stabilizing system. It consists in tying them together with ropes once
positioned appropriately against the waves and moving at a specified speed. The
concept is discussed in detail in [Nayfeh A. H., et al., 2005b]. Another method of
stabilizing the load position in an offshore crane was the topic of the following
works, among others: [Maczynski A., 2005], [Maczynski A., 2006], [Maczynski
A., Wojciech S., 2007]. It will be presented with details in chapter 10. It assumes
the use of an additional unit suspended at the end of the boom, guiding the tow
rope at a certain segment. Changing its deviation from the vertical is a way to
influence the load's tangential and radial oscillations. This solution provides for a
great deal of influence on the motion of the load, and in combination with the
winch it enables stabilization of the load in three directions. In [Maczynski A.,
Wojciech S., 2009] it was shown that stabilization of the load also minimizes the
undesirable effect whereby the tow rope is stressed and eased. The analyses
presented in the above mentioned papers were carried out for an offshore crane
with a hydraulic overhang control system and a telescopic boom. In [Spathopoulos
M. P., Fragopoulos D., 2004] a similar solution was considered in the planar case
based on a simplified model of a crane ignoring the flexibility of the system.
Control methods for both linear and nonlinear objects were used. Two different
control algorithms minimizing load oscillations were also discussed in [Schaub H.,
2008]. One algorithm was based on current measurements only, whereas the other
additionally performed computations on a model of the system. Due to the
necessity of real-time operation, the model of a crane should in this case be very
simplified. The boom was thus modelled as a rigid link, the load as a material
point and the distance between the end of the boom and the load was constant.

In industry practice, also other systems have been in use for years, e.g. PDC
200 scanning the profile of the load with a laser and subsequently compensating
for the oscillations electronically. They are produced by the company Cegelec-
AEG. Yet other solutions are ABB's System CPC and Caillard's ESCAD [Cosstick
H., 1996].
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2.4.2 Safety Systems: Systems Limiting Dynamic Overloads
in Offshore Cranes

As can be seen from the previously presented reasoning, offshore cranes are
heavily exploited devices often exposed to extreme conditions. Their malfunction
during operation may cause significant material losses and even pose threats to
human health and life. According to the EN13852-1 norm, each offshore crane
must feature the following safety systems:

= emergency operation — in case of power failure, means shall be provided for a
controlled slew, luff down and load lowering operations, to land the load and
boom safely,

= emergency stop — the emergency stop shall retain its function regardless of
any malfunction of the programmable control system, if installed,

= Jateral boom protection system — an automatic protection system shall be
provided to prevent lateral overload of the boom or overload on the slew
mechanism if sidelead loads occur outside the design limits,

= manual overload protection system (MOPS) — system, activated by the crane
operator, that protects the crane against possible overload by reducing the
load carrying capacity and allowing the hook to be pulled away from the
crane in any direction,

= automatic overload protection system (AOPS) — system that automatically
safeguards and protects the crane against the effects of a gross overload
during operations by allowing the hook to be pulled away from the crane in
downwards direction within specified offlead and sidelead angles, without
causing significant damage to the crane.

Appendix J to the norm EN13852-1 establishes a hierarchy of importance of these
systems and signalling components. It is summarized in tables 2.1 and 2.2.

Table 2.1. Normal ranking of safety measures

Order of precedence Safety measure Safety measure
Manual overload
1* priority Emergency stop protection
system (MOPS)
2" priority Automatic overload protection system (AOPS)
3" priority Other limiters

4™ priority Indicators
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Table 2.2. Ranking of safety measures when mode for personnel lifting is selected

Order of precedence Safety measure
1* priority Emergency stop
2" priority Mode section switch and other limiters
3" priority Indicators

The so-called shock absorbers are another type of systems limiting dynamic
overloads used in offshore cranes. One is installed on the boom (Fig. 2.14), the
other at the manifold (Fig. 2.16). The task of a shock absorber is to consume the
energy of a momentary overload. In the case of the first solution, the dynamic
overloads are minimized by passing the rope through an additional movable
sheave connected to a hydraulic system. The concept of its operation is explained
with a scheme (Fig. 2.15). It is a system consisting of an accumulator filled with
gas and a hydraulic actuator. When the force S applied to the piston rod increases
to the cutoff level (static load summed with flow resistance in the actuator is
usually assumed), it starts moving and the oil starts flowing from the cylinder to
the accumulator. The working stroke A, of the piston is reached for the maximal
value of the dynamic force. That stroke is lower than the maximal stroke A, as
for safety reasons the stroke A, should be maintained. The force S is balanced by

Shock Absorber

Fig. 2.14. Shock absorber installed on a boom®

% Picture published with the permission of National Oilwell Varco.
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Fig. 2.15. Scheme of the system of a hydraulic shock absorber
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Fig. 2.16. Scheme of a shock absorber integrated with the manifold
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the gas pressure in the accumulator. This type of shock absorber is especially
recommended with single ratio in the lifting system because of the efficiency (the
piston rod moves by the shortest distance).

The working principle of the second type of shock absorbers (Fig. 2.16) is
analogous to the design described above, the difference being the placement of
hydraulic accumulators consuming the energy in the manifold. This type of shock
absorbers is particularly efficient with a multiple tackle in the lifting system of
cranes. Its main disadvantage is the difficulty of supplying hydraulic installation to
the manifold.



3 Impact of Water on Offshore Structures
and Infrastructure

A characteristic phenomenon in offshore engineering is the impact of water on
individual devices and elements of dynamic systems. This impact is a very
complex phenomenon composed, among other things, of wave action, sea
currents, hydrostatic and hydrodynamic forces. These processes are difficult to
describe, and there exists a handful of approaches to modelling them, which differ
in the level of idealization [Newman J. N., 1977], [Mei C. C., 1989], [Faltinsen O.
M., 1990]. A possibly simple description of the motion of an offshore structure's
base is often desirable, e.g. in the problems of control [Fossen T. 1., 1994].

3.1 Basics of Water Wave Motion Mechanics

Hydrodynamic dependencies are at the foundation of any attempt at modelling
objects situated in maritime environment. Formulas presented in this chapter allow
us to determine the values which direct the motion of systems immersed in water,
i.e. velocity and hydrodynamic pressure of the fluid.

Let us consider a point with coordinates given by the vector (Fig. 3.1):

x=[x y z[, 3.1)
in which the velocity of particles of the fluid in an inertial system equals:
vix) = (x) v,(x0) v, (o). (3.2)

In many cases it is prudent to assume that the density of the fluid is constant,
hence the continuity equation for incompressible flow [Bukowski J., 1968],
[Newman J. N., 1977]:

difv)=0, (3.3)
ov,
where a’iv(v) =Vv= %4_%-{—%

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 27-H3.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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Fig. 3.1. Velocity of a particle of fluid in an inertial system

The momentum conservation principle for a Newtonian fluid is presented in the
form of Navier-Stokes equations which, for an incompressible fluid, take the form
[Bukowski J., 1968], [Newman J. N., 1977]:

1
QX+VVV:F¥~—Vp+VV%c (3.4)
ot yo,
where F=[0 0 —g[  —mass forces,
p=plx,y z1) — pressure,
v-Ii.9 j+ W ,
ox dy oz
\Y — velocity vector,

P,V —density and viscosity of the fluid.

The Navier-Stokes equations (3.4) together with the continuity equation (3.3) form
a system of nonlinear partial differential equations. No general solution is known
(only numerical approximations are possible). To determine approximate pressure
values lack of viscosity and irrotational flow are usually assumed. The
irrotationality condition [White F. M., 2006]:

rotf(v)=Vxv=0 (3.5)
ensures the existence of a velocity field potential. A function @ called the
potential is further sought, such that:

v=Vo. (3.6)

Determining the potential @ allows for calculation of velocity as the gradient of
the potential. Applying the formula (3.6), the continuity equation (3.3) may be
rewritten as a Laplace equation [Newman J. N., 1977], [El-Hawary F., ed., 2001],
[White F. M., 2006]:
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ID P P
+—+ =0.
oy o
This equation should be completed with boundary conditions.

Omitting the last summand in the equation (3.4) standing for viscosity and taking
the dependency F = —V gz into account allows us to rewrite (3.4) in the form:

(3.7)

N VW= —v(ﬁ ' rj (3.8)
ot o,

where I' = gz,

or, when the irrotationality condition is assumed, as a Bernoulli equation
[Bukowski J., 1968], [Newman J. N., 1977], [El-Hawary F., ed., 2001]:

p_ 0P

+ l(V2d3)+ I' =const. (3.9)
p a2
It makes it possible to determine the pressure if the potential @ is known.
Integrating the pressure over the surface of the body immersed in the fluid yields
forces acting on it. In most practical cases, the hydrodynamics of ideal fluids is a
sufficient theory for modelling the dynamics of systems occurring in offshore
engineering. Viscosity, which was omitted from the equation (3.9), is sometimes
re-added by stipulating additional empirical relations [Hoerner S. F., 1958],
[Sarpkaya T., Isaacson M., 1981].
Equations of ideal fluid hydrodynamics enable determination of velocity and
pressure fields for a regular wave (Fig. 3.2). In this case it is assumed that the
profile of the wave (the free surface) is described by the formula:

7 =E(x, y,1). (3.10)

4z t=idem 4z x=idem
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Fig. 3.2. Profile of a regular wave
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Two boundary conditions for the free surface need to be also introduced. In the
fist one, called the dynamic condition of free surface, the pressure of the fluid at
the free surface is assumed to equal the atmospheric pressure. In the other, the so-
called kinematic condition of free surface, the particles of the fluid on this surface
are bound to it (they cannot break loose from it) [Newman J. N., 1977], [Faltinsen
0. M., 1990].

3.1.1 Linear Model

Po

Assuming the value of the quotient (po — atmospheric pressure) in the

Bernoulli equation (3.9) to be constant, taking the pressure on the free surface as
po and the profile of the wave to be described with the function [Newman J. N,
1977]:

E=Esinlar —kx+a), (3.11)

a solution of the boundary problem is obtained in the form of a potential function
(details are given, among others, in [Lighthill J., 1978], [Dean R. G., Dalrymple R.
A., 1998]):

® = dcos ar —kx), (3.12)
where @ = @ cosh(k(d +2))
k  sinh(kd)
ﬂ — wave numoer,
A — wave length.

Solving the Laplace equation with appropriate boundary conditions and using the

definition of potential, the velocities of particles of the fluid may be calculated
[DNV-RP-C205, 2007]:

od  —cosh(k(d +z)) .

v, =— = 0§ —————=sin(ax — kx), 3.13

ox sinh (kd ) ( ) ©15)

_ 00 osinh(k(d +z))

=2 — kx). .
T ¢ sinh (kd ) cos(ar —kx) 19

\4

Substituting the functions of potential (3.12) and profile (3.11) to the dynamic
condition of free surface gives:

@ = gktanh(kd). (3.15)
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Pressure can be determined by using the potential obtained (3.12) and the
Bernoulli equation (3.9):

p=—pgz+p, sin(wt - kx), (3.16)
= cosh(k(d +2))
where = —_—, z<0.
L e )

For large depths, i.e. for kd —eo, the above formulas take a simpler form:

velocity v, v, : v, =v, = wfe"z, (3.17)
T2

dispersion: w=,gk,, A= gz—, (3.18)
T

pressure: p=—pgz+ pgé?ekz. (3.19)

Functions describing the trajectories of the fluid's particles are obtained by
integration of velocity over time. The trajectories in local coordinate systems,
when a wave profile conforming to (3.11) is assumed, change with sea depth (Fig.
3.3) forming ellipses. For kd —e the ellipses turn into circles whose radii may be

approximated with the expression «fekz. For a shallow see the trajectories are

flattened and tend to horizontal limes for z — —d .

The linear model of waves described above (also called the Airy model) is
adequate for waves with low amplitudes relatively to their length and sea depth.
Its applicability is ruled by the following conditions:

Gk <<21r and & <<d. (3.20)

A4

shallow water

A 4
mean water depth

deep water

Fig. 3.3. Trajectories of particles for different sea depths
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The limiting criteria allowing for the use of a given variant of the formulas
produced, i.e. (3.13) - (3.16) or (3.17) — (3.19), depending on the depth d, are
summarized in Table 3.1, following [Chakrabarti S. K., 2005].

Table 3.1. Criteria for depth and applicability of formulas in the linear model

Sea depth Criterion Wave length
772 i

medium Zi() < % < % A\ ﬂo{tanh( % H;
small % < zio A =Ted

3.1.2 Stokes Model

The Stokes theory proposes models of waves which are nonlinear due to the
nonlinearity of the dynamic condition of free surface in the variables V and p:

a—p+v a—p+v ap—O

o “ox “or
Depending on the number of components in the formula for velocity v,, the
Stokes theory is differentiated as first order, second order, third order, etc., see for
example [Schwartz L., 1974], [Longuet-Higgins M. S., 1984]. Relations for the
second order Stokes theory are shown in Table 3.2. In the description of waves
this theory gives a fairly accurate approximation if the order of the method is
increased along with the amplitude of waves. The results are especially
satisfactory for deep seas.

There are numerous different models of waves deserving a mention [El-Hawary
F., ed., 2001], [Webb D. J., 1978], [Komen G. J., et al., 1994], [Grue J., et al,,
2003], [Tucker M. J., Pitt E. G., 2001]. Their applicability depends on depth d,
wave period 7 and wave amplitude &. Fig. 3.4, following [Dean R. G., Dalrymple

(3.21)

R. A., 1998], shows a graph helpful in the choice of appropriate models (d and H
are given in feet, 7 in seconds).

Trochoidal waves [Lomniewski K., 1969] distinguished in Fig. 3.4 are
characterized by different shapes of crests (tall and narrow) and troughs (long and
flat). They are an intermediate form between solitons and periodic waves (linear
and nonlinear). Solitons lack troughs and their lengths tend to infinity. In shallow
waters trochoidal waves transforms into solitons.
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Table 3.2. Some dependencies in second order Stokes theory
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potential P

l 3 7H [ﬁj cosh (2k(z +d ))sin(2%)

8 kT \ A sinh* (kd )

velocity v,

vt cos(2}/)

“oaor

3 nH (ﬁfjcosh@k(z +d))

A ) sinh*(ka)

velocity V,

3 2 ( H j sinh(2k(z+d)) o)

+
LT\ A ) sinh (k)

i+ 3pgH . 7H cosl?(Zl;(z+d))_i cos(27)
4 Asinh(2kd)| sinh’(kd) 3
ressure .
P p Pl M [ oh(2k(z+d))-1]
4 Asinh(2kd)
where @, v Ly V. D are determined as in the linear wave theory

(formulas (3.16)

—(3.20)), Ais the wave length, y = wr — kx
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Fig. 3.4. Applicability ranges of different theories of sea waves
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3.1.3 Statistical Description of Waves

In analyses and calculations, sometimes a spectral description of waves is used,
which treats the phenomenon as a stationary problem within a finite time period
(usually between 20 min and a few hours) [Massel S. R., 1996]. The spectrum
S(a)) (spectral density of power) is defined as a function of some basic parameters

of a wave, such as: significant wave height Hs, wave period T, determined by the
frequency of occurrence of function's S(a)) maxima and time 7, calculated as

mean wave period within the assumed time interval.

There are numerous methods to describe waves using a function of waves
density distribution. Among the most often used are: the function devised by
Pierson-Moskowitz [Pierson W. J., Moskowitz L., 1964] and its modified form,
developed in the JONSWAP project [Hasselmann K., et al., 1973]. Examples of
other, more complex functions are Ochi-Hubble [Ochi M. K., Hubble E. N., 1976]
and Torsethaugen [Torsethaugen K., Haver S., 2004] distributions. Below, the
forms proposed by Pierson-Moskowitz and JONSWAP are briefly presented, as
they will be used in some mathematical models considered further herein.

The Pierson-Moskowitz spectrum is described thus:

e{‘i[ff] (3.22)

27
where w,=——.
T

p

The JONSWAP spectrum takes additionally into account the intermediate states
occurring at the onset of waves (contrary to the Pierson-Moskowitz spectrum
which treats only waves already formed). The JONSWAP spectral density
function is given by:

705[&;:?’ ]2
S, (@)= 4,85, (w)'ﬂe[ J (3.23)

where 77 - dimensionless shape parameter,

o, foro<w,
o=
o, forw> @®,,
A, =1-0.287 In(7),
o,,0, —parameters of the distribution.

For 77 = 1, the relation (3.23) reduces to (3.22). The method of selecting the
parameters 77,0,,0,1s specified in norms, e.g. [DNV-RP-C205, 2007], and in

literature [Clauss G. F., et al., 1992], [Holthuijsen L. H., 2007].



3.2 Determination of Forces Acting on Objects Immersed in Water 35

Spectral density S(w)may be used to generate an irregular wave. Such waves

are closer to actual waves than those considered by many authors in their papers.
The simplest example of an irregular wave is a sum of a given number N of
harmonic components:

N
= ZAk cos(a)kt + &, ) (3.24)
k=1

where A, —random amplitude, calculated as A, =/2-A@- S (w,).

£ € <O,...,27[ > — random initial phase with uniform distribution,

Ao, =w, —w,_, -

The dependency (3.24) allows us to determine the waves parameters according to
the formulas (3.12) — (3.16) or those given in Table 3.2. Summation is performed
for every calculated value. For example, the velocity from the formula (3.13) is
determined thus:

i = cosh(k,(d + z)) i

—kx+¢& ) .
= sinh(k.d) inay —kx+ ;) (5:29)

The number of components N may reach a few hundred and more (guidelines are
specified in appropriate norms). A pre-filled array of values needed, combined
with interpolation over time, is therefore desirable when integrating the equations
of asystem's dynamics. Such approach ensures much shorter times taken by
computations.

3.2 Determination of Forces Acting on Objects Immersed in
Water

Let us consider a body immersed in a liquid. Action of the liquid on the body
results from the motion of the body and of the liquid itself. Diffraction and
radiation phenomena must be taken into consideration in the general case, as the
body may influence the motion of the liquid. However, in performing analyses of
structures with small characteristic dimensions relatively to the wave length,
a simplifying assumption may be introduced that the Morison equation [Morison
J. R, et al., 1950] governs the forces acting on a body immersed in water
[Faltinsen O. M., 1990], [Sarpkaya T., Isaacson M., 1981]. Their determination
requires the knowledge of coefficients whose values are yielded from appropriate
laboratory experiments. In examples contained in the current book, interaction
between water and pipelines is analyzed. The pipelines are modelled with beam
elements. It can be easily proven that the Morison equation's applicability
criterion, defined in [DNV-RP-C205, 2007] as:

A>5D, (3.26)
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is satisfied even for pipelines with large diameters (D greater than 1 m). This
justifies the assumption of the Morison equation's applicability in dynamic
analyses of pipelines throughout the rest of the volume. The force of a liquid's
action on a body in general is defined as a function of multiple dimensionless
parameters [Faltinsen O. M., 1990]:

f Zf(t’T’KC’Re’dfr’é’ﬁ)’ (327)
uyl
where KC = o Keugelan-Carpenter number,
u,D
Re = —2= _ Reynolds number,
14
D
d - = 7 — diffraction parameter,
~ K
e= B — reduced body surface roughness,
0= o — reduced velocity of the liquid,
f.D
I — angular frequency of the body's oscillations,
U — amplitude of the liquid's velocity,
14 — viscosity of the liquid,
K — surface roughness,
D — diameter (characteristic dimension) of the body.

The force of the liquid's action on a segment of a given body may be decomposed
into tangent and normal components (Fig. 3.5b). For an asymmetric segment,
turbulence and other effects, a lifting force F. may additionally occur, which acts
in the direction perpendicular to the liquid's flow (Fig. 3.5¢).

b) 9]

Fig. 3.5. Forces acting on a segment of a body: a) determination of the normal component,
b) normal and tangential components, c) lifting force
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The normal force acting on the segment determined by a coordinate &
(Fig. 3.5a) can be described with the Morison equation [DNV-RP-C205, 2007]:

1
FY (t, g) = pAa, + pC,Aa, +5pCDDvr AR (3.28)
where F IéA)(t,g) — normal force acting on the segment of the body at the
coordinate's value ¢,
Yo — density of the liquid,
A=A(g) - areaof the body's segment determined by coordinat ¢ ,

as — acceleration of the liquid,

a,=ay; —)'éN — relative acceleration,

xy  — displacement of the body in the direction normal to the
longitudinal axis,

v, =v, —x, - velocity of the liquid relative to the body,
C, —dimensionless coefficient of added mass,
C, —dimensionless drag coefficient.

The Morison equation (3.28) may be used if the following relations hold
[Chakrabarti S. K., 2005]:

KC>6 and d, <<0.5. (3.29)

E.g., by substituting data of the largest diameters of pipelines, i.e. D =1 m, with
wave period T = 10 s and its amplitude A = 1 m, and taking into account the linear
theory of waves (formula (3.13)), we obtain KC = 6.28, d;, = 0.056. The condition
(3.29) ought to be checked supplementing the general condition (3.26) due to the
fact that the diffraction parameter determines the magnitude of wave dispersion as
the result of meeting the object. When the number KC is small, the Morison
equation should be replaced with calculations using e.g. potential theory or
Froude-Krylov forces [Chakrabarti S. K., 2005]. The force given by (3.28) is
particularly suitable for modelling structures such as ropes, pipes, beams. It may
also yield satisfactory results for small 3D objects. On the other hand, it may not
be successfully applied to large objects whose influence on the motion of water
particles is significant enough to cause reflections of waves.

The net normal force and its application point x, in the local coordinate

system Ogy (Fig. 3.5) with origin in the middle of the item's length can be
calculated from:

0.5L

Fy = IFASA)(tag)ﬂiga (3.30)

-0.5L
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0.5L

[F"(g)-g-dg

— =0.5L
.Xh - b

Fy

(3.31)

where FISJA) (t, g) — force described by (3.28),
L — length of the object.

Coefficients C4 and Cp which appear in the Morison equation are functions of
dimensionless parameters from (3.27), whereby:

C,=C,(Re, KC,é), (3.32)

Cp, =C,(Re, KC,é), (3.33)

where Re, KC,é are defined in (3.27).

Further details and practical advice about how these coefficients depend on
different variables are to be found, among other things, in [Sarpkaya T., Isaacson
M., 1981], [API-RP-2A-LRFD, 1993], [Bai Y., Bai Q., 2005], [Chakrabarti S. K.,
2005], [DNV-RP-F105, 2006], [DNV-RP-C205, 2007]. These works also include
cases of calculations for items placed very close to the free surface, the bottom or
another large object which changes the coefficient of the added mass.

The tangent force caused by hydrodynamic resistance should be considered
mainly in analyses of long objects with rough surfaces. It may be formulated thus
[DNV-RP-C205, 2007]:

1
Fr=5 PCHV, (3.34)
where C,, — coefficient of hydrodynamic resistance in the tangent direction,
v — amplitude of the liquid's net velocity.

The resistance coefficient Cp, may be described with the formula [Eames M.C.,
1968]:

Cp, = Cp(m+ nsin(a))cos(ax), (3.35)

where o — angle between net velocity and the item's longitudinal axis,
m,n - coefficients from Table 3.3.

Table 3.3. Values of the coefficients m, n according to [Eames M. C., 1968]

Item type m n
Smooth cylindrical surfaces 0.02-0.03 0.04-0.05
Porous cables, pipes 0.25-0.5 0.25-0.50

Six-strand ropes 0.03 0.06
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Also the seabed exerts forces on elements of a pipeline as it is being laid. The
problem of finding a description of the seabed and its interaction with installed
objects was the subject of many works. Behaviour of the seabed is highly
dependent on the sea considered. It is thus difficult to formulate one universally
applicable model. Empirical models are most commonly used, which reproduce
approximately the character of a given type of seabed. In the present volume,
a model developed by Verley and Lund [Verley R., Lund K. M., 1995] will be
used. It gives the following formula for the value of seabed penetration in the
normal direction:

A 3.2 0.7
220007 1rz°3* +0.062(r 23" (3.36)
where Y =—&
Dt
t
Z=—"=,
D
Au, — seabed penetration in [m],
Nc — contact force per a pipeline's length link [kN/m],
7, — seabed material's shear strength [kPa],
p’ — density of seabed material (wet) [KN/m’].

The dependency (3.36) holds for ¥ Z°? < 2.5. Otherwise, the following formula
gives better accuracy:

Au
L= 0.()9(YZO'3). (3.37)
20 . . .
1ar T zg 8222 //f ,/‘/I T
eq (3.38) -

=
T

=1
T

pressure [KN/m]
"

o
T

0 1 1 1 1 1 1
0 0.002 0.004 0.006 0.005 0.0 0.012 0.014
deformation [m]

Fig. 3.6. Sample characteristics of sea beds according to Verley-Lund and bearing capacity
models
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Fig. 3.6 presents sample characteristics of sea beds described by (3.36) and
(3.37) differentiated by bearing capacity model. In the last case, analogously to the
model determining the bearing capacity, the following formulas are used [Bai Y.,
Bai Q., 2005]:

5\05
Au (b+0.5)f
—2=05/1-|1-4 , 3.38
D (2ib+o.5f3iJ (-3%)
o
where f=—7——,
0.5(6+0.5)
N
a=—" =,
20°'D
b — flitu ,
pD
f,  —coefficient (for large support lengths taking the value 5.14).

The graphs in Fig. 3.6 are plotted for the following parameters: D =0.3m,
t,=35kPa, p'=1215 =%

Forces caused by waves or sea currents which act on elements of pipes or other
structures lying on a seabed result in their displacement in the forces' direction.
The action of the seabed in the transverse (horizontal) direction needs therefore to
be taken into consideration. More even so, given that the bodies in question often
lie in sand or other material (e.g. clay). For objects penetrating the seabed's
material only slightly, the Coulomb model of friction may be used [Bai Y., Bai Q.,
2005], however, with soft materials or deeper penetration the description becomes
more complex. Typical characteristics formulating the transversal forces as
functions of displacement are nonlinear. Adding to this, the seabed in the contact
area may become deformed and its material's consistence may vary due to
displacement. Often a characteristic composed of two different linear parts is used.
One of them describes the working conditions of the system up to the moment
when a ground layer is shorn off. The other treats the forces in action when the
object is moved along with seabed's material. This approach is presented, among
other things, in the norm [DNV-RP-F105, 2006]. Guidelines concerning the
selection of parameters and its applicability are also stated therein. The transversal
force is calculated thus:

i Aty for  F, <pFy,

F, = F, ,
lat =V 1 F, +k12(Aut —’U;C VJ for wF,<F,<F,

lat lat,max
1

(3.39)
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where k; - equivalent transversal stiffness coefficient up to shearing off of

the seabed's material,

k, — stiffness coefficient for motion developed in the transverse
direction,

Ay, — transverse displacement,

Fy, - vertical contact force per length of link,

M, — friction coefficient between the seabed and the body
(transversal),

Frotmax = Flar.max (:Uz ,I,.D,t,,v, ol G) — transverse force per length of
link maximally transmissible by the seabed's material,

v,G - Poisson number and shear modulus of the seabed's material.

There also exist other models of sea beds, including more complex ones. In
[DNV-RP-F105, 2006] guidelines can be found on the use of different models and
parameters of the seabed. The fact deserving a mention is that the models
described above and used below omit in particular any changes of the seabed's
properties due to the oscillatory impact of pipes and cables.

3.3 Methods of Simplified Description of Movement of Offshore
Structures

The monograph [Adamiec-Wdjcik I., et al., 2008] contains a short survey of
papers related to the description of a vessel's motion under wave action. Those are
most often fairly complex models used e.g. to determine strains to which the hull
is exposed. However, they are hardly useful in quick dynamic analyses of offshore
structures. Therefore, many works in the field of dynamics of such objects,
particularly cranes, take the assumption that movements of the base can be
described with relatively simple functions. Often it is further assumed that the
vessel moves only in the vertical plane passing through the longitudinal symmetry
axis of the deck. Such propositions seem reasonable for most offshore cranes that
operate predominantly on vessels which are moored and properly positioned
against the waves. Instead of making assumptions about the base's motion, some
papers prefer to deal with forces acting on it.

It is common practice to assume that the motion of a vessel or any given point of a
crane is harmonic or pseudo-harmonic. Sinusoidal waves with angular frequencies of
0.56 and 0.74 rad/s and height of 1 m directed along a ship's longitudinal axis are
considered in [Das S. N., Das S. K., 2005]. In the papers [Balachandran B., et al.,
1999] and [Li Y. Y., Balachandran B., 2001] two kinds of functions are used to
describe the motion of the jib's head in a crane installed on a ship. These are:

=  harmonic

X, = (Fsinat)cosy  ; v, = (Fsinar)siny , (3.40)



42 3 Impact of Water on Offshore Structures and Infrastructure
= periodic

X, = F[sinat+%sin 2a)t+ésin3atjcosl//,

(3.41)
. I . 1. .
y,=F s1na)t+Zsm2a)t+§sm3a)t siny,

where F  — excitation amplitude,
o — angular frequency of excitation,
¥ — boom inclination angle.

The papers [Osinski M., Wojciech S., 1994], [Osinski M., Wojciech S., 1998] and
[Osinski M., et al., 2004] focus on the planar problem of lifting a load from a
ship's deck, whereby the motion of the deck is described with a harmonic
function:

v, = Fsin(wt + ), (3.42)

where £ is the phase angle.

General motion of the base (3 displacements and 3 rotations) defined with
pseudo-harmonic functions (reducing to harmonic when a single component is
taken) can be considered for the model of a crane presented in [Maczynski A.,
2005], [Maczynski A., Wojciech S., 2007]. Similarly for A-frames (harmonic
functions) [Fatat P., 2004], [Adamiec-Wojcik L., et al., 2009] and BOP gantries for
transportation [Urba$ A., et al., 2010], [Urbas A., 2011].

In [Ellermann K., et al., 2002] and [Ellermann K., et al., 2003] two components
are distinguished among the forces exerted by the waves: a periodically changing
one and a constant one (related to drifting). These forces are determined from the
following formulas:

aer, cos(ar)— aei sin(ar)+a* Pirag
F, ()= aer,cos(at)—aei,sin(ar) , (3.43)

aer, cos(ar)—a ei. sin(ar)

where a — wave amplitude,
er;, ei; — coefficients empirically determined for a particular type of
ships, whereby je {x, 9 z},
w — wave angular frequency,
x,6 7z — generalized coordinates of the hull,
Darag — drift force determined empirically.

In the article [Cha J. H., et al., 2010a], hydrodynamic forces are proposed to be
present among those acting on the crane's base: one due to radiation and another
excited by the wave. The forces stemming from sea waves acting on the vessel
where the crane is installed are determined based on the spectrum of the wave in
[Witz J. A., 1995].
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Sometimes, the motion of the base is described using measurements already
performed in real conditions. In [Masoud Z. N., 2000] it is assumed that a ship
with a crane on board oscillates transversally and longitudinally and is subjected
to the motions of heaving, swaying and rolling. Calculations are based on data
obtained empirically [Fossen T. I, 1994] which describe transverse and
longitudinal oscillations as well as heaving, swaying and rolling of a selected
point of the ship (the reference point). Also in [Driscoll F. R., et al., 2000],
measured displacements of an A-frame are used to study a model of a cage
suspended in large depths (1730 m). In the paper [Pedrazzi C., Barbieri G., 1998]
the ADAMS package is used to analyse the dynamics of a vessel with a crane. The
sea is modelled as a massless object which moves vertically relatively to the
bottom. Its motion is defined in two ways: as a spline in time based on real
measurements of sea waves and as an analytic function constructed using a
pseudostochastic model of a wave.

In many of the models and computer programmes discussed herein, a provision
is made for defining the general motion of an offshore structure's base as a
pseudo-harmonic function with arbitrary number of components.



4 Homogeneous Transformations and Joint
Coordinates in the Description of Geometry
of Multibody Systems

Basic models of bodies used in dynamic analysis of mechanical systems, including
multibody systems, are a material point and a rigid body. They have, respectively,
three and six degrees of freedom. To describe their positions either three or six
independent coordinates must therefore be given. Usually, the position is given in
a rectangular clockwise Cartesian system. It is then convenient to express the
position of a point as a vector, also called a radius vector. To describe a body's
position, an additional coordinate system is attached to it in a fixed way. The
position of this coordinate system, thus also of the body, is defined by giving the
position vector of a selected point of the body (usually coinciding with the origin
of the coordinate system attached to the body) and additionally a 3x3 matrix
called a rotation matrix. In classical mechanics, displacement of a body from one
position to another is treated as a superposition of two motions: translation and
rotation. As a consequence, if a position vector of a point in the movable
coordinate system attached to the body is given, and a position vector of this point
in the reference system is to be determined, two mathematical operations are
necessary: multiplication of the rotation matrices and addition of two vectors. By
introducing the method of homogeneous transformations, the notation can be
simplified. Such transformations are described by 4x4 matrices and take into
account both a translation of a coordinate system and its rotation. The convenience
of such interpretation makes it highly popular in robotics [Craig J. J., 1988],
[Morecki A., et al., 2002], [Spong M. W., et al., 2006], [Jezierski E., 2006], which
is a domain where multibody systems commonly occur.

In the classical approach, the positions of links are expressed in a global static
coordinate system. To describe a system with »n links, 6xn parameters have to be
specified. These are called absolute coordinates. The use of joint coordinates
which define motions of links relative to their predecessors in a kinematic chain
enable a description of the positions of the system's consecutive links with far less
parameters.

The current chapter offers a basic introduction to describing positions and
orientations of coordinate systems, transformations of vectors and joint coordinates.
Application of homogeneous transformations and joint coordinates to describe the
geometry of multibody systems is also discussed.

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 45-5§.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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4.1 Position Vector: Rotation Matrix

To describe a point's position in a three-dimensional space, the following procedure
is used. First, a coordinate system is defined in which the point's position will be
determined. It is called the reference or base system. For the remaining part of this
book that system is assumed to be Cartesian and clockwise. Next, the position vector
is determined. The starting point of this vector coincides with the system's origin and
the end is at the point in question (Fig. 4.1). If the origin is denoted with {0} and the
point with P, the position vector may be given as:

T
p=| Yp :[OXP yp OZP]’ 4.1)

where the index T stands for the transposition operator of a vector (or matrix).

(
{0} ,
Z
ol
0
l‘P
0
Z[, 0 Y
0 X5
”x _____________________ y P !

Fig. 4.1. Position vector of a point

Points will be denoted with capital letters and coordinate systems with either
capital letters or bracketed digits (thus {}). The upper preceding index
accompanying a vector symbol r (or a component thereof), will indicate the
coordinate system in which the vector r is specified, whereas in the lower
following index the point to which the given vector pertains will be given.

Determination of a rigid body's position in a three-dimensional space requires
defining two coordinate systems: a reference one, relative to which the position
will be specified, and another one attached in a fixed way to the given body.
Hence, the description of the body's position can be construed as positioning two
coordinate systems against each other (Fig. 4.2).
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'Z

UX

Fig. 4.2. Relative position of two coordinate systems

Unambiguous statement of a position may be done by giving the position
vector 01'10,g of system {1}'s origin in system {0} and a rotation matrix JR
defining the orientation of system {1} relative to system {0}. The vector Orlarg

takes the form:

0 _lo 0 0 r
rlorg - [ xlorg ylarg Zlarg ’ (42)

and the rotation matrix can be written as:

XX 'YX 'z2°X
‘R=|'XY 'Y°’Y 'Z°Y]|. (4.3)

X2 'Y’z 'z2°Z
Elements of the rotation matrix are the appropriate scalar products of versors of
the axes of systems {1} and {0}. Since the scalar product of versors equals the

cosine of the angle between them, this matrix is sometimes called the direction
cosine matrix.

0 . . . .
The vector T,,, and the rotation matrix (;R enable determining the position

vector OI’P of the point P in the system {0} (Fig. 4.3) given the position vector of

the point P in the system {1}. It can verily be stated:

0 0 Oop 1
l'P: I.lorg-i_lR l'P . (44)
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th

lorg

-
_—

Fig. 4.3. Point P specified in coordinate systems {1} and {0}

It is a noteworthy observation that columns and rows of a rotation matrix are
orthonormal vectors'. Whence follows an important dependency:

JR=R'=IR", (4.5)

which states that the inverse of a rotation matrix equals its transpose. This property
greatly simplifies transformations of formulas and improves numerical efficiency.

The rotation matrix (4.3) is specified with nine elements. However, as the
versors of axes of a coordinate system must satisfy 6 conditions (three for their
lengths and three for them to be perpendicular to each other), there are only three
independent parameters defining the rotation matrix.

Fig. 4.4. Elementarny rotations around the axes X, Y and Z

' Column vectors Xi,.... X, are orthogonal if X,-TXj = 0 for each i # j and they are
orthonormal if they are orthogonal and furthermore X;/X; = +1 fori = 1,...,k
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Let us define rotation matrices for the so-called elementarny rotations. These
are rotations around a single axis X, Y or Z of the coordinate system. On schemes
a), b) and c) in Fig. 4.4 rotations around the X axis by the angle ¢,, Y by ¢, and Z
by ¢, are shown. Rotation matrices for elementarny rotations have the following
forms:

1 0 0

Ry (p.)=|0 cosp, —sing, |, (4.6.1)
0 sing, cosg, |

cosp, 0 sin(py_
Ryp)=| o 1 o0 | 4.62)

—sing, 0 cosg,

cosp, —sing, 0
RZ((/)Z ) =|sing, cosp, 0. (4.6.3)
0 0 1

As mentioned before, of the nine elements of a rotation matrix (4.3) only three are
independent. An arbitrary rotation of a given coordinate system relative to another
one can thus be presented as a composition of three elementarny rotations. These
rotations may be performed around axes of a previously fixed or the current
coordinate system. In each case, there exist twelve different variations built from
these rotations. The angles of rotation around the axes of the current system are
called the Euler angles. This subject is further described, among other things, in
[CraigJ. J., 2004].

a) {0}, {13 b) {0}

-~

/ ”Y, \Y ‘J uY
g // f
o F

&

Fig. 4.5. Initial and final mutual positions of the coordinate systems {0} and {1}
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In Fig. 4.5, a convention is shown for the so-called ZYX Euler angles. It is
presented here because of its application further in this volume. Let us assume that
initially the systems {0} and {1} coincide (Fig. 4.5a). To move the coordinate system
{1} to the position shown in Fig. 4.5b, the following procedure may be applied:

= turn the system {1} about 'Z by the angle @, J
= turn the system {1} about 'Y by the angle o,

= turn the system {1} about 'X by the angle o,.

The above allows us to write:

?R:Rlz(¢z)Rly(¢y)Rlx(¢x)' 4.7

Substituting the matrices of elementarny rotations (4.6) gives:

cQ.co, COPSQSP.—SP.CP. CP.SP.CP.+SPSP,
iR= SP.CO, SPSPSP.FTCP.CO. SPSPCO—CPSP. |, (4.8)
— 59, COP, 8P, co,co,

where c@ =cos@, s =sin@.

Discussing the rotation matrix, we should add that sometimes the rotation angles,
¢, and @, in particular, are small. This allows the form of the matrix (4.8) to be
simplified. However, such step usually leads to the loss of orthonormality by the
matrix, i.e. the equation (4.5) no longer holds.

4.2 Homogeneous Transformation

Transformation of coordinates with the formula (4.4) requires carrying out two

operations: multiplication of the matrix ?R by the vector 'r p and addition of

0 . . L . .
the result to the vector Tj,,, . Notation following (4.4) is inconvenient, especially

in cases of more complex transformations. Hence in [Craig J. J., 2004] rewriting
of the relation (4.4) is proposed:

0rP,4=01T 1rP,4 , 4.9)

0 . L. .
where 1T — homogeneous transformation matrix with dimensions 4x4,

0 1 . . . . .
Ip 4, Ip4 — position vectors of the point P with dimensions 4x1 in

systems {0} and {1}, respectively.

% In order to simplify notation, in symbols ¢, @,, ¢, we omit the upper index that indicates
the coordinate system.
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Taking (4.4) the equation (4.9) may be put in this way:

0 0 o 1

T | R T | T

1 00 01 1 1 (4.10)
\ - )

rp4 T "4

This can be easily seen to be the equation (4.4) supplemented with the identity

1=1. A homogeneous transformation matrix OIT will, in short, be called a

homogeneous transformation. It combines the operations of a rotation and a
translation. It also necessitates the representation of position as a 4x1 vector.

The notion of joint coordinates’ is introduced in [Craig J. J., 2004]. To use
these coordinates to describe a point's position in a three-dimensional space, four
values need to be given: (xi, x,, X3, X4), where x4 must not equal zero. Given joint
coordinates, Cartesian coordinates may be determined according to:

X X X
— _72 _ 73
x _’ y _’ Z —_—

Xy Xy Xy

.11

In the present book (likewise in most papers on robotics, e.g. [Morecki A., et al.,
2002], [Spong M. W., et al., 2006], [Jezierski E., 2006]) x, = 1 is assumed, hence
in (4.10) the following change is introduced:

Xp
r
rp, = r =[ P] 4.12)
Zp 1
1

In further considerations, we will omit the additional index 4, which indicates
a position vector with dimensions 4x1. The dimension of a vector is determined
by whether it is pertinent to a rotation matrix, or to a homogeneous
transformation. It is usually clear enough. Therefore, the relation (4.9) will be
written in the short form:

or,="T'r, . (4.13)

As is the case with rotation matrices, elementarny homogeneous transformations
may also be distinguished. They are defined for rotations about the coordinate
system's axes and a translation:

3 The method of homogeneous transformations and coordinates is widely used in computer
graphics. The most general form of a homogeneous transformation is
{ rotation Itramslation}

perspective |  scaling
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(1 0 0 0
Ty (9,)= 0 cosg. —=sind. 01 roation by the angle @, around the axis X, (4.14.1)
* 0 sing, cosg, 0
0 0 0 1
[ cosg, 0 sing, 0]
T (¢ ): 0 I 0 0} rotation by the angle @, around the axis Y, (4.14.2)
YA —sing, 0 cosg, 0
0 0 0 1]
[cosg, —sing, 0 O]
T,(¢,)= sing, cosg. 0 01 roation by the angle ¢, around the axis Z, (4.14.3)
e 0 0 10 i
L0 0 0 1]
100 a a
T(a)= 0 1.0 a translation by a vector g = a, | 4.144)
001 a
000 1 a,

Let us observe that the homogeneous transformation (4.14.4) can be expressed as
a composition of three simpler translations. It is due to the fact that the translation
by the vector a can be replaced by three translations along individual axes of the
coordinate system.

If ZYX Euler angles (Fig. 4.6) are used to define a homogeneous
transformation (4.9), it takes the form:

cp.co, PSP, 5P, —SP.Ch. CP.SP,CH +50.50. "X,
_|S8.ch, 59.50,50,+CP.Ch, 5.50,C, = CP. 50, *Vior,

_S¢y C¢y S¢x C¢y C¢x OZlorg
0 0 0 1

oT (4.15)

In addition to the coordinate systems {0} and {1} let us consider another system
{2}, whose position and orientation relative to the system {1} is given by a matrix

12T (Fig. 4.7). If the position vector 2I’P is known and furthermore OIT, the
following is obtained:

0rp_0rp 1
T=T T (4.16)
allowing us to determine:

0 O 2 0 2
r,=5T ’r,="T ;T ’r,. (4.17)



4.2 Homogeneous Transformation

(lZ

X,

Fig. 4.7. Three coordinate systems: {0}, {1} and {2}

53

Attention should be drawn to the fact that equation (4.17) is much more

convenient than its form that would follow from (4.4):

0.. _Oplfl 1p 2 0
I‘P_IR( r20rg+2R rP)+ rlorg .

(4.18)
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.0 .
The homogeneous transformation ,I' may be written as:

|
| -

T=|_ 1027 LT 2ors [ Tl . (4.19)
|

Inverting a homogeneous transformation is an often needed step. It means that

o ol
when a transformation T is given, the transformation T~ =T is to be

determined. To invert the matrix, any method may be used, e.g. that of elementary
operations described in [Dziubinski 1., Swiatkowski T., 1982]. They can also be
calculated in this way:

_ I,
U Tl I A 3 (4.20)

4.3 Denavit-Hartenberg Notation: Joint Coordinates

In the analysis of multibody system modelled as open kinematic chains, the
Denavit-Hartenberg notatin [Denavit J., Hartenberg R. S., 1955], [Craig J. J.,
2004], [Spong M. W, et al., 2006], [Jezierski E., 2006] is prevalent. This notation
minimizes the number of values necessary to describe the positions of
a mechanism's links. Positions of subsequent links of the kinematic chain are
expressed in the current coordinate systems. Their positions in the global
coordinate system are obtained by means of appropriate homogeneous
transformations presented in section 4.2. Methods of description of the geometry
of links and their interconnections will be discussed next. Defining local
coordinate systems and matrices of homogeneous transformations that allow for
switching between consecutive coordinate systems will also be treated.

Further discussion assumes that individual links of the system are connected
into kinematic joints of the 5" class*. No loss of generality is incurred by this, for
a kinematic joint of a lower class may be replaced with some number of kinematic
joints of the 5™ class with zero lengths’. In the analyses presented, two types of
kinematic joints will appear: revolute joints and sliders.

From the kinematics point of view, the task of a rigid link p (Fig. 4.8) is to keep
the axis of p+1 in fixed position relative to the axis of p. For kinematic
considerations, it is therefore sufficient to describe the geometry of the link p with

* Most papers, e.g. [Morecki A., at al., 2002], define the class number as the number of
degrees of freedom reduced by a given joint. However, some monographs ([Parczewski
Z., 1978], [Gronowicz A., 2003]) the rank of a class is defined to be the number of
independent motions allowed by a given joint. A joint of the 5™ class is then described as
one of the 1* class.

5 A joint of the 4™ class can be replaced by two joints of the 5™ class, one of the 3™ class
with three of them and so on.
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two parameters: its length a,, i.e. the distance between the axes of p and p+1, and
the angle ¢, between those axes. In Fig. 4.8 these values are shown
unambiguously in space. The angle a,, is taken around the line a, according to the
right-hand rule (it is assumed that the line a,, is oriented from the axis of p towards
the axis of p+1).

axis p+1

Fig. 4.8. A link p

axis p+1

Q) 91)+1
link p+1

Fig. 4.9. Connection of links p and p+1

As stated previously, two consecutive links are assumed to form a revolute joint
or a slider of the 5™ class. Links p and p+1 are connected by an axis denoted by
p+1 (Fig. 4.9). The interconnection p+1 requires adding two values to the
description: the offset d,,; of the link and the configuration angle 8,,, (Fig. 4.9).
A more detailed discussion of the problem of describing the link and its
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connection with another link from the motions’ points of view can, among other
things, be found in [Craig J. J., 2004]. Let us, however, remark that in a revolute
joint the configuration angle 6., is a joint variable (the offset d,,; of the link is
constant), whereas in a slider the offset d,,,; is variable (with the angle 6,,, being
constant).

axis p+1

Q\) 01_7+1

link p+1

Fig. 4.10. Coordinate system of the link p

Individual links of the kinematic chain and their relative positions may
therefore be described by four values: length of the link a,, twist angle of the link
o, offset of the link d,,, and interconnection configuration angle 6,,,. This
method of describing a mechanism is called the Denavit-Hartenberg notation.
Three of the mentioned values are constant and one is variable — it is the
interconnection configuration angle 8,,; for a revolute joint, and the offset d,,,; of
the link for a slider. The set of all the joint variables constitutes the configuration
space of the chain.

To the Denavit-Hartenberg notation, a method of defining a local coordinate
system for a given link is related (Fig. 4.10). The axis ”Z coincides with the p
connecting axis. The origin of the coordinate system {p} lies at the intersection of
the axis of p and the line a,. In the case of a, = 0 the origin of {p} lies at the
intersection of the axes of p and p+1, and the axis *X lies on the common normal
to the connecting axes of p and p+1. When the axes of p and p+1 do not intersect,
the axis "X is directed towards the connecting axis of p+1. The axis ”Y is taken in
the way making the coordinate system clockwise. The coordinate system {0}
attached to the foundation and the system {7} attached to the last link of the chain
may be chosen arbitrarily. They are usually chosen in a way maximizing the
number of Denavit-Hartenberg parameters and variables which equal zero.
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Knowing the Denavit-Hartenberg parameters and variables for a link p allows
to determine the form of the homogeneous transformation mapping the system

{p+1} onto {p}:

cl,, —-s6,, 0 a,
s@ .ca. O _ca, —sa, so.d
P p+1="p p+1="p P pp+l
p+lT_ 4.21)

s0,sa, c0,s5a, co, co,d

0 0 0 1

p+l

The transformation (4.21) can be easily obtained observing that it may be treated
as a product of four elementarny transformations: two of them due to rotations by
the angles a, and 6, around the axes ’X and ” *1Z, respectively, and two due to
translations by the distances a, and d,,; along the axes X and ”*'Z, respectively.
[Craig J. J., 2004] offers a more detailed explanation.

Coordinates from the system {p+1} are mapped to the system {p} according to
the formula:

’r=, /T ""r, (4.22)
and to the inertial system with:
0 = +1
r="r= [ .. T(g..) |[""r, (4.23)
i=0

where ¢;, — joint (configuration) variable of the joint i+1.

Let us again underline that using the Denavit-Hartenberg notation causes each
of the matrices ; +ilT depend only on a single variable ( g,,, = 8,,, if the kinematic
joint is a revolute or ¢,,, = d,,, if it is a slider).

In case of the connection between the links p and p+1 being of a lower class
than 5", it can be, as already mentioned, replaced by an appropriate series of

revolute joints or sliders. Thus, where k is the class number of the connection
between the links p and p+1, the following may be assumed:

6—k
,,f{l‘(k)=,,f1T(k)(q,,+l,l,---,q,,+1,6_k)=H,,f{l‘(k,,-)(qp+1,,~). (4.24)
iz

To bring more clarity into the matter, let us consider the case of the links p and
p+1 being connected with a spherical joint (Fig. 4.11). Then k = 3 and:

Qpiis =Wpits D12 =0pis  4pi13=Ppir (4.25)
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axisp linkp _\ < P

—

Fig. 4.11. A spherical joint of links p and p+1

so the motion of the link p+1 relative to p is described by three independent

variables y ., 6 being ZYX Euler angles. The matrices flT(k’j) in

p+l» ¢p+l

(4.24) take these forms:

Cl//erl _Sl//erl 0 ap
s ca, ¢ ca, —so, so.d
Ty = Vipuctly Vet poTTe (4.26.1)
sSY 80, <y, sa,  co,  cad,,
0 0 0 1
c6,, 0 s6,, 0]
'y - 0 1 0 0 4262
pT(k2) = —s9p+1 0 CBPH ol (4.26.2)
0 0 0 1]
1 0 0 0]
0 ¢ -5 0
s = Opa =50 T (4.26.3)
0 s€0p+l C¢p+l 0
0 0 0 1




5 Equations of Motion of Systems with Rigid
Links

In the current chapter the main steps of determining the components of the
equation of motion for open kinematic chains consisting of rigid links are
presented [Wittbrodt E., et al., 2006]. The method is based on the Lagrange
equations of the second order, homogeneous transformations and joint
coordinates.

The Lagrange equations of the second order may be written as:

oV ., dD _
Sq(E)+a—q+a—q—Q, 5.1

where g,(E)= (%S}TE;; - S}Tf;;jkl

a_V = (a_vj s a—D = (a—DJ ) Q = (Qk )k:l n*
k=l,....n k=1,...n

q D ..., a 94 ), ., T
q=[q1 Y P q"]T — vector of generalized coordinates,
(']=[c}1 R P q'"]T — vector of generalized velocities,
E - Kkinetic energy,
V- potential energy,
D - function of dissipation energy,
0O, — non-potential generalized force corresponding to the k-th

generalized coordinate,
n  — number of generalized.

In the following reasoning, the dissipation of energy is omitted (D=0) and the
multibody system is assumed to be situated on a movable base {A} (Fig. 5.1)
whose motion relative to the inertial (global) system {0} = {} is known.

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 59-73.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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Fig. 5.1. Coordinate systems: {} — stationary (inertial) global one, {A} — that of the
movable base, {}~ — local one attached to the considered link

For the sake of notation's clarity, the coordinate system {0} will for the
remaining part be identified with the inertial system {}. Additionally, the
following notation will be assumed:

T=T", (5.2)

where p — number of the link in the kinematic chain.
Let us introduce the following denotations:

(p) (p) (p)
'x()rg 4 yorg 4 Z()rg ° (53)

for the origin of the system {p} in the coordinate system of the preceding link and:

¢(p) () (D) , (5.4)

x 2Ty Y7z
for ZYX Euler angles determining the orientation of the axes of the system {p}
relative to the axes of the preceding system.

Matrix of the homogeneous transformation (/),T taking into account the motion

of the system {A} relative to the system {} may be represented as a product of six
matrices, each of which being a function of a single time-dependent variable only:

(/)AT(I) :(/)le (/)xTz (/)tT3 (/)AT() (/)sz gT4 ) (5.5
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where
10 0 10 0 0]
0 1 0 0 0 co™ —sp® 0
0T =0T Y )= . T, =0T, [ " .
((Vg) 0 0 | 0 (% ) 0 so®  cp® 0
0 0 0 1 _0 0 0 1]
10 o0 0 e 0 spM 0
0 1 0 yW 0 1 0 0
T T (A) org , OT (A) ,
bix)= 0o o0 1 oA L (o)) —sp™ 0 g™ 0
L0 0 0 1 . 0 0 0 1]
[ 1 0 0 0 cg™ —s¢M 0 0
0 1 0 0 spM cp® 0 0
OT ()T A))— , OT OT (A) Z ,
(me) 0 0 1 L:qg) AT6 (¢ ) 0 0 1 0
L0 0 o0 1 0 0 01
xii‘; i (2), Yo = yore ©), 2o = 247y (0),
Y= e o =0 () o =g ()

The order of rotations included in the matrix 4 T conforms to the convention for
7YX Euler angles presented in section 4.1.

~ [~ ~ =~ T . . .
If r= [x y z 1] is a vector determining the coordinates of a mass dm

in the local system {}" attached to given link of the system, then the coordinates of
this mass in the system {} can be given with this formula:

r=T®T(q)F=TF, (5.6)

where T(q):{?T(ql,...,qn) — matrix of coordinate transformation from the

local system {}~ to the system {A}, dependent on the generalized
coordinates of the link,

=T T(q) .
In a particular case whereby the base {A} of a multibody system is motionless, the

following may be assumed:
T =1, (5.7.1)

where I is the identity matrix.
Then:

T=T(q). (5.7.2)
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5.1 Kinetic Energy of a Link

Kinetic energy E of a link with mass m can be calculated using the trace of
amatrix [Paul R. P., 1981], [Jurewi¢ E. I., 1984]. The kinetic energy of an

elementary mass dm with coordinates (x, ¥, Z ) can then be represented as:

ik k9 %2 0
o

dEz%tr{i’l"T}dm ~lu yr o yyeye o |ram=
X zy iz 5.8)
0 0 0 0

_ 12, .2 .2 :lz
—2()6 + 3y +27)dm 2v dm,

u
where tr(A)= Zaii — trace of the matrix A, =(a;); ;-
i=1

9
AAAAA u

V=it + 37+

Since the vector ¥ which determines the position of the elementary mass dm in
the local coordinate system has constant coordinates (in time), then:

P =TF, (5.9)

and the expression giving the kinetic energy of the considered link takes the form:
1 .. o~ o~ .
E= Ejtr{rrT}lm = %Itr{Tr v’ TT}dm =

_l . ’:"’:"T .T _l . .T
= 2tr{TDrr dm:IT }_ Su{THT').

The matrix H occurring in the above formula is the matrix of inertia of the link
whose elements may be calculated thus:

(5.10)

]Ob?) v I Ik

. Joo Jeo Jon Jo
H:IFdemz v Tan vz Uy 5.11)

m oo T g I3

Ig gy om
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where  Jgo = J.i dm, T Jog = J. yidm, J 5 = IZ 2dm - planar moments of
m

m

inertia in the coordinate system {}~,
Jsg = Xydm, I = J‘}'Z'dm, Jo7 = J‘ﬁ'dm — centrifugal

m m m

(deviatoric) moments of inertia in the coordinate system {} ",

J~—J.xdm J~—J.ydm J~—J.de — static moments

m m

of inertia of the link in the coordinate system {}",

m — mass of the link.

The following relations hold:

|
Jisx) = E(J +7;-Tg) (5.12.1)
1~ - —
1
Jigz) =5 U +T5—T5) (5.12.3)

where .7;( ZJ‘(iZ +22)dm, ‘7\? :J.(EZ +22)dm, _2 :J‘(xz +§2)dm are mass

m m m

moments of inertia of the link relative to the axes X, Y, Z,

respectively.
Taking (5.6) into account, we may write the matrix T as:

_ Y _ 4 o) T(q)| =TT +°TT. (5.13)
Tdt
Since:
= dT &oT L
T="2o5% ST, 5.14
i Loyl Zl ;4 (5.14)
WhereT—a—T,
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the following is obtained:

T=TT+> Tg,, (5.15)

i=1

where T, =TT .
A reasoning analogous to that in [Wittbrodt E., et al., 2006] leads to:

tr THTT} i=1,.... (5.16)
The matrix T may be calculated by differentiating (5.13):
T=TT+2TT+4TT, (5.17.1)

where T is defined in (5.14).

The matrix T is obtained by differentiating by time the formula (5.14), giving:

" n dT _ n n aT _ non _ no_
T :Zl[ dll g;+ T, qu = Z{Z[aq{ q_j]qi +T, ql‘| = ZZTI, 4q;9; +ZlTi G, (5.17.2)
i= j i=

i=1| j=1 i=1 j=1

9T 2T

where T, ; =

gj_ a%’aq]' .

Taking (5.17) into account, we may rewrite the relation (5.16) as:

T
£(E)=t{T, H{ZTT+23TT+ZZT,J qq;+2.T, ql}
=1 j=1 I=1 (5.18)

= Zai,l (@) g, +e(q) for i=12,...,n,
=1
where a;,(q) = tr{Ti H TIT },

T
e(q)=tr 1}H{%TT+2%TT+ZZ']‘,J@ q]} =

=1 j=1
T
T,.H{zﬁuﬁzm,+zzfs,,,T,,,q-,q-,} |
=1 I=1 j=l

|1 when [=j
“712 when I#j’
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The above equation may be presented in a matrix form:

gE)=Aj+e, (5.19)

,,,,,

An important property of the matrix A is its symmetry. The dependencies (5.18)
and (5.19) will be used to formulate the equations of motion of analysed
multibody systems.

5.2 Potential Energy of Gravity Forces of a Link

Let the coordinates of the centre of mass of a given link in its local coordinate
system {}~ be specified by the vector:

E=x . z. 1. (5.20)

Assuming the axis °Z of the global (inertial) coordinate system {} to be
perpendicular to the Earth's surface, we obtain the following formula that gives the
potential energy of the gravity forces of the link:

VE&=mgz., (5.21)
where g — acceleration due to gravity,
Zc — component in the direction of the axis Z of the vector

I.= [xc Yo Zc¢ I]T specifying the position of the centre
of mass of the link in the inertial system.

By knowing the transformation matrix T from the local coordinate system {}~ to
the global one {} the following may be obtained from equation (5.21):

Ve
v G. (5.22)
where G = G(Q)= (gi)i:l ..... n’
8 :a_V:mgOSTir'C’
aqz'

0,=[0 0o 1 o]

Elements of the vector G depend therefore on the matrix T, and hence on time ¢
and the vector of generalized coordinates q.
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5.3 Generalized Forces: Equations of Motion of a Link

If non-potential forces or moments thereof act on a given link, they must be taken
into account in the equations of motion as generalized forces. When the
convention of homogeneous transformations and coordinates is applied, vectors of
forces and their moments, unlike those of positions, have zero as their fourth
coordinate:

F‘=[ﬁx F, F, O]T, (5.23)
M=, a1, 5. o (5.24)

Let us assume that a force F is applied to the link at the point N (Fig. 5.2).

L'z

=1
l

X

IJX

Fig. 5.2. Force acting in the local coordinate system

The force F is described in the inertial system by:
F=TF. (5.25)

The generalized force corresponding to the i-th generalized coordinate [Leyko J.,
1996] may be written thus:
rar

=F'"TF fori=1,..n (5.26)
dq

Q,(F)=F

i
Using (5.25), we may transform the formula (5.26) to obtain:

0.F=FT'T F. (5.27)
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If an external moment of force M specified by (5.24) is applied to a given link, it
is possible, by representing its components as pairs of forces [Grzegozek W., et
al., 2003] and performing appropriate transformations, obtain the formula for the
generalized force corresponding to the i-th generalized coordinate which is due to

the moment M:

~ ~ 3 ~ 3 ~ 3
OM)= ngitz,a LiatM, Eitz,l fiztM, Eitl,z Lisys (5.28)

......

and T, respectively.

Finally, using the Lagrange equations of the second kind, the equations of motion
of the link concerned are put in this form:

Aq=Q-G-e, (5.29)
where — matrix of inertia defined in (5.19),
— vector of gravity forces defined in (5.22),

A

G

e — vector of nonlinear forces defined in (5.19),
Q — vector of non-potential forces,
Q =
0, =

(Qi )i:l n’

,,,,,

; Qi(F)+ Qi(M)-

5.4 Generalization of the Procedure

The equations of motion for a single link having been determined, the equations of
motion of an arbitrary open kinematic chain (Fig. 5.3) can be formulated.

Since joint coordinates are used to describe motion, the motion of a link p
depends on its generalized coordinates, of which there are 7 »o and on the

generalized coordinates of its predecessor s in the chain. The total number
of generalized coordinates for a link p (including all the generalized coordinates of
preceding links) will be denoted by n,. The vector of generalized coordinates of

a link p may therefore be written:

(s)
q" = {?m} , (5.30)
q
where ¢ — vector of generalized coordinates describing the motion of the

link s preceding the link p,
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(~](p) = [Zjl(p ). 'q}Ep )]T — vector of generalized coordinates of the
»

link p describing its motion relative to the link s,
~(p) (p) (p) (p) (P) (P) (p)
q;"" € {x y z ?x L }’
P 1, (p)qT
Q" =lg"” ... ¢ T,

n,=n,+n,.

link p=1i__

link

hx

Fig. 5.3. A link p and links preceding it in a kinematic chain

The presented procedure takes the tree structure of kinematic chains into
consideration. Therefore, consecutive links in a chain need not be assigned
consecutive ordinal numbers. In such cases, one needs to define an ordered set of
indices of the preceding links in the kinematic chain along with the index of the
concerned link p:

N,= {ip,l""’ip,l""’ip’l\'}p}’ (5.31)
whereas:
N » — number of elements of the set N oo
Lg, =P
i g = (5.32)
N, =N;u{p},
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The vector q(” ) from the formula (5.30) may now be written as:

e

i)

i )7 iof U
) | g g g (5.33)

q

and the transformation from the coordinate system of the point p of the link to the
inertial system {} may be expressed as follows:

r? =T® §gP =6 TP g = %TT”’) £ , (5.34)
where T® Z%T(I)T(S)(q(s)),
T =07() T (qm )T(p) ((](P)): OT() T (q<p> )
T® =T® TW i

F¥” _ vector of coordinates of the point in the local coordinate
system {p}.

Following the reasoning in section 5.1, thus is the kinetic energy of the link p:

E,=Su(TVH" Ty (535)

where H” — defined as in (5.11),
and the Lagrange operator for the link p takes the form:

g (E,)=AP§" +&7, (5.36)

AP — (5(p)
where A =(a,"), i,

44444

~ T
(p) _ tr{T(p) H(p) T(p) }

T
(P) =tr T(P) H(p)|:0 TT® +2°0 TT({?)+ZZT(P)q q(p):l
J 9

=1 j=1

T aT" 0T {ZT(f)T;fS)TW for k=1,..n,
) = = -

aq]((p) T4 aql(cﬂ) - ZT(t)T(")T,ffL for k=n +1L..n,
STTYT?  for I j=
\J ’
(p) 2m(p) =
T gL’ =9T() o1 STTOT?  for =Lt
aq(maq(p) AT eng j=n, +l,...,np
0 TT(&)T(P) for lj= n, +1’m,np

l-ng,j—n
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This relation may also be written with a matrix and vector blocks:

2 A (P) A (P T Tawm T
Ai,,.l »i,u e Al‘,m *ipjc e Ai,,.l »i,y,ﬂ/p ~(l"'l) eip‘l
Py | AP A (P) AP (i, a» |,
g (B = Ai,,,j,i,,‘, Ai,,,j,i,,‘k Ai,,,j,i,,‘,\-,p q(’”) | &, (5.37)
AP AP AP | slis,) | (&P
P S R e P B | 1 L]
AP =(~(p> )_ N
where ip ol an,,,j+l,nak+m l_l"'“nfg S
m=l,...n;
ip.k
S(p) (~<p>)
€, =\e
Ip.j a1 1=1,..ji; .’
p.J
j-1
Mg, = i)y
v=I
or:
A(p) A(p) = (s5) &
(P)y _ 5,8 sp || 4 s
g (E)=] 4 + (5.38)

AP A(P) ("i'(p) e |’

pss p.p p
AP A AP
N ot L) LA
where A/ = : : Al = :

, > sp ’
(P) A () AW
ip.l*5 As,s S’i,,,ﬁ(ﬂ)

(p) _| A (p) A _ A

Aps = Ap,ipyl AP»X:| ’ A, =AY
=(p)
i » _ [z

éip) =t epp = [eﬂp ]’
’éA(p)

s, p —defined in (5.32).

Making use of the dependency (5.22) obtained in section 5.2, we may express the
derivative of potential energy of gravity forces of the link p with respect to
generalized coordinates as:

wveE
aqé) - (gl(p) )1:1,...,,.p , (5.39)

where g,l(p) =mP g93 Tl(p) i:c(p) )
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The dependency (5.39) may thus be rewritten:

[ éip)
Ve o -~
P m=G"= G | (5.40)
q >
G(p)
by i
where G(jm = (g'('fj)”),:l .
equivalently:
8 ~(p)
avp — (p) Gs (5 41)
aq™” Gw .
P
G»
i
where Gip) = , G;P) — G;p) )
éip)

The generalized forces due to external forces and moments thereof are calculated
like in section 5.3 giving:

fo® ]|
Q.
Q" = QE:,) ’ (5.42)
0O (P
L i”'ﬁn_
where QEP) :(Q,(,le (F(p))+Q,(,p_)+l (M(p))) ’
r “ % =i
n, —defined in (5.37),
7
or:
- Q(p)
Q" {AS ’ (5.43)
(p)
Q,
0 (P)
R
where Q' =| i |, Q' =Q\.
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Finally, the equations of motion of the link p may be written thus:

K(ﬂ) q(ﬂ) — f(P) , (5.44)

where f(p) — Q(p) _ ’é'(p) _G(p) ,

AP P GP QP _ defined by formulas (5.36), (5.40) and
(5.42), respectively.

The equations (5.44) describing the motion of the link p also indicate how its
motion depends on the generalized coordinates of the preceding links (i.e. the

ip1)

coordinates fj( son @ of the vector q*)) and its own coordinates, i.e. ' .

Therefore, those equations may be written in the form:

NN - (s) £(p)

AS,S AS,[) {q ! }_ fS

A =) |
q f,

, (5.45)

A A N A A A . A
where f;m =Q§p) _e§p> —Gip), fpp) _Qpp) _e(pp) _G(pp) )

The above equations of motion are obtained taking into account the kinetic energy
and the potential energy of gravity forces of a single link p as well as the force

F” and the moment of force M ”’ acting upon this link.
If a kinematic chain has links numbered 1 to p, the energies: kinetic and
potential of gravity forces of the system are given by the expressions:

)4
E=YE,, (5.46)
i=1
V4
VE=DVE. (5.47)
i=1

Let us assume that the equations of motion of the links 1 to p-1, which take into

account the kinetic energy E,, the potential energy V.*, the forces F® and the

moments of forces M (i=1,...,p—1), have the form:
APD q(p—l) =fr (5.48)

where A"V is a matrix of dimension N, XN, and q and f are

p-1
n,,= zni -element vectors.
i=1
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Adding a link p so that it connects with the link s< p—1 belonging to the

considered kinematic chain makes the equations of motion of the entire system of
links 1 to p expressible as:

AP q(p) =f(p)’ (5.49.1)

or:

_ e Iy e (pe _ =
A(ﬁ 1)+A(S{>S) | A(Sp) q(p D ~ f(p l)+fs(1>)

——— e el I = 5.49.2)
(p) A =(p) £(p) ’ (5.49.
Ap,s ! Ap,p q fp
h A(ﬂ) A(p) A(p) f(ﬁ) tri £ di . ~
where 55 Ay pa Ay 17 — matrices of dimensions n, ;xn, ,, n, xXn,,

1,%n, ; in which the appropriate submatrices with indices i, je N,

are calculated according to:

_ A" when k,le N,
(Aﬁ?)k, =k P forkl=1...n,,,
’ 0 otherwise,
_ AP when ke N ,
(Aiflz)kz k.p P for k=1,....n,_|,
0 otherwise,
_ A" when ke N ,
(A(,,’,’E)k: p-k p for k=1,...,n‘,,,l,

0 otherwise,

(fm) fk(”) when ke N, for k =1
. = ork=1,....n__,.
v 0 otherwise, -



6 Modelling of Joining Elements: Constraint
Equations

Individual links of a kinematic chain are often interconnected by elastic or
damping (or both) elements. Among these are mainly: springs, dampers,
absorbers, actuators. Components expressing the potential energy accumulated in
such elements and its dissipation need to be introduced to the system's equations
of motion. The present chapter discusses a method of modelling spring-damping
elements treated as massless objects. Constraint equations occurring when
kinematic subchains are joined in certain systems are also presented.

6.1 Spring-Damping Connecting Elements

The considerations presented below are under the assumption that the modelled
element connects movable links i and j (Fig. 6.1). In the general case, the links i
and j may belong to different branches of the chain.

Point A is the attachment location of the connecting element to the link i,
whereas B the point where the element is attached to the link j (Fig. 6.1). The
deformation of the connecting element is given by:

Ad, ; =|r|-d} (6.1)

i,j?
where df j — freelength of the element connecting the links / and j,
r,; — vector starting at A and ending at B expressed in the inertial
system { }.
The energy of elastic deformation of the connecting element may be determined
from:

VIY, :%Ci,j(Adi,j)2’ (6.2)

where ¢; ; — stiffness coefficient.

The vector r,, may be calculated in this way:

Ly =T —T,, (6.3)

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 75-89.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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link i
link b
cl J bi, J
iy
0
Z r, S
r, link j
'Y
VOX
Fig. 6.1. The element connecting the links i and j
whereas:
r,=TYF? (6.4.1)
=TV §7 (6.4.2)
where Ff‘(i),'flg(j ) — the vectors of coordinates of the points A and B in the
systems {i} and {j}, respectively,

r,,ry — the vectors of coordinates of the points A and B in the

inertial system { }.

Considering the case in which the branches containing respectively the links i and
j have as a common base a link b and a coordinate system {b} attached to it, the
homogeneous transformations in (6.4) may be specified as:

T(i) =T(t)(t q(’), q (z)) T(l)(t q q(bz)) T(i) (t’ql( ’qslb)’q(bl)’ ’qflbl)) (651)

T = T(J)( q?...., (J)) T(z)(tq q<bj>) T(J)( o) qf,”’,é(b” t?,(,f”)’ 6.5.2)

* qn;,] — vector of generalized coordinates

where q [q

describing the motion of the common base {b} of the links i and j,
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fi(b’i) = [qfl”") ... qﬁfll) ] vector of generalized coordinates
describing the motion of the link i relative to the common base
{b},

ﬁ(b’j )= [ﬁl(b’j ). qﬁf/l | vector of generalized coordinates
describing the motion of the link j relative to the common base
{b}.

A fact worthy of remark is that, in special cases, the indices 7, ﬁb,[, ﬁb’ ; may

equal zero. And so, when:

n,=0 — vectors of generalized coordinates of the links i and j have no
common elements: q(i) ﬁq(j ) = D, (@ denotes the empty set),

n,; =0 — vector of generalized coordinates of the link i coincides with the

vectors of generalized coordinates of the base (link b): q(i) = q(b)

and ¢ =0,
n, ;=0 — vector of generalized coordinates of the link j coincides with the

vectors of generalized coordinates of the base (link b): q(j ) =q(b)

and q" =@.

. . . . . . s
Appropriate derivatives of the potential energy of elastic deformation V/ j are

given by:
VS 0
=¢ Adl j —Ad, i (6.6)
dq, g, ’
where g, € {ql(b), ,q,(,f’),qu 1), ,q,ﬁf’ l)ﬁl(b j), ﬁ,if/’)} .
From (6.1) it follows that:
0 dr
—Ad, =_| AB| _ (6.7)
dg, g,

The length of the vector r,, is determined by:

5] :\/(xB —x, S+ —ya ) +(zg—za) (6.8)
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additionally:
|rAB|2 = (xB — Xy )2 + ()’B Y4 )2 + (ZB - ZA)2 = [rB _rA]T [rB _rA]' (6.9)
Leveraging the general identity:
of 1 of?
—_— =, (6.10)
dq;  2f dgy

where f denotes an arbitrary function of the variable g, and taking (6.4) into
account we obtain:

8|r AB| _
9q, |rAB|

The derivatives (6.6) of the potential energy of elastic deformation of the

[, —r, 10 £ 10 0], 6.11)

connecting element may be written as:

TR T ED, for g,  {g....q2].

y
V', ¢ Ad

_ G0
dq, ‘rAB‘

T D =(i Y oy
[05 -1, ] T E for qke{ql(b"),...,q,(;f;’)}, (6.12)
T, for g, € {g",...q0}.
N

Analogous derivations may be performed when the interconnection is by a
damping element. The dissipation function is given by:

1 )
D, =b, ad T, 6.13)
where b[, j — damping coefficient of the connecting element,
Ad.l-’j =|l"AB| — change of the length vector r,, in time.

Differentiating (6.13) by ¢, yields:

T8 - T for g, € {qu),..‘,q;f)} ,
oD. . b Ad, . - o ) e
a_“f ==L [r, —r, ] 1 -T & for ¢, € {ql(h”),...,q,%f;’)}, (6.14)
G ‘rAB‘ '

TV § for g & {0}
It is noteworthy for the sake of numerical efficiency that the partial derivatives
defined by (6.12) and (6.14) are equal zero for ¢; € {ql(b),...,q:lf)} and

qi € {(jl(b),...,c},(qf) } The lengthy process of their calculation may therefore be
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avoided. This fact has the following physical interpretation: in an element
connecting two links, a change of the (elastic or damping) force can only occur
with an alteration of relative position of the points A and B. The common lifting
motion of the attachment points of the connecting element does not influence the
force occurring in it. A proof can be found in [Szczotka M., 2004]. It requires the
assumption that b is a rigid link.

As a final remark let us state that another element, which is often of paramount
importance in the analysis of dynamics of cranes, may be modelled similarly. That
element is the hoisting line. When considering cases in which the length of the
hoisting line changes significantly, the stiffness (and damping) coefficient should
be dependent on its current length.

6.2 Spring-Damping Connections with Clearance

The considerations of models of connections with clearance are limited to
kinematic joints of the 5™ class (Fig. 6.2) [Harlecki A., 2002]. Let the
displacement in a connection be denoted as:

d ey =g — g, 6.15)

The connections depicted in Fig. 6.2 are two-way ones. In technical applications
one-way connections also occur often. Therefore, for the rest of this work, models
of one-way connections with clearance will be presented. Two types thereof are
distinguished: L and R (Fig. 6.2). A two-way connection is obtainable by
combining models of those two types.

Assuming the elastic characteristic of the spring-damping element (SDE) E®
to be linear, we may present interaction between the links A and B as shown in
Fig. 6.3. A model of this type of a spring-damping connection with clearance can
be easily implemented on a computer, as it may be defined in the following way:

= for an element of type L:
0 when d (L) >-A (L)
Foum= £ E (6.16.1)
S.E CE(L) (dE(L) +AE(L)) when dE(L) < _AE(L)

= for an element of type R:

: (6.16.2)

= {CE(R) (dE(R) _AE(R)) when dE(R) > AE(R)
S.E*®

o when d ) <A

where ¢,),C ) - appropriate stiffness coefficients (Fig. 6.2).
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ql.l’l
a) A, I

AL
ﬁ SDEF‘ L SDEI‘ l.f(l
4 |"VWV\'—
I

i o
b ., |_|:|_| _D_I b x

Fig. 6.2. A spring-damping connection with clearance: a) a slider, b) a revolute joint

a) Es,r:‘“ b) FS.E““ F;.E(R» =Crr (dEue» —AEW)

A, F,

F,

5.0 = Cpn (d +A£‘“)

ED

Fig. 6.3. The elastic force in a connection with clearance of type: a) L, b) R
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Discontinuity of the derivative F; ) and F( ) at points d o) ==A u),

d g0 = A p(x) is a disadvantage of this model. To eliminate this inconvenience,

amodel SDE E” ® with a modified characteristic (Fig. 6.4) may be used. The
functions describing the forces in the connection are then defined thus:

= for an element of type L:

0 when d, ) >0
F (L) = F.S{,E(L) when —CIAE(,_) < dE(L) <0 s (6171)
CE(L) (dE(L) + AE(L)) when dE(L) < —CIAE(L)

= for an element of type R:

CE(R)(dE(R) —AE(L)) when dE(R) > aAE(R)

Fopn = F pw when 0<d ) <al . . (6.17.2)
0 when dE(R) <0
F, F. .
a) S.ED b) S.E® EY.I:‘R‘ =Cl;““ (dl;““ _AI:‘R‘)
CEm (a_l)AE«R\
F;,E(“ :0
_aAE”" _AE(L) for . dl:‘“ >0 3
| dbm F;'E(R‘ :0 AE(R) aAE(R
fort d, 4 <0
—cbm(a—l) A
F o =60 (dy +A,0)

Fig. 6.4. Equivalent (continuous) model SDE ELR of type: a) L, b) R
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The functions F S] p(u) and F Sr () are assumed to take the form:

l.r)d
Fifhn =z(”’)d§<meﬂ A (6.18)
ensuring that these conditions are satisfied:
l,r
F) 0(0)=0, (6.19.1)
F) 0 (0)=0. (6.19.2)

The constants ;[(l”), B () occurring in (6.18) may be obtained from the

conditions, respectively:

= for an element of type L:

Fy .o (~a0)=-c,w(a=1A 0 = FL,, (6.20.1)
Fy w0 '(— al . )= Cpw s (6.20.2)

= for an element of type R:

FJ a8 )= ¢ (a=1)A oy = FY,. (6.21.1)
Fe g '(aAEm) )= Cpr) » (6.21.2)
giving:
l,r
c (L'R) _ 2 FS(,a )
Bl = - d\) 6.22.1)
Fy
F(/J)
(I,r) — A,a
e e 622

where dé =—al ) for elements of type L, i.e. for the function F, Sl £

Or =aA gr) for elements of type R, i.e. for the function F Sr’ £(®) -
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The functions Fs £ (d E(L‘R)> depend on a parameter a. Samples of their graphs

N . .
for ¢, um =5- 10°—, A pr) =30mm and different values of a are plotted in
m
Fig. 6.5.
The damping forces occurring in connections with clearance may be written as:

= for an element of type L:

F = 5 6.23.1
D’E(L) 0 when dE(L) > AE(L) ( )
= for an element of type R:
b.wd « Wwhen d_m>A
FD,E<R> _ )P dpm £(®) £®) , (6.23.2)

0 when dE(R) < AE(R)

where bE(L) b z(x) — appropriate damping coefficients (Fig. 6.2).

s.EW b) FS.EW

SN
(UL}

Cpon (d =D )

_AE‘“ dE‘“ J

ey +A,0)

Fig. 6.5. Graphs of continuous characteristics SDE E“® of type: a) L, b) R

6.3 Constraint Equations

When analysing closed kinematic chains or open ones which contain closed
subchains (Fig. 6.6), it is necessary to externalize the reactions in the connection
(which are internal forces) and to formulate proper equations relating the
coordinates of the subchains.
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In technical applications, the connections of links are usually revolute or
spherical joints, rarely sliders. A detailed discussion of models of revolute joints
and sliders is offered in [Harlecki A., 2002], including models of friction in such
connections. The present book limits the considerations to spherical joints.

a)

A:A(i) :A(j)

link b

{}

’X

Fig. 6.6. Connections of links i and j: a) A = AD = AD , b) forces of reaction in
a spherical joint

Assuming the link b, being a common base of two subchains connected at the

point A, to be rigid, transformation matrices of the coordinates of the links i and j
to the coordinate system of the link » may be put in the following form:

Fb) — e ((Nl(b’i)), (6.24.1)

TO) =T (GeD), (6.24.2)

where ", 7 are defined in (6.5).

Let the coordinates of the point A in the coordinate systems attached to the
links i and j be given by the vectors:

~(t)_[xlA Yia Zia 1]T, (6.25.1)
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~( 7 ~ ~ ~ T
rA(’)z[xM Yia Zia )" (6.25.2)

Coordinates of the point A in the coordinate system of the body b may then be
determined from the formulas:

F/gb,i) = T ;A(D i (6.26.1)

f/(,b’j) =T 'fA(j) . (6.26.1)
Hence the constraint equation takes the form:
Y =r. (6.27)

The above may be decomposed into three equations resulting from comparisons of
the components x, y, z of the vectors (6.27) and an identity due to their fourth
components:

lf/gb,i) _ lf/gm . (6.28)

To eliminate the identity (6.28) an operator may be introduced which reduces
vectors with four components to ones with three of them. The operator has a
matrix form:

1 000
0=|0 1 0 O0]. (6.29)
0010

The constraint equation (6.27) may then be rewritten as:

—(8.b,1) _ =(8.b.)
r/ge, ) :ré b, J) (6.30)

)

—(0.b,i) _ p=(bi)
where T, —GrA ,

=(0.b,)) _ a5®.))
r, —GrA ,

in which vectors have three components.

This reduction is implicit henceforth. The identity (6.28) will be omitted and
equalities of type (6.27) will be deemed equivalent to three scalar equations. The
equation (6.27) may therefore be rewritten in the following form:

TED§D DD — g (6.31)

Taking into account the facts:

My, j

=(b.j) _ b)) =(j) _ 7D, ) %(b,)) =(j)
r, /) =T""F/ —sz Pa vy, (6.32.1)
k=1
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{00 0050 300500 50 6322)
k=1

and:

7, iy iy,
2(b,J) N b0 Eb. ) =i T(B.)) 5B, j) %b.)) =(j
l‘é J)_ZTIE ])ql(< J)rf(xj)+zleij)ql(( ])ql( ])rf(x]), (6.33.1)

k=1 k=1 I=1
—(bz) _ZT(bZ) =(b.i) (l)_I_ZZT(bZ)q(bl) él(bl) (1), (6.33.2)
k=1 k=1 1=1
one can replace the constraint equations (6.31) with their other form, called
accelerative:
p&-IT ﬁ(b’ N _pbdT ﬁ(b,i) =E®) (6.34)
b, j)y _(3b.0)
where D'/ (dk o )k=1,.--,ﬁ,k,
s=1,2,3
b)) _ (b, /) =)
d ! Z(Tk ! )v,a(rA] )0!’
o=1
(b,i) __ (b,i)
D (dk s )k:l,...,ﬁ,”- ’
s=1,2,3
(bi) _ T(b.i) =)
dyi Z(Tk l)s,a(rAj )a’
o=l

G _ ( m‘))
E™7 =le 5=1,2,3

ﬁb./ 7’[7,/ . . 4
i) — 2 (b)) 5 (bj) *p) (=0
e =2 2.4"74"" Y, (Tk,, )W ("A )a +

k=1 =1 a=1

o4 3y by  (bi) N (k1) (i)
~(b,i)~(b,i ki i
- quk q; Z(Tk,l )S ( Ta )a

k=1 I=1 o=1

)

T (b.20)
o O
k o5 b
P

o1

(b a) _
T a~(b )

ae i, j}-
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Care must be taken to reflect in the system's equations of motion the occurrence of
connections between links. When formulating the equations of motion of links i
and j, the reaction forces of the constraints in the connection (Fig. 6.6b) must be
taken into account. Assuming the vector of forces in the connection to be defined
in the inertial system {} and its components to be:

R(A):[R(A) RA RW O]T, (6.35)

X

we can easily prove that additional terms (generalized forces) will appear in the
equations of motion:

Qi) (RV)=D" R, 0361

Qi) (R™)=-D®) R (6.36.2)

Components of the vector R are additional unknowns and their number is
equal to that of the constraint equations.

The modelling approach just described which consists in introducing the
reactions of the constraints to the equations of motion and formulating the
constraint equations as additional algebraic equations of the form (6.31) or
differential equations of the form (6.34) raises the number of unknowns and the
dimension of the problem. This can be avoided by introducing a spring-damping
element with large stiffness and damping coefficients at the point A (Fig. 6.6). In

this way the points A" and AY) are kept close to each other during the motion.
The values of the coefficients should be determined empirically. A formal
description of this method is presented below.

Let:
Ar, =t/ -1, (6.37)
and:

e 0 0|
ch=lo0o Y o0 | (6.38.1)

0 0 W

Y0 0]
BY=1 0 »" 0|, (6.38.2)

0o 0 »»
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W AW CEA) _

where v Cy s stiffness coefficients,

b)(CA),b;A),biA) — damping coefficients,

are the matrices of stiffness and damping of the SDE, respectively (Fig. 6.7).

link i

bz

'Y

"X

Fig. 6.7. A model of a spherical joint as a spring-damping element

The energy of elastic deformation and the dissipation of SDE's energy are
expressed thus:

V= %AFATC(A)AFA , 639.1)
D, = %A?ATB(A)A?A . (6.39.2)

Taking into consideration the relations stated in [Wittbrodt E., et al., 2006] leads to:

s D ) _ .
W\ s _ poifear, +DDAT, | (6.402)

aa@’” aﬁ(b’” -

These values are to be subtracted from right-hand sides of the equations of motion

(b, ) (i)

corresponding to and q
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As can be easily seen, the presented method eliminates the need of separating
the chain at spherical joints and increasing the dimension of the system of
equation describing the system's dynamics. However, its drawbacks lie in the
requirement of assuming large values of stiffness and damping coefficients in
(6.38). Introducing such coefficients into the system causes high frequency
oscillations to appear. It is therefore necessary to integrate the equations of motion
of the system with a very small step or employ integration methods specialized for
rigid systems [Press W. H., et al., 2002], [Wittbrodt E., et al., 2006]. A precaution
is also due to the fact that the procedure described above consisting in the
introduction of the constraints' reactions and formulation of appropriate constraint
equations leads additionally to certain numerical complications [Fraczek J., 2002].
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In numerous technical applications the supporting structure of a device is assumed to
be subjected to stresses within the limits of proportionality, i.e. where the Hooke's
law is applicable. It is also the case with offshore cranes. In the installation process
of underwater pipelines with the reel method, however, the pipes are commonly
deformed plastically when they are wound onto the reel. Furthermore, material
exposed to prolonged deformation may show a tendency to creep. Hence, the
present chapter which briefly introduces these models of construction materials:
elasto-plastic and visco-elastic.

7.1 Basic Laws of Elasto-plastic Materials

A basic property of most materials working in their ranges of elasticity is the
linear dependency of the deformation on the loads applied. The applicability of the
Hooke's law describing the stresses ¢ within the range of elasticity is determined
by the deformations £ which must not exceed certain values £; (Fig. 7.1a). For
materials whose yield point £; is sharp it may be taken from a stress—strain
curve. For other materials, a conventional value is assumed, which corresponds to
0.2% of permanent deformation of the object (Fig. 7.1b). Characteristic points on
a stress—strain curve are (Fig. 7.1): 1 — proportionality limit, 2 — elastic limit, 3 and
4 — upper and lower plasticity limit, 4-5 — ideal plasticity region, 5-6 — strain
hardening region, 7 — rupture.

<Vrcth € :‘wlrctg E £

»
»

Fig. 7.1. Stress—strain curves for: a) soft steel with a sharp yield point: b) a material without
a sharp yield point (alloy steel)

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 91-§7.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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Typical linear characteristics of stretching for various elasto-plastic materials
are shown in Fig. 7.2 [Skrzypek J., 1986], [Ottosen N. S., Ristinmaa M., 2005].
The corresponding constitutive equations are summarized in Table 7.1.

a)

&
0
Iy

)

£) )

arcig By

g

Y

Y

¥
Y

Fig. 7.2. Linear characteristics of stretching for ideal materials: a) rigid-plastic, b) elasto-
plastic, c) rigid-plastic with reinforcement, d) elasto-plastic with reinforcement

Properties of many materials cannot be described with sufficient accuracy using
linear constitutive dependencies. Various nonlinear models of materials are
therefore formulated. Sample power characteristics of elasto-plastic materials with
reinforcement are shown in Fig. 7.3 and their corresponding constitutive

dependencies in Table 7.2.

Table 7.1. Dependencies describing linear characteristics of models of elasto-plastic

materials

Model of a material

Equation 0 = f(g) (linear)

rigid-plastic

6=O-0

elasto-plastic

Ee for gsﬁ
o= E

reinforcement

(of
o, for e>=>2
E
rlglfi—plastlc with oc=0,+Ee€
reinforcement
(oF
o Ee for e<—2
elasto-plastic with E

O =
Ee(l-aw(e)) for &> %

where a)(e) =

E-E
E

Oy

——— |, E, — elastic modulus
Ee
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Fig. 7.3. Power characteristics of elasto-plastic materials: a) power elastic reinforcement, b)
rigid-plastic reinforcement, c) a elasto-plastic model with reinforcement, d) a material

according to Ramberg-Osgood [Ramberg W., Osgood W. R., 1943]

Table 7.2. Dependencies of power relations of models of elasto-plastic materials

Model of a material

Equation o= f (8)

power elastic reinforcement

K
o —(iJ L 0<k<1
&

power rigid-plastic reinforcement

o=0,+ke*

Ee for gsﬂ
E

elasto-plastic o= p
ke® for £>-2
E
o Ak
Ramberg-Osgood e=—+ ]{_j
E E

where k — a constant dependent on the material, b — exponent > 1

In Fig. 7.4, characteristics of ideally plastic materials are shown [Szuwalski K.,
Zyczkowski M., 1973] and the dependencies corresponding to them are in Table 7.3.

Ao_ a) Ao_ b) TO’ ¢)
o (o2
o 0
’ K= A,
arctgE
€ arctgE € €
> > >

Fig. 7.4. An ideally plastic material: a) approximation with the hyperbolic tangent function,
b) Ylinen approximation, c) approximation according to Szuwalski-Zyczkowski
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Table 7.3. Dependencies for

7 Nonlinear Models of Materials

models of ideally plastic materials

Model of a material

Equation o= f (8)

according to Prager [Prager W., 1938]
(Fig.7.4a)

£ =ﬁarctgh( o j
E

Oy

according to Ylinen [Ylinen A., 1956]

8=%{K0‘—(1—K)0'0 h{

0<k<l1

-2

(Fig.7.4b)

according to Szuwalski-Zyczkowski £= o - 420
[Szuwalski K., Zyczkowski M., o)’
1973] (Fig.7.4¢) El1-—
0

The formulas presented in Tables 7.1 — 7.3 may be used to determine the
bending moment in the analysis of large elasto-plastic deflections. An important
problem is to determine the deformation under which the material changes from
being elastic to plastic. The criterion may be defined based on various hypotheses.
The most often used ones are: the Huber-Mises-Hencky (HMH) hypothesis and
the Tresca-Guest hypothesis [Nowacki W., 1970], [Skrzypek J., 1986], [Ottosen
N. S., Ristinmaa M., 2005]. Stresses causing transition to the plastic state under
the HMH hypothesis form in the space of principal stresses a cylinder whose axis
satisfies 0, =0, =0 . Transition of the material to the plastic state will occur
when the following equation is satisfied:

\3J, —0, =0, (7.1)
where 0, — initial plasticity limit of the material,
J_12+2+2+22+2+2 tress deviator i ant
275 Sy +83, +57 Sy T8 T8% — stress deviator invariant,
| o.-6 1, T,
5; =0y gO‘kké'ij = 7, 0,-6 - — stress deviator,
Ty, Tyz 0,-0
OA'Z—(O'X+O'y+O'Z) — mean stress,
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Oy yx Tox
O'ij = Txy O'y sz — stress tensor.
T, T vz o,
4o 5.8
ool 1
ideal Bauschinger
effect
o] 5
/ \E\ no Bauschinger
7 effect
I & 0<
==
_--" !
J---"4

Fig. 7.5. Illustration of the Bauschinger effect

A result of plastic deformations is alteration of the position and the shape of the
surface corresponding to the limit elastic state. The phenomenon is related to the
yield point being shifted on the sides of both stretching and compression. It is
described by various models of elastic reinforcement: isotropic, kinematic,
combined, anisotropic. There exist multiple theories defining the shape of the
stress-strain curve in the plastic region as a linear or nonlinear function of multiple
parameters characterizing the material [Mréz Z., 1967], [Skrzypek J., 1986],
[Ottosen N. S., Ristinmaa M., 2005]. In response to the plasticity surface being
changed, the Bauschinger effect occurs which gives the material anisotropic
properties (Fig. 7.5). After the reinforcement phase on the segment 1-2 follows
relaxation 2-3 and transition to opposite stresses 3—4. The curves 2—4 and 4-5 are
assumed to be parallel to 0-1 and 1-2 (initial stress and reinforcement phase),
respectively. For actual materials, one can assume the coefficient of the

Bauschinger effect e <O,,,,,1> , which relates isotropic reinforcement (4 = 0) to

kinematic reinforcement (8= 1).
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7.2 A Model of Visco-elastic Material

In the linear theory of elasticity it is assumed that deformation of a body depends
only on stress and material. The dependency between those values may in reality
be also influenced by: temperature, time, generalized coordinates and velocities,
etc. In order to take such influences into account, visco-elastic models of materials
are introduced. Below selected models dealing with time are presented.

In visco-elastic problems [Nowacki W., 1963] two functions are of particular
importance: creep function which increases the deformations under prolonged
stress and relaxation function which describes how stress due to permanent
deformation subsumes. Models of visco-elastic material are represented as
systems of massless springs and dampers. Stiffness of the springs describes the
elastic properties of the material and damping coefficients reflect the viscous
traits. The simplest model taking into consideration both functions (creep and
relaxation), which is often used, is the standard linear model (Fig. 7.6¢c). Also the
Kelvin-Voigt model (Fig. 7.6a) only describing creep and the Maxwell model
which deals just with relaxation (Fig. 7.6b) are very common.

a) b)
E
-
Kelvin-Voigt model Maxwell model standard linear model

Fig. 7.6. Basic models of a visco-elastic material: a) Kelvin-Voigt, b) Maxwell, c) standard
linear

The constitutive equation of the standard model (Fig. 7.6c) may be written in the
form:

E18'=o"+%(0'(E1 +E,)-&EE,). (7.2)

In Fig. 7.7a, a graph S(I) is shown which corresponds to the solution of the
equation (7.2) assuming load to be given by the function
o(t)=o, [H (t)-H@-T )] where H (¢) is the Heaviside function.

Later in this volume, methods of introducing nonlinear physical dependencies
into systems' equations of motion will be presented.
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Fig. 7.7. Response of the standard model: a) material deformation, b) stress



8 The Rigid Finite Element Method

Actual kinematic chains commonly contain links whose flexibility greatly exceeds
that of other links. It may then be necessary to take that flexibility into account.
Booms of cranes and certain links of manipulators count among those. A large
number of approaches in analysis of multibody systems can be found in literature
with with one and more flexible links [Zienkiewicz O. C., 1972], [Wittbrodt E.,
1983], [Wojciech S., 1984], [Huston R. L., Wanga Y., 1994], [Arteaga M. A.,
1998], [Zienkiewicz O. C., Taylor R. L., 2000], [Berzeri M., et al.,, 2001],
[Adamiec-W6jcik 1., 2003], [Wittbrodt E., et al., 2006]. Chapter 9 introduces
models of offshore cranes (a column one and an A-frame) which enable taking
into account the flexibility of the supporting structure.

Let us consider a flexible link numbered p of a sample mechanism depicted in
Fig. 8.1. Let {p,0} be the coordinate system attached to the link p as if it were
rigid. Its position relative to the preceding link s is given by the coordinates of the
following vector:

- - ~ T
q<”’°)=[ql(”’0) qu,O)] . (8.1)

np.O

The number i, , of coordinates of the vector q‘”’ is less than 6 and depends

on the class of the kinematic joint connecting the links s and p. These coordinates
will henceforth be called rigid (configuration) coordinates of the link p.

In order to fully describe the relative motion of a flexible link, the vector (8.1)
needs to be supplemented with a vector whose elements are called elastic
coordinates. Their choice depends on the discretisation method used for the
flexible link. Regardless of the method, the vector of generalized coordinates of
the flexible link p describing its motion in the kinematic chain may be written as:

o { q(p,O)}
qa’=_,.l (8.2)
q(p,f )
where  @”%’ — vector of generalized configuration (rigid) coordinates of the
link p,
~ ~ ~ T
q(p’f) = [ql(p’f) qép’ff)] vector of generalized elastic
P
(flexible) coordinates of the link p,
i, , — number of elastic coordinates of the link p.

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 99-37.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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link p after deformation

(p,O)Z

link p before deformation

Fig. 8.1. A flexible link p

Let us also assume that the transformation of coordinates from the local coordinate
system {p,0} to the preceding coordinate system (with index s) is given by the
matrix:

7=, 0T )

(p,0)
One of many discretisation methods of flexible links will be presented below. This

is the rigid finite element (RFE) method. It has two variants: classical and
modified.

8.1 The RFE Method: Classical Formulation

The rigid finite element method has for many years been applied at the Gdansk
University of Technology, initially by Prof. Kruszewski, then by Prof. Wittbrodt,
and their co-workers, to model multibody systems. The formulation of the method
presented in [Kruszewski J., et al., 1975], in which each finite element is assumed
to possess six degrees of freedom in its relative motion, is called classical. The
description of the method expounded herein deviates from that which is found in
papers by professor Kruszewski and his co-authors. Namely, joint coordinates and
homogeneous transformations are used to derive the equations of motion,
following [Adamiec-Wéjcik 1., 2003] and [Wittbrodt E., et al., 2006].
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8.1.1 Generalized Coordinates: Transformation Matrices

Let p be a flexible beam link in a kinematic chain. That link is replaced with
a series of rigid finite elements connected with spring-damping elements using
discretisation which is detailed by Kruszewski and co-authors in [Kruszewski J.,
et al., 1975], [Kruszewski J., et al., 1999]. In the case of a beam with constant
section, the procedure is as follows: first, this is the so-called primary division, the
beam of length L, is divided into m, equally long segments (Fig. 8.2a).

a) A A A A A
_.y__ J._.I.jl._ (I D S I H— _.1__.|;I__ =B =dia s -

b) SDE 1 SDE 2 SDE i SDE i+1 SDE m,

N
RFE i

Fig. 8.2. Division of a flexible link: a) primary division, b) secondary division

Flexibility traits of the elements are inherited by the spring-damping elements
(SDE) placed at the centre of each segment of length A. In this way, one obtains
a secondary division of the flexible link into m,+1 rigid finite elements (RFEs)
connected by m,, massless and dimensionless spring-damping elements (Fig. 8.2b).

Division of beam links with variable sections and a method of determining
characteristic parameters of RFEs and SDE are expounded, among other things, in
the work [Wittbrodt E., et al., 2006]. Since each RFE (except RFE 0) has a
coordinate system attached with origin in its centre of mass and axes coinciding
with the principal axes of inertia (Fig. 8.3), the position of the element in
undeformed state can be determined unambiguously relative to the system {p,0}
of RFE 0, provided that the transformation matrices are known:

T = const . (8.4)
In the general case, the transformation matrices with constant coefficientstake the
form:
-, I’i(')’i,) g
T = : (8.5)
0 1
where R — direction cosine matrix of the axes of the system {p,i'}

relative to the system {p,0},

Fo vector of coordinates of the origin system of the system {p,i'}

in {p,0}.
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{p.0}

RFEO

Fig. 8.3. Coordinate systems related to a flexible link: {} — the inertial system, {p,0} — the
system attached to RFE 0, {p,i'} — the system attached to RFE i in undeformed state of
the beam, {p,i} — the system attached in a fixed way to RFE i whose axes coincide with the
principal central axes of inertia of the element, x(»-9 y(r:D ,(r-) — coordinates of the

origin of the coordinate system {p,i} in {p,i'}, (/)il”f),(pil””,(p;l”“ — ZYX Euler angles
described in chapter 4

If the system {p,i'} has axes parallel to the axes of the system {p,0}, the rotation
matrix R is the identity matrix. Due to the lifting motion and external loads,

individual RFEs are subjected to displacements. The generalized coordinates
being the components of the vector:

—r . . . . . ST
q(p,l) — x(p") y(p,t) Z(p’l) ¢)(Cp»t) (/,;PJ) (pil’”)] , (8.6)
decribe the motion of the i-th RFE (i = 1,...,m,) of the link p relative to the system
{p,i'} attached to the RFE i in undeformed state. The transformation matrix ﬁr’f‘”’ )
from the system {p,i} to the system {p,i'} in the nonlinear model, allowing the
(p.1) o(p.i)) o(P.i)
9 y b

rotation angles @, .77 to be large, takes the following form:

Cim)cipi) Cip’i)S;”’i)Si”’i) — Sgp,i)c)(cp.i) Cgp’i)S;p’i)Cip’i) + Sip.i)s)({p,i) XD
(p.) ~(psi) (pi) ¢(pi) o(psi) (pi) ~(Psi) (p) ¢(Ps0) A(pii) _ A(pi) (psi) (p.)
{,T(p): S, Cy S, Sy S +C‘Z Cy S, Sy Cy C.7US, y
1
—¢(p.) (p.i) o(p.i) (p.i) ~(psi) (p.i)
Sy Cy A\ Cy Cy z

0 0 0 1

where c¢'7" =cos @7, s =sin (" for ae{x,y, z}.
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When small rotation angles of RFEs are assumed, leading to omission of higher
rank small terms from the approximations of trigonometric functions of the angles

Q(Cp D ¢;p D @p ) (the linear model), the matrix "T may be written

[Adamiec-W6jcik 1., 2003] as:

1 _ @m’) (/,;p,i) P
i/'i‘(ﬁ) _ (oilhl) 1 —(Dip’l) y(p,l)
i _ (p;p,i) (ch”’” 1 7P ' (8.8)
0 0 0 1

The transformation matrix from the system { p,i} to the system {p,0}, whether
the model is linear or nonlinear, has this form:

e — e (('i(p,i) ) _FeOFR) (8.9)

8.1.2 Kinetic Energy of a Flexible Link

Let us assume, as in chapter 5, that the concerned multibody system is situated on
a movable base {A} (Fig. 5.1) whose motion relative to the inertial (global) system
{0} ={} is known.

Rigid finite elements of the link p may be treated as m,+1 consecutive bodies
appended to the link s of the kinematic chain. In further considerations, the first
rigid finite element in the chain (RFE 0) is treated separately, because the
generalized coordinates describing the relative motion of this RFE depend on the
type of the kinematic joint connecting the link p with its preceding link s and their
number is less than 6. The coordinate system {p,0} plays the role of the
configuration system of the link p.

Let the vector of generalized coordinates q‘”’ contain the coordinates of RFE
0 of the link p and the coordinates of the link s which precedes the link p. Let also

the transformation matrix T”” define the transformation from the system {p,0}
attached to RFE 0 of the flexible link p to the inertial system. The following
notation is introduced:

(s)
= _| 4
q” _Li(no)} , (8.10.1)
00 =010 i) o T V)=S0 T O ”). a0

s T 14,167,
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The kinetic energy of RFE 0 of the link p is given by the expression:

E, o= %tr{T(p’O) HOO TroT } (8.11)

where H'”"?) — matrix of inertia of RFE 0 of the link p.
A derivation similar to that in chapter 5 yields:

np,o

- (p,0) :+(p.,0) (p,0)
g0 (E,p) = Zakﬁ' G;"" +e, (8.12)
i=1

T
where  a(”” = tr{Tk(”’O) H?O T70 } ,

n,0M,0
PO = ZZtr{T,f”’O)H(”’O) Ti(,f’o) }qi(p,m qﬁpﬁ) +

i=l j=1

)

¥ tr{T,gw HOO LT 42050 | }

N,o=n,+i,,-
The equation (8.12) may be put in a matrix form:
(p.0) (p,0) ~(8) (p,0)
€ (E ) _ As,s As,O q ’ + exp (8.13)
gG" NP0l T A () (P,0) || =(p,0) (0 | :
o Agy” A g7 e’

The remaining RFEs of the flexible link are treated as elements of the kinematic
chain appended to RFE 0. Hence, the coordinates of an arbitrary point in the local
system {p,i} of RFE i of the link p (i = 1,...,m,) may be transformed, following the
procedure presented in chapter 5, to the inertial system. The following equality is
used:

(P = D ) (8.14)

where TP = @0 Fr)
r'”? _ vector of coordinates in the inertial system { },

7 _ vector of local coordinates in the system {p,i}.

The kinetic energy of REF i of the link p equals:
)T

E = ltr{T(p’i) P
sl 2

» | (8.15)

where H”"") — matrix of inertia of RFE i of the link p.
Defining a vector with n, , =n +17,,+6=n,,+6 components:

=(p)

v _| 4

a’=_ 1 (8.16)
{q(p,):|
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the following may be written:

Sq(m) (Ep,i) — A(P,i)q(ﬁ,t) +eP) ’ (8.17)

) ) T
where A(pl) ( l(fl))l,szl :tr{Tl(ﬂ,l) H(P,I)Tgp,z) }’

,,,,, i
) pi Mpi )
er) :(el(p,z)) ..... _Zztr{T(pl)H(p l)T(p ) } (pi) qu D4

s=1 j=1

+ tr{Tl(ﬂ,i) H(p,i)[gTT(p,i) +?4TT(FJ)]}.

The same may be expressed in the block form, thus:

(p,i) (p,i) (p,i) o (s) (p.i)
A As,O As,i q es

) A =m0 )
Sqw( ) A(pz) A((){)O,w A((){)i,z) g0 |+ egp,w_ (8.18)
(p i) (psi) (p.i) || &(p.) (p.i)

AT AL %, q €;

8.1.3 Potential Energy of Gravity Forces and Deformations
of a Flexible Link p

The potential energy of gravity forces of the RFE i is given by:
Ve =m'P g TPIEPD, (8.19)

where F!7") — vector determining the position of the centre of mass of the
RFE i in the local coordinate system { p,i},
m'”” — mass of REF i.
Hence, after ironing out the differences in the definitions of matrices TP and
T fori=1,... ,m , the following holds:

avg G(p,O)‘
G = = — =] oo |- (8.20.1)
q Gy |
G([M)
ir _ Vi ()
G'” =5 = G,/ |, (8.20.2)
aq G(Pt)
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where G(P-) :(g,(cl”") )k 1 , g,(cp”') =m'Pg T,g”’i)f'ép’i) for i=0,1,...,m,
=L...n,;
G GrY,G "0 ,GP",G ")~ appropriate blocks of vectors

G7” and G corresponding to the coordinates
s) ~(p,0) ~(p,i
q(v)’q(p )’q(p )

Since the considered link is flexible, before formulating its equations of motion
the expressions resulting from the energy of elastic deformation of SDE must be
determined. Their derivations in the case of linear physical dependencies
describing the properties of the material are presented below. The way with
nonlinear physical dependencies will be discussed later. In the considerations
pertaining to the deformation of spring-damping elements the reference coordinate
system is assumed to be {p,0}, which is attached to RFE 0, and the matrices

R , which occur in (8.5), to be identity matrices. A consequence of this is the
proposition that in the undeformed state of the link p the axes of all the coordinate
systems attached to RFEs from 0 to m, are parallel. A general algorithm omitting
this assumption is presented in [Wittbrodt E., et al., 2006]. A numerically efficient
modification of the algorithm will also be described later in this chapter.

Let SDE e connect the RFEs / and r of a flexible link p (Fig. 8.4).

{p.r},

{(p.1y " =¢""
N7 Ar”

(psr)

4

(P.r)

=9,

— P
=, 1

o = it

RFE [

Fig. 8.4. A model of a spring-damping element: a) connection of RFEs / and r by SDE e, b)
notation assumed

The energy of elastic deformation of this element is given by the formula:

R (e _ 1 . b2
Vp,e = EjZ:;Ci,pj) [xr,j - xl,j]2 +E;C£,pj)+3 [(05'% ' ¢§P 1)] ’ (821)
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where Cif}) for j=1,2,3 — coefficients of translational stiffness of the SDE e
of the link p,
Cif”j) for j=4,5,6 — coefficients of rotational stiffness of the SDE e of
the link p,
=[x, %, %, 1T, =[x, X, %, 1|7 - vectors

of coordinates of the SDE e (treated first as a point of the
RFE [, and next as a point of the RFE r) expressed in the
system { p,0},

(pﬁ-p ’”,(0;17 ) _ rotation angles of the RFEs r and  of the link p.

In Fig. 8.4 and formula (8.21), the axes of the coordinate system are denoted with
(1, 2, 3) instead of (X ,Y, Z) used hitherto. This shortens the formulas
considerably.

The coordinates of the SDE e in the systems attached to the RFEs [ and r are

assumed to be represented by vectors 7" and F”"in Fig. 8.4, respectively.

Consequently, the coordinates of this spring-damping element in the reference
coordinate system {p,0} are expressed by:

Fe(p,i) = TwD 'I*:e(p,i) , (8.22)
where i€ {r,l}.
The vector Ar,” ) (Fig. 8.4b) is given as:

Afe(p) zfe(p,r) _Fe(p,l) — T(pyr)i:e(p,r) —T(p’l)f‘e(p’l) i (8.23)

and the potential energy of elastic deformation of the SDE e may be put in the
following form:

S 1 el T e = 1 ~ r ~ T e)|l~x r ~

Ve, =5Arjp) cy )Are(P)+§[q(P’ >_q<p,l>] cy >[q<p,>_q<p,l>]’ (8.24)
(000 0 0 0]

<m0 0 0 000 0 0 0

cror_| 0 &m0 0 o 000 0O 0 0

where &7 = o R Tlo0 0 0 o

0 0 %o
O 0 0 0 000 0 & 0
000 0 0 P

The above considerations pertain to the general case in which the transformation
matrices T dla ie {l , r} are nonlinear. When small oscillations are considered,

i.e. when the transformation matrices f””f‘(”) conform to the formula (8.8), the
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transformation formula taking the system {p,i} to the system {p,0} may be
represented thusly:

=(p,i) _ (p.i) 7(poi) g (pii)
r, ="+ DIOqY (8.25)
ivd (p,i"
1 Ta
e (p.i"
where /7 = ip ¥ — vector with constant coefficients
‘ X +alP ’
3Tl
1
1 00 0 ~[’3 —55[’2
D) = 010 -Xx; 0 il . .
e = - - — matrix with constant coefficients,
0 0 1 2 X, O
000 0 0 0
atr _ components of the vector F7 from the formula (8.5) for

J
J=123,

X;15X; 25 X; 3 — coordinates of considered point in {p,i}.
The formula (8.21) for small deformations takes the form:

1 - - T - -
Vi, =5[Ar'ip)+])'ff'r) q(”")—D'ﬁ?‘"")q(”‘”J cypo [Ar«ep)JrD«ep.r) g —D'Q"'”q”"”} 526
,(8.

+ %[q(m) _(l(p,l)JT C(RN) [q(p,r) _q(p,;)}

where Ar'?) = §/(pr) _ gD
In the case of beam links, the SDE i connects the RFE i—1 with the RFE i,
therefore ii(p’l) = ('j(f”i‘l) and (’i(w) =g

The potential energy of elastic deformation of the link p equals the sum of
energies of all the SDE:

V)= Z_;sz’e ) (8.27)

One should take into account that the formula expressing the elastic energy of SDE
1 of the link p is a variant of the formulas (8.21) and (8.24), and it takes the form:

| —_——y _ 1 o7 -
(Jp,l) — EAI.I(P) C(Tp,e)Arl(p) +5q(p,1) Csep,e)q(p,l) ’ (8.28)

where Afl(p) = T(Pyl)’fl(!’yl) _ Fl(p,O) _
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Taking (8.27) into account leads to:

A% . . . . . . . I
T = A (O ) g 80 829)
q'”
T T
<,y OAL” Dy . OAT ) A
where S(p’l) = +C<p’l)Al‘-(p) +++1.C(p”“)Ar.(p) .
a(’i(p’l) s i 8(“1”"” T i+1

Let us remark that for i=0 and i=m, the following should be assumed,
respectively: C® =0, C{"™ =C""* =0 The formula (8.29) is valid

both for linear and nonlinear oscillations. The form of the vectors S‘”” in the
linear case may be determined easily by means of the formula (8.26). Problems
related to the choice of stiffness coefficients when analysing large deflections are
discussed in the following papers: [Adamiec-Wdjcik 1., 1992], [Wojciech S.,
Adamiec-W¢jcik 1., 1993], [Wojciech S., Adamiec-W¢jcik 1., 1994] and
[Wittbrodt E., et al., 2006].

8.1.4 Generalized Forces: Equations of Motion

Let us assume that the following act upon the RFE i: a force F") and a pair of

forces whose moment M has the components:

B _|pd) B D r

F7+ —[Fxpl prt szz O] , (8.30.1)
) | v op(pid) r

M =7 MPD M of . (8.30.2)

Applying the formulas (5.40) and (5.42) along with the procedure presented in
[Adamiec-Wdjcik 1., et al., 2008] yields these forms of generalized forces due to
their presence:

s T, » (8.31)
+M£p,l).]§(T(W))N (Tlgp,l))jg +M§p,t);(T(p,t))j,2 (T’gp,l))j,l

When forces acting on RFE 0 are considered, it may be written:
(p.0)
(PO _ Q,
Q —{ (p,o)} , (8.32.1)
0

whereas for a force F”*? and a pair of forces with moment M7 acting on
RFEs from 1 to m, the following holds:
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Q(,p’i)

i _| o)
Q Q" |- (8.32.2)

Q(w’)

In the case of a flexible link decomposed into m,+1 rigid finite elements, the
following vector of generalized coordinates of the link and expressions giving the
kinetic energy and the potential energy of the gravity forces may be defined:

q(p): '("l(p,l) , (8.33.1)

E = ZEN. , (8.33.2)

VS = ;V,fi , (8.33.3)

From the equations (8.13), (8.18), (8.20), (8.29) and (8.32) it follows that the
equations of motion of the link p, including the term due to the energy of elastic
deformation, take the form:

A(p)q'(p) + ngp)q(p) — _e(p) _ G(p) _ S(p) + Q(p) , (8.34)
_ml, m, ( )_
(p,1) (p.) (p,D) p.m,
ZAs,s ZAS,O As,l As,mp’
i=0 i=0
m, . m, ) m, . ( )
AB/M) Agpdl) Af)pl'l) e AWM
4 , , 0,
where AP = ; ' ; ; "o,
(p.1) (p.1) (p,D)
Al,s ALO Al,l 0
(p,m,) (p.m,) (p,m,)
Am,,,sp Amp,Op 0 Amp,rr:p
0 0 0 0 |
(p.D (p.D
0 C¢ —CY 0
(p) _ (p.D) (p.1) (p,2)
K?=[0 —Cy crv+cy? ... 0 |
(p,m,)
0 0 0 SN ol
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F, | - C, | - i -
ZG(S‘pJ) Ze(fp,l) B _ ZQ(I’J)
i=0 i=0 0 i=0 ’

m, (o) m, (o) S(Pao) m,

ZGOI’J Zeoﬁvl Q(P,i)

(r) —| &pl 0
c» =3 e = 3 S = §pb | QW = ;
Gf‘”’l) eip,l) : ip,l)
: S(p,mp)
G P ) } (pum,)
m, L™y | L Qi J

A remark is due that the matrices A‘”) and K ) contain many zeroes. This fact
may be leveraged in an implementation of the algorithm on a computer. The
equations of motion of the system's links from 1 to p, forming a kinematic chain,
may be generated in the way described in section 5.4. The equations for a rigid
link may be obtained as a special case of a flexible link taking m, = 0. The rigid
link may then be treated as RFE 0.

When a link p follows a flexible link in a kinematic chain, the model includes
a connection between the last RFE of the flexible link s and the next link (namely,
with RFE 0O of the next link). If linear oscillations are considered, i.e. the
transformation matrix for the RFE i of the flexible link takes the form (8.18), the
matrix of masses A‘7) is a diagonal matrix in the fragment from RFE 1 to RFE
m,, of the link p. Calculations are considerably simples when this fact is used in the
integration of the equations (8.34). Additionally, the stiffness matrix K’ is
a block-tridiagonal matrix, which is also helpful in solving the equations of
motion. A product of matrices with constant coefficients may be distinguished in

TN () Spamy) [T, - . .
the vector S'777 =|S S in the linear case [Wojnarowski J.,
Adamiec-Wo¢jcik 1., 2005], thus assuming:

S»H =K NGrH 48 (8.35)

where K (/) §(7/) —a matrix and a vector with constant coefficients,

T
=) _| g0 ~(p.ii,)T
q” —[q” S

The presented model includes all possible displacements of the RFEs into which
a flexible link is divided. If just one type of flexibility (e.g. to bending in one
plane or torsion) is dominant in the link, models with fewer degrees of freedom of
the RFEs may be easily obtained as a special case of the given formulas by
appropriately fixing the vector of generalized coordinates of the rigid element.
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8.2 Modification of the Rigid Finite Element Method

The classical rigid finite element method enables taking into account arbitrary
displacements of finite elements and therefore analysis of the following
deformations: lateral, longitudinal, rotational and shear. The displacements of each
element are considered relative to the reference coordinate system attached to RFE
0. In this section, a modification of the rigid finite element method is presented
which also has applications to discretisation of flexible beam links. In the
modification only lateral and rotational deformations are assumed, and
displacements of each RFE are defined relative to its preceding RFE. The method
is presented in [Wojciech S., 1984] for planar systems and in the papers [Wojciech
S., 1990], [Adamiec-Wjcik 1., 1992], [Adamiec-W¢jcik 1., 1993] and [Adamiec-
Wojcik 1., 2003] as well as in [Wittbrodt E., et al., 2006] for spatial systems. The
modification allows large deflections of flexible links to be analysed.

8.2.1 Generalized Coordinates: Transformation Matrices

Discretisation of a flexible beam link is performed in the same way as in the
classical rigid finite element method, i.e. with primary and secondary divisions
(Fig. 8.4). To each rigid finite element, a coordinate system is attached whose
origin is located in its preceding spring-damping element (Fig. 8.5).

(Psi)

(p.i)Y (72 i l(pi)

{p.i}
(F’i)Z

RFEi-1

Fig. 8.5. Generalized coordinates of the i-th RFE and local coordinate systems

The generalized coordinates describing the position of the i-th RFE relative to

the preceding i-1-th RFE of the flexible link p are the angles Q(Cp ’i), @;p ’i), ¢Jz(p D ,
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of which the latter two correspond to bending and the first one to torsion of the
element. Upon discretisation, the flexible link may be viewed as a system of rigid
links connected by joints of the 3" class. Similarly to the model formed using
classical finite elements, a rigid link is a special case of a flexible link (m, = 0).
The transformation matrix T”" from the system {p,i} attached to RFE i
(i = 1,...,m,) to the system {p,i—1} in the nonlinear model, i.e. allowing the angles

o7 for e {x,y,z} to be large, takes the form:

Cép‘i)Ct.p'i) Cép'i)St.p'i)SiP'“ — Sip'i)Cip'i) cé”*”sﬁ,”"')ci”"') + sipvi)sip»i) (P

T(p,i)_ sip,i)cﬁvp,i) sip,i)s;p.i)sip,i)+C§p,i)ci‘p,i) s;p,i)s;p,i)c)(cp,i)_Cép,i)sip,i) 0
- (psi) (psi) g(pii) (ps) o (p:) - (8.36.1)
—s\ c\Prs c\rer 0
0 0 0

where  ¢{”" =cos @7, s =sin 97" for ae{x,y,z}

l(P»i—l) —length of RFE i-1 of the link p.

When the angles ¢'”" are small, the following may be assumed:

1 _ (0;1”5) (D;PJ) l([?,ifl)
(p,i) (p»i)
= (pi [ 1 - @, 0
Y= T (8.36.2)
-9, o, 1 0
0 0 0 1

When all three types of oscillations are considered (rotational and lateral in two
planes), the generalized coordinates describing the motion of the i-th RFE of the
link p relative to its predecessor may be written as components of the following
vector:

. . . 7T
qro =g g0 g ] for i=1l,...m,. (8.37)

RFE 0 is treated like in the classical rigid finite element method, its generalized

5(P.0)

coordinates being given by the vector ( A series of intermediate

transformations yields the transformation matrix from the local system {p,i}
(i=1,...,my) to the global system:
T(P’i) =T(P,i—1) T(Pyi) (8.38)

where T(P’i_l)zT(p’O)T(p’l) T(Psi—l)

T matrix given by (8.10.2),

T®D  _ matrix defined by the formula (8.36) for i=1,...,m,,.
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The kinetic energy, the potential energy of gravity forces and the generalized
forces caused by external forces and moments thereof acting on the flexible link

are calculated as in section 5.3.

An important property of formula (8.38) is that the matrix T depends not
only on the vector q‘ of generalized coordinates of the link which precedes the
flexible link, but also on all the RFEs preceding the RFE i. Defining the vectors:

q(s)

~(r.0)

q

~(p.1)
(i _| 4

& (p.i-1)

q
i (“i(p,t) |

and taking (8.2) into account allows us to write:

()
q

~(p.0)

q(p) = q ,

~(p.f)
qpf

T
~ o7 ~ T
here q(p,f)_[q(p,l) qumﬂ}

8.2.2 Kinetic Energy: Lagrange Operators
From (8.38) it follows:

T(PH — -0 T(p,i)(q(p,l) ('i(p,i))

i
where T =HT(1’vJ)(("1‘(P,J)).

j=1
Since the kinetic energy of the link p may be written as:
m,
E,= Z E,i
i=0

NGNS e O
where E,; —tr{T H”YT } ,

(8.39)

(8.40)

(8.41)

(8.42)
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calculations analogous to those presented in chapter 5 give:

M (-l-(s) ] ’e(p.if
AL ALY AL e AL AL e
AL ALY ALY e AR ARG ei””
g (Ep) = ALY ALY AR o AR AR ]
: : o Follgen | fer (8.43)
ALDALY ALY e ALY e ARV :
7('~1'<p.i) | 7e§”"') |

— A (P (pi) (p.i)
_Apqu:_‘_ep:’

where A(p s — appropriate blocks of the matrix APD s

<p,i)=( (p,i)) _ {(m‘) (p) (p,i)T}
AP =) = HO
n[)l pii
(p,z')_((p,i)) _ { (P Py (D) (p,)} (P) - (pid)
e—ekkzl,..—ZTHT q"" +
j=11=1

+tr{T,f”’i)H(p’i) (24T 4+ 21T ]} ,

T(P,i):{lT (s) iT(P«j)’
'T(q )}1

n,, =ng+n,q,+3i.

As before, the gravity forces of the RFEs and their derivatives may be put in the
form:

Ve =m0 g 0. TP (8.44)
and further:
G(p,i)
Ve | gled
P 0
— = ) (8.45)
aq(p,l) :
G(p,i)

where G ;p . appropriate blocks of the vector G,

(i) _( (p,i))
G =8k k=l,....n

L
=pli

(p.i) _ . (p.i) (p.i)xx(p.k)
g T =m g0, T,""'xc .
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The generalized forces may be similarly presented. If F*) and M) specified
in (8.30) act on RFE i of the link, then:

Q(ﬁ,i)
) ip,i)
QWY =0 |, (8.46)

Qgﬁ,l)

where  Q!”" — appropriate blocks of the vector Q(p D ,

3
i) _ (y(pi) _ 5T 0T mp(pi) = (p) 4 7 (pii) ( ( ,'>) ( ( ,'))
Q" _(Qk[” )k:l,m,npv,- =Frr T Tk[” r +M1[” Z T i3 Tk[” _,',2+
j=1

)N () (psd) ()N (D (p.i)

pst D Pt Dt Pt Dt
1030 () a3 (), ()

j=1 j=1

F 70— vector giving the coordinates of the point to which the force in

the system { p,i} .

Formulation of the equations of motion further requires the determination of the
elastic energy and its derivatives. The reasoning below pertains to linear physical
dependencies.

8.2.3 Energy of Elastic Deformation

The potential energy of elastic deformation of an SDE of a flexible link is
calculated based on the fact that the generalized coordinates specify relative
angles. For the spring-damping element connecting the RFEs i—1 and i it is given
by the formula:

3 .
Vi =3 2 LT (847
J=1

where Cl(gi ; are the appropriate coefficients of rotational stiffness defined

in (8.21).
The formula (8.47) may be rewritten as:
| PN N
Vps’i — Eq(p,l) CrD q(p,l) , (8.48)
¢ 0 0

where C?"'=| 0 2 0
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The derivatives of the potential energy of elastic deformation relative to the
generalized coordinates have the form:

aVS ) .
(p.i) (p,i)z (p.i)
—a TE) =C q . (8.49)

8.2.4 Equations of Motion

Whereas the kinetic energy and the potential energy of gravity forces of the link p
are given by the formulas:

E=SE .. (8.50.1)

Ve ‘Z 8 (8.50.2)

and taking (8.43), (8.45), (8.46) and (8.49) into account, equations of motion of
the link p may be written as:

A(p)q'(p) =fP , (8.51.1)
or decomposed with blocks:
(AP (P ) () @ I ey 7 e
As,s AS,O As,l As,j As,m[, q(S) fs(p)
(p) (p) (p) (p) (p) ~(p,0 (p)
Ags  Age Al o A e Ao,m,, q"? fo
(» (» (») ») > | 2 |[Tlem |2 8512)
Ai,s Aib Ai,l A e Ai,mp q"” f;
(p) (p) (p) (p) (p) ~(p.m,) (p)
Am .S Amp,O Am P Amp,j Am m, _q ! i _fmp

"1
where A(p) ZA(p’) Ai{’) ZA(‘”) , Agf’) ZA(p ) ,

i=0

mny
AP = Y A" fori,j=0,1,...,m

p 9
l:max{i,j}
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m, . . .
£ = Z[_ e G 4 Q|
i=0
m[) . . .
£ = Z[_ elr) G 1 Q|
i=0

mp . . . . .
fi(p) — Z[_el(p,/) _Gl(jw) +Ql(1w)]_ C(p,t)q(p,z) fori=1,...,m

j=i

p-

8.3 Modelling of Planar System

By means of the rigid finite element method, an arbitrary description of the
geometry of a system may be given. The traditional approach may be used instead
of homogeneous transformations and joint coordinates proposed in earlier
chapters. In the present chapter an example is given of modelling a planar system
using the rigid finite element method in its modified form and a classical
description of the system's geometry.

8.3.1 Determination of Generalized Coordinates

In Fig. 8.6, a sample decomposition of a k-th flexible links into n;+/ rigid finite
elements connected at points Al(k),...,Ar(lf) by n, massless spring-damping
elements is presented. Since the problem considered is plane, in the relative
motion each RFE enjoys one degree of freedom which is the inclination angle of
the axis “”X of the RFE i to the axis X of the global system (Fig. 8.7). Further

analysis assumes the angles to be measured relative to the global system.
The position of the link k being discredited is therefore described by n;+3

coordinates. Two of them, (x;, y;), are the coordinates of the point AL which

equals the point A(®) of the first RFE (usually being one of the nodes of the

whole mechanism). The remaining coordinates are the angles already mentioned

(k0 ¢(k,"k)

which will be denoted ¢ . As a noteworthy observation, these

angles correspond to those from (8.37) — (p;” ‘) Thus, the vector of coordinates
of the link £ may be defined:

0 =[xy 0 0, g0 gm0 ] (8.52)

Following [Wojciech S., 1984], [Szczotka M., 2011b], when introducing
denotations for coordinates of the point A"’ (Cl(k) bi(’];)) and Agk)(a;’];il,bi(,];ll)

i i+1

in the local coordinate system 0%)&*)p*) attached to the centre of mass of the
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(k)

Fig. 8.7. Inclination angles of an RFE to the axes of a stationary coordinate system
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Fig. 8.8. Coordinates of a point in the local coordinate system

RFE i (Fig. 8.8) we may write the coordinates of the centre of mass of the RFE i in
the coordinate system {A} as follows:

'xc(‘k) = 'xk + Zl:hl(’kj) COS(¢(k’j) + wl(’k]))
=0
i : (8.53)
yc(f) =Vt Zh,(kj) sin((p(k’j) + (p[(k))
=0
’ 2 . .
where h(k) = \/(_aik; + a;]f;ﬂ) + (_ b](kj) +b;f{;+1) when j<i
ij ’
(az(lj))z + (bz(];) )2 When ] — l
plH) —p®)
arctg " {;j when j<i
o) = jint T4
N b
arctg '(;C 7 when j=i

8.3.2 Equations of Motion of a Link

The kinetic energy of the i-th RFE equals:

E, = %m}"){[x(")]z +[W] }+%J}")[¢<k’f>]2, (8.54)

G G



8.3 Modelling of Planar System 121

where mi(") — mass of the i-th RFE,

J l.(") — moment of inertia of the i-th RFE relative to the central axis
perpendicular to the plane XY,

and then the following sum gives the energy of the entire link k:

Ty
E, =ZE,(,,< . (8.55)

Using (8.53), (8.54) and the following identities, which may be proved by
induction:

S kS gl pl y Z Kplk) (8.56.1)
i=0 Jj=0 l:O j=0

: 2,
zml(k)[z(l-,(k,j)bl(fcj)} :Z‘/’kl Z Zmz ll z,, (8.56.2)

i=0 j=0 I=max{i, j}

7, .
E, :E[q(k)]TA(k)q(k), (8.57)

) —Aék)sin((p(k‘o)+a(()k))...—gi(k)sin((p( )+a,(k)) Xrgf)sin(¢(k’"k)+a’5f))
Mz= 7(k)cos(go(k*0)+0¢(()"))...+K(k)cos((p(k”)+ai("))...+Xr5kk)cos((p(k’”k)+a,5f)) ’

MO i) = A8 coslg) gl )

. 5 (k)

Al = [ ] + [b ] al) = arctg%,

a;
)= i mS'k)hj,i cos ¢.§'],(i) , i i Sin @ ",
=0 j=0
_ — l;i(’f)
AW =\la®] +BYT o) =arcte ;.

i,j
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alf) = Z{mé“hz,,-hz,, coslplt) —gf!))+ 5,1,
[=maxyi, j

bk = Zk: m Sin((/’z(ﬁ) - ("1(,16')) ’

i,j

l:mux{i,j}
5:',; — Kronecker delta,
ny
) =3t
i=0

This enables transforming the Lagrange equation of the link & to:

(k) g s
D+ e+ Vo, (8.58)
o4 aq(k) aq(k)

q
where € =€, &, £ .. %(w)}r ;
p® — dissipation function of the k link's energy,

VE, VS — potential energy of deformation and gravity forces of the link k,

Q(k) — vector of generalized forces.

By taking into account (8.57), the following is obtained:

g = AWM 1 BEg®), (8.59)
where A% — defined in (8.57),
B%  — matrix with the following elements:
e )
52(12% = _(P(k’i)zi(k) Sin((ﬂ(k’i) + %(k))’ Ez(fa)z =0,
b 1y == A sinlph) o) —a)) i j=01.ny,

B =B B B <0,
The following formula gives the potential energy of gravity forces:

g

e =)
i=0

whereby y(k) =const .

¢;,0
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It then follows from (8.53):

0
n(®)
Y 1) coslp 0+ plt))
oVE i=0 :
W = : . (8.61)

4 m (k) zk COS( + ¢l( j))

), coslp) g, |

nyng /|

The expression giving the energy V,’ of elastic deformation and the dissipation

function D*) of the k link's energy depend on the form of assumed physical
dependencies between the deformations and stresses characteristic to the spring-
damping elements. In the case of linear Kelvin-Voigt model, counting V,’ and

D™ as components due to deformation of the spring-damping elements (Fig.
8.6), it may be written:

s;/(l/i> =CWg®), (8.62)
op®) .
S -2 (869

where C(k) and D) are the stiffness and damping matrix, respectively, whose
coefficients are constant and dependent on the geometry of the link and the
constants determining the stiffness and the damping of the SDE.

The vector of generalized forces Q(k) is formed by the values of forces caused

by external loads and reactions in the joints. If load shown in Fig. 8.9 is applied to
the i-th RFE, the components of the generalized forces due to the loads take the
form:

(8.64)
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where h(’]}), Q‘(,kj) — defined as in formula (8.53),

1

r®), 8 polar coordinates (relative to the middle C*) of the i-th

i

RFE of the link) of the point to which the load is applied.

Fig. 8.9. Coordinates of the point of application of external load in the local coordinate
system of the i-th RFE of the k-th link

Summing:
o) = > o, (8.65)

yields the components of the vector of generalized forces. Furthermore, with
(8.58), (8.59), (8.61), (8.62), (8.63) the equations of motion may be rewritten:

IV

(k) ?

AW 1 BB 4 W) = Q) -

(8.66)
where B® =B® 1 p&).

. k . .
In the vector of generalized forces Q( ) both the reactions of constraints and

known loads are included. For some operations, it is convenient to have this vector
written as:

QW =-K®RW+QW, (8.67)
where K®)  — matrix with m+3 rows whose elements depend on q(" ),
R®  _ vector of reaction (its elements are the components of

reaction in revolute and translational connections and forces
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occurring therein as well as moments of undeveloped
friction),

ng) — vector of generalized forces due to known external loads,
reactions in flexible connections and forces of developed dry
friction and viscous friction.

Given the form of the vector (8.67), the equations of motion of the link £ may be
written as follows:

AWGH L pRgH L chg® L K ORE = g (8.68)
8
where F®) =——8Vk +ng).
aq")

The elements of the matrices A*), C*), K*) depend on q'*) and the elements

of the matrix B*) and the vector F*) depend on q(k) and q“). In the special

case of n,=0, the concerned link is modelled as rigid.
Motion of the base {A} may be taken into consideration by assuming it to be
the RFE 0 whose motion is described by:
Xo = xﬁfg) (t )
Yo=ye) (8.69)
o0 =)

The vector of reaction in the connection is thence defined by the vector:

0) — | 0) (0) (0)
R - [Fx Fy Mz ]T’ (870)
whose components describe the forces and moment which realize the excitation
(8.69).

A detailed description of the algorithm of combining the equations of subsystems
for revolute and translational connections is presented in [Wojciech S., 1984].

8.4 Modelling Large Deflections and Inclusion of Nonlinear
Physical Dependencies

Most of the applications already discussed in which the RFE method is used
pertain to systems containing beam links. Some of the considerations in this book
are for pipelines which may be subjected to deflections much larger than typical
beam systems. Although the RFE method enables analysis involving large
deflections, the specific dynamic behaviour of offshore pipelines and cableswhen
laid on the bottom of a sea, calls for considerable modifications in the formulation
of the equations of motion according to this method [Szczotka M., 2011b]. They
will be later applied in some of the examples presented.
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When the deflections of the link are large, the length of the chord AB’ may
differ (be smaller) from its primary length AB=I (Fig. 8.10). Let us remind that,
according to (5.5), the motion of the base (the vessel's hull) is known to be given
by the vector:

(4) (4) (A)

o o] )

(4) _[ (4)
q = xarg yarg Zorg ¢z

Fig. 8.10. Division of a beam with length / into RFEs and SDE: a) primary beam, b)
equivalent system of RFEs and SDE

Let the components of the following vector determine the displacements and
orientation of the RFE i in the system {A}:

g :[;W q,o)T} , (8.72)
where 1) =[x(i) y(i) z(i)}r — coordinates of the origin of the system
{i} attached to the RFE i in the system

{A},

(B(i) =[¢y) (D§l ) Q@]T — ZYX Euler angles determining the

orientation of the axes of the system {i}
relative to {A}.

Based on the information from previous chapters, let us write the transformation
matrices from the system {i} to the base system {A} in the form:

_ RO 0
T@{ | (8.73)

where RV = s(pgi) Cq)i[) 0 0 I 0 |0 C(P(i) _S(D;(ci) ,
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and the transformation matrices from the system {i} to the global system,
according to (5.4.1) and (5.6), are as follows:

TO =TOG", )= T()FOGY). (8.74)

{1} RFE
{A}
o
(i)
RFEi-1
/‘Aﬁmary element i
A A X

Fig. 8.11. The primary element i, RFEs i-1 and i having load applied to the beam

Large displacements of the links cause the primary element as well as the
RFEs i and i-1 created in the secondary division to be in the configuration
depicted in Fig. 8.11.

The coordinate systems {i-1} and {i} are attached to RFEs i-1 and i. On the
other hand, to the primary element i the coordinate system {i’} is attached. The
coordinate system {A} may in further considerations be the global system or one
attached to the deck of a vessel or platform.

Fig. 8.12. Position and orientation of the system {i'}
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If division of a beam into rigid finite elements is fine enough, differences
between the angles (lf) —dzi_l), di) —¢(H), di) —¢(H) which are components of

y y X X
the vector:
R
ADY) =) — @) =| ) — i) (8.75)
P\ — i)

may be assumed to be small. Let us assume that the origin of the coordinate
system {i’} (of the primary element) coincides with the right end of the RFE i-1
and its orientation to is determined by ZYX Euler angles being the arithmetic
means of the Euler angles of the RFEs i-1 and i — Fig. 8.12. Therefore:

P g0 ﬁ(i—l);R(z‘fl'), (8.76)
where f",gi_r) = [% 0 O]T,
and:

o)
B0 = o | =

o)

[&)“‘1) + &)W]. (8.77)

N | —

The coordinates of the right end of the RFE i-1 (point L)) and the left RFE i
(point R ) in the base system {A} are determined thus:

£ = F0) 4 REVEED), (8.78)

£ = F) 4 ROF), (8.79)

where  F{"'") — defined in (8.76),

T
i) | A
£ ”:{—5 0 o}.

These vectors may be represented in the system {i’}:

r) = ROV ({0 - ¢ ), (8.80)

e = ROT (50 - ), (8.81)
() i) )

where R(') — rotation matrix corresponding to the angles @, ,(p‘,l N7/
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whereas, considering (8.77), the vectors @ (Li') and @ g') are:

i = (i- = (i’ I, =
o) = U—d)():—EA(I)(), (8.82)
o =60 - =%A&)(i). (8.83)
The vector of deformation of the SDE i takes the form:
(")
i) - | AT
AqY = {A(I)(i')}’ (8.84)

where Ar) = I‘,(;I) —l',(jl) ,
A0 =) — @l
Taking (8.80) — (8.83) into account:

i [~ (i i =i i
Aq("') _ R 1[rR( )yl )—lrL( )+l )] _ R [FR(i) _i;—L(i)] 559
EA&)—[—EA&)j '

The axes of the SDE are the principal deformation axes, hence the following
formulas for the forces and moments caused by the deformation of the SDE i:

~

AD

FO =car, (8.86)
M@ =cPr@", (8.87)
where B9 =[F0 Fo Fof
s =l iy il
CcY = diag{cff) , c;i) , cii) }
@ — g; @ ) .0
Co —dlag{cv, 1€y sCy }

c(i) c(i)

x5 Cyp — stiffness coefficients.
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(8.88

D =102.4mm — (839
t, =5.95mm ;e

s o5 i i5 2 25 E
A |m]
1D14 ]
- (8.895_
- ———  (8.88]
107 D =307.2mm 3
. , :pi1p6€;05mrr112 \EM
: N
E 1011
z
:Z 10"
10°
100
10? 1 1 1 1 Il
0 05 1 15 2 25 3
4 [m]

Fig. 8.13. Values of shear coefficients according to (8.88) and (8.89)

In [Kruszewski J., et al., 1999] the following formulas for stiffness coefficients of
the elements are given:

_EA _GA _GA
KN ST T
(8.88)
. _GI, . _GJ, . _GJ.
N N LN
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The work [Szczotka M., 2011b] takes another approach to defining the shear
stiffness coefficients ¢, and ¢, by assuming:

12E7T . 12E7,
=79 : T T A3
A A
and maintaining the conformance of the values of remaining coefficients to (8.88).
The above modification of the coefficients ¢, and ¢, enables the same expressions
to give the potential energy of elastic deformation of the primary element obtained
with the RFE method and the energy of elastic deformation of the deformable
element considered in FEM.

The values of shear stiffness coefficients determined by formulas (8.88) and
(8.89) are shown in Fig. 8.13 for different lengths of the element. Calculations
were performed for two different sections of pipes which are analysed in later
chapters of this volume. Appropriate division into finite elements enables both
coefficients to share the same value. The stiffness coefficients ¢, and ¢, in the
formulas (8.89) have smaller values when the elements resulting from the division
are longer.

Forces +F'" applied to the point whose coordinates are given by (8.78) and

, (8.89)

pairs of forces + M) act on the RFE i-1. Forces —F ) applied to the point

est
whose coordinates are given by (8.79) and pairs of forces — M () act on the
RFE i. (Fig. 8.14).
The forces (8.86) and the moments (8.87) are given in the coordinate system
{i’}. Their transformation to the global system is done as follows:

FO = R(i‘)f;(i), (8.90.1)
M? =RVIM®, (8.90.2)
and in the following way to the coordinate systems of the RFEs i and i-1:
Fe(sit_l) _ R(i—l)TFO)’ (8.91.1)
FO =ROFO, (8.91.2)
M) = R M©, (8.91.3)
MO = RO M. (8.91.4)

est —

The presented discussion shows that the crucial change introduced with respect to
the original formulation of the RFE method (section 8.1) is having the system
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Fig. 8.14. Forces and moments acting on the RFEs i-1 and i caused by deformation of the
SDE i

of principal deformation of the SDE {i’} “follow” large displacements of the finite
elements. A similar approach to planar systems with variable configuration is
presented in [Wittbrodt E., 1983]. Furthermore, the modification of shear stiffness
coefficients enables the energy of an element's deformation to be expressed in the
same form as in the method of deformable finite elements. This conclusion holds
for linear physical dependencies. Also of importance is an observation that since
the presented proposal assumes the vectors of generalized coordinates of the RFEs
take forms described by (8.84), no distinction is made among the variables to
configuration (describing the motion of the beam as a rigid body) and flexible
ones, as in section 8.1.

8.4.1 Equations of Motion When Using the Classical RFE
Method

The equations of motion of a system taking into account the dependencies from
previous chapters may be put in the form:

AG=£(r.q.9), (8.92)
where A = diag A, A&, |,
a=[a;...a].
f=Q-e-G=[f"...F[
Q=+ ).l + @) |

T
s
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e=[e7,..& ]

T
-
a(~10 aqn ’

n — number of RFEs in the concerned model.

Note that the matrix A is diagonal, which is of great importance when integrating
the system's equations of motion. Such form is characteristic of systems modelled
with the classical RFE method.

Let us assume that at the point whose coordinates are given by the vector i‘}'

in the local system of the RFE i there act: an external force and a pair of forces
given by:

i :[ﬁl_(x) o fe O]T’
(8.93)

M=l 7o i1 of.

Their corresponding generalized forces may then be determined from the formulas
[Wittbrodt E., et al., 2006]:

(Qi(ﬁi ))k:] ..... 6~ F/TT/TT/AkF/:
(Qi(Mi))k:] 6= A’Nlim _3 1 (Ti ),,3(Tz:k ),,2 + A/Nli(y) % (Ti ),,1 (Ti,k ),,3 + MI'(Z)ZS:] (Ti )j,z(Ti,k )j,l'
=

j= j=1

w

(8.94)

The relations (8.94) allow us to determine the generalized forces and moments
pertaining to the impact of the sea environment:

0 - R S+ @ .51 e 0l 1 811+ 000 54 S 595

where F/' M — vectors of forces and moments due to interaction of the

element i with the liquid (including the influence of waves,
sea currents and hydrodynamics),

ﬁ,b,Mf_ vectors of forces and hydrostatic buoyancy moments

(hydrostatic buoyancy of the pipeline and additional buoyant
modules),

F’,ME — vectors of forces and moments of the action of guiding
structures (e.g. reel, guiding ramp, mechanisms),

F¢ ,1\7[;’— vectors of forces and moments due to the action of the

seabed.

The forces and moments caused by the deformation of the SDE may be included
similarly. According to (8.86) and (8.87), forces and moments caused by the
deformation of the SDE i (left end of the RFE i) and the SDE i+1 (right end of the
RFE i) act upon the RFE i. Hence:
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Ql(est) — Q,('wt)(_ Fi(est) M(est) F(est) Mgislt))’ (896)

where  F® M® _ defined in (8 86) and (8.87),

(ert) (evt) (ert)
Q l+1 T k R i -F, 'I‘l k rL i +

1

3

clipe —ipen ] S () L+

+U) ML 2 M), W)+
3

+ | (est) - M (T})./,Z(Tf”‘ )JFI'
1

i+l,z -
j=

8.4.2 Inclusion of Nonlinear Physical Dependencies

In the rigid finite element method, flexibility is described in an approximate
manner (displacements are realized in the SDE only). Therefore, the tensor 0'(/.}3

present in (7.1), defined for each SDE i in the plane normal to the beam's axis, is
given as [Szczotka M., 2011b]:

yx o
(i) _ (i)
O =| Ty 0 0 |, (8.97)
(i)
7. 0 0
F®
where o0, =——,
A
. FW® 1.
(i) y ()
Ty =—+—=7T¢’,
YA 28
f(y) 1
w-E Lo,
A 2
@) — @) @) — @)
Tyx —TX},, T, =Ty
M(i)
é’) =—2~_ —stress tangent to the torque,
2A1)
min
19 — minimal thickness of the section's side.

min

The form of the stress tensor in a flexible beam modelled with the RFE method is
similar to the tensor obtained in the Saint-Venant problem for torsion and bending
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of beams [Nowacki W., 1970]. The stresses o'’ , o'’ due to the bending

moments at which the transition from elasticity to plasticity occurs, may be
determined from the following equation taking (7.1) into account:

NS
370 +(0f;’) ~0, =0, (8.98)
where " — equivalent bending stress,

J;i) — specified as in (7.1).

Some models of pipelines presented later use the given dependencies to construct
a module allowing us to determine the forces and moments in the SDE when
occurrence of elasto-plastic deformations is possible. Fig. 8.15 schematically
shows a flowchart of actions comprising the procedure of determining the bending
moment acting on the RFE on the assumption that ¢} € {q)vi N

The diagram uses the following notation:

F, — mark specifying the state of the material,

X, — maximal deformation which causes the phase to change from elastic
to plastic,

51'0 — neutral value of displacement (at which mg) =0),

c!? - stiffness coefficient of the SDE within the elastic region,

C;f) — stiffness coefficient of the SDE within the plastic region,

C;i) — ‘Llce(i) , ﬂ = 001, 01, veesy

fmm( ) — function describing the shape of the characteristic o = f (8 p) within
the plastic region,

M é") — value mg) determined in the previous step # —/h ,

sy — plastic deformation in the previous step £ —/h .

A control procedure for the mark F; and for calculating the values 2’ and M |’

(Fig. 8.16) is also necessary.

Approximation of the characteristic of a material may be performed for
arbitrary data obtained e.g. from measurements. The linear segments (elastic
region, linear reinforcement in the plastic region) may be interspersed with
nonlinear ones, thus leading to significantly greater stability of the calculations.
An example of such characteristic can be found in [Szczotka M., 2010].



136 8 The Rigid Finite Element Method

Tags F; (fig 8.16)

previous step

current stgp

...procedure for generation of .
the equations of mations... [  for i=L...Hegs

h J
0
68 =84-4-F
h
calculate mg’)m using selected hypothesis (f.ex H-M-H)

] i
My y  EAD
and X =$ where CS) :T‘gl

ms;.) = fmai(&‘g'z':XsquP)

n® =+ cPag - o)

@) _ 0, ol @ n§ -1+ P les, - o)
My :MB +Ce (1'5\9'!—93)

TR

Tags F; (fig 8.16)

Fig. 8.15. Flow diagram of the algorithm determining the value mg)
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Fig. 8.16. Flow diagram of state markers control, F; and calculations of the values ﬂg)

and M g)



9 Applications of Models of Offshore
Structures

Each offshore structure is unique in the sense that it is built only after a customer
with a specific need actually places an order. Design companies and
manufacturers of engineering systems of this type are often small and medium
enterprises, which cannot afford purchasing costly computer software packages
for numerical computation involved in dynamics of mechanical systems.
Therefore, they often employ custom, in-house dynamic models of the structures
designed. In the present chapter, dynamic models of the following are presented: a
gantry suited for relocating sets of BOP valves on an extraction platform, a
column crane and a device for laying pipes on the seabed. The formulation of
models thereof leverages the methods described in earlier chapters.

9.1 BOP Transportation Gantry

One of the types of offshore cranes is a BOP crane. The construction of Protea
from Gdansk is presented in Fig. 9.1. It is a gantry crane installed on a drilling
platform designed to transport a system of valves named BOP (Blowout
Preventor). BOP is used to block an uncontrolled outflow of oil or natural gas
from a wellbore at the seabed. After drilling the wellbore, the BOP is put inside it,
and afterwards risers are being connected to the BOP. The risers drain off oil or
gas into suitable tanks. In view of the plug task, weight of the BOP reaches
hundreds of tons. During the transportation process (during the travel of a gantry
crane) the BOP is protected by a system of guides presented in Fig. 9.2.

Clearance between the load and the guide system equals a few centimetres.
Weight of the presented crane is 200 T, hoisting capacity 550 T and height about
30 m. The analysis of a travel system is an interesting and important problem
concerning the dynamics of a BOP crane. The crane is supported on rails and its
motion is realized by the means of a rack and a toothed wheel (Fig. 9.3).
Maximum velocity of travel of the crane is equal to 3 m/min. Due to the
movement of the platform’s deck caused by sea weaving and wind forces, the
protection systems are used. These systems limit the movement of the crane in
vertical direction and horizontal one, perpendicular to the longitudinal axis of
rails. This task is particularly realized by an anti-lift system presented in Fig. 9.4.

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 139-R01].
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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Fig. 9.3. Rack travel system Fig. 9.4. Anti-lift system

9.1.1 Mathematical Model of the System

The schema of the model of the BOP crane together with more important
coordinate systems is presented in Fig. 9.5. The following basic assumptions for
modelling are established:

= movement of the base (system {A}) is known and described by functions:

N =x£lfg)(t); Y2 =x£fg)(t); Y3 =x£fg)(f);

9.1)
=y y=00w: yi=ell)o),
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frame

€ (Y ZF) ()
o Lo e

load (BOP)

y4 "o
moving base

Fig. 9.5. A model of a BOP gantry with load

= structure of the crane (frame) is treated as a rigid body — it should be noticed
that the construction of the BOP crane is a kind of combination of two A-
frames; an A-frame has been a subject of many analyses presented in [Fatat
P., 2004]; these analyses have shown that the influence of flexibility of the
frame on dynamics of the whole system (on motion of the load) is slight,

= Joad is a rigid body of rectangular shape,

= Joad is suspended on two ropes — their flexibility and damping are taken into
account,

= ]oad can touch the guides only along its edges,

= clearance and flexibility between the load and guides are taken into
consideration,

= frame is fixed flexibly to the deck and, additionally, in Y ) direction
clearance can occur,

= input in the drive system has been modelled in two ways: a kinematic input
via a spring-damping element and a force input,

= wind force can be taken into consideration,

* homogenous transformations are used to describe the system’s geometry.
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Both the load (system {L} in Fig. 9.5) and the frame (system {F}) have 6 degrees of
freedom in respect to the deck (system {A}). So, the model has 12 degrees of freedom
and the vector of generalized coordinates of the system has a following form:

(F)
q

T
(F)=[x<F> (F)  (F) (F)  g(F) q)(F)] ’

where y Z v
q(L)=[x<L> YO LBy gL ¢<L>]T

It has been mentioned that the motion of the base (deck of the platform), that
means the motion of the system {A}, in respect to the inertial coordinate system { }
has been assumed as known, described by pseudo-harmonic functions:

Z sm( ,/t+(p,(j)) i=1...,6, (9.3)

(4)

where A,(A , , ¥ , @; ;> — amplitude, angular frequency and phase angle of the
input, respectively,

n»(A) — number of harmonics of the series.

1

The application of homogenous transformations allows converting a position
vector of the point defined in the system {A} to system {} according to relation:

r\)=T ri 9.4)

D_ [ ]T .. . . .
where r =|x, y, 2, 1] - position vector of point P in the inertial

p

system { },
rI{)A} = [X;A} yi)A} zi,A} 1]r — position vector of point P in the system
{A},
‘;T - matrix of a homogenous transformation from the system {A} to

the system { }.

The matrix ‘;T can be presented as product of six matrices, where each of them is
a function of one variable dependent on time (9.4). Order of rotations included in

the matrix gT corresponds to Euler angles ZYX.

Kinetic and Potential Energy of the Frame and the Load

Kinetic and potential energy of the frame, as well as the load, can be determined
using general algorithms presented in chapter 5. If one denotes the homogenous
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transformation matrix from the frame system {F'} to the deck system {A} as T)

and from the load system {L} as T ), the transformation matrices from the
frame system and from the load system to the system {} can be calculated as:

TE =TT, (9.5)
TW=0T T, (9.6)
Introducing notation of the Lagrange operator:

RO oE® g™
€ dt aq(b) aq(h) ’

9.7)

where k is the number of the generalized coordinate, b e {F , L},

and using the transformation presented in chapter 5 one can obtain:

()—tr{T(”)H“’){OTT(”) +2OTT(b)+ZZT(];)q,(b) (h)+zT(h) (h):|}, (9.8)

i=1 j=1

aT(b)

where T,ib) == o
aCIk

Y 9gPag®

The above form requires repeated multiplication of matrices of 4x4 dimensions
and then the calculation of the trace of the result matrices. In order to decrease the
number of required numerical operations, the authors decided to derive formulae
describing Lagrange operators in the explicit form.

The relation (9.8) can be presented in the following form:

~ .o~ . I T
EI(Cb) {%TTIEb)H(b)[%TT(b) +22‘TT(b)+gTT(b)} } =
tr{ ATT OTT(b)H(b) |:T(b)} } +tr {gTT %TT(b)H(b) [T(b) ]T} 9.9)
(b)
(b) £
8k’2 k,0

+ 2tr{ 7TV [T“’)JT} .

(b)
€kl
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Assuming that rotation angles of the frame and the load are small, the matrix

T® can be written as:

1 —l//(b) 210 )
gor_|v” 1 = Y ©.10)
v o 1 ®) :
0 0 0 1
or:
(b : b
T =1+% D4}, (9.11)
j=1
where qg”) — suitable elements of vectors q'*) or q‘*,
and matrices D ; can be defined as:
for j=1,2,3:
D 0 a;
P = , 9.12
“lo o O12
1 0 0
where a, ={0}; a,=|1|; a;=|1]|,
0 0 0
for j=4,5,6:
b _|Ri 0
P = , 9.13
00 O 0 01 0 -1 0
where R, =0 0 -1|, Rs={0 0 O, Rs=1 0 O}
01 O -1 0 0 0 0 O

In the paper [Urab$ A., et al., 2010] it has been shown that:

for k=1,2,3:

b b) (b
e =m"G", (9.14)
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3
) =3 4m" (@) . 9.15)
=
gro=m", (9.16)
for k=4,5,6:
b & b T b)y(b b
£l =24 )tf(q%(l)oRi JO[RY )r) : 9.17)
j=4 ok
el) = (10 +a )i - s RGP — 1§, 9.18.1)
) =100 + (10 + 1B )i — DG, 9.18.2)
b b) ++(b b) (b b b)) oo
e =GP 10 G0 + (1D + 18 )i 9.183)
b T b) Y& & T b)) [
el =tr{<p2<p0 RYJ )}+Z‘1§' )tr{(I)Z(I)O ROJ )[R§ )}T} ©.19)

j=4
where  m”) — mass of the body be {F, L},
b b b
i
IV =1y ;’? J ;’Q J ;’? — elements of the matrix are defined in (5.11),
b b b
VA
D,,P,,9,,S,,S,,S, — submatrices of (AT, OT, oT respectively,
®, S . |®D, S . |®, S
gT —| o Doy gT | o gT _| T2 D2
0 1 0 O 0 0

(b)

Derivatives of potential energy of gravity forces of element of mass m'” can be
presented in the form of the vector:
Qv ®
ﬁ = [m(b)g ty mPgty, mPgt; 00 O}T’ (9.20)
where q(b) - vector of coordinates of the frame or the load (defined in
(9.2)), respectively,
m? mass of the frame or the load,

13,133,133 — proper elements of the third row of the matrix gT .
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Model of the Support

7o A 1A}

(k) ¢ (F) (F) (F)
P(x 0 Yo s Zpir)

Fig. 9.6. Flexible connection of the frame to the deck

It has been assumed that the frame of the BOP crane is supported flexibly in

four points denoted as P*) (k =1,2,3,4) . The crane is moving on a dedicated rail

(4)

system in direction parallel to XM axis (Fig.9.6). Additionally, a constructional

clearance can occur in Y direction.
The reaction force, i. e. the reaction force of the base on the frame, is depicted by

the vector:

(F) _ | (F.%) (F.) Fo|T
Foo=lFw" Fu' Fuol . 9:21)

The F ;5;2) component can be calculated as:

(F.z) _ p(F.2) (F.2)
Fu? =Fg o +F 0 (9.22)
where F S“;sz — stiffness force,
F*-2) damping force.

D,P(k) -
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The stiffness and damping forces are determined by relations:

F.z
Fiph ==Chu0; <“AZP(“, (9.23.1)
F(FP<ZA)> = P(k)é‘P(k) 2 ph) > (9.23.2)

1 when Az, <0
where &4, =
0 when Az, 20

AZPW = Z;,f‘k)) - Z;ﬁ??) where Z(/(‘k)) =0, and Z' (k) is the z coordinate of
the point P* in the system {A}, AZ oo = ;ﬁ)) ,

by

Z
¢ )

P — stiffness and damping coefficients of the connection in the

AR direction, respectively.

In the case of the component F;i;y) , the possibility of occurrence of clearance in

the anti-lift system is taken into account. Due to modelling clearance, two spring-

< (4)

damping elements acting in the Y
chapter 6.2.

direction are introduced, as described in

The component F[E(i;x) from (9.21) can be expressed by:

(F.x) _ (Ax) N o(F.x) e pp(FLy) p(F.2)
Foo™ ==sgn(y) S i (F™ s Fow™) (9.24)
where S, P“) resisting force caused by rolling or sliding friction,
U;ﬁ,’f - component x of the velocity of the point P " in the coordinate

system {A}.

After calculating suitable coordinates and velocity of points of support,
generalized force of flexible connection of the frame and the deck can be written
as:

(F) (F) o (F)
QP(k> _UP(k) Fpm ) (9.25)
F F
1 00 _y;;.(k)) Z;;.(k)) 0
F F F
where U;(k)) =0 1 0 x;(k)) 0 —z;(k))

001 0 X v

P(k)
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Generalizing the relation (9.25) to four supports one can obtain:

4 4
(F) _ (F) _ (F) (F)
Qp _ZQPU‘) _ZUP(‘\') FP(k) .
= k=1

Modelling Clearance between the Load and Guides

b’ Y
gk CE“"”

X(A)

Fig. 9.7. Load and spring-damping elements with clearance

(9.26)

The guides have been replaced by spring-damping elements with clearance

(SDE E™*) that limited the movement of the load in X and Y directions
(Fig. 9.7). It has been assumed that the load can contact with guides only along its
edges and the number of spring-damping elements can be different for each edge.
The manner of calculation of stiffness and damping forces coming from the each
side is analogical to the one presented in chapter 5.3. Additionally, one has to
determine equivalent coefficients of flexibility of elements modelling the guides.
Suitable calculations have been executed by the means of the Finite Elements
Method. They were presented in details in the doctoral thesis [Urba$ A., 2011].
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Drive of Travel System

The input in the drive of the travel system has been modelled in two ways
(Fig. 9.8): a kinematic input via a spring-damping element (flexible) and a force
input (rigid). It has been assumed that the drive acts in points P'" and P®.

a)

P®

o

P@

Fig. 9.8. The travel system of the crane: a) flexible, b) rigid

1. Kinematic input

In this case, the potential energy of elastic deformation and the dissipation
function of the drive system can be calculated as:

1 2
Yo = o [5;(,.) 0 —x\)
=14 9.27)
y o1 : ) |2
D =2bj |62, (-

where 5;(1) (1), 5;(4) (t) — assumed displacement (kinematic input),

c ; 0 b; . — stiffness and damping coefficients of the drive of the

travel system, respectively.
. . A .
After determining coordinates xl(p(;)) as function of elements of vector q(F ), one
should place suitable derivatives in the equations of motion of the system.
2. Force input

In the case of force input, the unknown forces F IE(FI)) , F ;53 and suitable constrains

equations have been introduced. Generally, the forces can be placed on the left
side of the equations of motion of the system which can be written as:
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Aq-DF =f, (9.28)
0 0
where D= T T,
Uy U
o [F0
- FE 0
L pw

T T
Upff )1 ,Upff) )1 — the first rows of the matrices from (9.25).

In the analysed problem, the constrains equations have the form:

X0 =85, ), 9.29.1)
X0 = O (1). (9.29.2)

Due to convenience of the computer implementation, they can be presented in the

matrix and acceleration form:

I SN ()
Dig=6=|." ) 9.30
1 [5;4)0)} 030

Energy of Elastic Deformation and Energy Dissipation of the Ropes

The load is suspended on two ropes, so their energy of elastic deformation can be

written as:
» 21()()[ <)]2
A zzzcr” o.r AlA’;BP , (9.31)
p=1

where ci” ) — stiffness coefficient of the rope p,

AZX: l)?p — deformation of the rope p,

0, when Al'") <0
oW = »ep
=

1, when AL} >0
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The derivatives of the potential energy of elastic deformations of the ropes have
the form:

(p)
v, ¢ g Al A G E )
Sy =8 U (9.32.1)
A B
(p) AZ(P)
g’ o=—c"8" l(p'; L UulED 9.32.2)
q A B I’

PP

A similar reasoning may be conducted in the case of determining the dependency
describing the energy dissipation function:

Dip) Z b(p)5(p)[A (p) ]2, (9.33)
where d f” )~ damping coefficients of the rope p.
Hence the formulas:
(p)
oD T.
aqr(F) - (P)é‘(P)U(f‘:) /(AP; , (9.34.1)
(p)
oD, T
—aq(L) =578, U T, (9.34.2)

Taking into consideration all components of the Lagrange equations, we obtain the
system of differential equations:

AG=£(.q.9), (9.35)
where A = A(¢z,q) —a mass matrix.

In the case when the input in the drive of the travel system has been modelled as
force input, equations (9.35) have to be completed by the constrains equations
(9.30) and equations of motion have to be presented in the form (9.28). The fourth
order Runge-Kutta method has been used to solve the system of equations.

9.1.2 Example of Numerical Calculations

The presented dynamic model of a BOP gantry allows for comprehensive analyses
of the device's operation both under usual working conditions and intense waves.
Much detailed discussion is contained in the thesis [Urbas A., 2011].

In the current book, sample results of numerical simulations for phenomena
occurring in a gantry's supporting structure are presented. Masses and geometrical
parameters of the crane have been chosen based upon technical documentation
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(2007). The main parameters are given below: mass of the frame 110 000 kg, mass
of the load 550 000 kg, dimension of the load 4,8 m x 5,5 m x 20,3 m. Data
concerning the motion of the deck that should be taken into calculation are also
provided in the technical documentation (2007) (Table 9.1). In our simulations,
the operational conditions have been assumed.

Table 9.1. Deck motion due to waves

Condition Heading | Heave | Pitch | Roll
[deg] [m] [rad] | [rad]
Z1 0 0,1343 | 0,0023 0
72 45 0,1115 | 0,0008 | 0,0023
Z3 90 0,1140 0 0,0045

Table 9.2. Load cases analysed - gantry crane not moving

Symbol Description Clearance | Deck motion
Z1-M0-C0O 0 Z1
Z2-MO0-CO0 | No clearance in travel system 0 72
73-M0-C0 0 73
Z1-M0-C1 lem Z1
72-MO0-C1 | With clearance in travel system lcm 72
73-M0-C1 lem Z3

Calculations for the BOP crane that does not move on the deck have been
denoted according to the Table 9.2. The same denotations are used in the graphs.

In Fig. 9.9 there are presented time courses of general coordinates W(L) of the

load of the BOP crane with and without clearance in the travel system.

The influence of clearance in the travel system for the reaction forces in the
support system (the leg no. 1) is shown in Fig 9.10. The deck motions Z2 and Z3
are taken into consideration.

The biggest influence of clearance in the travel system on the dynamics of the
BOP crane occurs for input Z3, so this input is taken into account for the next
calculations. The influence of clearance in the travel system on the reaction forces
will be analyzed. The travel velocity is defined by the relation:

v=3at’—4b> whent<T,,

(9.36)
vV=v, whent >T,
where v, =3£', T =6sec, a= ;"2 , b= 2‘;2'3 .
min ;
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Fig. 9.9. Influence of clearance on roll angle of BOP
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Fig. 9.10. Lateral reaction in leg no.1 (left - in sea conditions Z2, right - in sea conditions
Z3)

On the up graph in Fig. 9.11, there is shown the drive force on the first gear
(support no. 1) for kinematic and force input and for the case when no clearance
occurs in the system. On the bottom graph, there is presented the influence of
clearance on the drive force. One can notice that the clearance causes the
occurrence of significant dynamic forces of short duration.

Required courses of drive forces acting on the legs 1 and 4 realizing the
established travel of the crane are presented in Fig. 9.12. Kinematic and force
inputs have been simulated.

The obtained results (values of forces) for assumed parameters are similar, but
for kinematic input peak values they are bigger. These values depend on stiffness
and damping coefficients taken into account during calculations.

Additional clearance in supporting system for the legs that aren’t driven (i. e. 2
and 3), equal to 2 cm, has been taken into consideration, and the results are in
Fig 9.13. The obtained values of dynamic forces prove significant influence of
clearance on dynamic load of the drive system, the track-way and the whole
construction of the crane.
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B 14000 | ‘ . I T e ——
s Traction force, leg no. 1
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Z3, no clerances in the system
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Fig. 9.11. Drive force on gear no. 1 when flexible and rigid model applied (up) influence of
different clearances on drive force (bottom)

The mathematical models and the computer programs presented in this section
make it possible to execute dynamical analysis of BOP cranes mounted on the
floating base. They can be useful in calculating dynamic loads, dimensioning
bearing elements of the crane and the track-way. They enable determination of
static and dynamic loads by simulation for arbitrarily chosen sea waves
conditions.

9.2 Offshore Column Crane with a Shock Absorber

This section discusses a mathematical model of an offshore column crane with
a shock absorber [Krukowski J., Maczynski A., 2009], [Krukowski J., Maczynski
A., 2010]. As already stated (chapter 2.4.2), in offshore crane design, two kinds of
a shock absorber systems are used most commonly. The first one is mounted on
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Fig. 9.12. Rigid and flexible drive, leg no. 1 (up) and no. 4 (bottom)

the crane’s boom structure. The minimization of dynamic overload is obtained by
leading the hoist rope through an additional sliding sheave connected with
a hydraulic system. The other one, constituting the system of hydraulic
accumulators, is mounted in the hook block.

The subject of the analyses presented in this book is the first type of the shock
absorber because of its effectiveness, simple and compact construction. The
hydraulic part of the shock absorber is shown in principle in Fig. 2.15. Let us
remind that it is the system consisting of accumulator filled with gas and hydraulic
cylinder. When force S applied to the piston is big enough, the piston is pulled out
and oil is streaming from the cylinder to the accumulator. The end piston stroke
length, A,, must normally be shorter than the maximal possible piston stroke
length, A,.x minus a safety piston stroke length, Ay, to make sure there is no risk
for the piston to reach the bottom at normal operation. The safety piston stroke
length, Ay, shall normally not be less than about 50 mm.
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Fig. 9.13. Rigid and flexible drive on legs 1 and 4 - double size clearances in legs 2 and 3

F
Piston 4 Total piston force
force incl. oil flow restriction
S5 \ =
r’/// g __ Force used in calculation
—_--~X of load charts
S,
Force due to gas
pressure (adiabatic)
> A
A=0 B
Piston
deflection

Fig. 9.14. Shock absorber characteristic
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The main part of the force S on the piston, is balanced by the gas pressure in the
accumulator. In addition, there is some oil pressure drop due to restriction when
the oil passes the valves between the piston and the accumulator. This is illustrated
in Fig. 9.14.

9.2.1 Model of the Offshore Crane

The subject of this section is the offshore pedestal crane equipped with the system
reducing dynamic overload, situated on the boom (Fig. 9.15). The analysed crane
type is, according to EN 13852-1 Annex L, the “Lattice boom type crane” or API
Spec. 2C, type C. The main assumptions adopted at the design stage and the most
important connections used during the derivation of equation of motion will be
given below. Modelling the shock absorber was particularly emphasised. For the
description of the system, joint coordinates and homogenous transformations were
used based on Denavit-Hartenberg convention. The equations of motion were
obtained using the Rigid Finite Element Method and the Lagrange equations of the
second order.

luffing rope ‘\

luffing winch

A-frame hoist rope

hook/hook block
. R shock absorber
king frame
boom

pedestal

load base

crane base

Fig. 9.15. Scheme of an offshore pedestal crane

While preparing the model, the following assumptions and subsystems were
taken into consideration:

= the base of the crane (the platform of vessel) is a rigid body with 6 degrees of
freedom; the movement is caused by the sea waves defined by pseudo-
harmonic functions,
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= the pedestal is modelled by means of the Rigid Finite Element Method using
a modified approach (MRFEM) — chapter 8.2; hence, the flexibility of the
pedestal could be included but also the treatment of the pedestal as a rigid
structure is possible,

= the king frame, including the slewing part, is treated as a rigid structure with
one degree of freedom with respect to the pedestal — the slew angle,

= the A-frame is modelled by means of MRFEM as a simplified, one-beam
system having bending flexibility in the perpendicular direction to the A-
frame plane; similarly to pedestal model, the A-frame can be treated as a rigid
subsystem,

= the boom is modelled as a continuous system by means of the MFREM,

= the basic element of the shock absorber is the hydraulic cylinder, which is
modelled as point mass (additionally including the mass of the moving
sheave) connected to the boom by means of a spring damping system; the
mass may slide only along the longitudinal axis of the boom; it is assumed
that the characteristics of the spring is nonlinear,

= the hoist rope is modelled as a massless element with equivalent longitudinal
flexibility; the damping is taken into account, with the assumption it is
viscous, and that the damping coefficient has a constant value; with regards to
significant changes of the hoist rope during crane operations, the value of
rope stiffness coefficient has been made depended on the current rope length,

= the luffing rope is modelled similarly to the hoist rope; as a matter of fact that
change of the rope length during crane operations is small, the rope stiffness
coefficient is assumed to be constant,

= the load is treated as a material point; its contact with the deck of the supply
vessel is taken into account,

= the drive function of the hoist winch can be assumed in two ways: as
a kinematic excitation or force excitation by a given moment,

= the luffing winch drive and the slew of the crane has been adopted as
a kinematic drive,

= the supply vessel is modelled identical to the crane base.

Modelling of the Crane and Cargo Base Motion

It is assumed that crane base motion and thus movement of the system {A} with
respect to the system {0} is known and described by functions similar to (9.3):
n(A)
(A) _ (A) (A) (Ay. -
= ;Aw sin@Vr+¢'7); i=1...6, 9.37)

(A)

P
ij

where A‘(/‘*), [ (/)F’/;) — respectively: amplitude, phase, frequency and forcing
phase angle,

7)) — number of harmonic series.

i
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Movement of the cargo base, i.e. that of system {A}, will be described in the same
way.

In further considerations, the coordinate system {0} will be identified with the
inertial coordinate system {} and the following notation will be used for the
homogeneous transformation matrix from coordinate system {p} to the coordinate
system {0}:

T=T", (9.38)
where p is the number of the member in the kinematic chain.

Homogeneous transformation matrix gT, taking into account the motion of the

system {A} in {}, can be presented as a product of six matrices, each being the
function of only one variable dependent on time as described in chapter 5. It is to

be noticed that if T = [E y Z I]T is a vector describing coordinates of the

dm mass (point) in the local system {}’, connected to any part of the system, the
coordinates of such mass in the system {} may be described with the equitation:

r=%T@#)T(q)r'=Tr', (9.39)

where T(q)= {?T(ql ,..-»q,) — transformation matrix of coordinates from local

coordinate system {}’ into the {A} coordinate system, dependent
on the generalized coordinates (g,,...,q,) of the body,

T=T()T(q)-

Crane Pedestal

As mentioned before, the crane pedestal was discretized by means of MRFEM.
The number of rigid finite elements, on which the pedestal was divided, equals
n;+1, where the first rigid finite element of the pedestal, RFE (1,0), is added to the
vessel body. The generalized coordinates, describing the location of the second
and other rigid elements modelling the pedestal with respect to its predecessors
(coordinates describing mutual location of the rigid finite elements some times
called flexible or elastic coordinates), may be presented as vectors:

S A ) I

where (pfcl’i), (pf,l’i), ¢7§1’i)

are the rotation angles presented in Fig. 9.16.

The vector of generalized coordinates of the RFE yields:

q =g = [ql(l,l) g qgl,l)]r’ ©.41.1)
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Fig. 9.16. Pedestal discretized by mean of MRFEM
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In accordance to above consideration, during the derivation of the equations of
motions, kinetic and potential energy of the RFE (1,0) have been omitted. On the
basis of equations presented in previous sections, the kinetic energy of the body
discretised by the MRFEM can be calculated as:

E =Y E. (9.42)
i=1

. . . T
where E(Li) = tr{T(l,z) g ) }’
H") _inertia matrix of the RFE (1.i) defined in its own coordinate
system,

T(l’i) — transformation matrix from coordinate system {1,i} of RFE
(1,i) into the coordinate system { },
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) = ) FOOOp FOOFO O FOD oy gy

T _ transformation matrix from coordinate system of RFE (1,i) into
coordinate system of RFE (1,i-1).

For the Lagrange equations of the second order, the concept of Lagrange operators
is introduced:

E)=——r—"". (9.43)

Such operators for other RFE (1,i) (i=1,...,) of the pedestal, can be written in the
vector form as:

600 () = A4+, (9.4)

. . . . T
where A" = (a,gl’{)) A = tr{T,fl”) H") T } ,
k=13 j

3n; 3ny

(1,i) _( (l,i)) _ { (1,0) (1,i) (l,i)}'(l,i) - (1,i)
e =ler o am =2 2 e HOOTEY g5 ¢ +

j=1 1=1

+tr{T£1"')H(“) om0 + zgﬁﬂv“]f} ,

i
I
b
Jj=0
oT"”

Li) °

aCIk
(1)
iy _ 0 JoT

T, A A
Jil aq.iil,l aqlh’l

T =

The potential energy due to gravity forces of the pedestal’s rigid finite elements is
described by the relation:

VEy = m"g 0. T"EM  fori=12,.., n,, (9.45)

where  m" — mass of the RFE (1,i),

~(Li . .
I‘C( ) _ vector of the mass centre of RFE (1,i) expressed in its own
coordinate system.
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The corresponding derivatives, which are the elements of the Lagrange equations,
are:

Viy _

(1, l)
3407 =G (9.46)

Li
where . G =(gf), .
g](( i) _ =m*g0, T(lz) (1)
It is known that in MRFEM the successive RFE are connected with each other by

means of massless, elasto-damping elements (SDE). Potential energy of the elastic
deformation SDE (1,i) is defined as follows:

Vi= 2l T el o o) -

where C() =Cl(11), C(D :C,(lz)’ Cl(lz) =Cl(l3) where the adequate coefficients of the

rotational stiffness of SDE (1,i).

13 [~
2Zc,j[qj ] . (9.47)
j=1

Equation (9.47) can be presented in the form:

Viy= ;~<1z)TC<1z>~<1z) 0.48)
Ci(,ll) 0 0
where C"'=| 0 cl(lz) 0
0 0 ol

The required derivatives of the potential energy of elastic deformation with

respect to generalized coordinates (](l’i) , have a simple form:

v
(1,i) (11) (11)
500 - =C (9.49)

It may additionally be assumed that in SDE (1,7) dissipation of the energy appears,
which is described by means of equations:

(el ol T ol T )= >l T o0

j=1

D, . =
L) = 2

where bi(l) bl(ll) , bl(l\) bi(lz), bi(lz) :bl.a; are respective damping coefficients of the
SDE (1,5).
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Equation (9.50) may be also written as:

1;. iT i) ~(Li
D(l,i)=5q(1’) B g, ©.51)
) 0 o0
where B"" =| 0 bi(,lz) 0 [,
o o B

and the adequate derivatives can be obtained from:

D ; i
—aégji =B*g"". 9.52)
G

King Frame/Slewing Part

Let us define the following vector of generalized coordinates for the slewing part:

(1,111) T
qm:{q (z)}[qu) ¢ .. ] 9.53)

Z

where (pgz) symbolizes the angle of rotation of the slewing part with respect to the

pedestal.

The kinetic energy of the slewing part can be described as:
E, = tr{T(z) H? 7@ } (9.54)

where H®) — the inertial matrix of the slewing part.

Lagrange operators for the slewing part are formulated in the form:

£ 0 (Ey) = AP§%) +e?, 9.55)

.....

=) =l TS T

i
J=1

T
+2.2.6, TI(,.Z/) ‘?1(2) ‘}5'2)} ,

=1 j=I
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5_1 for =]
Y2 for 1# ]

TC)

= T FO0 . ) Gn)p
1”1% ( (

) — the transformation matrix form coordinate system of

slewing part {2} to the last rfe coordinate system of
pedestal {1,n,}.

Potential energy of the gravity forces of the slewing body equals:
VE=mP g0, T¥E?, (9.56)

where m®)  — mass of the slewing part,

=(2)
fe _ position vector of the center of slewing part mass, expressed in

the system {2}.

The necessary derivatives are defined bellow:

Y _go, (9.57)

A-Frame and Boom

As mentioned above, the A-frame is modelled by means of the MRFEM in
compliance with only bending flexibility in the perpendicular direction to the
plane of the A-frame. Additionally, as for the pedestal, RFE (3,0) is added to the
slewing part, and as a result, it does not have its own generalized coordinates
(Fig. 9.17). Consequently, the following vectors of generalized coordinates for
each rfe of the A-frame are defined:

=  one-element vectors of the flexible coordinates:

q(g,l)z[is,l)];_ =(m) [(p“s] (9.58)

= coordinate vectors describing position of the rigid element with respect to the
base coordinate system:

¢*=[g® G0 L goT =gt O forim1 2. n,.0.59)
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Fig. 9.18. Flexible boom discretized by mean of the MRFEM

In contrast to the pedestal and A-frame, in the case of boom it was assumed that
there is a rotational connection defined by the boom angle ¥ between the rotating
part {2} and the RFE (4,0) (Fig 9.18). We can define the following vectors of
generalized coordinates for the boom:
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= vectors of the rigid and flexible coordinates:

§“0 =[y]=| ff"o)];...; G40 = [pi) 4 q)gw]’ for i=1,2,..., n, ,(9.60)

= coordinate vectors describing position of the rigid element with respect to the
base coordinate system:

i T ~(40)7 ~@ar " i i i
q<4,)=[q(z> qeor q<4,>} =g ... qg;'q)zﬂ]f for i=0,1,..., n, . (9.61)

The necessary elements of the Lagrange equations related to the A-frame and
boom subsystems were calculated in the same way as presented for the crane
pedestal.

The Model of Shock Absorber

The model of shock absorber is presented in Fig. 9.19. Its basic element is sheave
(3) possessing the mass m;, mounted to the boom by means of a parallel spring-
damping system. Relative motion of the sheave (3) is possible only along the
longitudinal axis of the boom. The mass my, is enlarged due to movable parts of
the hydraulic cylinder.

(6)

Fig. 9.19. Model of the shock absorber

The shock absorber is activated only if the hoist rope tension reaches specific
value (and does not exceed design limits). Usually, in practical hand calculations,
one assumes a multilinear characteristic (Fig. 9.14), but its first derivative is not
determinable in points defining the working range. This is unfavourable in
numerical simulations.
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Y A

-aA -A

v

Fig. 9.20. Characteristic of an elastic element c,y=cga(x)

In the presented model, characteristic shown in Fig. 9.20 was assumed
[Krukowski J., Maczynski A., 2011]. It represents the characteristic of elastic
element cga=css(x), and does not take into account the situation when the shock
absorber sheave (3) is fixed to the boom structure. The curve given in Fig. 9.20
can be described as follow:

S+c(x-A) for x=2aA
kx+ax®e™ for 0<x<aA
y= 9.62)
—S+c(x-A) for x<-aA
kx—ax’e ™ for —aA<x<0

By selecting appropriate values of &rand £, one obtains a smooth transition curves
at the point x = @A (and x = —aA). Then, the following conditions must be fulfilled:

kaA + o(aA) e?® =S + c(aA - A)=kA +cla-1)A, (9.63.1)
k + 20ahe”™ + aazAzﬁeﬂ“A =c. (9.63.2)

After some transformation, parameters ¢ and [ are obtained:

2—a
B = ada1) (9.64.1)

o= % . (9.64.2)
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The shock absorber is designed in such a way that it works only under the
tensioning load. Up to the value of force S, the stiffness has a very high value.
Within the limit of forces S; to S,, the stiffness decreases (shock absorber working
range), and beyond force S, the stiffness increases significantly. The characteristic
of an elastic element from Fig. 9.20 must be appropriately scaled to the form
shown in Fig. 9.21.

Shock absorber working parameters are defined by the following variables:

S , 52 — minimum/maximum force from which shock absorber is active,

A,,A, — displacement of the shock absorber sheave corresponding to the force
S, S5,

a — parameter specifying where the point of curvilinear part of
characteristic is becoming rectilinear, ot > 1,

o, — parameters defining the shape of the characteristic described in

equation (9.64).

il
>

fee!
=t
[}

[

]

Bpduus

¥ >

A A+ Ay A,

=l
Il

Fig. 9.21. Characteristic of shock absorber

From Fig. 9.21 it is easy to read, that the constans ¢ and k are described by means
of:

S

c=—, 9.65.1
A ( )
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S,—=S
k=—2—-"L, (9.65.2)
A, —A,
and the values of x and y are determined as:
_5-§
’ i) —- (9.66)
x=x—-A

where X, y, A and S are shown in Fig. 9.21.

Hoisting and Luffing Ropes

The potential energy of elastic deformation and function of dissipation energy of
the hoist rope and luffing rope can be described by the following equations:

1
v, :56(;(’)&,, (9.67)
Lo a2
D, =§5b A, (9.68)
0 for A, £0
where O = oS ,
1 forA, >0
A, — elongation of the hoist rope or luffing rope,

v , b _ stiffness and damping coefficients of rope, respectively.

Because of the possibility of the significant changes in the active length of the
hoist rope during crane operation, the stiffness coefficient of the hoist rope is
determining by means of:

LS L7 S (9.69)
Le o — O6)i6)
where Lﬁ,o — the initial length of hoist rope,
E, — Young’s modulus of the wire rope core,
F — cross section of the wire rope,
O — rotation angle of the hoist winch drum,
Ne) — radius of the hoist winch drum.

The stiffness coefficient ¢’ of the luffing rope is considered as a constant value.
A method for determining the necessary derivatives of equations (9.67) and (9.68)
was described in chapter 9.1.
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Load

The load was modelled as a material point. The weight of the hook block was
added to the weight of the load. The vector of the generalized coordinates is
defined as:

gV =[x 0 O] [0 o 0] 9.70)

The kinetic and potential energy of the load are described by means of:
E, = —m(L)()'c(L)z +3 07 4 z(”zj 9.71)

vE=mW g ), 9.72)

(L)

where m'™’ is the mass of the load.

On this basis, it is possible to write:

g = AW g®), 9.73)
oV
7 =l o mwgf, (9.74)

where AV = diag [m(L),m(L),m(L)].
The developed computer software allows us to simulate the following cases:

1. load is in the air (water) — does not remain in contact with the deck of a supply
vessel,

2. load remains stationary on board of the supply vessel; its coordinates are
defined by the motion of the supply vessel,

3. load can by frozen to the deck, or other reason cause that the load is
permanently connected to the supply vessel.

Drive Systems

Slewing, hoisting and luffing drive systems are modelled as the kinematic inputs.
Therefore, the following function is known:

Py =9y (t)’ 9.75)

where @, is respectively: slewing angle, hosting winch or luffing winch rotation
angle.
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From the perspective of
planned applications of the
presented model, the hosting
machinery is one of the most
significant drive system. Therefore,
a second method of its modelling,
using the force excitation, has been
developed. Based on the analysis

of literature (for example [Osinski

»
»

M. et al, 2004]) as well as o, 1o,
experience acquired from crane
operators and designers, the hoist Fig. 9.22. Hoist winch characteristic

winch characteristic was assumed
as shown in Fig. 9.22.

Agregation of the Equations of Motion

The equations of motion of the whole crane can be written as:

Aq=F, (9.76)
where A — mass matrix,
q - vector of generalized coordinates,
F - the right side vector; its elements are designated as the partial

derivatives of the kinetic energy, potential forces of gravity and
flexibility, partial derivatives of function of dissipation energy
and units derived from external forces.

The equations (9.76) were solved by a computer program using the fourth order of
the Runge-Kutta method with fixed step integration. Before the integration of
(9.76), initial conditions were calculated by solving the above equations assuming

¢ =q=0. The resulting system of nonlinear algebraic equations was solved

using the Newton’s method.

9.2.2 Examples of Numerical Calculations

Example of simulation results obtained from the developed computer programme
are presented in this section. Two load cases are considered:

LC-1: Hoisting of the load from a stationary deck.

LC-2: Hoisting from the deck which movement is described by the function:

zp =0.75 sin(%”t] [m]. (9.77)
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A load of 18000 kg (including wire rope and hook block mass) is lifted from
a supply boat deck. Assuming that the wire rope is loose at the beginning of the
cycle (by a length of 1 m), some dynamic overload can be expected. The hoisting
speed is assumed 0.4 m/s for quadruple operation, with the drum rotation
characteristics consistent with Fig. 9.22. The shock absorber was defined by
the following parameters: §, =97 500 N, S,=145,, A, =0.02m,

A,=052m,a=1.1.

a)

80000 1000000 ‘

—without shock absorber —with shock absorber b) —without shock absorber —with shock absorber

70000 +

80000 | 800000 |

50000 +

40000 1 600000 +

force [N)
force [M]

30000 |
20000 + 400000 +

10000 +

200000 + v - . {
o 2 4 3 8 10

time [s] fime [s]

C) —uwithout shock absorber =uwith shock absorber

0 1 2 3 4 5 L} 7 8 9 10
time [s]

Fig. 9.23. LC-1 load case results: a) hoist rope force, b) luffing rope force,c) z coordinate of
the load

In Fig. 9.23, there are presented time courses of the main hoist wire tension
force, luffing wire force and z-coordinate of the load during lifting operation. Two
crane models: working with and without shock absorber, are compared. The whole
crane structure was assumed rigid.

The conditions assumed in the presented examples are rather theoretical — the
winch acceleration during the first phase (when the rope is loose) produces a high
dynamic peak load when the wire is suddenly pre-tensioned. This is one of the
reason why a DAF (dynamic amplification factor) is applied when selecting
various crane components. However, this scenario is simulated in order to show
how effective the shock absorber could be. Even if the operator runs, be mistake,
the winch without load (or there could be an imperfection in a drive system),
thanks to the automatic overload protection system dynamic load in the hoist rope
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a) —without shock absarber —with shock absorber b] —without shock abscrber —with shock absorber
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Fig. 9.24. LC-2 load case results: a) hoist rope force, b) luffing rope force, c) z coordinate
of the load, d) hoist rope force (rigid and flexible crane jib), e) luffing rope force (rigid and
flexible crane jib)

is reduced by approximately 100%. In some cases, without such a systems, the
tension can be close to the breaking load of the wire, which if not breaks it at the
accident time, makes its life time much shorter.

The plots shown in Fig. 9.24 were obtained for the load case LC-2. The results for
the rigid crane gantry was compared with those obtained with flexible structure.
Discretisation of the crane boom was performed using n, = 7 rigid finite elements.

The results of numerical simulations performed using the crane model having
shock absorber installed confirm a significant decrease of dynamic overload
experienced by the structural systems. Application of the shock absorber
subsystem in real constructions would allow the crane to work in much more
difficult conditions. Without such a systems, the same crane has to be de-rated,
which makes it in a higher sea state less efficient handling tool, causing that the
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whole vessel or platform can not perform planned lifts, until the weather
conditions improve. Consequently, the load chart of a crane equipped with an
overload protection system will be much more different than the same
construction without such a control device. Therefore, properly working shock
absorber is now a relatively new technique in the offshore industry.

Taking into consideration flexibility of the boom does not significantly change
the obtained results. Some slight differences are observed in the time history of the
luffing rope force. It therefore appears that, for the preliminary calculations or for
the bids purpose, the flexibility of the boom can be omitted. On the basis of
a model with few degrees of freedom, an engineer obtains a quick software tool,
supporting him during the design process. The calculation model presented enable
us to determine the crane overload in various working conditions. That makes it
possible to predict limiting weather conditions for a given crane design and
specific operation scenarios. Implementation of the model in a standalone desktop
application makes it attractive for various conceptual ad-hoc analyses.

9.3 Laying of Pipelines

The methods of analysing multibody systems, models of connections and
materials presented in previous chapters were implemented in software suited for
static and dynamic analyses of the installation process of pipelines for transporting
oil and gas, of transfer lines (cables) and other types of infrastructure related to
exploiting deposits of the seabeds. The current section discusses models
operations commonly performed in reality. The constructed models and software
are also indirectly verified. For this purpose, additional models in the ANSYS
package are formulated and the results of calculations compared. Detailed
derivations and a description of those models are offered in [Szczotka M., 2011b].

The Programme Pipelaysim

Based on the presented models, a computer programme supporting static and
dynamic analysis of basic operations related to installing pipes. The programme is
written in the C++ language (Microsoft Visual Studio 2008 IDE), using elements
of the Delphi package which are parts of Borland Developer Studio 2006. To
produce graphics Silicon Graphics Inc's OpenGL library is used.

The main window of the programme PipeLaySim is shown in Fig. 9.25. It acts
as a preprocessor. The user can, by means of standard interface components
(GUI), define (or load from an external file) any parameters of the models and
analysis options. In the main panel of the programme there are buttons assembled
which enable running subsequent simulations for supported installation methods.

Results obtained from the calculations may be analysed in a built-in module for
creating graphs or exported as text files and further processed in other
programmes (e.g. in Excel). A functionality which may be found useful is passing
the results of calculations in the form of scripts to the engineering computation
system MATLAB. The software also supports concurrently displaying an
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Fig. 9.25. Main window of the programme PipeLaySim

animation of the simulated system and saving it to multimedia files (for example

*.avi). Sample postprocessor window with an animation produced using the
OpenGL libraries is shown in Fig. 9.26.
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Fig. 9.26. Sample animation window in the programme PipeLaySim
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9.3.1 Mathematical Model of the J-Lay Method

For the model used to simulate an installation process with the J-lay method
(Fig. 9.27) the pipeline is assumed to be ejected from a guiding ramp whose
inclination angle relative to the deck is ¢, = const . It is further assumed that

REFE 0 is ejected with a known velocity v, (¢) of laying which corresponds to the

vessel's velocity. Because of the lifting movements caused by waves, the pipeline
is subjected to forces due to the difference of velocities of laying and of the point
S. In addition to that, hydrodynamic forces caused by waves and sea currents act
on the pipeline. A detailed derivation of the equations of motion for the considered
system can be obtained by using the dependencies from previous chapters.
Therefore below only selected formulas related to modelling constraints imposed
on the pipeline are given.

Equations of constraints related to the connection of the RFE 0 with the base by

a spherical joint at the point H and the reactions P ) may be introduced into the
system directly by using the dependencies for a spherical joint. The components of

the reaction P‘” in the system {}, may be calculated from the formula:

50) _ pTp0)
P =R\P”,

(9.78)
where R, - rotation matrix of the system {}, relative to {},
ESAO) — reaction vector at the point H expressed in { }4,
P©  _ reaction vector at the point H expressed in the system { }.

The RFE with number 7 is placed in the ramp's guide. As the pipeline is ejected
from the guide, the length of the segment off the vessel increases. When RFEs of
constant length are used, incrementing the number n ;,, (of RFEs and SDE in the
system) is necessary. The general form of constraint equations imposed on the
RFE n is:

=L +R,T=4

s

~ ~ , (9.79)
D, =A,
where a4, =const — vector describing the position of the point S'in {} , ,
A =consi — vector describing the orientation of the guide in {} A
¥/ =F/(r) — vector describing the coordinates of the point S in the
system {} ,
f‘;l,(l)n — components of the vector q, of generalized

coordinates of the RFE n,
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Fig. 9.27. Scheme of the system for installation of pipelines with the J-lay method

Differentiating (9.79) twice makes it possible to put the constraint equations in the
accelerative form:

_:,' (9.80)
D, =0
Since &)n =1~\S =consi
R, =0,
- (9.81)
R,=0
so the equations (9.80) take the form:
T =R,
(9.82)
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The equations of motion of the RFE n may be written as:

m, 0T [B"] [Q¥
0 B Ja | 5| |o® ] 0:8)

where QE;) = (Qn )i:1,2,3 ’

Q" =(Q,)yse-
From (9.83) it follows:

(9.84)

Components of the reaction P" in the system of RFE n (which are needed e.g. to
determine the tension) may be obtained from:

P =R'P™. (9.85)

~7

The way of defining the vector ¥, giving the coordinates of the point Sin the

system {} , (Fig. 9.28) merits a further comment.

v

Fig. 9.28. Connection of the RFE n with the guide
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In the situation of Fig. 9.28, the following holds:

£=|0| (9.86)

where y = y () is a function describing how the n-th RFE is ejected from the
guide (velocity and possibly acceleration).

Static Analysis

Indirect verification was performed (by comparison with the calculations done
employing the ANSYS package) on the J-lay system shown in Fig. 9.29. The total
length of the analysed pipeline was 1000 m. Due to different positions of the
initial point (H) of the pipeline attached with a joint to a rigid structure on the
bottom the obtained curvatures of the pipeline and values of the forces and
stresses differ. The models used are spatial, however, all the static forces act in the
plane 3. Zero excitations were assumed ( y = const ,q, =0,H =0, Nno

currents). The only forces acting on the pipeline were gravity and hydrostatic
buoyancy. Data shown in Table 9.3 were assumed as input.

d =600m

Fig. 9.29. Main parameters of a system in static analyses

Discretisation of the pipeline was performed for a few different numbers of
finite elements (both for the programme PipeLaySim and the ANSYS package).
Satisfactory correspondence was obtained already for the division into n = 100
elements (the results given below are for this number of elements). In ANSYS
PIPE288, finite elements were used which are based on the BEAM88 element
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[Ansys Documentation, 2009] as well as linear shape functions. The element
PIPE288 supports input of hydrodynamic loads modelled using the commands:
OCDATA, OCTABLE, SOCEAN. Results are shown on graphs and in tables using
notation as in the following scheme (Fig. 9.30).

Table 9.3. Basic parameters assumed for static calculations

Parameter Variant A Variant B
Outer diameter of the
pipeline [in]/side 4/5.95 12/16.05
thickness [mm]

Empty (air at atmospheric pressure) or filled (water
under pressure equal to that outside)

Distance L, [m] L) =700, LY =725, L) =750

Content of the pipeline

[AIP]-Rx-Sx-Lx

programe: A-ANSYS, P—PipelaySim; T
distance L [m]

pipe size [“’]

pipe condition: P-empty, N-water filled

Fig. 9.30. Notation for cases of calculations

The analysis was performed with identical scenarios in both programmes. At
the initial moment the pipeline was on the surface of water in undeformed state. In
the first step, balance of the system was considered with gravity and buoyancy
forces applied due to deflection and immersion of the pipeline's elements (with H
being the loose end of the pipeline). Next, the point H of the pipeline was moved
in multi-step static analysis to the destination point while keeping the point S
motionless. Spherical joints were assumed in both points H and S. The results
presented below correspond to the state of the system in the final step of
computation. The reactions in the points A and S for a pipeline with diameter of 4
inches are shown in Table 9.4. Likewise, Table 9.5 contains the determined
reactions of constraints for a pipeline with diameter of 12 inches.

Based on the performed comparative analyses a conclusion can be drawn that
the results produced by the developed software are correct. The differences of
forces calculated in the point S and of horizontal reactions in the point H are on

average less than 0.5%. Also the values of the vertical reaction PY(O) are in

a satisfactory degree of accordance (the differences being 2-14% for pipes with
diameters of 4 inches and 1-7% with diameters of 12 inches). The stated
discrepancies are caused mainly by difficulties in modelling contact with the
bottom which occur in the ANSYS environment.
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Table 9.4. Reactions of constraints in points H and S, pipeline of 4 inches

Empty [AIP]-R4-SP-1.700 | [AIP]-R4-SP-L725 [AIP]-R4-SP-L750
P =19.64 B =250 Py =323
ANSYS B™ =482 B =51.66 B =56.16
P =-19.79 B =251 P =-324
B© =054 P;°> =0.53 P}‘” =2.18
B =1958 | P =24.86 Py =32.15
B™ =4838 B =51.89 A" =56.24
PipeLaySim | . 50) _ BO) _
A" =-1958 | P =-24.86 Py" =-32.15
B =0.49 B =049 P =223
Filled | [AIP]-R4-SN-L700 | [AIP]-R4-SN-L725 | [AIP]-R4-SN-L750
P =49.07 By =62.55 Py =80.89
. B™ =121.6 B =1294 B =1406
PO = 49 P =625 P =-80.8
PO =031 P9 =048 P =-6.23
B =4899 | B =6249 Py =80.78
B =122.06 B =130.0 P =1412
PipeLaySim 50) _ 50) _ 50) _
P =-4899 | PO =-62.49 Py =-80.78
B =027 B =0.46 B =642

The shape of the pipeline in the % § plane is shown in Fig. 9.31. The

presented results are for the empty pipeline with a diameter of 4 inches.
Differences in the values are small and do not exceed 0.1%. Similar results were
obtained for the pipeline with a diameter of 12 inches.

The influence of the pipeline's shape on the reduced stresses for the considered
cases is presented in Fig. 9.32 (for a pipeline with diameter of 4 inches) and
Fig. 9.33 (for a pipeline with diameter of 12 inches). In the analyses, the Huber-
Mises-Hencky (HMH) hypothesis was assumed for the calculation of reduced
stresses. The graphs show bending moments, axial forces and reduced stresses in

X
sections along the relative length defined by the coordinate ¥ =-- (¥ =0 in
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Table 9.5. Reactions of constraints in points H and S, pipeline of 12 inches
Empty [AIP]-R12-SP- [AIP]-R12-SP- [AIP]-R12-SP-
L700 L725 L750
P =130 P =165.7 P =214.1
P =319.3 P =3422 P =3714
ANSYS - ~ ~
P =-131 P =-166.1 P =-214.2
P =372 P =2.65 P =-14.28
P =128.7 P =165.1 P =213.8
PipeLay | B =320.0 B =3431 P =3715
Sim P"=-1287 | B =-1651 B =-2138
P =358 B =248 P® =-15.1
Filled [AIP]-R12-SN- [AIP]-R12-SN- [AIP]-R12-SN-
L700 L725 L750
P =394 P" =502.3 P =649.15
B =969.9 B =1038.1 B™ =1129.3
ANSYS - - ~
P =-3935 P =-501.8 P =-648.9
B" =555 P =59 PO =—-41.6
P{" =3934 P =501.7 Py =648.78
PipeLay | P =967.87 B™ =1040.2 B =1032.1
Sim P"=-3934 | P"=-5017 | P =-64878
P =588 P =6.01 B =-419

the point H and ¥ =1 for the point S, Fig. 9.29). As it can be seen from the

graphs, the RFE method gives close results also for reduced stresses, bending
forces and moments in sections of the pipeline. Relative errors in all cases are
below 1-1.5% (for the given number of elements) and definitely diminish with
condensation of the division.

Analysing the graphs in Fig. 9.32 and Fig. 9.33 indicates that filling the
pipeline with a liquid does not influence the forms of the bending moment (in the
considered cases similar curvatures were obtained for an empty and filled
pipeline). The axial force, which depends on the position of the vessel against the
waves and density of the pipeline, has significant influence on the values of
reduced stresses. Installation of pipelines when they are filled with air allows for
reducing the axial forces and stresses.
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Fig. 9.31. Shape of a pipeline with diameter of 4 inches having reached static balance:
a) shape of the pipeline obtained for different values of L, , b) magnified fragment of the

graph

The described method of static analysis and the obtained results may inform the
determination of installation parameters of the pipeline concerned, taking into
consideration the influence of depth, buoyancy and geometric traits of the system
[Mohitpour M., et al., 2003], [Bai Y., Bai Q., 2005], [Palmer A. C., King R. A.,

2008].
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Fig. 9.32. A pipeline with diameter of 4 inches — values of moments, forces and stresses:
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline
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Fig. 9.33. A pipeline with diameter of 12 inches — values of moments, forces and stresses:
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline
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Dynamic Analysis

This part of the book contains a brief overview of the results of analyses
pertaining to the dynamics of the analysed system. Again, the programmes
PipeLaySim and ANSYS were used and the obtained results compared. The same
geometry and mass parameters were assumed as for the static analyses. As the
initial conditions in the dynamic problem (at time ¢ = 0) the values yielded by the
last step of the static analysis were taken. The fourth-order Runge-Kutta method
with constant integration step was used in the PipeLaySim programme to integrate
the equations of motion [Press W. H., 2002], whereas in the ANSYS package the
Newmark method [Bathe K. J., 1996] was used.

Two types of excitation were applied. In the first case (W1), no waves
(Hy =0m) was assumed and a harmonic excitation of the vessel's immersive

motion (Fig. 9.34a) with amplitudes and periods listed in Table 9.6. This case
corresponds to motion of the system immersed in a motionless liquid. The second
type of excitation (W2) included both the motion of the vessel and waves of the
water (calculations in both programmes were performed according to the Airy
model of the wave). Graphs of the excitations are shown in Fig. 9.34b, assuming
appropriate resizing of amplitudes in the initial phase of calculations and a phase

shift for the variable x, equal @?) =9(. The lower rows of Table 9.6 contain

the remaining parameters, which are common to the cases W1 and W2.
%, = const was assumed in both programmes.

Table 9.6. Parameters assumed in the dynamic analysis

Ay [m], Ay [m], .
Excitation H g [m] (g) (Oy) Bty
Px [deg] @ [deg] T Isl
Wi 0.0 0;0 1;0 8.0
W2 5.0 1; 90 2;0 8.0
. 5
Coeff. C,, /C, from LO/LO Stlffﬁzsssezg:gf. of 1.1e’ N/m
(3.33)
Data set (geometry, Tangent resistance | m = 0.02
diameter, content of the R4-SP-L700 | coefficients m and n=0.04
pipeline) n (Table 3.3)

Fig. 9.35 presents time courses of coordinates of the point P, of the pipeline at

the maximum of curvature (Fig. 9.29) determined by the coordinate x7 = 250 m. In
both cases of the vessel's motion and waves, the graphs of displacements of the
point are similar. Relative errors do not exceed 1%.

In Fig. 9.36, the velocities P; obtained from both programmes are presented.
The produced graphs are virtually identical. The differences are due to integration
methods and also to the accuracy with which the excitation is realized. In ANSYS,
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it was interpolated with a piecewise linear function (boundary conditions for the
displacements given as tables).

a)

!
Y4 =Ay sin(zT”t + gol(/o)) b) -

iy (W1
¥p (W1
—— = (W2
¥p (42) RN /f\

Fig. 9.34. Excitations of the vessel's motion in dynamic analysis: a) assumed conditions of
waves and vessel's motion, b) graphs of longitudinal rolling x, and heave y,

Dynamic reactions at the point S (the point of connection with the guiding
device onboard the vessel) are shown in Fig. 9.37. In the case of vertical reaction

RI(/S) the maximal relative error does not exceed 10% (W2 excitation).

The reduced stresses calculated along the pipeline's axis are shown in
Fig. 9.38. The graphs were produced for the time 7= 10 s taking dynamic forces
into account.

On the comparative results of static and dynamic analyses presented
a conclusion can be based that the proposed model and software are correct. Since
actual objects (ships for laying pipelines) are hardly available and laboratory
research is very costly and requires large pools and devices producing artificial
waves, performing empirical tests is rather difficult. The authors are aware that
results of measurements obtained from tests on actual objects may deviate from
the values yielded by the process of numerical simulation, among other things due
to the simplified description of interaction in the liquid — solid body system and
the approximate model of waves. Yet, some verification is assured by comparing
the results with that from another environment aimed at modelling and analyses
(e.g. of the ANSYS type) which is commonly used and has been verified multiple
times. This allows us to eliminate some possible errors in modelling and
programming.

9.3.2 Installation of a Pipeline with the S-Lay Method

A mathematical model of a system for simulating the dynamics of the installation
process with the S-lay method can be formulated by augmenting the model of the
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J-lay method. The additional element is a specialized ramp guiding the pipeline (a
stinger) (Fig. 9.39). In the model presented herein, the ramp is assumed to be a
bent beam with variable section modelled with the classical finite element method
connected by a joint to the vessel's deck at the point U and additionally with two

supporting ropes.

35,95 34
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Fig. 9.35. Coordinates of the point xx of the pipeline: a) coordinate x (W1), b) coordinate y
(W1), c) graph of the coordinate x (W2), d) graph of the coordinate y (W2)
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Fig. 9.36. Velocities of the point P, : a) W1 excitation, b) W2 excitation
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Fig. 9.38. Reduced stresses for the time r=10s: a) W1 excitation, b) W2 excitation

The model of the pipeline is similar to that used for the J-lay method. It is
described in the previous chapter. A model of the ramp connected with the deck
by a joint U and supporting ropes needs to be additionally formulated. Hence, the
equations of motion of the system may be written in the form [Szczotka M.,
2011b]:

A(Di‘i(f) — Q(J> +Q(J,C) 9.87)
A(R) “(R) _ Q(R) +Q(R ,0) +Q(R ,L) (9.88)
where AY)  — matrix of masses of the pipeline,
i
q” = |- vectorof generalized coordinates of the pipeline,
o)
qil

QY — vector of generalized forces acting on the pipeline,
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supporting ropes

stinger

stinger

Fig. 9.39. Scheme of the model for the analysis of installing a pipeline with the S-lay
method: a) positioning of the coordinate systems, b) reactions of constraints

QY© _ vector of generalized forces exerted by the ramp,
A®  _ matrix of masses of the ramp,

~(R)

9o
(](R) =| : |- vector of generalized coordinates of the ramp,

~(R)

q,,
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R . .
Q( - vector of generalized forces acting on the ramp,
QR© vector of generalized forces exerted by the pipeline,

QL _ vector of generalized forces due to the actions of forces

supporting the structure of the ramp.

The equations and reactions of constraints imposed on the pipeline are identical to
those of the J-lay model. Whereas the joint at the connection of the ramp with the
deck (a revolute connection) makes it necessary to include the reaction vector:

po=[pv BY BOJ (9.89)

and a vector of the pair of forces whose moment is:
MY =iy gl (9.90)

. e . 7 (U .
By neglecting friction in the connection, M é ) =0 is assumed.

The constraint equations take the form:

=WU) _z=® L gRzU) _
ro=r, +RnR r, ~~ =const, (9.91)
OB —
Az(I)nR = const, (9.92)
where T — vector of generalized coordinates of the point U in the system

ng

of the RFE n, of the ramp,

ER @ _ vectors of components of the vector §F =|
R R ng O
ng

s

Rflf) — rotation matrix of the n, of the ramp,

100
A, = .
010

Following the procedure presented in the previous chapter the constraint equations
may be put in an accelerative form allowing us to determine the vectors P(U),

MY and (hjilf) . Actions of the following forces are also taken into account:

R,.L
= intheropes F, S(R) , F ISR) acting on REF (jR) introduced by the vector Q( ),

= contact forces, acting on elements of the pipeline and on the ramp, derived

from Q(J’C) and Q(R’C).
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Forces in the ropes may be determined using the model of a flexible rope with
damping. The contact forces between the ramp and the pipeline are determined by
assuming a series of spring-damping elements with clearance modelling the rollers
guiding the pipeline. The forces of interaction of the ramp's structure with the
water environment are approximated with the Morison equation keeping in mind
the additional interactions occurring at the transition through the water surface.

B P
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¥ ¥l

Fig. 9.40. Results obtained from static analysis of the S-lay system: a) shape of the pipeline,
b) reduced stresses, c) graph of the axial force, d) bending moment

Sample calculations contained in this section were performed for an installation of
a pipeline of 4 inches at the depth of d =100 m. The shape of the pipeline after it
has reached static balance is shown in Fig. 9.40a, where the coordinates on the
graph are expressed in the inertial system {} depicted in Fig. 9.39a. Two options
were considered: on the graphs P denotes a pipeline filled with air, N — a pipeline
filled with water. Graphs of reduced stresses along the pipeline's axis (Fig. 9.40b)
are different to those obtained in the J-lay method. Two places occur with
considerable stresses due to bending. The first one is caused by the ramp's
curvature (a section called overbend), the second results from the curvature of the
pipeline above the bottom (sagbend).

Stresses in the pipeline may be controlled by changing: the immersion of the
ramp, its shape and the value of the force stretching the pipeline. The bending
moment being zero at some point (Fig. 9.40d) is also characteristic of this method.
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Sample results of calculations of the dynamics are shown in Fig. 9.41.
Harmonic motion of the vessel with period 7 =8s and amplitudes x, =0.5m,

y4 =1.0m was taken as the excitation. The coefficients of the Morison equation
were assumed as in previous analyses.
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Fig. 9.41. Simulation of the dynamics of a system for S-lay installation: a) dynamic
reactions at the point S, b) reduced stresses in selected points of time, c) graphs of the
horizontal component of velocity in time, d) graphs of the vertical component of velocity in
time

The dynamic reactions at the point S (Fig. 9.41a) (guiding the RFE r in the
tensioner's mechanism) are not significantly different from the values obtained in
the static problem due to the assumed length and size of the pipeline (the mass is
fairly small). Additionally, as Fig. 9.41b implies, in which graphs of the reduced
stresses at different points in time are presented, with a relatively rigid system of
ramps the change of values of the stresses occurs in the lower segment of the
pipeline only. The changes would be greater with a more flexible ramp (or
suspension system), which may result, when the length of the system is
significant, in considerable differences in the geometry of the lower segment of
the pipeline (sagbend). A possibility also exists of controlling the lengths of the
ropes in such a way that the growth of stresses caused by waves is eliminated. The
velocities of the centre of mass of the RFE located approximately 4 m above the
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bottom of the sea are shown on graphs (Fig. 9.41 c and d). In the case of the S-lay
method, the differences in the velocities of the pipeline in the lower part are
greater for different contents of the pipeline (densities) than with the J-lay method.

9.3.3 Dynamics of a System for Installing Pipelines with
the Reel Method

Dependencies presented in the preceding chapters allow us to formulate
mathematical models and a computer programme suitable for simulating the
operation of a device for laying pipelines with the reel method. The section
presents a model for the analysis of the dynamics of a system equipped with
a passive reel drive system. To discretize the pipeline the modified RFE method is
used and the nonlinear dependency of stresses on deformations is described by an
elasto-plastic characteristic. Models contained herein are investigated in [Szczotka
M., 2010], [Szczotka M., 2011b].

9.3.3.1 Mathematical Model

In Fig. 9.42, a scheme is shown of a system consisting of a reel onto which the
pipeline is wound and a specialized guiding ramp through which the pipe passes
as it is unwound and lowered to the seabed. The ramp is equipped with devices
controlling the tension and the speed of laying.

The following simplifying assumptions are made:

= the motion of the pipeline being unwound from the reel is kinematically
forced by a device providing tension and guidance; influence of the immersed
part of the pipeline on the motion may be neglected,

* swaying angle y, of the vessel is the most important parameter of the lifting

motion, therefore a simplification is proposed which reduces the problem to
aplanar system in which the vessel can move according to the known
functions:

x4 =30, RAO H.T,.5,.5))
va=30.RAO [H.T,.B,.5(®)) (9.93)

v, =3(LRAO, H T, B,,5(w))

24()=0. 8,()=0. ¢,(r)=0,

where 3 — operator of transformation of the motion from the domain of
frequency to the domain of time,
H,T, — height and period of waves,

By — wave's angle of attack,
S(w) — defined by (3.27) or (3.28),
RAO - operator of the transition function,
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= Jarge deflections of the pipeline are taken into account by applying the
modified RFE method including bending in the longitudinal plane of the
vessel.

Fig. 9.42. Scheme of the reel system

The generalized coordinates of the considered system are therefore components
of the following vector ¢, (an appropriate choice of mass, inertia and geometric
parameters allows the reel to be treated as RFE 0):

q= [V’o’"-’ Vi W,y ]T ) 9.94)
where ¥, — inclination of the axes of the RFE i to the axes %, of the inertial
system,
o, — inclination angle of the ramp's axis.

The equations of motion along with the constraint equations may be written as
(detailed derivations are presented in the papers [Szczotka M., 2010], [Szczotka
M., 2011b]):

A§+B4q-DP=Q-G-H,

-8q=W, (9.95)
where A =A(f,q) - matrix of inertia of the system,
B=B(1.q.4),
D(q),S(q) — matrices of coefficients of reactions and constraint

equations,
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Q(t, q, q) — vector of generalized forces,

G — vector taking the potential of gravity forces into account,

H= H(t) — vector whose components depend on the base's lifting
motion,

W(t, q, q) — vector of the right-hand sides of the constraint equation,

P — vector of unknown reactions of the constraints.

The equations (9.95) were integrated with the fourth-order Runge-Kutta method
with a constant step of integration. Determination of the initial conditions for the
system's equations of motion requires solving sequentially a few static and quasi-
static problems. If in the equations (9.95) the following is assumed:

q=q=0, (9.96)

then the static problem requires solving a system of nonlinear algebraic equations
of the form:

¥(q,)=0,

9.97
®(R,)=0, O

N

where ¥ (q)=0 — equations of balance of the RFEs 1,...,n and the guiding
ramp,

4, =iy, vl

R, =[U,. N, m,]T.

©(R,)=0 — constraint equations.

Solving the system of equations (9.97) was done with the Newton method. The
procedure preceding the calculations of the dynamics is depicted in Fig. 9.43. In
the first stage, the pipeline is wound onto the reel. At this time plastic
deformations may occur. The end of the pipe is transferred to the guiding ramp in
the next stage. Having performed these calculations, we obtain the initial
conditions assumed as the starting point of the dynamics.

In the computer programme, a possibility is also included to perform dynamic
analysis with a simplified model in which oscillations (dynamics) are not included
(the model is introduced in [Szczotka M., et al., 2007). In such case, an internal
procedure solving the equations (9.97) with the Newton method determines the
forces occurring during the unwinding of the pipeline when integrating the reel's
equations of motion. The equation of the reel's dynamics may be obtained from
the equations (9.95) assuming »n = 0 and taking into account the forces caused by
deformations of the pipeline described by the system of equations (9.97). Note,
however, that despite the minimal dimension of the model, the necessity of using
the Newton method, which is sensitive to nonlinearity of the problem considered,
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Fig. 9.43. Quasi-static analyses for determining the initial conditions: a) stage of winding
the pipe onto the reel, b) transferring the pipe to the ramp, c) stretching the system to the
nominal tension

lengthens the durations of computer simulations with respect to the full model of
the dynamics. Those durations are approximately ten times longer, therefore using
this model does not seem prudent. Hence, another approach to employing the
simplified model is proposed. The discrete model of the pipeline is thereby
replaced with an artificial neural network [Szczotka M., 2010]. Minimal
computation time is then required to determine the forces due to the pipeline's
work as it is being unwound, and use them in the equation of the reel's dynamics.
Computational efficiency of a such model is particularly appealing. It also lends
itself somewhat to real-time control. The results obtained from both variants of the
model are presented later in this chapter.

9.3.3.2 Calculations for a Passive Drive of the Reel

The results of calculations performed for the system shown in Fig. 9.42 are
presented below. The drive of the reel from which the pipeline is unwound is
assumed to be passive and to exert a constant force applied at a dividing radius of
the clockwork. To make the interpretation of the results more convenient, the
simulations were performed assuming the following functions describing the
motion of the vessel:

x, = Ay sin(at+ yy ),
ya = Aysin(ar+yy), (9.98)
Ya=A4, sin(a)t + 71//)’
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where AX ,Ay,A,/, — amplitudes of motion in the appropriate directions,

Vx»Yy»>Y, - initial phases,
@ — angular frequency of excitation.

Basic assumed parameters of the device are based on the documentation of one of
the devices operating on the North Sea. The characteristic values are gathered in
Table 9.7 (the dimensions and parameters are shown in Fig. 9.42). The objective
of the performed simulations was to determine the influence of waves and braking
force of the reel on the operation of the considered system. Typical settings and
data used when installing pipelines were chosen. Table 9.8 shows the parameters
of regular excitation of the vessel's motion according to (9.98), taking into account
the mentioned characteristics of the vessel. All calculations were performed
assuming a constant step of integration in the Runge-Kutta method A/=0.001 s.
The notational system used in the subsequent graphs is explained on the scheme
presented in Fig. 9.44.

Rx-Fx-Ux-Vx-Cx
pipe size [’] g ;lay ramp stiffness [MN/rad]
assumed vessel input laying speed [m/h]

initial pipe pretension [kN]
Fig. 9.44. Notations in the results presented on graphs

In Fig. 9.45, the results of calculations for a pipeline with diameter of 4 inches
are shown. Graphs of tension indicate significant instability of operation caused by
waves and lack of possibility to eliminate undesirably large overloads by changing
the braking force of the reel (Fig. 9.45b and c). Fairly stable operation is
guaranteed only for modest values of the amplitude of the swaying angle y,, when
the braking force of the reel is increased (Fig. 9.45a and d). The decay of tension
(values of the force Ug near zero in Fig. 9.45b and c) is due to excessive
unwinding of the pipe from the reel caused by the increase in the reel's angular
velocity (Fig. 9.46).

The graphs of the reel's velocity are shown in Fig. 9.46. The results obtained
for F1 and F4 waves (little swaying, Fig. 9.46a and Fig. 9.46d) indicate fairly
stable operation of the device in the range of swaying amplitudes from O to 1°.
Lack of control of the reel's velocity under more intense waves leads to unwinding
of great amounts of the pipeline and subsequently to abrupt arrest of the reel
(jerk). Increasing the braking force makes it possible to reduce the maximum
speed of the reel but it also causes high values of the axial forces which are
dangerous to the personnel and the device.
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Table 9.7. Main parameters of the device and sizes of pipelines used

Parameter

Value

Admissible mass of the reel together with the
wound pipe

2500 -10°kg

Range of diameters of steel pipes installed

4"_1 8"

Designed value of pipes' tension

2500 kN

Capacity of the reel: (for max/min. diameter of the
pipeline)

150 km / 7km

Max/min. Winding diameter of pipes

D,=25m/D,=15m

Moment of inertia of the reel with the wound
pipeline

2.5+3.0-10%kgm *

Length of the vessel

~100 m

Diameter of the gear wheel

D, =25.7m

Link mass m, of the pipeline for pipe diameter D

D=4", m, =16 kg
D=8", m, =42 kg
D=12", m, =128 kg
D=16", m, =240 kg
D=18", m, =340 kg

Length of the guiding ramp L, =20m
Radius of the ramp's guiding wheel r,=8m
Mass of the ramp with devices 120 -10°kg
Distance between the reel and the joint attaching _

Ly, =55m
the ramp
Ramp inclination angle ay =60°

Table 9.8. Assumed parameters of the vessel's lifting motion

A R / Yy AY , ‘ A ; ’ Period of Height of the Direction of the
Descrip S . }/12 7 7V/ the wave wave wave
(ml/[1 | [m]/[°] ml/°] | T [s] | H,[m] B [°
F1 0.12/90 04/75 |0.15/-45 6 3.0 30
F2 0/0 0.45/90 | 2.55/20 7 3.0 0
F3 1.0/-100 22/0 4.1/60 8 5.0 60
F4 0.27/-95 | 0.27/0 | 0.85/70 10 1.0 0
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Fig. 9.45. Graphs of tension in the pipeline as it is unwound under waves and with different
values of the barking force of the reel: a) + d) correspond to F1 + F4

Multiple factors influence the values of dynamic forces during the device's
operation. Among those considered are: flexibility of the guiding ramp's
suspension, speed of laying the pipeline, different diameters and load degrees of
the reel, value of tension. The results are presented, among other things, in the
papers [Szczotka M., 2010], [Szczotka M., 2011a]. In many cases it is impossible
to eliminate or significantly reduce dangerously large dynamic forces under wave

action with waves of height H; > I'm without using an auxiliary control system.
One is proposed in section 10.4.
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10 Selected Applications Related to Control of
Offshore Structures

Dynamic analyses of mechanical systems are often considered together with
problems related to their control. With traditional ways of operating machines it
the operator who decides what the working motions are. In contemporary
machines, it is becoming commonplace to support the process of control. Control
systems based on microprocessor technology (programmable drivers, onboard
computers) are supposed to facilitate human work or even replace it. They enable
realization of various strategies unachievable with manual control. Automated
control is used also in offshore structures, including cranes. The criteria of control
strategies may be different, for example:

=  minimal duration of motion,

=  minimal consumption of energy,

= accuracy of load positioning, including minimization of oscillations after the
motion has ended,

®= minimization of dynamic loads,

= stabilization of the load's position,

=  minimization of the influence of sea waves on the device's dynamics.

The present chapter describes the basics of the method of selecting the drive
functions based on dynamic optimization. Control of the drum of a winch of an A-
frame type crane allowing it to compensate for vertical movements of the base due
to sea waves is presented. For an offshore jib crane, an auxiliary system is
proposed enabling the load to be positioned in three directions. In the last part,
a concept of active compensation of waves for a drum's drive of a device for
laying pipelines is discussed.

10.1 Dynamic Optimization

As former considerations imply, the equation of dynamics of a multibody system
may be presented in the following:

AG=f(t,q.q.M ), (10.1)
q(0)=q,. (10.2.1)
q(0)=1q,, (10.2.2)

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 203-244.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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where = [% qn] " — vector of generalized coordinates of the system,
f — excitation vector due to these forces: elasticity, damping,
centrifugal, Coriolis, gyroscopic, and to the drives,
M — function giving the drive force or moment thereof,
henceforth assumed to be a specified function of time,
q,.q, — vectors ofinitial values of generalized coordinates and velocities.

The equations (10.1) are typically nonlinear and require numerical integration.
Duration of their integration is closely related to the number n of generalized
coordinates. Assuming large n considerably lengthens the calculations, whereas n
being too small disables the mathematical model from adequately reflecting the
dynamic properties of the system. The number n of generalized coordinates should
therefore hit the balance between computation time and accuracy. Its choice
depends largely on the purpose of the model.

In some cases, which are described in chapter 6, it is possible to write the
equations (10.1) as a combined system of ordinary differential and nonlinear
algebraic equations:

AG-DR =f(t,q.q.M ), (10.3.1)
Ag.4)=0, (10.3.2)
gdzie A, q, f - defined as in (10.1),
R= [Rl .- Rm] " _ Vector of constraint reactions,

D =D(q)- matrix of coefficients,

A=[4(q.q) -~ 4,(q.q)]" - vector of constraint equations,
m — number of components of the vector of constraint reactions.

To solve the equations (10.3) completed with initial conditions, a procedure is
often applied whereby the constraint equations (10.3.2) are put in accelerative
form by differentiation:

])Tq':W(t,q,q). (10.4)
The equations (10.3.1) and (10.4) replace (10.3.2) and may be written as:

A -D|§] [F(.q.q.M) 105)

" 0 |R]7| Wead) | '
Further reasoning assumes that the equations of dynamics of the system take the
form (10.1). For such equations, as just shown, can be easily extended to a system
with constraints.

In the case of controlling working motions of machines, it is important to
choose the drive function in such a way dependent on time that the intended goal
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is achieved according to the set criteria. One method of finding appropriate drive
functions is by optimization. The optimization task in this case is to choose the
drive function M(¥) satisfying:

minimization of the functional:

Q(q.4.M ), (10.6)

maintaining the boundary conditions:
e(q.q)<0 for i=1,.,n,, (10.7.1)
M, (£)<M@)<M.(), (10.7.2)

where 7, — number of boundary conditions,

M, (t ), M, (t) — known conditions constraining the drive function M (t) .

Note that it is necessary to know the vectors q,q corresponding to the function M (t)

in order to determine the functional  and the function ;. This requires integration of the
system's equations of motion (10.1) in each optimisation step. An optimization task
formulated in this way is called a dynamic optimization task [Krgglewski T., et al.,
1984], since its focus is the integration of equations of dynamics.

The problem of choosing the function M(f) can be reduced to a classical

optimization problem by discretisation. Let ¢ € <O, T> and:
M, =M(,) for i=1,..,p, (10.8)

where p is defined in Fig. 10.1.
The value of M(t) for t e <t
(Fig. 10.1), using the formula:

i—l’ti> may then be determined with cubic splines

MO =a,(t—1_ P +b (=t ) +c,(t—t.)+M,_,, (109
whereby the coefficients a;,, b;, c; are chosen such that:
MD@)=M, for i=1l,., p, (10.10.1)
MO@)=m (@) for =1, p-1, (10.10.2)
M D)= m () for i=1,., p-1, (10.10.3)
and:
M ()= 0 o MO@)=0, (10.10.4)

M@ )=0 oo MW )=0. (10.10.5)
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Fig. 10.1. Approximation of the function M(f) with cubic splines

Equations (10.10) form a system of 3p linear algebraic equations with 3p
unknowns al,bl,cl,...,a p,bp,cp). Its solution may be obtained easily by

a recursive procedure.

If the drive function M(¢) is approximated by splines (10.9), then the optimization
task consists in determining the p+1 values specified in (10.8). The decision
variables in the considered task are therefore the components of the vector:

M=[m, .. MP]T. (10.11)

Eventually, the problems of defining the optimization tasks of drive functions,
considered in further examples, reduce to finding values M,,...,M, which constitute
the coordinates of the vector of decision variables (10.11) minimizing the functional:

Q(q,q,Mo,---,Mp), (10.12)
and also satisfying the conditions:
e(q.4)<0  for i=1l..,n,, (10.13.1)

M, <M,<Myg, M, =M, (t;), Mz=M,(z;) for i=1,.,p (10.13.2)
The vectors q and ( are obtained by integrating the initial problem:

Ag=f(q.q.My,...M ), (10.14.1)

q0)=q,. q0)=q,, (10.14.2)
fort € (0,T).

Various methods may be used to solve this task. However, all of them are
sensitive to the choice of the starting point, i.e. the initial values of M,,...,M,.

It can be easily noticed that the time cost of the optimization process directly
depends on the time of integration of the equations of motion (10.14). Using for this
case the mathematical models of the systems presented in preceding chapters would
cause unacceptably long computations. It is the reason why the drive functions M(z)
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are usually determined according to simplified models whose degrees of freedom
are possibly few. This enables their possible application in real-time control.
Verifying calculations which allow to assess the usefulness of the developed
simplified models and control algorithms are carried out with respect to combined
basic models, thus analogous to those described in earlier chapters.

10.2 Vertical Stabilization of Load of an A-Frame

In this chapter, two dynamic models of an A-frame are presented. In the first one,
the flexibility of a frame is taken into account, while in the second this flexibility
is omitted. In both cases the flexibility of rope is considered. The classical Rigid
Finite Element Method has been used to discretise the frame — chapter 8.1. The
algorithm of optimisation of the drive function for the drum of the hoisting winch
is proposed. The goal of the optimisation is to ensure the stabilization of the load’s
position, i.e. to hold it at the required depth regardless of the ship’s motion. In
order to achieve appropriate numerical effectiveness, the optimisation problem has
been solved using a simplified model of an A-frame.

10.2.1 A-Frame Model

The scheme of an A-frame and the most important points of it are presented in
Fig. 10.2. The following denotations are used: F — supporting structure, P — pulley,

Fig. 10.2. A-frame scheme
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R —rope, H — drum of the hoisting winch, L — load, Sg, Sy — right and left servomotor
forces, Ng, N — connection points of servomotors to the A-frame, Ag, AL —
connection points of the A-frame to the deck, xg, yg, zr and xp, yp, zp — coordinate
systems assigned to the supporting structure (frame) and to the deck, respectively.

The frame is the main element of the supporting structure in such cranes. In
order to discretize the frame, the rigid finite element method can be applied.

In doctoral thesis [Fatat P., 2004], at first three beams were distinguished
(right-1, top-2, left-3) in the frame. Then, each beam was divided into rigid finite
elements and spring-damping elements (Fig. 10.3). This necessitates taking into
account the reaction forces and moments at points B; and Bp, and increases the
number of constraint equations.

Fig. 10.3. A-frame divided into three beams which were divided into RFEs and SDEs

In this work we present a different approach. The frame is treated as one beam,
which is divided into RFEs and SDEs. The obtained chain of rfes and sdes is
presented in Fig. 10.4.

The position of each rfe of the undeformed beam is defined by the coordinate
system Ey;n o with respect to the coordinate system {0} of RFE 0, by

a transformation matrix with constant components:

0 0
O = O S
el =

(10.15)
0 1

where 9 @, is the matrix of cosines of the system *{;j} with respect to {0}, and s, is

the vector of coordinates of the origin of the system £ {;} in {0} (Fig. 10.5).
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RFE(ng)

RFE(n, +n,)

Fig. 10.4. A-frame as one beam, and its division into RFEs and SDEs

The coordinate system {i} rigidly attached to RFE i moves together with the RFE
when the beam is deformed. Its position in the coordinate system £ {i} is defined
by generalized coordinates of the i" element, which are the components of the

vector:
r;
q =[ } (10.16)
P;

where T, =[xi v zi]T and (pl.=[¢i o, l//i]T are vectors of
displacements and rotation angles presented in Fig. 10.5.

If we assume that angles ¢, 6,, y, are small, then the transformation matrix from

the local coordinate system {i} to the system E{i} takes the following form:

1 -y, 6, «x

_ v, 1 —@; Y
-6 o 1 Z;
0 0 0 1

=1+ D,q, ;. (10.17)
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{0} |

Fig. 10.5. The systems of i"™ RFE and generalized coordinates

00 01 00 00 0000
0000 00 01 00 00
D1: ,D2: N D3: s
0000 0000 00 0 1
00 00 0000 000 0]
00 0 0 0 010 0 -1 0 0]
00 -1 0 0 000 1 0 00
D, = , D,= , Dg= .
01 0 0 -1.0 0 0 0 0 00
00 0 0 0 000 0 0 0 0]

The transformation matrix Bi that allows us to transform coordinates from the

local coordinate system {i} to the inertial coordinate system {} according to the
relation:

r=B;r,, (10.18)

where r, — vector of coordinates in local system {i},

r - vector of coordinates in base system { },
has the form:

B,=B,(1.q,)=T, T, T, T, =A()P,(q,) (10.19)
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where T, =T, () — defines the motion of the ship deck with respect to

the base system {},

T, =T, (p(t)) — describes the rotation of the frame in the coordinate
system of the deck {D},

°T, =const — defined in (10.15),

T, =T.(q,) - presentedin (10.17),

A(t)=T, T,,

P =T T.

In the case when the axes of the local coordinate system {i} are chosen as
principal central axes of the RFE, the mass and inertial features of the RFE i are

defined by: its mass, m;, and Ji,_/ (j =1, 2,3) which are mass moments of inertia
with respect to the axis X,, y,, Z,.

The equations of motion of the system considered can be obtained from
Lagrange equations. This approach requires the kinetic and potential energy of the
system to be defined. The kinetic energy of the RFE i can be calculated as:

E, :%tr{Bi H, B}, (10.20)

where H, — the pseudo-inertia matrix defined as in (5.11).
Following the considerations, we can obtain:

L% 5 Mg, te,, (10.21)

where M, = diag[m,,m,,m;,J_,J . J.] ,

e, = e, (tad,) =B, H[ip, +24P,] |
B, =A%

ag[,j
oP,

0
8_=E T.D, =const.
4q;,;

The kinetic energy of the frame can be expressed by:
E=YE,, (10.22)
i=0

where n=n,+n,+n;+1,
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and it is possible to calculate:

4O OF Mg, +e 10.23
dtaqF aqF FAF F> ( . )

where M, = diag [MO,...,M,,] )
eF=[e€...e£]T,

ar=la;...q7]".

The potential energy of deformation of SDEs can be expressed as follows:
1 7
Vi = EqFKFqF , (10.24)

where K, — the stiffness matrix with constant coefficients.
Similarly, one can calculate the dissipation of energy as:

1. .
D, =5q§LFqF, (10.25)

where Ly — the damping matrix with constant elements.
From what has been written above, one can calculate:

oV

E=K,q,, (10.26.1)
aqF
oD )

L =L,q,. (10.26.2)
a‘IF

The potential energy of gravity forces of the frame can be calculated as:
VgF = mg0; Bre,, (10.27)
i=0
where Yo, = 0 0 0 1].
So:

anF _
aqF

G,. (10.28)

where G = [GT,...,GHT ,

G, = [Gi,l?"'?Gi,6 )
Gi,_j =m,; g0, D_j e,

D, - defined in (10.17).
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Energy of Load and Drum of the Hoisting Winch
The load is modelled as a particle. The vector of its generalized coordinates is

expressed in the following form (, = [XL Y. % ]T . The angle of rotation of

the drum of the hoisting winch is denoted as ¢@y. Kinetic energy of the load and the
drum can then be calculated as:

Ty =%mL i +%1H oy (10.29)

where I, — moment of inertia mass of the drum,

F=dp 4y, + 2
Potential energy of the load is determined as:

Vi=m, gz,. (10.30)

Elastic Deformation of the Rope

The rope system of the A-frame is presented in the Fig. 10.6. It is assumed that the
radii of pulleys are small compared to the dimensions of the whole mechanism,
and also that the rope passes through points S and H — centres of the pulley and
the drum, respectively. Because the radii of pulleys are small and the length of the
rope may be hundreds of meters, this simplification can be seen as admissible.

upper beam

LO(XL’yL’ZL)

Fig. 10.6. Rope system of the A-frame
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Potential energy of elastic deformation of the rope and its dissipation can be
expressed in the following forms:

1
Vi =5cR5RA2R, (10.31)
1 v
Dy =5dR5RAR , (10.32)
0 if AR<0
where Oy = ) R ,
1 if Ag>0
dy
Ag =|LS|+|SH| -1, ~Pn "
LS| =, —xs],
ISH | =t —1,
E.F, . .
Cp = — stiffness coefficient of the rope,
d, — damping coefficient of the rope,
l,,] — initial and current length of the rope, respectively,
Er — Young’s modulus of the rope material,
Fr — cross-section of the rope,
dy - diameter of the drum.

Motion Equations
The vector of A-frame generalised coordinates can be presented in the form:

q= {qﬂ, (10.33)
qr

where (, — the vector of generalised coordinates of the discretised frame defined

in (10.23) and vector (, = [xL Y %L Py ]T contains generalised
coordinates of the load and the angle of rotation of the drum.

Then, the equations of motion of the system can be written as:

Mg+Lq+Kq=Q+DR, (10.34)
M, O
where M = ,
0 M,

M, =diag [mL,mL,mL,IH] ,

Lo[Le 0] L _[Kp 0
0 o 0 o
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L9V, 9V, oD,
Q _ aqF aqF aqF
= i ,

_ OV 9Vy 0D,

aq; 9dq; 94, N
D, R — matrix and vector of reaction forces,
oV, av, 90D, 9D,
aqF , oqy ’ a(iF ’ aqR

and involves nonlinear terms.

_eF

can be calculated as in chapter 9.1.1

Forces of reactions on the frame are presented in Fig. 10.4. Vector R of
generalised forces then specifically includes:
) T
= reaction R, =|R,; , RAL’y Ry .|
T
= reaction RAR=[RAR’X RAR’y RAR,Z] ,
= and forces in servomotors S; and Sk.

These forces can be written in the vector form:

Rz[SR S, R, R,|. (10.35)

Finally, the mathematical model of an A-frame has been written in the form of
asystem of differential equations of the second order (10.34) and constraint
equations in acceleration form:

D§=W. (10.36)
where W =W(q.q).

In these equations, there are: n, = 6(1+ n)+4 (components of vector q) plus

n, = 2+2-3=8 (components of vector R) unknowns. So, the number of
unknowns is equal to the sum of numbers of equations (10.34) and (10.36).

10.2.2 Optimisation Problem

One of the major problems connected with the design and control of cranes is the
choice of the drive functions which ensure proper motion of the system. In the
case of A-frame, a very important problem is the stabilisation of load position,
regardless of motion of the ship caused by sea waves. Using the drive of the drum
of the hoisting winch we can try to solve this problem. Time courses of drive
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functions can be defined in the optimisation process. In the book, the objective
function is assumed to be in one of the following forms:

I
2 .
Q, =HZL—h] > min | (10.37.1)
0
Q, =ma —h| — min,
2 os,si"ZL |- mi (10.37.2)
where  z, — load coordinate,
h — required depth.

This means that one expects that as the result of optimisation the course of the
function ¢(f) will be obtained which minimizes the average or maximal value of
deviation of load position from the required amount. During the optimisation
process, the parameters of ship hull movement and coordinates of the winch
position have been assumed to be known.

A
Pu

Fig. 10.7. The decisive variables

In this chapter, we assume that the function ¢y which describes the function
@y(t) defining the rotation angle of the winch drum has either the form:

@, (@) =at’ +bt* +ct+d,, for te<t, ,t,>, (10.38.1)

where i=1,...,m,
a;,b;,c;,d; — coefficients taken as shown in chapter 10.1 for spline
functions of the third order,
t; — pointininterval <0,¢, > (Fig. 10.7),

1
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or that introduced by [Maczynski A., 2005]:

0 ()= Ay + iAiSin(wiH'ai,o) for re(r,_,.1,),

i-=1

where A, — amplitudes,
@, — frequencies,
a,, — phase angles.

As the decisive variables in the optimisation task we can choose:

X=lo).g.op]

217

(10.38.2)

(10.39.1)

in the case (10.38.1), i.e. when spline functions are applied (Fig. 10.7), or:

X :[AO’Al’a)l’al,O""As’a)s’as,()]T

in the case when a pseudo-harmonic response is assumed.

(10.39.2)

In either case, at every step of the optimisation, the equations of motion of the

system have to be integrated for e <O, tk> in order to calculate the value of the

functional Q, , from (10.37). Such an approach requires high numerical efficiency
in solving A-frame equations of motion. For that reason, the optimisation problem

has been solved for the simplified model of an A-frame.

L
X G (xr.v1,71)

o

Fig. 10.8. Scheme of the simplified model

7
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In the simplified model of an A-frame, ideal stiffness of the frame has been
assumed (Fig. 10.8). However, flexibility of the rope has been taken into
consideration. The water damping ratio has not been taken into account. Ship motion
has been assumed to be determined, by known functions:

'xC = xC (t)
ve=y.(1)
z. =2zt
( ) . (10.40)
p=¢lr)
0=0()
w=yl)
This means that matrix T, , from (10.19), has the form:
cycld cysbso—sycp cysbep+sysp X,
sycl sysbsp+cyep sysOcp—cys
T, = W Ysosp+cycp systc@—cysy y, ’ (1041)
—s6 cbso cley Z,
0 0 0 1
where ¢()=cos() and s()=sin().
The frame angles are assumed to be constant.
Kinetic and potential energy of the system can be expressed in the form:
T, (5457 +7) (1042.)
1 2
V:E§RCRAR+ngzL, (10.42.2)
1 .
D:§§R dpAg, (10.42.3)

where  m,,04,cp,d, —defined in (10.31),
Ay =|DB[+|BN =1y + @y 1y -

Lagrange’s equations of the second order have been used to determine the
equations of motion of the system. The details are presented in [Fatat P., et al.,
2005]. These differential equations of the second order have been integrated using
the Runge-Kutta method. The Nelder-Meads method has been applied in order to
solve the optimisation task.
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10.2.3 Numerical Simulations

It should be mentioned that the numerical model of the A-frame presented in
chaper 10.2.2 has been used in the Norwegian company TTS-Aktro from Molde
for a fast analysis of forces and stresses at the initial stage of choosing parameters
of the system and for cost calculations. In order to verify the model, the results
obtained using our program (RFEM) have been compared with those obtained
using commercial FEM program (NASTRAN package) [Fatat P., et al., 2001].
There have been compared reactions in joints, stresses and deflections of beams
obtained. Some examples are presented in Fig. 10.9.

x
<
<

0.6
600 FEM B
= g
é \0\ ‘ —o—RFEM‘ = 0.4
g 400 5
= / E o2 —FEM
= 200 2
S~ = —o—RFEM
0 A o ——
20 100 110 120 130 140 -6200 -4000 -3000 -2000 0 2000 3000 4000 6200

Inclination of the A-frame [deg] Position on the top beam (2) [mm]

Fig. 10.9. Comparison of FEM and RFEM models

A comparison of the results obtained using RFEM model with those from
Ansys-Adams systems in dynamical conditions can be find in [Fatat P., 2004] and
same of them are presented Fig. 10.10.

a) 2

SO0 T ANSYS-ADAMS 2100000 1| —— ANSYS-ADAM
48000001 | _ o RFEM to0cgo | [ ~O= RFEM
440000.0

w0000 150000.0

Z360000.0 g 170ee

320000.0 900000

280000.0 60000.0

240000.0 30000.0

200000.0 f\.{)/-

012345678 91011121314151617181920 012345678 91011121314151617181920

t[s] t[s]

Fig. 10.10. Comparison of RFEM and Ansys-Adams models: a) vertical reaction in the A-
frame leg, b) force in the servo-motor

Numerical simulations related to the load stabilisation problem have been
carried out for the rectangular A-frame with lifting capacity up to 100 Mg. The
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main geometrical parameters of the crane are presented in Fig 10.11. The value of
load coordinates z;, for which the optimisation process has been carried out is
h=-300 m, mass of load m;=100 Mg, and the motion of the ship is defined as:

x,(t)= lsin(%[tj

y.(£)=0
2
t)=2sin| —t |. 10.43
ZC() sm(12 J ( )
p=0
=0
y=0

40mm
2.2m| —»| |—-——

1.7m

Fig. 10.11. Geometrical parameters of the A-frame

In the figures the following denotations are used: €, €, — curves obtained
according to (10.37.1) and (10.37.2), respectively, S, H - curves obtained
according to (10.39.1) and (10.39.2). Time courses of coordinate z; obtained
according to the full and the simplified model are shown in Fig. 10.12. In this
case, the hoisting winch was motionless. The results of simulations are almost the
same.
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Fig. 10.12. Time courses of coordinates z;

Because the simplified model is much more numerically efficient, the
optimisation process has been solved for this model. Time courses of drive functions
of the drum defined during the optimisation process are presented in Fig 10.13.

200.04 (—0O— Hy rjﬁ ! i
o He | 2
1500 |~ Hx | ‘ : 4
—V—SQ |y ;
\ / 3
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50.0- L L 1 \
2 g
F i

T 001 A
<= L
-50.0 4 “ 1
-100.0 1 ‘ [
-150.0 Ji r7
W
-200.0 1
10 12 14 16 18 20 22 24
t[s]

Fig. 10.13. Drive functions of drum after optimisation

As we can see, insignificant differences occurred between these drive
functions. Drive functions obtained during optimisation have been taken as inputs
of drum motion in the full model, so simulations presented below have been
carried out according to the full model. Time courses of the coordinate z; obtained
when the drum of the hoisting winch was motionless and when its motion was
determined by the function after optimisation (regardless of the type of the
objective function and type of the drive function) are shown in Fig. 10.14.
Amplitude of load oscillations has been decreased from 2 m to near zero.
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Fig. 10.14. Coordinate x; ; before and after optimisation
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Fig. 10.15. Coordinate x; ; after optimisation for different type of objective and drive
functions

Time courses of the coordinate z; obtained for different types of objective
functions and drive functions are presented in Fig. 10.15. The courses for the
pseudo-harmonic drive function (10.38.2) and different types of objective
functions are presented, in detail, in Fig. 10.16.

The model of an A-frame based on the finite element method has proved to be
a useful instrument for carrying out dynamic analyses of this kind of cranes. This
model is more numerically effective than the previous model presented in [Fatat
P., 2004] (Fig. 10.3).

Numerical simulations presented in the chapter confirm the significant
efficiency of the proposed method of optimisation drive function of the drum
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Fig. 10.16. Coordinate x; ; after optimisation for pseudo-harmonic drive function

where the main goal of the optimisation process is the stabilisation of the load
position. Because the optimisation task has been carried out for the simplified
model, the method is sufficiently effective.

For the motion of the ship discussed, the pseudo-harmonic drive functions are
slightly better than spline functions. Amplitudes of load oscillations in the z;
direction are, for pseudo-harmonic functions, about 8 times smaller then for the
spline function and the objective function ;. When the objective function €, is
taken, the results obtained are worst. However, when the system of waves is more
complicated, the spline functions may be more useful.

Both objective functions, that is average and maximal value of deviation of
load position from the demanded level, are acceptable in practice. There are no
significant differences between results obtained for the two functions.

In real conditions, there are additional phenomena that can influence the
quality of the stabilisation of the load position. There may be, for example,
inaccurate definition of parameters of the crane. We should also remember that the
rope interacts with the load and the environment mainly at low levels of depths,
where water currents and waves are strong. Especially, in some conditions, a taut-
slack phenomenon of a marine cable-body system can be significant [Huang S.,
1999], [Jordan M. A., Bustamante J. L., 2007]. Vertical oscillations of the load
induced by taut-slack phenomenon makes it more difficult to stabilise the load. An
error-actuated control system for motion of the drum of the hoisting winch can
minimise the impact of all those phenomena.

10.3 Stabilization of Crane Load with the Use of an Auxiliary
System

In the present chapter, the authors take on the problem of load stabilization for a
crane installed on a ship. The solution analyzed is inherently similar to the
Knuckle Boom Telescopic Offshore Crane concept of TTS-Aktro. The base of the
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crane (i.e. the ship) is subject to general type of motion as a rigid body whose
components are defined by pseudo-harmonic functions. Two dynamical models of
a crane have been developed: a simplified one, suitable for determining drive
functions, and a basic one, for which more accurate dynamical analyses are
possible. Furthermore, two methods of determining drive functions of the crane's
mechanisms ensuring stabilization of load's position are proposed. The first one
involves solving the inverse kinematics problem for quasi-static conditions, the
second one is based on dynamic optimization. Results of sample numerical
simulations are included.

10.3.1 Auxiliary System for Stabilization of Load Position

Complete stabilization of load's position requires the ability to exert force on the
load in three independent directions. In the vertical direction it is natural to use the
hoisting winch drum's drive. For the stabilization in two remaining directions, the
authors propose using an additional auxiliary system (Fig. 10.17). Its main
component is a stiff element leading the rope along the GD segment. By inclining
this element it is possible to move the point D of the hoist rope in two directions:
tangential (7) and radial (n). The directions 7 and n have been defined relative to
the trajectory of point G of the jib in its rotating motion. Dislocating point D is the
means for influencing the load's motion and thus an attempt to stabilize it in the
aforementioned directions becomes feasible. The proposed solution has the
advantage of being applicable to stabilization of load's position or, when another
strategy is selected, to other tasks, e.g. limiting swaying of the load during rotating
movement of the crane's upper structure.

stiff element of the
G auxiliary system

Fig. 10.17. Auxiliary system reducing load oscillations
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10.3.2 Models of an Offshore Crane with the Auxiliary System

Depending on the purpose models of equipment are built which vary in
complexity. Thus they represent the dynamic properties of the modelled object
with different fidelity. In problems of control the speed of computation is very
important. Real-time control is often required. This leads to possibly simple
models being used which enable numerical efficiency. On the contrary, when the
model is to be suitable for asserting validity of the equipment's operation, its basic
dynamical behaviour must be reflected more accurately. Accuracy of the results
obtained and their correspondence to reality is much more important than the time
of computation in this case.

The authors have developed two models of an offshore crane with the auxiliary
system: a simplified one, suitable for determining drive functions, and a basic one,
for which more accurate dynamical analyses are possible. Simulations using the
basic model enabled carrying out tests to confirm the suitability of the method
proposed to the problem of load's position stabilization. In Table 10.1, there are
compared the basic properties of both models. An outlined scheme of the
simplified model is shown in Fig. 10.18.

The equations of motion in the basic model have been derived along the lines
of [Wittbrodt E., et al., 2006] and [Adamiec-W¢jcik 1., et al., 2008]. Lagrange's
equations of the second order have been used. The vector q of the generalized
coordinates can be written as:

a=ld" o v @ @y o ¢ a0

where q*) = [xf,fg) vl W oW l//(A)] "~ vector of
generalized coordinates of the base (deck),
q(J) :[ ) () (J)]T _ ; ;
q" ... q’ ... q, vector of generalized coordinates

of the jib,
qW = X, v, ]" = vector of generalized coordinates of the load,

Q — rotation angle of the crane's pedestal (upper structure) —
slewing angle,

v — inclination angle of the undeformed jib,
o — rotation angle of the hoisting winch's drum.
7,8 — angles of inclination of auxiliary system (Fig. 10.18).

Relationships which determine individual terms of the Lagrange's equations are
obtained similarly as in the case of a mobile crane treated in [Maczynski A.,
Wojciech S., 2003].

To ensure that the crane's base moves according to the provisions of Table 10.1,
the following condition must hold:

g =a™ () fori=1,....6. (10.45)
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Table 10.1. Comparison of models: simplified and basic

Simplified model

Basic model

Form of description for
system's points

absolute coordinates

coordinates relative to joints

Method of obtaining
equations of motion

second Newton's law

Lagrange's equations of second order

Number of degrees of . Lt
3 where m is the total number of modes|
freedom . X sy
considered in the jib's model
1. hoisting winch drum's
2. auxiliary system's in
. . 1. hoisting winch drum's dlrectlor}s Tandn ,
Drives considered o e 3. of crane's upper structure's
2. auxiliary system's in directions 7and n .
slewing

4. of reach changing (reach

changing actuator)

Drive modeling method

kinematic driving

kinematic driving by a parallel
system of a spring and a damper

Pedestal modeled as a rigid body, fixed to the base (ship's deck)
Load modeled as an concentrated mass
Rope flexible flexible with damping
. .. capable of flexing — the jib has been
Jib rigid discretized using modal method
D
. 5 i (A) _ (A) o; (A) (A) P
ipseudo-harmonic: ai = z Ai,j Sln(a)i,j r+ q’i,j ) for1 = 1,. . .,6 s
=
where
A 4 ]T LW ) g ) ]T _
Description of base's motion [0( s 0’8 ng ZO’g 4 0 4

Ai(’?) - /™ amplitude in the i direction,
a)l.(“‘?) - /™ angular frequency in the i direction,

(A) : g
¢z N /™ phase angle in the i direction.

Equations of motion

3

‘DL
where
S :C’(LDL+LD_Lﬂ+a‘r3)+b1(LuL+d‘rB)’
Ly, =(xp _XL)Z +(yp —yL)2 +(z,, -1

m, %, =S-2—L I~ L+ Fy +Ty

‘DL
=520 yL+F +T,
‘DL

myy

. ip— 2%
mLzL:Sin L+FZ+TZ—ng

c, by —  stiffness and damping
coefficients of the rope, respectively,
o rotation angle of the

hoisting winch's drum,

Described later

rs —  radius of the hoisting
winch's drum,
Ly —  initial length of the rope.

Integration method for the
equations of motion

Runge-Kutta method of fourth order
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Fig. 10.18. Simplified model of an offshore crane
Forces and moments of force acting on the crane's base to make it move according
to relationships (10.45) must be therefore introduced into the system. They are
assumed to form the following vector:

R =[O FW FO M ™ ] (10.46)

Forces and moments of force are depicted in Fig. 10.19.

Fig. 10.19. External forces and their moments acting on the crane's base

The model of an offshore crane is ultimately described by the following
equations of motion:

AG-DR™W =F, (10.47)
where A — mass matrix,
R%W — vector defined in (10.46),

I><
D= 66

>

mx6
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m=14+m-6,
I,, — identity matrix of dimension 6x6,
F — vector on the right side of the equation of motion including

among others the terms of Lagrange's equation related to
velocities and generalized coordinates as well as non-potential
forces not accounted for in vector R(A),

which must be supplemented by constraint equations:

g = a®. (10.48)

10.3.3 Drive Functions Stabilizing Load's Position: The Inverse
Kinematics Problem

The first of the methods considered by the authors to determine drive functions
which ensure stabilization of crane load's position is solving the inverse
kinematics problem for quasi-static conditions. This task consists in choosing
functions for the auxiliary system's and hoisting winch drum's motions so that the
load stays in its initial position when the motion of the crane's base is taken into
account. However, dynamic effects are not considered.

Before the desired drive functions can be determined, it is necessary to set the
initial position of the mass my, i.e. the initial values of the coordinates x2 s yg s z2

that they have at the beginning of the stabilization. They provide the initial
conditions for the problem of determining drive functions in quasi-static
conditions. The equations of static equilibrium for the simplified model are:

L
f1=xD—xL+%FX =0

L

fr=Yp—Y1 +%Fy =0 , (10.49)
LDL

Hi=wp—z+ < (FZ_ng):()

where § =¢, [LDL +L,—L, +a'0rB] ,

Ly, :\/(xl) _xL)2+(yD _yL)2+(ZD —ZL)2 ,

E A
¢ = r“°R ,
Ly—or
E, —  Young’s modulus,
g (t) —  radius of the drum,

A —  cross-sectional area of the rope.



10.3 Stabilization of Crane Load with the Use of an Auxiliary System

229

Coordinates xp, yp, zp can be obtained from:
Xp xD'
y Al

p=| " =T Tg | 72, |=Try. (10.50)
ZD ZD
1 1
L, cos@ cos
where z,,'=—2 Y

\/1—sin*@sin® y ’

xXp'=2z,"186,

Yp'=2p' 187
rD':[xD"yD"ZD"l]T’
Ty -

transformation matrix from {P} coordinate system to the inertial
coordinate system {0},

Tg - transformation matrix from {G} to {P} coordinate systems.

The matrices Tp and T appearing in (10.50) are defined as:

m-i-y

10.51
0 1 ( )
cp s 0 dcyco
s —cp 0 dcysop
T, = =const , 10.52
“Tlo 0 -1 dsy | (1052)
0 0 0 1

where d — length of the jib (Fig. 10.18),

cyW  —sy)

ol c6" o se™W]f1 o 0
Rp=|sy™ cp™ ol 0 1 0 [|0 co® —so |,
0 0 1|[-s6" 0 coW||0 sp¥ oW
Xp
Ip = Yp |>
lp

cQ=cosQ, s@=sing.

The unknown values of the coordinates xg, y,(j, zg are determined from (10.50)

assuming = fo, a=0",0=60° and y=y", where t,a’,0° y° are,

respectively, the initial time (moment) of starting the stabilization and the values
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of angles ¢, 3 @ at the time ¢ = #;. Equations (10.50) form a system of 3 nonlinear
equations with 3 unknowns x, = x;, y, =y;, y, =y,, which is solved with
Newton's iteration method.

Having determined x, = x,, y, =y, and z, = z; » the procedure continues
determining the drive functions for quasi-static conditions. Let:

t, =t, +iAt i=1,..p, (10.53)
t, —t
where Af=-+—0
p
tr — end time of load stabilization,
p — number of intervals into which the time interval <to,tk> has
been divided.

Assuming that the following conditions must hold at time  =1,...,7,:

0

xL|t:t,- =X

yLL:ti =y i=1,..p, (10.54)
0

ZL|t:t,- =

equations (10.49) of static equilibrium for ¢ = ¢, can be written as:
; L
£(a.69.7)= 0, —x) + 2L F =0
M) g )= Loy g -
L\, 8,y )=y, — yL +TF =0 i=1,..,p, (10.55)

i) o) i L
f3(a()"9()’7())221) _Zg+%(Fz —my g)=0

Xp )
where  rp = Yo |~ pld) yD' =Tl rp'
ip ip
1 1
TV =T(,),
S — defined in (10.49).

Equations (10.55) form a system of 3p nonlinear algebraic equations with 3p

unknowns O((i), 7/(i), 0"). These equations have also been solved by applying

Newton's iteration method taking the starting point for subsequent iterations to be:
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a(’)*o — a(l_l)
PO = i) (10.56)
9(5)»0 — 9(!'—1)

The continuous functions a = a(t), y = y(t), # = 6(r) have been obtained by

connecting points with splines.

As it has been described above, the courses angles of the hoisting winch and the
auxiliary system are calculated using the simplified model and omitting dynamic
phenomena. However, these courses compensating sea waves can be successfully
applied in dynamic simulations using both models. The further calculations are
carried out using the basic model of the crane. The crane is assumed to have a 14
m long jib and an Lp = 5 m long auxiliary system. The angle y was 50°, the load's
mass 10000 kg, its z coordinate -20 m. For this data, the distance from point G of
the jib to the load is 31.75 m. Although, as previously mentioned, offshore cranes
usually operate from watercrafts conveniently positioned against waves, a general
motion of the base has been considered for sample excitations. The results follow
[Balachandran B., et al., 1999]:

org

xP) = O.6(sin 0.52¢ + ism 1.04¢ + ésin1.56tj [m],

org

) O.6(sin(0.52t +3. 14)+isin(1.04t +3.14)+ ésin(1.56t +3. 14)) [m],

org

(D): . l : 1 1
z 1.2(sm(0.52t+3.14)+ 4sm(1.04t+3.14)+9sm(l.56t+3.14)) [m], (10.57)

) = 3(sin(0.52t+3.14)+isin(1.04t+3.14)+;sin(l.56t+3.14)j [’1,
6P = S(Sin 0.52¢ + i sin1.041 + é sinl .56t) 1.

p'P) = S(Sin 0.52¢ + isinl.04t + ;sin1.56rj [°].

By the assumption of such motion of the crane's base, the analysis of the general
case was possible to perform, which required using auxiliary system's drives in
both directions: radial and tangential. The time of stabilization (observation of the
load) was 60 s. The coordinates x, y, z of the load, respectively, for the auxiliary
system and hoisting winch's drum both idle and controlled according to the drive
functions determined are shown in Figs. 10.20, 10.21 and 10.22. Time courses of
dynamic coefficient of the force in the rope for both cases are presented in Fig.
10.23. The dynamic coefficient is defined as:
S

n= : (10.58)
m;, g

where S is the force in the rope.
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Fig. 10.20. Time course of x; coordinate for Fig. 10.21. Time course of y; coordinate for
general motion of the base general motion

The results obtained show that using the proposed method yields highly
effective stabilization of the load. The outstanding quality of stabilization along
the axes X and Z is worth emphasizing. Stabilizing the load's position has also
decreased the dynamic coefficient of the force in the rope, thus alleviating
dynamic strains in the crane's structure.
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Fig. 10.22. Time course of z; coordinate for Fig. 10.23. Time course of the dynamic
general motion coefficient

10.3.4 Optimizing Drive Functions

Optimization is a method often applied in determining drive functions for a range
of mechanisms and machines. Naturally, the optimization criteria may vary. Some
examples are: minimal duration of motion, minimal energy consumption, minimal
dynamic strains, approximating desired trajectories for selected points, etc.

In the considered case of stabilizing offshore crane load's position, the
optimization task is to determine the functions a = a(t), y = y(t), 6=206(t),so

that despite the crane base's motion (i.e. despite the variability of the matrix T(f)
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of (10.50)) the load remains possibly close to its initial position. Hence the
definition of the goal function:

I

Qa,7.6)= J.|:(XL -x )2 + (yL -y )2 + (ZL -z )2} dr | (10.59)

)

where x, y, z! are initial coordinates of the load determined as in the previous

section, from (10.49).
Since it has been assumed that the crane base's motion is defined by pseudo-
harmonic functions, it seems natural to seek the drive functions
a=al(t), y=y{), 8=06() of the from:

a=a’+ nza Aa,i sin(a)a,,»t + ¢a,i)
i=1

y=7"+ Zy: A, sin(a)%it +Q,; ) , (10.60)

i=1

o
0=6"+> A, sin(w,t+9,,)
i=1
where a’,y",0° — initial values of angles «, 7,8,
ALO,.Q, - i™ amplitude, angular frequency and phase angle of

the /" drive, satisfying j e {or,7.6}.

Decision variables of an optimization task thus stated can be written as vectors:

X1
. A,
X, =| X | . X, =|o,, izl (1061)
: Po.i
_X(l,na ]
_ X, _
: A,
X, =Xy | ., X,;=|o, i=len,  (10.62)
: Dy
_Xy,ny _
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_ X, _
Ay,
X, =| X , Xgi =| 0y i=1,.,n9, (10.63)
. P,
,n, |
and finally:
Xa
X=X, |- (10.64)
X,
Vector (10.64) has:
n=3n, +n,+ny) (10.65)

coordinates. The optimization consists in determining such combination of
decision variables satisfying these constraints:

Aa,i,min < Aa,i < Aa,i.max Ay,i,min < Ay,i < Ay,i,max Aﬁ,i,min < Aﬁ,i < Ae,i,max
10.
@y, ;i min < @y, ; < Wy i max @y min < @, ; < @, i max @y ; min < Wy ; < @y i max (10.66)

¢a,i,min S ¢a,i S ¢a,i,max ¢y,i,min < ¢y,i < ¢y,i,max ¢9,i,min S ¢9,i S ¢9,i,max

that the goal function (10.59) attains its minimal value.
To calculate the goal function, the coordinates x;, y;, z;, must be defined. This

requires integration of the crane model's equations of motion for f e <to,tk> . As

mentioned before, to achieve reasonable numerical efficiency the optimization
task was solved using the simplified model. Nelder-Mead simplex method was
employed for the optimization [Wit R., 1986].

Judicious choice of initial approximations of functions to optimize is an
important requirement. They should already be near the solution. The case of
pseudo-harmonic functions involves an additional difficulty in selecting the
number of harmonic components, i.e. the values n,,n, n,. This problem is

briefly accounted for in the following. The initial approximation was chosen to be
defined as a sum of n; harmonic components ( je {a, 7,6’}) obtained from

Fourier analysis applied to drive functions which are the solutions of the inverse
kinematics problem for quasi-static conditions. It should be clearly stated that the
method proposed for determining optimized drive functions requires that they be
preset with the procedure of chaper 10.3.3 beforehand.

With Fourier analysis [Kruszewski J., Wittbrodt E., 1992], an arbitrary periodic
function can be represented as a series:

!
x(t)=x)+ Y xsin(vor+g,,), (10.67)

v=1
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where [ — number of terms (harmonic components) in the series,

v — index of harmonic component,

t — time,

x(? — constant term of the series,

x!,¢., — amplitude and phase angle of the V" component,
respectively,

2r
w= 7 — lowest angular frequency,
T - function's period.

Individual coefficients of a Fourier series are given by the following formulae:

1 N-1
x)=—x, (10.68)
N3
x) =4lal +b; , (10.69)
a
@, =arctg — |, (10.70)
bV
2 2 v
where a, =—in cos l,
N 3 N
2 & 2T Vi
b, =— > x.sin ,
V=Y ZO ;sin=
v=12,..,l,
N - number of sampling points for the function x(?),

whereas [, the number of harmonic components, must satisfy this condition:
2l +1<N. (10.71)

The hoisting winch drum's drive may obviously have different number of
harmonic components in the initial approximation from either radial or tangential
direction of the auxiliary system. It is, however, natural to assume that the number
of components present in the initial approximation remains the same in the
optimized function.

Drive functions optimized using different numbers of harmonic components
(n; =2 and n; = 4) with the method of chaper 10.3.3 (being the input of Fourier
analysis) are compared below to their initial approximations. Parameters describing
geometry and mass distribution of the crane were identical to those considered in
chaper 10.3.3 and the excitation of the base was given by (10.57). The graphs in
Figs. 10.24, 10.25 are for the drive function of the hoisting winch's drum, those in
Figs. 10.26, 10.27 for the rotation of the auxiliary system's rigid component in the
radial plane and those in Figs. 10.28 and 10.29 in the tangential plane.
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As it can be seen, taking n; = 4 leads to very good approximation of drive
functions with a Fourier series. Thence follows reasonableness of seeking the
initial approximation in the class of functions of the form (10.60).

Next, stabilization of load's position was considered for durations of 20
and 60 s. The value of the goal function (10.59) for idle auxiliary system and
hoisting winch's drum was 47.07 for stabilization time 20 s and 142.10 for 60 s.
Comparison of the goal function's values for initial approximations and their
corresponding optimized drive functions for different numbers of harmonic
components are presented in Table 10.2. Number of iterations and time of
computation used by the optimization process are also compared.

Table 10.2. Comparison of the goal function's values

Number of Value of the goal .
umber of components function Approximated
Duration of Number | computation
stabilization _ L. of time taken by

[s] h91st1r1'g 1n1t1al' optimized |iterations the

winch's |fangle|y angle approxi- | e ion optimization
drum mation

20 2 2 2 10.579625| 0.388667 3053 6.5 min

20 4 4 4 10.000571 | 0.000208 3835 9 min

20 6 6 6 10.000054 | 0.000011 10894 33 min

60 2 2 2 1.677738 | 1.226042 1699 13 min

60 4 4 4 10.001667 | 0.000555 3673 27 min

60 6 6 6 [0.000121| 0.000490 10369 85 min

The results presented (of calculations for the simplified model) made it
possible to draw the following conclusions:

= in the Fourier analysis taking into consideration 4 harmonic components is
sufficient for obtaining satisfying drive functions determined for quasi-static
conditions,

= initial approximations stabilize the load's position well; indeed, taking as few
as 2 harmonic components of each initial approximation gives a reduction of
the goal function's value by a factor of about 100 compared to the case of idle
hoisting winch's drum and auxiliary system,

= substantial influence of the number of components in the initial
approximation on the quality of stabilization is clearly noticeable,

= only slightly does optimization improve stabilization of the load.

These conclusions led the authors to abandoning further work with the idea of
determining drive functions for stabilization of load's position using optimization.
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The reason is that the process is lengthy, requires determining drive functions for
quasi-static conditions, and the improvement obtained in the quality of load
stabilization is modest.

We would like to underlain that above conclusions are valid only for the
assumed pseudo-harmonic base motion. In the case of more complicated functions
defining base motion, the second approach, when optimization methods are
applied, seems to be better, since it is more general. The decision variable could
be the values of spline functions defining drives [Maczynski A., Wojciech S.,
2003].

10.3.5 Control System

The proposed system of stabilization of load's position could be augmented with a
closed-loop control system. Its task would be to minimize the influence of the jib
and the hoisting system's flexibility neglected in the model, of inaccurate
knowledge of parameters describing the geometry and mass distribution of the
crane as well inaccurate knowledge of waves parameters, eventually of potential
external disturbances.

60
P Y _._._._._._._: ’ ,
L7, e,
> o
; Simplified Simplified i 5[ _“eﬂ . Crane -
— ™ model - inverse * model — input '%_!Ea"_% Controller for & 7 Basic model
! kinematics . signals & €c Uy X
> | Controller for o
i— +
! 1)
________________________________________________ 8,
(=4

b

Fig. 10.30. Block diagram of control system: 7, 6y, ¢ — drive functions determined
according the simplified model, ¥, 6, &;— input signals determined according the simplified
model, %, 6, o;,— current values of controlled signals, e,, eg, e,— dynamic errors, u, g, Uy
— output signals, z — disturbance

A block diagram of the considered control system is shown in Fig. 10.30.
Three independent controllers, one for rotation of the drum and two for rotational
motions of the stiff element of the auxiliary system, are used. The control system
contains feed-back loops as well feed-forward loops. Time courses of the inputs
signals (&= o(?), % = H(1), 6, = 6(1)) have to be determined simultaneously with
the drive functions (op= oy(t), % = %(t), 6 = 6,(t)) according to the simplified
model. It is worth to be mentioned that in a standard stabilization task the
following relationships are fulfilled:
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, (r)= z) = const
7,(t)=y; =const . (10.72)
0. (t) = x? = const

Time courses of load coordinates, x;, y;, z; respectively, for waves increased about
10% in relation to the nominal defined in (10.57), are shown in Figs. 10.31, 10.32
and 10.33. Numerical calculations were carried out according to the basic model,
drive functions were determined from chaper 10.3.3. Two cases were considered:
with and without control system. The P controller was used in analyzed control
system. The obtained results are very promising.
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10 0.25
9.8 rat
96 l} \l. ol s _ 02 A -
TR I — i — o I N AN |
: - —— o T
° as Y \/ NIASAVY AW L
g4 R T A
8.2 . . -0.05 . ‘
0 10 20 30 0 10 20 30
time [s] time [s]
Fig. 10.31. Time course of XL coordinate Fig. 10.32. Time course of y; coordinate
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10.4 Active Waves Compensation System for the Reel's Drive

Practice and the results of numerical simulations (chapter 9.3) show that during
operation of a reel device for laying pipelines under sea waves its uneven work
may occur. To reduce this undesirable effect, a modification of the reel's drive
system is proposed. In place of a passive system (in which the braking force of the
reel is a constant set by the operator) an active system may be installed with
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controllable value of the force. That value would be chosen so that the moment
maintains the assumed velocity of the reel and constant tension in the pipeline
despite the occurrence of additional dynamic loads caused by sea waves. That
would be a new solution, as yet unseen in existing drives, however, it would
require a change of the way the drive system is designed: the engines (hydraulic or
electric) would need the ability of exerting moments in both directions (classical
passive systems are only capable of braking the reel during normal operation). The
concept is discussed in details by [Szczotka M., 2010], [Szczotka M., 2011b].

10.4.1 Model of the Control System

Frequency converters are commonly used to control velocity and drive moment of
electric engines [Olsson G., Piani G., 1998]. The drive moment M created by the
engine is passed to the reel by a system of gears. The value of the moment My is
determined in the control system presented in Fig. 10.34.

NNP - neural model of pipe

PID Dynamics of the L
system
Dovendinn QORI

operator

De

Fig. 10.34. Reel's drive control system

In the computer model, a drive system is represented by a differential equation
describing the motion of the reel with pipeline wound onto it and a block
performing the calculations of forces and moments caused by the action of the
pipeline on the reel (denoted as Fp, Mp). In the concerned application, the
operation of this block is based on a model using an artificial neural network. One
of the advantages of this approach is short computation time due to the fact that
the programme executes only simple operations of multiplication of matrices
(containing weight coefficients of the trained network) whose dimensions depend
on the numbers of layers and neurons [Osowski S., 1996], [Zurada J., et al., 1996].
To collect data necessary to train the network, a series of simulations was
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performed in which the equations (9.95) were integrated for different parameters
describing waves. The obtained results were saved as a data set. It is worth to note
that the training data was obtained for a model taking into account nonlinear
material and geometric models. Details of the mathematical model, architecture of
the neural network used, the process of generating training data and its application
to determining forces and moments exerted by a pipeline being unwound from
a reel are presented in [Szczotka M., 2010].

Practical realization of the proposed control system requires, in addition to
replacing the drive with an electric one, measuring the winding diameter r; of the
pipe, the reel's velocity wg and the vessel's motion (components of the vector qp
and its derivative). Control is performed in a feedback loop with a PID controller.
The system features also an additional PID controller which introduces an
adjustment to the previous PID's response. The additional PID controller enables
quick reaction of the system to changes input by the operator and excitation
caused by waves. It is an example of a feedforward system which in many cases
improves stability and accuracy [Olsson G., Piani G., 1998].

As mentioned, further calculations assume an equivalent model of a pipeline
implemented with an artificial neural network. To verify the correctness of
obtained results, a comparison is made in Fig. 10.35 between simulations using
the full model (a pipeline discretized with the RFE method, discussed in chapter
9.3) ant the functional one. On the graphs, the following denotations are present:
SSN — results yielded by an artificial neural network, SES — a pipeline discretized
with the RFE method. Computation time for a motion lasting 50 s equalled 5 s
approximately, whereas calculations according to the full RFE model with the
number of RFEs being 100 take roughly 15 min.
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Fig. 10.35. Results of simulation in a passive system: a) reel's velocity, b) tension

10.4.2 Installation of a Pipeline Using the Reel Method with
Active Drive System

Sample results of calculations for devices with passive and active reel's drive
system are shown in Fig. 10.36. Harmonic excitation of the swaying angle with
amplitude A, = 4° and period T = 8 s was assumed. Due to structural limitations,
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the proposed system cannot fully compensate for the influence of dynamic forces
caused by waves in cases when occurring forces exceed some limit values. This
shows as variations visible on the graphs of force and angular velocity of the reel.
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Fig. 10.36. Comparison for passive and active reel drive: a) angular velocity of the reel, b)
axial force in the pipeline
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Fig. 10.37. Influence of the speed of laying the pipeline on the behaviour of the system with
active compensation for waves: a) reel's velocity, b) tension

One of the limitations not to be forgotten is the available power which can be
used to compensate for waves. In the system, successive reduction of drive force
after exceeding admissible forces is used. This causes an increase in the reel's
velocity (due to forces of inertia caused by the vessel's motion), and further decrease
in the moment caused by limited power. The system is capable of returning to the
nominal conditions (tension in the pipeline and velocity of the reel) if the operator
decreases the tension or waves weakens. Sample results for different settings of the
velocity of unwinding the pipeline are summarized by Fig. 10.37.

Note that the assumed power of the drive system (670 kW) is sufficient to
operate with constant tension of about 1300 kN when the amplitude A, = 4°, that is
under intense wave action. For the vessel's operator also calculating the range of
safe, stable operation under variable waves conditions may be of interest.
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The parameters of the device's operation (peak changes of the reel's velocity and
the axial force in the pipeline) in the selected range of swaying amplitudes from 1°
to 4° for periods of waves in the interval between 6 s and 12 s are shown in Fig.
10.38. The values of increment of the angular velocity Awg are given as follows:

a)(max) _ (min)
Aw, = % 100% , (10.73)
Wk
where @) (™) _ maximal and minimal velocity of the reel,

a)g)) — nominal velocity of the reel.

Change in the axial force AU (Fig. 10.88 ¢ and d) is expressed by:
AU, = max ﬂU O —max (U, }ju ) - min (U, 1} (10.74)
where U ,(50) — axial force at the moment ¢ = 0 (nominal value),

U, =U,(t) — current value of the force.
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Fig. 10.38. Surfaces describing changes of dynamic parameters with passive and active reel
drives a) percentage increments of the reel's velocity in an active system, b) percentage
increments of the reel's velocity in a passive system, c) percentage increments of the
tension in an active system, d) percentage increments of the tension in an passive system
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As the presented graphs indicate, using a system for compensation of waves
makes it possible to achieve reduction by a factor greater than three of the
dynamic forces and limitation of oscillations of the reel's angular velocity a few
times. The graphs were produced for one fixed speed of laying the pipeline equal
to 2000 m/h and assumed limits (maximum force passed by the structure of the
drive system being 2000 kN and available power 670 kW). The practical effect of
employing such a system would be significantly increased efficiency (speed of
laying the pipeline) which is a considerable improvement.

The analyses presented are only examples of possible applications of the
developed models, algorithms and programmes. It seems particularly useful to
employ the model of a drive with automatic adjustment of the force applying
tension to the pipeline which allows one to entirely eliminate large overloads in
the system with sufficient power. Measuring the vessel's motion is fairly simple. It
requires a sensor (e.g. Konsberg Seatex's MRU) to be installed and the reel's
angular velocity and winding diameter to be measured. Short computation time,
especially when the programme is based on a neural network, is a significant
advantage.
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In the process of new designs of mechanical structures or systems and control
strategy development, a great role for numerical modeling and simulation can
evidently be identified. The most comprehensive verification provided by an
experiment is naturally the best solution. It is however tedious and costly and in
many cases difficult to perform. Offshore structures are often produced as single
specimen for a specific order. Carrying out detailed empirical research would raise
the final price of a device considerably. Therefore many design companies,
including ones in the business of offshore engineering, are interested in access to
appropriate calculation software. Such programmes have different purposes. Some
of them are suited for strength analysis, others to simulate operation of a device or
its control system. In addition to accurate calculations of precise values which are
necessary when designing a given machine, companies also need quick and rough
simulations, e.g. when preparing an offer (during initial negotiations with
a counterparty). Calculations performed at the design stage are not significantly
constrained by allowed duration of the simulation. On the other hand, control
systems of devices must perform real-time calculations which requires using
sufficiently numerically efficient models and methods. In many cases, to obtain
satisfactory correspondence to reality flexibility of links must be taken into
consideration by their discretisation. In some problems, nonlinear properties of the
material or other specific conditions may be important. At present, different
discretisation methods are used in calculations of machines' dynamics. The most
widely known is the finite element method. The authors of this book have been
involved for many years in the development of the rigid finite element method.
Based on their experience, it is their position that this method allows developing
models of structures adequately reflecting the actual features of the dynamics
involved while keeping the number of generalized coordinates small. It is also
fairly simple to implement on a computer. It furthermore enables quick and
convenient changes of the number of rigid finite elements in the discretized links.
This allows both the calculations in real time (for small numbers of RFEs)
necessary for control and more time consuming ones which better reflect the
flexibility of the system (assuming more RFEs) to be carried out.

In the book, the authors have discussed applications of the rigid finite element
method in offshore technology. In addition to giving basic formulas and
dependencies, a way has been presented to model added phenomena typical for
operation of offshore structures. In particular, modelling of motion of the device's
base caused by sea waves and interaction of the sea environment with the
elements immersed in water (pipelines, cables) is of importance. Moreover,

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 245-244.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013
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selected analyses concern nonlinear material characteristics, including
deformations of elements in the plastic region. To describe the geometry of
systems using the method of homogeneous transformations and joint coordinates
is proposed. This method is characterized by conciseness of notation and
simplicity of description of complex structures. Complex systems may be
modelled with it, including ones in which rigid and flexible links are interleaved.
The method also enables taking large deflections into consideration.

The models of offshore structures presented in this book vary in their
complexity, therefore they reflect real objects in different ways. Some of them are
suitable for quick calculations in real time, others enable more accurate analyses.
Certain models have seen actual use in design practice (e.g. the model of an A-
frame, the model of a device for unwinding pipes). Applications of the rigid finite
element method are naturally not limited to offshore technology. The authors used
this method before to model dynamics of spatial mechanisms and manipulators of
robots with rigid and flexible links, passenger vehicles and lorries, power trains of
vehicles and even satellite dishes. Contents of many of these works confirm the
usefulness, effectiveness and correctness of the presented methods, documented
by correspondence of the results of calculations and measurements on actual
objects.

We hope that the readers will appreciate the two fundamental advantages of the
rigid finite element method. First the simplicity of the physical interpretation of
a system divided into rigid bodies connected by spring-damping elements, and
secondly the ease both of the division into elements and combinations of the
natural division into rfes and sdes with the virtual division, which is necessary for
the discretisation of the flexible links of machines and mechanisms. We look
forward to receiving feedback about the usefulness and applications of the
methods presented.
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