
Dynamic Race Detection with LLVM Compiler

Compile-Time Instrumentation for ThreadSanitizer

Konstantin Serebryany, Alexander Potapenko,
Timur Iskhodzhanov, and Dmitriy Vyukov

Google LLC, 7 Balchug st., Moscow, 115035, Russia
{kcc,glider,timurrrr,dvyukov}@google.com

Abstract. Data races are among the most difficult to detect and costly
bugs. Race detection has been studied widely, but none of the existing
tools satisfies the requirements of high speed, detailed reports and wide
availability at the same time. We describe our attempt to create a tool
that works fast, has detailed and understandable reports and is available
on a variety of platforms. The race detector is based on our previous
work, ThreadSanitizer [1], and the instrumentation is done using the
LLVM compiler. We show that applying compiler instrumentation and
sampling reduces the slowdown to less than 1.5x, fast enough to use
instrumented programs interactively.

1 Introduction

Recently the growth of CPU frequencies has transformed into the growth of the
number of cores per CPU. As a result, multithreaded code became more popular
on desktops, and concurrency bugs, especially data races, became more frequent.
The classical approach to dynamic race detection assumes that program code
is instrumented and program events are passed to an analysis algorithm [8,11].
Some of the publicly available race detectors for native code [7,1,12] use run-time
instrumentation. There are also tools that use compiler instrumentation [3,6,10],
but none is publicly available on most popular operating systems.

In [1] we described ThreadSanitizer (TSan-Valgrind), a dynamic race detector
for native code based on run-time instrumentation. The tool has found hundreds
of harmful races in a number of C++ programs at Google, including some in
the Chromium browser [4]. Significant slowdown remains the largest problem
of ThreadSanitizer: for many tests we observed 5x–30x slowdown due to the
complex race detection algorithm; on heavy web applications the slowdowns
were even greater (50x and more) because of the underlying translation system
(Valgrind, [12])1. Another problem with Valgrind is that it serializes all threads;
with multicore machines this becomes a serious limitation. Finally, Valgrind is
not available on some platforms we are interested in (entirely unavailable on
Windows, hard to deploy on ChromiumOS).

1 Mainly because Valgrind had to execute much single-threaded JavaScript code.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 110–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Dynamic Race Detection with LLVM Compiler 111

In this paper we present TSan-LLVM, a dynamic race detector that uses
compile-time instrumentation based on a widely available LLVM compiler2 [9].
The new tool shares the race detection logic with ThreadSanitizer, but has
greater speed and portability. Our work resembles LiteRace [10] (both use com-
piler instrumentation and sampling, the performance figures are comparable),
but the significant advantages of our tool are the more precise race detection
algorithm [1], the granularity of sampling and public availability.

2 Compiler Instrumentation

The compiler instrumentation is implemented as a pass for the LLVM compiler.
The resulting object files are linked against our runtime library.

2.1 Runtime Library

As opposed to a number of popular race detection algorithms [11,12,10], Thread-
Sanitizer [1] tracks both locksets and the happens-before relation. This allows
it to switch between the pure happens-before mode, which reports no false pos-
itives, but may miss potential bugs, and the hybrid mode, which finds more
potential races, but may give false reports. In both modes the tool reports the
call stacks of all the accesses constituting the race, along with the locks taken
and the origin of memory involved. This is vital in order to give all the necessary
information to the tool users.

The algorithm is basically a state machine – it receives program events, up-
dates the internal state and, when appropriate, reports a potential race. The ma-
jor events handled by the state machine are: Read, Write (memory accesses);
Signal, Wait (happens-before events); Lock, Unlock (locking events).

The runtime library provides entry points for the instrumented code, keeps all
the information about the running program (e.g. the location and size of thread
stacks and thread-local storage) and generates the events by wrapping the func-
tions that are of interest for the race detector: synchronization primitives and
thread manipulation routines, memory allocation routines, other functions that
imply happens-before relations in the real world programs (e.g. read()/write()),
and dynamic annotations [1].

2.2 Instrumentation

The instrumentation is done at the LLVM IR level. For each translation unit
the following steps are done:

Call stack instrumentation. In order to report nearly precise contexts for
all memory accesses that constitute a race, ThreadSanitizer has to maintain a
correct call stack for every thread at all times. We keep a per-thread stack with

2 We have also made an instrumentation plugin for GCC, but do not describe it here
due to the limited space.



112 K. Serebryany et al.

a pointer to its top; the stack is updated at every function entry and exit, as
well as at every basic block start3.

To keep the call stack consistent, the tool also needs to intercept setjmp()
and instrument the LLVM invoke instruction to roll back the stack pointer when
necessary. This is not done yet, because these features are rarely used at Google.

Memory access instrumentation. Each memory access event is a tuple of
5 attributes: thread id, ADDR, PC, isWrite, size. The last three are statically
known. Memory accesses that happen in one basic block4 are grouped together;
for each block the compiler module creates a passport – an array of tuples rep-
resenting each memory access. Every memory access is instrumented with the
code that records the effective address of the access into a thread-local buffer.
The buffer contents are processed by the ThreadSanitizer state machine [1] at
the end of each block.

2.3 Sampling

In order to decrease the runtime overhead even more, we’ve experimented with
sampling the memory accesses. We exploit the cold-region hypothesis [10]: data
races are more likely to occur in cold regions of well-tested programs, because
the races in hot regions either have been already found and fixed or are benign.

The technique we use for sampling is similar to that suggested in LiteRace [10]:
ThreadSanitizer adapts the thread-local sampling rate per code region such that
the sampling rate decreases logarithmically with the total number of executions
of a particular region. Unlike in LiteRace, the instrumented code is always ex-
ecuted and the memory access addresses are put into the buffer, which is then
either processed or ignored depending on the value of the execution counter.
Another difference from LiteRace is that we apply sampling to smaller regions
(basic blocks or superblocks, as opposed to whole functions), which allows to
find races in cold regions of hot functions with higher probability.

2.4 Limitations and Further Improvements

The compiler-based instrumentation has some disadvantages over the run-time
instrumentation: the races in the code which was not re-compiled with the in-
strumentation enabled (system libraries, JIT-ed code) will be missed, the tool
usage is less convenient since it requires a custom build5. As we show in the next
section, the benefit of much higher speed outweighs these limitations for our use
cases.

Much could be done to decrease the overhead even further by reducing the
number of instrumented memory accesses without losing races. A promising
direction is to use compiler’s static analysis to skip accesses that never escape the
current thread. Another optimization is to instrument only one of the accesses
to the same memory location on the same path.

3 Optimizations may apply.
4 We also extend this approach to handle larger acyclic regions of code (superblocks).
5 Valgrind-based tools also usually require a custom build to avoid false positives.



Dynamic Race Detection with LLVM Compiler 113

3 Results

To estimate the performance of our tool, we ran it on two Chromium tests and a
synthetic microbenchmark. We’ve already used TSan-Valgrind to test Chromium
(see [1]) and were able to compare the results and assess the benefits of the
compile-time instrumentation approach for a real-word application. cross fuzz

[5] is a cross-document DOM binding fuzzer that is known to stress the browser
and reveal complex bugs, including races. net unittests [4] is a set of nearly
2000 test cases that test various networking features and create many threads.
The third test we ran just calls a simple non-inlined function6 many times:

void IncrementMe(int *x) { (*x)++; }

One variant of the test is single-threaded, the other variant spawns 4 threads
that access separate memory regions. The measurements were done on an HP
Z600 machine (2 quad-core Intel Xeon E5620 CPUs, 12G RAM).

Table 1 contains execution times for uninstrumented binaries run natively
and under TSan-Valgrind compared to the instrumented binaries tested in two
modes: with full memory access analysis (TSan-LLVM, sampling disabled) and
with race detection disabled (TSan-LLVM-null, an empty stub is called at the
end of each block). We’ve also measured run times under Intel Inspector XE [7],
Memcheck7 and Helgrind version 3.6.1 [12]. The comparison shows that TSan-
LLVM outperforms TSan-Valgrind by 1.7x–2.9x on the big tests. TSan-LLVM
does not instrument libc and other system libraries, but we estimate their per-
formance impact to be within 2%–3%.

Table 1. TSan-LLVM compared to other tools. Time in seconds.

tool cross fuzz net unittests synthetic, 1 thread synthetic, 4 threads

native run 71.6 87 0.9 0.9

Memcheck 1275 991 33 133

Inspector XE failed 1064 130 480

Helgrind failed 2529 40 154

TSan-Valgrind 325.2 592 49 191

TSan-LLVM 190.9 206 15.5 17

TSan-LLVM-null 78.6 119 2 2.1

Table 2 shows how the performance depends on the sampling parameter (a
number k which means that the tool starts ignoring some memory accesses
after executing the region 232−k times). Using the sampling value of 20 is 1.5x–
2x faster than without sampling on the chosen benchmarks. In this mode the
slowdown compared to the native run is less than 1.5x, and the tool is still capable

6 Part of racecheck unittest [2], a test suite for data race detectors.
7 Memcheck, the Valgrind memory error detector, does different kind of instrumenta-
tion and can not ignore JavaScript, but its figures may still serve as a data point.



114 K. Serebryany et al.

of finding a number of known races. We found over 15 races in Chromium while
running cross fuzz with TSan-Valgrind; these races (except one, which happens
in a system library) are also detectable with TSan-LLVM, without sampling and
even with sampling value 20.

Table 2. TSan-LLVM performance with various sampling values

test name sampling parameter - 10 20 30

cross fuzz
time, sec 190.9 142.3 94.5 78.1

accesses analyzed, % 100.0 77.8 16.2 3.6

net unittests
time, sec 206 190 134 117

accesses analyzed, % 100.0 33.7 14.1 13.4

4 Conclusions

We present a dynamic race detector based on low-level compiler instrumenta-
tion. This detector has a large speed advantage (1.7x–2.9x on the real-world
applications) over our previous Valgrind-based tool, and a slowdown factor of
2.5x (less than 1.5x, if sampling is used), which is fast enough to run interactive
UI tests on the instrumented Chromium browser. The achieved speedup can be
improved even further if additional compile-time static analysis is employed.

References

1. Serebryany, K., Iskhodzhanov, T.: ThreadSanitizer: data race detection in practice.
WBIA (2009)

2. ThreadSanitizer project: documentation, source code, dynamic annotations, unit
tests, http://code.google.com/p/data-race-test

3. Sun Studio, http://developers.sun.com/sunstudio
4. Chromium browser, http://dev.chromium.org
5. Cross Fuzz, http://lcamtuf.coredump.cx/cross_fuzz
6. Duggal, A.: Stopping Data Races Using Redflag. Master’s thesis, Stony Brook

University (May 2010), technical Report FSL-10-02
7. Intel Inspector XE,

http://software.intel.com/en/articles/intel-parallel-studio-xe

8. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM (1978)

9. The LLVM Compiler Infrastructure, http://llvm.org
10. Marino, D., Musuvathi, M., Narayanasamy, S.: Literace: effective sampling for

lightweight data-race detection. In: PLDI (2009)
11. Savage, S., Burrows, M., et al.: Eraser: a dynamic data race detector for multi-

threaded programs. ACM TOCS 15(4), 391–411 (1997)
12. Valgrind, Helgrind, http://www.valgrind.org

http://code.google.com/p/data-race-test
http://developers.sun.com/sunstudio
http://dev.chromium.org
http://lcamtuf.coredump.cx/cross_fuzz
http://software.intel.com/en/articles/intel-parallel-studio-xe
http://llvm.org
http://www.valgrind.org

	Dynamic Race Detection with LLVM Compiler Compile-Time Instrumentation for ThreadSanitizer
	Introduction
	Compiler Instrumentation
	Runtime Library
	Instrumentation
	Sampling
	Limitations and Further Improvements

	Results
	Conclusions
	References




