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1   Introduction 

Following the depletion of land natural resources (oil, gas, minerals etc.), methods 
of obtaining them from beds of seas and oceans are gaining more and more 
importance. However, exploiting undersea resources poses a number of challenging 
technical problems pertaining to their extraction, transport and processing in a 
specific, inhospitable environment. Important groups of machines used in offshore 
engineering are cranes applied to reloading and assembly works and specialized 
devices for laying pipes which transport oil and gas. A characteristic feature of their 
working conditions is sea waves causing significant movement of the base on 
which offshore structures are installed. This is a phenomenon which must be taken 
into consideration in design of such machines. 

The structures which are used in offshore engineering, very often have flexible 
links and joints. This causes problems especially in the case then links deflections 
are large. That is the reason why the computer methods are used in design process 
of offshore machines and devices. On the market there is a significant number of 
general commercial packages, mostly based on finite element method, such as 
Nastran, Ansys, Abaqus. They have special modulus for modelling multibody 
systems with flexible links, and enable to take into consideration mentioned above 
phenomena, like base motion and large deflection of beam like links. Commercial 
computer packages are mainly used in large designing and production centers 
because they require from users special knowledge and experience. The small and 
middle firms very often prefer less general computer models and programs. Less 
general but better fitted to specific kind of designed structures, with limited data 
necessary for performing calculations and dedicated interface. That is the reason 
why some designers are still looking for models, methods and programs oriented 
for their specific machines and structures. The examples of methods that can be 
successfully applied in these cases are presented in the book.  

The joint coordinates and homogenous transformations are applied to 
modelling multibody system presented herein. In order to take into account 
flexibility of beam like links, the rigid finite element method is proposed. These 
methods for many years have been developed at the Gdańsk University of 
Technology and the University of Bielsko-Biała. The base and detailed description 
of these methods is given in the book [Wittbrodt E., et al., 2006]. Hence in this 
monograph the base of homogenous transformations and rigid finite element 
method are presented succinctly, as necessary to understand the way in which the 
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models are formulated. More attention is devoted to new models and methods 
developed for modelling offshore structures.  

The present book contains new formulation of the rigid finite element method 
which allows to take into consideration nonlinear physical relations, as well as 
large deflections of links. The floating reference frames are introduced in this 
case. As in base formulation, the beam like links are divided into rigid elements, 
which reflect inertial features of links, and mass less spring-damping elements. 
Each rigid element has six degrees of freedom (three translations and three 
rotations). However, the flexible features of spring-damping elements are 
introduced as external forces and moments calculated according to physical 
dependencies. It allows to take into consideration different physical models of 
materials: linear, elasto-plastic, visco-plastic and others.  

The models and methods presented in the book are applied to description of 
dynamics of some offshore structures, mainly cranes, ramps and pipes. Results of 
numerical calculations concern: crane used for transportation of BOP, column 
crane, A-frame. Also the results of numerical simulations for different methods of 
laying pipes on the see bottom are presented. The J-lay, S-lay and reel method are 
considered. The models, which allow their static and dynamic analysis to perform, 
are developed. The models take into account large base motion of ships or 
platform, on which considered structures are mounted, caused by sea waves. 
Important problems related to the control of offshore structures ensuring their safe 
operation are also discussed. Control enables compensation for the movement of 
the base caused by waves and reduction of dynamic loads of the elements of 
considered systems. 

For selected models, their accuracy is verified by comparing their results with 
those yielded by other methods, including commercial finite element method 
packages. 

In chapter 2 selected offshore engineering problems are briefly presented. Most 
prominent elements of the infrastructure necessary for the extraction of oil and gas 
as well as methods of offshore pipelines installation are introduced. Also given are 
the specifics of operation of offshore cranes and their basic typology. 

Chapter 3 is devoted to the description of the impact of water on offshore 
structures. It includes basics of mechanics of the wave motion of water, the 
problem of determination of the values of forces acting on elements immersed in 
water and methods of simplified description of the motion of the base of offshore 
structures. 

Preliminary information about defining the positions and orientations of 
coordinate systems, transformations of vectors and joint coordinates are contained 
in chapter 4. It also deals with application of homogeneous transformations and 
joint coordinates to describe the geometry of multibody systems. 

In chapter 5, a method is presented to determine the elements of a Lagrange 
equation of the second order in the case of description of the dynamics of open 
kinematic chains consisting of rigid links. The equations of motion are obtained 
taking into account the kinetic and potential energy of gravity forces as well as 
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external forces and moments acting on the multibody system. It is further assumed 
that the system is located on a movable base. 

The next chapter treats the elements connecting links belonging to different 
branches of the system (in particular, one of the links may be the base). Two 
approaches to modelling constraints are also presented: the classical one 
consisting in the introduction of constraint equations and another one whereby the 
constraints are modelled as spring-damping elements with large stiffness and 
damping coefficients. 

Basic information related to elasto-plastic and visco-elastic models of materials 
can be found in chapter 7. 

The focus of chapter 8 is the rigid finite element method (the RFE method) 
which serves to discretise flexible links. Its concepts are presented along with the 
way of defining the generalized forces, formulating the equations of motion and 
determining the following energies: kinetic, potential of the gravity forces and 
elastic deformation of a link. The RFE method is described in two forms: classical 
and modified. A new approach to modelling large deflections based on this 
method is also discussed. 

Chapter 9 contains examples of dynamic models of selected offshore structures. 
In addition to basic assumptions and mathematical descriptions, results of selected 
numerical simulations are also given. Presented are models of the following 
machines: a gantry for transporting BlowOut Preventor valves, a column crane 
with a shock absorber and the devices for laying pipes. 

Problems pertaining to control are shown in chapter 10. The task of dynamic 
optimization in device control is discussed. A method is presented enabling 
vertical stabilization of the load of an offshore crane and its stabilization in three 
directions using a specialized auxiliary system. Analyses related to a system of 
active compensation for waves in the reel drive of the device for laying pipes are 
also included. 

The book leverages some previous results of the authors' work, especially those 
present in Marek Szczotka's monograph entitled “The rigid finite element method 
in modelling of nonlinear offshore systems” [Szczotka M., 2011 b]. 

The authors wish to thank the co-authors of their publications from which  
some analyses presented in this volume are drawn, especially Dr. Paweł Fałat and 
Dr. Andrzej Urbaś. 
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2   Overview of Selected Problems in Offshore 
Technology 

Extraction of undersea natural resources, particularly oil and gas, has expedited 
the progress in offshore technology for a few decades, including the construction 
of platforms as well as the development of new extraction techniques and methods 
of laying underwater pipelines. Various types of cranes are an important aid in the 
construction of extraction infrastructure as well as its operation and servicing. The 
current chapter describes some most important elements of the infrastructure 
necessary for extracting oil and gas and methods of installation of offshore 
pipelines. Specific conditions pertaining to offshore cranes' operation and their 
basic typology are presented. 

2.1   Platforms as One of the Main Features of Offshore 
Infrastructure 

The idea of extracting oil and gas from sea beds occurred over 100 years ago. The 
first wooden drilling platform was applieded at the end of 19th century off the coast 
of California. In 1911, the first installation to extract oil was engaged. It was 
located on the Caddo lake (on the border between the states of Louisiana and 
Texas) and yielded daily about 450 barrels [Wilson J. F., 2003]. The period 
following the World War II was marked by unceasing growth in number of 
offshore installations and as a consequence also in the amount of oil and gas being 
extracted. At that time, the areas where deposits were exploited and sought 
widened considerably. Presently, in many areas traditionally valued for such 
opportunities the deposits are running out or even already have. This applies 
particularly to the North Sea and the Norwegian Sea, where the existing deposits 
consist mainly of natural gas [Dokka A., Midttun O., 2006]. This situation forces 
companies to reach for resources located in less accessible areas featuring harder 
weather or greater depths. In Europe, the Barents Sea and other polar seas offer 
sample natural resources still remaining to be exploited. This opportunity doesn't 
come without difficulties though, namely: depth, heavy weather conditions and low 
temperatures. There has recently been a notable increase in amounts of resources 
yielded from waters surrounding South America (especially Brazil), West Africa, 
India, Australia and Oceania. Most of these endeavours are fairly new, thus 
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employing post-2000 technology enabling extraction of oil and gas from large 
depths. Brazil in particular has shown considerable development of technology 
related to extracting resources from 2000 m and deeper, due primarily to their oil 
and gas search and extraction tycoon Petrobras. It is however worthy of notice that 
the rate of discovering new deposits is dropping, whereas just the opposite is the 
case with the demand for sources of energy and the pace at which known resources 
are exploited. Some forecasts thus state that between 2010 and 2015 we are at the 
peak amount of oil extracted from sea and ocean beds. Despite this, modern 
technologies created for the extraction of hard to reach resources and experience 
acquired may underlie new projects, including ones related to the production of 
energy. It is in seas and oceans where vast supplies of energy are to be found 
(waves, sea currents). Works aimed at exploiting them are gaining momentum. 
 

 

 
Fig. 2.1. Basic types of platforms 

Drilling and extraction platforms are the most characteristic offshore structures 
related to the extraction of oil and gas (Fig. 2.1). A drilling platform is a floating 
structure equipped with a drilling rig, suited for making wells in the bottom of a 
sea. Platforms of this type are sporadically used simultaneously to exploit the 
deposits. An extraction (production) platform is suited for extraction of gas and oil 
and their preliminary purification. From there the stock is loaded onto tankers or 
transferred further by an underwater pipeline. These are usually structures 
supported off the bottom, although recently they have more and more often been 
constructed as floating or semi-floating. 
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Platforms were initially built on shallow seas, up to about 100 m in depth  
(Fig. 2.1a). They had a steel foundation lying on the bottom to which legs (three to 
six) were attached. Gravity platforms (Fig. 2.1b) started to be used shortly 
afterwards. Their foundations as well as legs were made of concrete. They enabled 
reaching depths of 200 m to 300 m. The type of structure based on a truss is most 
common nowadays (Fig. 2.1c). Of these the first to appear was a 30 m tall one in 
1955. Their contemporary capability of operation in terms of depth reaches 400 m. 
A variation thereof are truss platforms equipped with additional mooring lines (Fig. 
2.1d). In extraction industry they have been in use since the beginning of 1980s 
[Chakrabarti S. K., 2005]. They allow for extraction of deposits on seas with depths 
up to about 800 m, simultaneously admitting significant movement of the platform 
due to waves. Since the second half of 1980s, platforms lacking fixed connection 
with the bottom and instead kept afloat by buoyancy forces have started to be widely 
introduced. Their positioning with respect to the sea bottom requires additional 
elements to be installed in the bottom (Fig. 2.1e). Platforms of this type, called 
Tension Leg Platform (TLP), are installed mainly in areas 800 m to 1200 m deep. 
As their advantages count stability and immunity to vertical and rotary movements. 
Fig. 2.1f shows a scheme of a multihull semi-submersible platform used with depths 
in the range of 2000 m (in extreme cases even up to 3000 m). Such platforms are 
usually equipped with own propulsion assuring continual operation and stability 
even under intense waves and avoidance of personnel evacuation. Similarly 
constructed SPAR type platforms are shaped as vertical cylinders (Fig. 2.1g) with 
profile diameters up to 30 m or 40 m and heights of hundreds of meters. 

In many cases when depth exceeds 1000 m, an additional infrastructure aiding the 
extraction of resources from a seabed is placed on the bottom which takes over some 
of the platform's tasks. The necessity to built an expensive production platform is 
thus avoided. Its role is fulfilled by specialized ships moored above the extraction 
field, or the stock is transferred by pipelines to land stations or nearby platforms. 

2.2   Offshore Pipelines: Applications and Sample Installations 

For over 100 years, transport of oil, gas, derivative compounds and water has been 
performed by means of pipelines. They are the most efficient way to transfer 
continuous medium to large distances. Their role has greatly increased with the 
development of extraction of resources from undersea deposits. Underwater 
pipelines presently constitute a considerable part of the entire infrastructure 
existing for oil and gas transportation. Because of the working environment, their 
structure, installation and extraction are much different to the case of overland and 
underground ones. 
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Fig. 2.2. Sample offshore infrastructure with miscellaneous pipelines 

A sample gas field is shown in Fig. 2.2. The role of the production unit is 
fulfilled by an extraction platform. On the platform the stock is processed into the 
ready product, which is subsequently transferred by exporting pipelines to a 
receiving station. 

Offshore pipelines may be basically divided as follows (Fig. 2.2): 
 

 connecting heads of wells with collectors, 
 collective – transferring resources from collectors to production platforms, 
 transfer – connecting production platforms within a single oil or gas field or 

neighbouring ones, 
 export – transporting products from production units to receiving stations 

(land bases, customer's receptive infrastructure), 
 serving to transport water or other chemical compounds from production units 

(platforms or land facilities) to drilling heads, 
 otherwise construed, often in the form of bundles of pipes or cables. 

 
Large oil fields often have many platforms providing for different needs: 
accommodation, production, storage. The Ekofisk field in the North Sea built in 
1970s may serve as an example. 
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Extraction and processing of oil and gas has lately more and more often been 
supported by Floating Production Storage & Offloading (FPSO) vessels (Fig. 2.3). 
Due to large dimensions (typically 300m to 500m in length), ships of this kind are very 
stable. An FSPO vessel is held in the desired position by means of mooring lines. It 
departs for a safe seclusion only under extreme storms. The extraction technique 
employing FSPO vessels is a fairly new development. Its main application is on 
smaller gas fields where periodic relocation of a vessel is desirable. Usually individual 
wells are connected by special pipelines to risers, which are vertical segments of pipes 
connecting collectors with a turret placed in the hull of an FSPO ship. Risers are highly 
flexible and feature special loops to compensate for FSPO movements due to waves 
and wind. In case of an FSPO vessel's emergency departure from a field the turret with 
risers and mooring lines is lowered to the bottom. Its reinstallation requires using a 
specialized winch with high capacity (800 T to 1000 T). 

 

 
Fig. 2.3. Extraction and processing of oil or gas using an FPSO ship 

In some cases only a processing station located on shore is used in the 
extraction of a deposit. The stock is then transferred by pipelines directly from the 
well to the land. The Ormen Lange gas field situated on the west coast of Norway 
(Fig. 2.4) is one such example. 

As already mentioned, risers (Fig. 2.3) are used to transport oil or gas, as well 
as water and other substances, between the seabed and a drilling or production unit 
on the surface of the sea (platform, ship, FSPO). Risers may be drilling risers used 
for transport of fluids utilized in the process of making wells, or production risers 
which transport the stock from wells to vessels or platforms. It ought to be 
mentioned that the cost of risers may be comparable to that of a ship or a platform  
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Fig. 2.4. Ormen Lange gas field 

 

Fig. 2.5. Systems of risers used in oil and gas extraction 

in case of deep sea extraction [Bai Y., Bai Q., 2005], [Chakrabarti S. K., 2005]. 
Basic configurations of risers are schematically depicted in Fig. 2.5. The choice of  
a given system depends on multiple factors: depth of the sea, structure and 
functionality of the vessel (particularly its manoeuvrability under wave action), 
number and setup of mooring lines, conditions present in the extraction area, 
including the intensity of sea currents. 
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A wide overview of the technology and elements of the infrastructure used in 
offshore industry can be found among others in [Gerwick B. D., 2000], [Bai Y., 
Bai Q., 2005] and [Chakrabarti S. K., 2005]. 

2.3   Offshore Pipelines Installation Techniques 

Installation of underwater pipelines is a technically difficult operation, which 
differs substantially from the case of land ones. It requires using a separate set of 
often innovative methods. Currently the following basic methods of laying 
offshore pipelines may be distinguished: 

 S-lay, 
 J-lay, 
 reel method, 
 tow method. 

Each of them has both advantages and disadvantages and limitations. The criteria 
for choosing the method for a particular case are following: 

 sea depth, 
 length of the segment to install, 
 diameter of the pipeline, 
 time allowed for the installation, 
 total budget of the operation. 

2.3.1   The S-Lay Method 

The S-lay method is one of the oldest methods of laying underwater pipelines. It 
was used mainly for installations in shallow seas. It can be performed from either 
a specially equipped vessel or a platform. Low amplitudes of motion of multihull 
semi-submersible platforms have made them an often preferred utility for laying 
pipelines with the S-lay method. Such a solution is especially popular on seas with 
intense waves for the most part of the year (e.g. the North Sea and the Norwegian 
Sea). The schematic concept of the S-lay method is shown in Fig. 2.6. It is named 
after the shape taken by the pipeline being laid on the segment between the unit 
and the bottom. It resembles the letter S. A special structure called a stringer is 
used to support the pipeline suspended from the deck. 

For installing long and high capacity pipelines in seas up to 600 m deep the S-
lay method is most popular. It is applicable to pipelines of greatest diameters, even 
exceeding 1m. 

The length and geometry of the ramp guiding the pipe depend primarily on the 
depth of the sea and the diameter of the pipeline. Control of the inclination angle of 
the ramp, thus also the shape of the pipeline being laid, is provided by two means: 



12 2   Overview of Selected Problems in Offshore Technology
 

 

 built-in buoyant elements whose filling appropriately with water makes it 
possible to regulate the immersion of individual segments of the ramp – such 
are the multi-modular buoyancy ramps, 

 leveraging systems of ropes and a winch or other mechanisms controlling the 
inclination angle of the ramp. 

 

Fig. 2.6. Application of a semi-submersible platform to install o pipeline with the S-lay 
method 

Tension systems are used to prevent buckling of the pipe being laid in the lower 
deflection and to keep the deformation of the material within the desired limits. 
These are specialized mechanisms placed in front of the entry point of the pipe 
onto the ramp guiding the pipeline and a set of anchor winches. Additional vessels 
control the anchors. Appropriate tension may also be created with thrusters along 
with sufficiently powerful engines. The necessity of creating an axial force in the 
pipeline being installed is a rather significant disadvantage of the method 
discussed. Its impact is more evident with greater depths, therefore the S-lay 
method is limited to shallower seas. Laying pipelines with the S-lay method may 
also be performed from ships or barges.  

2.3.2   The J-Lay Method 

Usage limitations of the S-lay method and simultaneously growing demand to lay 
pipelines at greater depths motivated the development of the J-lay method. Its 
name also reflects the shape of the pipe being laid. When suspended between the 
unit and the bottom, it resembles the letter J. 
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Similarly to the previous method, laying pipes with the J-lay method can be 
performed from decks of multihull semi-submersible platforms as well as 
monohull barges and ships. Its characteristic feature is a vertical guiding ramp. 
Setting the ramp in an almost vertical position eliminates the problems with  
exceeding admissible tensions in the material of the pipe in the area of the upper 
deflection. Additionally the J-lay method allows for considerable reduction of 
necessary forces to be exerted by tensioners and the unit itself. A disadvantage of 
the J-lay method is the ability to use a single welding station only, thus limiting 
the efficiency of laying pipelines. It typically reaches 1.5 km to 2 km per day, 
whereas with the S-lay method 5 km to 6 km per day are usual values. 

 
 

 

Fig. 2.7. Scheme of laying a pipeline with the J-lay method 

In Fig. 2.7, a scheme of a platform installing a pipeline with the J-lay method is 
shown. The platform Saipem 7000 is one of the largest such units in the world. It 
was used, among other things, to install a high capacity pipeline running across 
the Black Sea with depths reaching 2200 m. 

Whenever the inclination angle of the ramp can be controlled, the J-lay method 
may also be used in shallower seas. Usually, the angle can be set between about 
65° and 90°, however in some ramps it can even be 30°.  

2.3.3   The Reel Method 

Among the major drawbacks of the S-lay and J-lay methods is the necessity to 
connect pipes on the platform or the vessel prior to laying them. Hence they  
 

ramp 

pipe sections 

mooring lines 
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require using transport ships supplying segments of pipes from the land, usually of 
lengths between 12 m and 50 m. Those must be subsequently reloaded with an 
offshore crane to the main unit. Therefore, in the case of pipelines with lower 
diameters, the reel method is popularly chosen. A vessel used in this method 
features a specialized reel. The pipe is wound onto the reel on the land, including 
connecting its segments by welding. Next, the vessel transports the entire pipe to  
its destination where it is installed. The reel method is used mainly on the North Sea. 
Its primary usage domain is laying relatively short segments of pipelines, e.g. those 
constituting elements of oil and gas fields infrastructure (Fig. 2.2). One of the 
foremost advantages of the method is its high efficiency reaching 2 km per hour. 
 
 

 
Fig. 2.8. A ship with a reel to wind pipelines  

First installations made with floating reels were performed already in 1994 by 
the Allies during their invasion of France. In Fig. 2.8, a contemporary ship 
Apache1 is shown, whose purpose is to work with the reel method. It features a 
main reel onto which 8 km to 100 km of pipes (depending on the diameter) can be 
wound and two smaller ones for short fragments of pipes and risers. 

Winding of pipes onto the reel may cause permanent plastic deformations. It is 
the case with pipes with large outer diameters and small winding diameters of 
reels. This may substantially and adversely influence the properties of the installed 
pipeline. Therefore, only slight permanent plastic deformation of pipes being laid 
is admissible. The magnitudes of these deformations depend on: dimensions of the 
reel, outer and inner diameter of the pipes, tension during the winding. 

At present, large reels are used, which can accommodate between 2000 T and 
3500 T of a pipeline. Diameters of such reels exceed 30 m and the forces generated 
by their drives surpass 200 T. Smaller reels may form sets (of two or three pieces) 
which are supplied by transport vessels. An integral part of a ship suitable for laying 

                                                           
1 The informations were taken from the operator’s web page, the Technim company. 
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pipelines with the reel method is a guiding ramp, usually installed on the stern. Its 
purpose is to give shape to the pipe leaving the ship, whereby typically the reel 
method is combined with the J-lay method (Fig. 2.9). The ramp simultaneously 
serves as the supporting structure for elements guiding and straightening the pipe. In 
its upper part there is an aligner wheel, and following it a device straightening the 
pipe, eliminating its permanent deformations caused during winding. Additionally 
on the ramp, a set of devices is installed which control the speed at which the pipe 
slides from the ramp and hold the weight of the pipeline suspended in the water. 

 
 

 

Fig. 2.9. A ship unwinding a pipe from a reel and laying it with the J-lay method 

A similar solution is a structure with a reel whose rotation axis is vertical. 
Systems of this type are mainly used for installing bundles and cables. They are 
unwound from the reel (called a carousel) and passing through a system of 
tensioners are laid on the bottom. Another system in existence is one with the 
reel's axis parallel to the ship's longitudinal axis, in which case the laying is 
carried out from the vessel's side. 

Limitation of the maximal outer diameter of the pipeline to be laid is the 
primary disadvantage of the reel method related to plastic deformations. Pipes 
installed using this technique have diameters up to 28 in. The reel method, 
moreover, introduces relatively large deformations in the material of the pipe (up 
to 5%) which may weaken the welds and deteriorate the pipeline's stability, 
including the occurrence of a spiral line. Furthermore, there exists a risk of 
ovalization of the pipeline's section leading to local instability. It may also occur 
that a pipeline needs to contain segments with different diameters or other 
components (e.g. valves, splitters and so on). These add to the difficulty of the 
method discussed. When the base in which the winding of pipes onto the reel 
takes place is distant from the destination, considerable growth of cost and time of 
the operation is to be expected. Additionally, huge mass of the reel and pipes or 
cables wound onto it exacerbates the dynamic forces caused by waves. Stability of 

J-lay 
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the device and the whole ship is thus worsened. Despite all of these, the reel 
method is, as mentioned, eagerly used. 

2.3.4   Methods of Towing Pipelines 

In cases of short segments of pipelines, a few kilometres in length, it is possible to 
assemble them on the land and next to tow them wholly to the location where they 
are installed. The longest segment to have been installed in this way had 7km [Bai 
Y., Bai Q., 2005]. Towing is usually performed by two vessels, one towing the 
beginning and the other the end of the pipeline (Fig. 2.10). Buoyant elements 
placed along the pipeline are used to prevent damage. They are selected so that the 
pipeline stays at a certain controlled depth beneath the water surface. The 
influence of hydrodynamic forces due to waves is thus reduced. On arrival at the 
destination, the buoyant modules are removed and the pipeline is lowered to the 
bottom. Sometimes other towing techniques are used in which the pipeline floats 
on the surface, or is dragged on the bottom [Chakrabarti S. K., 2005]. 
 

 

Fig. 2.10. Installing a pipeline using the towing method 

Ease of preparation on the ground of the elements to be laid (which may be 
complex bundles of various cables and pipes installed together) is definitely an 
advantage here. The problems and costs related to the production of a pipeline or 
bundle in offshore conditions are avoided. An undeniable disadvantage is the 
difficulty of constructing longer pipelines with this method (control of forces and 
displacements during towing is a problem) and great amount of work and costs in 
cases of laying curved segments. For these reasons, the total number of kilometres 
of pipelines laid with the towing method is modest. 

2.3.5   Other Operations in Service of Pipeline 

Other than the very process of laying a pipeline, there exists a multitude of 
important operations forming comprehensive construction and extraction of 
exploration infrastructure. Among them are the following: 
 

max.7 km 

pipeline section tow line tow line 
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 securing a pipeline on the bottom, 
 winding of pipes onto reels in specialized bases, 
 operations of lifting a pipeline from the bottom, repairing, de-installing etc. 

 

Securing pipelines is done with specialized ploughs. After the pipe has been laid 
on the bottom, the plough is lowered from the vessel and then towed by it. The 
plough forms a ditch in the seabed and simultaneously inserts the pipe into it. 
Another plough is used to bury the pipeline. When the diameter of the pipeline is 
small, devices cutting the ditch in the seabed may be used directly before laying it. 
The same devices usually install the pipe itself, provided that it is elastic enough. 
Yet another solution is to use specialized machines powered with high pressure. In 
some cases, the pipelines installed are buried with a layer of material supplied by 
ships (pebbles, gravel). 

An example spool base in which offshore pipelines are produced is Orkanger 
base, Norway. Such bases must have the ability to store ready fragments of pipes 
of length up to a few kilometres. They are located in areas of intense extraction, 
where further works are planned for several years. Their advantages are low 
production costs and immunity to weather conditions. 

Repairs and servicing of underwater pipelines is performed using specialized 
vessels capable of lifting pipes from the bottom. They are equipped with multiple reels 
onto which pipes or cables can be wound when they are damaged or being removed. 
2.4   Reloading and A sse mbly Wor ks Using Cranes  

2.4    Reloading and Assembly Works Using Cranes: Tasks, 
Environmental Conditions, Types 

Reloading and assembly works realised using various types of cranes are among 
widely performed and highly important operations in offshore engineering. One of 
the main features distinguishing offshore cranes from land ones are significant 
movements of the base caused by sea waves. In the case whereby a load is lifted 
from a supply ship also the load is in such motion. As a result, offshore cranes are 
far more exposed to dynamic overloads than their land counterparts. Those 
overloads have significant influence on the permissible operating range of the 
device. Constructors aim at designing a device in such a way that it can operate 
under wave action as intense as possible. Offshore cranes are therefore equipped 
with specialized anti-overload systems which minimize load oscillations and 
increase safety. It is also worth noting that weights of loads carried by offshore 
cranes often reach hundreds of tonnes. Winds, which are common in maritime 
areas, as well as extreme temperatures add further difficulty to their operation. 

Taking the criterion of construction into account, the following types of 
offshore cranes may be distinguished: 

 
 gantries, 
 A-frames, 
 boom cranes. 
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Fig. 2.11. Examples of cranes installed on vessels 

Offshore cranes are installed both on platforms and sea vessels (ships, specialized 
barges). If they are equipped with a boom, it may be fixed or telescopic. 

A common solution is to install offshore cranes on a special column. 
Depending on the criterion, column cranes may be classified as featuring: 

 
 rope overhang control system 
 hydraulic overhang control system 
 truss boom 
 box boom 
 telescopic boom 
 knuckle boom 

 
Sample structures of offshore column cranes are depicted in Fig. 2.12. 

Similarly to land technology, gantries are a popular choice. They often appear 
on large container ships. They are also installed on other sea vessels and platforms 
where they are used for assembly and service works. A gantry installed on 
platforms and used to relocate and lower the valves of a BlowOut Preventor 
(BOP) may serve as an example. Schemes of different installation possibilities of 
offshore gantries are in Fig. 2.13. 

The multitude of construction solutions of offshore cranes is a result of the 
variety of their applications. Those range from reloading goods transported 
overseas, constructing and operating offshore infrastructure, to scientific research 
etc. In many cases such devices are constructed one-off for a particular order. 
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Fig. 2.12. Column cranes: a) with a rope overhang control system and a truss boom, b) with 
a rope overhang control system and a box boom, c) with a hydraulic overhang control 
system and a box boom, d) with a telescopic boom, e) with a knuckle boom 

 

e) 

d) c) 

b) a) 
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Fig. 2.13. Structures of different types of offshore gantries 

2.4.1   Stabilization of Load Position and Minimization of Its 
Oscillations 

When operating an offshore crane, the problem of load oscillations is of special 
importance. Those oscillations, caused mainly by sea waves, not only make 
reloading and assembly works more difficult, but also create an immediate danger 
for the personnel. In extreme cases, the load may hit a side of the sea vessel 
carrying the load or the supply vessel. Thus, market leaders endeavour to equip 
their products with specialized anti-oscillation systems. A system of this type, the 
SmartCrane™ Anti-Sway Crane Control for Rotating Boom Cranes, is offered by 
SmartCrane. Its working principle is to move the suspension point of the rope at 
the end of the boom. Li Y. and Balachandrana B. of the University of Maryland 

„L” type crane „U” type crane 

„C” type crane 
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presented it at the symposiums MURI on Nonlinear Active Control of Dynamical 
Systems (Virginia Polytechnic Institute and State University, 1998-2001) as well 
as in their papers [Balachandran B., et al., 1999], [Li Y. Y., Balachandran B., 
2001]. This solution may be enhanced by a closed-loop control system. In the 
mentioned papers, the mathematical models applied omitted the flexibility of the 
supporting structure of the crane. At the MURI symposiums it was also proposed 
that there exists another possibility of solving the problem of load oscillations. It 
consists in adequately controlling (also by means of a closed-loop system) the 
rotary motion and raising of the boom. The method was verified numerically and 
experimentally on a test stand. [Masoud Z. N., 2000], [Nayfeh A., Masoud Z., 
2001], [Masoud Z., et al., 2004], [Nayfeh A., et al., 2005a]. The analyzed problem 
required a spatial model of the crane. However, the created model ignored the 
flexibility of the system. A feature worth mentioning is an additional provision for 
minimizing the motions of both the supplying and the receiving vessel by means 
of a stabilizing system. It consists in tying them together with ropes once 
positioned appropriately against the waves and moving at a specified speed. The 
concept is discussed in detail in [Nayfeh A. H., et al., 2005b]. Another method of 
stabilizing the load position in an offshore crane was the topic of the following 
works, among others: [Maczyński A., 2005], [Maczyński A., 2006], [Maczyński 
A., Wojciech S., 2007]. It will be presented with details in chapter 10. It assumes 
the use of an additional unit suspended at the end of the boom, guiding the tow 
rope at a certain segment. Changing its deviation from the vertical is a way to 
influence the load's tangential and radial oscillations. This solution provides for a 
great deal of influence on the motion of the load, and in combination with the 
winch it enables stabilization of the load in three directions. In [Maczyński A., 
Wojciech S., 2009] it was shown that stabilization of the load also minimizes the 
undesirable effect whereby the tow rope is stressed and eased. The analyses 
presented in the above mentioned papers were carried out for an offshore crane 
with a hydraulic overhang control system and a telescopic boom. In [Spathopoulos 
M. P., Fragopoulos D., 2004] a similar solution was considered in the planar case 
based on a simplified model of a crane ignoring the flexibility of the system. 
Control methods for both linear and nonlinear objects were used. Two different 
control algorithms minimizing load oscillations were also discussed in [Schaub H., 
2008]. One algorithm was based on current measurements only, whereas the other 
additionally performed computations on a model of the system. Due to the 
necessity of real-time operation, the model of a crane should in this case be very 
simplified. The boom was thus modelled as a rigid link, the load as a material 
point and the distance between the end of the boom and the load was constant. 

In industry practice, also other systems have been in use for years, e.g. PDC 
200 scanning the profile of the load with a laser and subsequently compensating 
for the oscillations electronically. They are produced by the company Cegelec-
AEG. Yet other solutions are ABB's System CPC and Caillard's ESCAD [Cosstick 
H., 1996]. 
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2.4.2   Safety Systems: Systems Limiting Dynamic Overloads  
in Offshore Cranes 

As can be seen from the previously presented reasoning, offshore cranes are 
heavily exploited devices often exposed to extreme conditions. Their malfunction 
during operation may cause significant material losses and even pose threats to 
human health and life. According to the EN13852-1 norm, each offshore crane 
must feature the following safety systems: 
 
 emergency operation – in case of power failure, means shall be provided for a 

controlled slew, luff down and load lowering operations, to land the load and 
boom safely, 

 emergency stop – the emergency stop shall retain its function regardless of 
any malfunction of the programmable control system, if installed,  

 lateral boom protection system – an automatic protection system shall be 
provided to prevent lateral overload of the boom or overload on the slew 
mechanism if sidelead loads occur outside the design limits, 

 manual overload protection system (MOPS) – system, activated by the crane 
operator, that protects the crane against possible overload by reducing the 
load carrying capacity and allowing the hook to be pulled away from the 
crane in any direction, 

 automatic overload protection system (AOPS) – system that automatically 
safeguards and protects the crane against the effects of a gross overload 
during operations by allowing the hook to be pulled away from the crane in 
downwards direction within specified offlead and sidelead angles, without 
causing significant damage to the crane. 
 

Appendix J to the norm EN13852-1 establishes a hierarchy of importance of these 
systems and signalling components. It is summarized in tables 2.1 and 2.2. 

Table 2.1. Normal ranking of safety measures 

Order of precedence Safety measure Safety measure 

1st priority Emergency stop 
Manual overload 

protection 
system (MOPS) 

2nd priority Automatic overload protection system (AOPS) 

3rd priority Other limiters 

4th priority Indicators 

 
 



2.4   Reloading and Assembly Works Using Cranes 23
 

 

Table 2.2. Ranking of safety measures when mode for personnel lifting is selected 

Order of precedence Safety measure 

1st priority Emergency stop 

2nd priority Mode section switch and other limiters 

3rd priority Indicators 

 
 
The so-called shock absorbers are another type of systems limiting dynamic 

overloads used in offshore cranes. One is installed on the boom (Fig. 2.14), the 
other at the manifold (Fig. 2.16). The task of a shock absorber is to consume the 
energy of a momentary overload. In the case of the first solution, the dynamic 
overloads are minimized by passing the rope through an additional movable 
sheave connected to a hydraulic system. The concept of its operation is explained 
with a scheme (Fig. 2.15). It is a system consisting of an accumulator filled with 
gas and a hydraulic actuator. When the force S applied to the piston rod increases 
to the cutoff level (static load summed with flow resistance in the actuator is 
usually assumed), it starts moving and the oil starts flowing from the cylinder to 
the accumulator. The working stroke Δ2 of the piston is reached for the maximal 
value of the dynamic force. That stroke is lower than the maximal stroke Δmax, as 
for safety reasons the stroke Δsafe should be maintained. The force S is balanced by  
 

 

 

Fig. 2.14. Shock absorber installed on a boom2 

                                                           
2 Picture published with the permission of National Oilwell Varco. 
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the gas pressure in the accumulator. This type of shock absorber is especially 
recommended with single ratio in the lifting system because of the efficiency (the 
piston rod moves by the shortest distance). 

The working principle of the second type of shock absorbers (Fig. 2.16) is 
analogous to the design described above, the difference being the placement of 
hydraulic accumulators consuming the energy in the manifold. This type of shock 
absorbers is particularly efficient with a multiple tackle in the lifting system of 
cranes. Its main disadvantage is the difficulty of supplying hydraulic installation to 
the manifold. 
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3   Impact of Water on Offshore Structures and Infrastructure  

A characteristic phenomenon in offshore engineering is the impact of water on 
individual devices and elements of dynamic systems. This impact is a very 
complex phenomenon composed, among other things, of wave action, sea 
currents, hydrostatic and hydrodynamic forces. These processes are difficult to 
describe, and there exists a handful of approaches to modelling them, which differ 
in the level of idealization [Newman J. N., 1977], [Mei C. C., 1989], [Faltinsen O. 
M., 1990]. A possibly simple description of the motion of an offshore structure's 
base is often desirable, e.g. in the problems of control [Fossen T. I., 1994]. 

3.1   Basics of Water Wave Motion Mechanics 

Hydrodynamic dependencies are at the foundation of any attempt at modelling 
objects situated in maritime environment. Formulas presented in this chapter allow 
us to determine the values which direct the motion of systems immersed in water, 
i.e. velocity and hydrodynamic pressure of the fluid. 

Let us consider a point with coordinates given by the vector (Fig. 3.1): 

[ ] ,Tzyx=x  (3.1)

in which the velocity of particles of the fluid in an inertial system equals: 

( ) ( ) ( ) ( )[ ] .,,,, T
zyx tvtvtvt xxxxv =  (3.2)

In many cases it is prudent to assume that the density of the fluid is constant, 
hence the continuity equation for incompressible flow [Bukowski J., 1968], 
[Newman J. N., 1977]: 

( ) ,0=vdiv  (3.3) 

where ( )
z

v

y

v

x

v
div zyx

∂
∂+

∂
∂

+
∂
∂=∇= vv . 

3
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Fig. 3.1. Velocity of a particle of fluid in an inertial system 

The momentum conservation principle for a Newtonian fluid is presented in the 
form of Navier-Stokes equations which, for an incompressible fluid, take the form 
[Bukowski J., 1968], [Newman J. N., 1977]: 

,
1 2vFvv

v ∇+∇−=∇+
∂
∂ ν

ρ
p

t
 (3.4) 

where  [ ]Tg−= 00F   – mass forces, 
 ( )tzyxpp ,,,=   – pressure,  

 k
z

j
y

i
x


∂
∂+

∂
∂+

∂
∂=∇ , 

v   – velocity vector, 
 νρ ,   – density and viscosity of the fluid. 
 

The Navier-Stokes equations (3.4) together with the continuity equation (3.3) form 
a system of nonlinear partial differential equations. No general solution is known 
(only numerical approximations are possible). To determine approximate pressure 
values lack of viscosity and irrotational flow are usually assumed. The 
irrotationality condition [White F. M., 2006]: 

( ) 0vv =×∇=rot  (3.5) 

ensures the existence of a velocity field potential. A function Φ called the 
potential is further sought, such that:  

.Φ∇=v  (3.6) 

Determining the potential Φ allows for calculation of velocity as the gradient of 
the potential. Applying the formula (3.6), the continuity equation (3.3) may be 
rewritten as a Laplace equation [Newman J. N., 1977], [El-Hawary F., ed., 2001], 
[White F. M., 2006]:  

x
( )t,xv

x̂

ŷẑ
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2 2 2

2 2 2
0.

x y z

∂ Φ ∂ Φ ∂ Φ+ + =
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 (3.7)

This equation should be completed with boundary conditions. 
Omitting the last summand in the equation (3.4) standing for viscosity and taking 

the dependency gz−∇=F  into account allows us to rewrite (3.4) in the form:  








 Γ+−∇=∇+
∂
∂

ρ
p

t
vv

v
 (3.8) 

where gz=Γ , 

or, when the irrotationality condition is assumed, as a Bernoulli equation 
[Bukowski J., 1968], [Newman J. N., 1977], [El-Hawary F., ed., 2001]: 

( ) .
2

1 2 const
t

p =Γ+Φ∇+
∂
Φ∂+

ρ
 (3.9) 

It makes it possible to determine the pressure if the potential Φ is known. 
Integrating the pressure over the surface of the body immersed in the fluid yields 
forces acting on it. In most practical cases, the hydrodynamics of ideal fluids is a 
sufficient theory for modelling the dynamics of systems occurring in offshore 
engineering. Viscosity, which was omitted from the equation (3.9), is sometimes 
re-added by stipulating additional empirical relations [Hoerner S. F., 1958], 
[Sarpkaya T., Isaacson M., 1981].  

Equations of ideal fluid hydrodynamics enable determination of velocity and 
pressure fields for a regular wave (Fig. 3.2). In this case it is assumed that the 
profile of the wave (the free surface) is described by the formula: 

( ).,, tyxz ξ=  (3.10) 

 

Fig. 3.2. Profile of a regular wave 

propagation direction 
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Two boundary conditions for the free surface need to be also introduced. In the 
fist one, called the dynamic condition of free surface, the pressure of the fluid at 
the free surface is assumed to equal the atmospheric pressure. In the other, the so-
called kinematic condition of free surface, the particles of the fluid on this surface 
are bound to it (they cannot break loose from it) [Newman J. N., 1977], [Faltinsen 
O. M., 1990]. 

3.1.1   Linear Model 

Assuming the value of the quotient 0p

ρ
 (p0 – atmospheric pressure) in the 

Bernoulli equation (3.9) to be constant, taking the pressure on the free surface as 
p0 and the profile of the wave to be described with the function [Newman J. N., 
1977]:  

( )αωξξ +−= kxtsin , (3.11) 

a solution of the boundary problem is obtained in the form of a potential function 
(details are given, among others, in [Lighthill J., 1978], [Dean R. G., Dalrymple R. 
A., 1998]): 

( ),cos kxt −Φ=Φ ω  (3.12) 

where 
( )( )
( )kd

zdk

k sinh

cosh +=Φ ξω
, 

       λ
π2=k   –  wave number,  

       λ   –  wave length. 
 

Solving the Laplace equation with appropriate boundary conditions and using the 
definition of potential, the velocities of particles of the fluid may be calculated 
[DNV-RP-C205, 2007]: 

( )( )
( ) ( ),sin

sinh

cosh
kxt

kd

zdk

x
vx −+=

∂
Φ∂= ωξω  (3.13)

( )( )
( ) ( ).cos

sinh

sinh
kxt

kd

zdk

z
vz −+=

∂
Φ∂= ωξω  (3.14)

Substituting the functions of potential (3.12) and profile (3.11) to the dynamic 
condition of free surface gives: 

( ).tanh2 kdgk=ω  (3.15)
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Pressure can be determined by using the potential obtained (3.12) and the 
Bernoulli equation (3.9): 

( ),sin kxtpgzp w −+−= ωρ  (3.16)

where 
( )( )
( )kd

zdk
gpw sinh

cosh += ξρ ,        .0<z  

For large depths, i.e. for kd →∞, the above formulas take a simpler form:  

velocity zx vv , :                      kz
zx evv ξω== , (3.17) 

dispersion:                        0gk=ω , ,
2

2

0 π
λ gT=  (3.18) 

pressure:                                .kzeggzp ξρρ +−=  (3.19) 

Functions describing the trajectories of the fluid's particles are obtained by 
integration of velocity over time. The trajectories in local coordinate systems, 
when a wave profile conforming to (3.11) is assumed, change with sea depth (Fig. 
3.3) forming ellipses. For kd →∞ the ellipses turn into circles whose radii may be 

approximated with the expression kzeξ . For a shallow see the trajectories are 

flattened and tend to horizontal limes for dz −→ .  
The linear model of waves described above (also called the Airy model) is 

adequate for waves with low amplitudes relatively to their length and sea depth. 
Its applicability is ruled by the following conditions:  

πξ 2<<k  and  .d<<ξ  (3.20) 

 

Fig. 3.3. Trajectories of particles for different sea depths 
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The limiting criteria allowing for the use of a given variant of the formulas 
produced, i.e. (3.13) – (3.16) or (3.17) – (3.19), depending on the depth d, are 
summarized in Table 3.1, following [Chakrabarti S. K., 2005]. 

Table 3.1. Criteria for depth and applicability of formulas in the linear model 

Sea depth Criterion Wave length 
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small 
20
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3.1.2   Stokes Model 

The Stokes theory proposes models of waves which are nonlinear due to the 
nonlinearity of the dynamic condition of free surface in the variables v  and p :  

.0=
∂
∂+

∂
∂+

∂
∂

z

p
v

x

p
v

t

p
zx  (3.21)

Depending on the number of components in the formula for velocity xv , the 
Stokes theory is differentiated as first order, second order, third order, etc., see for 
example [Schwartz L., 1974], [Longuet-Higgins M. S., 1984]. Relations for the 
second order Stokes theory are shown in Table 3.2. In the description of waves 
this theory gives a fairly accurate approximation if the order of the method is 
increased along with the amplitude of waves. The results are especially 
satisfactory for deep seas.  

There are numerous different models of waves deserving a mention [El-Hawary 
F., ed., 2001], [Webb D. J., 1978], [Komen G. J., et al., 1994], [Grue J., et al., 
2003], [Tucker M. J., Pitt E. G., 2001]. Their applicability depends on depth d, 
wave period T and wave amplitude ξ . Fig. 3.4, following [Dean R. G., Dalrymple 

R. A., 1998], shows a graph helpful in the choice of appropriate models (d and H 
are given in feet, T in seconds).  

Trochoidal waves [Łomniewski K., 1969] distinguished in Fig. 3.4 are 
characterized by different shapes of crests (tall and narrow) and troughs (long and 
flat). They are an intermediate form between solitons and periodic waves (linear 
and nonlinear). Solitons lack troughs and their lengths tend to infinity. In shallow 
waters trochoidal waves transforms into solitons. 
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Table 3.2. Some dependencies in second order Stokes theory 

potential Φ 
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where lΦ , xlv , , zlv , , lp  are determined as in the linear wave theory 

(formulas (3.16) – (3.20)), λ is the wave length, kxt −= ωγ  

 
Fig. 3.4. Applicability ranges of different theories of sea waves 
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3.1.3   Statistical Description of Waves 

In analyses and calculations, sometimes a spectral description of waves is used, 
which treats the phenomenon as a stationary problem within a finite time period 
(usually between 20 min and a few hours) [Massel S. R., 1996]. The spectrum 

( )ωS  (spectral density of power) is defined as a function of some basic parameters 

of a wave, such as: significant wave height HS, wave period Tp determined by the 
frequency of occurrence of function's ( )ωS maxima and time Tz, calculated as 

mean wave period within the assumed time interval.  
There are numerous methods to describe waves using a function of waves 

density distribution. Among the most often used are: the function devised by 
Pierson-Moskowitz [Pierson W. J., Moskowitz L., 1964] and its modified form, 
developed in the JONSWAP project [Hasselmann K., et al., 1973]. Examples of 
other, more complex functions are Ochi-Hubble [Ochi M. K., Hubble E. N., 1976] 
and Torsethaugen [Torsethaugen K., Haver S., 2004] distributions. Below, the 
forms proposed by Pierson-Moskowitz and JONSWAP are briefly presented, as 
they will be used in some mathematical models considered further herein. 

The Pierson-Moskowitz spectrum is described thus: 
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(3.22)

where 
p

p T

πω 2= . 

 
The JONSWAP spectrum takes additionally into account the intermediate states 
occurring at the onset of waves (contrary to the Pierson-Moskowitz spectrum 
which treats only waves already formed). The JONSWAP spectral density 
function is given by: 
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(3.23) 

where η   – dimensionless shape parameter, 

 




>
≤

=
,for  

for  

pb

pa

ωωσ
ωωσ

σ  

 ( )ηη ln287.01 −=A , 

 ba σσ ,   – parameters of the distribution. 
 

For η = 1, the relation (3.23) reduces to (3.22). The method of selecting the 
parameters ba σση ,, is specified in norms, e.g. [DNV-RP-C205, 2007], and in 

literature [Clauss G. F., et al., 1992], [Holthuijsen L. H., 2007].  
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Spectral density ( )ωS may be used to generate an irregular wave. Such waves 

are closer to actual waves than those considered by many authors in their papers. 
The simplest example of an irregular wave is a sum of a given number N of 
harmonic components:  

( ) ( ),cos
1


=
+=

N

k
kkkr tAt εωξ  (3.24)

where  kA  – random amplitude, calculated as ( )kk SA ωω ⋅Δ⋅= 2 , 

 πε 2,...,0∈k  – random initial phase with uniform distribution, 

 1−−=Δ kkk ωωω . 

The dependency (3.24) allows us to determine the waves parameters according to 
the formulas (3.12) – (3.16) or those given in Table 3.2. Summation is performed 
for every calculated value. For example, the velocity from the formula (3.13) is 
determined thus: 
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=
+−+=
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iii

i

i
iix xkt

dk

zdk
v εωξω  (3.25)

The number of components N may reach a few hundred and more (guidelines are 
specified in appropriate norms). A pre-filled array of values needed, combined 
with interpolation over time, is therefore desirable when integrating the equations 
of a system's dynamics. Such approach ensures much shorter times taken by 
computations. 

3.2   Determination of Forces Acting on Objects Immersed in 
Water 

Let us consider a body immersed in a liquid. Action of the liquid on the body 
results from the motion of the body and of the liquid itself. Diffraction and 
radiation phenomena must be taken into consideration in the general case, as the 
body may influence the motion of the liquid. However, in performing analyses of 
structures with small characteristic dimensions relatively to the wave length, 
a simplifying assumption may be introduced that the Morison equation [Morison 
J. R., et al., 1950] governs the forces acting on a body immersed in water 
[Faltinsen O. M., 1990], [Sarpkaya T., Isaacson M., 1981]. Their determination 
requires the knowledge of coefficients whose values are yielded from appropriate 
laboratory experiments. In examples contained in the current book, interaction 
between water and pipelines is analyzed. The pipelines are modelled with beam 
elements. It can be easily proven that the Morison equation's applicability 
criterion, defined in [DNV-RP-C205, 2007] as: 

D5>λ , (3.26) 
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is satisfied even for pipelines with large diameters (D greater than 1 m). This 
justifies the assumption of the Morison equation's applicability in dynamic 
analyses of pipelines throughout the rest of the volume. The force of a liquid's 
action on a body in general is defined as a function of multiple dimensionless 
parameters [Faltinsen O. M., 1990]: 

( ),ˆ,ˆ,Re,,,, uedKCTtff fr=
 

(3.27)

where 
D

Tu
KC 0=  – Keugelan-Carpenter number, 

 
ν

Du0Re =   – Reynolds number, 

 λ
πD

d fr =   – diffraction parameter, 

 
D

K
e =ˆ   – reduced body surface roughness, 

 
Df

u
u

s

0ˆ =   – reduced velocity of the liquid, 

 sf          – angular frequency of the body's oscillations,  

 0u          – amplitude of the liquid's velocity,  

  ν          – viscosity of the liquid, 
 K          – surface roughness,  
 D          – diameter (characteristic dimension) of the body. 
 

The force of the liquid's action on a segment of a given body may be decomposed 
into tangent and normal components (Fig. 3.5b). For an asymmetric segment, 
turbulence and other effects, a lifting force FL may additionally occur, which acts 
in the direction perpendicular to the liquid's flow (Fig. 3.5c). 
 

 
Fig. 3.5. Forces acting on a segment of a body: a) determination of the normal component, 
b) normal and tangential components, c) lifting force  
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The normal force acting on the segment determined by a coordinate ς   

(Fig. 3.5a) can be described with the Morison equation [DNV-RP-C205, 2007]:  

( ) ,
2
1

,)(
rrDrAf

A
N vDvCAaCAatF ρρρς ++=  (3.28) 

where  ( )ς,)( tF A
N   – normal force acting on the segment of the body at the 

coordinate's value ς , 

ρ    – density of the liquid, 

( )ςAA =   – area of the body's segment determined by coordinat ς , 

fa     – acceleration of the liquid,  

Nfr xaa −=   – relative acceleration, 

Nx   – displacement of the body in the direction normal to the 

longitudinal axis, 

Nfr xvv −=   – velocity of the liquid relative to the body, 

AC   – dimensionless coefficient of added mass, 

DC  – dimensionless drag coefficient. 

The Morison equation (3.28) may be used if the following relations hold 
[Chakrabarti S. K., 2005]: 

6>KC  and .5.0<<frd  (3.29) 

E.g., by substituting data of the largest diameters of pipelines, i.e. D = 1 m, with 
wave period T = 10 s and its amplitude A = 1 m, and taking into account the linear 
theory of waves (formula (3.13)), we obtain KC = 6.28, dfr = 0.056. The condition 
(3.29) ought to be checked supplementing the general condition (3.26) due to the 
fact that the diffraction parameter determines the magnitude of wave dispersion as 
the result of meeting the object. When the number KC

 
is small, the Morison 

equation should be replaced with calculations using e.g. potential theory or 
Froude-Krylov forces [Chakrabarti S. K., 2005]. The force given by (3.28) is 
particularly suitable for modelling structures such as ropes, pipes, beams. It may 
also yield satisfactory results for small 3D objects. On the other hand, it may not 
be successfully applied to large objects whose influence on the motion of water 
particles is significant enough to cause reflections of waves.  

The net normal force and its application point hx  in the local coordinate 

system 0ςη (Fig. 3.5) with origin in the middle of the item's length can be 
calculated from:  
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(3.30) 
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=
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−  
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where ( )ς,)( tF A
N  – force described by (3.28), 

       L          – length of the object. 
 

Coefficients CA and CD which appear in the Morison equation are functions of 
dimensionless parameters from (3.27), whereby:  

( ),ˆ,Re, eKCCC AA =  (3.32) 

( ),ˆ,Re, eKCCC DD =  (3.33) 

where eKC ˆ,Re,  are defined in (3.27). 

Further details and practical advice about how these coefficients depend on 
different variables are to be found, among other things, in [Sarpkaya T., Isaacson 
M., 1981], [API-RP-2A-LRFD, 1993], [Bai Y., Bai Q., 2005], [Chakrabarti S. K., 
2005], [DNV-RP-F105, 2006], [DNV-RP-C205, 2007]. These works also include 
cases of calculations for items placed very close to the free surface, the bottom or 
another large object which changes the coefficient of the added mass.  

The tangent force caused by hydrodynamic resistance should be considered 
mainly in analyses of long objects with rough surfaces. It may be formulated thus 
[DNV-RP-C205, 2007]: 

,
2
1 2vCF DtT ρ=  (3.34)

where DtC   – coefficient of hydrodynamic resistance in the tangent direction, 

v   – amplitude of the liquid's net velocity. 
 

The resistance coefficient CDt may be described with the formula [Eames M.C., 
1968]: 

( )( ) ( ),cossin ααnmCC DDt +=  (3.35) 

where α   – angle between net velocity and the item's longitudinal axis, 

 nm,   – coefficients from Table 3.3. 

Table 3.3. Values of the coefficients m, n according to [Eames M. C., 1968] 

Item type m n 

Smooth cylindrical surfaces 0.02-0.03 0.04-0.05 

Porous cables, pipes 0.25-0.5 0.25-0.50 

Six-strand ropes 0.03 0.06 
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Also the seabed exerts forces on elements of a pipeline as it is being laid. The 
problem of finding a description of the seabed and its interaction with installed 
objects was the subject of many works. Behaviour of the seabed is highly 
dependent on the sea considered. It is thus difficult to formulate one universally 
applicable model. Empirical models are most commonly used, which reproduce 
approximately the character of a given type of seabed. In the present volume, 
a model developed by Verley and Lund [Verley R., Lund K. M., 1995] will be 
used. It gives the following formula for the value of seabed penetration in the 
normal direction: 

( ) ( ) ,062.00071.0
7.03.02.33.0 ZYZY

D

un +=Δ
 (3.36) 

where 
u

C

tD

N
Y = ,  

ρ′
=

D

t
Z u , 

 nuΔ   – seabed penetration in [m], 

 CN   – contact force per a pipeline's length link [kN/m], 

 ut   – seabed material's shear strength [kPa], 

 ρ ′   – density of seabed material (wet) [kN/m3]. 
 

The dependency (3.36) holds for 5.23.0 <ZY . Otherwise, the following formula 

gives better accuracy:  

( ).09.0 3.0ZY
D

un =Δ
 (3.37) 

 
Fig. 3.6. Sample characteristics of sea beds according to Verley-Lund and bearing capacity 
models 
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Fig. 3.6 presents sample characteristics of sea beds described by (3.36) and 
(3.37) differentiated by bearing capacity model. In the last case, analogously to the 
model determining the bearing capacity, the following formulas are used [Bai Y., 
Bai Q., 2005]: 
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=
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       bf   – coefficient (for large support lengths taking the value 5.14). 

 
The graphs in Fig. 3.6 are plotted for the following parameters: ,m 3.0=D  

,kPa 35=ut  3cm

g 215.1=′ρ . 

Forces caused by waves or sea currents which act on elements of pipes or other 
structures lying on a seabed result in their displacement in the forces' direction. 
The action of the seabed in the transverse (horizontal) direction needs therefore to 
be taken into consideration. More even so, given that the bodies in question often 
lie in sand or other material (e.g. clay). For objects penetrating the seabed's 
material only slightly, the Coulomb model of friction may be used [Bai Y., Bai Q., 
2005], however, with soft materials or deeper penetration the description becomes 
more complex. Typical characteristics formulating the transversal forces as 
functions of displacement are nonlinear. Adding to this, the seabed in the contact 
area may become deformed and its material's consistence may vary due to 
displacement. Often a characteristic composed of two different linear parts is used. 
One of them describes the working conditions of the system up to the moment 
when a ground layer is shorn off. The other treats the forces in action when the 
object is moved along with seabed's material. This approach is presented, among 
other things, in the norm [DNV-RP-F105, 2006]. Guidelines concerning the 
selection of parameters and its applicability are also stated therein. The transversal 
force is calculated thus: 
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where  1lk   –  equivalent transversal stiffness coefficient up to shearing off of 

the seabed's material, 
 2lk   – stiffness coefficient for motion developed in the transverse 

direction, 
 tμΔ   –  transverse displacement, 

 VF   –  vertical contact force per length of link, 

 tμ   –  friction coefficient between the seabed and the body 

(transversal), 
 ( )GtDFFF uVtlatlat ,,,,,,max,max, ρνμ ′=  – transverse force per length of 

link maximally transmissible by the seabed's material, 
 G,ν   –  Poisson number and shear modulus of the seabed's material. 
 
There also exist other models of sea beds, including more complex ones. In 
[DNV-RP-F105, 2006] guidelines can be found on the use of different models and 
parameters of the seabed. The fact deserving a mention is that the models 
described above and used below omit in particular any changes of the seabed's 
properties due to the oscillatory impact of pipes and cables. 

3.3   Methods of Simplified Description of Movement of Offshore 
Structures 

The monograph [Adamiec-Wójcik I., et al., 2008] contains a short survey of 
papers related to the description of a vessel's motion under wave action. Those are 
most often fairly complex models used e.g. to determine strains to which the hull 
is exposed. However, they are hardly useful in quick dynamic analyses of offshore 
structures. Therefore, many works in the field of dynamics of such objects, 
particularly cranes, take the assumption that movements of the base can be 
described with relatively simple functions. Often it is further assumed that the 
vessel moves only in the vertical plane passing through the longitudinal symmetry 
axis of the deck. Such propositions seem reasonable for most offshore cranes that 
operate predominantly on vessels which are moored and properly positioned 
against the waves. Instead of making assumptions about the base's motion, some 
papers prefer to deal with forces acting on it. 

It is common practice to assume that the motion of a vessel or any given point of a 
crane is harmonic or pseudo-harmonic. Sinusoidal waves with angular frequencies of 
0.56 and 0.74 rad/s and height of 1 m directed along a ship's longitudinal axis are 
considered in [Das S. N., Das S. K., 2005]. In the papers [Balachandran B., et al., 
1999] and [Li Y. Y., Balachandran B., 2001] two kinds of functions are used to 
describe the motion of the jib's head in a crane installed on a ship. These are: 

 
 harmonic 

( ) ( ) ,sinsin;cossin ψωψω tFytFx ee ==  (3.40) 
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 periodic 
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where F  –  excitation amplitude, 
 ω  –  angular frequency of excitation, 
 ψ  –  boom inclination angle. 

 
The papers [Osiński M., Wojciech S., 1994], [Osiński M., Wojciech S., 1998] and 
[Osiński M., et al., 2004] focus on the planar problem of lifting a load from a 
ship's deck, whereby the motion of the deck is described with a harmonic 
function: 

,)sin( βω += tFyd  (3.42) 

where β  is the phase angle. 
General motion of the base (3 displacements and 3 rotations) defined with 

pseudo-harmonic functions (reducing to harmonic when a single component is 
taken) can be considered for the model of a crane presented in [Maczyński A., 
2005], [Maczyński A., Wojciech S., 2007]. Similarly for A-frames (harmonic 
functions) [Fałat P., 2004], [Adamiec-Wojcik I., et al., 2009] and BOP gantries for 
transportation [Urbaś A., et al., 2010], [Urbaś A., 2011]. 

In [Ellermann K., et al., 2002] and [Ellermann K., et al., 2003] two components 
are distinguished among the forces exerted by the waves: a periodically changing 
one and a constant one (related to drifting). These forces are determined from the 
following formulas: 
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where a  – wave amplitude, 
 erj, eij – coefficients empirically determined for a particular type of 

ships, whereby j∈{x,θ, z}, 
 ω  –  wave angular frequency, 
 x,θ, z – generalized coordinates of the hull, 
 pdrag – drift force determined empirically. 
 

In the article [Cha J. H., et al., 2010a], hydrodynamic forces are proposed to be 
present among those acting on the crane's base: one due to radiation and another 
excited by the wave. The forces stemming from sea waves acting on the vessel 
where the crane is installed are determined based on the spectrum of the wave in 
[Witz J. A., 1995]. 
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Sometimes, the motion of the base is described using measurements already 
performed in real conditions. In [Masoud Z. N., 2000] it is assumed that a ship 
with a crane on board oscillates transversally and longitudinally and is subjected 
to the motions of heaving, swaying and rolling. Calculations are based on data 
obtained empirically [Fossen T. I., 1994] which describe transverse and 
longitudinal oscillations as well as heaving, swaying and rolling of a selected 
point of the ship (the reference point). Also in [Driscoll F. R., et al., 2000], 
measured displacements of an A-frame are used to study a model of a cage 
suspended in large depths (1730 m). In the paper [Pedrazzi C., Barbieri G., 1998] 
the ADAMS package is used to analyse the dynamics of a vessel with a crane. The 
sea is modelled as a massless object which moves vertically relatively to the 
bottom. Its motion is defined in two ways: as a spline in time based on real 
measurements of sea waves and as an analytic function constructed using a 
pseudostochastic model of a wave. 

In many of the models and computer programmes discussed herein, a provision 
is made for defining the general motion of an offshore structure's base as a 
pseudo-harmonic function with arbitrary number of components. 
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4   Homogeneous Transformations and Joint 
Coordinates in the Description of Geometry 
of Multibody Systems 

4   Homoge neous  Transformations and Joint Coordinates in the Description  

Basic models of bodies used in dynamic analysis of mechanical systems, including 
multibody systems, are a material point and a rigid body. They have, respectively, 
three and six degrees of freedom. To describe their positions either three or six 
independent coordinates must therefore be given. Usually, the position is given in 
a rectangular clockwise Cartesian system. It is then convenient to express the 
position of a point as a vector, also called a radius vector. To describe a body's 
position, an additional coordinate system is attached to it in a fixed way. The 
position of this coordinate system, thus also of the body, is defined by giving the 
position vector of a selected point of the body (usually coinciding with the origin 
of the coordinate system attached to the body) and additionally a 3×3 matrix 
called a rotation matrix. In classical mechanics, displacement of a body from one 
position to another is treated as a superposition of two motions: translation and 
rotation. As a consequence, if a position vector of a point in the movable 
coordinate system attached to the body is given, and a position vector of this point 
in the reference system is to be determined, two mathematical operations are 
necessary: multiplication of the rotation matrices and addition of two vectors. By 
introducing the method of homogeneous transformations, the notation can be 
simplified. Such transformations are described by 4×4 matrices and take into 
account both a translation of a coordinate system and its rotation. The convenience 
of such interpretation makes it highly popular in robotics [Craig J. J., 1988], 
[Morecki A., et al., 2002], [Spong M. W., et al., 2006], [Jezierski E., 2006], which 
is a domain where multibody systems commonly occur. 

In the classical approach, the positions of links are expressed in a global static 
coordinate system. To describe a system with n links, 6×n parameters have to be 
specified. These are called absolute coordinates. The use of joint coordinates 
which define motions of links relative to their predecessors in a kinematic chain 
enable a description of the positions of the system's consecutive links with far less 
parameters. 

The current chapter offers a basic introduction to describing positions and 
orientations of coordinate systems, transformations of vectors and joint coordinates. 
Application of homogeneous transformations and joint coordinates to describe the 
geometry of multibody systems is also discussed.   
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4.1   Position Vector: Rotation Matrix 

To describe a point's position in a three-dimensional space, the following procedure 
is used. First, a coordinate system is defined in which the point's position will be 
determined. It is called the reference or base system. For the remaining part of this 
book that system is assumed to be Cartesian and clockwise. Next, the position vector 
is determined. The starting point of this vector coincides with the system's origin and 
the end is at the point in question (Fig. 4.1). If the origin is denoted with {0} and the 
point with P, the position vector may be given as: 

[ ]T

PPP

P

P

P

P zyx

z

y

x
000

0

0

0

0 =
















=r , (4.1)

where the index T stands for the transposition operator of a vector (or matrix). 
 
 

 

Fig. 4.1. Position vector of a point 

Points will be denoted with capital letters and coordinate systems with either 
capital letters or bracketed digits (thus {}). The upper preceding index 
accompanying a vector symbol r (or a component thereof), will indicate the 
coordinate system in which the vector r is specified, whereas in the lower 
following index the point to which the given vector pertains will be given. 

Determination of a rigid body's position in a three-dimensional space requires 
defining two coordinate systems: a reference one, relative to which the position 
will be specified, and another one attached in a fixed way to the given body. 
Hence, the description of the body's position can be construed as positioning two 
coordinate systems against each other (Fig. 4.2).  
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Fig. 4.2. Relative position of two coordinate systems 

Unambiguous statement of a position may be done by giving the position 

vector 0
1orgr  of system {1}'s origin in system {0} and a rotation matrix 0

1R  
defining the orientation of system {1} relative to system {0}. The vector 0

1orgr
 

takes the form:  

[ ]T

orgorgorgorg zyx 1
0

1
0

1
0

1
0 =r , (4.2)

and the rotation matrix can be written as: 

















=
ZZZYZX

YZYYYX

XZXYXX

R
010101

010101

010101

0
1 . (4.3)

Elements of the rotation matrix are the appropriate scalar products of versors of 
the axes of systems {1} and {0}. Since the scalar product of versors equals the 
cosine of the angle between them, this matrix is sometimes called the direction 
cosine matrix. 

The vector org1
0r  and the rotation matrix R0

1  enable determining the position 

vector Pr0

 of the point P in the system {0} (Fig. 4.3) given the position vector of 

the point P in the system {1}. It can verily be stated:  

PorgP rRrr 10
11

00 += . (4.4) 
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Fig. 4.3. Point P specified in coordinate systems {1} and {0} 

It is a noteworthy observation that columns and rows of a rotation matrix are 
orthonormal vectors1. Whence follows an important dependency: 

TRRR 0
1

10
1

1
0 == − , (4.5)

which states that the inverse of a rotation matrix equals its transpose. This property 
greatly simplifies transformations of formulas and improves numerical efficiency. 

The rotation matrix (4.3) is specified with nine elements. However, as the 
versors of axes of a coordinate system must satisfy 6 conditions (three for their  
lengths and three for them to be perpendicular to each other), there are only three 
independent parameters defining the rotation matrix. 

 

 
Fig. 4.4. Elementarny rotations around the axes X, Y and Z 

                                                           
1 Column vectors X1,...,Xk are orthogonal if Xi

TXj = 0 for each i ≠ j and they are 
orthonormal if they are orthogonal and furthermore Xi

TXi = ±1 for i = 1,...,k     
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Let us define rotation matrices for the so-called elementarny rotations. These 
are rotations around a single axis X, Y or Z of the coordinate system. On schemes 
a), b) and c) in Fig. 4.4 rotations around the X axis by the angle ϕx, Y by ϕy and Z 
by ϕz are shown. Rotation matrices for elementarny rotations have the following 
forms: 

( )
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
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
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−=

xx

xxx
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001

XR ,  (4.6.1) 
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100
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zz

z ϕϕ
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As mentioned before, of the nine elements of a rotation matrix (4.3) only three are 
independent. An arbitrary rotation of a given coordinate system relative to another 
one can thus be presented as a composition of three elementarny rotations. These 
rotations may be performed around axes of a previously fixed or the current 
coordinate system. In each case, there exist twelve different variations built from 
these rotations. The angles of rotation around the axes of the current system are 
called the Euler angles. This subject is further described, among other things, in 
[Craig J. J., 2004].  
 
 

 

Fig. 4.5. Initial and final mutual positions of the coordinate systems {0} and {1} 
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In Fig. 4.5, a convention is shown for the so-called ZYX Euler angles. It is  
presented here because of its application further in this volume. Let us assume that 
initially the systems {0} and {1} coincide (Fig. 4.5a). To move the coordinate system 
{1} to the position shown in Fig. 4.5b, the following procedure may be applied: 

 
 turn the system {1} about 1Z by the angle zϕ ,2 

 turn the system {1} about 1Y by the angle yϕ , 

 turn the system {1} about 1X by the angle xϕ . 

 
The above allows us to write: 

( ) ( ) ( )xyz ϕϕϕ
XYZ

0
1 111 RRRR = . (4.7) 

Substituting the matrices of elementarny rotations (4.6) gives: 
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


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R  (4.8) 

where ϕϕϕϕ sin  ,cos == sc . 

Discussing the rotation matrix, we should add that sometimes the rotation angles, 
ϕx and ϕy in particular, are small. This allows the form of the matrix (4.8) to be 
simplified. However, such step usually leads to the loss of orthonormality by the 
matrix, i.e. the equation (4.5) no longer holds.  

4.2   Homogeneous Transformation 

Transformation of coordinates with the formula (4.4) requires carrying out two 

operations: multiplication of the matrix R0
1  by the vector Pr1  and addition of 

the result to the vector org1
0r . Notation following (4.4) is inconvenient, especially 

in cases of more complex transformations. Hence in [Craig J. J., 2004] rewriting 
of the relation (4.4) is proposed:  

4,
10

14,
0

PP rTr = , (4.9)

where T0
1              –  homogeneous transformation matrix with dimensions 4×4, 

 4,
1

4,
0 , PP rr   –  position vectors of the point P with dimensions 4×1 in 

systems {0} and {1}, respectively. 

                                                           
2 In order to simplify notation, in symbols ϕx, ϕy, ϕz, we omit the upper index that indicates 

the coordinate system. 
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Taking (4.4) the equation (4.9) may be put in this way: 
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
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(4.10)

This can be easily seen to be the equation (4.4) supplemented with the identity 

1=1. A homogeneous transformation matrix T0
1  will, in short, be called a 

homogeneous transformation. It combines the operations of a rotation and a 
translation. It also necessitates the representation of position as a 4×1 vector.  

The notion of joint coordinates3 is introduced in [Craig J. J., 2004]. To use 
these coordinates to describe a point's position in a three-dimensional space, four 
values need to be given: (x1, x2, x3, x4), where x4 must not equal zero. Given joint 
coordinates, Cartesian coordinates may be determined according to: 

4

3

4

2

4

1 ,,
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x

x
x === . (4.11)

In the present book (likewise in most papers on robotics, e.g. [Morecki A., et al., 
2002], [Spong M. W., et al., 2006], [Jezierski E., 2006]) x4 = 1 is assumed, hence 
in (4.10) the following change is introduced: 
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r . (4.12)

In further considerations, we will omit the additional index 4, which indicates 
a position vector with dimensions 4×1. The dimension of a vector is determined 
by whether it is pertinent to a rotation matrix, or to a homogeneous 
transformation. It is usually clear enough. Therefore, the relation (4.9) will be 
written in the short form: 

PP rTr 10
1

0 = . (4.13) 

As is the case with rotation matrices, elementarny homogeneous transformations 
may also be distinguished. They are defined for rotations about the coordinate 
system's axes and a translation: 

                                                           
3 The method of homogeneous transformations and coordinates is widely used in computer 

graphics. The most general form of a homogeneous transformation is 









scalingeperspectiv

ntramslatiorotation
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Let us observe that the homogeneous transformation (4.14.4) can be expressed as 
a composition of three simpler translations. It is due to the fact that the translation 
by the vector a can be replaced by three translations along individual axes of the 
coordinate system. 

If ZYX Euler angles (Fig. 4.6) are used to define a homogeneous 
transformation (4.9), it takes the form: 
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In addition to the coordinate systems {0} and {1} let us consider another system 
{2}, whose position and orientation relative to the system {1} is given by a matrix  

T1
2  (Fig. 4.7). If the position vector Pr2  is known and furthermore T0

1 , the 

following is obtained:  

TTT 1
2

0
1

0
2 =  (4.16) 

allowing us to determine: 

PPp rTTrTr 21
2

0
1

20
2

0 == . (4.17)
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Fig. 4.6. ZYX Euler angles 

 

 

Fig. 4.7. Three coordinate systems: {0}, {1} and {2} 

Attention should be drawn to the fact that equation (4.17) is much more 
convenient than its form that would follow from (4.4): 

( ) orgPorgP 1
021

22
10

1
0 rrRrRr ++= . (4.18) 
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The homogeneous transformation T0
2  may be written as:  
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Inverting a homogeneous transformation is an often needed step. It means that 

when a transformation T0
1  is given, the transformation TT 1

0
10

1 =−  is to be 

determined. To invert the matrix, any method may be used, e.g. that of elementary 
operations described in [Dziubiński I., Świątkowski T., 1982]. They can also be 
calculated in this way: 
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4.3   Denavit-Hartenberg Notation: Joint Coordinates 

In the analysis of multibody system modelled as open kinematic chains, the 
Denavit-Hartenberg notatin [Denavit J., Hartenberg R. S., 1955], [Craig J. J., 
2004], [Spong M. W., et al., 2006], [Jezierski E., 2006] is prevalent. This notation 
minimizes the number of values necessary  to describe the positions of 
a mechanism's links. Positions of subsequent links of the kinematic chain are 
expressed in the current coordinate systems. Their positions in the global 
coordinate system are obtained by means of appropriate homogeneous 
transformations presented in section 4.2. Methods of description of the geometry 
of links and their interconnections will be discussed next. Defining local 
coordinate systems and matrices of homogeneous transformations that allow for 
switching between consecutive coordinate systems will also be treated. 

Further discussion assumes that individual links of the system are connected 
into kinematic joints of the 5th class4. No loss of generality is incurred by this, for 
a kinematic joint of a lower class may be replaced with some number of kinematic 
joints of the 5th class with zero lengths5. In the analyses presented, two types of 
kinematic joints will appear: revolute joints and sliders. 

From the kinematics point of view, the task of a rigid link p (Fig. 4.8) is to keep 
the axis of  p+1 in fixed position relative to the axis of p. For kinematic 
considerations, it is therefore sufficient to describe the geometry of the link p with 

                                                           
4 Most papers, e.g. [Morecki A., at al., 2002], define the class number as the number of 

degrees of freedom reduced by a given joint. However, some monographs ([Parczewski 
Z., 1978], [Gronowicz A., 2003]) the rank of a class is defined to be the number of 
independent motions allowed by a given joint. A joint of the 5th class is then described as 
one of the 1st class.  

5 A joint of the 4th class can be replaced by two joints of the 5th class, one of the 3rd class 
with three of them and so on. 
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two parameters: its length ap, i.e. the distance between the axes of p and p+1, and 
the angle αp between those axes. In Fig. 4.8 these values are shown 
unambiguously in space. The angle αp is taken around the line ap according to the 
right-hand rule (it is assumed that the line ap is oriented from the axis of p towards 
the axis of p+1). 

 

Fig. 4.8. A link p 

 

Fig. 4.9. Connection of links p and p+1 

As stated previously, two consecutive links are assumed to form a revolute joint 
or a slider of the 5th class. Links p and p+1 are connected by an axis denoted by 
p+1 (Fig. 4.9). The interconnection p+1 requires adding two values to the 
description: the offset dp+1 of the link and the configuration angle θp+1 (Fig. 4.9). 
A more detailed discussion of the problem of describing the link and its  
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connection with another link from the motions’ points of view can, among other 
things, be found in [Craig J. J., 2004]. Let us, however, remark that in a revolute 
joint the configuration angle θp+1 is a joint variable (the offset dp+1 of the link is 
constant), whereas in a slider the offset dp+1 is variable (with the angle θ p+1 being 
constant). 

 
 

 

Fig. 4.10. Coordinate system of the link p 

Individual links of the kinematic chain and their relative positions may 
therefore be described by four values: length of the link ap, twist angle of the link 
αp, offset of the link dp+1 and interconnection configuration angle θp+1. This 
method of describing a mechanism is called the Denavit-Hartenberg notation. 
Three of the mentioned values are constant and one is variable – it is the 
interconnection configuration angle θp+1 for a revolute joint, and the offset dp+1 of 
the link for a slider. The set of all the joint variables constitutes the configuration 
space of the chain.  

To the Denavit-Hartenberg notation, a method of defining a local coordinate 
system for a given link is related (Fig. 4.10). The axis pZ coincides with the p 
connecting axis. The origin of the coordinate system {p} lies at the intersection of 
the axis of  p and the line ap. In the case of ap = 0 the origin of {p} lies at the 
intersection of the axes of p and p+1, and the axis pX

 
lies on the common normal 

to the connecting axes of  p and p+1. When the axes of p and p+1 do not intersect, 
the axis pX

 
is directed towards the connecting axis of p+1. The axis pY

 
is taken in 

the way making the coordinate system clockwise. The coordinate system {0} 
attached to the foundation and the system {n} attached to the last link of the chain 
may be chosen arbitrarily. They are usually chosen in a way maximizing the 
number of Denavit-Hartenberg parameters and variables which equal zero. 
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Knowing the Denavit-Hartenberg parameters and variables for a link p allows 
to determine the form of the homogeneous transformation mapping the system 
{p+1} onto {p}: 
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The transformation (4.21) can be easily obtained observing that it may be treated 
as a product of four elementarny transformations: two of them due to rotations by 
the angles αp and θp around the axes pX and p+1Z, respectively, and two due to 
translations by the distances ap and dp+1 along the axes pX and p+1Z, respectively. 
[Craig J. J., 2004] offers a more detailed explanation. 

Coordinates from the system {p+1} are mapped to the system {p} according to 
the formula: 

rTr 1
1

+
+= pp

p
p

, (4.22)

and to the inertial system with: 
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where qi+1 – joint (configuration) variable of the joint i+1. 
Let us again underline that using the Denavit-Hartenberg notation causes each 

of the matrices Ti
i 1+  depend only on a single variable ( 11 ++ = iiq θ if the kinematic 

joint is a revolute or 11 ++ = ii dq if it is a slider).  

In case of the connection between the links p and p+1 being of a lower class 
than 5th, it can be, as already mentioned, replaced by an appropriate series of 
revolute joints or sliders. Thus, where k is the class number of the connection 
between the links p and p+1, the following may be assumed: 

( ) ( )( ) ( )( )jp

k

j
jk

p
pkppk

p
pk

p
p qqq ,1

6

1
,16,11,111 ,..., +

−

=
+−++++ ∏== TTT . (4.24)

To bring more clarity into the matter, let us consider the case of the links p and 
p+1 being connected with a spherical joint (Fig. 4.11). Then k = 3 and: 

13,112,111,1 ,, ++++++ === pppppp qqq ϕθψ , (4.25)
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Fig. 4.11. A spherical joint of links p and p+1 

so the motion of the link p+1 relative to p is described by three independent 

variables 111 ,, +++ ppp ϕθψ
 
being ZYX Euler angles. The matrices ( )jk

p
p ,1T+  

in 

(4.24) take these forms:  
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5   Equations of Motion of Systems with Rigid 
Links 

In the current chapter the main steps of determining the components of the 
equation of motion for open kinematic chains consisting of rigid links are 
presented [Wittbrodt E., et al., 2006]. The method is based on the Lagrange 
equations of the second order, homogeneous transformations and joint 
coordinates. 

The Lagrange equations of the second order may be written as: 

Q
qq

εq =∂
∂+∂

∂+ 
DVE)( ,  (5.1) 

where 
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[ ] T

nk qqq 1=q
 
– vector of generalized coordinates, 

 [ ] T
nk qqq  1=q

 
– vector of generalized velocities, 

 E – kinetic energy, 
 V – potential energy, 
 D – function of dissipation energy, 

 kQ  
– non-potential generalized force corresponding to the k-th 

generalized coordinate, 
 n – number of generalized. 
 

In the following reasoning, the dissipation of energy is omitted (D=0) and the 
multibody system is assumed to be situated on a movable base {A} (Fig. 5.1) 
whose motion relative to the inertial (global) system {0} = {} is known.  
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Fig. 5.1. Coordinate systems: {} –  stationary (inertial) global one, {A} – that of the 
movable base, {}~ – local one attached to the considered link 

For the sake of notation's clarity, the coordinate system {0} will for the 
remaining part be identified with the inertial system {}. Additionally, the 
following notation will be assumed: 

)(0 p
p TT = ,  (5.2) 

where p – number of the link in the kinematic chain. 
Let us introduce the following denotations: 

,,, )()()( p
org

p
org

p
org zyx  (5.3)

for the origin of the system {p} in the coordinate system of the preceding link and: 

,,, )()()( p
z

p
y

p
x ϕϕϕ  (5.4)

for ZYX Euler angles determining the orientation of the axes of the system {p} 
relative to the axes of the preceding system. 

Matrix of the homogeneous transformation T0
A  taking into account the motion 

of the system {A} relative to the system {} may be represented as a product of six 
matrices, each of which being a function of a single time-dependent variable only: 
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The order of rotations included in the matrix T0
A  conforms to the convention for 

ZYX Euler angles presented in section 4.1. 

If [ ]Tzyx 1~~~~ =r  is a vector determining the coordinates of a mass dm 

in the local system {}~ attached to given link of the system, then the coordinates of 
this mass in the system {} can be given with this formula: 

rTrqTTr ~~)()(0 == tA ,  (5.6) 

where ( ) ),,( 1{}~ n
A qq TqT =  – matrix of coordinate transformation from the 

local system {}~ to the system {A}, dependent on the generalized 
coordinates of the link, 

 )()(0 qTTT tA= . 

In a particular case whereby the base {A} of a multibody system is motionless, the 
following may be assumed: 

IT =)(0 tA ,  (5.7.1) 

where I is the identity matrix. 
Then: 

)(qTT = .  (5.7.2) 
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5.1   Kinetic Energy of a Link 

Kinetic energy E of a link with mass m can be calculated using the trace of 
a matrix [Paul R. P., 1981], [Jurewič E. I., 1984]. The kinetic energy of an 

elementary mass dm with coordinates ( )zyx ,,  can then be represented as: 
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where 
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u

i
iia
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)(tr A – trace of the matrix ujiijuu a ,,1,)( =× =A , 

 2222 zyxv  ++= . 

Since the vector r~  which determines the position of the elementary mass dm in 
the local coordinate system has constant coordinates (in time), then:  

rTr ~ = ,
 

(5.9) 

and the expression giving the kinetic energy of the considered link takes the form: 
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The matrix H occurring in the above formula is the matrix of inertia of the link 
whose elements may be calculated thus: 
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– static moments 

of inertia of the link in the coordinate system 
~{} , 

 m – mass of the link. 
 

The following relations hold: 
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Taking (5.6) into account, we may write the matrix T  as:  
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the following is obtained:   
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where iAi TTT 0= . 

A reasoning analogous to that in [Wittbrodt E., et al., 2006] leads to: 
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The matrix T  may be calculated by differentiating (5.13):  
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The above equation may be presented in a matrix form: 

eqAε += )(E ,  (5.19)

where ( )( )
nlili tat

,...,1,, ,),(
=

== qqAA , 

 ( )( ) nii te,t ,...,1,,),( === qqqqee  . 

 
An important property of the matrix A is its symmetry. The dependencies (5.18) 
and (5.19) will be used to formulate the equations of motion of analysed 
multibody systems. 

5.2   Potential Energy of Gravity Forces of a Link 

Let the coordinates of the centre of mass of a given link in its local coordinate 
system {}~ be specified by the vector: 

[ ]T
CCCC zyx 1~~~~ =r  . (5.20)

Assuming the axis 0Z of the global (inertial) coordinate system {} to be 
perpendicular to the Earth's surface, we obtain the following formula that gives the 
potential energy of the gravity forces of the link: 

C
g zgmV = ,  (5.21) 

where g – acceleration due to gravity, 
 Cz  

– component in the direction of the axis 0Z of the vector 

[ ]T
CCCC zyx 1=r  specifying the position of the centre 

of mass of the link in the inertial system. 
 
By knowing the transformation matrix T from the local coordinate system {}~ to 
the global one {} the following may be obtained from equation (5.21):   
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Elements of the vector G depend therefore on the matrix iT  and hence on time t 

and the vector of generalized coordinates q.  



66 5   Equations of Motion of Systems with Rigid Links
 

5.3   Generalized Forces: Equations of Motion of a Link 

If non-potential forces or moments thereof act on a given link, they must be taken 
into account in the equations of motion as generalized forces. When the 
convention of homogeneous transformations and coordinates is applied, vectors of 
forces and their moments, unlike those of positions, have zero as their fourth 
coordinate: 

[ ]T

zyx FFF 0
~~~~ =F , (5.23)

[ ] T

zyx MMM 0
~~~~ =M . (5.24)

Let us assume that a force F
~

 is applied to the link at the point N (Fig. 5.2).   
 
 
 

 

Fig. 5.2. Force acting in the local coordinate system 

The force F
~

 is described in the inertial system by:  

FTF
~= . (5.25) 

The generalized force corresponding to the i-th generalized coordinate [Leyko J., 
1996] may be written thus: 
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FF ~)( i
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T
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∂
∂=     for  i = 1,...,n.  (5.26)

Using (5.25), we may transform the formula (5.26) to obtain: 
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If an external moment of force M
~

 specified by (5.24) is applied to a given link, it 
is possible, by representing its components as pairs of forces [Grzegożek W., et 
al., 2003] and performing appropriate transformations, obtain the formula for the 
generalized force corresponding to the i-th generalized coordinate which is due to 

the moment M
~

: 
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where ( )
3...1,, =lmlmt , ( )

3,...,1,
,...,1,,
=

=
lm

nilmit  are the corresponding elements of matrices T 

and Ti, respectively. 
 
Finally, using the Lagrange equations of the second kind, the equations of motion 
of the link concerned are put in this form: 

eGQqA −−= ,  (5.29)

where A – matrix of inertia defined in (5.19),  
 G – vector of gravity forces defined in (5.22), 

 e – vector of nonlinear forces defined in (5.19), 
Q – vector of non-potential forces, 

( ) niiQ ,...,1==Q , 

( ) ( )MF
~~

iii QQQ += . 

5.4   Generalization of the Procedure  

The equations of motion for a single link having been determined, the equations of 
motion of an arbitrary open kinematic chain (Fig. 5.3) can be formulated. 

Since joint coordinates are used to describe motion, the motion of a link p 
depends on its generalized coordinates, of which there are pn~ , and on the 

generalized coordinates of its predecessor s in the chain. The total number  
of generalized coordinates for a link p (including all the generalized coordinates of 
preceding links) will be denoted by pn . The vector of generalized coordinates of 

a link p may therefore be written: 









=

)(

)(
)(

~ p

s
p

q

q
q , (5.30)

where 
)( sq  – vector of generalized coordinates describing the motion of the 

link s preceding the link p, 
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–  vector of generalized coordinates of the 

link p describing its motion relative to the link s, 
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Fig. 5.3. A link p and links preceding it in a kinematic chain 

The presented procedure takes the tree structure of kinematic chains into 
consideration. Therefore, consecutive links in a chain need not be assigned 
consecutive ordinal numbers. In such cases, one needs to define an ordered set of 
indices of the preceding links in the kinematic chain along with the index of the 
concerned link p: 

},...,,...,{ ~
,,1,

pNplppp iiiN = , (5.31)

whereas: 

.1
~~

},{

,

,

,set  theof elements ofnumber 
~

1
~

,

~
,

+=

∪=

=

=

−

−

sp

sp

Np

Np

pp

NN

pNN

si

pi

NN

p

p

 (5.32) 

link

link

link

link 



5.4   Generalization of the Procedure  69
 

The vector )( pq  from the formula (5.30) may now be written as:  
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and the transformation from the coordinate system of the point p of the link to the 
inertial system {} may be expressed as follows: 
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 )(~ pr  – vector of coordinates of the point in the local coordinate 
system {p}. 

 
Following the reasoning in section 5.1, thus is the kinetic energy of the link p: 
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where )( pH  – defined as in (5.11), 
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This relation may also be written with a matrix and vector blocks: 
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 s, p   – defined in (5.32). 
 

Making use of the dependency (5.22) obtained in section 5.2, we may express the 
derivative of potential energy of gravity forces of the link p with respect to 
generalized coordinates as: 
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The dependency (5.39) may thus be rewritten: 
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The generalized forces due to external forces and moments thereof are calculated 
like in section 5.3 giving: 
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Finally, the equations of motion of the link p may be written thus: 
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– defined by formulas (5.36), (5.40) and 

(5.42), respectively. 
 
The equations (5.44) describing the motion of the link p also indicate how its 
motion depends on the generalized coordinates of the preceding links (i.e. the 

coordinates )()( ~,...,~ 1, si p qq  of the vector )( sq ) and its own coordinates, i.e. )(~ pq . 

Therefore, those equations may be written in the form:  
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The above equations of motion are obtained taking into account the kinetic energy 
and the potential energy of gravity forces of a single link p as well as the force 

)(~ pF  and the moment of force )(~ pM  acting upon this link.  
If a kinematic chain has links numbered 1 to p, the energies: kinetic and 

potential of gravity forces of the system are given by the expressions: 
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Let us assume that the equations of motion of the links 1 to p-1, which take into 

account the kinetic energy iE , the potential energy g
iV , the forces )(~ iF  and the 

moments of forces )(~
 iM  ( 1,,1 −= pi  ), have the form: 
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Adding a link p so that it connects with the link 1−≤ ps  belonging to the 

considered kinematic chain makes the equations of motion of the entire system of 
links 1 to p expressible as:  

)()()( ppp fqA = , (5.49.1) 

or: 











 +
=























 + −−−

)(

)()1(

)(

)1(

)(
,

)(
,

)(
,

)(
,

)1(

ˆ~ˆ p
p

p
s

p

p

p

p
pp

p
sp

p
ps

p
ss

p

f

ff

q

q

AA

AAA








, (5.49.2)

where )()(
,

)(
,

)(
, ,,, p

s
p
sp

p
ps

p
ss fAAA


 – matrices of dimensions 11 −− × pp nn , pp nn ~

1 ×− , 

1
~

−× pp nn  in which the appropriate submatrices with indices pNji ∈,  

are calculated according to: 
 

 

( ) ,,,1,for
otherwise,

,,when
~

1

)(
,

,
)(

, −=




 ∈

= p
p

p
lk

lk
p
ss nlk

Nlk




0

A
A

 

 

( ) ,,,1for
otherwise,

,when
~

1

)(
,)(

, −=




 ∈

= p
p

p
pk

k

p
ps nk

Nk




0

A
A

( ) ,,,1for
otherwise,

,when
~

1

)(
,)(

, −=




 ∈

= p
p

p
kp

k

p
sp nk

Nk




0

A
A

( ) .,,1for
otherwise,

,when
~

1

)(
)(

−=




 ∈

= p
p

p
k

k
p

s nk
Nk




0

f
f  

 

 



 

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 75–89. 
springerlink.com               © Springer-Verlag Berlin Heidelberg 2013 

6   Modelling of Joining Elements: Constraint 
Equations  

Individual links of a kinematic chain are often interconnected by elastic or 
damping (or both) elements. Among these are mainly: springs, dampers, 
absorbers, actuators. Components expressing the potential energy accumulated in 
such elements and its dissipation need to be introduced to the system's equations 
of motion. The present chapter discusses a method of modelling spring-damping 
elements treated as massless objects. Constraint equations occurring when 
kinematic subchains are joined in certain systems are also presented. 

6.1   Spring-Damping Connecting Elements 

The considerations presented below are under the assumption that the modelled 
element connects movable links i and j (Fig. 6.1). In the general case, the links  i 
and j may belong to different branches of the chain. 

Point A is the attachment location of the connecting element to the link i, 
whereas B  the point where the element is attached to the link j (Fig. 6.1). The 
deformation of the connecting element is given by: 

0
,, jiABji dd −=Δ r , (6.1) 

where 0
, jid

 
–  free length of the element connecting the links i and j, 

 ABr  –  vector starting at A and ending at B expressed in the inertial 

system {}. 
The energy of elastic deformation of the connecting element may be determined 
from: 

 ( )2,,, 2
1

jiji
s
ji dcV Δ= , (6.2) 

where jic ,  
– stiffness coefficient. 

The vector ABr  may be calculated in this way:  

ABAB rrr −= , (6.3)
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Fig. 6.1. The element connecting the links i and j 

whereas: 

)()( ~ i
A

i
A rTr = , (6.4.1)

)()( ~ j
B

j
B rTr = , (6.4.2)

where )()( ~,~ j
B

i
A rr  – the vectors of coordinates of the points A and B in the 

systems {i} and {j}, respectively, 

 BA rr ,  – the vectors of coordinates of the points A and B in the 

inertial system {}. 
 
Considering the case in which the branches containing respectively the links i and 
j have as a common base a link b and a coordinate system {b} attached to it, the 
homogeneous transformations in (6.4) may be specified as: 

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( , )
1 1, , , , , , , , , , ,

i b b i

i i i i i b b i i b b b i b i
i n n nt q q t t q q q q= = =T T T q q T      , (6.5.1) 

( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ) ( , ) ( , )
1 1, , , , , , , , , , ,

j b b j

j j j j i b b j j b b b j b j
i n n nt q q t t q q q q= = =T T T q q T      , (6.5.2) 

where [ ]Tb
n

bb

b
qq )()(

1
)( =q  – vector of generalized coordinates 

describing the motion of the common base {b} of the links i and j,  
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describing the motion of the link i relative to the common base 
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~~~ =q  – vector of generalized coordinates 

describing the motion of the link j relative to the common base 
{b}. 

 

A fact worthy of remark is that, in special cases, the indices jbibb nnn ,,
~,~,  may 

equal zero. And so, when: 
 

0=bn  – vectors of generalized coordinates of the links i and j have no 

common elements: ∅=∩ )()( ji qq , ( ∅  denotes the empty set), 
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, =ibn  – vector of generalized coordinates of the link i coincides with the 
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, =jbn  – vector of generalized coordinates of the link j coincides with the 
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From (6.1) it follows that: 
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The length of the vector ABr  is determined by:  
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additionally:  

( ) ( ) ( ) [ ] [ ].2222
AB

T
ABABABABAB zzyyxx rrrrr −−=−+−+−=  (6.9) 

Leveraging the general identity: 
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where f denotes an arbitrary function of the variable q, and taking (6.4) into 
account we obtain: 
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The derivatives (6.6) of the potential energy of elastic deformation of the 
connecting element may be written as: 

[ ]
{ }
{ }
{ }

,

,

( ) ( ) ( ) ( ) ( ) ( )
1

, , , ( ) ( ) ( , ) ( , )
1

( ) ( ) ( , ) ( , )
1

, for ,..., ,

, for ,..., ,

, for ,..., .

b

b i

b j

j j i i b b
B kAk k n

s
Ti j i j i j i i b i b i

B A kAk n
k AB

j j b j b j
B kk n

q q q

V c d
q q q

q

q q q

 − ∈
∂ Δ = − − ∈∂ 
 ∈

T r T r

r r T r
r

T r





 

  

  

 (6.12)

Analogous derivations may be performed when the interconnection is by a 
damping element. The dissipation function is given by: 
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1

jijiji dbD Δ= , (6.13) 

where jib ,  – damping coefficient of the connecting element, 

 ABjid r =Δ ,  – change of the length vector ABr  in time.  

 
Differentiating (6.13) by kq  yields:  
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It is noteworthy for the sake of numerical efficiency that the partial derivatives 

defined by (6.12) and (6.14) are equal zero for { })()(
1 ,..., b

n
b

k b
qqq ∈  and 

{ })()(
1 ,..., b

n
b

k b
qqq  ∈ . The lengthy process of their calculation may therefore be 
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avoided. This fact has the following physical interpretation: in an element 
connecting two links, a change of the (elastic or damping) force can only occur 
with an alteration of relative position of the points A and B. The common lifting 
motion of the attachment  points of the connecting element does not influence the 
force occurring in it. A proof can be found in [Szczotka M., 2004]. It requires the 
assumption that b is a rigid link.  

As a final remark let us state that another element, which is often of paramount 
importance in the analysis of dynamics of cranes, may be modelled similarly. That 
element is the hoisting line. When considering cases in which the length of the 
hoisting line changes significantly, the stiffness (and damping) coefficient should 
be dependent on its current length. 

6.2   Spring-Damping Connections with Clearance 

The considerations of models of connections with clearance are limited to 
kinematic joints of the 5th class (Fig. 6.2) [Harlecki A., 2002]. Let the 
displacement in a connection be denoted as: 
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E
qqd LR −=, . (6.15) 

The connections depicted in Fig. 6.2 are two-way ones. In technical applications 
one-way connections also occur often. Therefore, for the rest of this work, models 
of one-way connections with clearance will be presented. Two types thereof are 
distinguished: L and R (Fig. 6.2). A two-way connection is obtainable by 
combining models of those two types. 

Assuming the elastic characteristic of the spring-damping element (SDE) E(L,R) 
to be linear, we may present interaction between the links A and B as shown in 
Fig. 6.3. A model of this type of a spring-damping connection with clearance can 
be easily implemented on a computer, as it may be defined in the following way: 
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 for an element of type R: 
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where ( )LE
c , ( )RE

c
  

– appropriate stiffness coefficients (Fig. 6.2).  
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Fig. 6.2. A spring-damping connection with clearance: a) a slider, b) a revolute joint 
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Fig. 6.3. The elastic force in a connection with clearance of type: a) L, b) R 

b) a) 
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Discontinuity of the derivative ( )LES
F

,
 and ( )RES

F
,  

at points ( ) ( )LL EE
d Δ−= , 

( ) ( )RR EE
d Δ=  is a disadvantage of this model. To eliminate this inconvenience, 

a model SDE E(L, R) with a modified characteristic (Fig. 6.4) may be used. The 
functions describing the forces in the connection are then defined thus: 
 
 for an element of type L: 
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 for an element of type R: 
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Fig. 6.4. Equivalent (continuous) model SDE E(L,R) of type: a) L, b) R 
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The functions ( )
l

ES LF
,

 and ( )
r

ES RF
,

 are assumed to take the form:  
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E
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edF ,

,

,,
2,,

,

βχ= , (6.18) 

ensuring that these conditions are satisfied: 
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( ) ( ) 00,
, , =rl

ES RLF , (6.19.1) 
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,
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,
=rl

ES RLF . (6.19.2) 

The constants ( )rl ,χ , ( )rl ,β  occurring in (6.18) may be obtained from the 

conditions, respectively:  
 
 for an element of type L: 
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 for an element of type R: 
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where ( )LE
l ad Δ−=0  for elements of type L, i.e. for the function ( )

l
ES LF

,
, 

 ( )RE
r ad Δ=0  for elements of type R, i.e. for the function ( )

r
ES RF

,
. 
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The functions ( ) ( )( )RLR EES
dF ,,

 depend on a parameter a. Samples of their graphs 

for ( )
m
N

105 6
, ⋅=RLE

c , ( ) mm30, =Δ RLE
 and different values of a are plotted in 

Fig. 6.5.  
The damping forces occurring in connections with clearance may be written as: 
 

 for an element of type L: 
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 for an element of type R: 
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where ( )LE
b , ( )RE

b
 
– appropriate damping coefficients (Fig. 6.2). 
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Fig. 6.5. Graphs of continuous characteristics SDE E(L,R) of type: a) L, b) R 

6.3   Constraint Equations 

When analysing closed kinematic chains or open ones which contain closed 
subchains (Fig. 6.6), it is necessary to externalize the reactions in the connection 
(which are internal forces) and to formulate proper equations relating the 
coordinates of the subchains. 

a) b) 
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In technical applications, the connections of links are usually revolute or 
spherical joints, rarely sliders. A detailed discussion of models of revolute joints 
and sliders is offered in [Harlecki A., 2002], including models of friction in such 
connections. The present book limits the considerations to spherical joints.  

 

Y0

X0

Z0}{

)( jA

)( A
xR )(iA

)( A
xR

)( A
zR

)( A
zR)( A

yR
)( A

yR

)b

link b 

link  j 

link i )a
)()( ji AAA ==

 

Fig. 6.6. Connections of links i and j: a) )()( ji AAA == , b) forces of reaction in 
a spherical joint 

Assuming the link  b, being a common base of two subchains connected at the 
point A, to be rigid, transformation matrices of the coordinates of the links i and j 
to the coordinate system of the link b may be put in the following form: 

( )),(),(),( ~~~ ibibib qTT = , (6.24.1) 

( )),(),(),( ~~~ jbjbjb qTT = , (6.24.2) 

where ),(),( ~,~ jbib qq  are defined in (6.5). 

Let the coordinates of the point  A in the coordinate systems attached to the 
links i and  j be given by the vectors: 

[ ] T
AiAiAi

i
A zyx 1~~~~

,,,
)( =r , (6.25.1)
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[ ] T
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j
A zyx 1~~~~
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)( =r . (6.25.2)

Coordinates of the point A in the coordinate system of the body b may then be 
determined from the formulas: 

)(),(),( ~~ i
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ibib
A rTr = , (6.26.1) 

)(),(),( ~~ j
A

jbjb
A rTr = . (6.26.1) 

Hence the constraint equation takes the form: 

),(),( jb
A

ib
A rr = . (6.27) 

The above may be decomposed into three equations resulting from comparisons of 
the components x, y, z of the vectors (6.27) and an identity due to their fourth 
components: 
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A
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A rr = . (6.28) 

To eliminate the identity (6.28) an operator may be introduced which reduces 
vectors with four components to ones with three of them. The operator has a 
matrix form: 
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The constraint equation (6.27) may then be rewritten as: 
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where ),(),,( ib
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A
rθr =θ , 

 ),(),,( jb

A

jb

A
rθr =θ , 

in which vectors have three components. 
This reduction is implicit henceforth. The identity (6.28) will be omitted and 

equalities of type (6.27) will be deemed equivalent to three scalar equations. The 
equation (6.27) may therefore be rewritten in the following form: 

( ) ( )( , ) ( , )j ib j b i
A A− =T r T r 0   . (6.31)

Taking into account the facts: 
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one can replace the constraint equations (6.31) with their other form, called 
accelerative:  
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Care must be taken to reflect in the system's equations of motion the occurrence of 
connections between links. When formulating the equations of motion of links i 
and j, the reaction forces of the constraints in the connection (Fig. 6.6b) must be 
taken into account. Assuming the vector of forces in the connection to be defined 
in the inertial system {} and its components to be: 

[ ] TA
z

A
y

A
x

A RRR 0)()()()( =R , (6.35) 

we can easily prove that additional terms (generalized forces) will appear in the 
equations of motion: 

( ) )(),()(),(
~ ),(

AjbAjb
jb RDRQ

q
= , (6.36.1) 

( ) )(),()(),(
~ ),(

AibAib
ib RDRQ

q
−= . (6.36.2) 

Components of the vector )( AR  are additional unknowns and their number is 
equal to that of the constraint equations. 

The modelling approach just described which consists in introducing the 
reactions of the constraints to the equations of motion and formulating the 
constraint equations as additional algebraic equations of the form (6.31) or 
differential equations of the form (6.34) raises the number of unknowns and the 
dimension of the problem. This can be avoided by introducing a spring-damping 
element with large stiffness and damping coefficients at the point A (Fig. 6.6). In 

this way the points )(iA  and )( jA  are kept close to each other during the motion. 
The values of the coefficients should be determined empirically. A formal 
description of this method is presented below.  

Let: 
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where )()()( ,, A
z

A
y

A
x ccc  – stiffness coefficients, 

 )()()( ,, A
z

A
y

A
x bbb  – damping coefficients, 

are the matrices of stiffness and damping of the SDE, respectively (Fig. 6.7). 
 

link i 

link  j 

)( jA

)()( , A
x

A
x bc

)(iA

AzΔ

AxΔ
AyΔ

)()( , A
y

A
y bc

)()( , A
z

A
z bc

Zb{ }b

Yb

Xb

 

Fig. 6.7. A model of a spherical joint as a spring-damping element 

The energy of elastic deformation and the dissipation of SDE's energy are 
expressed thus: 

A
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Taking into consideration the relations stated in [Wittbrodt E., et al., 2006] leads to: 
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These values are to be subtracted from right-hand sides of the equations of motion 

corresponding to ),(~ jbq  and ),(~ ibq . 



6.3   Constraint Equations 89
 

 

As can be easily seen, the presented method eliminates the need of separating 
the chain at spherical joints and increasing the dimension of the system of 
equation describing the system's dynamics. However, its drawbacks lie in the 
requirement of assuming large values of stiffness and damping coefficients in 
(6.38). Introducing such coefficients into the system causes high frequency 
oscillations to appear. It is therefore necessary to integrate the equations of motion 
of the system with a very small step or employ integration methods specialized for 
rigid systems [Press W. H., et al., 2002], [Wittbrodt E., et al., 2006]. A precaution 
is also due to the fact that the procedure described above consisting in the 
introduction of the constraints' reactions and formulation of appropriate constraint 
equations leads additionally to certain numerical complications [Frączek J., 2002]. 



 

E. Wittbrodt et al.: Rigid Finite Element Method, OEO 1, pp. 91–97. 
springerlink.com               © Springer-Verlag Berlin Heidelberg 2013 

7   Nonlinear Models of Materials 

In numerous technical applications the supporting structure of a device is assumed to 
be subjected to stresses within the limits of proportionality, i.e. where the Hooke's 
law is applicable. It is also the case with offshore cranes. In the installation process 
of underwater pipelines with the reel method, however, the pipes are commonly 
deformed plastically when they are wound onto the reel. Furthermore, material 
exposed to prolonged deformation may show a tendency to creep. Hence, the 
present chapter which briefly introduces these models of construction materials: 
elasto-plastic and visco-elastic. 

7.1   Basic Laws of Elasto-plastic Materials 

A basic property of most materials working in their ranges of elasticity is the 
linear dependency of the deformation on the loads applied. The applicability of the 
Hooke's law describing the stresses σ  within the range of elasticity is determined 
by the deformations ε  which must not exceed certain values Lε  (Fig. 7.1a). For 
materials whose yield point Lε  is sharp it may be taken from a stress–strain 
curve. For other materials, a conventional value is assumed, which corresponds to 
0.2% of permanent deformation of the object (Fig. 7.1b). Characteristic points on 
a stress–strain curve are (Fig. 7.1): 1 – proportionality limit, 2 – elastic limit, 3 and 
4 – upper and lower plasticity limit, 4–5 – ideal plasticity region, 5–6 – strain 
hardening region, 7 – rupture.  

 

Fig. 7.1. Stress–strain curves for: a) soft steel with a sharp yield point: b) a material without 
a sharp yield point (alloy steel) 
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Typical linear characteristics of stretching for various elasto-plastic materials 
are shown in Fig. 7.2 [Skrzypek J., 1986], [Ottosen N. S., Ristinmaa M., 2005]. 
The corresponding constitutive equations are summarized in Table 7.1. 

 
 

 

Fig. 7.2. Linear characteristics of stretching for ideal materials: a) rigid-plastic, b) elasto-
plastic, c) rigid-plastic with reinforcement, d) elasto-plastic with reinforcement 

Properties of many materials cannot be described with sufficient accuracy using 
linear constitutive dependencies. Various nonlinear models of materials are 
therefore formulated. Sample power characteristics of elasto-plastic materials with 
reinforcement are shown in Fig. 7.3 and their corresponding constitutive 
dependencies in Table 7.2. 

Table 7.1. Dependencies describing linear characteristics of models of elasto-plastic 
materials 
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Fig. 7.3. Power characteristics of elasto-plastic materials: a) power elastic reinforcement, b) 
rigid-plastic reinforcement, c) a elasto-plastic model with reinforcement, d) a material 
according to Ramberg-Osgood [Ramberg W., Osgood W. R., 1943] 

Table 7.2. Dependencies of power relations of models of elasto-plastic materials 

Model of a material Equation ( )εσ f=  

power elastic reinforcement 
κ

ε
ε

σ
σ









=

00

, 10 ≤≤κ  

power rigid-plastic reinforcement κεσσ k+= 0

elasto-plastic 








>

≤
=

E
k

E
E

0

0

for

for

σεε

σεε
σ

κ
 

Ramberg-Osgood 
b

E
k

E






+= σσε  

where k  – a constant dependent on the material, b  – exponent 1≥  
 

In Fig. 7.4, characteristics of ideally plastic materials are shown [Szuwalski K., 
Życzkowski M., 1973] and the dependencies corresponding to them are in Table 7.3. 

 
Fig. 7.4. An ideally plastic material: a) approximation with the hyperbolic tangent function, 
b) Ylinen approximation, c) approximation according to Szuwalski-Życzkowski 
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Table 7.3. Dependencies for models of ideally plastic materials 

Model of a material Equation ( )εσ f=  

according to Prager [Prager W., 1938] 
(Fig.7.4a) 








=

0

0

σ
σσε arctgh

E
 

according to Ylinen [Ylinen A., 1956] 
(Fig.7.4b) 
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The formulas presented in Tables 7.1 – 7.3 may be used to determine the 
bending moment in the analysis of large elasto-plastic deflections. An important 
problem is to determine the deformation under which the material changes from 
being elastic to plastic. The criterion may be defined based on various hypotheses. 
The most often used ones are: the Huber-Mises-Hencky (HMH) hypothesis and 
the Tresca-Guest hypothesis [Nowacki W., 1970], [Skrzypek J., 1986], [Ottosen 
N. S., Ristinmaa M., 2005]. Stresses causing transition to the plastic state under 
the HMH hypothesis form in the space of principal stresses a cylinder whose axis 
satisfies zyx σσσ == . Transition of the material to the plastic state will occur 
when the following equation is satisfied:  

,03 02 =− σJ  (7.1)

where 0σ   – initial plasticity limit of the material, 
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xz yz z

s

σ σ τ τ
σ σ δ τ σ σ τ

τ τ σ σ
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 

= − = − 
 −  

  –  stress deviator, 

 ( )1
ˆ

3 x y zσ σ σ σ= + +   – mean stress, 
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  – stress tensor. 

 

 

 

Fig. 7.5. Illustration of the Bauschinger effect 

A result of plastic deformations is alteration of the position and the shape of the 
surface corresponding to the limit elastic state. The phenomenon is related to the 
yield point being shifted on the sides of both stretching and compression. It is 
described by various models of elastic reinforcement: isotropic, kinematic, 
combined, anisotropic. There exist multiple theories defining the shape of the 
stress-strain curve in the plastic region as a linear or nonlinear function of multiple 
parameters characterizing the material [Mróz Z., 1967], [Skrzypek J., 1986], 
[Ottosen N. S., Ristinmaa M., 2005]. In response to the plasticity surface being 
changed, the Bauschinger effect occurs which gives the material anisotropic 
properties (Fig. 7.5). After the reinforcement phase on the segment  1–2 follows 
relaxation 2–3 and transition to opposite stresses 3–4. The curves 2–4 and 4–5 are 
assumed to be parallel to 0–1 and 1–2 (initial stress and reinforcement phase), 
respectively. For actual materials, one can assume the coefficient of the 
Bauschinger effect 1,...,0∈β , which relates isotropic reinforcement (β = 0) to 

kinematic reinforcement (β = 1).  
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7.2   A Model of Visco-elastic Material 

In the linear theory of elasticity it is assumed that deformation of a body depends 
only on stress and material. The dependency between those values may in reality 
be also influenced by: temperature, time, generalized coordinates and velocities, 
etc. In order to take such influences into account, visco-elastic models of materials 
are introduced. Below selected models dealing with time are presented. 

In visco-elastic problems [Nowacki W., 1963] two functions are of particular 
importance: creep function which increases the deformations under prolonged 
stress and relaxation function which describes how stress due to permanent 
deformation subsumes. Models of visco-elastic material are represented as 
systems of massless springs and dampers. Stiffness of the springs describes the 
elastic properties of the material and damping coefficients reflect the viscous 
traits. The simplest model taking into consideration both functions (creep and 
relaxation), which is often used, is the standard linear model (Fig. 7.6c). Also the 
Kelvin-Voigt model (Fig. 7.6a) only describing creep and the Maxwell model 
which deals just with relaxation (Fig. 7.6b) are very common. 

 

 

Fig. 7.6. Basic models of a visco-elastic material: a) Kelvin-Voigt, b) Maxwell, c) standard 
linear 

The constitutive equation of the standard model (Fig. 7.6c) may be written in the 
form: 

( )( )21211
1

EEEEE εσ
η

σε −++=  .
 

(7.2)

In Fig. 7.7a, a graph ( )tε  is shown which corresponds to the solution of the 

equation (7.2) assuming load to be given by the function 
( ) ( ) ( )[ ]TtHtHt −−= 0σσ  where ( )tH  is the Heaviside function. 

Later in this volume, methods of introducing nonlinear physical dependencies 
into systems' equations of motion will be presented. 
 

1E
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ηE
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Fig. 7.7. Response of the standard model: a) material deformation, b) stress 
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8   The Rigid Finite Element Method 

Actual kinematic chains commonly contain links whose flexibility greatly exceeds 
that of other links. It may then be necessary to take that flexibility into account. 
Booms of cranes and certain links of manipulators count among those. A large 
number of approaches in analysis of multibody systems can be found in literature 
with with one and more flexible links [Zienkiewicz O. C., 1972], [Wittbrodt E., 
1983], [Wojciech S., 1984], [Huston R. L., Wanga Y., 1994], [Arteaga M. A., 
1998], [Zienkiewicz O. C., Taylor R. L., 2000], [Berzeri M., et al., 2001], 
[Adamiec-Wójcik I., 2003], [Wittbrodt E., et al., 2006]. Chapter 9 introduces 
models of offshore cranes (a column one and an A-frame) which enable taking 
into account the flexibility of the supporting structure. 

Let us consider a flexible link numbered p of a sample mechanism depicted in 
Fig. 8.1. Let {p,0} be the coordinate system attached to the link p as if it were 
rigid. Its position relative to the preceding link s is given by the coordinates of the 
following vector: 

[ ]Tp
n

pp

p
qq )0,(

~
)0,(

1
)0,(

0,

~~~ L=q . (8.1)

The number 0,
~

pn  of coordinates of the vector )0,(~ pq  is less than 6 and depends 

on the class of the kinematic joint connecting the links s and p. These coordinates 
will henceforth be called rigid (configuration) coordinates of the link p.  

In order to fully describe the relative motion of a flexible link, the vector (8.1) 
needs to be supplemented with a vector whose elements are called elastic 
coordinates. Their choice depends on the discretisation method used for the 
flexible link. Regardless of the method, the vector of generalized coordinates of 
the flexible link p describing its motion in the kinematic chain may be written as: 









=

),(

)0,(
)(

~

~
~

fp

p
p

q

q
q , (8.2)

where )0,(~ pq  – vector of generalized configuration (rigid) coordinates of the 

link p, 

 [ ]Tfp
n

fpfp

fp
qq ),(

~
),(

1
),(

,

~~~ K=q  – vector of generalized elastic 

(flexible) coordinates of the link p, 
 fpn ,

~  – number of elastic coordinates of the link p. 

3
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Fig. 8.1. A flexible link p 

Let us also assume that the transformation of coordinates from the local coordinate 
system {p,0} to the preceding coordinate system (with index s) is given by the 
matrix: 

( ))0,(
)0,()0,(

~ ps
p

s
p qTT= . (8.3) 

One of many discretisation methods of flexible links will be presented below. This 
is the rigid finite element (RFE) method. It has two variants: classical and 
modified. 

8.1   The RFE Method: Classical Formulation 

The rigid finite element method has for many years been applied at the Gdańsk 
University of Technology, initially by Prof. Kruszewski, then by Prof. Wittbrodt, 
and their co-workers, to model multibody systems. The formulation of the method 
presented in [Kruszewski J., et al., 1975], in which each finite element is assumed 
to possess six degrees of freedom in its relative motion, is called classical. The 
description of the method expounded herein deviates from that which is found in 
papers by professor Kruszewski and his co-authors. Namely, joint coordinates and 
homogeneous transformations are used to derive the equations of motion, 
following [Adamiec-Wójcik I., 2003] and [Wittbrodt E., et al., 2006]. 
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8.1.1   Generalized Coordinates: Transformation Matrices 

Let p be a flexible beam link in a kinematic chain. That link is replaced with 
a series of rigid finite elements connected with spring-damping elements using 
discretisation which is detailed by Kruszewski and co-authors in [Kruszewski J., 
et al., 1975], [Kruszewski J., et al., 1999]. In the case of a beam with constant 
section, the procedure is as follows: first, this is the so-called primary division, the 
beam of length Lp is divided into mp equally long segments (Fig. 8.2a). 

 
 

Δ Δ Δ Δ Δ

pmRFEiRFE1RFE0RFE

pmSDE1SDE +iiSDE1SDE 2SDE

)a

)b

 

Fig. 8.2. Division of a flexible link: a) primary division, b) secondary division 

Flexibility traits of the elements are inherited by the spring-damping elements 
(SDE) placed at the centre of each segment of length Δ. In this way, one obtains 
a secondary division of the flexible link into mp+1 rigid finite elements (RFEs) 
connected by mp massless and dimensionless spring-damping elements (Fig. 8.2b).  

Division of beam links with variable sections and a method of determining 
characteristic parameters of RFEs and SDE are expounded, among other things, in 
the work [Wittbrodt E., et al., 2006]. Since each RFE (except RFE 0) has a 
coordinate system attached with origin in its centre of mass and axes coinciding 
with the principal axes of inertia (Fig. 8.3), the position of the element in 
undeformed state can be determined unambiguously relative to the system {p,0} 
of RFE 0, provided that the transformation matrices are known: 

const
~ ),( =′ipT . (8.4)

In the general case, the transformation matrices with constant coefficientstake the 
form: 









=

′
′

1

~~
~ )',(),(

),(

0

rR
T

ipip
ip , (8.5) 

where ),(~ ip ′R  – direction cosine matrix of the axes of the system {p,i'} 
relative to the system {p,0}, 

 )',(~ ipr  – vector of coordinates of the origin system of the system {p,i'} 

in {p,0}. 
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Fig. 8.3. Coordinate systems related to a flexible link: {} – the inertial system, {p,0} – the 
system attached to RFE 0, {p,i'} – the system attached to RFE i in undeformed state of  
the beam, {p,i} – the system attached in a fixed way to RFE i whose axes coincide with the 
principal central axes of inertia of the element, ),(),(),( ,, ipipip zyx  – coordinates of the 

origin of the coordinate system {p,i} in {p,i'}, ),(),(),( ,, ip
z

ip
y

ip
x ϕϕϕ  – ZYX Euler angles 

described in chapter 4 

If the system {p,i'} has axes parallel to the axes of the system {p,0}, the rotation 

matrix ),(~ ip ′R  is the identity matrix. Due to the lifting motion and external loads, 

individual RFEs are subjected to displacements. The generalized coordinates 
being the components of the vector:  

[ ] Tip
z

ip
y

ip
x

ipipipip zyx ),(),(),(),(),(),(),(~ ϕϕϕ=q ,  (8.6) 

decribe the motion of the i-th RFE (i = 1,...,mp) of the link p relative to the system 
{p,i'} attached to the RFE i in undeformed state. The transformation matrix )(~ pi

i T′  

from the system {p,i} to the system {p,i'} in the nonlinear model, allowing the 

rotation angles ),(),(),( ,, ip
z

ip
y

ip
x ϕϕϕ  to be large, takes the following form:  

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )
( )

( ,

p i p i p i p i p i p i p i p i p i p i p i p i p i
z y z y x z x z y x z x

p i p i p i p i p i p i p i p i p i p i p i p i p i
z y z y x z x z y x z xi p

i
p i

y

x

y

c c c s s s c c s c s s

s c s s s c c s s c c s

s
′ =

− +
+ −

−
T%

) ( , ) ( , ) ( , ) ( , ) ( , )

0 0 0 1

p i p i p i p i p i
y x y x zc s c c

 
 
 
 
 
 
  

, (8.7) 

where
 { }.,, forsin,cos ),(),(),(),( zyxsc ipipipip ∈== αϕϕ αααα . 



8.1   The RFE Method: Classical Formulation 103
 

 

When small rotation angles of RFEs are assumed, leading to omission of higher 
rank small terms from the approximations of trigonometric functions of the angles 

),(),(),( ,, ip
z

ip
y

ip
x ϕϕϕ  (the linear model), the matrix )(~ pi

i T′  may be written 

[Adamiec-Wójcik I., 2003] as:  
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ip
z

pi
i

z

y

x

ϕϕ
ϕϕ

ϕϕ

T . 
(8.8)

The transformation matrix from the system },{ ip  to the system }0,{p , whether 

the model is linear or nonlinear, has this form:  

( ) )(),(),(),(),( ~~~~~ pi
i

ipipipip TTqTT
′′== . (8.9)

8.1.2   Kinetic Energy of a Flexible Link 

Let us assume, as in chapter 5, that the concerned multibody system is situated on 
a movable base {A} (Fig. 5.1) whose motion relative to the inertial (global) system 
{0} = {} is known.  

Rigid finite elements of the link p may be treated as mp+1 consecutive bodies 
appended to the link s of the kinematic chain. In further considerations, the first 
rigid finite element in the chain (RFE 0) is treated separately, because the 
generalized coordinates describing the relative motion of this RFE depend on the 
type of the kinematic joint connecting the link p with its preceding link s and their 
number is less than 6. The coordinate system {p,0} plays the role of the 
configuration system of the link p. 

Let the vector of generalized coordinates )( pq  contain the coordinates of RFE 

0 of the link p and the coordinates of the link s which precedes the link p. Let also 

the transformation matrix )0,( pT  define the transformation from the system {p,0} 
attached to RFE 0 of the flexible link p to the inertial system. The following 
notation is introduced:  









=

)0,(

)(
)(

~ p

s
p

q

q
q , (8.10.1)

( ) ( ) ( ))()0,(0)0,(
)0,(

)(0)0,( )(~)( pp
A

ps
p

sA
sA

p tt qTTqTqTTT == , (8.10.2)

where ( ) ( ))0,(
)0,(

)()0,( ~ ps
p

sA
s

p qTqTT = . 
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The kinetic energy of RFE 0 of the link p is given by the expression: 

{ }Tppp
pE )0,()0,()0,(

0, tr
2

1
THT &&= , (8.11) 

where )0,( pH  – matrix of inertia of RFE 0 of the link p. 
A derivation similar to that in chapter 5 yields: 
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where { }Tp
i
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k

p
ika )0,()0,()0,()0,(
, tr THT= , 
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The equation (8.12) may be put in a matrix form: 
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&&
. (8.13) 

The remaining RFEs of the flexible link are treated as elements of the kinematic 
chain  appended to RFE 0. Hence, the coordinates of an arbitrary point in the local 
system {p,i} of RFE i of the link p (i = 1,...,mp) may be transformed, following the 
procedure presented in chapter 5, to the inertial system. The following equality is 
used: 

),(),(),( ~ ipipip rTr = , (8.14) 

where ),()0,(),( ~ ippip TTT =  

 ),( ipr  – vector of coordinates in the inertial system {}, 

 ),(~ ipr  –  vector of local coordinates in the system {p,i}. 

The kinetic energy of REF i of the link p equals: 

{ }Tipipip
ipE ),(),(),(

, tr
2

1
THT &&= , (8.15) 

where ),( ipH  – matrix of inertia of RFE i of the link p. 
Defining a vector with 66~

0,0,, +=++= ppsip nnnn  components: 
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the following may be written: 
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The same may be expressed in the block form, thus: 
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8.1.3   Potential Energy of Gravity Forces and Deformations  
of a Flexible Link p 

The potential energy of gravity forces of the RFE i is given by: 

),(),(
3

),(
,

~ ip
C

ipipg
ip gmV rTθ= , (8.19)

where ),(~ ip
Cr  – vector determining the position of the centre of mass of the 

RFE i in the local coordinate system },{ ip , 

 ),( ipm  – mass of REF i. 

Hence, after ironing out the differences in the definitions of matrices )0,( pT  and 
),( ipT , for pmi ,,1 K=  the following holds:  
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where ( )
,
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)0,( pG  and ),( ipG  corresponding to the coordinates 
),()0,()( ~,~, ipps qqq .  

 
Since the considered link is flexible, before formulating its equations of motion 
the expressions resulting from the energy of elastic deformation of SDE must be 
determined. Their derivations in the case of linear physical dependencies 
describing the properties of the material are presented below. The way with 
nonlinear physical dependencies will be discussed later. In the considerations 
pertaining to the deformation of spring-damping elements the reference coordinate 
system is assumed to be {p,0}, which is attached to RFE 0, and the matrices  

),(~ ip ′R , which occur in (8.5), to be identity matrices. A consequence of this is the 
proposition that in the undeformed state of the link p the axes of all the coordinate 
systems attached to RFEs from 0 to mp are parallel. A general algorithm omitting 
this assumption is presented in [Wittbrodt E., et al., 2006]. A numerically efficient 
modification of the algorithm will also be described later in this chapter.  

Let SDE e connect the RFEs l and r of a flexible link p (Fig. 8.4).  
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Fig. 8.4. A model of a spring-damping element: a) connection of RFEs l and r by SDE e, b) 
notation assumed 

 
The energy of elastic deformation of this element is given by the formula: 
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where )(
,
p
jec   for j=1,2,3 – coefficients of translational stiffness of the SDE e 

of the link p, 

 )(
,
p
jec   for j=4,5,6  – coefficients of rotational stiffness of the SDE e of 

the link p, 

 [ ] [ ] T
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T
lll

lp
e xxxxxx 1,1 3,2,1,

),(
3,2,1,

),( == rr  – vectors 

of coordinates of the SDE e (treated first as a point of the 
RFE l, and next as a point of the RFE r) expressed in the 
system }0,{p , 

 ),(),( , lp
j

rp
j ϕϕ  – rotation angles of the RFEs r and l of the link p. 

 

In Fig. 8.4 and formula (8.21), the axes of the coordinate system are denoted with 
(1, 2, 3) instead of (X ,Y, Z) used hitherto. This shortens the formulas 
considerably. 

The coordinates of the SDE e in the systems attached to the RFEs l and r are 
assumed to be represented by vectors ),(),( ~  and ~ rp

e
lp

e rr in Fig. 8.4, respectively. 

Consequently, the coordinates of this spring-damping element in the reference 
coordinate system {p,0} are expressed by:   

),(),(),( ~~ ip
e

ipip
e rTr = , (8.22) 

where },{ lri ∈ . 

The vector )( p
erΔ  (Fig. 8.4b) is given as:  

),(),(),(),(),(),()( ~~~~ lp
e

lprp
e

rplp
e

rp
e

p
e rTrTrrr −=−=Δ , (8.23) 

and the potential energy of elastic deformation of the SDE e may be put in the 
following form: 

[ ] [ ]),(),(),(),(),()(),()(
,

~~~~
2

1

2

1 lprpep
R

Tlprpp
e

ep
T

Tp
e

s
epV qqCqqrCr −−+ΔΔ= , (8.24) 

where 
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 
          = =             
  

C C . 

The above considerations pertain to the general case in which the transformation 
matrices { }rliip ,dla

~ ),( ∈T  are nonlinear. When small oscillations are considered, 

i.e. when the transformation matrices )(~ pi
i T′

 conform to the formula (8.8), the 
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transformation formula taking the system {p,i} to the system {p,0} may be 
represented thusly:  

),(),(),(),( ~ ipip
e

ip
e

ip
e qDrr ′+′= , (8.25)

where  





















+
+
+

=′

1

~

~

~

)',(
33,

)',(
22,

)',(
11,

),(
ip

i

ip
i

ip
i

ip
e

ax

ax

ax

r – vector with constant coefficients, 

 

















 −

−
−

=

0

0

~

~

0

~
0

~

0000

~100

~010

0001

' 1,

2,

1,

3,

2,

3,),( i

i

i

i

i

iip
e

x

x

x

x

x

x
D – matrix with constant coefficients, 

 ),( ip
ja ′

 – components of the vector ),(~ ip ′r  from the formula (8.5) for 
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~,~,~

iii xxx

 

– coordinates of considered point in {p,i}. 
 

The formula (8.21) for small deformations takes the form:  

( ) ( , ) ( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) ( , ) ( , )
,

( , ) ( , ) ( , ) ( , ) ( , )

1
' ' ' ' ' '

2
1

2

Ts p p r p r p l p l p e p p r p r p l p l
p e e e e T e e e

Tp r p l p e p r p l
R

V    = Δ + − Δ + − +   

   + − −   

r D q D q C r D q D q

q q C q q

% % % %

% % % %

,(8.26) 

where ),(),()( ~~' lp
e

rp
e

p
e rrr ′−′=Δ . 

In the case of beam links, the SDE i connects the RFE i–1 with the RFE i, 

therefore )1,(),( ~~ −= iplp qq  and ),(),( ~~ iprp qq = . 

The potential energy of elastic deformation of the link p equals the sum of 
energies of all the SDE: 


=

=
pm

e

s
ep

s
p VV

1
, . (8.27) 

One should take into account that the formula expressing the elastic energy of SDE 
1 of the link p is a variant of the formulas (8.21) and (8.24), and it takes the form: 

)1,(),()1,()(
1

),()(
1)1,(

~~
2

1

2

1 pep
R

Tppep
T

Tps
pV qCqrCr +ΔΔ= , (8.28)

where )0,(
1

)1,(
1

)1,()(
1

~~~ pppp rrTr −=Δ . 
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Taking (8.27) into account leads to: 

( )( , ) ( , 1) ( , ) ( , 1) ( , ) ( , 1) ( , 1) ( , )
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s
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where )(
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i
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i
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+
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r
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Let us remark that for i = 0 and i = mp the following should be assumed, 

respectively: 0C =)0,( p
R , 0CC == ++ )1,()1,( pp ip

T
ip

R . The formula (8.29) is valid 

both for linear and nonlinear oscillations. The form of the vectors ),(~ ipS  in the 
linear case may be determined easily by means of the formula (8.26). Problems 
related to the choice of stiffness coefficients when analysing large deflections are 
discussed in the following papers: [Adamiec-Wójcik I., 1992], [Wojciech S., 
Adamiec-Wójcik I., 1993], [Wojciech S., Adamiec-Wójcik I., 1994] and 
[Wittbrodt E., et al., 2006].  

8.1.4   Generalized Forces: Equations of Motion 

Let us assume that the following act upon the RFE i: a force ),(~ ipF  and a pair of 

forces whose moment ),(~ ipM  has the components:   
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~~~~ ),(),(),(),( =F , (8.30.1) 
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ip MMM 0
~~~~ ),(),(),(),( =M . (8.30.2) 

Applying the formulas (5.40) and (5.42) along with the procedure presented in 
[Adamiec-Wójcik I., et al., 2008] yields these forms of generalized forces due to 
their presence: 
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 (8.31) 

When forces acting on RFE 0 are considered, it may be written: 









=

)0,(
0

)0,(
)0,(

p

p
sp

Q

Q
Q , (8.32.1) 

whereas for a force ),(~ ipF  and a pair of forces with moment ),(~ ipM  acting on 
RFEs from 1 to mp the following holds:  
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In the case of a flexible link decomposed into mp+1 rigid finite elements, the 
following vector of generalized coordinates of the link and expressions giving the 
kinetic energy and the potential energy of the gravity forces may be defined: 
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, . (8.33.3) 

From the equations (8.13), (8.18), (8.20), (8.29) and (8.32) it follows that the 
equations of motion of the link p, including the term due to the energy of elastic 
deformation, take the form: 
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A remark is due that the matrices )( pA  and )( p
RK  contain many zeroes. This fact 

may be leveraged in an implementation of the algorithm on a computer. The 
equations of motion of the system's links from 1 to p, forming a kinematic chain, 
may be generated in the way described in section 5.4. The equations for a rigid 
link may be obtained as a special case of a flexible link taking mp = 0. The rigid 
link may then be treated as RFE 0.   

When a link p follows a flexible link in a kinematic chain, the model includes 
a connection between the last RFE of the flexible link s and the next link (namely, 
with RFE 0 of the next link). If linear oscillations are considered, i.e. the 
transformation matrix for the RFE i of the flexible link takes the form (8.18), the 

matrix of masses )( pA  is a diagonal matrix in the fragment from RFE 1 to RFE 
mp of the link p. Calculations are considerably simples when this fact is used in the 
integration of the equations (8.34). Additionally, the stiffness matrix )( p

RK  is 

a block-tridiagonal matrix, which is also helpful in solving the equations of 
motion. A product of matrices with constant coefficients may be distinguished in 

the vector [ ]Tmppfp p ),()1,(),( ~~
SSS K=  in the linear case [Wojnarowski J., 

Adamiec-Wójcik I., 2005], thus assuming:  

),(),(),(),( ~ fp
c

fpfp
T

fp SqKS += , (8.35)

where ),( fp
TK , ),( fp

cS – a matrix and a vector with constant coefficients, 

 
TTnpTpfp p





= )~,()1,(),( ~~~ qqq L . 

 
The presented model includes all possible displacements of the RFEs into which 
a flexible link is divided. If just one type of flexibility (e.g. to bending in one 
plane or torsion) is dominant in the link, models with fewer degrees of freedom of 
the RFEs may be easily obtained as a special case of the given formulas by 
appropriately fixing the vector of generalized coordinates of the rigid element.  
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8.2   Modification of the Rigid Finite Element Method 

The classical rigid finite element method enables taking into account arbitrary 
displacements of finite elements and therefore analysis of the following 
deformations: lateral, longitudinal, rotational and shear. The displacements of each 
element are considered relative to the reference coordinate system attached to RFE 
0. In this section, a modification of the rigid finite element method is presented 
which also has applications to discretisation of flexible beam links. In the 
modification only lateral and rotational deformations are assumed, and 
displacements of each RFE are defined relative to its preceding RFE. The method 
is presented in [Wojciech S., 1984] for planar systems and in the papers [Wojciech 
S., 1990], [Adamiec-Wójcik I., 1992], [Adamiec-Wójcik I., 1993] and [Adamiec-
Wójcik I., 2003] as well as in [Wittbrodt E., et al., 2006] for spatial systems. The 
modification allows large deflections of flexible links to be analysed. 

8.2.1   Generalized Coordinates: Transformation Matrices 

Discretisation of a flexible beam link is performed in the same way as in the 
classical rigid finite element method, i.e. with primary and secondary divisions 
(Fig. 8.4). To each rigid finite element, a coordinate system is attached whose 
origin is located in its preceding spring-damping element (Fig. 8.5). 
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Fig. 8.5. Generalized coordinates of the i-th RFE and local coordinate systems 

The generalized coordinates describing the position of the i-th RFE relative to 

the preceding i-1-th RFE of the flexible link p are the angles ),(),(),( ,, ip
z

ip
y

ip
x ϕϕϕ , 
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of which the latter two correspond to bending and the first one to torsion of the 
element. Upon discretisation, the flexible link may be viewed as a system of rigid 
links connected by joints of the 3rd class. Similarly to the model formed using 
classical finite elements, a rigid link is a special case of a flexible link (mp = 0). 

The transformation matrix ),(~ ipT  from the system {p,i} attached to RFE i 
(i = 1,...,mp) to the system {p,i–1} in the nonlinear model, i.e. allowing the angles 

),( ip
αϕ  for { }zyx ,,∈α  to be large, takes the form:  
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(8.36.1)

where { },,,for sin,cos ),(),(),(),( zyxsc ipipipip ∈== αϕϕ αααα  

 
)1,( −ipl  – length of RFE i–1 of the link p. 

 
When the angles ),( ip

αϕ  are small, the following may be assumed: 
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T . (8.36.2)

When all three types of oscillations are considered (rotational and lateral in two 
planes), the generalized coordinates describing the motion of the i-th RFE of the 
link p relative to its predecessor may be written as components of the following 
vector: 

( , ) ( , ) ( , ) ( , ) for  1, ,
Tp i p i p i p i

x y z pi mφ φ φ = = q% K . (8.37)

RFE 0 is treated like in the classical rigid finite element method, its generalized 

coordinates being given by the vector )0,(~ pq . A series of intermediate 

transformations yields the transformation matrix from the local system {p,i} 
(i=1,...,mp) to the global system:  

),()1,(),( ~ ipipip TTT −= , (8.38) 

where )1,()1,()0,()1,( ~~ −− = ipppip TTTT K  

 )0,( pT  – matrix given by (8.10.2), 

 ),(~ ipT  – matrix defined by the formula (8.36) for i=1,...,mp. 
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The kinetic energy, the potential energy of gravity forces and the generalized 
forces caused by external forces and moments thereof acting on the flexible link 
are calculated as in section 5.3.  

An important property of formula (8.38) is that the matrix ),( ipT  depends not 
only on the vector )( sq  of generalized coordinates of the link which precedes the 

flexible link, but also on all the RFEs preceding the RFE i. Defining the vectors:  
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and taking (8.2) into account allows us to write: 
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where 
TTmpTpfp p





= ),()1,(),( ~~~ qqq L . 

8.2.2   Kinetic Energy: Lagrange Operators 

From (8.38) it follows: 

( )),()1,(),()0,(),( ~,,~ˆ ippippip qqTTT K= , (8.41) 

where ( )∏
=

=
i

j

jpjpip

1

),(),(),( ~~ˆ qTT . 

Since the kinetic energy of the link p may be written as: 
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i
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, , (8.42)

where
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calculations analogous to those presented in chapter 5 give: 
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(8.43)

where ),(
,

ip
βαA  – appropriate blocks of the matrix 
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As before, the gravity forces of the RFEs and their derivatives may be put in the 
form: 
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and further:  
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where 
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The generalized forces may be similarly presented. If ),(~ ipF  and ),(~ ipM  specified 
in (8.30) act on RFE i of the link, then:  
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where ),( ip
αQ – appropriate blocks of the vector 
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 ),(~ ipr – vector giving the coordinates of the point to which the force in 
the system },{ ip . 

Formulation of the equations of motion further requires the determination of the 
elastic energy and its derivatives. The reasoning below pertains to linear physical 
dependencies. 

8.2.3   Energy of Elastic Deformation 

The potential energy of elastic deformation of an SDE of a flexible link is 
calculated based on the fact that the generalized coordinates specify relative 
angles. For the spring-damping element connecting the RFEs i–1 and i it is given 
by the formula: 
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+= , (8.47)

where )(
3,
p

jic +  are the appropriate coefficients of rotational stiffness defined 

in (8.21). 
The formula (8.47) may be rewritten as: 
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where 
















=
)(

6,

)(
5,

)(
4,

),(

00

00

00

p
i

p
i

p
i

ip

c

c

c

C . 



8.2.4   Equations of Motion 117
 

 

The derivatives of the potential energy of elastic deformation relative to the 
generalized coordinates have the form: 
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~
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. (8.49) 

8.2.4   Equations of Motion 

Whereas the kinetic energy and the potential energy of gravity forces of the link p 
are given by the formulas:  
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, , (8.50.1) 
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and taking (8.43), (8.45), (8.46) and (8.49) into account, equations of motion of 
the link p may be written as: 

)()()( ppp fqA =&& , (8.51.1) 

or decomposed with blocks: 
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8.3   Modelling of Planar System 

By means of the rigid finite element method, an arbitrary description of the 
geometry of a system may be given. The traditional approach may be used instead 
of homogeneous transformations and joint coordinates proposed in earlier 
chapters. In the present chapter an example is given of modelling a planar system 
using the rigid finite element method in its modified form and a classical 
description of the system's geometry. 

8.3.1   Determination of Generalized Coordinates 

In Fig. 8.6, a sample decomposition of a k-th flexible links into nk+1 rigid finite 

elements connected at points )()(
1 ,, k

n
k

k
AA K  by nk massless spring-damping 

elements is presented. Since the problem considered is plane, in the relative 
motion each RFE enjoys one degree of freedom which is the inclination angle of 
the axis (k,i)X of the RFE i to the axis X of the global system (Fig. 8.7). Further 
analysis assumes the angles to be measured relative to the global system.   

The position of the link k being discredited is therefore described by nk+3 

coordinates. Two of them, (xk, yk), are the coordinates of the point )(kA  which 

equals the point )(
0

kA  of the first RFE (usually being one of the nodes of the 

whole mechanism). The remaining coordinates are the angles already mentioned 

which will be denoted ),()0,( ,, knkk ϕϕ K . As a noteworthy observation, these 

angles  correspond to those from (8.37) – ),( ip
yϕ . Thus, the vector of coordinates 

of the link k may be defined:  

( ) [ ]Tnkkk
kk

k kyx ),()1,()0,( ,,,,, ϕϕϕ K=q . (8.52)

Following [Wojciech S., 1984], [Szczotka M., 2011b], when introducing 

denotations for coordinates of the point ( ))(
,
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k
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1 , k
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k
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k
i baA +++  

in the local coordinate system ( )k
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k
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k
i ηξ )()(0  attached to the centre of mass of the  
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Fig. 8.6. Decomposition of a flexible link into rigid finite elements 
 

 

Fig. 8.7. Inclination angles of an RFE to the axes of a stationary coordinate system 

)(k
iη

)(k
iξ

)(k
iζ

)(k
iC

)(k
iq

)()( , k
i

k
i Jm

0

y

x

)(kA

)1( +kA

( ) )(
0

)( , k
kk

k AyxA =

0RFE

1RFE

iRFE

knRFE

1+iRFE

1SDE

iSDE

1−iSDE

)(kα

)(kx

x0

y

)1( +kA

)(k
iq

)(k
nk

A

)(k
iA

)(
1

kA

)(
1

k
iA +



120 8   The Rigid Finite Element Method
 

 

 

Fig. 8.8. Coordinates of a point in the local coordinate system 

RFE i (Fig. 8.8) we may write the coordinates of the centre of mass of the RFE i in 
the coordinate system {A} as follows:  

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )



=

=

++=

++=

i

j

k
ji

jkk
jik

k
c

i

j

k
ji

jkk
jik

k
c

hyy

hxx

i

i

0
,

,
,

0
,

,
,

sin

cos

ϕϕ

ϕϕ

, (8.53) 

where ( )
( ) ( )

( )( ) ( )( )






=+

<+−++−
=

++

ijba

ijbbaa
h

k
ii

k
ii

k
jj

k
jj

k
jj

k
jjk

ji

when                              

when

2

,

2

,

2)(
1,

)(
,

2)(
1,

)(
,

, , 

 ( )

( ) ( )

( ) ( )

( )

( )











=+

<
−
−

= +

+

 whenarctg

whenarctg
1

1

,

ij
a

b

ij
aa

bb

k
i,i

k
i,i

k
j,j

k
j,j

k
j,j

k
j,j

k
ji

π
ϕ . 

8.3.2   Equations of Motion of a Link 

The kinetic energy of the i-th RFE equals: 
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where ( )k
im  – mass of the i-th RFE, 

 ( )k
iJ  – moment of inertia of the i-th RFE relative to the central axis 

perpendicular to the plane XY, 

and then the following sum gives the energy of the entire link k: 
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Using (8.53), (8.54) and the following identities, which may be proved by 
induction: 
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we may express the kinetic energy of the link k as: 
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This enables transforming the Lagrange equation of the link k to: 
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– dissipation function of the k link's energy,
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– potential energy of deformation and gravity forces of the link k,
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– vector of generalized forces. 
 
By taking into account (8.57), the following is obtained: 

( )
( ) ( ) ( ) ( )kkkk

k qBqAε
q

&&& += , (8.59)

where )(kA
 

– defined in (8.57), 
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The following formula gives the potential energy of gravity forces: 
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It then follows from (8.53): 
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The expression giving the energy s
kV  of elastic deformation and the dissipation 

function ( )kD  of the k link's energy depend on the form of assumed physical 
dependencies between the deformations and stresses characteristic to the spring-
damping elements. In the case of linear Kelvin-Voigt model, counting s

kV  and 
( )kD  as components due to deformation of the spring-damping elements (Fig. 

8.6), it may be written:  

( )
( ) ( )kk

k

s
kV

qC
q

=
∂
∂

, (8.62)

( )

( )
( ) ( )kk

k

kD
qD

q
&=

∂
∂

, (8.63)

where ( )kC  and ( )kD  are the stiffness and damping matrix, respectively, whose 
coefficients are constant and dependent on the geometry of the link and the 
constants determining the stiffness and the damping of the SDE. 

The vector of generalized forces ( )kQ  is formed by the values of forces caused 

by external loads and reactions in the joints. If load shown in Fig. 8.9 is applied to 
the i-th RFE, the components of the generalized forces due to the loads take the 
form:  
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where ( ) ( )k
ji

k
jih ,, ,ϕ

 
– defined as in formula (8.53), 

 ( ) ( )k
i

k
ir γ,    – polar coordinates (relative to the middle ( )k

iC  of the i-th 

RFE of the link) of the point to which the load is applied. 
 
 

 

Fig. 8.9. Coordinates of the point of application of external load in the local coordinate 
system of the i-th RFE of the k-th link  

Summing: 
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yields the components of the vector of generalized forces. Furthermore, with 
(8.58), (8.59), (8.61), (8.62), (8.63) the equations of motion may be rewritten: 
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where ( ) ( ) ( )kkk DBB += . 

In the vector of generalized forces 
( )kQ  both the reactions of constraints and 

known loads are included. For some operations, it is convenient to have this vector 
written as:  
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where ( )kK
 

– matrix with nk+3 rows whose elements depend on ( )kq , 
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– vector of reaction (its elements are the components of 
reaction in revolute and translational connections and forces 

)(k
iη )(k

iξ

)(k
iC

)(k
iq

)(k
ir

)(k
iΓ

)(k
ixP

)(k
iyP

)(k
iM



8.4   Modelling Large Deflections and Inclusion 125
 

 

occurring therein as well as moments of undeveloped 
friction),  

 ( )k
PQ

 
– vector of generalized forces due to known external loads, 

reactions in flexible connections and forces of developed dry 
friction and viscous friction.  

Given the form of the vector (8.67), the equations of motion of the link k may be 
written as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )kkkkkkkkk FRKqCqBqA =+++ &&& , (8.68)
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The elements of the matrices ( ) ( ) ( )kkk KCA ,,  depend on ( )kq  and the elements 

of the matrix ( )kB  and the vector ( )kF  depend on  and ( )kq& . In the special 

case of nk=0, the concerned link is modelled as rigid.  
Motion of the base {A} may be taken into consideration by assuming it to be 

the RFE 0 whose motion is described by: 
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0

. (8.69)

The vector of reaction in the connection is thence defined by the vector: 

( ) ( ) ( ) ( )[ ]Tzyx MFF 0000 =R , (8.70)

whose components describe the forces and moment which realize the excitation 
(8.69). 

A detailed description of the algorithm of combining the equations of subsystems 
for revolute and translational connections is presented in [Wojciech S., 1984]. 
8.4   Modelling Large Deflections and Inclusion 

8.4   Modelling Large Deflections and Inclusion of Nonlinear 
Physical Dependencies 

8.4   Modelling Large Deflections and Inclusion  

Most of the applications already discussed in which the RFE method is used 
pertain to systems containing beam links. Some of the considerations in this book 
are for pipelines which may be subjected to deflections much larger than typical 
beam systems. Although the RFE method enables analysis involving large 
deflections, the specific dynamic behaviour of offshore pipelines and cableswhen 
laid on the bottom of a sea, calls for considerable modifications in the formulation 
of the equations of motion according to this method [Szczotka M., 2011b]. They 
will be later applied in some of the examples presented.  

( )kq
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When the deflections of the link are large, the length of the chord AB’ may 
differ (be smaller) from its primary length AB=l (Fig. 8.10). Let us remind that, 
according to (5.5), the motion of the base (the vessel's hull) is known to be given 
by the vector: 

( ) [ ] .)()()()()()( TA
x

A
y

A
z

A
org

A
org

A
org

A zyx ϕϕϕ=q  (8.71) 

 

 
Fig. 8.10. Division of a beam with length l into RFEs and SDE: a) primary beam, b) 
equivalent system of RFEs and SDE 

Let the components of the following vector determine the displacements and 
orientation of the RFE i in the system {A}: 

( ) ( ) ( ) ,
~~~

TTiTii





= Φrq  (8.72) 

where ( ) ( ) ( ) ( )[ ]Tiiii zyx=r~  – coordinates of the origin of the system 

{i} attached to the RFE i in the system 
{A}, 

 
( ) ( ) ( ) ( )[ ]Ti

x
i

y
i

z
i ϕϕϕ=Φ~

 – ZYX Euler angles determining the 

orientation of the axes of the system {i} 
relative to {A}.  

Based on the information from previous chapters, let us write the transformation 
matrices from the system {i} to the base system {A} in the form: 
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and the transformation matrices from the system {i} to the global system, 
according to (5.4.1) and (5.6), are as follows:  

( ) ( ) ( )( ) ( ) ( ) ( )( ).~~
,~ 0 ii

A
iii tt qTTqTT ==  (8.74)

 

  
Fig. 8.11. The primary element i, RFEs i-1 and i having load applied to the beam 

Large displacements of the links cause the primary element as well as the 
RFEs i and i-1 created in the secondary division to be in the configuration 
depicted in Fig. 8.11. 

The coordinate systems {i-1} and {i} are attached to RFEs i-1 and i. On the 
other hand, to the primary element i the coordinate system {i’} is attached. The 
coordinate system {A} may in further considerations be the global system or one 
attached to the deck of a vessel or platform. 

 
 

 
Fig. 8.12. Position and orientation of the system }'{i  
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If division of a beam into rigid finite elements is fine enough, differences 

between the angles ( ) ( ) ( ) ( ) ( ) ( )111 ,, −−− −−− i
x

i
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i
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i
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i
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i
z ϕϕϕϕϕϕ  which are components of 

the vector:  
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may be assumed to be small. Let us assume that the origin of the coordinate 
system {i’} (of the primary element) coincides with the right end of the RFE i-1 
and its orientation to is determined by ZYX Euler angles being the arithmetic 
means of the Euler angles of the RFEs i-1 and i – Fig. 8.12. Therefore: 

( ) ( ) ( ) ( ),~~~ '111' −−− += i
R

iii rRrr  (8.76)
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The coordinates of the right end of the RFE i-1 (point ( )iL ) and the left RFE i 
(point ( )iR ) in the base system {A} are determined thus:  

( ) ( ) ( ) ( ),~~~~ '111 −−− += i
R

iii
L rRrr  (8.78)

( ) ( ) ( ) ( ) ,~~~~ '111 −+= i
L

iii
R rRrr  (8.79)

where  ( )'1~ −i
Rr  – defined in (8.76),  
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These vectors may be represented in the system {i’}: 
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where ( )i'R  –  rotation matrix corresponding to the angles ( ) ( ) ( )''' ,, i
z

i
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i
x ϕϕϕ , 
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whereas, considering (8.77),  the vectors ( )'i
LΦ  and ( )'i

RΦ  are:  
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The vector of deformation of the SDE i takes the form: 
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where ( ) ( ) ( )''' i
L

i
R

i rrr −=Δ , 

 ( ) ( ) ( )''' i
L

i
R

i ΦΦΦ −=Δ . 

Taking (8.80) – (8.83) into account: 
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The axes of the SDE are the principal deformation axes, hence the following 
formulas for the forces and moments caused by the deformation of the SDE i: 
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r
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– stiffness coefficients. 
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Fig. 8.13. Values of shear coefficients according to (8.88) and (8.89) 

In [Kruszewski J., et al., 1999] the following formulas for stiffness coefficients of 
the elements are given: 
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The work [Szczotka M., 2011b] takes another approach to defining the shear 
stiffness coefficients cy and cz by assuming: 

,
12

,
12

33 Δ
=

Δ
= y

z
z

y

EJ
c

EJ
c  (8.89) 

and maintaining the conformance of the values of remaining coefficients to (8.88). 
The above modification of the coefficients cy and cz enables the same expressions 
to give the potential energy of elastic deformation of the primary element obtained 
with the RFE method and the energy of elastic deformation of the deformable 
element considered in FEM. 

The values of shear stiffness coefficients determined by formulas (8.88) and 
(8.89) are shown in Fig. 8.13 for different lengths of the element. Calculations 
were performed for two different sections of pipes which are analysed in later 
chapters of this volume. Appropriate division into finite elements enables both 
coefficients to share the same value. The stiffness coefficients cy and cz  in the 
formulas (8.89) have smaller values when the elements resulting from the division 
are longer. 

Forces )(~ i
estF+  applied to the point whose coordinates are given by (8.78) and 

pairs of forces )(~ i
estM+  act on the RFE i-1. Forces )(~ i

estF−  applied to the point 

whose coordinates are given by (8.79) and pairs of forces )(~ i
estM−  act on the 

RFE i. (Fig. 8.14).  
The forces (8.86) and the moments (8.87) are given in the coordinate system 

{i’}. Their transformation to the global system is done as follows: 

( ) ,
~ )(')( iii FRF =  (8.90.1) 

( ) ,
~ )(')( iii MRM =  (8.90.2) 

and in the following way to the coordinate systems of the RFEs i and i-1: 
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~ )(1)1( iTii

est FRF −− =  (8.91.1) 

( ) ,
~ )()( iTii

est FRF =  
(8.91.2) 

( ) ,
~ )(1)1( iTii

est MRM −− =  (8.91.3) 

( ) .
~ )()( iTii

est MRM =  (8.91.4) 

The presented discussion shows that the crucial change introduced with respect to 
the original formulation of the RFE method (section 8.1) is having the system  
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Fig. 8.14. Forces and moments acting on the RFEs i-1 and i caused by deformation of the 
SDE i 

of principal deformation of the SDE {i’} “follow” large displacements of the finite 
elements. A similar approach to planar systems with variable configuration is 
presented in [Wittbrodt E., 1983]. Furthermore, the modification of shear stiffness 
coefficients enables the energy of an element's deformation to be expressed in the 
same form as in the method of deformable finite elements. This conclusion holds 
for linear physical dependencies. Also of importance is an observation that since 
the presented proposal assumes the vectors of generalized coordinates of the RFEs 
take forms described by (8.84), no distinction is made among the variables to 
configuration (describing the motion of the beam as a rigid body) and flexible 
ones, as in section 8.1. 

8.4.1   Equations of Motion When Using the Classical RFE 
Method 

The equations of motion of a system taking into account the dependencies from 
previous chapters may be put in the form: 
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 n  –  number of RFEs in the concerned model. 

Note that the matrix A is diagonal, which is of great importance when integrating 
the system's equations of motion. Such form is characteristic of systems modelled 
with the classical RFE method. 

Let us assume that at the point whose coordinates are given by the vector 

in the local system of the RFE i there act: an external force and a pair of forces 
given by: 
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Their corresponding generalized forces may then be determined from the formulas 
[Wittbrodt E., et al., 2006]: 
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The relations (8.94) allow us to determine the generalized forces and moments 
pertaining to the impact of the sea environment: 
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where h
i

h
i MF

~
,

~
  – vectors of forces and moments due to interaction of the 

element i with the liquid (including the influence of waves, 
sea currents and hydrodynamics), 

 
b
i

b
i MF

~
,

~
–  vectors of forces and hydrostatic buoyancy moments 

(hydrostatic buoyancy of the pipeline and additional buoyant 
modules), 

 
t
i

t
i MF

~
,

~
 – vectors of forces and moments of the action of guiding 

structures (e.g. reel, guiding ramp, mechanisms),  

 
d
i

d
i MF

~
,

~
–  vectors of forces and moments due to the action of the 

seabed.  

The forces and moments caused by the deformation of the SDE may be included 
similarly. According to (8.86) and (8.87), forces and moments caused by the 
deformation of the SDE i (left end of the RFE i) and the SDE i+1 (right end of the 
RFE i) act upon the RFE i. Hence: 

ir ′~
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8.4.2   Inclusion of Nonlinear Physical Dependencies 

In the rigid finite element method, flexibility is described in an approximate 
manner (displacements are realized in the SDE only). Therefore, the tensor )(i

jkσ  

present in (7.1), defined for each SDE i in the plane normal to the beam's axis, is 
given as [Szczotka M., 2011b]:  
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M=τ  – stress tangent to the torque, 

)(
min
it  – minimal thickness of the section's side.  

The form of the stress tensor in a flexible beam modelled with the RFE method is 
similar to the tensor obtained in the Saint-Venant problem for torsion and bending  
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of beams [Nowacki W., 1970]. The stresses )(
,
i

ygσ , )(
,
i

zgσ  due to the bending 

moments at which the transition from elasticity to plasticity occurs, may be 
determined from the following equation taking (7.1) into account:  

( ) ,0~3 0
2)()(

2 =−+ σσ i
g

iJ  (8.98)

where )(~ i
gσ

 
– equivalent bending stress, 

)(
2
iJ  – specified as in (7.1). 

Some models of pipelines presented later use the given dependencies to construct 
a module allowing us to determine the forces and moments in the SDE when 
occurrence of elasto-plastic deformations is possible. Fig. 8.15 schematically 
shows a flowchart of actions comprising the procedure of determining the bending 
moment acting on the RFE on the assumption that { }ziyii ϕϕϑ ,∈ .  

The diagram uses the following notation:  

iF   – mark specifying the state of the material, 

sX   – maximal deformation which causes the phase to change from elastic 
to plastic,  

0~
iϑ   – neutral value of displacement (at which 0)( =imϑ ), 

)( i
eC   – stiffness coefficient of the SDE within the elastic region, 

)(i
pC   – stiffness coefficient of the SDE within the plastic region, 

)()( i
e

i
p CC μ= , ..., ,1.0 ,01.0=μ  

( )matf  – function describing the shape of the characteristic ( )pf εσ =  within 

the plastic region,  
)( i

BM   – value 
)(imϑ  determined in the previous step ht − , 

)(i
Bϑ   – plastic deformation in the previous step ht − . 

 
A control procedure for the mark Fi and for calculating the values )(i

Bϑ  and )( i
BM  

(Fig. 8.16) is also necessary.   
Approximation of the characteristic of a material may be performed for 

arbitrary data obtained e.g. from measurements. The linear segments (elastic 
region, linear reinforcement in the plastic region) may be interspersed  with 
nonlinear ones, thus leading to significantly greater stability of the calculations. 
An example of such characteristic can be found in [Szczotka M., 2010]. 
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Fig. 8.15. Flow diagram of the algorithm determining the value 
)(imϑ  
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Fig. 8.16. Flow diagram of state markers control, Fi and calculations of the values )(i
Bϑ  

and )( i
BM   
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9   Applications of Models of Offshore 
Structures 

Each offshore structure is unique in the sense that it is built only after a customer 
with a specific need actually places an order. Design companies and 
manufacturers of engineering systems of this type are often small and medium 
enterprises, which cannot afford purchasing costly computer software packages 
for numerical computation involved in dynamics of mechanical systems. 
Therefore, they often employ custom, in-house dynamic models of the structures 
designed. In the present chapter, dynamic models of the following are presented: a 
gantry suited for relocating sets of BOP valves on an extraction platform, a 
column crane and a device for laying pipes on the seabed. The formulation of 
models thereof leverages the methods described in earlier chapters. 

9.1   BOP Transportation Gantry 

One of the types of offshore cranes is a BOP crane. The construction of Protea 
from Gdańsk is presented in Fig. 9.1. It is a gantry crane installed on a drilling 
platform designed to transport a system of valves named BOP (Blowout 
Preventor). BOP is used to block an uncontrolled outflow of oil or natural gas 
from a wellbore at the seabed. After drilling the wellbore, the BOP is put inside it, 
and afterwards risers are being connected to the BOP. The risers drain off oil or 
gas into suitable tanks. In view of the plug task, weight of the BOP reaches 
hundreds of tons. During the transportation process (during the travel of a gantry 
crane) the BOP is protected by a system of guides presented in Fig. 9.2.  

Clearance between the load and the guide system equals a few centimetres. 
Weight of the presented crane is 200 T, hoisting capacity 550 T and height about 
30 m. The analysis of a travel system is an interesting and important problem 
concerning the dynamics of a BOP crane. The crane is supported on rails and its 
motion is realized by the means of a rack and a toothed wheel (Fig. 9.3). 
Maximum velocity of travel of the crane is equal to 3 m/min. Due to the 
movement of the platform’s deck caused by sea weaving and wind forces, the 
protection systems are used. These systems limit the movement of the crane in 
vertical direction and horizontal one, perpendicular to the longitudinal axis of 
rails. This task is particularly realized by an anti-lift system presented in Fig. 9.4. 
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Fig. 9.1. BOP crane Fig. 9.2. Guide system 

Fig. 9.3. Rack travel system Fig. 9.4. Anti-lift system 

9.1.1   Mathematical Model of the System 

The schema of the model of the BOP crane together with more important 
coordinate systems is presented in Fig. 9.5. The following basic assumptions for 
modelling are established: 

 movement of the base (system {A}) is known and described by functions: 

                      (9.1) 
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Fig. 9.5. A model of a BOP gantry with load 

 structure of the crane (frame) is treated as a rigid body – it should be noticed 
that the construction of the BOP crane is a kind of combination of two A-
frames; an A-frame has been a subject of many analyses presented in [Fałat 
P., 2004]; these analyses have shown that the influence of flexibility of the 
frame on dynamics of the whole system (on motion of the load) is slight, 

 load is a rigid body of rectangular shape, 
 load is suspended on two ropes – their flexibility and damping are taken into 

account, 
 load can touch the guides only along its edges,   
 clearance and flexibility between the load and  guides are taken into 

consideration,  
 frame is fixed flexibly to the deck and, additionally, in ( )AŶ  direction 

clearance can occur, 
 input in the drive system has been modelled in two ways: a kinematic input 

via a spring-damping element and a force input, 
 wind force can be taken into consideration, 
 homogenous transformations are used to describe the system’s geometry. 
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Both the load (system {L} in Fig. 9.5) and the frame (system {F}) have 6 degrees of 
freedom in respect to the deck (system {A}). So, the model has 12 degrees of freedom 
and the vector of generalized coordinates of the system has a following form: 

( )
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

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
=

L

F

q

q
q ,                                         (9.2) 

where ( ) [ ]TFFFFFFF zyx )()()()()()( ϕθψ=q , 

 
( ) [ ]TLLLLLLL zyx )()()()()()( ϕθψ=q . 

  

It has been mentioned that the motion of the base (deck of the platform), that 
means the motion of the system {A}, in respect to the inertial coordinate system {} 
has been assumed as known, described by pseudo-harmonic functions: 
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where ( ) ( ) ( )A
ji

A
ji

A
jiA ,,, ,, ϕω  – amplitude, angular frequency and phase angle of the 

input, respectively,  

 ( )A
in   − number of harmonics of the series. 

 
The application of homogenous transformations allows converting a position 
vector of the point defined in the system {A} to system {} according to relation: 

{ }A
PAp rTr 0{}= ,                                               (9.4) 

where  [ ]Tpppp zyx 1{}=r
 

– position vector of point P in the inertial 

system {}, 

 { } { } { } { }[ ]TA
P

A
P

A
P

A
P zyx 1=r  –  position vector of point P in the system 

{A}, 

 T0
A  – matrix of a homogenous transformation from the system {A} to 

the system {}. 

The matrix T0
A  can be presented as product of six matrices, where each of them is 

a function of one variable dependent on time (9.4). Order of rotations included in 

the matrix T0
A  corresponds to Euler angles ZYX.  

Kinetic and Potential Energy of the Frame and the Load 

Kinetic and potential energy of the frame, as well as the load, can be determined 
using general algorithms presented in chapter 5. If one denotes the homogenous 
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transformation matrix from the frame system {F} to the deck system {A} as ( )FT
~

 

and from the load system {L} as ( )LT
~

, the transformation matrices from the 

frame system and from the load system to the system {} can be calculated as:  

 ( ) ( ),
~0 F

A
F TTT =                                                (9.5) 
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A
L TTT =                                               (9.6) 

Introducing notation of the Lagrange operator: 
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where k is the number of the generalized coordinate, { }LFb ,∈ , 

and using the transformation presented in chapter 5 one can obtain: 
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The above form requires repeated multiplication of matrices of 4×4 dimensions 
and then the calculation of the trace of the result matrices. In order to decrease the 
number of required numerical operations, the authors decided to derive formulae 
describing Lagrange operators in the explicit form. 

The relation (9.8) can be presented in the following form: 
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Assuming that rotation angles of the frame and the load are small, the matrix 
)(~ bT  can be written as:  
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or: 
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where )(b
jq  – suitable elements of vectors )(Fq  or )( Lq , 

and matrices jD  can be defined as: 
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In the paper [Urabś A., et al., 2010] it has been shown that: 

for k=1,2,3: 
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for k=4,5,6: 
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where )(bm  − mass of the body { }LFb ,∈ , 
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Derivatives of potential energy of gravity forces of element of mass m(b) can be 
presented in the form of the vector: 
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where )(bq  –  vector of coordinates of the frame or the load (defined in 

(9.2)), respectively, 
 m(b)  – mass of the frame or the load, 

 333331 ,, ttt  –  proper elements of the third row of the matrix T0
A . 
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Model of the Support 
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Fig. 9.6. Flexible connection of the frame to the deck 

It has been assumed that the frame of the BOP crane is supported flexibly in 

four points denoted as )4,3,2,1()( =kP k . The crane is moving on a dedicated rail 

system in direction parallel to ( )AX̂  axis (Fig.9.6). Additionally, a constructional 
clearance can occur in ( )AŶ  direction.  
The reaction force, i. e. the reaction force of the base on the frame, is depicted by 
the vector:  
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The stiffness and damping forces are determined by relations:  
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In the case of the component ),(
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yF

P kF , the possibility of occurrence of clearance in 

the anti-lift system is taken into account. Due to modelling clearance, two spring-

damping elements acting in the ( )AŶ  direction are introduced, as described in 
chapter 6.2.   
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where
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–  resisting force caused by rolling or sliding friction, 

 ),(
)(
xA

P kυ
 
– component x of the velocity of the point )(kP  in the coordinate 

system {A}. 

After calculating suitable coordinates and velocity of points of support, 
generalized force of flexible connection of the frame and the deck can be written 
as:  
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Generalizing the relation (9.25) to four supports one can obtain: 
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Modelling Clearance between the Load and Guides 

 

)(kA

)(ˆ AZ

}{A

)(kB

x

E pk ),(Δ

y

E pk ),(Δ
y

E pkb ),(
y

E pkc ),(

x

E pkc ),(

x

E pkb ),(

)(ˆ AY

)(ˆ AX

),( pkE

 
Fig. 9.7. Load and spring-damping elements with clearance 

 
 
The guides have been replaced by spring-damping elements with clearance 

(SDE E(kp)) that limited the movement of the load in )(ˆ AX  and )(ˆ AY  directions 
(Fig. 9.7). It has been assumed that the load can contact with guides only along its 
edges and the number of spring-damping elements can be different for each edge. 
The manner of calculation of stiffness and damping forces coming from the each 
side is analogical to the one presented in chapter 5.3. Additionally, one has to 
determine equivalent coefficients of flexibility of elements modelling the guides. 
Suitable calculations have been executed by the means of the Finite Elements 
Method. They were presented in details in the doctoral thesis [Urbaś A., 2011].   
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Drive of Travel System 

The input in the drive of the travel system has been modelled in two ways  
(Fig. 9.8): a kinematic input via a spring-damping element (flexible) and a force 
input (rigid). It has been assumed that the drive acts in points P(1) and P(4).  
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Fig. 9.8. The travel system of the crane: a) flexible, b) rigid 

1. Kinematic input 
In this case, the potential energy of elastic deformation and the dissipation 
function of the drive system can be calculated as: 
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where )(),( )4()1( tt x

P

x

P
δδ   – assumed displacement (kinematic input), 
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 – stiffness and damping coefficients of the drive of the 

travel system, respectively. 

After determining coordinates ( )
( )A

P ix  as function of elements of vector ( )Fq , one 

should place suitable derivatives in the equations of motion of the system.  
2. Force input 

In the case of force input, the unknown forces )()(
)4()1( , F

P

F

P
FF  and suitable constrains 

equations have been introduced. Generally, the forces can be placed on the left 
side of the equations of motion of the system which can be written as:  
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In the analysed problem, the constrains equations have the form: 
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Due to convenience of the computer implementation, they can be presented in the 
matrix and acceleration form: 
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Energy of Elastic Deformation and Energy Dissipation of the Ropes 

The load is suspended on two ropes, so their energy of elastic deformation can be 
written as: 
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where 
)( p

rc  –  stiffness coefficient of the rope p, 

 

)( p
BA pp

lΔ
 

–  deformation of the rope p, 

 






>Δ

≤Δ
=

0when,1

0when,0

)(

)(

)(

p
BA

p
BAp

r

pp

pp

l

l
δ . 

 
 



9.1   BOP Transportation Gantry 151
 

 

The derivatives of the potential energy of elastic deformations of the ropes have 
the form: 
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A similar reasoning may be conducted in the case of determining the dependency 
describing the energy dissipation function: 
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where 
)( p

rd  –  damping coefficients of the rope p. 

Hence the formulas: 
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Taking into consideration all components of the Lagrange equations, we obtain the 
system of differential equations: 

 ),,( qqfqA &&& t= ,                                          (9.35) 

where ),( qAA t=  – a mass matrix. 

In the case when the input in the drive of the travel system has been modelled as 
force input, equations (9.35) have to be completed by the constrains equations 
(9.30) and equations of motion have to be presented in the form (9.28). The fourth 
order Runge-Kutta method has been used to solve the system of equations. 

9.1.2   Example of Numerical Calculations 

The presented dynamic model of a BOP gantry allows for comprehensive analyses 
of the device's operation both under usual working conditions and intense waves. 
Much detailed discussion is contained in the thesis [Urbaś A., 2011].  

In the current book, sample results of numerical simulations for phenomena 
occurring in a gantry's supporting structure are presented. Masses and geometrical 
parameters of the crane have been chosen based upon technical documentation  
 



152 9   Applications of Models of Offshore Structures
 

 

(2007). The main parameters are given below: mass of the frame 110 000 kg, mass 
of the load 550 000 kg, dimension of the load 4,8 m x 5,5 m x 20,3 m. Data 
concerning the motion of the deck that should be taken into calculation are also 
provided in the technical documentation (2007) (Table 9.1). In our simulations, 
the operational conditions have been assumed. 

Table 9.1. Deck motion due to waves 

Condition 
Heading
[deg] 

Heave 
[m] 

Pitch 
[rad] 

Roll 
[rad] 

Z1 0 0,1343 0,0023 0 
Z2 45 0,1115 0,0008 0,0023 
Z3 90 0,1140 0 0,0045 

Table 9.2. Load cases analysed - gantry crane not moving 

Symbol Description Clearance Deck motion 
Z1-M0-C0 

No clearance in travel system 
0 Z1 

Z2-M0-C0 0 Z2 
Z3-M0-C0 0 Z3 
Z1-M0-C1 

With clearance in travel system 
1cm Z1 

Z2-M0-C1 1cm Z2 
Z3-M0-C1 1cm Z3 

 
Calculations for the BOP crane that does not move on the deck have been 

denoted according to the Table 9.2. The same denotations are used in the graphs. 

In Fig. 9.9 there are presented time courses of general coordinates  of the 

load of the BOP crane with and without clearance in the travel system.  
The influence of clearance in the travel system for the reaction forces in the 

support system (the leg no. 1) is shown in Fig 9.10. The deck motions Z2 and Z3 
are taken into consideration. 

The biggest influence of clearance in the travel system on the dynamics of the 
BOP crane occurs for input Z3, so this input is taken into account for the next 
calculations. The influence of clearance in the travel system on the reaction forces 
will be analyzed. The travel velocity is defined by the relation:  

                               

(9.36) 

where . 
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The main part of the force S on the piston, is balanced by the gas pressure in the 
accumulator. In addition, there is some oil pressure drop due to restriction when 
the oil passes the valves between the piston and the accumulator. This is illustrated 
in Fig. 9.14. 

9.2.1   Model of the Offshore Crane 

The subject of this section is the offshore pedestal crane equipped with the system 
reducing dynamic overload, situated on the boom (Fig. 9.15). The analysed crane 
type is, according to EN 13852-1 Annex L, the “Lattice boom type crane” or API 
Spec. 2C, type C. The main assumptions adopted at the design stage and the most 
important connections used during the derivation of equation of motion will be 
given below. Modelling the shock absorber was particularly emphasised. For the 
description of the system, joint coordinates and homogenous transformations were 
used based on Denavit-Hartenberg convention. The equations of motion were 
obtained using the Rigid Finite Element Method and the Lagrange equations of the 
second order. 
 
 

 
Fig. 9.15. Scheme of an offshore pedestal crane 

While preparing the model, the following assumptions and subsystems were 
taken into consideration: 

 the base of the crane (the platform of vessel) is a rigid body with 6 degrees of 
freedom; the movement is caused by the sea waves defined by pseudo-
harmonic functions, 
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 the pedestal is modelled by means of the Rigid Finite Element Method using 
a modified approach (MRFEM) – chapter 8.2; hence, the flexibility of the 
pedestal could be included but also the treatment of the pedestal as a rigid 
structure is possible, 

 the king frame, including the slewing part, is treated as a rigid structure with 
one degree of freedom with respect to the pedestal – the slew angle, 

 the A-frame is modelled by means of MRFEM as a simplified, one-beam 
system having bending flexibility in the perpendicular direction to the A-
frame plane; similarly to pedestal model, the A-frame can be treated as a rigid 
subsystem, 

 the boom is modelled as a continuous system by means of the MFREM, 
 the basic element of the shock absorber is the hydraulic cylinder, which is 

modelled as point mass (additionally including the mass of the moving 
sheave) connected to the boom by means of a spring damping system; the 
mass may slide only along the longitudinal axis of the boom; it is assumed 
that the characteristics of the spring is nonlinear, 

 the hoist rope is modelled as a massless element with equivalent longitudinal 
flexibility; the damping is taken into account, with the assumption it is 
viscous, and that the damping coefficient has a constant value; with regards to 
significant changes of the hoist rope during crane operations, the value of 
rope stiffness coefficient has been made depended on the current rope length, 

 the luffing rope is modelled similarly to the hoist rope; as a matter of fact that 
change of the rope length during crane operations is small, the rope stiffness 
coefficient is assumed to be constant, 

 the load is treated as a material point; its contact with the deck of the supply 
vessel is taken into account, 

 the drive function of the hoist winch can be assumed in two ways: as 
a kinematic excitation or force excitation by a given moment, 

 the luffing winch drive and the slew of the crane has been adopted as 
a kinematic drive, 

 the supply vessel is modelled identical to the crane base. 

Modelling of the Crane and Cargo Base Motion 

It is assumed that crane base motion and thus movement of the system {A} with 
respect to the system {0} is known and described by functions similar to (9.3): 
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Movement of the cargo base, i.e. that of system {A}, will be described in the same 
way. 

In further considerations, the coordinate system {0} will be identified with the 
inertial coordinate system {} and the following notation will be used for the 
homogeneous transformation matrix from coordinate system {p} to the coordinate 
system {0}: 

)(0 p
p TT = ,                                            (9.38) 

where p is the number of the member in the kinematic chain. 

Homogeneous transformation matrix , taking into account the motion of the 

system {A} in {}, can be presented as a product of six matrices, each being the 
function of only one variable dependent on time as described in chapter 5. It is to 

be noticed that if  is a vector describing coordinates of the 

dm mass (point) in the local system {}’, connected to any part of the system, the 
coordinates of such mass in the system {} may be described with the equitation: 

 '')()(0 rTrqTTr == tA ,                                 (9.39) 

where ( ) ),,( 1{}~ n
A qq KTqT =

 
– transformation matrix of coordinates from local 

coordinate system {}’ into the {A} coordinate system, dependent 
on the generalized coordinates  of the body, 

 )()(0 qTTT tA= . 

Crane Pedestal 

As mentioned before, the crane pedestal was discretized by means of MRFEM. 
The number of rigid finite elements, on which the pedestal was divided, equals 
n1+1, where the first rigid finite element of the pedestal, RFE (1,0), is added to the 
vessel body. The generalized coordinates, describing the location of the second 
and other rigid elements modelling the pedestal with respect to its predecessors 
(coordinates describing mutual location of the rigid finite elements some times 
called flexible or elastic coordinates), may be presented as vectors: 

,                  (9.40) 

where , ,  are the rotation angles presented in Fig. 9.16. 

The vector of generalized coordinates of the RFE yields: 

                        (9.41.1) 

 

T0
A

[ ]Tzyx 1~~~~ =r

),,( 1 nqq K

( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]Ti
z

i
y

i
x

Ti
z

i
y

i
x

,i qqq ,1,1,1,1,1,11 ~~~~ == ϕϕϕq

),1( i
xϕ ),1( i

yϕ ),1( i
zϕ

( ) ( ) ( ) ( ) ( )[ ] ,~ 1,1
3

1,1
2

1,1
1

1111 T,, qqq== qq



160 9   Applications of Models of Offshore Structures
 

 

 

 

Fig. 9.16. Pedestal discretized by mean of MRFEM 

   for i = 2,..., .         (9.41.2) 

In accordance to above consideration, during the derivation of the equations of 
motions, kinetic and potential energy of the RFE (1,0) have been omitted. On the 
basis of equations presented in previous sections, the kinetic energy of the body 
discretised by the MRFEM can be calculated as: 

( )
=

=
1

1
,11

n

i
iEE ,                                              (9.42) 

where ( )
( ) ( ) ( ){ }Tiii

i trE ,1,1,1
,1 THT &&= , 
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TTTTTTTT −− ⋅⋅== K    for i = 1,.., 1n , 

 ( )i,1~
T  – transformation matrix from coordinate system of RFE (1,i) into 

coordinate system of RFE (1,i-1).  

For the Lagrange equations of the second order, the concept of Lagrange operators 
is introduced: 
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Such operators for other RFE (1,i) (i=1,...,) of the pedestal, can be written in the 
vector form as: 
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The potential energy due to gravity forces of the pedestal’s rigid finite elements is 
described by the relation: 
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1n ,                    (9.45) 

where ),1( im  – mass of the RFE (1,i), 

 ),1(~ i
Cr  – vector of the mass centre of RFE (1,i) expressed in its own 

coordinate system.  
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The corresponding derivatives, which are the elements of the Lagrange equations, 
are: 
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It is known that in MRFEM the successive RFE are connected with each other by 
means of massless, elasto-damping elements (SDE). Potential energy of the elastic 
deformation SDE (1,i) is defined as follows: 
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rotational stiffness of SDE (1,i).  

Equation (9.47) can be presented in the form: 
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The required derivatives of the potential energy of elastic deformation with 

respect to generalized coordinates , have a simple form: 
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It may additionally be assumed that in SDE (1,i) dissipation of the energy appears, 
which is described by means of equations: 
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Equation (9.50) may be also written as: 
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and the adequate derivatives can be obtained from: 
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King Frame/Slewing Part 

Let us define the following vector of generalized coordinates for the slewing part: 
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where ( )2
zϕ  symbolizes the angle of rotation of the slewing part with respect to the 

pedestal. 

The kinetic energy of the slewing part can be described as: 
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where ( )2H  – the inertial matrix of the slewing part. 

Lagrange operators for the slewing part are formulated in the form: 
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n ϕT   – the transformation matrix form coordinate system of 
slewing part {2} to the last rfe coordinate system of 
pedestal {1,n1}.  

Potential energy of the gravity forces of the slewing body equals: 
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where ( )2m  – mass of the slewing part, 
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Cr  –  position vector of the center of slewing part mass, expressed in 
the system {2}.  

The necessary derivatives are defined bellow: 
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A-Frame and Boom 

As mentioned above, the A-frame is modelled by means of the MRFEM in 
compliance with only bending flexibility in the perpendicular direction to the 
plane of the A-frame. Additionally, as for the pedestal, RFE (3,0) is added to the 
slewing part, and as a result, it does not have its own generalized coordinates 
(Fig. 9.17). Consequently, the following vectors of generalized coordinates for 
each rfe of the A-frame are defined: 

 one-element vectors of the flexible coordinates: 

 ,                     (9.58) 

 coordinate vectors describing position of the rigid element with respect to the 
base coordinate system: 

  for i=1,2,..., .(9.59) 
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Fig. 9.17. Simplified model of flexible A-frame 

 
Fig. 9.18. Flexible boom discretized by mean of the MRFEM 

In contrast to the pedestal and A-frame, in the case of boom it was assumed that 
there is a rotational connection defined by the boom angle ψ  between the rotating 
part {2} and the RFE (4,0) (Fig 9.18). We can define the following vectors of 
generalized coordinates for the boom: 
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 vectors of the rigid and flexible coordinates:  

( ) [ ] ( )[ ] ( ) ( ) ( ) ( )[ ]Ti
z

i
y

i
x

,i
y

, ,4,4,440,404 ~;...;~ ϕϕϕϕψ === qq  for i=1,2,..., 4n ,(9.60)  

 coordinate vectors describing position of the rigid element with respect to the 
base coordinate system:  

( ) ( ) ( ) ( ) ( ) ( )[ ]Ti
ni

i
TTiT,Ti qq ,4

13
,4

1
,4042,4

2

~~
++=



= KK qqqq   for i=0,1,..., 4n . (9.61)  

The necessary elements of the Lagrange equations related to the A-frame and 
boom subsystems were calculated in the same way as presented for the crane 
pedestal. 

The Model of Shock Absorber  

The model of shock absorber is presented in Fig. 9.19. Its basic element is sheave 
(3) possessing the mass msA mounted to the boom by means of a parallel spring-
damping system. Relative motion of the sheave (3) is possible only along the 
longitudinal axis of the boom. The mass msA is enlarged due to movable parts of 
the hydraulic cylinder.  
 
 

 

Fig. 9.19. Model of the shock absorber 

The shock absorber is activated only if the hoist rope tension reaches specific 
value (and does not exceed design limits). Usually, in practical hand calculations, 
one assumes a multilinear characteristic (Fig. 9.14), but its first derivative is not 
determinable in points defining the working range. This is unfavourable in 
numerical simulations. 

(1)

(2)

(4)

(6)

msA

bsA

csA

(3)

(5)
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Fig. 9.20. Characteristic of an elastic element csA=csA(x) 

In the presented model, characteristic shown in Fig. 9.20 was assumed 
[Krukowski J., Maczyński A., 2011]. It represents the characteristic of elastic 
element csA=csA(x), and does not take into account the situation when the shock 
absorber sheave (3) is fixed to the boom structure. The curve given in Fig. 9.20 
can be described as follow: 
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.                (9.62) 

By selecting appropriate values of α and β, one obtains a smooth transition curves 
at the point x = aΔ (and x = –aΔ). Then, the following conditions must be fulfilled: 

 ( ) ( ) ( )Δ−+Δ=Δ−Δ+=Δ+Δ Δ 12 ackacSeaak aβα ,            (9.63.1)  

 ceaeak aa =Δ+Δ+ ΔΔ ββ βαα 222 .                     (9.63.2) 

After some transformation, parameters α  and β  are obtained: 
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aβ ,                                       (9.64.1) 
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The shock absorber is designed in such a way that it works only under the 
tensioning load. Up to the value of force S1, the stiffness has a very high value. 
Within the limit of forces S1 to S2, the stiffness decreases (shock absorber working 
range), and beyond force S2 the stiffness increases significantly. The characteristic 
of an elastic element from Fig. 9.20 must be appropriately scaled to the form 
shown in Fig. 9.21. 

Shock absorber working parameters are defined by the following variables: 

1S , 2S  − minimum/maximum force from which shock absorber is active, 

1Δ , 2Δ  − displacement of the shock absorber sheave corresponding to the force 

1S , 2S , 

a  − parameter specifying where the point of curvilinear part of 
characteristic is becoming rectilinear, α > 1,  

βα ,  − parameters defining the shape of the characteristic described in 

equation (9.64). 
 
 

 

Fig. 9.21. Characteristic of shock absorber 

From Fig. 9.21 it is easy to read, that the constans c and k are described by means 
of: 

 ,
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(9.65.1) 
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12

12

Δ−Δ
−= SS

k ,                                         (9.65.2) 

and the values of x  and y  are determined as: 

 




Δ−=
−=

xx

Syy
.                                                 (9.66) 

where x , y , Δ  and S  are shown in Fig. 9.21. 

Hoisting and Luffing Ropes 

The potential energy of elastic deformation and function of dissipation energy of 
the hoist rope and luffing rope can be described by the following equations: 

 
( ) 2

2

1
l

l
l cV Δ= δ ,                                        (9.67) 

 
( ) ,

2

1 2
l

l
l bD Δ= &δ

                                      
 (9.68) 

where 




>Δ
≤Δ

=
0for1

0for0

l

lδ , 

 lΔ  –  elongation of the hoist rope or luffing rope, 

 ( )lc , ( )lb  –  stiffness and damping coefficients of rope, respectively. 

Because of the possibility of the significant changes in the active length of the 
hoist rope during crane operation, the stiffness coefficient of the hoist rope is 
determining by means of: 

 ( )

( ) ( )660,6

66

rL

FE
c l

α−
= ,                                   (9.69) 

where 0,6L   –  the initial length of hoist rope, 
 6E  – Young’s modulus of the wire rope core, 

 6F  – cross section of the wire rope, 

 ( )6α  – rotation angle of the hoist winch drum, 

 ( )6r  – radius of the hoist winch drum. 

The stiffness coefficient )( lc  of the luffing rope is considered as a constant value. 
A method for determining the necessary derivatives of equations (9.67) and (9.68) 
was described in chapter 9.1.  
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Load 

The load was modelled as a material point. The weight of the hook block was 
added to the weight of the load. The vector of the generalized coordinates is 
defined as: 

 ( ) ( ) ( ) ( )[ ] ( ) ( ) ( )[ ]TLLLTLLLL qqqzyx 321==q .             (9.70) 

The kinetic and potential energy of the load are described by means of: 
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222
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1 LLLL
L zyxmE &&& ,                    (9.71) 

 ( ) ( )LLg
L zgmV = ,                                   (9.72) 

where ( )Lm  is the mass of the load.  

On this basis, it is possible to write: 

 ( )
( ) ( )LL

L qAε
q

&&⋅= ,                                        (9.73) 

 ( )
( )[ ] ,00

TL
L

g
L gm

V =
∂
∂
q                                 

(9.74) 

where ( ) ( ) ( ) ( )[ ]LLLL mmmdiag ,,=A . 

The developed computer software allows us to simulate the following cases: 

1. load is in the air (water) – does not remain in contact with the deck of a supply 
vessel, 

2. load remains stationary on board of the supply vessel; its coordinates are 
defined by the motion of the supply vessel, 

3. load can by frozen to the deck, or other reason cause that the load is 
permanently connected to the supply vessel.  

Drive Systems 

Slewing, hoisting and luffing drive systems are modelled as the kinematic inputs. 
Therefore, the following function is known: 

( )tdd φφ = ,                                                  (9.75) 

where dφ
 
is respectively: slewing angle, hosting winch or luffing winch rotation 

angle.  
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From the perspective of 
planned applications of the 
presented model, the hosting 
machinery is one of the most 
significant drive system. Therefore, 
a second method of its modelling, 
using the force excitation, has been 
developed. Based on the analysis 
of literature (for example [Osiński 
M. et al., 2004]) as well as 
experience acquired from crane 
operators and designers, the hoist 
winch characteristic was assumed 
as shown in Fig. 9.22. 

Agregation of the Equations of Motion 

The equations of motion of the whole crane can be written as: 

FqA =&& ,                                                (9.76) 

where A  − mass matrix,  
 q − vector of generalized coordinates, 
 F − the right side vector; its elements are designated as the partial 

derivatives of the kinetic energy, potential forces of gravity and 
flexibility, partial derivatives of function of dissipation energy 
and units derived from external forces.   

The equations (9.76) were solved by a computer program using the fourth order of 
the Runge-Kutta method with fixed step integration. Before the integration of 
(9.76), initial conditions were calculated by solving the above equations assuming 

0qq == &&& . The resulting system of nonlinear algebraic equations was solved 

using the Newton’s method.  

9.2.2   Examples of Numerical Calculations  

Example of simulation results obtained from the developed computer programme 
are presented in this section. Two load cases are considered: 

LC-1: Hoisting of the load from a stationary deck. 
LC-2: Hoisting from the deck which movement is described by the function:
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.                                     (9.77) 
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Fig. 9.22. Hoist winch characteristic 
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A load of 18000 kg (including wire rope and hook block mass) is lifted from 
a supply boat deck. Assuming that the wire rope is loose at the beginning of the 
cycle (by a length of 1 m), some dynamic overload can be expected. The hoisting 
speed is assumed 0.4 m/s for quadruple operation, with the drum rotation 
characteristics consistent with Fig. 9.22. The shock absorber was defined by  
the following parameters: N005971 =S , 12 4.1 SS = , m 02.01 =Δ , 

m 52.02 =Δ , 1.1=a . 

 

 

Fig. 9.23. LC-1 load case results: a) hoist rope force, b) luffing rope force,c) z coordinate of 
the load 

In Fig. 9.23, there are presented time courses of the main hoist wire tension 
force, luffing wire force and z-coordinate of the load during lifting operation. Two 
crane models: working with and without shock absorber, are compared. The whole 
crane structure was assumed rigid. 

The conditions assumed in the presented examples are rather theoretical – the 
winch acceleration during the first phase (when the rope is loose) produces a high 
dynamic peak load when the wire is suddenly pre-tensioned. This is one of the 
reason why a DAF (dynamic amplification factor) is applied when selecting 
various crane components. However, this scenario is simulated in order to show 
how effective the shock absorber could be. Even if the operator runs, be mistake, 
the winch without load (or there could be an imperfection in a drive system), 
thanks to the automatic overload protection system dynamic load in the hoist rope  
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Fig. 9.24. LC-2 load case results: a) hoist rope force, b) luffing rope force, c) z coordinate 
of the load, d) hoist rope force (rigid and flexible crane jib), e) luffing rope force (rigid and 
flexible crane jib) 

is reduced by approximately 100%. In some cases, without such a systems, the 
tension can be close to the breaking load of the wire, which if not breaks it at the 
accident time, makes its life time much shorter. 

The plots shown in Fig. 9.24 were obtained for the load case LC-2. The results for 
the rigid crane gantry was compared with those obtained with flexible structure. 
Discretisation of the crane boom was performed using 74 =n  rigid finite elements.  

The results of numerical simulations performed using the crane model having 
shock absorber installed confirm a significant decrease of dynamic overload 
experienced by the structural systems. Application of the shock absorber 
subsystem in real constructions would allow the crane to work in much more 
difficult conditions. Without such a systems, the same crane has to be de-rated, 
which makes it in a higher sea state less efficient handling tool, causing that the 
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whole vessel or platform can not perform planned lifts, until the weather 
conditions improve. Consequently, the load chart of a crane equipped with an 
overload protection system will be much more different than the same 
construction without such a control device. Therefore, properly working shock 
absorber is now a relatively new technique in the offshore industry. 

Taking into consideration flexibility of the boom does not significantly change 
the obtained results. Some slight differences are observed in the time history of the 
luffing rope force. It therefore appears that, for the preliminary calculations or for 
the bids purpose, the flexibility of the boom can be omitted. On the basis of 
a model with few degrees of freedom, an engineer obtains a quick software tool, 
supporting him during the design process. The calculation model presented enable 
us to determine the crane overload in various working conditions. That makes it 
possible to predict limiting weather conditions for a given crane design and 
specific operation scenarios. Implementation of the model in a standalone desktop 
application makes it attractive for various conceptual ad-hoc analyses. 

9.3   Laying of Pipelines 

The methods of analysing multibody systems, models of connections and 
materials presented in previous chapters were implemented in software suited for 
static and dynamic analyses of the installation process of pipelines for transporting 
oil and gas, of transfer lines (cables) and other types of infrastructure related to 
exploiting deposits of the seabeds. The current section discusses models 
operations commonly performed in reality. The constructed models and software 
are also indirectly verified. For this purpose, additional models in the ANSYS 
package are formulated and the results of calculations compared. Detailed 
derivations and a description of those models are offered in [Szczotka M., 2011b]. 

 

The Programme Pipelaysim 

Based on the presented models, a computer programme supporting static and 
dynamic analysis of basic operations related to installing pipes. The programme is 
written in the C++ language (Microsoft Visual Studio 2008 IDE), using elements 
of the Delphi package which are parts of Borland Developer Studio 2006. To 
produce graphics Silicon Graphics Inc's OpenGL library is used. 

The main window of the programme PipeLaySim is shown in Fig. 9.25. It acts 
as a preprocessor. The user can, by means of standard interface components 
(GUI), define (or load from an external file) any parameters of the models and 
analysis options. In the main panel of the programme there are buttons assembled 
which enable running subsequent simulations for supported installation methods. 

Results obtained from the calculations may be analysed in a built-in module for 
creating graphs or exported as text files and further processed in other 
programmes (e.g. in Excel). A functionality which may be found useful is passing 
the results of calculations in the form of scripts to the engineering computation 
system MATLAB. The software also supports concurrently displaying an 
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Fig. 9.25. Main window of the programme PipeLaySim 

animation of the simulated system and saving it to multimedia files (for example 
*.avi). Sample postprocessor window with an animation produced using the 
OpenGL libraries is shown in Fig. 9.26.  

 

 

Fig. 9.26. Sample animation window in the programme PipeLaySim 
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9.3.1    Mathematical Model of the J-Lay Method 

For the model used to simulate an installation process with the J-lay method  
(Fig. 9.27) the pipeline is assumed to be ejected from a guiding ramp whose 
inclination angle relative to the deck is constT =α . It is further assumed that 

RFE 0 is ejected with a known velocity ( )tv T  of laying which corresponds to the 

vessel's velocity. Because of the lifting movements caused by waves, the pipeline 
is subjected to forces due to the difference of velocities of laying and of the point 
S. In addition to that, hydrodynamic forces caused by waves and sea currents act 
on the pipeline. A detailed derivation of the equations of motion for the considered 
system can be obtained by using the dependencies from previous chapters. 
Therefore below only selected formulas related to modelling constraints imposed 
on the pipeline are given. 

Equations of constraints related to the connection of the RFE 0 with the base by 

a spherical joint at the point H and the reactions )0(P may be introduced into the 
system directly by using the dependencies for a spherical joint. The components of 
the reaction )0(P  in the system {}A may be calculated from the formula:  

 
,

~ )0()0( PRP T
AA =

                                            (9.78) 

where AR   – rotation matrix of the system {}A relative to {},  

)0(~
AP  – reaction vector at the point H expressed in {}A, 

 )0(P   – reaction vector at the point H expressed in the system {}. 

The RFE with number n is placed in the ramp's guide. As the pipeline is ejected 
from the guide, the length of the segment off the vessel increases. When RFEs of 
constant length are used, incrementing the number (of RFEs and SDE in the 

system) is necessary. The general form of constraint equations imposed on the 
RFE n is:  

 ,                                       (9.79) 

where   – vector describing the position of the point S in , 

   – vector describing the orientation of the guide in , 

   – vector describing the coordinates of the point S in the 

system , 

   –  components of the vector   of generalized 

coordinates of the RFE n, 
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Fig. 9.27. Scheme of the system for installation of pipelines with the J-lay method 

Differentiating (9.79) twice makes it possible to put the constraint equations in the 
accelerative form: 
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Since constsn ==ΛΦ ~~
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so the equations (9.80) take the form: 
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Aẑ

( )tAψ

( )tAϕ

( )tAθ

( )tAr

iRFE
0 RFE

nRFE



178 9   Applications of Models of Offshore Structures
 

 

The equations of motion of the RFE n may be written as: 
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where  ( ) 3,2,1
)(

== inn QQ r , 

( ) 6,5,4
)(

== inn QQ Φ . 

From (9.83) it follows: 
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Components of the reaction )(~ nP  in the system of RFE n (which are needed e.g. to 
determine the tension) may be obtained from:  

 .
~~~ )()( nT

n
n

n PRP =
                                            (9.85) 

The way of defining the vector sr ′~  giving the coordinates of the point S in the 

system n{}  (Fig. 9.28) merits a further comment.  

 
 

 
Fig. 9.28. Connection of the RFE n with the guide 
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In the situation of Fig. 9.28, the following holds: 
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(9.86) 

where ( )tss χχ =  is a function describing how the n-th RFE is ejected from the 

guide (velocity and possibly acceleration).  
 

Static Analysis 

Indirect verification was performed (by comparison with the calculations done 
employing the ANSYS package) on the J-lay system shown in Fig. 9.29. The total 
length of the analysed pipeline was 1000 m. Due to different positions of the 
initial point (H) of the pipeline attached with a joint to a rigid structure on the 
bottom the obtained curvatures of the pipeline and values of the forces and 
stresses differ. The models used are spatial, however, all the static forces act in the 
plane yxˆˆ . Zero excitations were assumed ( consts =χ , 0q =D , 0=SH , no 

currents). The only forces acting on the pipeline were gravity and hydrostatic 
buoyancy. Data shown in Table 9.3 were assumed as input. 

 
Fig. 9.29. Main parameters of a system in static analyses 

Discretisation of the pipeline was performed for a few different numbers of 
finite elements (both for the programme PipeLaySim and the ANSYS package). 
Satisfactory correspondence was obtained already for the division into n = 100 
elements (the results given below are for this number of elements). In ANSYS 
PIPE288, finite elements were used which are based on the BEAM188 element  
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[Ansys Documentation, 2009] as well as linear shape functions. The element 
PIPE288 supports input of hydrodynamic loads modelled using the commands: 
OCDATA, OCTABLE, SOCEAN. Results are shown on graphs and in tables using 
notation as in the following scheme (Fig. 9.30). 

Table 9.3. Basic parameters assumed for static calculations 

Parameter Variant A Variant B 
Outer diameter of the 

pipeline [in]/side 
thickness [mm]  

4/5.95 12/16.05 

Content of the pipeline 
Empty (air at atmospheric pressure) or filled (water 
under pressure equal to that outside) 

Distance HL  [m] 700)1( =HL , 725)2( =HL , 750)3( =HL  

 
 

 
Fig. 9.30. Notation for cases of calculations 

The analysis was performed with identical scenarios in both programmes. At 
the initial moment the pipeline was on the surface of water in undeformed state. In 
the first step, balance of the system was considered with gravity and buoyancy 
forces applied due to deflection and immersion of the pipeline's elements (with H 
being the loose end of the pipeline). Next, the point H  of the pipeline was moved 
in multi-step static analysis to the destination point while keeping the point S 
motionless. Spherical joints were assumed in both points H and S. The results 
presented below correspond to the state of the system in the final step of 
computation. The reactions in the points H and S for a pipeline with diameter of 4 
inches are shown in Table 9.4. Likewise, Table 9.5 contains the determined 
reactions of constraints for a pipeline with diameter of 12 inches. 

Based on the performed comparative analyses a conclusion can be drawn that 
the results produced by the developed software are correct. The differences of 
forces calculated in the point S and of horizontal reactions in the point H are on 

average less than 0.5%. Also the values of the vertical reaction 
)0(~

YP  are in 

a satisfactory degree of accordance (the differences being 2–14% for pipes with 
diameters of 4 inches and 1–7%  with diameters of 12 inches). The stated 
discrepancies are caused mainly by difficulties in modelling contact with the 
bottom which occur in the ANSYS environment.   

[A|P]-Rx-Sx-Lx

pipe size [‘’] 

pipe condition: P-empty, N-water filled 

distance HL [m] 

programe: A-ANSYS, P-PipelaySim 



9.3   Laying of Pipelines 181
 

 

Table 9.4. Reactions of constraints in points H and S, pipeline of 4 inches 
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The shape of the pipeline in the  plane is shown in Fig. 9.31. The 

presented results are for the empty pipeline with a diameter of 4 inches. 
Differences in the values are small and do not exceed 0.1%. Similar results were 
obtained for the pipeline with a diameter of 12 inches.  

The influence of the pipeline's shape on the reduced stresses for the considered 
cases is presented in Fig. 9.32 (for a pipeline with diameter of 4 inches) and  
Fig. 9.33 (for a pipeline with diameter of 12 inches). In the analyses, the Huber-
Mises-Hencky (HMH) hypothesis was assumed for the calculation of reduced 
stresses. The graphs show bending moments, axial forces and reduced stresses in 

sections along the relative length defined by the coordinate  (  in  

 

yx ˆ ˆ

T
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Table 9.5. Reactions of constraints in points H and S, pipeline of 12 inches 

Empty [A|P]-R12-SP-
L700 

[A|P]-R12-SP-
L725 

[A|P]-R12-SP-
L750 

ANSYS    

PipeLay
Sim   

Filled [A|P]-R12-SN-
L700 

[A|P]-R12-SN-
L725 

[A|P]-R12-SN-
L750 

ANSYS    

PipeLay
Sim   

 
 

the point  and  for the point S, Fig. 9.29). As it can be seen from the 

graphs, the RFE method gives close results also for reduced stresses, bending 
forces and moments in sections of the pipeline. Relative errors in all cases are 
below 1–1.5% (for the given number of elements) and definitely diminish with 
condensation of the division.  

Analysing the graphs in Fig. 9.32 and Fig. 9.33 indicates that filling the 
pipeline with a liquid does not influence the forms of the bending moment (in the 
considered cases similar curvatures were obtained for an empty and filled 
pipeline). The axial force, which depends on the position of the vessel against the 
waves and density of the pipeline, has significant influence on the values of 
reduced stresses. Installation of pipelines when they are filled with air allows for 
reducing the axial forces and stresses. 
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Fig. 9.31. Shape of a pipeline with diameter of 4 inches having reached static balance: 
a) shape of the pipeline obtained for different values of HL , b) magnified fragment of the 

graph  

The described method of static analysis and the obtained results may inform the 
determination of installation parameters of the pipeline concerned, taking into 
consideration the influence of depth, buoyancy and geometric traits of the system 
[Mohitpour M., et al., 2003], [Bai Y., Bai Q., 2005], [Palmer A. C., King R. A., 
2008]. 

 
 
 
 

)3(
HL

)2(
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Fig. 9.32. A pipeline with diameter of 4 inches – values of moments, forces and stresses: 
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled 
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline 

 

 

a) b) 

c) d) 

e) f) 
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Fig. 9.33. A pipeline with diameter of 12 inches – values of moments, forces and stresses: 
bending moment for a filled (a) and empty (b) pipeline, axial force in a section of a filled 
(c) and empty (d) pipeline, reduced stress for a filled (e) and empty (f) pipeline 

 

 

 

a) b) 

c) d) 

e) f) 
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Dynamic Analysis 

This part of the book contains a brief overview of the results of analyses 
pertaining to the dynamics of the analysed system. Again, the programmes 
PipeLaySim and ANSYS were used and the obtained results compared. The same 
geometry and mass parameters were assumed as for the static analyses. As the 
initial conditions in the dynamic problem (at time t = 0) the values yielded by the 
last step of the static analysis were taken. The fourth-order Runge-Kutta method 
with constant integration step was used in the PipeLaySim programme to integrate 
the equations of motion [Press W. H., 2002], whereas in the ANSYS package the 
Newmark method [Bathe K. J., 1996] was used. 

Two types of excitation were applied. In the first case (W1), no waves 
( )m0=SH  was assumed and a harmonic excitation of the vessel's immersive 

motion (Fig. 9.34a) with amplitudes and periods listed in Table 9.6. This case 
corresponds to motion of the system immersed in a motionless liquid. The second 
type of excitation (W2) included both the motion of the vessel and waves of the 
water (calculations in both programmes were performed according to the Airy 
model of the wave). Graphs of the excitations are shown in Fig. 9.34b, assuming 
appropriate resizing of amplitudes in the initial phase of calculations and a phase 

shift for the variable Dx  equal °=90)0(
Xϕ . The lower rows of Table 9.6 contain 

the remaining parameters, which are common to the cases W1 and W2. 
consts =χ  was assumed in both programmes.  

Table 9.6. Parameters assumed in the dynamic analysis 

Excitation SH  [m] 
XA [m], 

 
)0(

Xϕ  [deg] 

YA [m],  

)0(
Yϕ  [deg] 

Period  
T  [s] 

W1 0.0 0; 0 1; 0 8.0 

W2 5.0 1; 90 2; 0 8.0 

Coeff. AD CC /  from  

(3.33) 
1.0/1.0 Stiffness coeff. of 

the seabed 
1.1e5 N/m

 

Data set (geometry, 
diameter, content of the 

pipeline) 
R4-SP-L700 

Tangent resistance 
coefficients m and 

n (Table 3.3) 

02.0=m  
04.0=n  

Fig. 9.35 presents time courses of coordinates of the point  of the pipeline at 

the maximum of curvature (Fig. 9.29) determined by the coordinate xT = 250 m. In 
both cases of the vessel's motion and waves, the graphs of displacements of the 
point are similar. Relative errors do not exceed 1%.  

In Fig. 9.36, the velocities P1 obtained from both programmes are presented. 
The produced graphs are virtually identical. The differences are due to integration 
methods and also to the accuracy with which the excitation is realized. In ANSYS, 

1P
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it was interpolated with a piecewise linear function (boundary conditions for the 
displacements given as tables). 

 
 

 

 
Fig. 9.34. Excitations of the vessel's motion in dynamic analysis: a) assumed conditions of 
waves and vessel's motion, b) graphs of longitudinal rolling Ax  and heave Ay   

Dynamic reactions at the point S  (the point of connection with the guiding 
device onboard the vessel) are shown in Fig. 9.37. In the case of vertical reaction 

)(S
YR  the maximal relative error does not exceed 10% (W2 excitation).  

The reduced stresses calculated along the pipeline's axis are shown in 
Fig. 9.38. The graphs were produced for the time t = 10 s taking dynamic forces 
into account. 

On the comparative results of static and dynamic analyses presented 
a conclusion can be based that the proposed model and software are correct. Since 
actual objects (ships for laying pipelines) are hardly available and laboratory 
research is very costly and requires large pools and devices producing artificial 
waves, performing empirical tests is rather difficult. The authors are aware that 
results of measurements obtained from tests on actual objects may deviate from 
the values yielded by the process of numerical simulation, among other things due 
to the simplified description of interaction in the liquid – solid body system and 
the approximate model of waves. Yet, some verification is assured by comparing 
the results with that from another environment aimed at modelling and analyses 
(e.g. of the ANSYS type) which is commonly used and has been verified multiple 
times. This allows us to eliminate some possible errors in modelling and 
programming. 

9.3.2   Installation of a Pipeline with the S-Lay Method 

A mathematical model of a system for simulating the dynamics of the installation 
process with the S-lay method can be formulated by augmenting the model of the 

( ))0(2sin XTXD tAx ϕπ +=

{} x̂ŷ

SH

( ))0(2sin YTYD tAy ϕπ +=

t

t

wave 
direction

d
xv

)a )b
A

A

time 
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J-lay method. The additional element is a specialized ramp guiding the pipeline (a 
stinger) (Fig. 9.39). In the model presented herein, the ramp is assumed to be a 
bent beam with variable section modelled with the classical finite element method 
connected by a joint to the vessel's deck at the point U and additionally with two 
supporting ropes.  

 

 

Fig. 9.35. Coordinates of the point xx of the pipeline: a) coordinate x (W1), b) coordinate y 
(W1), c) graph of the coordinate x (W2), d) graph of the coordinate y (W2)  

 

Fig. 9.36. Velocities of the point 1P : a) W1 excitation, b) W2 excitation 
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Fig. 9.37. Dynamic reactions at the point S: a) W1 excitation, b) W2 excitation 

 

Fig. 9.38. Reduced stresses for the time t=10s: a) W1 excitation, b) W2 excitation 

The model of the pipeline is similar to that used for the J-lay method. It is 
described in the previous chapter. A model of the ramp connected with the deck 
by a joint U and supporting ropes needs to be additionally formulated. Hence, the 
equations of motion of the system may be written in the form [Szczotka M., 
2011b]: 

                               (9.87) 

                  (9.88) 

where   – matrix of masses of the pipeline, 

 –  vector of generalized coordinates of the pipeline, 

   –  vector of generalized forces acting on the pipeline, 
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Fig. 9.39. Scheme of the model for the analysis of installing a pipeline with the S-lay 
method: a) positioning of the coordinate systems, b) reactions of constraints 

  

 
),( CJQ   – vector of generalized forces exerted by the ramp, 
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)(RQ   – vector of generalized forces acting on the ramp, 

 ),( CRQ   – vector of generalized forces exerted by the pipeline, 
),( LRQ  – vector of generalized forces due to the actions of forces 

supporting the structure of the ramp. 

The equations and reactions of constraints imposed on the pipeline are identical to 
those of the J-lay model. Whereas the joint at the connection of the ramp with the 
deck (a revolute connection) makes it necessary to include the reaction vector: 

 [ ]TU
Z

U
Y

U
X

U PPP )()()()( ~~~~ =P ,                       (9.89) 

and a vector of the pair of forces whose moment is: 

 [ ] .
~~~ )()()( TU

Y
U

X
U MM=M                              (9.90) 

By neglecting friction in the connection, 0
~ )( =U

ZM  is assumed.  

The constraint equations take the form: 

 ,~~~~ )()()()( constU
n

R
n

R
n

U

RRR
=′+= rRrr

                    
(9.91) 

 ,
~ )(

2 constR
nR

=ΦΛ
                                   

(9.92) 

where )(~ U
nR

r′   – vector of generalized coordinates of the point U  in the system 

of the RFE Rn  of the ramp, 
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n RR
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R   – rotation matrix of the Rn  of the ramp, 
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
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
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
=

010

001
2Λ . 

Following the procedure presented in the previous chapter the constraint equations 

may be put in an accelerative form allowing us to determine the vectors )(~ UP , 
)(~ UM  and )(~ R

nR
q&& . Actions of the following forces are also taken into account:  

 in the ropes 
)(R

SF , 
)(R

PF  acting on )(REF R
js

 introduced by the vector 
),( LRQ ,  

 contact forces, acting on elements of the pipeline and on the ramp, derived 

from 
),( CJQ  and 

),( CRQ .  
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Forces in the ropes may be determined using the model of a flexible rope with 
damping. The contact forces between the ramp and the pipeline are determined by 
assuming a series of spring-damping elements with clearance modelling the rollers 
guiding the pipeline. The forces of interaction of the ramp's structure with the 
water environment are approximated with the Morison equation keeping in mind 
the additional interactions occurring at the transition through the water surface. 
 

 

Fig. 9.40. Results obtained from static analysis of the S-lay system: a) shape of the pipeline, 
b) reduced stresses, c) graph of the axial force, d) bending moment 

Sample calculations contained in this section were performed for an installation of 
a pipeline of 4 inches at the depth of 100=d  m. The shape of the pipeline after it 
has reached static balance is shown in Fig. 9.40a, where the coordinates on the 
graph are expressed in the inertial system {} depicted in Fig. 9.39a. Two options 
were considered: on the graphs P denotes a pipeline filled with air, N – a pipeline 
filled with water. Graphs of reduced stresses along the pipeline's axis (Fig. 9.40b) 
are different to those obtained in the J-lay method. Two places occur with 
considerable stresses due to bending. The first one is caused by the ramp's 
curvature (a section called overbend), the second results from the curvature of the 
pipeline above the bottom (sagbend).  

Stresses in the pipeline may be controlled by changing: the immersion of the 
ramp, its shape and the value of the force stretching the pipeline. The bending 
moment being zero at some point (Fig. 9.40d) is also characteristic of this method. 

a) b) 

c) d) 
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Sample results of calculations of the dynamics are shown in Fig. 9.41. 
Harmonic motion of the vessel with period s 8=T  and amplitudes m 5.0=Ax , 

m 0.1=Ay  was taken as the excitation. The coefficients of the Morison equation 

were assumed as in previous analyses.  
 
 

 

Fig. 9.41. Simulation of the dynamics of a system for S-lay installation: a) dynamic 
reactions at the point S, b) reduced stresses in selected points of time, c) graphs of the 
horizontal component of velocity in time, d) graphs of the vertical component of velocity in 
time  

The dynamic reactions at the point S (Fig. 9.41a) (guiding the RFE n in the 
tensioner's mechanism) are not significantly different from the values obtained in 
the static problem due to the assumed length and size of the pipeline (the mass is 
fairly small). Additionally, as Fig. 9.41b implies, in which graphs of the reduced 
stresses at different points in time are presented, with a relatively rigid system of 
ramps the change of values of the stresses occurs in the lower segment of the 
pipeline only. The changes would be greater with a more flexible ramp (or 
suspension system), which may result, when the length of the system is 
significant, in considerable differences in the geometry of the lower segment of 
the pipeline (sagbend). A possibility also exists of controlling the lengths of the 
ropes in such a way that the growth of stresses caused by waves is eliminated. The 
velocities of the centre of mass of the RFE located approximately 4 m above the 

option 
(N)a) b) 

c) d) 

time [s] 

time [s] 

time [s]
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bottom of the sea are shown on graphs (Fig. 9.41 c and d). In the case of the S-lay 
method, the differences in the velocities of the pipeline in the lower part are 
greater for different contents of the pipeline (densities) than with the J-lay method. 

9.3.3   Dynamics of a System for Installing Pipelines with  
the Reel Method 

Dependencies presented in the preceding chapters allow us to formulate 
mathematical models and a computer programme suitable for simulating the 
operation of a device for laying pipelines with the reel method. The section 
presents a model for the analysis of the dynamics of a system equipped with 
a passive reel drive system. To discretize the pipeline the modified RFE method is 
used and the nonlinear dependency of stresses on deformations is described by an 
elasto-plastic characteristic. Models contained herein are investigated in [Szczotka 
M., 2010], [Szczotka M., 2011b]. 

9.3.3.1   Mathematical Model 

In Fig. 9.42, a scheme is shown of a system consisting of a reel onto which the 
pipeline is wound and a specialized guiding ramp through which the pipe passes 
as it is unwound and lowered to the seabed. The ramp is equipped with devices 
controlling the tension and the speed of laying. 

The following simplifying assumptions are made: 

 the motion of the pipeline being unwound from the reel is kinematically 
forced by a device providing tension and guidance; influence of the immersed 
part of the pipeline on the motion may be neglected, 

 swaying angle Aψ  of the vessel is the most important parameter of the lifting 

motion, therefore a simplification is proposed which reduces the problem to 
a planar system in which the vessel can move according to the known 
functions:  

 ( )( ),,,,,, ωβ STHtx fZSA RAOℑ=  

      
( )( ),,,,,, ωβ STHty fZSA RAOℑ=                     

(9.93) 

 
( )( ),,,,,, ωβψ STHt fZSA RAOℑ=  

 ( ) ,0=tzA    ( ) ,0=tAθ   ( ) ,0=tAϕ  

where   ℑ  – operator of transformation of the motion from the domain of 
frequency to the domain of time, 

 ZS TH ,  – height and period of waves, 

 fβ  
– wave's angle of attack, 

 ( )ωS   – defined by (3.27) or (3.28), 

 RAO  – operator of the transition function, 
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 large deflections of the pipeline are taken into account by applying the 
modified RFE method including bending in the longitudinal plane of the 
vessel. 
 
 

 

Fig. 9.42. Scheme of the reel system 

The generalized coordinates of the considered system are therefore components 
of the following vector q, (an appropriate choice of mass, inertia and geometric 
parameters allows the reel to be treated as RFE 0):  

 [ ] ,,,...,,...,0
T

Tni αψψψ=q                               (9.94) 

where iψ   – inclination of the axes of the RFE i to the axes Bx̂  of the inertial 

system, 
 Tα   – inclination angle of the ramp's axis. 

The equations of motion along with the constraint equations may be written as 
(detailed derivations are presented in the papers [Szczotka M., 2010], [Szczotka 
M., 2011b]): 
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                           (9.95)
 

where ( )qAA ,t=   – matrix of inertia of the system, 

( )qqBB &,,t= , 

 ( ) ( )qSqD ,   – matrices of coefficients of reactions and constraint 

equations, 
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( )qqQ &,,t   – vector of generalized forces, 

 G    –    vector taking the potential of gravity forces into account, 
 ( )tHH =   – vector whose components depend on the base's lifting 

motion, 

 ( )qqW &,,t   – vector of the right-hand sides of the constraint equation, 

 P    –   vector of unknown reactions of the constraints. 

The equations (9.95) were integrated with the fourth-order Runge-Kutta method 
with a constant step of integration. Determination of the initial conditions for the 
system's equations of motion requires solving sequentially a few static and quasi-
static problems. If in the equations (9.95) the following is assumed: 

 ,0qq == &&&                                                  (9.96) 

then the static problem requires solving a system of nonlinear algebraic equations 
of the form: 

 
( )
( ) ,

,

0RΦ
0qΨ

=
=

s

s

                                            

(9.97) 

where ( ) 0qΨ =  – equations of balance of the RFEs 1,...,n and the guiding 

ramp,  

 [ ]T
Tns ψψψ ,,...,1=q , 

 [ ]T
nEEs MNU ,,=R , 

 ( ) 0RΘ =s  – constraint equations. 

Solving the system of equations (9.97) was done with the Newton method. The 
procedure preceding the calculations of the dynamics is depicted in Fig. 9.43. In 
the first stage, the pipeline is wound onto the reel. At this time plastic 
deformations may occur. The end of the pipe is transferred to the guiding ramp in 
the next stage. Having performed these calculations, we obtain the initial 
conditions assumed as the starting point of the dynamics. 

In the computer programme, a possibility is also included to perform dynamic 
analysis with a simplified model in which oscillations (dynamics) are not included 
(the model is introduced in [Szczotka M., et al., 2007). In such case, an internal 
procedure solving the equations (9.97) with the Newton method determines the 
forces occurring during the unwinding of the pipeline when integrating the reel's 
equations of motion. The equation of the reel's dynamics may be obtained from 
the equations (9.95) assuming  and taking into account the forces caused by 
deformations of the pipeline described by the system of equations (9.97). Note, 
however, that despite the minimal dimension of the model, the necessity of using 
the Newton method, which is sensitive to nonlinearity of the problem considered,  
 

0=n
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Fig. 9.43. Quasi-static analyses for determining the initial conditions: a) stage of winding 
the pipe onto the reel, b) transferring the pipe to the ramp, c) stretching the system to the 
nominal tension 

lengthens the durations of computer simulations with respect to the full model of 
the dynamics. Those durations are approximately ten times longer, therefore using 
this model does not seem prudent. Hence, another approach to employing the 
simplified model is proposed. The discrete model of the pipeline is thereby 
replaced with an artificial neural network [Szczotka M., 2010]. Minimal 
computation time is then required to determine the forces due to the pipeline's 
work as it is being unwound, and use them in the equation of the reel's dynamics. 
Computational efficiency of a such model is particularly appealing. It also lends 
itself somewhat to real-time control. The results obtained from both variants of the 
model are presented later in this chapter. 

9.3.3.2   Calculations for a Passive Drive of the Reel 

The results of calculations performed for the system shown in Fig. 9.42 are 
presented below. The drive of the reel from which the pipeline is unwound is 
assumed to be passive and to exert a constant force applied at a dividing radius of 
the clockwork. To make the interpretation of the results more convenient, the 
simulations were performed assuming the following functions describing the 
motion of the vessel: 
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where ψAAA YX ,,  –  amplitudes of motion in the appropriate directions,  

 ψγγγ ,, YX   –  initial phases, 

 ω  –  angular frequency of excitation. 

Basic assumed parameters of the device are based on the documentation of one of 
the devices operating on the North Sea. The characteristic values are gathered in 
Table 9.7 (the dimensions and parameters are shown in Fig. 9.42). The objective 
of the performed simulations was to determine the influence of waves and braking 
force of the reel on the operation of the considered system. Typical settings and 
data used when installing pipelines were chosen. Table 9.8 shows the parameters 
of regular excitation of the vessel's motion according to (9.98), taking into account 
the mentioned characteristics of the vessel. All calculations were performed 
assuming a constant step of integration in the Runge-Kutta method Δh=0.001 s. 
The notational system used in the subsequent graphs is explained on the scheme 
presented in Fig. 9.44. 

 

 

Fig. 9.44. Notations in the results presented on graphs 

In Fig. 9.45, the results of calculations for a pipeline with diameter of 4 inches 
are shown. Graphs of tension indicate significant instability of operation caused by 
waves and lack of possibility to eliminate undesirably large overloads by changing 
the braking force of the reel (Fig. 9.45b and c). Fairly stable operation is 
guaranteed only for modest values of the amplitude of the swaying angle ψD when 
the braking force of the reel is increased (Fig. 9.45a and d). The decay of tension 
(values of the force UE near zero in Fig. 9.45b and c) is due to excessive 
unwinding of the pipe from the reel caused by the increase in the reel's angular 
velocity (Fig. 9.46). 

The graphs of the reel's velocity are shown in Fig. 9.46. The results obtained 
for F1 and F4 waves (little swaying, Fig. 9.46a and Fig. 9.46d) indicate fairly 
stable operation of the device in the range of swaying amplitudes from 0 to 1°. 
Lack of control of the reel's velocity under more intense waves leads to unwinding 
of great amounts of the pipeline and subsequently to abrupt arrest of the reel 
(jerk). Increasing the braking force makes it possible to reduce the maximum 
speed of the reel but it also causes high values of the axial forces which are 
dangerous to the personnel and the device. 

 
 
 

Rx-Fx-Ux-Vx-Cx
pipe size [‘’] 

                         assumed vessel input 

initial pipe pretension [kN] 

laying speed [m/h] 
lay ramp stiffness [MN/rad] 
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Table 9.7. Main parameters of the device and sizes of pipelines used 

Parameter Value 
Admissible mass of the reel together with the 
wound pipe kg102500 3⋅  

Range of diameters of steel pipes installed "18"4 −  
Designed value of pipes' tension kN2500
Capacity of the reel: (for max/min. diameter of the 
pipeline) 

km7/km150  

Max/min. Winding diameter of pipes m15/m25 == IO DD  

Moment of inertia of the reel with the wound 
pipeline 

28 kgm100.35.2 ⋅÷  

Length of the vessel ~ m100  

Diameter of the gear wheel m7.25=pD  

Link mass um  of the pipeline for pipe diameter D  

"4=D , kg16=um  

"8=D , kg42=um  

"12=D , kg128=um  

"16=D , kg240=um  

"18=D , kg340=um  

Length of the guiding ramp m20=RL

Radius of the ramp's guiding wheel m8=hr

Mass of the ramp with devices kg10120 3⋅  

Distance between the reel and the joint attaching 
the ramp 

m55=HL  

Ramp inclination angle 060=Rα  

Table 9.8. Assumed parameters of the vessel's lifting motion 

Description
XA / Xγ , 

[m]/[o] 
YA  / , 

[m]/[o] 
 / , 

[m]/[o] 

Period of 

the wave 

[s] 

Height of the 

wave 

Hs [m] 

Direction of the 

wave 

βf [
o]

 

F1 0.12/90 0.4 / 75 0.15 / -45 6 3.0 30 
F2 0/0 0.45 / 90 2.55 / 20 7 3.0 0 
F3 1.0/-100 2.2 / 0 4.1 / 60 8 5.0 60 
F4 0.27/-95 0.27 / 0 0.85 / 70 10 1.0 0 

 

Yγ ψA ψγ
T
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Fig. 9.45. Graphs of tension in the pipeline as it is unwound under waves and with different 
values of the barking force of the reel: a) ÷ d) correspond to F1 ÷ F4 

Multiple factors influence the values of dynamic forces during the device's 
operation. Among those considered are: flexibility of the guiding ramp's 
suspension, speed of laying the pipeline, different diameters and load degrees of 
the reel, value of tension. The results are presented, among other things, in the 
papers [Szczotka M., 2010], [Szczotka M., 2011a]. In many cases it is impossible 
to eliminate or significantly reduce dangerously large dynamic forces under wave 

action with waves of height Hs > 1m without using an auxiliary control system. 
One is proposed in section 10.4.  

 
 

F1 waves 

F2 waves 

F3 waves F4 waves

a) b) 

d) c) 
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Fig. 9.46. Angular velocity of the reel for different waves conditions and values of braking 
forces of the reel: a) ÷ d) correspond to F1 ÷ F4 

c) 
d) 

a) b) 

F4 waves F3 waves 

F1 waves F2 waves 
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10   Selected Applications Related to Control of 
Offshore Structures 

Dynamic analyses of mechanical systems are often considered together with 
problems related to their control. With traditional ways of operating machines it 
the operator who decides what the working motions are. In contemporary 
machines, it is becoming commonplace to support the process of control. Control 
systems based on microprocessor technology (programmable drivers, onboard 
computers) are supposed to facilitate human work or even replace it. They enable 
realization of various strategies unachievable with manual control. Automated 
control is used also in offshore structures, including cranes. The criteria of control 
strategies may be different, for example: 

 minimal duration of motion,  
 minimal consumption of energy,  
 accuracy of load positioning, including minimization of oscillations after the 

motion has ended, 
 minimization of dynamic loads, 
 stabilization of the load's position, 
 minimization of the influence of sea waves on the device's dynamics. 

The present chapter describes the basics of the method of selecting the drive 
functions based on dynamic optimization. Control of the drum of a winch of an A-
frame type crane allowing it to compensate for vertical movements of the base due 
to sea waves is presented. For an offshore jib crane, an auxiliary system is 
proposed enabling the load to be positioned in three directions. In the last part, 
a concept of active compensation of waves for a drum's drive of a device for 
laying pipelines is discussed. 

10.1   Dynamic Optimization 

As former considerations imply, the equation of dynamics of a multibody system 
may be presented in the following: 

( )Mt ,,, qqfqA &&& = , (10.1) 

( ) 00 qq = , (10.2.1) 

( ) 10 qq =& , (10.2.2) 
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where [ ] T
nqq L1=q  –  vector of generalized coordinates of the system, 

 f  – excitation vector due to these forces: elasticity, damping, 
centrifugal, Coriolis, gyroscopic, and to the drives, 

 M  – function giving the drive force or moment thereof, 
henceforth assumed to be a specified function of time, 

 10 , qq  – vectors of initial values of generalized coordinates and velocities. 

 
The equations (10.1) are typically nonlinear and require numerical integration. 
Duration of their integration is closely related to the number n of generalized 
coordinates. Assuming large n considerably lengthens the calculations, whereas n 
being too small disables the mathematical model from adequately reflecting the 
dynamic properties of the system. The number n of generalized coordinates should 
therefore hit the balance between computation time and accuracy. Its choice 
depends largely on the purpose of the model. 

In some cases, which are described in chapter 6, it is possible to write the 
equations (10.1) as a combined system of ordinary differential and nonlinear 
algebraic equations: 

( )Mt ,,, qqfRDqA &&& =− , (10.3.1)

( ) 0qqΛ =&, , (10.3.2)

gdzie fqA ,,  – defined as in (10.1), 

 [ ] T
mRR L1=R   –  vector of constraint reactions, 

 ( )qDD = –  matrix of coefficients, 

 ( ) ( )[ ] T
m qqqqΛ &L& ,,1 λλ=   –  vector of constraint equations, 

 m – number of components of the vector of constraint reactions. 
 

To solve the equations (10.3) completed with initial conditions, a procedure is 
often applied whereby the constraint equations (10.3.2) are put in accelerative 
form by differentiation: 

( )qqWqD &&& ,,tT = .  (10.4)

The equations (10.3.1) and (10.4) replace (10.3.2) and may be written as: 

( )
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,,

,,,

t

Mt
T . (10.5)

Further reasoning assumes that the equations of dynamics of the system take the 
form (10.1). For such equations, as just shown, can be easily extended to a system 
with constraints. 

In the case of controlling working motions of machines, it is important to 
choose the drive function in such a way dependent on time that the intended goal 
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is achieved according to the set criteria. One method of finding appropriate drive 
functions is by optimization. The optimization task in this case is to choose the 
drive function M(t) satisfying: 

 

minimization of the functional:  

( )M,,qq &Ω , (10.6)

maintaining the boundary conditions: 

( ) ei nie ,...,1for0, =≤qq & , (10.7.1)

( ) ( ) ( )tMtMtM RL ≤≤ , (10.7.2)

where en   –  number of boundary conditions, 

 ( ) ( )tMtM RL ,   –  known conditions constraining the drive function ( )tM .  

 
Note that it is necessary to know the vectors qq &,  corresponding to the function ( )tM  

in order to determine the functional Ω and the function ei. This requires integration of the 
system's equations of motion (10.1) in each optimisation step. An optimization task 
formulated in this way is called a dynamic optimization task [Kręglewski T., et al., 
1984], since its focus is the integration of equations of dynamics.  

The problem of choosing the function M(t) can be reduced to a classical 

optimization problem by discretisation. Let Tt ,0∈  and: 

( ) ,,...,1for pitMM ii ==  (10.8) 

where p is defined in Fig. 10.1. 

The value of M(t) for ii ttt ,1−∈  may then be determined with cubic splines 

(Fig. 10.1), using the formula: 

( ) ( ) ( ) ( ) ( ) ,11
2

1
3

1 −−−− +−+−+−= iiiiiii
i MttcttbttatM  (10.9)

whereby the coefficients iii cba ,,  are chosen such that: 

( )( ) piMtM ii
i ,...,1for == , (10.10.1)

( ) ( ) ( ) ( ) 1,...,1for'1' −== + pitMtM i
i

i
i , (10.10.2)

( ) ( ) ( ) ( ) 1,...,1for''1'' −== + pitMtM i
i

i
i , (10.10.3)

and: 

( ) ( ) ( ) ( ) 0or0 0
''0

0
'0 == tMtM , (10.10.4)

( ) ( ) ( ) ( ) 0or0 ''' == p
p

p
p tMtM . (10.10.5)
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Fig. 10.1. Approximation of the function M(t) with cubic splines 

Equations (10.10) form a system of 3p linear algebraic equations with 3p 
unknowns ( )ppp cbacba ,,,...,,, 111 . Its solution may be obtained easily by 

a recursive procedure. 
If the drive function M(t) is approximated by splines (10.9), then the optimization 

task consists in determining the p+1 values specified in (10.8). The decision 
variables in the considered task are therefore the components of the vector: 

[ ]TpMM K0=M . (10.11)

Eventually, the problems of defining the optimization tasks of drive functions, 
considered in further examples, reduce to finding values M0,…,Mp which constitute 
the coordinates of the vector of decision variables (10.11) minimizing the functional: 

( )pMM ,...,,, 0qq &Ω , (10.12)

and also satisfying the conditions: 

( ) ei nie ,...,1for0, =≤qq & , (10.13.1)

( ) ( ) pitMMtMMMMM iRiRiLiLiRiiL ,...,1for,, ===≤≤  (10.13.2)

The vectors q  and q&  are obtained by integrating the initial problem: 

( )pMMt ,...,,,, 0qqfqA &&& = , (10.14.1)

( ) ( ) 10 0,0 qqqq == & , (10.14.2)

for t  œ T,0 .  

Various methods may be used to solve this task. However, all of them are 
sensitive to the choice of the starting point, i.e. the initial values of M0,…,Mp. 

It can be easily noticed that the time cost of the optimization process directly 
depends on the time of integration of the equations of motion (10.14). Using for this 
case the mathematical models of the systems presented in preceding chapters would 
cause unacceptably long computations. It is the reason why the drive functions M(t) 
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are usually determined according to simplified models whose degrees of freedom 
are possibly few. This enables their possible application in real-time control. 
Verifying calculations which allow to assess the usefulness of the developed 
simplified models and control algorithms are carried out with respect to combined 
basic models, thus analogous to those described in earlier chapters. 

10.2   Vertical Stabilization of Load of an A-Frame 

In this chapter, two dynamic models of an A-frame are presented. In the first one, 
the flexibility of a frame is taken into account, while in the second this flexibility 
is omitted. In both cases the flexibility of rope is considered. The classical Rigid 
Finite Element Method has been used to discretise the frame – chapter 8.1. The 
algorithm of optimisation of the drive function for the drum of the hoisting winch 
is proposed. The goal of the optimisation is to ensure the stabilization of the load’s 
position, i.e. to hold it at the required depth regardless of the ship’s motion. In 
order to achieve appropriate numerical effectiveness, the optimisation problem has 
been solved using a simplified model of an A-frame. 

10.2.1   A-Frame Model 

The scheme of an A-frame and the most important points of it are presented in  
Fig. 10.2. The following denotations are used: F – supporting structure, P – pulley,  
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Fig. 10.2. A-frame scheme 
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R – rope, H – drum of the hoisting winch, L – load, SR, SL – right and left servomotor 
forces, NR, NL – connection points of servomotors to the A-frame, AR, AL – 
connection points of the A-frame to the deck, xF, yF, zF and xD, yD, zD – coordinate 
systems assigned to the supporting structure (frame) and to the deck, respectively. 

The frame is the main element of the supporting structure in such cranes. In 
order to discretize the frame, the rigid finite element method can be applied.  

In doctoral thesis [Fałat P., 2004], at first three beams were distinguished 
(right-1, top-2, left-3) in the frame. Then, each beam was divided into rigid finite 
elements and spring-damping elements (Fig. 10.3). This necessitates taking into 
account the reaction forces and moments at points BL and BB, and increases the 
number of constraint equations.  
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Fig. 10.3. A-frame divided into three beams which were divided into RFEs and SDEs 

In this work we present a different approach. The frame is treated as one beam, 
which is divided into RFEs and SDEs. The obtained chain of rfes and sdes is 
presented in Fig. 10.4. 

The position of each rfe of the undeformed beam is defined by the coordinate 
system }{iE  with respect to the coordinate system {0} of RFE 0, by 

a transformation matrix with constant components:  









=

1

00
0

0

sΘ
T iEiE

iE , (10.15)

where iEΘ
0  is the matrix of cosines of the system }{iE  with respect to {0}, and iE s0  is 

the vector of coordinates of the origin of the system }{iE  in {0} (Fig. 10.5). 
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Fig. 10.4. A-frame as one beam, and its division into RFEs and SDEs 

The coordinate system {i} rigidly attached to RFE i moves together with the RFE 
when the beam is deformed. Its position in the coordinate system }{iE  is defined 

by generalized coordinates of the ith element, which are the components of the 
vector:  









=

i

i
i φ

r
q , (10.16) 

where [ ]T
iiii zyx=r  and [ ]T

iiii ψθϕ=φ  are vectors of 

displacements and rotation angles presented in Fig. 10.5.   
 
If we assume that angles iii ψθϕ ,,  are small, then the transformation matrix from 

the local coordinate system {i} to the system E{i} takes the following form:  
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where [ ]Tiiiiiii zyx ψθϕ=q ,  
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Fig. 10.5. The systems of thi RFE and generalized coordinates  
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The transformation matrix iB  that allows us to transform coordinates from the 

local coordinate system {i} to the inertial coordinate system {} according to the 
relation:  

ii rBr = , (10.18) 

where ir   
–  vector of coordinates in local system }{i , 

          r   –  vector of coordinates in base system {} , 

has the form: 

)()(),( 0
iiiiEFDiii tt qPATTTTqBB === , (10.19)
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where )(tDD TT =  – defines the motion of the ship deck with respect to 

the base system {} , 

 ))(( tFF ϕTT =   – describes the rotation of the frame in the coordinate 

system of the deck }{D , 

 const0 =iE T   – defined in (10.15), 

 )( iii qTT =   – presented in (10.17), 

 FD)t( TTA = , 

 iiEi TTP 0= . 

 
In the case when the axes of the local coordinate system {i} are chosen as 
principal central axes of the RFE, the mass and inertial features of the RFE i are 
defined by: its mass, mi, and jiJ , )3,2,1( =j  which are mass moments of inertia 

with respect to the axis iii zyx ˆ,ˆ,ˆ . 

The equations of motion of the system considered can be obtained from 
Lagrange equations. This approach requires the kinetic and potential energy of the 
system to be defined. The kinetic energy of the RFE i can be calculated as: 

}{tr
2

1 T
iiiiE BHB &&= , (10.20)

where iH  – the pseudo-inertia matrix defined as in (5.11). 

Following the considerations, we can obtain: 

iii
i

i

i

i EE
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d
eqM

qq
+=

∂
∂−

∂
∂

&&
&

, (10.21) 

where [ ]xyziiii JJJmmmdiag ,,,,,=M , 

       
[ ]{ }T

iiijiiijiji tee PAPAHBqq &&&&& 2tr),,( ,,, +== , 

      
ji

i
ji q ,

, ∂
∂= P

AB ,    
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,

==
∂
∂

jiE
ji

i

q
DT

P
. 

 
The kinetic energy of the frame can be expressed by:  


=

=
n

i
iEE

0

, (10.22) 

where 1321 +++= nnnn ,  
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and it is possible to calculate: 

FFF
FF

EE

dt

d
eqM

qq
+=

∂
∂−

∂
∂

&&
&

, (10.23)

where [ ]nF MMM ,,diag 0 K= , 

 [ ]TT
n

T
F eee K0= ,  

[ ]TT
n

T
F qqq K0= . 

The potential energy of deformation of SDEs can be expressed as follows: 

FF
T
FFV qKq

2

1= , (10.24)

where FK  – the stiffness matrix with constant coefficients.  

Similarly, one can calculate the dissipation of energy as: 

FF
T
FFD qLq &&

2

1= , (10.25)

where LF – the damping matrix with constant elements.  
From what has been written above, one can calculate: 

FF
F

FV
qK

q
=

∂
∂

, (10.26.1)

FF
F

FD
qL

q
&

&
=

∂
∂

. (10.26.2)

The potential energy of gravity forces of the frame can be calculated as: 

iCi

n

i
i

F
g gmV ,3

0

rBθ
=

= , (10.27)

where  ]1000[, =iCr . 

So: 

F
F

F
gV

G
q

=
∂
∂

, (10.28) 

where [ ]TT
n

T
F GGG ,...,0= , 

 [ ]Tiii G 6,1, ,..., GG = , 

 iCjiji gmG ,3, rDθ= , 

 jD    –  defined in (10.17). 
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Energy of Load and Drum of the Hoisting Winch 

The load is modelled as a particle. The vector of its generalized coordinates is 

expressed in the following form [ ]TLLLL zyx=q . The angle of rotation of 

the drum of the hoisting winch is denoted as ϕH. Kinetic energy of the load and the 
drum can then be calculated as: 

22

2

1

2

1
HHLLR IrmT ϕ&& += , (10.29) 

where HI   –  moment of inertia mass of the drum, 

 
2222
LLLL zyxr &&&& ++= .  

 
Potential energy of the load is determined as:  

LL
L

g zgmV = . (10.30) 

Elastic Deformation of the Rope 

The rope system of the A-frame is presented in the Fig. 10.6. It is assumed that the 
radii of pulleys are small compared to the dimensions of the whole mechanism, 
and also that the rope passes through points S and H – centres of the pulley and 
the drum, respectively. Because the radii of pulleys are small and the length of the 
rope may be hundreds of meters, this simplification can be seen as admissible.  
 

 

( )LLL zyx ,,

Hϕ

L 
H 

upper beam 

S 

2
Hd

 
Fig. 10.6. Rope system of the A-frame 
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Potential energy of elastic deformation of the rope and its dissipation can be 
expressed in the following forms: 

2

2

1
RRRR cV Δ= δ , (10.31)

2

2

1
RRRR dD Δ= &δ , (10.32)

where 




>Δ
≤Δ

=
0if1

0if0

R

R
Rδ , 

 20
H

HR

d
lSHLS ϕ−−+=Δ , 

 
SLLS rr −= , 

 
HSSH rr −= , 

 l

FE
c RR

R =   –   stiffness coefficient of the rope, 

 Rd  – damping coefficient of the rope, 

 
ll ,0    – initial and current length of the rope, respectively, 

 ER – Young’s modulus of the rope material, 
 FR – cross-section of the rope, 

 Hd  –   diameter of the drum. 

Motion Equations 
The vector of A-frame generalised coordinates can be presented in the form: 









=

R

F

q

q
q , (10.33) 

where Fq  – the vector of generalised coordinates of the discretised frame defined 

in (10.23) and vector [ ]THLLLR zyx ϕ=q  contains generalised 

coordinates of the load and the angle of rotation of the drum.  
 

Then, the equations of motion of the system can be written as: 

DRQKqqLqM +=++ &&& , (10.34) 
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 D, R   –  matrix and vector of reaction forces, 
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, 
R
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∂

, 
F
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∂

, 
R

RD

q&∂
∂

 can be calculated as in chapter 9.1.1 

and involves nonlinear terms. 
 
Forces of reactions on the frame are presented in Fig. 10.4. Vector R of 
generalised forces then specifically includes: 
 

 reaction [ ]T

zALyALxALAL RRR ,,,=R , 

 reaction
 

[ ]T

zARyARxARAR RRR ,,,=R , 

 and forces in servomotors SL and SR. 
 

These forces can be written in the vector form: 

[ ]TT
AL

T
ARLR SS RRR = . (10.35)

Finally, the mathematical model of an A-frame has been written in the form of 
a system of differential equations of the second order (10.34) and constraint 
equations in acceleration form:  

WqD =&&T , (10.36) 

where ( )qqWW &,= . 

 
In these equations, there are: ( ) 416 ++= nnq  (components of vector q) plus  

8322 =⋅+=Rn  (components of vector R) unknowns. So, the number of 

unknowns is equal to the sum of numbers of equations (10.34) and (10.36). 

10.2.2   Optimisation Problem 

One of the major problems connected with the design and control of cranes is the 
choice of the drive functions which ensure proper motion of the system. In the 
case of A-frame, a very important problem is the stabilisation of load position, 
regardless of motion of the ship caused by sea waves. Using the drive of the drum 
of the hoisting winch we can try to solve this problem. Time courses of drive 
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functions can be defined in the optimisation process. In the book, the objective 
function is assumed to be in one of the following forms: 

[ ] min
0

2

1 →−=Ω 
kt

L hz , (10.37.1)

minmax
0

2 →−=Ω
≤≤

hzL
tt k

, 
(10.37.2)

where Lz  – load coordinate, 

 h  – required depth.  
 

This means that one expects that as the result of optimisation the course of the 
function φH(t) will be obtained which minimizes the average or maximal value of 
deviation of load position from the required amount. During the optimisation 
process, the parameters of ship hull movement and coordinates of the winch 
position have been assumed to be known. 
 

0
1t 1−it it 1−mt kt

0
Hϕ

Hϕ

1
Hϕ 1−i

Hϕ i
Hϕ 1−m

Hϕ m
Hϕ

 
Fig. 10.7. The decisive variables 

In this chapter, we assume that the function φH which describes the function 
φH(t) defining the rotation angle of the winch drum has either the form: 

>∈<+++= − iiiiiiH tttdtctbtat ,for,)( 1
23ϕ , (10.38.1)

where  mi ,,1K= , 

 iiii dcba ,,,   – coefficients taken as shown in chapter 10.1 for spline 

functions of the third order,  
 it   – point in interval >< kt,0  (Fig. 10.7), 
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or that introduced by [Maczyński A., 2005]: 

( ) ( )
=−

−∈++=
s

i
iiiiiH ttttAAt

1
10,0 ,forsin αωϕ , (10.38.2)

where iA   –  amplitudes, 

 iω  –  frequencies, 

 0,iα  –  phase angles. 
 

As the decisive variables in the optimisation task we can choose: 

[ ]Tm
HHH ϕϕϕ ,,, 10 K=X           (10.39.1)

in the case (10.38.1), i.e. when spline functions are applied (Fig. 10.7), or: 

[ ]TsssAAAX 0,0,1110 ,,,...,,, αωαω=  (10.39.2)

in the case when a pseudo-harmonic response is assumed. 
In either case, at every step of the optimisation, the equations of motion of the 

system have to be integrated for ktt ,0∈  in order to calculate the value of the 

functional Ω1,2 from (10.37). Such an approach requires high numerical efficiency 
in solving A-frame equations of motion. For that reason, the optimisation problem 
has been solved for the simplified model of an A-frame. 
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Fig. 10.8. Scheme of the simplified model 
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In the simplified model of an A-frame, ideal stiffness of the frame has been 
assumed (Fig. 10.8). However, flexibility of the rope has been taken into 
consideration. The water damping ratio has not been taken into account. Ship motion 
has been assumed to be determined, by known functions: 
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t
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=
=
=
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=

. (10.40) 

This means that matrix DT , from (10.19), has the form: 
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ϕθϕθθ
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ϕψϕθψϕψϕθψθψ

T , (10.41) 

where c()=cos() and s()=sin().  
 

The frame angles are assumed to be constant. 
Kinetic and potential energy of the system can be expressed in the form: 

( )222

2

1
LLLL zyxmT &&& ++= , (10.42.1)

LLRRR zgmcV +Δ= 2

2

1 δ , (10.42.2)

RRR dD Δ= &δ
2

1
, (10.42.3)

where RRRL dcm ,,,δ  – defined in (10.31), 

 HHR rlBNDB ϕ+−+=Δ 0 . 
 

Lagrange’s equations of the second order have been used to determine the 
equations of motion of the system. The details are presented in [Fałat P., et al., 
2005]. These differential equations of the second order have been integrated using 
the Runge-Kutta method. The Nelder-Meads method has been applied in order to 
solve the optimisation task.  
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10.2.3   Numerical Simulations 

It should be mentioned that the numerical model of the A-frame presented in 
chaper 10.2.2 has been used in the Norwegian company TTS-Aktro from Molde  
for a fast analysis of forces and stresses at the initial stage of choosing parameters 
of the system and for cost calculations. In order to verify the model, the results 
obtained using our program (RFEM) have been compared with those obtained 
using commercial FEM program (NASTRAN package) [Fałat P., et al., 2001]. 
There have been compared reactions in joints, stresses and deflections of beams 
obtained. Some examples are presented in Fig. 10.9. 
 

 

 

Fig. 10.9. Comparison of FEM and RFEM models 

A comparison of  the results obtained using RFEM model with those from 
Ansys-Adams systems in dynamical conditions can be find in [Fałat P., 2004] and 
same of them are presented Fig. 10.10. 

 
 

 

Fig. 10.10. Comparison of RFEM and Ansys-Adams models: a) vertical reaction in the A-
frame leg, b) force in the servo-motor 

Numerical simulations related to the load stabilisation problem have been 
carried out for the rectangular A-frame with lifting capacity up to 100 Mg. The  
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main geometrical parameters of the crane are presented in Fig 10.11. The value of 
load coordinates zL, for which the optimisation process has been carried out is  
h=-300 m, mass of load mL=100 Mg, and the motion of the ship is defined as: 
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Fig. 10.11. Geometrical parameters of the A-frame 

In the figures the following denotations are used: Ω1, Ω2 – curves obtained 
according to (10.37.1) and (10.37.2), respectively, S, H - curves obtained 
according to (10.39.1) and (10.39.2). Time courses of coordinate  zL obtained 
according to the full and the simplified model are shown in Fig. 10.12. In this 
case, the hoisting winch was motionless. The results of simulations are almost the 
same. 
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Fig. 10.12. Time courses of coordinates zL 

Because the simplified model is much more numerically efficient, the 
optimisation process has been solved for this model. Time courses of drive functions 
of the drum defined during the optimisation process are presented in Fig 10.13.  

 

 

Fig. 10.13. Drive functions of drum after optimisation 

As we can see, insignificant differences occurred between these drive 
functions. Drive functions obtained during optimisation have been taken as inputs 
of drum motion in the full model, so simulations presented below have been 
carried out according to the full model. Time courses of the coordinate zL obtained 
when the drum of the hoisting winch was motionless and when its motion was 
determined by the function after optimisation (regardless of the type of the 
objective function and type of the drive function) are shown in Fig. 10.14. 
Amplitude of load oscillations has been decreased from 2 m to near zero.  

z L
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m
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Fig. 10.14. Coordinate xL3 before and after optimisation 

 
Fig. 10.15. Coordinate xL,3 after optimisation for different type of objective and drive 
functions 

Time courses of the coordinate zL obtained for different types of objective 
functions and drive functions are presented in Fig. 10.15. The courses for the 
pseudo-harmonic drive function (10.38.2) and different types of objective 
functions are presented, in detail, in Fig. 10.16. 

The model of an A-frame based on the finite element method has proved to be 
a useful instrument for carrying out dynamic analyses of this kind of cranes. This 
model is more numerically effective than the previous model presented in [Fałat 
P., 2004] (Fig. 10.3).  

Numerical simulations presented in the chapter confirm the significant 
efficiency of the proposed method of optimisation drive function of the drum  
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Fig. 10.16. Coordinate xL,3 after optimisation for pseudo-harmonic drive function 

where the main goal of the optimisation process is the stabilisation of the load 
position. Because the optimisation task has been carried out for the simplified 
model, the method is sufficiently effective. 

For the motion of the ship discussed, the pseudo-harmonic drive functions are 
slightly better than spline functions. Amplitudes of load oscillations in the zL 
direction are, for pseudo-harmonic functions, about 8 times smaller then for the 
spline function and the objective function Ω1. When the objective function Ω2 is 
taken, the results obtained are worst. However, when the system of waves is more 
complicated, the spline functions may be more useful. 

Both objective functions, that is average and maximal value of deviation of 
load position from the demanded level, are acceptable in practice. There are no 
significant differences between results obtained for the two functions.  

In real conditions, there are additional phenomena that can influence the 
quality of the stabilisation of the load position. There may be, for example, 
inaccurate definition of parameters of the crane. We should also remember that the 
rope interacts with the load and the environment mainly at low levels of depths, 
where water currents and waves are strong. Especially, in some conditions, a taut-
slack phenomenon of a marine cable-body system can be significant [Huang S., 
1999], [Jordan M. A., Bustamante J. L., 2007]. Vertical oscillations of the load 
induced by taut-slack phenomenon makes it more difficult to stabilise the load. An 
error-actuated control system for motion of the drum of the hoisting winch can 
minimise the impact of all those phenomena.  

10.3   Stabilization of Crane Load with the Use of an Auxiliary 
System 

In the present chapter,  the authors take on the problem of load stabilization for a 
crane installed on a ship. The solution analyzed is inherently similar to the 
Knuckle Boom Telescopic Offshore Crane concept of TTS-Aktro. The base of the 

t [s] 

z L
[m

m
] 
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crane (i.e. the ship) is subject to general type of motion as a rigid body whose 
components are defined by pseudo-harmonic functions. Two dynamical models of 
a crane have been developed: a simplified one, suitable for determining drive 
functions, and a basic one, for which more accurate dynamical analyses are 
possible. Furthermore, two methods of determining drive functions of the crane's 
mechanisms ensuring stabilization of load's position are proposed. The first one 
involves solving the inverse kinematics problem for quasi-static conditions, the 
second one is based on dynamic optimization. Results of sample numerical 
simulations are included. 

10.3.1   Auxiliary System for Stabilization of Load Position 

Complete stabilization of load's position requires the ability to exert force on the 
load in three independent directions. In the vertical direction it is natural to use the 
hoisting winch drum's drive. For the stabilization in two remaining directions, the 
authors propose using an additional auxiliary system (Fig. 10.17). Its main 
component is a stiff element leading the rope along the GD segment. By inclining 
this element it is possible to move the point D of the hoist rope in two directions: 
tangential (τ) and radial (n). The directions τ  and n have been defined relative to 
the trajectory of point G of the jib in its rotating motion. Dislocating point D is the 
means for influencing the load's motion and thus an attempt to stabilize it in the 
aforementioned directions becomes feasible. The proposed solution has the 
advantage of being applicable to stabilization of load's position or, when another 
strategy is selected, to other tasks, e.g. limiting swaying of the load during rotating 
movement of the crane's upper structure. 
 
 

 

Fig. 10.17. Auxiliary system reducing load oscillations 
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10.3.2   Models of an Offshore Crane with the Auxiliary System 

Depending on the purpose models of equipment are built which vary in 
complexity. Thus they represent the dynamic properties of the modelled object 
with different fidelity. In problems of control the speed of computation is very 
important. Real-time control is often required. This leads to possibly simple 
models being used which enable numerical efficiency. On the contrary, when the 
model is to be suitable for asserting validity of the equipment's operation, its basic 
dynamical behaviour must be reflected more accurately. Accuracy of the results 
obtained and their correspondence to reality is much more important than the time 
of computation in this case. 

The authors have developed two models of an offshore crane with the auxiliary 
system: a simplified one, suitable for determining drive functions, and a basic one, 
for which more accurate dynamical analyses are possible. Simulations using the 
basic model enabled carrying out tests to confirm the suitability of the method 
proposed to the problem of load's position stabilization. In Table 10.1, there are 
compared the basic properties of both models. An outlined scheme of the 
simplified model is shown in Fig. 10.18. 

The equations of motion in the basic model have been derived along the lines 
of [Wittbrodt E., et al., 2006] and [Adamiec-Wójcik I., et al., 2008]. Lagrange's 
equations of the second order have been used. The vector q of the generalized 
coordinates can be written as: 

 ( ) ( ) ( )[ ]TLJA TTT

qqqq θγαψϕ= , (10.44) 

where  ( ) ( ) ( ) ( )[ ] TAAAA
org

A
org

A
org

A zyx ψθϕ)()()(=q  – vector of 

generalized coordinates of the base (deck), 

 ( ) ( ) ( ) ( )[ ] TJ
m

J
k

JJ qqq KK1=q  – vector of generalized coordinates 

of the jib, 
 ( ) [ ] T

LLL
L zyx=q  – vector of generalized coordinates of the load, 

 ϕ – rotation angle of the crane's pedestal (upper structure) – 
slewing angle, 

 ψ – inclination angle of the undeformed jib,   
 α – rotation angle of the hoisting winch's drum.  
 θγ ,  – angles of inclination of auxiliary system (Fig. 10.18). 

 
Relationships which determine individual terms of the Lagrange's equations are 
obtained similarly as in the case of a mobile crane treated in [Maczyński A., 
Wojciech S., 2003].  

To ensure that the crane's base moves according to the provisions of Table 10.1, 
the following condition must hold: 

( ) ( )tq A
i

A
i

)(α=  for i = 1,...,6. (10.45) 
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Table 10.1. Comparison of models: simplified and basic 

 
Simplified model Basic model 

Form of description for 
system's points 

absolute coordinates coordinates relative to joints 

Method of obtaining 
equations of motion 

second Newton's law Lagrange's equations of second order 

Number of degrees of 
freedom 

3 
14+m 

where m is the total number of modes 
considered in the jib's model 

Drives considered 
1. hoisting winch drum's 
2. auxiliary system's in directions τ and n

1. hoisting winch drum's 
2. auxiliary system's in 

directions τ  and n 
3. of crane's upper structure's 

slewing 
4. of reach changing (reach 

changing actuator) 

Drive modeling method kinematic driving 
kinematic driving by a parallel 

system of a spring and a damper 
Pedestal modeled as a rigid body, fixed to the base (ship's deck) 

Load modeled as an concentrated mass 
Rope flexible flexible with damping 

Jib rigid 
capable of flexing – the jib has been 

discretized using modal method 

Description of base's motion 

pseudo-harmonic: 
=
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A
jiA  - jth amplitude in the ith direction,  
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A
jiω - jth angular frequency in the ith direction, 
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A
jiϕ - jth phase angle in the ith direction. 
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where 

( ) ( )BDLlBDDLl rLbrLLLcS ⋅++⋅+−+= αα &&
0

, 

( ) ( ) (222
DLDLDDL zzyyxxL −+−+−=

, 
cl, bl  – stiffness and damping 
coefficients of the rope, respectively,
α – rotation angle of the 
hoisting winch's drum, 
rB – radius of the hoisting 
winch's drum, 
L0 – initial length of the rope.

Described later 

Integration method for the 
equations of motion 

Runge-Kutta method of fourth order 
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Fig. 10.18. Simplified model of an offshore crane 

Forces and moments of force acting on the crane's base to make it move according 
to relationships (10.45) must be therefore introduced into the system. They are 
assumed to form the following vector: 

[ ] .,,,,, )()()()()()()( TA
z
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A
x

A
z

A
y

A
x

A MMMFFF=R  (10.46)

Forces and moments of force are depicted in Fig. 10.19. 
 

 

Fig. 10.19. External forces and their moments acting on the crane's base 

The model of an offshore crane is ultimately described by the following 
equations of motion: 

,)( FDRqA =− A&&  (10.47)

where  A – mass matrix,   
            R(A) – vector defined in (10.46), 
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 614 −+= mm , 
 66×I  – identity matrix of dimension 6x6, 

  F – vector on the right side of the equation of motion including 
among others the terms of Lagrange's equation related to 
velocities and generalized coordinates as well as non-potential 
forces not accounted for in vector R(A), 

which must be supplemented by constraint equations:  

( ) ( )AA αq = . (10.48) 

10.3.3   Drive Functions Stabilizing Load's Position: The Inverse 
Kinematics Problem  

The first of the methods considered by the authors to determine drive functions 
which ensure stabilization of crane load's position is solving the inverse 
kinematics problem for quasi-static conditions. This task consists in choosing 
functions for the auxiliary system's and hoisting winch drum's motions so that the 
load stays in its initial position when the motion of the crane's base is taken into 
account. However, dynamic effects are not considered. 

Before the desired drive functions can be determined, it is necessary to set the 

initial position of the mass mL, i.e. the initial values of the coordinates 000 ,, LLL zyx  

that they have at the beginning of the stabilization. They provide the initial 
conditions for the problem of determining drive functions in quasi-static 
conditions. The equations of static equilibrium for the simplified model are: 
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where [ ] ,0
0 BDDLL rLLLcS α+−+=  

 ( ) ( ) ( ) ,222
LDLDLDDL zzyyxxL −+−+−=  

 
B

Rr
l rL

AE
c

α−
=

0

, 

 
rE  − Young’s modulus, 

 ( )trB  −  radius of the drum, 

 
rA  − cross-sectional area of the rope. 
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Coordinates xD, yD, zD can be obtained from: 
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where 
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 [ ]TDDD zyx 1,',','='rD , 

 TP – transformation matrix from {P} coordinate system to the inertial 
coordinate system {0},  

 TG – transformation matrix from {G} to {P} coordinate systems.  
 
The matrices  TP and TG appearing in (10.50) are defined as: 
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where d  – length of the jib (Fig. 10.18), 
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The unknown values of the coordinates 000 ,, LLL zyx  are determined from (10.50) 

assuming t = t0, 
00 , θθαα ==  and  0γγ = , where 000

0 ,,, γθαt  are, 

respectively, the initial time (moment) of starting the stabilization and the values 
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of angles α, γ,  θ  at the time t = t0. Equations (10.50) form a system of 3 nonlinear 
equations with 3 unknowns ,0

LL xx = ,0
LL yy = ,0

LL yy =  which is solved with 

Newton's iteration method. 

Having determined ,0
LL xx = 0

LL yy =  and 0
LL zz = , the procedure continues 

determining the drive functions for quasi-static conditions. Let: 

titti Δ+= 0                                i = 1,...,p, (10.53) 

where  ,0

p

tt
t k −=Δ  

 tk – end time of load stabilization, 
 p – number of intervals into which the time interval ktt ,0  has 

been divided. 
 
Assuming that the following conditions must hold at time pttt ,...,1= : 
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equations (10.49) of static equilibrium for itt = can be written as: 
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 S   – defined in (10.49). 
 

Equations (10.55) form a system of 3p nonlinear algebraic equations with 3p 

unknowns ( ),iα ( ) ,iγ ( )iθ . These equations have also been solved by applying 

Newton's iteration method taking the starting point for subsequent iterations to be: 
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The continuous functions ( ) ( ) ( )ttt θθγγαα === ,,  have been obtained by 

connecting points  with splines. 
As it has been described above, the courses angles of the hoisting winch and the 

auxiliary system  are calculated using the simplified model and omitting dynamic 
phenomena. However, these courses compensating sea waves can be successfully 
applied in dynamic simulations using both models. The further calculations are 
carried out using the basic model of the crane. The crane is assumed to have a 14 
m long jib and an LD = 5 m long auxiliary system. The angle ψ was 50o, the load's 
mass 10000 kg, its z coordinate -20 m. For this data, the distance from point G of 
the jib to the load is 31.75 m. Although, as previously mentioned, offshore cranes 
usually operate from watercrafts conveniently positioned against waves, a general 
motion of the base has been considered for sample excitations. The results follow 
[Balachandran B., et al., 1999]: 
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By the assumption of such motion of the crane's base, the analysis of the general 
case was possible to perform, which required using auxiliary system's drives in 
both directions: radial and tangential. The time of stabilization (observation of the 
load) was 60 s. The coordinates x, y, z of the load, respectively, for the auxiliary 
system and hoisting winch's drum both idle and controlled according to the drive 
functions determined are shown in Figs. 10.20, 10.21 and 10.22. Time courses of 
dynamic coefficient of the force in the rope for both cases are presented in Fig. 
10.23. The dynamic coefficient is defined as: 

gm

S

L

=η , (10.58) 

where S is the force in the rope. 
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Fig. 10.20. Time course of xL coordinate for 
general motion of the base 

Fig. 10.21. Time course of yL coordinate for 
general motion  

 
The results obtained show that using the proposed method yields highly 

effective stabilization of the load. The outstanding quality of stabilization along 
the axes X and Z is worth emphasizing. Stabilizing the load's position has also 
decreased the dynamic coefficient of the force in the rope, thus alleviating 
dynamic strains in the crane's structure. 

 
 

 

Fig. 10.22. Time course of zL coordinate for 
general motion 

Fig. 10.23. Time course of the dynamic 
coefficient  

10.3.4   Optimizing Drive Functions 

Optimization is a method often applied in determining drive functions for a range 
of mechanisms and machines. Naturally, the optimization criteria may vary. Some 
examples are: minimal duration of motion, minimal energy consumption, minimal 
dynamic strains, approximating desired trajectories for selected points, etc. 

In the considered case of stabilizing offshore crane load's position, the 
optimization task is to determine the functions ( ),tαα = ( ),tγγ = ( )tθθ = , so 

that despite the crane base's motion (i.e. despite the variability of the matrix T(t)  
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of (10.50)) the load remains possibly close to its initial position. Hence the 
definition of the goal function: 

( ) ( ) ( ) ( ) dtzzyyxx
kt

t
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where 000 ,, LLL zyx  are initial coordinates of the load determined as in the previous 

section, from (10.49). 
Since it has been assumed that the crane base's motion is defined by pseudo-
harmonic functions, it seems natural to seek the drive functions 

( ) ( ) ( )ttt θθγγαα === ,,  of the from: 

( )

( )

( )





=

=

=

++=

++=

++=

θ

γ

α

θθθ

γγγ

ααα

ϕωθθ

ϕωγγ

ϕωαα

n

i
iii

n

i
iii

n

i
iii

tA

tA

tA

1
,,,

0

1
,,,

0

1
,,,

0

sin

sin

sin

, (10.60)

where  000 ,, θγα  – initial values of angles θγα ,, , 

 ijijijA ,,, ,, ϕω  – ith amplitude, angular frequency and phase angle of 

the jth drive, satisfying { }θγα ,,∈j . 

 
Decision variables of an optimization task thus stated can be written as vectors: 
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and finally: 
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Vector (10.64) has: 

( )θγα nnnn ++= 3  (10.65)

coordinates. The optimization consists in determining such combination of 
decision variables satisfying these constraints: 
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that the goal function (10.59) attains its minimal value.  
To calculate the goal function, the coordinates xL, yL, zL must be defined. This 

requires integration of the crane model's equations of motion for kttt ,0∈ . As 

mentioned before, to achieve reasonable numerical efficiency the optimization 
task was solved using the simplified model. Nelder-Mead simplex method was 
employed for the optimization [Wit R., 1986].  

Judicious choice of initial approximations of functions to optimize is an 
important requirement. They should already be near the solution. The case of 
pseudo-harmonic functions involves an additional difficulty in selecting the 
number of harmonic components, i.e. the values ,αn ,γn θn . This problem is 

briefly accounted for in the following. The initial approximation was chosen to be 
defined as a sum of nj harmonic components ( { }θγα ,,∈j ) obtained from 

Fourier analysis applied to drive functions which are the solutions of the inverse 
kinematics problem for quasi-static conditions. It should be clearly stated that the 
method proposed for determining optimized drive functions requires that they be 
preset with the procedure of chaper 10.3.3 beforehand. 

With Fourier analysis [Kruszewski J., Wittbrodt E., 1992], an arbitrary periodic 
function can be represented as a series: 
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where  l – number of terms (harmonic components) in the series, 
 ν – index of harmonic component, 
 t – time, 

 
0
0x  – constant term of the series, 

 νν ϕ xx ,0  – amplitude and phase angle of the νth component, 

respectively, 

 
T

πω 2=  – lowest angular frequency, 

 T – function's period. 
 

Individual coefficients of a Fourier series are given by the following formulae: 
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 N – number of sampling points for the function x(t), 
 

whereas l, the number of harmonic components, must satisfy this condition: 

.12 Nl <+  (10.71) 

The hoisting winch drum's drive may obviously have different number of 
harmonic components in the initial approximation from either radial or tangential 
direction of the auxiliary system. It is, however, natural to assume that the number 
of components present in the initial approximation remains the same in the 
optimized function. 

Drive functions optimized using different numbers of harmonic components  
(nj = 2 and nj = 4) with the method of chaper 10.3.3 (being the input of Fourier 
analysis) are compared below to their initial approximations. Parameters describing 
geometry and mass distribution of the crane were identical to those considered in 
chaper 10.3.3 and the excitation of the base was given by (10.57). The graphs in 
Figs. 10.24, 10.25 are for the drive function of the hoisting winch's drum, those in 
Figs. 10.26, 10.27 for the rotation of the auxiliary system's rigid component in the 
radial plane and those in Figs. 10.28 and 10.29 in the tangential plane. 
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Fig. 10.24. Comparison of the hoisting 
winch drum's analytic drive function and its 
initial approximation (2 components) 

Fig. 10.25. Comparison of the hoisting winch 
drum's analytic drive function and its initial 
approximation (4 components) 

  

Fig. 10.26. Comparison of the θ angle's 
analytic drive function and its initial 
approximation (2 components) 

Fig. 10.27. Comparison of the θ  angle's 
analytic drive function and its initial 
approximation (4 components) 

  

Fig. 10.28. Comparison of the γ  angle's 
analytic drive function and its initial 
approximation (2 components) 

Fig. 10.29. Comparison of the γ  angle's 
analytic drive function and its initial 
approximation (4 components) 
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As it can be seen, taking nj = 4 leads to very good approximation of drive 
functions with a Fourier series. Thence follows reasonableness of seeking the 
initial approximation in the class of functions of the form (10.60). 

Next, stabilization of load's position was considered for durations of 20 
and 60 s. The value of the goal function (10.59) for idle auxiliary system and 
hoisting winch's drum was 47.07 for stabilization time 20 s and 142.10 for 60 s. 
Comparison of the goal function's values for initial approximations and their 
corresponding optimized drive functions for different numbers of harmonic 
components are presented in Table 10.2. Number of iterations and time of 
computation used by the optimization process are also compared. 

Table 10.2. Comparison of the goal function's values 

Duration of 
stabilization 

[s] 

Number of components
Value of the goal 

function 
Number 

of 
iterations

Approximated 
computation 
time taken by 

the 
optimization 

hoisting 
winch's 
drum 

θ angle γ  angle
initial 

approxi-
mation 

optimized 
function 

20 2 2 2 0.579625 0.388667 3053 6.5 min 

20 4 4 4 0.000571 0.000208 3835 9 min 

20 6 6 6 0.000054 0.000011 10894 33 min 

60 2 2 2 1.677738 1.226042 1699 13 min 

60 4 4 4 0.001667 0.000555 3673 27 min 

60 6 6 6 0.000121 0.000490 10369 85 min 

 
The results presented (of calculations for the simplified model) made it 

possible to draw the following conclusions: 
 

 in the Fourier analysis taking into consideration 4 harmonic components is 
sufficient for obtaining satisfying drive functions determined for quasi-static 
conditions, 

 initial approximations stabilize the load's position well; indeed, taking as few 
as 2 harmonic components of each initial approximation gives a reduction of 
the goal function's value by a factor of about 100 compared to the case of idle 
hoisting winch's drum and auxiliary system, 

 substantial influence of the number of components in the initial 
approximation on the quality of stabilization is clearly noticeable, 

 only slightly does optimization improve stabilization of the load. 
 
These conclusions led the authors to abandoning further work with the idea of 
determining drive functions for stabilization of load's position using optimization.  



238 10   Selected Applications Related to Control of Offshore Structures
 

 

The reason is that the process is lengthy, requires determining drive functions for 
quasi-static conditions, and the improvement obtained in the quality of load 
stabilization is modest. 

We would like to underlain that above conclusions are valid only for the 
assumed pseudo-harmonic base motion. In the case of more complicated functions 
defining base motion, the second approach, when optimization methods are 
applied, seems to be better, since it is more general. The decision variable could 
be the values of spline functions defining drives [Maczyński A., Wojciech S., 
2003]. 

10.3.5   Control System 

The proposed system of stabilization of load's position could be augmented with a 
closed-loop control system. Its task would be to minimize the influence of the jib 
and the hoisting system's flexibility neglected in the model, of inaccurate 
knowledge of parameters describing the geometry and mass distribution of the 
crane as well inaccurate knowledge of waves parameters, eventually of potential 
external disturbances.  
 

 

Fig. 10.30. Block diagram of control system: γO, θO, αO  – drive functions determined 
according the simplified model, γt, θt, αt – input signals determined according the simplified 
model, γb, θb, αb – current values of controlled signals, eγ, eθ, eα – dynamic errors, uγ, uθ, uα 

– output signals, z – disturbance 

A block diagram of  the considered control system is shown in Fig. 10.30. 
Three independent controllers, one for rotation of the drum and two for rotational 
motions of the stiff element of the auxiliary system, are used. The control system 
contains feed-back loops as well feed-forward loops. Time courses of the inputs 
signals (αt = αt(t), γt = γt(t), θt = θt(t)) have to be determined simultaneously with 
the drive functions (α0= α0(t), γ0 = γ0(t), θ0 = θ0(t)) according to the simplified 
model. It is worth to be mentioned that in a standard stabilization task the 
following relationships are fulfilled: 
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Time courses of load coordinates, xL, yL, zL respectively, for waves increased about 
10% in relation to the nominal defined in (10.57), are shown in Figs. 10.31, 10.32 
and 10.33. Numerical calculations were carried out according to the basic model, 
drive functions were determined from chaper 10.3.3. Two cases were considered: 
with and without control system. The P controller was used in analyzed control 
system. The obtained results are very promising. 
 
 

 

Fig. 10.31. Time course of xL coordinate Fig. 10.32. Time course of yL coordinate 

 

Fig. 10.33. Time course of zL coordinate 

10.4   Active Waves Compensation System for the Reel's Drive 

Practice and the results of numerical simulations (chapter 9.3) show that during 
operation of a reel device for laying pipelines under sea waves its uneven work 
may occur. To reduce this undesirable effect, a modification of the reel's drive 
system is proposed. In place of a passive system (in which the braking force of the 
reel is a constant set by the operator) an active system may be installed with 
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controllable value of the force. That value would be chosen so that the moment 
maintains the assumed velocity of the reel and constant tension in the pipeline 
despite the occurrence of additional dynamic loads caused by sea waves. That 
would be a new solution, as yet unseen in existing drives, however, it would 
require a change of the way the drive system is designed: the engines (hydraulic or 
electric) would need the ability of exerting moments in both directions (classical 
passive systems are only capable of braking the reel during normal operation). The 
concept is discussed in details by [Szczotka M., 2010], [Szczotka M., 2011b]. 

10.4.1   Model of the Control System 

Frequency converters are commonly used to control velocity and drive moment of 
electric engines [Olsson G., Piani G., 1998]. The drive moment ME created by the 
engine is passed to the reel by a system of gears. The value of the moment ME  is 
determined in the control system presented in Fig. 10.34. 
 
 

 

Fig. 10.34. Reel's drive control system 

In the computer model, a drive system is represented by a differential equation 
describing the motion of  the reel with pipeline wound onto it and a block 
performing the calculations of forces and moments caused by the action of the 
pipeline on the reel (denoted as FP, MP). In the concerned application, the 
operation of this block is based on a model using an artificial neural network. One 
of the advantages of this approach is short computation time due to the fact that 
the programme executes only simple operations of multiplication of matrices 
(containing weight coefficients of the trained network) whose dimensions depend  
on the numbers of layers and neurons [Osowski S., 1996], [Żurada J., et al., 1996]. 
To collect data necessary to train the network, a series of simulations was 
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performed in which the equations (9.95) were integrated for different parameters 
describing waves. The obtained results were saved as a data set. It is worth to note 
that the training data was obtained for a model taking into account nonlinear 
material and geometric models. Details of the mathematical model, architecture of 
the neural network used, the process of generating training data and its application 
to determining forces and moments exerted by a pipeline being unwound from 
a reel are presented in [Szczotka M., 2010].  

Practical realization of the proposed control system requires, in addition to 
replacing the drive with an electric one, measuring the winding diameter rR of the 
pipe, the reel's velocity ωE and the vessel's motion (components of the vector qD 
and its derivative). Control is performed in a feedback loop with a PID controller. 
The system features also an additional PID controller which introduces an 
adjustment to the previous PID's response. The additional PID controller enables 
quick reaction of the system to changes input by the operator and excitation 
caused by waves. It is an example of a feedforward system which in many cases 
improves stability and accuracy [Olsson G., Piani G., 1998]. 

As mentioned, further calculations assume an equivalent model of a pipeline 
implemented with an artificial neural network. To verify the correctness of 
obtained results, a comparison is made in Fig. 10.35 between simulations using 
the full model (a pipeline discretized with the RFE method, discussed in chapter 
9.3) ant the functional one. On the graphs, the following denotations are present: 
SSN –  results yielded by an artificial neural network, SES – a pipeline discretized 
with the RFE method. Computation time for a motion lasting 50 s equalled 5 s 
approximately, whereas calculations according to the full RFE model with the 
number of RFEs being 100 take roughly 15 min.  

 

Fig. 10.35. Results of simulation in a passive system: a) reel's velocity, b) tension 

10.4.2   Installation of a Pipeline Using the Reel Method with 
Active Drive System 

Sample results of calculations for devices with passive and active reel's drive 
system are shown in Fig. 10.36. Harmonic excitation of the swaying angle with 
amplitude Aψ = 4o  and period T = 8 s was assumed. Due to structural limitations, 

a) b) 

time [s] time [s] 
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the proposed system cannot fully compensate for the influence of dynamic forces 
caused by waves in cases when occurring forces exceed some limit values. This 
shows as variations visible on the graphs of force and angular velocity of the reel. 
 

 
Fig. 10.36. Comparison for passive and active reel drive: a) angular velocity of the reel, b) 
axial force in the pipeline 

 
Fig. 10.37. Influence of the speed of laying the pipeline on the behaviour of the system with 
active compensation for waves: a) reel's velocity, b) tension 

One of the limitations not to be forgotten is the available power which can be 
used to compensate for waves. In the system, successive reduction of drive force 
after exceeding admissible forces is used. This causes an increase in the reel's 
velocity (due to forces of inertia caused by the vessel's motion), and further decrease 
in the moment caused by limited power. The system is capable of returning to the 
nominal conditions (tension in the pipeline and velocity of the reel) if the operator 
decreases the tension or waves weakens. Sample results for different settings of the 
velocity of unwinding the pipeline are summarized by Fig. 10.37.  

Note that the assumed power of the drive system (670 kW) is sufficient to 
operate with constant tension of about 1300 kN when the amplitude Aψ = 4o, that is 
under intense wave action. For the vessel's operator also calculating the range of 
safe, stable operation under variable waves conditions may be of interest. 

a) b) 
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The parameters of the device's operation (peak changes of the reel's velocity and 
the axial force in the pipeline) in the selected range of swaying amplitudes from 1o 
to 4o for periods of waves in the interval between 6 s and 12 s are shown in Fig. 
10.38. The values of increment of the angular velocity ΔωE  are given as follows: 

( ) ( )

( ) ,%100
0

minmax

E

EE
E ω

ωωω −=Δ  (10.73) 

where ( ) ( )minmax , EE ωω  –  maximal and minimal velocity of the reel, 

 ( )0
Eω  –  nominal velocity of the reel. 

 

Change in the axial force EUΔ  (Fig. 10.88 c and d) is expressed by: 

( ) ( ) ( ) ( ){ }EEEEE UUUUU min,maxmax 00 −−=Δ , (10.74)

where  ( )0
EU   –  axial force at the moment t = 0 (nominal value), 

 ( )tUU EE =   –  current value of the force. 

 

 

Fig. 10.38. Surfaces describing changes of dynamic parameters with passive and active reel 
drives a) percentage increments of the reel's velocity in an active system, b) percentage 
increments of the reel's velocity in a passive system, c) percentage increments of the 
tension in an active system, d) percentage increments of the tension in an passive system  

a) b) 

c) d) 
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As the presented graphs indicate, using a system for compensation of waves 
makes it possible to achieve reduction by a factor greater than three of the 
dynamic forces and limitation of oscillations of the reel's angular velocity a few 
times. The graphs were produced for one fixed speed of laying the pipeline equal 
to 2000 m/h and assumed limits (maximum force passed by the structure of the 
drive system being 2000 kN and available power 670 kW). The practical effect of 
employing such a system would be significantly increased efficiency (speed of 
laying the pipeline) which is a considerable improvement.  

The analyses presented are only examples of possible applications of the 
developed models, algorithms and programmes. It seems particularly useful to 
employ the model of a drive with automatic adjustment of the force applying 
tension to the pipeline which allows one to entirely eliminate large overloads in 
the system with sufficient power. Measuring the vessel's motion is fairly simple. It 
requires a sensor (e.g. Konsberg Seatex's MRU) to be installed and the reel's 
angular velocity and winding diameter to be measured. Short computation time, 
especially when the programme is based on a neural network, is a significant 
advantage. 
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11   Summary 

In the process of new designs of mechanical structures or systems and control 
strategy development, a great role for numerical modeling and simulation can 
evidently be identified. The most comprehensive verification provided by an 
experiment is naturally the best solution. It is however tedious and costly and in 
many cases difficult to perform. Offshore structures are often produced as single 
specimen for a specific order. Carrying out detailed empirical research would raise 
the final price of a device considerably. Therefore many design companies, 
including ones in the business of offshore engineering, are interested in access to 
appropriate calculation software. Such programmes have different purposes. Some 
of them are suited for strength analysis, others to simulate operation of a device or 
its control system. In addition to accurate calculations of precise values which are 
necessary when designing a given machine, companies also need quick and rough 
simulations, e.g. when preparing an offer (during initial negotiations with 
a counterparty). Calculations performed at the design stage are not significantly 
constrained by allowed duration of the simulation. On the other hand, control 
systems of devices must perform real-time calculations which requires using 
sufficiently numerically efficient models and methods. In many cases, to obtain 
satisfactory correspondence to reality flexibility of links must be taken into 
consideration by their discretisation. In some problems, nonlinear properties of the 
material or other specific conditions may be important. At present, different 
discretisation methods are used in calculations of machines' dynamics. The most 
widely known is the finite element method. The authors of this book have been 
involved for many years in the development of the rigid finite element method. 
Based on their experience, it is their position that this method allows developing 
models of structures adequately reflecting the actual features of the dynamics 
involved while keeping the number of generalized coordinates small. It is also 
fairly simple to implement on a computer. It furthermore enables quick and 
convenient changes of the number of rigid finite elements in the discretized links. 
This allows both the calculations in real time (for small numbers of RFEs) 
necessary for control and more time consuming ones which better reflect the 
flexibility of the system (assuming more RFEs) to be carried out. 

In the book, the authors have discussed applications of the rigid finite element 
method in offshore technology.  In addition to giving basic formulas and 
dependencies, a way has been presented to model added phenomena typical for 
operation of offshore structures. In particular, modelling of motion of the device's 
base caused by sea waves and interaction of the sea environment with the 
elements immersed in water (pipelines, cables) is of importance. Moreover, 
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selected analyses concern nonlinear material characteristics, including 
deformations of elements in the plastic region. To describe the geometry of 
systems using the method of homogeneous transformations and joint coordinates 
is proposed. This method is characterized by conciseness of notation and 
simplicity of description of complex structures. Complex systems may be 
modelled with it, including ones in which rigid and flexible links are interleaved. 
The method also enables taking large deflections into consideration. 

The models of offshore structures presented in this book vary in their 
complexity, therefore they reflect real objects in different ways. Some of them are 
suitable for quick calculations in real time, others enable more accurate analyses. 
Certain models have seen actual use in design practice (e.g. the model of an A-
frame, the model of a device for unwinding pipes). Applications of the rigid finite 
element method are naturally not limited to offshore technology. The authors used 
this method before to model dynamics of spatial mechanisms and manipulators of 
robots with rigid and flexible links, passenger vehicles and lorries, power trains of 
vehicles and even satellite dishes. Contents of many of these works confirm the 
usefulness, effectiveness and correctness of the presented methods, documented 
by correspondence of the results of calculations and measurements on actual 
objects. 

We hope that the readers will appreciate the two fundamental advantages of the 
rigid finite element method. First the simplicity of the physical interpretation of 
a system divided into rigid bodies connected by spring-damping elements, and 
secondly the ease both of the division into elements and combinations of the 
natural division into rfes and sdes with the virtual division, which is necessary for 
the discretisation of the flexible links of machines and mechanisms. We look 
forward to receiving feedback about the usefulness and applications of the 
methods presented. 
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