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Preface

The Second International Conference on Runtime Verification (RV 2011) was
held in the historic Fairmont Hotel in San Francisco, California, USA, during
September 27–30, 2011. The conference program included invited talks, peer-
reviewed presentations and tool demonstrations, as well as tutorials.

RV 2011 was attended by researchers and industrial practitioners from all
over the world. It provided a forum to present foundational theories and practi-
cal tools for monitoring and analysis of software or hardware system executions,
as well as a forum for presenting applications of such tools to real-world prob-
lems. The field of runtime verification is often referred to under different names,
such as runtime verification, runtime monitoring, runtime checking, runtime re-
flection, runtime analysis, dynamic analysis, runtime symbolic analysis, trace
analysis, log file analysis, etc. Runtime verification can be used for many pur-
poses, such as security or safety policy monitoring, debugging, testing, verifica-
tion, validation, profiling, fault protection, behavior modification (e.g., recovery),
etc. A running system can be abstractly regarded as a generator of execution
traces, i.e., sequences of relevant states or events. Traces can be processed in
various ways, e.g., checked against formal specifications, analyzed with special
algorithms, visualized, etc. Runtime verification now has a number of sub-fields,
for example, program instrumentation, specification languages for writing mon-
itors, dynamic concurrency analysis, intrusion detection, dynamic specification
mining, and program execution visualization. Additionally, techniques for run-
time verification have strong connections to techniques in other related fields
such as combined static and dynamic analysis, aspect-oriented programming,
and model-based testing. This year’s conference included, in addition to papers
that advance analyses commonly used for runtime verification, papers on sym-
bolic execution, a well-known program analysis technique, which so far has not
seen much use in this field but holds promise in enabling novel approaches to
runtime verification.

The Runtime Verification series of events started in 2001, as an annual work-
shop. The workshop series continued through 2009. Each workshop was orga-
nized as a satellite event to an established forum, including CAV (2001–2003,
2005–2006, and 2009), ETAPS (2004 and 2008), and AoSD (2007). The RV 2006
workshop was organized jointly with the Formal Aspects of Testing workshop.
The proceedings for RV from 2001 to 2005 were published in Electronic Notes
in Theoretical Computer Science. Since 2006, the RV proceedings have been
published in Lecture Notes in Computer Science.

Starting with the year 2010, RV became an international conference to rec-
ognize the sense of community that had emerged and the maturity the field had
reached over the decade since the inception of the series. Broadening the scope
of the event to a conference allowed further enlarging of the community and
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increasing the visibility of RV events as well as making submission and partici-
pation more attractive to researchers. This was evident in the record number of
submissions at RV 2010, which received a total of 74 submissions of which 15
were tutorials and tool demonstrations.

RV 2011 received a slightly smaller number of submissions – a total of 71
submissions of which 10 were tutorial and tool demonstrations. Thus, there was
an increase of two research paper (full/short) submissions and a decrease of five
tutorial or tool demonstration submissions over the previous year. All research
paper and tool demonstration submissions to RV 2011 were reviewed by the
Program Committee, with each paper receiving at least three reviews. The Pro-
gram Committee selected 22 full papers (of 52 submissions), 2 short papers (of
9 submissions), and 4 tool demonstrations (of 5 submissions) for presentation at
the conference. Four tutorials (of five submissions) were selected for presentation
by the Chairs. Invited talks at RV 2011 were given by Dawson Engler (Stanford
University), Cormac Flanagan (UC Santa Cruz), Wolfgang Grieskamp (Google),
Sharad Malik (Princeton University), and Steven P. Reiss (Brown University).

RV 2011 gave two awards to peer-reviewed submissions. The “Best Paper
Award” was given to “Runtime Verification with State Estimation” by Scott
Stoller, Ezio Bartocci, Justin Seyster, Radu Grosu, Klaus Havelund, Scott Smolka
and Erez Zadok. The “Best Tool Paper Award” was given to “MONPOLY: Mon-
itoring Usage-Control Policies” by David Basin, Matus Harvan, Felix Klaedtke
and Eugen Zalinescu.

The Chairs would like to thank the Program Committee for their high-quality
reviews and hard work in making RV 2011 a successful event. Financial support
for the conference was provided by Microsoft Research, the ARTIST Network
of Excellence on Embedded Systems Design, Intel Corporation, Google Inc., the
PRECISE Research Center of University of Pennsylvania, Laboratory for Reli-
able Software (LaRS) at NASA’s Jet Propulsion Laboratory, and the University
of California, Berkeley. We would like to particularly thank the local Organizing
Chairs Jacob Burnim and Nicholas Jalbert, and Klaus Havelund for extensive
help in making arrangements and organizing the event, and Oleg Sokolsky for
handling the finances and accounting. Submission and evaluation of papers, as
well as the preparation of this proceedings volume, was handled by the Easy-
Chair conference management service.

We hope that the strength of programs at RV conferences will continue to
provide a flagship venue for the RV community and to foster new collaborations
with researchers in related fields.

November 2011 Sarfraz Khurshid
Koushik Sen
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Internal versus External DSLs for Trace Analysis�

(Extended Abstract)

Howard Barringer1 and Klaus Havelund2

1 School of Computer Science, University of Manchester, UK
Howard.Barringer@manchester.ac.uk

2 Jet Propulsion Laboratory, California Institute of Technology, USA
Klaus.Havelund@jpl.nasa.gov

Abstract. This tutorial explores the design and implementation issues arising in
the development of domain-specific languages for trace analysis. It introduces
the audience to the general concepts underlying such special-purpose languages
building upon the authors’ own experiences in developing both external domain-
specific languages and systems, such as EAGLE, HAWK, RULER and LOGSCOPE,
and the more recent internal domain-specific language and system TRACECON-
TRACT within the SCALA language.

Keywords: run-time verification, trace analysis, domain-specific language (DSL),
external DSL, internal DSL, TRACECONTRACT, SCALA.

Domain-specific languages (DSLs) are simply special-purpose programming languages
and, as such, are far from being a new concept; for example in the field of text process-
ing one can find COMIT [16] in the 1950s, which led to SNOBOL [8] in the 1960s, then
on to the likes of AWK [1], Perl [15], etc. The naming of such special-purpose program-
ming languages as DSLs is a more recent development that has come about through the
field of domain-specific modelling. Fowler [9] presents a rather comprehensive volume
on DSLs and their application.

Within the field of run-time verification, as in formal methods in general, specifica-
tion languages and logics have usually been created as separate, standalone, languages,
with their own parsers; these are usually referred to as external DSLs. We have our-
selves developed several external DSLs for trace analysis, e.g. EAGLE [2], HAWK [7],
RULER [6], LOGSCOPE [3], and observe two key points: (i) once a DSL is defined, it
is labourious to change or extend it later; and (ii) users often ask for additional fea-
tures, some of which are best handled by a general purpose programming language. An
alternative approach is to try to use a high level programming language that can be aug-
mented with support for temporal specification. These are usually referred to as internal
DSLs. An internal DSL is really just an API in the host language, formulated using the
language’s own primitives. Recently, we chose to develop an internal DSL, TRACE-
CONTRACT [4], for trace analysis in SCALA [12]. Indeed, SCALA is particularly well

� Part of the work to be covered in this tutorial was carried out at Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 1–3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 H. Barringer and K. Havelund

suited for this because of (i) the language’s in-built support for defining internal DSLs,
and (ii) the fact that it supports functional as well as object oriented programming. A
functional programming language seems well suited for defining an internal DSL for
monitoring, as also advocated in [13] in the case of HASKELL [14]. An embedding of
an internal DSL may be termed as shallow, meaning that one makes the host language’s
constructs part of the DSL, or it may be termed as deep, meaning that a separate inter-
nal representation is made of the DSL (an abstract syntax), which is then interpreted or
compiled as in the case of an external DSL. A shallow embedding has disadvantages,
for example not being easily analyzable. In [10] it is argued that the advantage of a
deep embedding is that “We ‘know’ the code of the term, for instance we can print it,
compute its length, etc”, whereas the advantage of a shallow embedding is that “we do
not know the code, but we can run it”. Generally, the arguments for an internal DSL
are: limited implementation effort due to direct executability of DSL constructs, feature
richness through inheriting the host language’s constructs, and tool inheritance, i.e. it
becomes possible to directly use all the tool support available for the host language,
such as IDEs, editors, debuggers, static analyzers, and testing tools. In summary, the
arguments against an internal DSL are: (i) lack of analyzability, i.e. one cannot ana-
lyze internal DSLs without working with the usually complex host language compiler,
which can then have consequences for performance and reporting to users, and (ii) high
complexity of language, i.e. one now has to learn and use the bigger host programming
language, which may exclude non-programmers from using the language, and which
may lead to more errors. Our main observation is, however, that feature richness and
adaptability are both very attractive attributes. To some extent, adaptability “solves” the
problem of what is the right logic for runtime monitoring. An additional argument is
that often one wants to write advanced properties for which a simple logic does not
suffice, including counting and collecting statistics. In a programming language this all
becomes straightforward. The use of SCALA, whose functional features can be consid-
ered as a specification language in its own right, provides further advantage.

In this tutorial, we will introduce the audience to the above issues in the design of
DSLs, both external and internal, in the context of run-time verification. In particular,
we will use our own experience with the development of RULER, as an external DSL,
and TRACECONTRACT, an internal DSL, to show advantages and disadvantages of
these approaches. The tutorial will be presented through a series of examples, it will
show how an internal DSL can be quickly implemented in SCALA (within the tutorial
session), and it will demonstrate why TRACECONTRACT is being used for undertaking
flight rule checking in NASA’s LADEE mission [11,5].
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Predicting Concurrency Failures in the Generalized
Execution Traces of x86 Executables

Chao Wang1 and Malay Ganai2

1 Virginia Tech, Blacksburg, VA 24061, USA
2 NEC Laboratories America, Princeton, NJ 08540, USA

Abstract. In this tutorial, we first provide a brief overview of the latest develop-
ment in SMT based symbolic predictive analysis techniques and their applications
to runtime verification. We then present a unified runtime analysis platform for
detecting concurrency related program failures in the x86 executables of shared-
memory multithreaded applications. Our platform supports efficient monitoring
and easy customization of a wide range of execution trace generalization tech-
niques. Many of these techniques have been successfully incorporated into our
in-house verification tools, including BEST (Binary instrumentation based Error-
directed Symbolic Testing), which can detect concurrency related errors such as
deadlocks and race conditions, generate failure-triggering thread schedules, and
provide the visual mapping between runtime events and their program code to
help debugging.

1 Introduction

Parallel and concurrent programming is rapidly becoming a mainstream topic in to-
day’s corporate world, propelled primarily by the use of multicore processors in all
application domains. As the CPU clock speed remains largely constant, developers in-
creasingly need to write concurrent software to harness the computing power of what
soon will be the tens, hundreds, and thousands of cores [1]. However, manually ana-
lyzing the behavior of a concurrent program is often difficult. Due to the scheduling
nondeterminism, multiple runs of the same program may exhibit different behaviors,
even for the same program input. Furthermore, the number of possible interleavings
in a realistic application is often astronomically large. Even after a failure is detected,
deterministically replaying the erroneous behavior remains difficult. Therefore, devel-
opers need more powerful analysis and verification tools than what they currently have,
in order to deal with concurrency problems such as deadlocks and race conditions.

Although static and dynamic methods for detecting concurrency bugs have made re-
markable progress over the years, in practice they can still report too many false alarms
or miss too many real bugs. Furthermore, most of the existing bug detection tools tar-
get application-level software written in languages such as Java or C#. Tools that can
directly check the x86 executables of the system-level software are lagging behind. Soft-
ware in the latter category are often more critical to the reliability of the entire sys-
tem. They may be developed using a wide range of programming languages, including
C/C++, and may use external libraries whose source code are not available. This is one
reason why we need tools to directly verify x86 executables. Another reason is that x86
executables more accurately reflect the instructions that are executed by the multicore
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hardware. Almost all microprocessors today are based on the multicore architecture and
employ some form of relaxed memory model. Programming languages such as Java
and C++ are also in the process of incorporating language-level relaxed memory mod-
els [2, 3]. In this case, the behavior of the x86 executable may be drastically different
from the source code due to compiler optimizations, especially when the program has
concurrency bugs. Therefore, analyzing only the source code is no longer adequate.

We present a runtime analysis and verification platform that can work directly on
the x86 executables of Linux applications. We use PIN [4] to instrument both the ex-
ecutables and all the dynamically linked libraries upon which the applications depend.
The additional code injected during this instrumentation process are used to moni-
tor and control the synchronization operations such as lock/unlock, wait/notify, thread
create/join, as well as the shared memory accesses. We then use a logical constraint
based symbolic predictive analysis [5–8] to detect runtime failures by generalizing the
recorded execution trace. Our trace generalization model is capable of capturing all
the possible interleavings of events of the given trace. We check whether any of the
interleaving can fail, by first encoding these interleavings and the error condition as a
set of quantifier-free first-order logic formulas, and then deciding the formulas with an
off-the-self SMT solver.

Our trace generalization model can be viewed as a kind of lean program slice, cap-
turing a subset of the behaviors of the original program. By focusing on this trace gener-
alization model rather than the whole program, many rigorous but previously expensive
techniques, such as symbolic execution [9, 10], become scalable for practical uses.

The remainder of this paper is organized as follows. We give a brief overview of the
existing predictive analysis methods in Section 2. We introduce our symbolic predic-
tive analysis in Section 3. The major analysis steps of our BEST tool are presented in
Section 4, followed by a discussion of the implementation and evaluation. We review
related work in Section 6, and give our conclusions in Section 7.

2 A Brief Overview of Predictive Analysis Methods

Concurrency control related programming errors are due to incorrectly constrained in-
teractions of the concurrent threads or processes. Despite their wide range of symptoms,
these bugs can all be classified into two categories. Bugs in the first category are due
to under-constraining, where the threads have more freedom in interacting with other
threads than they should have, leading to race conditions, which broadly refer to data
races, atomicity violations, and order violations. Bugs in the second category are due
to over-constraining, where the threads are more restricted than they should be, lead-
ing to either deadlocks or performance bugs. Since these bugs are scheduling sensitive,
and the number of possible thread interleavings is often astronomically large, they are
often rare events during the program execution. Furthermore, in a runtime environment
where the scheduling is controlled by the underlying operating system, merely running
the same test again and again does not necessarily increase the chance of detecting the
bug.

Fig. 1 shows an example of two concurrent threads sharing a pointer p. Due to under-
constraining, an atomicity violation may be triggered in some interleaved executions.
More specifically, the statements e2-e5 in Thread T1 are meant to be executed atom-
ically. Note that such atomicity property (between the check e2e3 and the use e4e5)
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Thread T1 Thread T2

{ e1 : p = &a;
e2 : b = p;
e3 : if(b �= 0) {

...
e4 : q = p;
e5 : ∗ q = 10;

} ...
} e6 : p = 0;

e6 : WR(p)

e2 : RD(p)

e4 : RD(p)

e1 : WR(p)

(a) original

e6 : WR(p)

e2 : RD(p)

e4 : RD(p)

e1 : WR(p)

(b) feasible

e6 : WR(p)

e4 : RD(p)

e2 : RD(p)

e1 : WR(p)

(c) infeasible

Fig. 1. The given trace e1e2 . . . e6 in (a) is not buggy, but the alternative interleaving in (b) has
an atomicity violation, leading to the null pointer dereference failure at e5. Assuming that p=0
initially, the interleaving in (c) is bogus since e4 cannot be executed when b = 0.

always holds in sequential programs, but may be broken in a concurrent program un-
less it is enforced explicitly using synchronizations such as locks. For example, assume
that p = 0 initially in Fig. 1, then executing e6 in between e2, e4 would lead to a null
pointer dereference at e5. Atomicity violations are different from data races, i.e. a situa-
tion where two threads can access the same memory location without synchronization.
In Fig. 1, for example, even if we add a lock-unlock pair to protect each access to p (in
e1, e2, e4, e6), the failure at e5 due to atomicity violation will remain.

Runtime concurrency bug detection and prediction have become an active research
topic in recent years [11–18]. Broadly speaking, these existing techniques come in two
flavors. When the goal is to detect runtime errors exposed by the given execution, it is
called the monitoring problem (e.g. [12, 13, 18]). When the goal is to detect errors not
only in the given execution, but also in other possible interleavings of the events of that
execution, it is called the prediction problem. For example, in Fig. 1, the given trace in
(a) does not fail. However, from this trace we can infer the two alternative interleavings
in (b) and (c). Both interleavings, if feasible, would lead to a runtime failure at e5. A
more careful analysis shows that the trace in (b) is feasible, meaning that it can happen
during the actual program execution, whereas the trace in (c) is infeasible, i.e. it is a
false alarm.

Depending on how they infer new interleavings from the given trace, predictive anal-
ysis methods in the literature can be classified into two groups. Methods in the first
group (e.g. [11, 15, 19–22]) detect must-violations, i.e. the reported violation must be a
real violation. Methods in the second group (e.g. [14, 16, 23–26]) detect may-violations,
i.e. the reported violation may be a real violation. Conceptually, methods in the first
group start by regarding the given trace ρ as a totally ordered set of events (ordered
by the execution sequence in ρ), and then removing the ordering constraints imposed
solely by the nondeterministic scheduling. However, since the type of inferred inter-
leavings are limited, these methods often miss many real bugs. In contrast, methods in
the second category start by regarding the given trace ρ as an unordered set of events,
meaning that any permutation of ρ is initially allowed, and then filtering out the obvi-
ously bogus ones using the semantics of the synchronization primitives. For example,
if two consecutive events e1e2 in one thread and e3 in another thread are both protected
by lock-unlock pair over the same lock, then the permutation e1e3e2 is forbidden based
on the mutual exclusion semantics of locks.
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The entire spectrum of predictive analysis methods is illustrated in Fig. 2. Given
an execution trace ρ, the left-most point represents the singleton set containing trace
ρ itself, whereas the right-most point represents the set of all possible permutations
of trace ρ, regardless of whether the permutations are feasible or not. Therefore, the
left-most point denotes the coarsest under-approximated predictive model, whereas the
right-most point denotes the coarsest over-approximated predictive model. The left-
to-middle horizontal line represents the evolution of the under-approximated analysis
methods in the first group – they all report must-violations, and they have been able to
cover more and more real bugs over the years. This line of research originated from the
happens-before causality relationship introduced by Lamport [19]. The right-to-middle
horizontal line represents the evolution of the over-approximated analysis methods in
the second group – they all report may-violations, and they have been able to steadily
reduce the number of false alarms over the years. Some early developments of this
line of research include the Eraser-style lockset analysis [23] and the lock acquisition
history analysis [27]. Although significant progress has been made over the years, it is
still the case that these existing methods may either miss many real bugs or generate
many false alarms. For example, if an over-approximated method relies solely on the
control flow analysis while ignoring data, it may report Fig. 1 (c) as a violation although
the interleaving is actually infeasible. If an under-approximated method strives to avoid
false alarms, but in the process significantly restricts the type of inferred traces, it may
miss the real violation in Fig. 1 (b).

Lockset [23]

Trace (un-ordered set)

TAS [28]

Trace (total ordered set) CTP [5–7]

Chen&Rosu [21]
Sen et al. [11]

Happens-before [19]

traces
all real & no bogus

traces
many bogus

traces
some bogusone real

trace
some real
traces

UCG [29] Meta-analysis [26]
Acquisition history [27]

Fig. 2. The landscape of predictive analysis methods

In our recent work [5–7], we introduced a precise trace generalization model together
with an efficient logical constraint based symbolic analysis. Our model, called the Con-
current Trace Program (CTP), captures all the interleavings that can possibly be inferred
from a given trace, without introducing any bogus interleavings. As illustrated in Fig. 2,
CTP represents the theoretically optimal point, where the two long lines of research on
predictive methods converge. However, the practical use of CTP as a predictive model
depends on how efficient its error detection algorithm is. We believe that the key to its
widespread use will be the judicious application of symbolic analysis techniques and
interference abstractions. SMT based symbolic analysis will help combat interleaving
explosion, the main bottleneck in analysis algorithms based on explicitly enumerating
the interleavings. Explicit enumeration is avoided entirely in our SMT-based symbolic
analysis. Interference abstraction refers to the over- or under-approximated modeling of
the thread interactions with a varying degree of precision. The main idea is that, for the
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purpose of deciding a property at hand, we often do not need to precisely model all the
details of the thread interactions. Our SMT based symbolic analysis provides a flexi-
ble and unified framework for soundly performing such over- or under-approximations,
without forcing us to worry about the validity of the analysis results.

3 SMT-Based Symbolic Predictive Analysis

Recall that the Concurrent Trace Program (CTP) is the optimal predictive model be-
cause it can catch all real bugs that can possibly be predicted from a given trace, with-
out introducing any bogus bug. Fig. 3 shows how the CTP is derived from a concrete
execution trace. Here the main thread T0 creates threads T1 and T2, waits for their ter-
mination, and asserts (x �= y). This given execution does not violate the assertion. From
this trace, however, we can derive the model on the right-hand side, which is a parallel
composition of the three bounded straight-line threads. In this model, we remove all
the execution ordering constraints (of the given trace) imposed solely by the nondeter-
ministic scheduling. For example, e15 can execute after e21 although it was executed
before e21 in the given trace. However, not all interleavings are allowed: interleaving
e1e2e21e26e27e28e11 . . . e15e18e3 . . . e5 is not allowed, because the assume condition
in e26 is invalid, and as a result, we cannot guarantee the feasibility of this interleaving.
In other words, this interleaving may be bogus.

Thread T0

int x = 0, y = 0;
pthread t t1, t2;
main() {

e1 pthread create(t1, ..., foo);
e2 pthread create(t2, ..., bar);
e3 pthread join(t2);
e4 pthread join(t1);
e5 assert( x != y);

}

Thread T1

foo() {
e11 int a=y;
e12 if (a==0) {
e13 x=1;
e14 a=x+1;
e15 x=a;
e16 }else
e17 x=0;
e18 }

Thread T2

bar() {
e21 int b=x;
e22 if (b==0) {
e23 y=1;
e24 b=y+1;
e25 y=b;
e26 }else
e27 y=0;
e28 }

(Execution Trace)

e0: x=0,y=0;
e1: fork(1)
e2: fork(2)
——->
e11 : a=y;
e12 : assume(a=0)
e13 : x=1;
e14 : a=x+1;
e15 : x=a;
e18 :
——->
e21: b=x;
e26: assume(b�=0)
e27: y=0;
e28:

<——-
e3: join(2)
e4: join(1)
e5: assert(x �= y)

e18

e5 : assert( x�= y);
JOIN

e0 : x=0,y=0;

e21: b=x;

e27 : y=0;

t26:(b �= 0)

T2
e2

e3

e4

e28

T0

FORK
e1

e11: a=y;

e12:(a = 0)

e13 : x=1;

e14 : a=x+1;

T1

e15 : x=a;

Fig. 3. A multithreaded C program, an execution trace, and the concurrent trace program (CTP)

CTP is ideally suited for detecting concurrency bugs since it is a concurrency con-
trol skeleton, with most of the complications of typical sequential code removed. For
example, pointers have been dereferenced, loops have been unrolled, and recursion has
been applied during the concrete execution. Assignment such as (∗p) := 10 is modeled
as assume(p=&a); a:=10 if p points to variable a in the given execution. As a result,
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the interleavings in which p does not match the memory address &a are excluded from
the model. In other words, pointer p has been replaced by one of its constant value &a.
The variables and expressions whose valuations are insensitive to thread scheduling can
be replaced by their concrete values in the given trace. The only source of nondetermin-
ism in a CTP comes from the thread interleaving.

3.1 SMT-Based Symbolic Encoding

We check for property violation by formulating this verification problem as a constraint
solving problem. That is, we build a quantifier-free first-order logic formula Φ such that
Φ is satisfiable if and only if there is an erroneous interleaving in the CTP. Conceptually,
Φ := ΦTM ∧ ΦSC ∧ ΦPRP , where ΦTM is the thread model encoding the individual
behaviors of all threads, ΦSC is the sequential consistency model encoding all the valid
thread interactions, and ΦPRP is the property constraint encoding the failure condition.
Central to the analysis is ΦSC , which specifies, in a valid interleaving, which shared
memory read should be mapped to which shared memory write and under what condi-
tion. For example, each shared memory read rx must match a preceding shared memory
write wx for the same memory location x; and if rx matches wx, then any other write
w′

x to the same location must happen either before wx or after rx. Synchronization op-
erations such as lock-unlock and wait-notify are modeled similarly. The logic formula
Φ is then decided by an off-the-shelf SMT solver.

Compared to existing methods, our constraint-based approach provides a unified
analysis framework with the following advantages. First, it is flexible in checking a
diverse set of concurrency related properties; there is no longer a need to develop sep-
arate algorithms for detecting deadlocks, data races, atomicity violations, etc. All these
properties can be modeled in our framework as a set of logical constraints. Second, it
is efficient since the program behaviors are captured implicitly as a set of mathematical
relations among all synchronization operations and shared-memory accesses, therefore
avoiding the interleaving explosion. Third, our analysis is more precise and covers more
interleavings. It also allows easy exploitation of the various trade-offs between the anal-
ysis precision and the computation overhead, simply by adding or removing some logic
constraints. This is crucially importantly because, as we have mentioned earlier, not all
the inference constraints (in ΦSC ) may be needed for deciding the property at hand.
Forth, our symbolic encoding is compositional in that the behaviors of the individual
threads are modeled as one set of logical constraints (in ΦTM ), while the thread interfer-
ence is modeled as another set of logical constraints (in ΦSC ). The parallel composition
is accomplished by conjoining these two sets of constraints together. Finally, symbolic
partial order reduction techniques such as [30] can be applied to reduce both the logical
formula and the search space.

3.2 Interference Abstractions

While the CTP model and the associated symbolic predictive analysis provide a solid
theoretical foundation, their practical use will hinge upon the judicious application of
proper interference abstractions. Interference abstraction refers to the over- or under-
approximated modeling of the thread interactions with a varying degree of precision.
In our symbolic analysis framework, interference abstractions are manifested as the
over- or under-approximations of formula ΦSC . Since modeling the thread interactions
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is the most expensive part of the concurrent program analysis, without abstraction, sym-
bolic analysis will not be able to scale to large applications. Our main hypothesis is that,
since concurrency bugs typically involve a small number of unexpected thread interfer-
ences, they can often be captured by succinct interference abstractions.

In a previous work [29], we proposed an over-approximated interference abstrac-
tion, called the Universal Causality Graph (UCG), where the shared-memory accesses
are abstracted away while the control flow and the synchronization primitives are re-
tained. We represent the happens-before causality relationship among trace events as a
graph, where the nodes are the events and the edges are must-happen-before relations
between the events, as imposed by the thread-local program order, the synchronization
primitives, and the property. Checking whether a property holds can be reduced to the
problem of checking whether these causality edges can form a cycle. The existence of
a cycle means that none of the interleavings of the CTP can satisfies the property. How-
ever, due to over-approximations, this analysis is conservative in that it guarantees to
catch all violations that can possibly be predicted from a given trace, but may report
some false alarms. Our UCG based analysis is provably more accurate than the existing
methods in the same category, e.g. the widely used lockset based methods [14, 16, 23–
26]. The reason is that lockset analysis typically models locks precisely, but cannot
robustly handle synchronization primitives other than locks, such as wait-notify and
fork-join. In contrast, our UCG based method precisely model the semantics of all com-
mon synchronization primitives, as well as the synergy between the different types of
primitives.

In another work [28], we proposed an under-approximated interference abstraction
called the Trace Atomicity Segmentation (TAS), which can soundly restrict the search
space that needs to be considered to detect the most general form of atomicity viola-
tions. More specifically, the TAS is a trace segment consisting of all the events in the
surrounding areas of an atomic block, such that these events are sufficient for checking
whether this atomicity property can be violated. Different from most existing work, our
method can detect violations that involve an arbitrary number of variables and threads,
rather than the simplest atomicity violations involving a single variable and three mem-
ory accesses. As illustrated in Fig. 2, TAS is regarded as an under-approximation. The
case for using TAS in practice is when the runtime analysis does not have access to
the program code, or cannot afford to monitor every instruction, but is still required to
guarantee no false alarms. Our preliminary experiments in [28] show that the TAS is
typically small even in an otherwise long execution trace.

We also proposed an algorithm to automatically find the interference abstraction
that is optimal to the property at hand. Unlike the ones with a prescribed precision, a
property specific interference abstraction can be more efficient since it only needs a
minimal set of interference constraints. The rationale behind is that sometimes we can
prove a property using an over-approximated abstraction, e.g. the control-state reacha-
bility analysis [26, 29]. Sometimes we can detect real bugs with an under-approximated
abstraction, e.g. by artificially bounding the number of context switches, since the bugs
may be scheduling-insensitive, and therefore may show up even in serial executions
or when threads interleave only sporadically [31, 32]. However, it is generally diffi-
cult to decide a priori which abstraction is more appropriate. To solve this problem,
we proposed an iterative refinement algorithm [33]. We will start with a coarse initial
abstraction which is either over- or under-approximated, based on whether the property
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likely holds or not. Depending on the initial abstraction, this refinement process may be
either under-approximation widening or over-approximation refinement. It is interesting
to point out that, optimal interference abstraction, defined as the most succinct abstrac-
tion that is sufficient to decide the property, may not be a purely over-approximated
model or a purely under-approximated model, but a hybrid model as represented by
the dots in the middle of Fig. 4. In this figure, we have bent over the right-to-middle
horizontal line in Fig. 2 to make it the bottom-to-top vertical line. Most of the points in
this two-dimensional plane correspond to the hybrid models. As we have shown in [33],
with a careful analysis, such hybrid models can still be used to accurately decide the
property at hand, despite the fact that they are considered as neither sound nor complete
in the traditional sense. Fig. 5 shows that small interference abstractions are often suffi-
cient for checking properties in realistic applications, and that their use can drastically
improve the scalability of our symbolic analysis.

Fig. 4. Finding the optimal interference
abstraction: identifying the smallest set
of interference constraints that are suffi-
cient for deciding the property

Fig. 5. Experimental results from [33]:
using interference abstraction can lead to
faster property checking than using the
full-blown interference constraints

4 The BEST Platform

Our Binary instrumentation-based Error-directed Symbolic Testing (BEST) tool imple-
ments some of the symbolic predictive analysis techniques introduced in the previous
sections, and is capable of detecting concurrency errors by directly monitoring an un-
modified x86 executable at runtime. In the remainder of this paper, we shall use atom-
icity violations as an example to illustrate the features of our framework. As shown in
Fig. 6, the predictive analysis in BEST consists of the following stages:

– Stage I, recording the execution trace and building the predictive model;
– Stage II, simplifying the model using sound program transformations;
– Stage III, inferring and then statically pruning the atomicity properties;
– Stage IV, predicting the violations of the atomicity properties;
– Stage V, replaying the erroneous interleaving, to see if it can cause runtime failures.
– Go back to Stage I.

Before using this tool, the developer needs to provide an execution environment for the
program under test, i.e. a test harness. Details of the stages are illustrated as follows.
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Fig. 6. BEST architecture

4.1 The Staged Analysis

Stage I. While testing the concurrent application, we use PIN to instrument the exe-
cutable at run time to record the sequence of global events generated by the execution.
The global events include both synchronization operations such as lock-unlock and the
shared memory reads and writes. From this sequence of events, we derive a concurrent
trace model (CTM), which may be an over-approximation of the CTP. The model can
be viewed as a generator of traces, including both the given trace ρ and all the other
interleavings that can be obtained by relaxing the ordering constraints (in ρ) imposed
by the non-deterministic scheduling. Even if the given execution trace ρ does not fail, a
runtime failure may still occur in some of the alternative interleavings.

Stage II. Given the initial model, we perform the following simplifications. First, we
identify the operations over only thread-local variables, where the thread-local vari-
ables are identified by checking whether their memory locations are accessed by more
than one concurrent threads. Then, we merge consecutive thread-local operations into
a single operation. Next, we perform constant value propagation to simplify all the
expressions that are scheduling-insensitive. These simplifications can lead to orders-
of-magnitude reduction in the model size, measured in terms of the number of trace
events. Finally, we use sound static analysis techniques such as lockset analysis and
simple happen-before (HB) analysis to quickly identify the ordering constraints im-
posed by synchronizations (which must be satisfied by all valid interleavings) and then
eliminate the obviously infeasible interleavings.

Stage III. On the simplified model, we infer the likely atomic regions based on the
structure of the program code. Note that these atomic regions may involve multiple
shared variable accesses. We also assume that the given trace is good (unless it fails) and
therefore remove any region that is not atomic in the given execution. The remaining
regions are treated as atomic. We use the notion of causal atomicity as in [34] as well
as the notion of causal mutual atomicity (CMA) as in [35]. In the latter case, we check
the violation of two pair-wise atomic regions from different threads with at least two
conflicting transitions.



Predicting Concurrency Failures in the Generalized Execution Traces 13

Stage IV. For each atomicity property, we perform a property specific program slicing,
followed by another pass of simplifications and merging of the consecutive thread-local
events. We check for violations of the atomicity properties by formulating the problem
as a constraint solving problem. That is, we build a quantifier-free first-order logic for-
mula Φ such that Φ is satisfiable if and only if there is an erroneous interleaving. The
logic formula Φ is then decided by an off-the-shelf SMT solver.

Stage V. Once our SMT based analysis detects a violation, it will generate an erroneous
thread schedule. To replay it, we use PIN to instrument the executables at runtime, and
apply the externally provided schedule. After Stage V, we go back to Stage I again. The
entire procedure stops either when a runtime failure (e.g. crash) is found, or when the
time limit is reached.

Our BEST tool can provide the visualization of the failure-triggering execution. If
the executable contains the compiler generated debugging information, BEST can also
provide a mapping from the trace events to the corresponding program statements. On
the Linux platform, for example, we use a gnu utility called objdump to obtain the
mapping between processor instructions and the corresponding source file and line in-
formation.

4.2 Inferring Atomicity Properties

Programmers often make some implicit assumptions regarding the concurrency control
of the program, e.g. certain blocks are intended to be mutually exclusive, certain blocks
are intended to be atomic, and certain instructions are intended to be executed in a
specific order. However, sometimes these implicit assumptions are not enforced using
synchronization primitives such as locks and wait-notify. Concurrency related program
failures are often the result of these implicit assumptions being broken, e.g. data races,
atomicity violations, and order violations. There are existing methods (e.g. [12]) for
statically mining execution order invariants form the program source code. There are
also dynamic methods (e.g. [13]) for inferring invariants at runtime. For example, if no
program failure occurs during testing, then the already tested executions often can be
assumed to satisfy the programmer’s intent.

Our BEST tool heuristically infers such likely atomicity properties from the x86 ex-
ecutables. Our approach is an application of the existing methods in [12, 13] together
with the following extensions. Let a global access denote either a synchronization oper-
ation or a shared memory accesses. When inferring the likely atomic regions, we require
each region to satisfy the following conditions:

– the region must contain at least one shared memory read/write;
– the first and/or last global access must be a shared memory read/write;
– the global accesses must be within a procedure boundary;
– the global accesses must be close to each other in the program code;

In additional, the region should not be divided by blocking synchronization operations
such as thread creation/join or the wait/notify, which will make the region non-atomic.

Fig. 7 shows an example of inferring the likely atomic regions from the program code,
by following the above guidelines. This figure contains the output of objectdump for a
small C program called atom.c at Lines 59, 61, 63, and 65. The entire execution trace,
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.......
./atom.c:59

pthread_mutex_lock(l2);
.......
8048776:       e8 c1 fd ff ff call   804853c
./atom.c:61

++Z;
804877b:       a1 28 9a 04 08        mov 0x8049a28,%eax
8048780:       83 c0 01              add    $0x1,%eax
8048783:       a3 28 9a 04 08        mov %eax,0x8049a28
./atom.c:63

X = (char *)malloc(Z);
8048788:       a1 28 9a 04 08        mov 0x8049a28,%eax
804878d:       89 04 24              mov %eax,(%esp)
8048790:       e8 97 fd ff ff call   804852c
8048795:       a3 2c 9a 04 08        mov %eax,0x8049a2c
./atom.c:65

pthread_mutex_lock(l1);
80487a1:       e8 96 fd ff ff call   804853c
.......

�
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�
��
�
�

�
	
�


	
�


�

Fig. 7. Inferring atomicity with objdump using code structure

together with its CTM and interleaving lattice, can be found in [36]. The transition cor-
responding to pthread mutex lock(l2) is assigned a tag 〈atom.c, 59〉. Similarly, the
transitions corresponding ++Z is assigned a tag 〈atom.c, 61〉. Using the rules for in-
ferring atomic regions, we mark the transitions corresponding to statements ++Z and
X=(char*)malloc(Z) as the likely atomic region. In other words, if we can find an
interleaved execution which breaks this atomicity assumption, the execution will be re-
garded as risky – it is more likely to lead to a program failure. In Stage V of our BEST tool,
we will replay such interleavings in order to maximize the exposure of the real failures.

5 Implementation and Evaluation

Our tool has been implemented for x86 executables on the Linux platform. We use
PIN [4] for dynamic code instrumentation and the YICES [37] solver for symbolic pre-
dictive analysis. Our BEST tool can directly check for concurrency failures in executa-
bles that use the POSIX threads. Whenever the program source code are available, for
example, in C/C++/Java, we use gcc/g++/gcj to compile the source code into x86 ex-
ecutables before checking them. With the help of dynamic instrumentation form PIN,
we can model the instructions that come from both the application and the dynamically
linked libraries. Specifically, we are able to record all the POSIX thread synchronizations
such as wait/notify, lock/unlock, and fork/join, as well as the shared memory accesses.

For efficiency reasons, BEST may choose to turn off the recording of the thread-local
operations such as stack reads/writes. This option in principle may lead to a further over-
approximation of the trace generalization model, meaning that some of the violations
reported by our analysis may be spurious. As a result, replay in Stage V may fail (our
bailout strategy is to start a free run as soon as the replay fails). However, such cases
turn out to be rare in our experiments.

We have experimented with some public domain multi-threaded applications from
the sourceforge and freshmeat websites. The size of these benchmarks are in the range
of 1K-33K lines of C/C++ or Java code. They include aget (1.2K LOC, C), fastspy (1.5K
LOC, C), finalsolution (2K LOC, C++), prozilla (2.7K LOC, C++), axel (3.1K LOC,
C), bzip2smp (6.4K LOC, C), alsaplayer (33K LOC, C++), and tsp (713, Java). The
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length of the execution trace ranges from a few hundreds to 34K events, with 4 to 67
threads. Most of the inferred atomic regions involve more than one variable accesses.
Due to the use of interference abstractions and the various model simplification and
search space reduction techniques, the CPU time per check by our analysis is a few
seconds on average.

Our BEST tool found several previously known/unknown atomicity violations. The
bug list can be found in http://www.nec-labs.com/∼malay/notes.html.

6 Related Work

We have reviewed the existing methods for runtime monitoring and prediction of con-
currency failures in Section 2. It should be clear that for such analysis to detect a failure,
a failure-inducing execution trace should be provided as input, which contains all the
events that are needed to form a failure-triggering interleaving. While we have assumed
that this failure-inducing execution trace is available, generating such trace can be a
difficult task in practice, since it requires both the right thread schedule and the right
program input.

When the thread scheduling is controlled by the operating system, it is difficult to
generate a failure-inducing thread schedule – repeating the same test does not necessar-
ily increase the coverage. Standard techniques such as load/stress tests and randomiza-
tion [38] are not effective, since they are highly dependent on the runtime environment,
and even if a failure-inducing schedule is found, replaying the schedule remains diffi-
cult. CHESS-like tools [32, 39, 40] based on stateless model checking [41] are more
promising, but too expensive due to interleaving explosion, even with partial order re-
duction [42] and context bounding [43, 44]. A more practical approach is to systemati-
cally, but also selectively, test a subset of thread schedules while still cover the common
bug patterns. Similar approaches have been used in CalFuzzer [45], PENELOPE [46],
and our recent work in [47].

Generating the failure-inducing execution trace also requires the right data input.
In practice, test inputs are often hand crafted, e.g. as part of the testing harness. Al-
though DART-like automated test generation techniques [48–55] have made remark-
able progress for sequential programs, extending them to concurrent programs has been
difficult. For example, ESD [56] extended the test generation algorithm in KLEE [53]
to multithreaded programs; Sen and Agha [20] also outlined a concolic testing algo-
rithm for multithreaded Java. However, these existing methods were severely limited
by interleaving explosion – it is difficult to systematically achieve a decent code and
interleaving coverage within a reasonable period of time. In ESD, for example, heuris-
tics are used to artificially reduce the number of interleavings; however, the problem is
that the reduction is arbitrary and often does not match the common concurrency bug
patterns. This leads to missed bugs, and also makes it difficult to identify which part of
the search space is covered and which part is not. Therefore, we consider efficient test
generation for concurrent programs as an interesting problem for a future work.

7 Conclusions

In this paper, we have provided a brief overview of the latest development in SMT-
based symbolic predictive analysis. We have also presented our BEST tool for detect-
ing runtime failures in unmodified x86 executables on the Linux platform using POSIX
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threads. BEST uses a staged analysis with various simplifications and model reduction
techniques to improve the scalability of the symbolic analysis. It infers likely atom-
icity properties and then checks them using the symbolic analysis. Thread schedules
that violate some of these likely atomicity properties are used to re-direct the testing
toward the search subspaces with a higher risk. BEST also provides the visualization
of trace events by mapping them to the program statements to help debugging. We be-
lieve that these SMT-based symbolic predictive analysis techniques hold great promise
in significantly improving concurrent program verification.
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Abstract. This tutorial focuses on issues involved in runtime monitor-
ing of time-sensitive systems, where violation of timing constraints are
undesired. Our goal is to describe the challenges in instrumenting, mea-
suring, and monitoring such systems and present our solutions developed
in the past few years to deal with these challenges. The tutorial consists
of two parts. First, we present challenge problems and corresponding so-
lutions on instrumenting real-time systems so that timing constraints of
the system are respected. The second part of the tutorial will focus on
time-triggered runtime monitoring, where a monitor is invoked at equal
time intervals, allowing designers to schedule regular and monitoring
tasks hand-in-hand.

1 Overview of Tutorial

In computing systems, correctness refers to the assertion that a system sat-
isfies its specification. Verification is a technique for checking such an asser-
tion and runtime verification refers to a lightweight technique where a monitor
checks at run time whether the execution of a system under inspection sat-
isfies or violates a given correctness property. Deploying runtime verification
involves instrumenting the program under inspection, so that upon occurrence
of events (e.g., value changes of a variable) that may change the truthfulness of
a property, the monitor will be called to re-evaluate the property. We call this
method event-triggered runtime verification, because each change prompts a re-
evaluation. Event-triggered runtime verification suffers from two drawbacks: (1)
unpredictable overhead, and (2) possible bursts of events at run time.

The above defects are undesired in the context of real-time embedded systems,
where predictability and timing constraints play a central role. This tutorial
focuses on describing our solutions to two challenge problems:

– Time-aware instrumentation. Instrumentation is a technique to extract
information or trigger events in programs under inspection. Instrumentation
is a vital step for enabling system monitoring; i.e. the system is augmented
with instructions that invokes a monitor when certain events occur. Instru-
mentation of software programs while preserving logical correctness is an
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established field. However, current approaches are inadequate for real-time
embedded applications. The key idea behind the time-aware instrumentation
of a system is to transform the execution-time distribution of the system so
as to maximize the coverage of the trace while always staying within the
time budget.

– Time-triggered monitoring. In time-triggered runtime verification, a
monitor runs in parallel with the program and samples the program state
periodically to evaluate a set of system properties. The main challenge in
time-triggered runtime verification is to guarantee accurate program state
reconstruction at sampling time. Providing such guarantee results in solving
an an optimization problem where the objective is to find the minimum
number of critical events that need to be buffered for a given sampling period.
Consequently, the time-triggered monitor can successfully reconstruct the
state of the program between two successive samples.

This tutorial will discuss in detail our techniques developed in the past few years
while exploring time-aware instrumentation and time-triggered monitoring. In
Section 2, we introduce the problem of timing in real-time embedded systems.
Section 3 is dedicated to our techniques on time-aware instrumentation. Time-
triggered runtime monitoring is discussed in Section 4. Finally, we present a set
of future research directions in Section 5.

2 Real-Time Embedded Software Primer

Embedded software is the essence of our modern computerized standard of liv-
ing. It is omnipresent and controls everything from everyday consumer products
such as microwaves and digital cameras to large systems for factory automa-
tion, aircraft, and automotive applications. Software enables devices that make
life more pleasant (i.e., adaptive cruise control in cars), more acceptable (i.e.,
implanted insulin infusion pumps), or even possible (i.e., implanted pacemakers
and defibrillators). Many companies define innovation in their products through
adding new features implemented in software, thus future systems will contain
more complex and larger portions of software. For example, the next generation
automobile is a highly distributed system expected to run several million lines
of code [3].

A special class of embedded software is real-time embedded software. A real-
time application is time sensitive and this generally means that delivering a cor-
rect value at the wrong point in time—especially too late—can still cause service
failures. Thus a real-time system must work correctly in the logic and timing
domain. Examples of such system span almost all domains of embedded soft-
ware including consumer devices (e.g., video decoders), avionics platforms (e.g.,
flight control in autopilots), automotive (e.g., distance measurement in adaptive
cruise control), medical devices (e.g., pacemakers), finance (e.g., high-frequency
trading), communications (e.g., software-defined radio), and space (e.g., thrust
control).
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Table 1 shows the relationship between timing, logic, and correctness of a real-
time application for two basic classes. Naturally, more classes have been defined
over time. These additional classes refine and extend some of the properties such
as firm real-time constraints [13] and imprecise computation [14]. Soft real-time
applications have soft timing constraints. This means that if the application
sometimes misses deadlines, the application will still function. A typical exam-
ple of such an application is video decoding; dropping a frame sometimes will
remain unnoticed by the viewer, however, frequent drops in frames will degrade
the experience. The threshold for an acceptable number of missed deadlines
depends on the application. Hard real-time applications have hard timing con-
straints. Missing a single deadline can result in an error in the system. Typical
applications for this domain are safety-critical systems like a shutdown routine
in a nuclear power station, flight surface control while piloting airplanes, and
pacing control in a heart pacemaker. Obviously, such hard real-time systems re-
quire meticulous control of system resources and execution to guarantee proper
system functioning and ultimately system safety. Hence, such control is also the
main focus of research on real-time systems.

Table 1. Real-time system classification

Soft RT Hard RT

On time Too late On Time Too late

Wrong value Error Error Error Error

Right value Ok Maybe ok Ok Error

Reduction in complexity through limiting the programming languages is one
approach to provide better control of resources, execution, and timing. With this
goal in mind, several standards on developing safety-critical and real-time em-
bedded systems have emerged over the years. They find use in different domains.
For example MISRA C [12] provides coding guidelines and reduces the com-
plexity of C code by forbidding, for instance, recursion, unbounded loops, and
dynamic memory allocation. The automotive and other industries use MISRA
C. Ravenscar [5] and SPARK [2] address similar issues for the Ada programming
language. The RTCA/DO 178B [16] specifies guidelines for developing safety-
critical software systems for the avionics domain. The standard touches major
topics of the software development cycle and specifies required documentation for
different activities. Other domains, like the nuclear domain, have similar stan-
dards. Such standards are relevant as they define classes of systems to which
solutions can be tailored to. For example, while static analysis is impractical in
the general case, the limited use of pointers in MISRA C compliant code permits
subjecting such programs to static analysis.

Another popular approach to handling resources, execution, and timing is to
follow a time-triggered approach. In these approaches, time is split into small
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slices. The system scheduler assigns resource users mutually exclusive access to
the resource based on these slices. For example, the time-triggered approach for
task scheduling is round robin scheduling. The scheduler assigns one slice of pro-
cessor time to one process at a time. In communication, Time Division Multiple
Access (TDMA) implements a time-triggered approach to limit concurrent access
to the shared communication medium. In safety-critical applications, sometimes
the developer creates the time-triggered schedule by laying out the time line and
determining when which process gets to compute and communicate, so all opera-
tions meet their timing deadlines. One advantage of the time-triggered approach
is its determinism and thus predictable operation. Time-triggered approaches
make operational decisions solely based on a clock. Controlling the clock means
controlling all aspects in the system that get derived from that clock. This single
source for controlling operations is attractive, because it reduces operational de-
pendencies and thus reduces complexity. Naturally, event-triggered approaches
also offer benefits and picking one over the other is a complicated matter and a
lasting debate [10].

3 Time-Aware Instrumentation

Instrumentation of software programs while preserving logical correctness is
an established field. Developers instrument programs for tasks including pro-
filing, testing, debugging, tracing, and monitoring the software systems (e.g.,
for runtime verification). Today several approaches to instrument software while
preserving logical correctness exist and in the tutorial, we will briefly discuss
the most relevant works including manual instrumentation, static instrumenta-
tion frameworks, dynamic instrumentation with binary rewriting, and hardware-
based approaches. However, current approaches are inadequate for real-time
embedded applications.

The key idea behind the time-aware instrumentation of a system is to trans-
form the execution-time distribution of the system so as to maximize the coverage
of the trace while always staying within the time budget. Our notion of coverage
implies that the instrumentation will provide useful data over longer periods of
tracing. A time-aware instrumentation injects code, potentially extending the
execution time on all paths, while ensuring that no path takes longer than the
specified time budget.

The time budget is the worst-case execution time of a function without violat-
ing a specification. In hard real-time systems, the time budget can be the longest
execution time without missing any deadline, and depending on the longest exe-
cution time of the non-instrumented version, more or less time will be available
for the instrumentation. In systems without deadlines, the time budget can be
the current maximum execution time plus a specified non-zero maximum over-
head for tracing to the current maximum execution time.

Figure 1 shows the expected consequences of time-aware instrumentation in
a hard real-time application on the execution time profile (i.e., the probability
density function on the execution time). The x-axis specifies the execution time of



Runtime Monitoring of Time-Sensitive Systems 23

the function, while the y-axis indicates the frequency of the particular execution
time. The original uninstrumented code has some arbitrary density function. We
have chosen the Gaussian distribution for this example for illustrative purposes;
Li et al. provide details from empirical observations of distribution functions [11].
The distribution for the instrumented version differs from the original one. It is
shifted towards the right, but still never passes the deadline. This shift occurs be-
cause time-aware instrumentation adds to paths, increasing their running times,
but ensures that execution times never exceed the deadline.

Note that our execution-time model concentrates on the overhead involved in
acquiring data. A related problem is to transport the collected data from the
embedded system to an external analysis unit. While that problem admits many
solutions, one common solution is to piggyback the buffer information onto serial
or network communication.
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Deadline

Original
code
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code

Fig. 1. Execution-time distribution for a code block before and after time-aware in-
strumentation showing the shift in the expected execution time

The implementation challenge is to efficiently realize this right shift in the
execution time profile without exceeding the deadline. This requires answers to
several questions: where to instrument, what to instrument, and how to instru-
ment? We worked on both, a software- and a hardware-based solution.

3.1 Basic Overview [7, 8]

We propose the following instrumentation stages:

– Source analysis: The source-code analyzer breaks the functions into basic
blocks and generates a call graph. The analyzer also presents a list of vari-
ables which are assigned in these basic blocks and the developer can choose
a subset of these variables to trace. For hard real-time applications, the an-
alyzer annotates the call graph using execution time information obtained
through static analysis or measurements [17].
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– Naive instrumentation: Using the control-flow graph, the execution times
of the basic blocks, and the input variables for the trace, we inject code into
the selected function at all instrumentation points.

– Enforce time budget: If the naive instrumentation exceeds the time bud-
get, we use an optimization technique to compute an instrumentation which
does respect the time budget while maximizing the coverage of the instru-
mentation.

– Minimize code size: If the instrumentation is reliable enough, then we
apply semantics-preserving, decreasing transformations to reduce the size of
the instrumented code.

– Collect traces: The developer finally recompiles and executes the instru-
mented program.

Figure 2 shows the workflow that results from the steps. To instrument a func-
tion, we start by picking the function of interest. We then use the assembly
analyzer to extract the control flow graph and break the function into execution
paths. In the first phase, we use a tool to instrument all variables of interest and
then check whether the execution time on the worst-case path has changed. If
it has changed, then we will use integer linear programming to lower the cov-
erage of the instrumentation so that it meets the timing requirements. If the
coverage is too low, then we can either give up, if we cannot extend the time
budget available for the function and the instrumentation; or extend the time
budget, which will allow for higher-coverage instrumentations. If the optimized
instrumentation meets the required coverage, or if the initial naive instrumen-
tation does not extend the worst-case path, then we will proceed and use the
identified execution paths to minimize the required code size. Afterwards, we can
recompile the program and collect the desired traces from the instrumentation.

3.2 Case Study: Flash File System

We investigated an implementation of a wear-levelling FAT-like filesystem for
flash devices [4]. The code was originally written by Hein de Kock for 8051
processors. We slightly modified the original implementation so that it would
compile with sdcc; in particular, we needed to modify the header files to get
the code to compile. The implementation consists of about 3000 non-blank, non-
comment lines of C code. We ran our tool on 30 functions from the fs.c file,
dropping some uninteresting functions with mostly straight-line control-flow. Of
the 30 functions, 4 functions had more than 100 basic blocks, and fclose had
200 basic blocks. For this case study, we also assume that the time budget is the
execution time of the longest running path in the function and no interrupts.

Measurements. Figure 3 compares density functions for four procedures in the
filesystem implementation, both before and after instrumentation. The solid blue
line represents the density function of the original procedures, while the dashed
red line represents the density function for the instrumented versions. Each of
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Fig. 2. Workflow of applying time-aware instrumentation

this figures clearly shows that the original idea underlying our method of time-
aware instrumentation, as outlined in Figure 1, works well.

The procedure fsetpos shown in Figure 3(b) exhibits the biggest difference be-
tween instrumented and non-instrumented versions. The reason is that although
this procedure contains many assignments spread across different paths, most
assignments do not lie on the worst-case path. The instrumentation engine can
therefore capture assignments along these non-critical paths, raising their execu-
tion time and putting them closer to the execution time of the worst-case path.
Since the engine can capture assignments on many paths, the density function
of the execution time for the instrumented version shows a large increase on the
right part of the figure, along with a steep decrease on the left part of the figure.

The procedure rename shown in Figure 3(d) demonstrates that sometimes the
developer might want to add time to the budget for instrumenting to enable the
instrumentation of the worst-case path. Figure 4 shows that even with a small
increase in the time budget, the coverage can increase significantly. Figure 3
shows the function fputs without any additional increase in the time budget,
Figure 4(a) shows the function with an extra budget of three assignments, and
Figure 4(c) shows the function with an extra budget of 15 assignments. Fig-
ure 4(d) summarizes how instrumenting fputs improves as we add more time to
the time budget for the instrumentation.
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Fig. 3. Examples in instrumenting functions in the filesystem implementation

4 Time-Triggered Runtime Monitoring

Most monitoring approaches in runtime verification are event-triggered, where
the occurrence of every new event (e.g., change of value of a variable) invokes the
monitor. This constant invocation of the monitor leads to unpredictable overhead
and bursts of new events at run time. These defects can cause serious issues at
run time especially in embedded safety/mission-critical systems. Time-triggered
monitoring aims at tackling these drawbacks. Specifically, a time-triggered moni-
tor runs in parallel with the program and samples the program state periodically
to evaluate a set of properties.

The second part of the tutorial will focus on two methods: time-triggered
path monitoring [6] and time-triggered runtime verification [1]. In both methods,
the monitor has to execute at the speed of shortest best-case execution time
of branching statements. This ensures that the monitor does not overlook any
property violations and can reconstruct the execution path at each sampling
point. However, executing the monitor at the speed of best-case execution time
results in high involvement of the monitor in execution of the system under
inspection.

In this section, we review two techniques for sampling-based execution mon-
itoring [6] and runtime verification [1] in Subsections 4.1 and 4.2, respectively.
Both methods employ the notion of control-flow graphs (CFG) in order to reason
about program execution and its timing characteristics.
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(a) Without increased time budget. (b) With a three assignments added to
the time budget.

(c) With a 15 assignments added to the
time budget.

(d) Increase in coverage.

Fig. 4. Examples of increasing the coverage by increasing the time budget

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGP = 〈V, v0, A, w〉, where:
– V : is a set of vertices, each representing a basic block of P . Each basic block

consists of a sequence of instructions in P .
– v0: is the initial vertex with indegree 0, which represents the initial basic

block of P .
– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and

only if the execution of basic block u can immediately lead to the execution
of basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. 
�

For example, Figure 5(a) shows a simple C program with three basic blocks
labeled A, B, and C and Figure 5(b)(i) shows the resulting control-flow graph.

4.1 Sampling-Based Execution Monitoring [6]

In execution monitoring, the objective is to take periodic samples such that the
monitor can re-construct execution paths. To this end, the monitor has to execute
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A: if (x < 5) {
B: x++;

goto A

}
else {

C: x -= 10;

goto A;

}

(a) A simple C pro-
gram.

(iv)

inc(m1)

B

(iii)

C
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(b) Example of a single instrumentation to extend SP .

Fig. 5. Sampling-based monitoring

at the speed of shortest best-case execution time of branching statements. For
example, in Figure 5(b)(i) the monitor needs to execute at the speed of shortest
best-case execution time of A+B or A+C; otherwise, the re-construction of the
execution path will not be possible. Figure 5(b)(ii) shows the timing diagram for
the example. It demonstrates that, assuming all basic blocks take an execution
time of 1 time unit, after two time units, it will be impossible to decide whether
the program took the path A→ B → A or A→ C → A. Thereby the sampling
period for the program needs to be SP = 2.

To increase the sampling period and, hence, decrease the involvement of the
monitor, we introduce markers to the program. A marker is a simple variable
that can be manipulated in basic blocks to distinguish different paths and, hence,
resulting in a larger sampling period. In our example, we introduce marker m1

and instrument vertex C (see Figure 5(b)(iii)). Vertex C manipulates the value
of marker m1 by incrementing it. Thus, the monitor can re-store the basic block
id (vertex A, B, or C), the current value of m1, and a time stamp. The tim-
ing diagram in Figure 5(b)(iv) shows that introducing the marker increases the
sampling period to SP = 4, because only after five time units will the program
have two or more paths with the same number of increments of m1 and the same
basic block ids.

4.2 Sampling-Based Runtime Verification [1]

Let P be a program and Π be a logical property (e.g., in Ltl), where P is
expected to satisfy Π. Let VΠ denote the set of variables that participate in
Π. In our idea of sampling-based runtime verification, the monitor reads the
value of variables in VΠ and evaluates Π. The main challenge in this mechanism
is accurate re-construction of the state of P between two samples; i.e., if the
value of a variable in VΠ changes more than once between two samples, the
monitor may fail to detect violations of Π. For instance, in the program of
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Figure 5(a), if we are to verify the property Π ≡ −5 ≤ x ≤ 5, then the monitor
requires a fresh value of variable x without overlooking any changes. Thus the
sampling period for the program needs to be SP = 2. Notice that although
there are similarities, execution monitoring and runtime verification focus on
different issues: the former concentrates on execution paths and the latter on
state variable changes.

To increase the sampling period, we introduce history variables to the pro-
gram. For example, in Figure 5(a), we introduce history variables x1 and x2 and
add instrumentation instructions x1 := x and x2 := x to basic blocks B and
C, respectively. Thus, if the execution of each instrumentation instruction takes
1 time unit, then we can increase the sampling period to SP = 5. This is due to
the fact that only after six time units the value of x1 or x2 will be over written.
Thus, sampling period SP = 5 allows the monitor to fully re-construct the state
of the program using history variables when it takes a sample.

The above example shows how one can take advantage of memory to in-
crease the sampling period of a time-triggered monitor and, hence, impose less
overheard on the system. However, there is a tradeoff between the amount of
auxiliary memory the system uses at run time and the sampling period. Ideally,
we want to maximize the sampling period and minimize the number of history
variables. In [1], we showed that this optimization problem is NP-complete.

There are two general approaches to tackle the exponential complexity: (1)
mapping our problem to an existing NP-complete problem for which powerful
solvers exist (e.g., the Boolean satisfiability problem and integer linear program-
ming), and (2) devising efficient heuristics. The first approach (explored in [1])
involves transforming our optimization problem to integer linear programming
(ILP). We now discuss the results of our experiments using this approach. Con-
sider the Blowfish benchmark from the MiBench [9] benchmark suite. This pro-
gram has 745 lines of code, which results in a CFG of 169 vertices and 213 arcs.
We take 20 variables for monitoring. We consider the following different settings
for our experiments:

– Event-based: gdb extracts the new value of variables of interest whenever
they get changed throughout the program execution.

– Time-triggered with no history: gdb is invoked every MSP time units
to extract the value of all the variables of interest.

– Sampling-based with history: This setting incorporates our ILP opti-
mization. Thus, whenever gdb is invoked, it extracts the value of variables
of interest as well as the history.

In the event-based setting (see Figure 6), since the monitor interrupts the pro-
gram execution irregularly, unequal bursts in the overhead can be seen. Moreover,
the overhead caused by each data extraction is proportional to the data type.
Hence, the data extraction overhead varies considerably from one interruption
to another. Thus, the monitor introduces probe-effects, which in turn may cre-
ate unpredictable and even incorrect behaviour. This anomaly is, in particular,
unacceptable for real-time embedded and mission-critical systems.
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On the contrary, since the time-triggered monitor interrupts the program ex-
ecution on a regular basis, the overhead introduced by data extraction is not
subject to any bursts and, hence, remains consistent and bounded (see Figure
6). Consequently, the monitored program exhibits a predictable behaviour. Ob-
viously, the time-triggered monitor may potentially increase the overhead, which
extends the overall execution time. Nonetheless, in many commonly considered
applications, designers prefer predictability at the cost of larger overhead.

Figure 6 show the results of our experiments for sampling period of 50∗MSP .
As can be seen, increasing the sampling period results in larger overhead. This
is because the monitor needs to read a larger amount of data formed by the
history. However, the increase in overhead is considerably small (less than twice
the original overhead). Having said that, the other side of the coin is that by
increasing the sampling period, the program is subject to less monitoring inter-
rupts. This results in significant decrease in the overall execution time of the
programs. This is indeed advantageous for monitoring hard real-time programs.
Although adding history causes variability in data extraction overhead, the sys-
tem behavior is still highly predictable as compared to the event-based setting.
The above observations are valid for the case, where we increase the sampling
period by 100 ∗MSP as well (see Figures 7).

The tradeoff between execution time and the added memory consumption
when the sampling period is increased is shown in Figure 8. As can be seen, as
we increase the sampling period, the system requires negligible extra memory.
Also, one can clearly observe the proportion of increase in memory usage versus
the reduction in the execution time. In other words, by employing small amount
of auxiliary memory, one can achieve considerable speedups.
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Although the ILP-based approach always finds the optimal solution to our
problem and one can use state-of-the-art ILP-solvers, it cannot deal with huge
programs due to the worst-case exponential complexity. For such cases alterna-
tive approaches that find near-optimal solutions are proposed in [15].

5 Open Problems

We believe our work on instrumentation and runtime verification of real-time
systems has paved the way for numerous future research directions. Interesting
open problems include the following:
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– Multicore monitors. Since in time-triggered runtime verification, the
monitor reads a sequence of events in a batch, it can dispatch the events to
parallel monitors working on different cores. In particular, our system setting
is such that the CPU runs the program under inspection and the GPU runs
monitoring parallel tasks. This setting encounters challenging problems, as
buffered events may be causally related, making evaluations of temporal
properties a difficult task.

– Monitoring distributed real-time systems. Implementing distributed
real-time systems has always been a challenge for obvious reasons such as
clock drifts. Deploying time-triggered monitors involves several research chal-
lenges such as developing techniques for precise state reconstruction in a
distributed fashion.

– Overhead minimization. As discussed in Section 4, although our ap-
proach results in a obtaining a predictable, its overall overhead is higher than
event-triggered approaches. We need breakthroughs to reduce the overhead
of time-triggered monitors. One approach is to develop efficient heuristics
that find nearly optimal solutions to the optimization problem proposed
in [1].

– Applicability to broader classes of systems. The current work makes
some assumptions that hold only in specific classes of systems (e.g., MISRA C
compliant programs). A challenging problem is to find ways how to eliminate
some of the assumptions that tie the approach to particular classes and thus
make the approach applicable for new domains. This also applies when stay-
ing within the domain of real-time systems, as for example mixed-criticality
systems offer interesting applications that need runtime monitoring.
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Abstract. In this paper and its accompanying tutorial, we discuss the
topic of teaching runtime verification. The aim of the tutorial is twofold.
On the one hand, a condensed version of a course currently given by the
author will be given within the available tutorial time, giving an idea
about the topics of the course. On the other hand, the experience gained
by giving the course should also be presented and discussed with the
audience. The overall goal is to simplify the work of colleagues developing
standard and well accepted courses in the field of runtime verification.

1 Introduction

Runtime Verification (RV) has become a mature field within the last decades.
It aims at checking correctness properties based on the actual execution of a
software or hardware system.

Research on runtime verification is traditionally presented at formal meth-
ods conferences like CAV (computer aided verification) or TACAS (tools and
algorithms for the analysis of systems), or, software engineering conferences like
ICSE or ASE. Starting in 2001, the RV community has formed its own scien-
tific event, the runtime verification workshop, which has in the meantime been
upgraded to the runtime verification conference. There is a community forming
webpage that is available under the address www.runtime-verification.org

and first definitions and explanations entered their way into the online dictio-
nary wikipedia. Last but not least, several courses on runtime verification are
given to PhD, master, or even bachelor students at several universities.

So far, however, no dedicated text book on the topic of runtime verification
is available and actual courses on runtime verification are still to be considered
preliminary as the field of runtime verification is still undergoing rapid changes
and no kernel material of the field has been identified, or, at least has not been
fixed by the community.

In this paper and its accompanying tutorial, we discuss the topic of teaching
runtime verification. It is based on the author’s course given at the University
of Lübeck. The course took place once a week, each time 1.5 hours, and in total
about 14 times. The aim of this paper and its accompanying tutorial is twofold.
On the one hand, a condensed version of the course should be shown, giving an
idea about the outline and topics of the course. On the other hand, the experience
gained by giving the course are also presented and discussed with the audience.
The overall goal of the tutorial is to simplify the work of colleagues developing
standard and well accepted courses in the field of runtime verification.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 34–48, 2012.
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Content of the RV course

1. The tutorial/course starts with a short discussion on typical areas that are
preferably addressed at runtime. It is motivated why static verification tech-
niques must often be encompassed by runtime verification techniques.

2. Runtime verification is defined and a taxonomy for runtime verification is
developed. The taxonomy will be the basis for getting a systematic picture on
the field of runtime verification and may also be used to organize the different
contributions by the runtime verification community. Runtime verification is
identified as a research discipline aiming at synthesizing monitors from high
level specifications, integrating them into existing execution frameworks, and
using the results of monitors for steering or guiding a program. It may work
on finite, finite but continuously expanding, or on prefixes of infinite traces.

3. In the subsequent part of the tutorial/course synthesis techniques for Linear
Temporal Logic (LTL) will be presented. Both, approaches based on rewrit-
ing the formula to check and approaches based on translating the formula at
hand into an automaton will be briefly described. Moreover the conceptual
difference between these two fundamental approaches will be explained.

4. The second part of the tutorial deals with integrating monitors into running
systems and with techniques for steering the executing system based on the
results of monitors.

5. In the third part we will list existing runtime verification frame works, which
will eventually be classified with respect to the initially developed taxonomy.

Intended Audience. The tutorial is especially intended for current or future
lecturers in the field of runtime verification. At the same time, as the main ideas
of the underlying course are taught, it is of interest to advanced master students
and PhD students for getting an introduction to the field of runtime verification.
Finally, researchers active in formal methods who want to get comprehensive
picture on the field of runtime verification may benefit from the tutorial as well.

2 The Virtue of Runtime Verification

The course starts with a short discussion on typical areas that are preferably ad-
dressed at runtime. It is motivated why static verification must often be encom-
passed by runtime verification techniques. We do so by listing certain application
domains, highlighting the distinguishing features of runtime verification:

– The verification verdict, as obtained by model checking or theorem proving,
is often referring to a model of the real system under analysis, since applying
these techniques directly to the real implementation would be intractable.
The model typically reflects most important aspects of the corresponding im-
plementation, and checking the model for correctness gives useful insights to
the implementation. Nevertheless, the implementation might behave slightly
different than predicted by the model. Runtime verification may then be
used to easily check the actual execution of the system, to make sure that
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the implementation really meets its correctness properties. Thus, runtime
verification may act as a partner to theorem proving and model checking.

– Often, some information is available only at runtime or is conveniently
checked at runtime. For example, whenever library code with no accompany-
ing source code is part of the system to build, only a vague description of the
behavior of the code might be available. In such cases, runtime verification
is an alternative to theorem proving and model checking.

– The behavior of an application may depend heavily on the environment of
the target system, but a precise description of this environment might not
exist. Then it is not possible to only test the system in an adequate manner.
Moreover, formal correctness proofs by model checking or theorem prov-
ing may only be achievable by taking certain assumptions on the behavior of
the environment—which should be checked at runtime. In this scenario, run-
time verification outperforms classical testing and adds on formal correctness
proofs by model checking and theorem proving.

– In the case of systems where security is important or in the case of safety-
critical systems, it is useful also to monitor behavior or properties that have
been statically proved or tested, mainly to have a double check that ev-
erything goes well: Here, runtime verification acts as a partner of theorem
proving, model checking, and testing.

3 Runtime Verification—Definition and Taxonomy

3.1 Towards a Definition

A software failure is the deviation between the observed behavior and the
required behavior of the software system. A fault is defined as the deviation
between the current behavior and the expected behavior, which is typically iden-
tified by a deviation of the current and the expected state of the system. A fault
might lead to a failure, but not necessarily. An error, on the other hand, is a
mistake made by a human that results in a fault and possibly in a failure [1].

According to IEEE [2], verification comprises all techniques suitable for show-
ing that a system satisfies its specification. Traditional verification techniques
comprise theorem proving [3], model checking [4], and testing [5,6]. A relatively
new direction of verification is runtime verification,1 which manifested itself
within the previous years as a lightweight verification technique:

Definition 1 (Runtime Verification). Runtime verification is the discipline
of computer science that deals with the study, development, and application of
those verification techniques that allow checking whether a run of a system under
scrutiny (SUS) satisfies or violates a given correctness property. Its distinguish-
ing research effort lies in synthesizing monitors from high level specifications.

1 http://www.runtime-verification.org

http://www.runtime-verification.org
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Monitors. A run of a system is understood as a possibly infinite sequence of
the system’s states, which are formed by current variable assignments, or as the
sequence of (input/output) actions a system is emitting or performing. Formally,
a run may be considered as a possibly infinite word or trace. An execution of
a system is a finite prefix of a run and, formally, it is a finite trace. When
running a program, we can only observe executions, which, however, restrict
the corresponding evolving run as being their prefix. While, in verification, we
are interested in the question whether a run, and more generally, all runs of a
system adhere to given correctness properties, executions are the primary object
analyzed in the setting of RV.

Checking whether an execution meets a correctness property is typically per-
formed using a monitor . In its simplest form, a monitor decides whether the
current execution satisfies a given correctness property by outputting either
yes/true or no/false. Formally, when [[ϕ]] denotes the set of valid executions
given by property ϕ, runtime verification boils down to checking whether the
execution w is an element of [[ϕ]]. Thus, in its mathematical essence, runtime
verification answers the word problem, i. e. the problem whether a given word is
included in some language. However, to cover richer approaches to RV, we define
the notion of monitors in a slightly more general form:

Definition 2 (Monitor). A monitor is a device that reads a finite trace and
yields a certain verdict.

Here, a verdict is typically a truth value from some truth domain. A truth domain
is a lattice with a unique top element true and a unique bottom element false .
This definition covers the standard two-valued truth domain B = {true, false}
but also fits for monitors yielding a probability in [0, 1] with which a given cor-
rectness property is satisfied (see Section 4.1 for a precise definition). Sometimes,
one might be even more liberal and consider also verdicts that are not elements
of a truth domain.

3.2 Taxonomy

A taxonomy may be used to get a systematic account to the field of runtime
verification and to organize the different contributions by the RV community
into a global picture. Figure 1 shows a taxonomy that is briefly described in the
following.

First, runtime verification may work on (i) finite (terminated), (ii) finite but
continuously expanding, or (iii) on prefixes of infinite traces. For the two latter
cases, a monitor should adhere to the two maxims impartiality and anticipation.
Impartiality requires that a finite trace is not evaluated to true or, respectively
false, if there still exists an (infinite) continuation leading to another verdict. An-
ticipation requires that once every (infinite) continuation of a finite trace leads to
the same verdict, then the finite trace evaluates to this very same verdict. Intu-
itively, the first maxim postulates that a monitor only decides for false—meaning
that a misbehavior has been observed—or true—meaning that the current be-
havior fulfills the correctness property, regardless of how it continues—only if this
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Fig. 1. Taxonomy of runtime verification

is indeed the case. Clearly, this maxim requires to have at least three different
truth values: true, false , and inconclusive, but of course more than three truth
values might give a more precise assessment of correctness. The second maxim
requires a monitor to indeed report true or false , if the correctness property is
indeed violated or satisfied. In simple words, impartiality and anticipation, guar-
antee that the semantics is neither premature nor overcautious in its evaluations.

RV approaches may differ in what part of a run is actually monitored. For
example, a system may be analyzed with respect to its input/output behavior ,
one of its state sequences , or wrt. a sequence of events related to the system’s
execution.

A monitor may on one hand be used to check the current execution of a
system. In this setting, which is termed online monitoring, the monitor should
be designed to consider executions in an incremental fashion. On the other hand,
a monitor may work on a (finite set of) recorded execution(s), in which case we
speak of offline monitoring.

Synthesized monitoring code may be interweaved with the program to check,
i.e. it may be inlined , or, it may be used to externally synthesize a monitoring
device, i.e., it may be outlined. Clearly, inlined monitors act online.



Teaching Runtime Verification 39

The monitor typically interferes with the system to observe, as it runs, for
example, on the same CPU as the SUS. However, using additional computation
resources, monitoring might not change the behavior of the SUS. We distinguish
these two cases using the terms invasive and non-invasive monitoring.

While, to our understanding, runtime verification is mainly concerned with the
synthesis of efficiently operating monitors, RV frameworks may be distinguished
by whether the resulting monitor is just observing the program’s execution and
reporting failures, i.e., it is passive, or, whether the monitor’s verdict may be
used to actually steer or heal the system’s execution, i.e., it is active.

Runtime verification may be used for different applications. Most often, it
is used to check safety conditions . Similarly, it may be used to ensure security
conditions . However, it is equally suited to simply collect information of the
system’s execution, or, for performance evaluation purposes.

4 Runtime Verification for LTL

As considered the heart of runtime verification, the main focus of an RV course
lies on synthesis procedures yielding monitors from high-level specifications. We
outline several monitor synthesis procedures for Linear-time Temporal Logic
(LTL, [7]). In general, two main approaches can be found for synthesizing mon-
itoring code: Monitors may either be given in terms of an automaton, which is
precomputed from a given correctness specification. Alternatively, the correct-
ness specification may be taken directly and rewritten in a tableau-like fashion
when monitoring the SUS. We give examples for both approaches.

4.1 Truth Domains

We consider the traditional two-valued semantics with truth values true, denoted
with �, and false, denoted with ⊥, next to truth values giving more informa-
tion to which degree a formula is satisfied or not. Since truth values should be
combinable in terms of Boolean operations expressed by the connectives of the
underlying logic, these truth values should form a certain lattice.

A lattice is a partially ordered set (L,�) where for each x, y ∈ L, there exists
(i) a unique greatest lower bound (glb), which is called the meet of x and y,
and is denoted with x 
 y, and (ii) a unique least upper bound (lub), which is
called the join of x and y, and is denoted with x � y. A lattice is called finite
iff L is finite. Every finite lattice has a well-defined unique least element, called
bottom, denoted with ⊥, and analogously a greatest element, called top, denoted
with �. A lattice is distributive, iff x 
 (y � z) = (x 
 y) � (x 
 z), and, dually,
x � (y 
 z) = (x � y) 
 (x � z). In a de Morgan lattice, every element x has a
unique dual element x, such that x = x and x � y implies y � x. As the common
denominator of the semantics for the subsequently defined logics is a finite de
Morgan lattice, we define:

Definition 3 (Truth domain). We call L a truth domain, if it is a finite de
Morgan lattice.
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4.2 LTL—Syntax and Common Semantics

As a starting point for all subsequently defined logics, we first recall linear tem-
poral logic (LTL).

For the remainder of this paper, let AP be a finite and non-empty set of
atomic propositions and Σ = 2AP a finite alphabet . We write ai for any single
element of Σ, i.e., ai is a possibly empty subset of propositions taken from AP.

Finite traces (which we call interchangeably words) over Σ are elements of
Σ∗, usually denoted with u, u′, u1, u2, . . . The empty trace is denoted with ε.
Infinite traces are elements of Σω, usually denoted with w,w′, w1, w2, . . . For
some infinite trace w = a0a1 . . . , we denote with wi the suffix aiai+1 . . . In
case of a finite trace u = a0a1 . . . an−1, u

i denotes the suffix aiai+1 . . . an−1 for
0 ≤ i < n and the empty string ε for n ≤ i.

The set of LTL formulae is defined using true, the atomic propositions p ∈ AP,
disjunction, next X , and until U , as positive operators, together with negation
¬. We moreover add dual operators, namely false, ¬p, weak next X̄ , and release
R, respectively:

Definition 4 (Syntax of LTL formulae). Let p be an atomic proposition
from a finite set of atomic propositions AP. The set of LTL formulae, denoted
with LTL, is inductively defined by the following grammar:

ϕ ::= true | p | ϕ ∨ ϕ | ϕ U ϕ | Xϕ
ϕ ::= false | ¬p | ϕ ∧ ϕ | ϕ R ϕ | X̄ϕ
ϕ ::= ¬ϕ

In a corresponding course, typically further operators are introduced as abbre-
viations like finally F and globally G etc.

In the sequel, we introduce several semantic functions, both classical versions
for finite and infinite traces and versions adapted to suit the needs in runtime
verification. To this end, we consider linear temporal logics L with a syntax as in
Definition 4, together with a semantic function [ |= ]L : Σω/∗×LTL→ BL that
yields an element of the truth domain BL, given an infinite or finite trace and an
LTL formula. The logics considered in the following have a common part, but
differ in certain aspects. The common part of the semantics is shown in Figure 2.

For two formulae ϕ, ψ ∈ LTL, we say that ϕ is equivalent to ψ, denoted with
ϕ ≡L ψ, iff for all w ∈ Σω/∗, we have [w |= ϕ]L = [w |= ψ]L.

4.3 LTL on Finite Traces

Let us first turn our attention to linear temporal logics over finite traces. We
start by recalling a finite version of LTL on finite traces described by Manna
and Pnueli [8], here called FLTL.

When interpreting LTL formulae over finite traces, the question arises, how
to understand Xϕ when a word consists of a single letter, since then, no next
position exists on which one is supposed to consider ϕ. The classical way to deal
with this situation, as apparent for example in Kamp’s work [9] is to understand
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Boolean constants

[w |= true]L = �
[w |= false]L = ⊥

Boolean combinations

[w |= ¬ϕ]L = [w |= ϕ]L
[w |= ϕ ∨ ψ]L = [w |= ϕ]L � [w |= ψ]L
[w |= ϕ ∧ ψ]L = [w |= ϕ]L 	 [w |= ψ]L

atomic propositions

[w |= p]ω =

{
� if p ∈ a0

⊥ if p /∈ a0

[w |= ¬p]ω =

{
� if p /∈ a0

⊥ if p ∈ a0

until/release

[w |= ϕ U ψ]L =

⎧⎪⎨
⎪⎩
� there is a k, 0 ≤ k < |w| : [wk |= ψ]L = � and

for all l with 0 ≤ l < k : [wl |= ϕ] = �
⊥ else

[w |= ϕ R ψ]L =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
� for all k, 0 ≤ k < |w| : [wk |= ψ]L = � or

there is a k, 0 ≤ k < |w| : [wk |= ϕ]L = � and

for all l with 0 ≤ l ≤ k : [wl |= ψ] = �
⊥ else

Fig. 2. Semantics of LTL formulae over a finite or infinite trace w = a0a1 . . . ∈ Σ∗/ω

X as a strong next operator, which is false if no further position exists. Manna
and Pnueli suggest in [8] to enrich the standard framework by adding a dual
operator, the weak next X̄ , which allows to smoothly translate formulae into
negation normal form. In other words, the strong X operator is used to express
with Xϕ that a next state must exist and that this next state has to satisfy
property ϕ. In contrast, the weak X̄ operator in X̄ϕ says that if there is a next
state, then this next state has to satisfy the property ϕ. We call the resulting
logic FLTL defined over the set of LTL formulae (Definition 4) FLTL.

Definition 5 (Semantics of FLTL [8]). Let u = a0 . . . an−1 ∈ Σ∗ denote
a finite trace of length n, with u �= ε. The truth value of an FLTL formula ϕ
wrt. u, denoted with [u |= ϕ]F , is an element of B2 and is inductively defined as
follows: Boolean constants, Boolean combinations, and atomic propositions are
defined as for LTL (see Figure 2, taking u instead of w). (Weak) next are defined
as shown in Figure 3.

Let us first record that the semantics of FLTL is not given for the empty
word. Moreover, note that a single letter does satisfy true but does not satisfy
Xtrue.Also, [u |= ¬Xϕ]F = [u |= X̄¬ϕ]F follows from LTL whenever |u| > 1
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(weak) next

[u |= Xϕ]F =

{
[u1 |= ϕ]F if u1 �= ε

⊥ otherwise
[u |= X̄ϕ]F =

{
[u1 |= ϕ]F if u1 �= ε

� otherwise

Fig. 3. Semantics of FLTL formulae over a trace u = a0 . . . an−1 ∈ Σ∗

and from inspecting the semantics in Figure 3 when |u| = 1. Thus, every FLTL
formula can be transformed into an equivalent formula in negation normal form.

Monitors for LTL on finite traces The simple answer here is to say that for
a finite word, the semantics of an LTL formula can immediately be computed
from the semantics definition. However, a slightly more clever way is presented
in the next subsection.

4.4 LTL on Finite But Expanding Traces

Let us now consider an LTL semantics adapted towards monitoring finite but ex-
panding traces. Especially when monitoring online, a run of SUS may be given
letter-by-letter, say, state-by-state, event-by-event etc. A corresponding moni-
toring procedure should ideally be able to process such an input string letter-
by-letter and should be impartial wrt. the forthcoming letters to receive.

The idea, which is already used in [10], is to use a four-valued semantics, con-
sisting of the truth values true (�), false (⊥), possibly true (�p), and possibly false
(⊥p). The latter two values are used to signal the truth value of the input word
wrt. the two valued semantics provided the word will terminate now. More specif-
ically, the four-valued semantics differs from the two-valued semantics shown in
the previous subsection only be yielding possibly false rather than false at the end
of a word for the strong next operator and possibly true rather than true for the
weak next operator. We sometimes call the resulting logic FLTL4.

Definition 6 (Semantics of FLTL4). Let u = a0 . . . an−1 ∈ Σ∗ denote a
finite trace of length n, with u �= ε. The truth value of an FLTL4 formula ϕ
wrt. u, denoted with [u |= ϕ]4, is an element of B4 and is inductively defined as
follows: Boolean constants, Boolean combinations, and atomic propositions are
defined as for LTL (see Figure 2, taking u instead of w). (Weak) next are defined
as shown in Figure 4.

Monitoring expanding traces. While for a given finite trace, the semantics of
an LTL formula could be computed according to the semantics definition, it is
important for practical applications, especially in online verification, to compute
the semantics in an incremental, more precisely, in a left-to-right fashion for the
given trace.
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(weak) next

[u |= Xϕ]4 =

{
[u1 |= ϕ]4 if u1 �= ε

⊥p otherwise
[u |= X̄ϕ]4 =

{
[u1 |= ϕ]4 if u1 �= ε

�p otherwise

Fig. 4. Semantics of FLTL4 formulae over a trace u = a0 . . . an−1 ∈ Σ∗

To do so, we provide a rewriting based approach (see also [11]). Thanks to
the equivalences ϕ U ψ ≡ ψ ∨ (ϕ∧X (ϕ U ψ)) and ϕ R ψ ≡ ψ∧ (ϕ∨ X̄ (ϕ R ψ))
for until and release, we may always assume that the given formula is a boolean
combination of atomic propositions and next-state formulas. Now, given a single,
presumably final letter of a trace, the atomic propositions may be evaluated as
to whether the letter satisfies the proposition. Each (strong) next-formula, i.e., a
formula starting with a strong next, evaluates to possibly false, while each weak-
next formula evaluates to possibly true. The truth value of the formula is then
the boolean combination of the respective truth values, reading ∧ as 
, ∨ as �,
and ¬ as .̄ Likewise, the formula to check may be rewritten towards a formula to
be checked when the next letter is available. An atomic proposition is evaluated
as before yielding the formulas true or false. A formula of the form Xϕ or X̄ϕ is
rewritten to ϕ. In Algorithm 1, a corresponding function is described in pseudo
code, yielding for the formula to check and a single letter a tuple consisting of
the current truth value in the first component and the formula to check with the
next letter in the second component.

The same algorithm may also be used for evaluating the (two-valued) seman-
tics of an FLTL formula in a left-to-right fashion, by mapping possibly true to
true and possibly false to false, when reaching the end of the word.

4.5 LTL on Infinitive Traces

LTL formulae over infinite traces are interpreted as usual over the two valued
truth domain B2.

Definition 7 (Semantics of LTL [7]). The semantics of LTL formulae over
infinite traces w = a0a1 . . . ∈ Σω is given by the function [ |= ]ω : Σω×LTL→
B2, which is defined inductively as shown in Figures 2,5.

Inspecting the semantics, we observe that there is no difference of X and X̄ in
LTL over infinite traces. Recall that X̄ acts differently when finite words are
considered.

We call w ∈ Σω a model of ϕ iff [w |= ϕ] = �. For every LTL formula ϕ,
its set of models, denoted with L(ϕ), is a regular set of infinite traces which is
accepted by a corresponding Büchi automaton [12,13].
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Algorithm 1. Evaluating FLTL4 for each subsequent letter

evalFLTL4 true a = (�,�)

evalFLTL4 false a = (⊥,⊥)

evalFLTL4 p a = ((p in a),(p in a))

evalFLTL4 ¬ϕ a = let (valPhi ,phiRew) = evalFLTL4 ϕ a

in (valPhi,¬phiRew)
evalFLTL4 ϕ ∨ ψ a = let

(valPhi ,phiRew) = evalFLTL4 ϕ a

(valPsi ,psiRew) = evalFLTL4 ψ a

in (valPhi � valPsi ,phiRew ∨ psiRew)

evalFLTL4 ϕ ∧ ψ a = let

(valPhi ,phiRew) = evalFLTL4 ϕ a

(valPsi ,psiRew) = evalFLTL4 ψ a

in (valPhi 	 valPsi ,phiRew ∧ psiRew)

evalFLTL4 ϕ U ψ a = evalFLTL4 ψ ∨ (ϕ ∧X (ϕ U ψ)) a

evalFLTL4 ϕ R ψ a = evalFLTL4 ψ ∧ (ϕ ∨ X̄ (ϕ R ψ)) a

evalFLTL4 Xϕ a = (⊥p,ϕ)
evalFLTL4 X̄ϕ a = (�p,ϕ)

(weak) next

[w |= Xϕ]ω = [w1 |= ϕ]ω
[w |= X̄ϕ]ω = [w1 |= ϕ]ω

Fig. 5. Semantics of LTL formulae over an infinite traces w = a0a1 . . . ∈ Σω

LTL3 In[14], we proposed LTL3 as an LTL logic with a semantics for finite
traces, which follows the idea that a finite trace is a prefix of a so-far unknown
infinite trace. More specifically, LTL3 uses the standard syntax of LTL as defined
in Definition 4 but employs a semantics function [u |= ϕ]3 which evaluates each
formula ϕ and each finite trace u of length n to one of the truth values in B3 =
{�,⊥, ?}. B3 = {�,⊥, ?} is defined as a de Morgan lattice with ⊥ � ? � �, and
with ⊥ and � being complementary to each other while ? being complementary
to itself.

The idea of the semantics for LTL3 is as follows: If every infinite trace with
prefix u evaluates to the same truth value � or ⊥, then [u |= ϕ]3 also evaluates
to this truth value. Otherwise [u |= ϕ]3 evaluates to ?, i. e., we have [u |= ϕ]3 =?
if different continuations of u yield different truth values. This leads to the
following definition:

Definition 8 (Semantics of LTL3). Let u = a0 . . . an−1 ∈ Σ∗ denote a finite
trace of length n. The truth value of a LTL3 formula ϕ wrt. u, denoted with
[u |= ϕ]3, is an element of B3 and defined as follows:
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Fig. 6. The procedure for getting [u |= ϕ] for a given ϕ

[u |= ϕ]3 =

⎧⎪⎨⎪⎩
� if ∀w ∈ Σω : [uw |= ϕ]ω = �
⊥ if ∀w ∈ Σω : [uw |= ϕ]ω = ⊥
? otherwise.

Monitoring of LTL3. We briefly sketch the monitor synthesis procedure devel-
oped in [15]. The synthesis procedure follows the automata-based approach in
synthesizing a Moore machine as a monitor for a given correctness property.
While, in general, also a Moore machine could have been generated for FLTL
as well, we refrained to do so for two reasons: First, the presented procedure for
FLTL works on-the-fly and thus might be more efficient in practice. Second, both
a rewriting approach and an automaton-based approach should be presented in
the underlying course.

For LTL3, an automaton approach is more adequate due to the fact that
LTL3 is anticipatory. Anticipation typically requires rewrite steps followed by a
further analysis easily done using automata theory. See [16] for a more elaborate
discussion of these issues in the context of linear temporal logic.

The synthesis procedure for LTL3 first translates a given formula into the
Büchi automaton accepting all its models. Reading a finite prefix of a run, us-
ing the corresponding automaton, false can be derived for the given formula,
whenever there is no accepting continuation in the respective Büchi automa-
ton. Likewise, true can be derived, when, for a given finite word, the automaton
accepting all counter examples reaches only states the have no accepting con-
tinuation anymore. Using this idea, the corresponding Büchi automata can be
translated into NFA, then DFA, and, finally into a (minimal) FSM (Moore ma-
chine) as the (unique) monitor for a given LTL3 formula (see Figure 6).

While the sketched procedure should be improved in practical implementa-
tions, the chosen approach manifests itself beneficial for teaching, as a simple,
clear, roadmap is followed.

4.6 Extensions

The studied versions of LTL were chosen to show certain aspects of monitor-
ing executions. For practical applications, several extensions such as real-time
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aspects or monitoring computations, which requires a meaningful treatment of
data values, is essential. Due to time constraints, these topics have not been
adressed in the underlying course, though research results and corresponding
RV frameworks are available (see also Section 6).

5 Monitors and the Behavior to Check

This part of the tutorial deals with the problem of integrating monitors into
SUS and with techniques to steer the executing system by means of the results
of monitors. This aspect of runtime verification was discussed only briefly in the
corresponding runtime verification course. The main goal was to give a general
overview of approaches for connecting monitors to existing systems.

Monitoring systems. Generally, we distinguish using instrumentation, using log-
ging APIs , using trace tools , or dedicated tracing hardware. Popular in runtime
verification is the use of code instrumentation, for which either the source code,
the (virtual) byte code, or the binary code of an application is enriched by the
synthesized monitoring code. Code instrumentation allows a tight integration
with the running system and is especially useful when monitoring online. How-
ever, code instrumentation affects the runtime of the original system. It is thus
not recommend whenever the underlying systems has been verified to meet cer-
tain safety critical timing behavior. Using standard logging frameworks, like
log4j, allows to decompose the issue of logging information of the running sys-
tem from the issue of analyzing the logged information with respect to failures.
In principal, the logged information may be stored and analyzed later, or, using
additional computing ressources online, thus not affecting system’s execution.
Logging APIs, however, require the source code of the SUS. Tracing tools like
Unix’ strace run the system under scrutiny in a dedicated fashion an provide
logging information. Again, the timing behavior of the system may be influ-
enced. The advantage of such tracing tools lies in their general applicability, the
disadvantage in their restricted logging information. Finally, dedicated tracing
hardware may be used to monitor a system non-invasively [17].

Steering systems. Whenever a monitor reports a failure, one might be interested
in responding to the failure, perhaps even healing the failure. Clearly, this goal is
only meaningful in an online monitoring approach. We distinguish the following
forms of responding to failures: informing, where only further information is
presented to a tester or user of a system, throwing exceptions for systems that
can deal with exceptions, or executing code, which may be user provided or
synthesized automatically. The latter approach is well supported by frameworks
using code instrumentation as healing code may easily be provided together with
the monitoring property.

Runtime verification frameworks may differ in their understanding of failures.
Most frameworks identify failure and fault. Then, whenever a monitor reports
a failure and thus a fault, healing code may be executed to deal with the fault.
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When distinguishing between failures and faults, it may be beneficial to start a
diagnosis identifying a fault, whenever a monitor reports a failure (see [18]).

6 Existing Frameworks

In the third part we will visit existing runtime verification frame works and map
the approaches to the initially developed taxonomy. Due to the limited space
of the proceedings, we only list the considered frameworks in an alphabetical
order: (i) Eagle [19] (ii) J-LO [20] (iii) Larva [21] (iv) LogScope [22] (v) LoLa
[23] (vi) MAC [24] (vii) MOP [25] (viii) RulerR [26] (ix) Temporal Rover [10]
(x) TraceContract [27] (xi) Tracesmatches [28] .

Acknowledgement. We thank Klaus Havelund for many fruitful discussions
on the topic of this paper.
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Abstract. A major challenge in hardware verification is managing the
state explosion problem in pre-silicon verification. This is seen in the high
cost and low coverage of simulation, and capacity limitations of formal
verification. Runtime verification, through on-the-fly property checking
of the current trace and a low-cost error recovery mechanism, provides
us an alternative attack in dealing with this problem. There are several
interesting examples of runtime verification that have been proposed in
recent years in the computer architecture community. These have also
been motivated by the resiliency needs of future technology generations
in the face of dynamic errors due to device failures. I will first highlight
the key ideas in hardware runtime verification through specific examples
from the uni-processor and multi-processor contexts. Next, I will discuss
the challenges in implementing some of these solutions. Finally I will
discuss how the strengths of runtime verification and model checking
can be used in a complementary fashion for hardware.

1 Runtime Verification in the Hardware Context

1.1 Increasing Hardware Verification Costs

Traditionally, the design of hardware has had stronger requirements for correct-
ness than typical software. This has largely to do with the cost of fixing errors –
hardware errors detected in the field generally cannot be fixed by downloading
a patch. Serious errors may even lead to a product recall which can be very
expensive. The notorious Intel FDIV bug is reported to have cost about USD
450M in recall costs. However, not all errors lead to a recall; processor companies
regularly publish bug errata lists informing the users of known bugs. Generally
these errors do not result in incorrect computation results. They tend to be
performance bugs that lead to slower than expected speed for certain scenarios,
but deliver the correct results, or bugs that result in a system crash/hang in
extremely rare scenarios. In either case, there is no silent corruption of the ex-
pected results, and the user is expected to live with these bugs in the product.
This is tolerated as these bugs are expected to be extremely rare and not notice-
able by the typical user. Thus, overall the obligation to deliver correct working
hardware is very high, leading to high hardware verification costs. This covers
pre-silicon verification using both simulation and formal verification techniques,
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as well as post-silicon validation which continues verification through the ini-
tial silicon prototypes which can be debugged at speed, thus enabling the use
of long complex traces which cannot be run in reasonable time on the design
models (built in software) that are used in pre-silicon simulation (e.g. Verilog
models) or formal verification (e.g. SMV models used in model checking). How-
ever, with increasing hardware complexity, these verification costs are becoming
prohibitive, and even limiting our ability to provide greater design functionality.
It is not uncommon now for certain hardware blocks to be not turned on in the
final product due to insufficient confidence in their correct functioning.

1.2 The Design Complexity Gap

Intuitively, this gap between what we can design and what we can verify can
be understood in terms of the growth in design complexity. While Moores Law
provides us with an exponential growth rate in the number of circuit components;
the state space, which serves as a proxy for design complexity, grows doubly
exponentially. Moores Law also comes to our help by exponentially increasing
the computing power available for verification; however, this is insufficient to
keep pace with the growth in design complexity. This intuitive argument is also
consistent with chip design data released by the Electronic Design Automation
Consortium (EDAC). The fraction of designs that work correctly on first silicon
has been dropping over the years, and since 2007 there has been a small fraction
of designs that has required more than three silicon spins. A large fraction of
the failures are attributed to logical errors (>80%) and this fraction has been
increasing over the years. While significant breakthroughs have happened in
formal verification techniques over the years, these have not been able to keep
pace with increasing hardware complexity. Formal verification has dealt with
this increasing complexity through significant design abstraction, but this has
not seen significant adoption due to limited automation. Dynamic (simulation
based) verification continues to be the workhorse, but is challenged by limited
and difficult to characterize design coverage.

In the context of the growing complexity gap, runtime verification of hardware
offers a useful value proposition. At any time, the verification obligation is limited
to the current trace, and not all possible traces/the entire state space. This
makes the verification much more tractable, and if all the verification tasks can
be covered through runtime verification – it is potentially complete.

1.3 Technology Driven Dynamic Errors

Besides the complexity gap, there is a further technology push for considering
runtime verification for hardware. This has to do with the smaller device sizes
in future technology generations. Smaller devices are much more vulnerable to
failures in the field due to a variety of causes [1]. The first of these deals with
soft-errors that are transient faults that may result from cosmic rays and al-
pha particle hits. The second deals with increasing parametric variability where
small absolute variations in manufacturing create large relative variations in de-
vice parameters and consequently device behavior. This can get amplified with
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environment (e.g. temperature) changes. These failures are dynamic, and thus
require runtime support. Runtime verification has the potential to address both
logical faults as well as device failures through a unified approach that recognizes
the consequent error of the fault through a checking mechanism and then provides
an appropriate recovery mechanism to recover from this error.

1.4 Computer Architecture Solutions for Runtime Verification

In response to both the design complexity and technology pushes, the last decade
or so has seen several interesting projects that offer computer architectures that
integrate runtime verification as an essential architectural component. This cov-
ers both uni-processor as well as multi-processor issues. This paper reviews the
major contributions in this area, and draws out the key issues illustrated by
these case studies as well as the challenges still faced in the widespread adoption
of these solutions. The primary issues that each of these case studies deals with
are:

– What to check.
– How to recover in case of error.
– How to keep the checking and recovery overhead low.

The last of these is especially important, as hardware is very cost-sensitive and
any additional checking and recovery logic may be unacceptable if the cost over-
head is too high. Most of the research efforts described in this paper strive to
keep the logic, power and performance overhead to under 5%. There is added
rationale for this low cost imperative. With Moores Law the cost per transistor
decreases with each generation. Conversely runtime verification support has an
amortized cost per transistor. This latter addition cannot outweigh the reduc-
tion in transistor cost, or the benefits of scaling under Moores Law will be lost.
Keeping overheads low demands innovative solutions, since simple replication
is unacceptable under these stringent budgets. Thus, the architectural solutions
described here have a system-level, rather than a component-level, approach.

This paper is organized as follows. Sections 2 and 3 focus on case studies that
deal with the checker and recovery logic for the uni-processor and multi-processor
case respectively. Section 4 focuses solutions that are primary concerned with
backward recovery through check-pointing and rollback. Section 5 considers so-
lutions for forward recovery through bug-patching. Section 6 makes the connec-
tions with formal verification and presents some insights on the complementary
roles of runtime checking and formal verification for hardware. Finally Section
7 provides some summary observations.

2 Checkers and Recovery in Uni-processors

2.1 The DIVA Processor

The DIVA processor architecture [2] was pioneering in its use of runtime verifica-
tion integrated as a critical component of the architecture. In this architecture,
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the main or core processor is augmented with a checker processor. This checker
processor is responsible for checking the computation being done by the core
processor, and in case of an error being detected for forward recovery by pro-
viding the correct results and restarting the core processor. In contrast to the
complex core processor, the checker processor is a simple in-order processor.
Thus, its overhead is a small fraction (<6%) of the size of the complex core. The
key innovation in this design is making sure that a simple checker can keep pace
with a complex core processor. This is done by letting the complex core do all the
heavy lifting in terms of the performance optimizations and letting the checker
just confirm that the results of these are indeed correct. This is done as follows:
the core processor provides the checker with the speculative instruction stream
that includes the program counter (PC), the instruction, as well as instruction
register and memory operands. The checker ensures that the instruction being
executed in the core is indeed the instruction pointed to by the program counter,
that the arguments for this instruction are indeed those pointed to by the core
processor, and finally that the result of the computation on these arguments is
indeed as computed by the core processor. In these tasks the checker never suf-
fers from the performance hits such as cache misses, branch mis-predictions and
pipeline stalls that the core has overcome. This enables it to process the instruc-
tion stream being generated by the core processor in real time. If the results of
the checking are correct, the core is allowed to commit this instruction. If not,
then the checker executes the instruction directly. This result is considered to be
correct as the checker processor has been formally verified and is made electri-
cally more resilient through larger devices. Both of these are made possible by
the relatively small size of the checker. As the checker processor is slower, there
is an overhead in recovery mode. However, even with reasonable error rates, the
performance overhead is <5%.

This design illustrates an important principle that recurs in other designs.
Computer architecture has long provided performance at the cost of complexity.
Processor architectures optimize for the typical case by providing complex micro-
architectural components such as branch-predicators and support for speculative
execution. While these provide significant performance enhancement, it comes
at the cost of design complexity and the consequent verification burden. The
recovery architecture makes this tradeoff in the opposite direction. The checker
processor is made intentionally simple even though this makes it slow. Overall,
this approach works as errors are relatively infrequent, and thus the amortized
performance overhead of recovery tends to be low.

2.2 Semantic Guardians

The Semantic Guardians project [3] exploits the difference between the static
and dynamic views of the state space. The static view considers all possible
reachable states and thus verification attempts to cover all these reachable states.
Typically, only a small fraction of the complete state space ends up being covered.
Nonetheless, most designs tend to work correctly almost all the time. This can
be easily explained through a dynamic view of the state space. Most of the



Runtime Verification: A Computer Architecture Perspective 53

actual execution time is spent in a small fraction of the states, and these are
easily verified during verification as they are not the so called corner cases. The
main idea behind semantic guardians is to maintain predicates for parts of the
state space that have not been completely verified during verification. From a
dynamic point of view, these predicates will rarely evaluate to true. The semantic
guardian is the checking logic which continuously evaluates these predicates to
see if the design is entering the unverified part of the state space. When this
is detected, control is passed to a reliable design component, referred to as the
inner core, which has the same functionality as the main design, but is known
to be correct. At the end of a prescribed unit of computation, for example, an
instruction in a processor, control is passed back to the main design. This, of
course, begs the question: why not use the inner core all the time? The reason
why this is not a viable option is that the inner core, like the checker processor
in DIVA, makes the tradeoff of simplicity for performance, and thus is slow. As
in the DIVA case, this is acceptable in the current context, since it is brought
into action only rarely, and thus the amortized performance overhead is low.

The Semantic Guardian project is done in the context of uni-processors, where
the main design is a complex processor, and the inner core is a simple fully ver-
ified processor. The predicates checked by the semantic guardian are the states
of the complex pipeline that have not been completely verified. A key question
that this raises is: how well does this intuitive and appealing runtime verification
methodology scale to other kinds of designs. Specifically, it is typically difficult
to characterize the non-verified part of the state space through simple predicates.
And even when this characterization may be possible, the state may be highly
distributed in space, and thus not easy to check. This is a general issue with
runtime verification in hardware and will be revisited later in the paper.

3 Checkers and Recovery in Multi-processors

As we saw in the DIVA and Semantic Guardians case studies, the uni-processor
case offers some advantages in terms of runtime verification. The first is that the
instruction is a well-defined unit of computation that needs to be checked, and
possibly recomputed. The second is that the checkers need to examine relatively
local information – predicates on the control state, or instruction and operand
bits. This enables the checkers to be relatively simple. In contrast, the multi-
processor case is much more complex. The correctness criteria are not as easily
defined as the processing of an instruction. Further, they will likely depend
on state that is distributed across processors – this complicates the design of
checkers as they will need to monitor distributed state. These issues are addressed
head-on by a couple of projects dealing with runtime verification of an important
multi-processor correctness property, viz. memory consistency.

As part of the performance optimization of modern processors, instructions
are allowed to execute out of order in order to overcome the performance penalty
of resource based stalls. For example, if an instruction suffers a cache miss, then
the following instructions can continue to execute while this cache miss is being
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serviced. Of course, bookkeeping logic is needed to ensure that the instruction
operands continue to receive the correct values as required by a pure in-order
execution. This book-keeping logic monitors the current instruction trace on the
processor to ensure this. However, it is entirely possible that a reordering that is
legal for one thread may lead to an inconsistent ordering of variable values for a
parallel thread running on a different processor. To avoid this, multi-processors
define memory consistency rules for specifying which re-orderings are allowed.
Different processors have accepted different consistency rules such as sequen-
tial consistency, total store order, various forms of relaxed consistency etc. The
memory consistency model serves as a hardware-software interface contract for
multi-processors, much in the same way as the instruction set architecture serves
as the hardware-software contract for uni-processors [4]. The architectural mem-
ory consistency verification problem is to ensure that the hardware implemen-
tation obeys the memory consistency model. What makes this difficult to check,
is that unlike the instruction in the uni-processor case, single units of computa-
tion are insufficient to check the memory consistency property. Each individual
reordering may be correct by itself, but it is combinations of re-orderings across
processors that could violate memory consistency. This also implies that, unlike
the uni-processor case, the checking logic needs to monitor state that will be
spatially distributed across processors. Both these issues pose key challenges for
runtime verification. The following two projects provide two different approaches
to dealing with this challenge.

3.1 Runtime Constraint Graph Checking

The constraint graph model [5] provides a uniform way to express various mem-
ory consistency models using a graphical representation. The vertices in this
graph represent individual memory accesses. The edges represent ordering rela-
tionships between these memory accesses. The edges can be partitioned into two
sets, intra-thread edges that exist between vertices corresponding to memory
accesses in the same thread, and inter-thread edges that exist between vertices
corresponding to memory accesses in different threads. An intra-thread edge
(u, v) indicates that the memory consistency model requires memory access u
to appear to be before memory access v. For example, in sequential consis-
tency, all loads and stores must appear to be in the program order. In con-
trast, in the Total Store Order (TSO) model the edge from a store to a load
of a different address is relaxed, i.e. dropped from the program order edges.
An inter-thread edge (u, v) captures the dependent ordering relationships (read-
after-write, write-after-write, write-after-read) between vertices across threads
that access the same memory location. These edges are based on the actual time
ordering of these memory operations. In the constraint graph model, there is
a memory consistency violation if and only if there is a cycle in the constraint
graph. This result is helpful as it provides a specific graph condition to check
for. Further, checking for cycles in a directed graph is computationally easy in
the size of the graph.
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However, runtime checking this graph poses several challenges. There is no
bound on the size of the cycle, thus the complete graph may need to be stored.
This is obviously impractical since modern processors execute billions of memory
instructions per second, and storing (and checking) a multi-billion vertex graph
is impractical. This project [6] provides two key innovations that help manage
the size of the graph that needs to be stored and checked. The first is graph
compression – the intra-thread edges are compressed using on-the-fly transitive
closure – only those vertices need to be stored that participate in inter-thread
edges. Since these correspond to shared variable accesses, this number is a small
fraction of the total number of memory accesses. The second is graph slicing – by
periodically pausing the execution, a graph slice is identified that is sufficient for
detecting cycles in the complete graph, i.e. a cycle exists in the complete graph
if and only if it exists in the graph slice for some time epoch. While theoretically
this slice could comprise the entire graph, in practice pausing execution every ten
thousand cycles results in a graph slice of about a hundred vertices. This is very
manageable in terms of both graph storage, as well as the dedicated checking
logic that works on this graph.

While the above innovations help in bounding an unbounded problem, the
practical issue of building and checking such a graph remains. This highlights
the major challenge in runtime verification of hardware – observing and man-
aging distributed state. This project addresses this by judicious use of existing
architectural components and new dedicated components specifically designed
for this purpose. The inter-thread edges are inferred by monitoring cache pro-
tocol activity. Since each inter-thread edge corresponds to accesses to the same
memory location in two different processors, this results in corresponding cache
protocol activity depending on the access. These inferred edges are then com-
municated on the existing connection network (bus or on-chip network) to the
dedicated graph checker. The checker gathers the edges, builds the graph and at
the end of each time epoch checks the graph for cycles. This is done in a pipelined
fashion so as not to stall the main computation in the processors. Finally, if the
checker detects a violation, then it reverts to a simple mode for this epoch where
memory operations complete sequentially instead of in parallel. This trading-off
of performance for simplicity is similar to what we saw earlier with DIVA and
Semantic Guardians.

While the experimental results show relatively low overhead for both the area
and runtime required for checking, the distributed architecture for gathering
and communicating the graph edges is of non-trivial complexity and illustrates
the challenge in observing and checking distributed state in hardware. The other
issue this case study raises is that of the size of the checker state. While runtime
verification does offer the advantage of focusing on the current trace rather than
the entire state space, it may still need to deal with large, potentially unbounded,
checker state. This case study shows one specific design to address this issue,
and illustrates the difficulty in generalizing this solution.

In a follow-up project [7] the authors show how the same basic idea of con-
straint graph checking can be applied to runtime verification of transactional
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memory systems. The main additional insight is that each transaction is mod-
eled as a meta-vertex in the constraint graph. The rest of the architecture is very
similar.

3.2 Proofs through Lemmas

The runtime constraint graph checking project focused on checking for end to
end correctness, i.e. it directly checked for the memory consistency property.
An alternate attack on runtime verification for memory consistency works by
breaking the consistency check into three checks that are sufficient to guarantee
memory consistency [8].

– Uni-processor Ordering: This check verifies that for each thread the val-
ues propagated within the thread are correct. This is local to each thread.

– Legal Reordering: This check verifies that the operation order at the cache
is legal. This is dependent on the specific memory consistency model.

– Single-Writer Multiple-Reader Cache Coherence: This check at the
memory verifies inter-processor data propagation and global ordering.

These three checks have the nice property that they can be done locally at differ-
ent levels in the memory hierarchy – at the processor, cache and main memory
level respectively. This allows for observing only local state and overcomes the
problem of observing distributed state that the constraint graph checking solu-
tion has to deal with. However, this simplicity comes at a cost. These lemmas are
sufficient, but not necessary for checking memory consistency. Thus, this method
can result in false positives, where a consistency violation may be reported when
none exists, and this will lead to additional recovery overhead. Nonetheless, this
case study is useful in illustrating the tradeoff between precision and design
complexity.

4 Backward Recovery in Multi-processors

4.1 Safety Net

The ReVive [9] and Safety Net [10] projects focus on developing architectures
for backward recovery (check-pointing and rollback) in multi-processor architec-
tures. There are multiple motivations for this. In addition to providing support
for error recovery, this also provides support for aggressive speculative execu-
tion, where processors may optimize for the typical case by speculatively ex-
ecuting along some instruction sequence, but may need to recover in case of
mis-speculation. These projects have many similarities, so I will focus on one of
these - Safety Net. The primary check-pointing mechanism is a checkpoint log
buffer (CLB) at each cache and also main memory. This saves a log of all block
writes and transfers. In addition to this, the architectural state at each processor
is also check-pointed. Time is broken up into epochs and there is a checkpoint
for each epoch. One important issue in this case is the size of the CLBs, since
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this will grow with the length of the epoch. Further, as seen before, an important
issue in distributed systems is observing/recording distributed state. While each
CLB records the writes/transfers in an epoch, there may be messages in flight
that need to be accounted for. Thus, to determine a consistent system state, the
check-pointed state of all CLBs at the end of an epoch has to be validated. This
is done in the background and may lag by several epochs. At any point though,
there is always one consistent checkpoint that has been validated. This serves as
the recovery point in case of error.

5 Forward Recovery through Bug-Patching

As mentioned earlier, it is not uncommon for modern processors to have bugs
in released products. Typically these bugs will not result in erroneous results,
but rather system crashes (or hangs) – thus there is no possibility of silent data
corruption. These bugs are reported on bug errata sheets which are publicly
available. The two projects described in this section provide forward error re-
covery for these reported bugs through error detection and bug-patching.

5.1 The Phoenix Project

In the Phoenix project [11], the authors did a study of uni-processor bugs re-
ported in errata documents. These bugs were then classified into critical and
non-critical bugs. The non-critical bugs were typically associated with various
book-keeping logic such as performance counters, error reporting registers, break-
point support etc. These could lead to performance degradation, but no catas-
trophic behavior such as a system crash or hang. In contrast, the critical bugs
were associated with faults in memory, IO etc. which could lead to a system crash
or hang. The critical bugs were further divided on the basis of how they are to
be detected. A bug was classified as being concurrent if its condition could be
described as a propositional logic formula on the system signals. It was classified
as being complex if its condition was described in terms of a temporal formula
on sequences of system signals. Roughly two-thirds of the critical bugs were clas-
sified as concurrent and the rest as complex. The project focuses on concurrent
bugs and detects and patches them using method similar to the FRCLe project
described next.

5.2 The FRCLe Project

This project [12] focuses on errors in microprocessor pipelines. Like the Phoenix
project, the focus is on errors which can be captured using predicates that are
combinations of system signals. These system signals are monitored at runtime,
with the offending combinations stored in a content addressable memory (CAM).
A match to one of the entries in the CAM indicates an error. This triggers
the recovery circuit, which in this case passes control to the trusted inner-core
(similar to the Semantic Guardian Project). The main issue in this design is the



58 S. Malik

size of the CAM. This can be viewed as the checker state. As in the case of
constraint graph checking, even though the checker is focusing on a single trace,
the checker state may end up having a significant overhead.

6 Connections with Formal Verification

6.1 Specific Properties vs. End-to-End Correctness

The range of solutions outlined above have a common characteristic. In each case
the focus is on checking end-to-end-correctness. For the uni-processor case, this
specification is easy, it is ensuring that each instruction executes correctly. For
the multi-processor case, it was ensuring that the rules of memory consistency
or transactional memory were correctly followed. This is in contrast to the for-
mal verification of complex hardware designs, where often there is no complete
design specification, but rather an incomplete specification in terms of a set of
properties specified in some logic – typically temporal logic. While there has
been work done in synthesizing automata for temporal logic assertions (specified
in the PSL language) (e.g. [13]), and this has been used for synthesizing monitors
during logic simulation, this is not particularly suitable for runtime verification
for hardware. There are a couple of reasons for this. The first is that this form
of partial specification may require a very large number of properties, and thus
the synthesized logic may have a large overhead. The second is that, while these
checkers may be useful for error detection, it is unclear how the system would
recover from these. Thus, the end-to-end correctness checks are very attractive
for runtime verification as they provide for a direct check of the specification,
and also easily implementable recovery logic.

6.2 Offline vs. Runtime Verification

The case studies discussed above provide some key insights into the relative
strengths of offline vs. runtime verification. The term offline verification here
includes both formal verification as well as simulation based verification. These
have been discussed at several points along the paper, but are summarized here
for completeness.

– Trace Coverage: Offline verification strives to cover the entire state space.
This leads to the so-called state explosion problem, which limits the coverage
we can obtain through offline verification. In contrast runtime verification
focuses on a single trace at a time and thus does not directly have to deal
with the state explosion problem. However, as observed in a couple of the
case studies, the checker state may still be quite large, and even potentially
unbounded. However, at least for the case studies in this paper, this issue is
practically addressed through innovative solutions.

– Design Overhead: Runtime verification comes with a design overhead –
this includes the area for the checking and recovery logic as well as the power
and performance overhead for its operation. As discussed in the paper, there
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is a strong imperative to keep this overhead low, with 5% as the self-imposed
threshold. Any significant overhead will be unacceptable in hardware design
and reduce the benefits of scaling provided by Moore’s Law. In contrast,
offline checking has no hardware design overhead, as it operates only on a
software design model.

– Managing Distributed State: As illustrated by the Constraint Graph
Checking and the Safety Net case studies, managing distributed state poses
major challenges in hardware runtime verification. There are two distinct
issues here. The first deals with ensuring that the distributed state is consis-
tent. Since the values of the distributed state components may not all refer
to the exact same time instant, additional steps may be needed to ensure
consistency. The second issue deals with computing using distributed state.
This requires some distributed computation where either the state compo-
nents or partial computation results need to be communicated across the
design. This adds to design complexity and overhead. In contrast, this is
never a problem in offline verification. All state variables are just variables
in the software model, and can be equally accessed regardless of physical
separation.

6.3 Runtime Verification and Model Checking

The relative strengths of offline vs. runtime verification have led to some explo-
ration of verification techniques that use model checking and runtime verification
in a complementary way [14]. Specifically this work explores how model checking
can be used to deal with distributed state, while runtime verification helps with
the state explosion problem by focusing on a specific trace.

One such complementary attack deals with verifying the composition of inter-
acting modules. Model checking using the assume guarantee reasoning technique
would check the property for each model with some assumptions about the envi-
ronment of this model. This environment would contain variables from the other
modules, i.e. would have distributed state. However, these assumptions need to
be verified, which often faces the state explosion problem. Since these assump-
tions relate to behavior at the boundary of the module, these could be locally
checked at runtime, and recovery logic triggered on failure.

7 Summary Observations

Runtime verification for hardware offers some key advantages. It helps with the
growing complexity gap by offering a mechanism to deal with the inevitable bug
escapes. This decreases product costs by eliminating expensive silicon respins.
Further, this mechanism allows for predictable verification schedules. The burden
on pre-silicon verification can now be reduced since runtime verification can deal
with bug-escapes. Chips no longer need to be verified to death, they just need
to be verified to life. However, it is important to note that even with end-to-end
correctness checks runtime verification cannot replace pre-silicon verification.
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For runtime verification to be viable the power and performance overhead needs
to be low. This implies very low error rates, which in turn implies significant
pre-silicon verification to eliminate all but the rarest of corner case errors.

Another key advantage of runtime verification is its ability to deal with a va-
riety of failure modes. In addition to logical faults, it is being used to address the
resiliency needs of future computing fabrics. These fabrics are showing increased
fragility due to increasing susceptibility to soft errors, as well as devices failing
due to increasing parametric variability. This ability to deal with various failure
modes is enabled by the checkers focusing on the symptoms, rather than the
cause of failure. However, recovery solutions do need to consider the source of
failure – while transient errors can be dealt with temporal redundancy, errors
due to device failure or logical bugs will need some form of spatial redundancy
for recovery.

A common theme in several of the solutions discussed in this paper is how
performance-complexity tradeoffs are handled. Modern processor architectures
focus on the typical case to enhance the average case performance, and this re-
sults in microarchitectures with significant complexity. Interestingly the recovery
solutions in runtime verification make this tradeoff in the opposite direction –
using solutions that are slow but very reliable. The low performance in this case
is easily amortized due to the low error rate.

One trend that supports architectural solutions for runtime verification is
the increasing use of speculative execution for improving processor performance.
With speculative execution, entire program paths may be executed with the ex-
pectation that these may be taken in the future. This enables the processor to
run ahead and explore multiple possible program paths in advance. This, in turn,
requires some recovery support, either forward or backward. In forward recovery,
a speculative thread may commit only after its guard evaluates to true. In back-
ward recovery, any state updates by an aborted speculative thread need to be
undone through rolling back to a valid checkpoint. The existence of these mech-
anisms for performance enhancement makes it convenient to repurpose them for
runtime verification.

The complementary strengths of offline vs. runtime verification are how they
need to deal with the state space and state variables. Offline verification has
the disadvantage that it needs to deal with the entire state space and thus
faces the state explosion problem. This is not an issue with runtime verification,
since it deals with only the current trace at a time. However, the state that
the checker may need to maintain may still be prohibitive. Conversely runtime
verification has the challenge of processing distributed state. Distributed state
needs to be consistent in that it reflects a specific point in time. Further, it may
need communication of values across the chip to allow for its processing, further
adding to design complexity.

While this paper discusses over a decade of research in architectural solutions
for runtime verification, this entire direction still faces major challenges before
these solutions see practical adoption. Hardware is very cost sensitive, thus there
is strong resistance to adding additional hardware to an existing design. Perhaps
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even greater verification pain will tilt the scale on this. A somewhat related is-
sue is the added design complexity due to the checking and recovery circuits.
While these are generally designed to be simple and easily verifiable, the overall
system complexity does increase and reasoning about the error and error free
modes needs to be added to the verification tasks. Finally, while the solutions
reviewed in this paper demonstrate significant innovation in what they accom-
plish, and have several common themes, they are far from delivering on a general
methodology for runtime verification for hardware.
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Abstract. Futures are a program abstraction that express a simple
form of fork-join parallelism. The expression future (e) declares that
e can be evaluated concurrently with the future’s continuation. Safe-
futures provide additional deterministic guarantees, ensuring that all
data dependencies found in the original (non-future annotated) version
are respected. In this paper, we present a dynamic analysis for enforcing
determinism of safe-futures in an ML-like language with dynamic thread
creation and first-class references. Our analysis tracks the interaction
between futures (and their continuations) with other explicitly defined
threads of control, and enforces an isolation property that prevents the
effects of a continuation from being witnessed by its future, indirectly
through their interactions with other threads. Our analysis is defined
via a lightweight capability-based dependence tracking mechanism that
serves as a compact representation of an effect history. Implementation
results support our premise that futures and threads can extract addi-
tional parallelism compared to traditional approaches for safe-futures.

1 Introduction

A future is a program construct used to introduce parallelism into sequential
programs. The expression future(e) returns a future object F that evaluates e
in a separate thread of control that executes concurrently with its continuation.
The expression touch(F) blocks execution until F completes. A safe-future im-
poses additional constraints on the execution of a future and its continuation to
preserve sequential semantics. By doing so, it provides a simple-to-understand
mechanism that provides deterministic parallelism, transforming a sequential
program into a safe concurrent one, without requiring any code restructuring.
The definition of these constraints ensures that (a) the effects of a continuation
are never witnessed by its future, and (b) a read of a reference r performed by
a continuation is obligated to witness the last write to r made by the future.

In the absence of side-effects, a program decorated with safe-futures behaves
identically to a program in which all such annotations are erased, assuming all
future-encapsulated expressions terminate. In the presence of side-effects, how-
ever, unconstrained interleaving between a future and its continuation can lead
to undesirable racy behavior. The conditions described above which prevent
such behavior can be implemented either statically through the insertion of syn-
chronization barriers [1,2], or dynamically by tracking dependencies [3], treating
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continuations as potentially speculative computations, aborting and rolling them
back when a dependence violation is detected.

Earlier work on safe-futures considered their integration into sequential pro-
grams. In this context, the necessary dependence analysis has only to ensure that
the effects of concurrent execution adhere to the original sequential semantics. As
programs and libraries migrate to multicore environments, it is likely that com-
putations from which we can extract deterministic parallelism are already part
of multi-threaded computations, or interact with libraries and/or other program
components that are themselves explicitly multi-threaded.

When safe-futures are integrated within an explicitly concurrent program
(e.g., to extract additional concurrency from within a sequential thread of con-
trol), the necessary safety conditions are substantially more complex than those
used to guarantee determinacy in the context of otherwise sequential code. This
is because the interaction of explicitly concurrent threads among one another
may indirectly induce behavior that violates a safe-future’s safety guarantees.
For example, a continuation of a future F created within the context of one
thread may perform an effectful action that is witnessed by another thread whose
resulting behavior affects F ’s execution, as depicted in the following program
fragment:

let val x = ref 0

val y = ref 0

in spawn( ... future (... !y ...); x := 1);

if !x = 1

then y := 1

end

In the absence of the future annotation, the dereference of y (given as !y) would
always yield 0, regardless of the interaction between the future’s continuation
(here, the assignment x := 1) and the second thread1. (The expression spawn(e)
creates a new thread of control to evaluate e with no deterministic guarantees.)

In this paper, we present a dynamic program analysis that tracks interactions
between threads, futures, and their continuations that prevents the effects of con-
tinuations from being witnessed by their futures through cross-thread dataflow,
as described in the example above. Our technique allows seamless integration
of safe-futures into multi-threaded programs, and provides a mechanism that
enables extraction of additional parallelism from multi-threaded code without
requiring any further code restructuring, or programmer-specified synchroniza-
tion. To the best of our knowledge, ours is the first analysis to provide lightweight
thread-aware dynamic dependence tracking for effect isolation in the context of
a language equipped with dynamic thread creation, first-class references, to sup-
port deterministic parallelism.

1 For the purposes of the example, we assume no compiler optimizations that reorders
statements.
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Our contributions are as follows:

1. We present a dynamic analysis that isolates the effects of a continuation C
from its future F even in the presence of multiple explicit threads of control.
The isolation property is selective, allowing C to interact freely with other
threads provided that the effects of such interactions do not leak back to F .

2. We introduce future capabilities, a new dependence analysis structure, that
enables lightweight dynamic tracking of effects, suitable for identifying de-
pendence violations between futures and their continuations.

3. We describe an implementation of futures and threads in MultiMLton, an
optimizing compiler for Standard ML, and show benefits compared to tra-
ditional safe-futures.

2 Safe Futures and Threads

Safe futures are intended to ensure deterministic parallelism; they do so by guar-
anteeing the following two safety properties: (1) a future will never witness its
continuation’s effects and (2) a continuation will never witness the future’s in-
termediate effects. In a sequential setting, the second condition implies a con-
tinuation must witness the logically last effects of a future.

To illustrate these properties, consider the two example programs given in
Fig. 1. The code that is executed by the future is highlighted in gray. When
a future is created it immediately returns a placeholder, which when touched
will produce the return value of the future. A touch defines a synchronization
point between a future and its continuation; execution following the touch are
guaranteed that the future has completed.

Initially: x=0, y=0  

Program 1 Program 2 

let fun f() = x := 1

    val tag = future (f)

in !x ; touch (tag)

end

let fun f() = !y

    val tag = future (f)

in y := 1 ; touch (tag)

end

Fig. 1. Two programs depicting the safety properties that must be enforced to achieve
deterministic parallelism for sequential programs annotated with futures

In the program on the left, the future writes 1 to the shared variable x. The
continuation (the code following in) reads from x. To ensure that the behavior
of this program is consistent with a sequential execution, the continuation is only
allowed to read 1. In the program on the right, the future reads from the shared
variable y while the continuation writes to y. The future cannot witness any
effects from the continuation, and therefore can only read 0 for y. To correctly
execute the futures in programs 1 and 2 concurrently with their continuations
we must ensure that the future is isolated from the effects of the continuation
and that the future’s final effects are propagated to the continuation.
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2.1 Interaction with Threads

The creation of new threads by either the future or the continuation requires
reasoning about the created threads’ actions. If a future internally creates a
thread of control T , T ’s shared reads and writes may need to be isolated from
the continuation’s effects. We need to ensure that if a future witnesses a write
performed by the thread it created, the future’s continuation cannot witness any
prior writes. On the other hand, a future must be isolated from the effects of any
threads that a continuation creates. These threads are created logically after the
future completes and therefore the future cannot witness any of their effects. To
illustrate, consider the two examples programs given in Fig. 2.

let fun g() = x := 1

    fun f() = spawn (g)

              if !x = 1

              then y := 2

    val tag = future (f)

in !x ; !y; touch (tag)

end

Initially: x=0, y=0, z=0  

Program 1 Program 2 

let fun h() = z := 2

    fun f() = !z

    val tag = future (f)

in z := 1; spawn(h);

   touch (tag)

end

Fig. 2. Two programs depicting the safety properties that must be enforced to achieve
deterministic parallelism for futures and continuations which spawn threads

In the program on the left, the future creates a thread which writes to the
shared variable x. The future then branches on the contents of x, and if x

contains the value 1 it writes 2 to y. The continuation reads from both x and y.
There are two valid outcomes: (1) if the body of the future executes before the
assignment of x to 1 by the internally created thread, the continuation could
read 0 for x and 0 for y; or (2), if the body of the future executes after the
assignment by the internally created thread, the continuation would read 1 for x

and 2 for y. An invalid result would be for the continuation to read 0 for x and
2 for y - this would imply that the continuation witnessed an intermediate value
for x (here 0) that was not the last value witnessed by its future (which observed
x to be 1). In the program on the right, the continuation creates a thread which
writes to the shared variable z. Since the thread that the continuation creates
should logically execute after the completion of the future, the future should
only see the value 0 for z.

2.2 Transitive Effects

In the presence of multiple threads of control a future may incorrectly witness a
continuation’s effects transitively. Consider the sample program given in Fig. 3
that consists of two threads of control and one future denoted by the gray box.
Notice that the future and its continuation do not access the same memory
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locations. The future simply reads from y and the continuation writes to x. Can
the future read the value 2 from the shared variable y? Reading the value 2 for
y would be erroneous because Thread 2 writes the value 2 to y only if x contains
the value 1, implying the continuation’s effects were visible to its future.

let fun f() = !y

    val tag = future (f)

in x := 1; touch (tag)

end 

Initially: x=0, y=0, z=0  

if x = 1

then y := 2

else y := 3

Can the future see y = 2?  

Thread 1 Thread 2 

Fig. 3. Although the future and continuation do not conflict in the variables they
access, the future, by witnessing the effects of Thread 2, transitively witnesses the
effects of the continuation

Similarly, a continuation may incorrectly witness a future’s intermediate ef-
fects transitively (see Fig. 4). Here, functions g, h, and i force a particular
interleaving between the future and Thread 2. It is incorrect for the continua-
tion to witness the write of 1 to z by Thread 2 because Thread 2 subsequently
overwrites z and synchronizes with the future by writing to y and then waiting
until the future writes 2 to x. Thus, the continuation should only witness the
value 2 for z.

let fun g() = if !y = 2

              then ()

              else g()

    fun f() = x := 1;g();

              x := 2

    val tag = future (f)

in !z; touch (tag)

end 

Initially: x=0, y=0, z=0  

let fun h() = if !x = 1

              then z := 1

              else h()

    fun i() = if !x = 2

              then ()

              else i()

in h(); z:= 2; y := 2; i()

end

Can the continuation see z = 1?  

Thread 1 Thread 2 

Fig. 4. Although the future and continuation do not conflict in the variables they ac-
cess, the continuation may incorrectly witness the future’s intermediate effects through
updates performed by Thread 2

As another example, consider the program given in Fig. 5 consisting of two
explicitly created threads and one future denoted by the gray box. The functions
g() and h() encode simple barriers that ensure synchronization between the
future and Thread 2 - the future computation completes only after Thread 2
finishes. Is it possible for the continuation to read the value 1 for the shared
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variable z? Notice that the future does perform a write of 1 to z and in fact this
is the last write the future performs to that shared variable. However, Thread 2
assigns 2 to z prior to assigning 2 to y. The future in Thread 1 waits, by executing
the function g, until Thread 2 writes 2 to y. Therefore, the continuation must
witness the write of 2 to z as this shared update logically occurs prior to the
completion of the future. The future’s write of 1 to z is guaranteed to occur
prior to the write of 2 to z in Thread 2, since Thread 2 waits until the write to
x to perform its update to z.

let fun g() = if !y = 2

              then ()

              else g()

    fun f() = z := 1;

              x := 1; g()

    val tag = future (f)

in !z; touch (tag)

end 

Initially: x=0, y=0, z=0  

let fun h() = if !x = 1

              then ()

              else h()

in h(); z := 2; y := !z

end

Can the continuation see z = 1?  

Thread 1 Thread 2 

Fig. 5. The continuation cannot witness the future’s write to z as this is an interme-
diate effect. The write to z in Thread 2 is transitively made visible to the continuation
since the future synchronizes with Thread 2.

2.3 Future and Future Interaction

Similar issues arise when two futures witness each other’s effects (see Fig. 6).
Here, each thread creates a future; there are no dependencies between the future
and its continuation. Assuming no compiler reorderings, the continuation of the
future created by Thread 1 writes to x and the continuation of the future created
by Thread 2 writes to y. The futures created by Thread 1 and 2 read from y

and x respectively. It should be impossible for Thread 1 to read 1 from y and
Thread 2 to read 1 from x. However, executing the futures arbitrarily allows for
such an ordering to occur if the continuation of the future created by Thread
2 executes prior to the future in Thread 1 and the continuation of that future
executes prior to the future created by Thread 2. In such an execution the futures
witness values that logically should occur after their executions.

3 High Level Semantics

In this section, we define an operational semantics to formalize the intuition
highlighted by the examples presented above; the semantics is given in terms of a
core call-by-value functional language with first-class threads and references. The
safety conditions are defined with respect to traces (τ̄ ). The language includes
primitives for creating threads ( spawn), creating shared references ( ref), reading
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let fun g() = !x;

    val tag = future (g)

in y := 1; touch (tag)

end 

let fun f() = !y; 

    val tag = future (f)

in x := 1; touch (tag)

end 

Initially: x=0, y=0, z=0  

Can the future in Thread 1 see y = 1 and the future 

in Thread 2 x = 1?  

Thread 1 Thread 2 

Fig. 6. Two futures created by separate threads of control may interact in a way that
violates sequential consistency even though each future has no violations

from a shared reference (!), and assigning to a shared reference (:=). We extend
this core language with primitives to construct futures ( future) and to wait on
their completion ( touch) (see Fig. 7).

Our language omits locking primitives; locks ensure that multiple updates to
shared locations occur without interleavings from other threads. For our pur-
poses, it is sufficient to track reads and updates to shared locations to character-
ize the safety conditions underlying the examples given in the previous section.
As such, locks do not add any interesting semantic issues and are omitted for
brevity.

In our syntax, v ranges over values, l over locations, e over expressions, x over
variables, 
f over future identifiers, 
c to label computations associated with the
continuation of a future, and t over thread identifiers. A program state is de-
fined as a store (σ), a set of threads (T ), and a trace (τ̄ ). We decorate thread
identifiers that are associated with futures with the identifier of the future, its
continuation, or φ if the thread was created via a spawn operation. We assume
future identifiers embed sufficient information about ancestry (i.e. futures cre-
ated by another future or continuation) so that we can create fresh identifiers
based on the parent’s identifier (freshI) [2].

A trace (τ̄ ) is a sequence of actions represented by four types of trace elements:
(1) R(id , l) to capture the identifier id of the thread or future performing the read
as well as the location (l) being read, (2), W (id, l) defined similarly for writes,
S(id, id′) to record spawn actions for a newly created thread with identifier id ′

created by thread id , and (4) F (id, id′) to record the parent/child relation for
newly created futures either from other futures or threads.

There are two safety rules that capture the notion of a well-behaved execu-
tion defined in terms of traces. The first rule states that an execution is safe if
its trace enforces serial execution between all futures and their continuations.
Serializability holds if the last action of a future precedes the first action of its
continuation. The auxiliary relations min and max are defined in the obvious
manner and return the first trace element and last trace element for a given
identifier respectively. We use the notation <τ̄ to order two trace elements in
the trace τ̄ .

The second rule defines an equivalence relation over safe traces in terms of a
dependency preserving permutation: given an execution having a safe trace, any
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v ∈ Value
�f , �c ∈ Id
t ∈ TID

l ∈ Location

T ∈ Thread := (tId, e)

id ∈ ID := tφ + t�f + t�c

σ ∈ Store := Location
fin→ Value

τ ∈ TraceElement := R(id, l) + W (id, l) +
S(id, id) + F (id, id) + A(id, )

T := T | T || T

e := unit | x | v | λx.e | e e
| spawn e | ref e | touch e
| e := e | !e | future e

v := unit | l | � | λx.e
E := · | E e | v E | touch E

| E := e | l := E | ref E | !E

Safety

τ̄ � τ̄ ′ safe(τ̄ ′)

safe(τ̄ )

∀t�f ∈ τ̄ | max (τ̄ , t�f ) <τ̄ min(τ̄ , t�c )

safe(τ̄)

Dependency Preserving Permutation

τ3 = A(id, ) A(id, ) /∈ τ̄2
τ̄ = τ̄1 : τ̄2 : τ3 : τ̄4
τ̄ ′ = τ̄1 : τ3 : τ̄2 : τ̄4

dep(τ̄ , τ̄ ′)

τ̄ � τ̄ ′

Inter-Thread Dependencies

τ̄ = τ̄1 : τ̄2 : R(id, l) : τ̄3 τ̄ ′ = τ̄1 : R(id, l) : τ̄2 : τ̄3
W (id′, l) /∈ τ̄2 S(id′, id) /∈ τ̄2 F (id′, id) /∈ τ̄2 id′ �= id

dep(τ̄ , τ̄ ′)

τ̄ = τ̄1 : τ̄2 : W (id, l) : τ̄3 τ̄ ′ = τ̄1 : W (id, l) : τ̄2 : τ̄3
R(id′, l) /∈ τ̄2 S(id′, id) /∈ τ̄2 F (id′, id) /∈ τ̄2 id′ �= id

dep(τ̄ , τ̄ ′)

Fig. 7. Language Syntax and Grammar

safe permutation of that trace (as defined by this relation) is also safe, and thus
any execution that yields such a trace is well-behaved. The permutation rules
preserve two types of dependencies: (1) intra-thread dependencies that ensure
logical consistency of a given thread of control and (2) inter-thread dependencies
that define a happens-before relationship among threads. The wild card trace
element (A(id, )) matches any action performed by a future, continuation, or
thread with the identifier id. A trace element can be permuted to the left of a
series of actions τ̄2 as long as that sub-trace does not contain any trace elements
with the same identifier.

Inter-thread dependencies are defined by the relation dep that compares the
permuted trace to the original trace. There are two rules that assert that inter-
thread dependencies are preserved, one for reads and one for writes. The two
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App

σ, τ̄ , (tI , E[(λx.e) v]) || T →
σ, τ̄ , (tI , E[e[v/x]]) || T

Ref

l fresh τ = W (tI , l)

σ, τ̄ , (tI , E[ref v]) || T →
σ[l �→ v], τ̄ .τ, (tI , E[l]) || T

Touch

T = (t�f , v) || T ′

σ, τ̄ , (tI , E[touch �f ]) || T → σ, τ̄ , (tI , E[v]) || T

Spawn

t′ fresh τ = S(tI , t′φ)

σ, τ̄ , (tI , E[spawn e]) || T → σ, τ̄ .τ, (t′φ, e) || (tI , E[unit]) || T

Future

t′ fresh �f , �c freshI τ = F (tI , t�f )

σ, τ̄ , (tI , E[future e]) || T → σ, τ̄ .τ, (t�c , e) || (t′�f , E[�]) || T

Read

τ = R(tI , l)

σ, τ̄ , (tI , E[! l]) || T →
σ, τ̄ .τ (tI , E[v]) || T

Write

τ = W (tI , l)

σ, τ̄ , (tI , E[l := v]) || T →
σ[l �→ v], τ̄ .τ (tI , E[unit]) || T

Fig. 8. Evaluation rules

relations mirror one another. A trace element R(id , l) commutes to the left of
a trace subsequence τ̄2 if τ̄2 does not contain an action performed by another
that either writes to l (which would result in a read-after-write dependence), or
does not spawn a thread or a future with identifier id . A similar right-mover [4]
construction applies to writes.

The evaluation rules used to generate traces are given in Fig. 8, and are
standard. To illustrate the rules, consider the unsafe execution of the program
shown Fig. 6. Let the trace be F (1, 3f ) F (2, 4f ) W (4c, y) W (3c, x) R(3f , y)
R(4c, x). Here, F (1, 3f) denotes the creation of the future by thread 1 with label
3f , F (2, 4f ) denotes the creation of the future in thread 2 with label 4f , W (4f , y)
denotes the write of variable y by this future’s continuation, W (3c, x) denotes
the write of variable x by future 3f’s continuation, R(3f , y) denotes the read of
y by the first future, and R(4c, x) captures the read of x by the second future.

In the above trace, not all continuation actions occur after their future’s. Be-
cause it is not a trivially serial trace, we need to consider whether it can be safely
permuted. We can permute this trace to F (1, 3f) F (2, 4f) W (4c, y) R(3f , y)
W (3c, x) R(4f , x); such a permutation preserves all inter-thread dependencies
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found in the original. But, no further permutations are possible; in particular,
commuting R(4f , x) to the left of W (4cy) would break the dependency between
W (3c, x) andR(4f , x). Similar reasoning applies if we permuted the actions of the
second future with its continuation. Hence, we conclude the trace is unsafe.

4 Implementation

To enable scalable construction of safe futures, we formulate a strategy that as-
sociates capabilities with threads, futures, as well as the locations they modify
and read. Abstractly, capabilities are used to indicate which effects have been
witnessed by a future and its continuation, either directly or indirectly, as well as
to constrain which locations a future and its continuation may read or modify.
Capabilities ensure that happens-before dependencies are not established that
would violate sequential consistency for a given thread of control. Thus, ca-
pabilities guarantee that an execution is equivalent to an execution where the
future completes prior to its continuation’s start in much the same way that the
depedency preserving permutation asserts equivalence between traces.

A capability is defined as a binding between a label 
, denoting the dynamic
instances of a future, and a tag. There are three tags of interest: F to denote that
a thread or location has been influenced by a future, C to denote hat a thread or
location has been influenced by a continuation, and FC to denote that a thread
or location that first was influenced by a future and later by its continuation. It
is illegal for a computation to witness the effects of a continuation and then the
continuation’s future (i.e., there is no CF tag). Tracking multiple labels allows
us to differentiate between effects of different futures.

When a future with label 
 is created, a constraint is established that relates
the execution of the thread executing this future with its continuation. Namely,
we add a mapping from 
 to F for the thread executing the future and a mapping
from 
 to C for the thread executing the continuation. When the future or con-
tinuation reads or writes from a given location, we propagate its constraints to
that location. Therefore, capabilities provide a tainting property that succinctly
records the history of actions performed by a thread, and which threads as well
as locations those actions have influenced.

To ensure a thread T ’s read or write is correct, it must be the case that either
(a) T has thus far only read values written by the future 
; (b) T has thus far only
witnessed values written by the continuation of future 
; or (c) T had previously
read values written by the future, but now only reads values written by the
future’s continuation. If T has previously read values written by the future 
,
and then subsequently read values written by its continuation; allowing T to
read further values written by the future would break correctness guarantees
on the future’s execution. Thus, prior to a read or a write to a location, if that
location has capabilities associated with it, we must ensure that the thread which
is trying to read or write from that location also has the same capabilities.
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4.1 Capability Lifting

Capabilities can be lifted in the obvious manner. A capability can be lifted to a
new capability that is more constrained. A thread or location with no capability
for a given label 
 can lift to either C or F. A thread which has a capability of F
can lift the capability to FC and similarly a thread with a capability C can lift the
capability to FC. A future and its continuation can never lift their capabilities
for their own label. We allow a given thread to read or write to a location if its
capabilities are equal to those for the given location. When a future completes,
it is safe to discard all capabilities related to the future.

Based on capability mappings, we can distinguish between speculative and
non-speculative computations. A continuation of a future is a speculative com-
putation until the future completes. Similarly, any thread which communicates
with a continuation of a future, becomes speculative at the communication point.
On the other hand, any thread which has only F capabilities or an empty capabil-
ity map is non-speculative. A future may in turn be speculative. As an example,
consider the following program fragment which creates nested futures:

let fun g() = ...

fun h() = ... future(g) ...

fun i() = ... future(h) ...

in i()

end

At the point of the creation of the future to evaluate g, the remainder of the
function h (the future evaluating g’s continuation) is speculative. The thread
evaluating g as a future would have capabilities 
g �→ F and 
h �→ F and the
thread evaluating the continuation would have capabilities 
g �→ C and 
h �→ F.

Using our notion of capabilities, we can handle future to future interactions by
ensuring that the future and its continuation have consistent capabilities upon
the futures completion. Since multiple threads of control can create futures (as
in our example in Fig. 6) it is possible for a continuation of a future f to witness
the effects of some other future g while the future f witnesses the effects of
g’s continuation. This would violate the dependencies imposed by sequential
evaluation of both threads of control. To account for this, we check that a future
and its continuation have consistent capabilities when a future completes. In
addition, when a location or thread that has a speculative capability (i.e. C, FC)
acquires a capability for a future 
 (i.e. 
 �→ F) we impose an ordering constraint
between the future of the speculative capability and the future 
. Namely, the
future 
 logically must occur after the future of the continuation whose effect
was witnessed. The manifestation of these checks directly mirrors the dependency
preserving permutation rules described earlier.

4.2 Evaluation

To illustrate the benefits of our capability mechanism to provide safety in pres-
ence of both futures and threads, we tested our prototype implementation, com-
paring traditional safe-futures to threads and futures. All experiments were
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executed on a 16-way 3.2 Ghz AMD Opteron with 32 GB main memory. We
executed the benchmark in two configurations. The first was a traditional safe-
future implementation that leveraged capabilities for commit checks. This config-
uration did not include any mechanisms to track future to thread dependencies
nor the rollback mechanism to revert multiple threads. The second configuration
was our futures and threads implementation described above.
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Fig. 9. Comparison of safe futures to futures and threads on all-pairs shortest path

We tested both implementations on an all-pairs shortest path algorithm (Floyd-
Warshall). The algorithm operates over a matrix representation of a graph of 16
million nodes. It executes a phase to calculate the shortest path through a given
node in the graph, making the total number of phases proportional to the num-
ber of nodes in the graph. The algorithm takes as input the edge-weight matrix
of a weighted directed graph and returns the matrix of shortest-length paths
between all pairs of nodes in the graph. The algorithm works by first computing
the shortest path between two given nodes of length one. It then computes the
shortest path between the two nodes by increasing length.

Safe futures are able to extract parallelism between separate phases, allowing
the computation of distinct phases in parallel. Although each phase depends on
the phase prior, it is possible to execute multiple phases in parallel by stagger-
ing their executions. The amount of parallelism is limited by the dependencies
between phases. The futures and threads implementation can not only extract
parallelism between separate phases of the algorithm, but also parallelism within
a phase. This is accomplished using fork-join parallelism, and is not easily ex-
pressible using only safe futures without significant modifications to the program
structure. We observe that threads can be allocated to compute over different
parts of the matrix within a given phase by splitting the matrix into conceptual
chunks. Although this is easily expressed using threads, safe-futures require the
programmer to express the splitting of the matrix via control flow within each
phase. This occurs because there does not exists a mechanism to constrain the
execution of a future over a part of a data structure.
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In addition, a safe futures-only strategy would enforce serializability between
each chunk, even though this is not necessary. Results are summarized in Fig. 9.
Notice that after executing 6 phases in parallel, the benefits of using only safe
futures decreases. This occurs due to the higher rate of aborts from the depen-
dencies between phases. In this workload, one future is created for each available
processor meaning that on four cores four phases are executed in parallel at any
given moment. In all cases roughly 16 million futures are created (one per phase),
but the number of phases executed in parallel depends on the availability of pro-
cessors. In the futures and threads implementation, we create one thread for
every two available processors per each phase. Each thread is split into a future
and continuation, allowing the computation of two phases in parallel. The to-
tal number of threads (and futures) is therefore 16 million times the number of
cores/2. In both implementations, it is not beneficial to create more speculative
work than the amount of processors available.

Fig. 9 shows the benefits of using futures with threads on two different types
of workloads for the all-pair shortest path problem, one containing 5% writes
(read-dominant) and the other 75% writes (write-dominant). The workloads are
generated using the observation that paths through nodes which are ranked
higher in the matrix are utilized in later phases. If the weights of edges between
higher ranked nodes are smaller more writes occur since new smaller paths are
found in successive phases. The read-dominant workload, on the other hand, is
generated by making the edge-wights between lower ranked nodes smaller than
the those between high ranked nodes. We see that futures with threads outper-
form using only safe futures in both styles of workload. In the read-dominant
workload, the number of aborts for having futures-only is roughly 2 times higher
(5432 aborts total). In comparison, in the write-dominant workload, the num-
ber of aborts for having just safe futures goes as high as 5 times (around 25255
aborts total) more than having both futures and threads. In both the workloads,
we see more aborts due to the large number of cross phase data dependencies.
This is especially true when speculating across more than four phases of the
algorithm as the benefits of staggering executions becomes muted. The write-
dominant workload results in more aborts as the number of data dependencies
between any two phases increases. The above experiment illustrates the bene-
fits of using futures with threads over just safe futures for a benchmark which
is more write-dominant. This occurs because the futures with threads scheme
can extract parallelism from within each phase, thereby limiting the number of
parallel speculative phases necessary to keep all processors busy.

5 Related Work and Conclusion

Futures are a well known programming construct found in languages from Multi-
lisp [5] to Java [6]. Many recent language proposals [7,8,9] incorporate future-like
constructs. Futures typically require that they are manually claimed by explicitly
calling touch. Pratikakis et. al [10] simplify programming with futures by pro-
viding an analysis to track the flow of future through a program and automating
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the injection of claim operations on the future at points where the value yielded
by the future is required, although the burden of ensuring safety still rests with
the programmer.

There has been a number of recent proposals dealing with safe-futures. Welc
et. al [3] provide a dynamic analysis that enforces deterministic execution of
sequential Java programs. In sequential programs, static analysis coupled with
simple program transformations [1] can ensure deterministic parallelism by pro-
viding coordination between futures and their continuations in the presence of
mutable state. Unfortunately neither approach provided safety in the presences
of exceptions. This was remedied in [11,2] which presented an implementation
for exception-handling in the presence of safe futures.

Flanagan and Felleisen [12] presented a formal semantics for futures, but did
not consider how to enforce safety (i.e. determinism) in the presence of muta-
ble state. Navabi and Jagannathan [13] presented a formulation of safe-futures
for a higher-order language with first-class exceptions and first-class references.
Neither formulation consider the interaction of futures with explicit threads of
control. Futures have been extend with support for asynchronous method calls
and active objects [14]. Although not described in the context of safe-futures,
[15] proposed a type and effect system that simplifies parallel programming by
enforcing deterministic semantics. Grace [16] is a highly scalable runtime sys-
tem that eliminates concurrency errors for programs with fork-join parallelism
by enforcing a sequential commit protocol on threads which run as processes.
Boudol and Petri [17] provide a definition for valid speculative computations
independent of any implementation technique. Velodrome [18] is a sound and
complete atomicity checker for multi-threaded programs that analyzes traces of
programs for atomicity violations.

This paper presents a dynamic analysis for enforcing determinism in an ex-
plicitly concurrent program for a higher-order language with references. Safety
is ensured dynamically through the use of a light weight capability tracking
mechanism. Our initial prototype indicates that futures and threads are able to
extract additional parallelism over a traditional safe-future approach.
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Abstract. Deadlock immunity is a property by which programs, once afflicted
by a deadlock, develop resistance against future occurrences of that deadlock.
Our deadlock immunity system, called Dimmunix, provides transparent immu-
nization against deadlocks involving mutex locks.

In this paper, we focus on efficiently protecting systems against deadlocks re-
gardless of the rate of synchronization operations performed. We describe five
optimizations that reduce the runtime overhead imposed by Dimmunix on the
host system: (1) offline deadlock detection and signature extraction, which avoids
runtime tracking of lock-to-thread allocations; (2) selective program instrumenta-
tion, whereby only vulnerable synchronization statements are monitored; (3) in-
line matching of deadlock signatures, which avoids expensive call stack retrieval;
(4) false positive reduction, which avoids unnecessary thread serialization; and
(5) safe early resumption of threads, allowing suspended threads to resume their
execution more quickly than in the original Dimmunix. Our optimizations en-
able Dimmunix to achieve a reduction of 2.8x-5.2x in the runtime overhead it
introduces for real-world systems like Eclipse, Vuze, and MySQL JDBC.

1 Introduction

When threads do not coordinate correctly in their use of locks, a deadlock can occur—
a situation whereby a group of threads cannot make progress (i.e., they hang), because
each thread is waiting for another thread to release a lock. Although deadlocks involving
other types of synchronization mechanisms exist (e.g., deadlocks caused by condition
variables) deadlocks involving locks are prevalent [4,2,7].

Deadlocks are an important cause of system failures, as revealed by multiple sur-
veys [4,2,7], yet avoiding their introduction during development is challenging. Large
software systems are developed by many programmers, which makes it hard to maintain
the coding discipline needed to avoid deadlocks. Exercising all possible execution paths
and thread interleavings during testing is infeasible in practice for large programs, and
even deadlock-free code is not guaranteed to execute free of deadlocks once deployed
in the field, due to dependencies on deadlock-prone third party libraries and plugins.

Debugging deadlocks is hard—merely seeing a deadlock happen does not mean
the bug is easy to fix. Deadlocks often require complex sequences of low-probability
events to manifest (e.g., timing or workload dependencies, presence or absence of de-
bug code, compiler optimization options), making them hard to reproduce and diagnose.
Sometimes deadlocks are too costly to fix, because a fix would entail drastic redesign.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 78–93, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Patches, too, are error-prone: many concurrency bug fixes either introduce new bugs or,
instead of fixing the underlying bug, merely decrease the probability of occurrence [4].

To address these problems, we developed a technique called deadlock immunity [3].
It helps applications defend against deadlocks by enabling them, once afflicted by a
given deadlock, to automatically develop resistance against future occurrences of that
deadlock. We implemented this technique in a system called Dimmunix, which has two
modules running simultaneously: (1) a detector that dynamically detects deadlocks and
extracts their signatures, and (2) an avoidance module that uses the signatures as anti-
bodies to avoid future occurrences of these deadlocks. A signature is an approximation
of the execution flow that led to a deadlock. To avoid a previously encountered dead-
lock, Dimmunix temporarily suspends the threads whose executions are about to match
the signature of that deadlock.

The challenge of efficiently scaling Dimmunix to synchronization-intensive systems
resides in its necessity to process every lock operation. A high synchronization rate
creates a large amount of work for Dimmunix, causing it to induce a high runtime
overhead. In this paper, we describe optimizations that are generally applicable to all
runtimes implementing deadlock immunity. These optimizations enable the runtimes to
protect systems against deadlocks regardless of the rate of synchronization operations.

We present five main optimizations for runtimes implementing deadlock immunity:
(1) offline deadlock detection, i.e., deadlocks are detected and their signatures ex-
tracted only when the program terminates, instead of performing these tasks whenever a
thread requests a lock; (2) selective program instrumentation, whereby only vulnerable
synchronization statements are monitored; (3) inline matching of deadlock signatures,
which avoids expensive call stack retrieval; (4) false positive reduction, which avoids
unnecessary thread serialization; and (5) safe early resumption of threads, allowing sus-
pended threads to resume their execution more quickly than in the original Dimmunix.

We implemented these optimizations in Dimmunix and achieved a reduction of 2.8x-
5.2x in the runtime overhead Dimmunix introduces for real world systems like Eclipse,
Vuze, and MySQL JDBC.

In the rest of the paper we present background information about Dimmunix (§2),
then describe the optimizations (§3), and assess their effectiveness (§4). We then review
related work (§5) and conclude (§6).

2 Background

Deadlock immunity is a property by which programs, once afflicted by a deadlock, de-
velop resistance against future occurrences of that deadlock. Dimmunix [3] provides
immunization against deadlocks involving mutex locks, with no assistance from pro-
grammers or users. Dimmunix can be used by customers to defend themselves against
deadlocks while waiting for a fix, and by software vendors as a safety net. Its architec-
ture consists of two parts: (1) a module that detects deadlocks and adds their signatures
to a persistent deadlock history, and (2) an avoidance module that prevents occurrences
of previously encountered deadlocks, by avoiding execution flows matching signatures
from history: whenever the execution of a thread may lead to a previously encountered
deadlock, Dimmunix suspends that thread until the deadlock danger passes.
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Dimmunix detects and avoids deadlocks by taking control of the program whenever
a thread requests a lock, after it acquires that lock, and before it releases that lock. Dim-
munix uses these events to update the synchronization state of the program, represented
as a resource allocation graph (RAG) whose nodes are threads and locks. The RAG
edges are of three types: an edge from a thread t to a lock l denotes that t is waiting to
acquire l; an edge from l to t denotes that t is holding l; an edge from a thread t1 to a
thread t2 means that Dimmunix suspended t1 because of t2, in order to avoid a deadlock.
Edges are annotated with the call stack a thread had when the edge was created.

Dimmunix detects deadlocks by looking for cycles in the RAG every time a thread
requests a lock, and if a cycle is found, it saves the deadlock’s signature to a persistent
history, to prevent future occurrences of this deadlock. A signature characterizes the
deadlocking execution via the program positions of the nested synchronization state-
ments it involves. A program position represents a location in the source code or an
offset in the program binary; for Java programs, Dimmunix uses source code locations.
We call the nested synchronization statements involved in the deadlock “outer” and
“inner” lock statements. The outer lock statements correspond to the acquisitions of
the locks involved in the deadlock. The inner lock statements correspond to the places
where the threads deadlocked. Since these statements can be reached by a multitude
of program executions, of which only a few deadlock, Dimmunix additionally saves in
the deadlock signature the call stacks the deadlocked threads had when they acquired
the locks involved in the deadlock (called “outer call stacks”) and the call stacks the
deadlocked threads had at the time of the deadlock (called “inner call stacks”). Each
frame of an outer/inner call stack is a program position; the top frame points to a syn-
chronization statement. The top frame of an outer (inner) call stack points to an outer
(respectively inner) lock statement.

Imagine a deadlock involving threads t1 and t2 that have acquired locks l1 and l2,
respectively, and now wait to acquire the other lock. This deadlock appears in the RAG

as the cycle l1
CSout

1−→ t1
CSin

1−→ l2
CSout

2−→ t2
CSin

2−→ l1, and the signature of the deadlock consists of
the pairs of outer and inner call stacks, i.e., {(CSout

1 ,CSin
1 ),(CSout

2 ,CSin
2 )}. The signature

is saved to a history file that persists across multiple executions of the program.
An instantiation of a signature S with outer call stacks CSout

1 , ...,CSout
n is a situation

where threads t1, ..., tn hold (or are allowed to acquire) locks l1, ..., ln while having call
stacks CSout

1 , ...,CSout
n . Each outer call stack CSout

i is matched up to a predefined depth,
called matching depth, defined as the number of consecutive frames in CSout

i to be
matched against a thread’s call stack, starting from the top frame. We formally represent
the instantiation as the set I = {(t1, l1,CSout

1 ), ...,(tn, ln,CSout
n )}.

Avoiding previously seen deadlocks consists of avoiding instantiations of signatures
from the deadlock history. Consider that thread t1 requests lock l1 while having call
stack CSout

1 . To avoid instantiations of signature S, Dimmunix first “pretends” to allow
t1 to acquire l1, i.e., it does not allow t1 to proceed, but it updates the RAG as if it did.
Then, Dimmunix checks if instantiations of S are possible; if yes, Dimmunix suspends
t1 until no instantiations of S are possible. When Dimmunix suspends a thread, we say
that the thread “yields.”
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Dimmunix automatically handles avoidance-induced deadlocks: when one occurs,
Dimmunix saves its signature (so it will avoid its reoccurrence, just like for a normal
deadlock) and resumes the suspended threads. More details appear in [3].

3 Optimizations

In this section, we present the optimizations we performed to Dimmunix to achieve
low runtime overhead for Java programs regardless of the synchronization operation
throughput. There are three improvements that we achieve: first, we reduce the number
of synchronization operations that are intercepted by Dimmunix. Second, we optimize
Dimmunix’s performance-critical computations. Third, we reduce the amount of time
Dimmunix suspends threads to avoid deadlocks.

For Dimmunix to intercept fewer synchronization operations, we needed to imple-
ment two optimizations: first, Dimmunix detects deadlocks and extracts their signatures
offline, when the program is forcefully terminated. To detect deadlocks, Dimmunix in-
vokes the JVM’s deadlock detection method. Previously, Dimmunix used online dead-
lock detection, i.e., the RAG was updated upon each synchronization operation and
the deadlock detection was performed periodically [3]; therefore, Dimmunix needed to
intercept every synchronization operation.

We implemented the offline signature extraction for deadlocks involving synchro-
nized blocks/methods. Upon a deadlock, Dimmunix automatically infers the outer call
stacks of a deadlock signature from the inner call stacks, which are available at the time
of the deadlock. Previously, Dimmunix retrieved and stored upon each lock acquisition
the call stack of the thread that requested the lock [3]. Section 3.1 presents details about
the inference of outer call stacks.

Second, Dimmunix instruments only the synchronized blocks/methods previously
involved in deadlocks. This optimization is effective because most of the mutex syn-
chronization statements (i.e., lock/unlock statements) are synchronized blocks/methods
(e.g., more than 96% in Vuze, ActiveMQ, Limewire, and JBoss, and 58.3% in Eclipse)
and only the ones previously involved in deadlocks are instrumented. Section 3.2 de-
scribes the selective program instrumentation.

We identified one performance-critical computation in Dimmunix: the matching of
deadlock signatures’ call stacks. Most of the computations are involved in checking
whether a previously encountered deadlock is about to reoccur. Previously, Dimmunix
used standard call stack retrieval methods (e.g., Java’s Thread.getStackTrace() method)
to obtain the call stack of a thread upon a lock acquisition and compared it to the call
stacks of the signatures in the history [3]. Dimmunix spent most of the execution time
in the call stack retrieval. We optimized it by inlining the call stack matching (§3.3).

Finally, we reduce the amount of time Dimmunix suspends threads to avoid dead-
locks (i.e., the thread serialization), by performing two optimizations: first, Dimmunix
automatically detects a posteriori if the decisions to suspend threads to avoid deadlocks
were false positives (FPs), and increases the signature matching accuracy whenever
an FP is encountered (§3.4). Increasing the matching depth for a signature reduces the
probability of matching the signature at runtime, which means that thread yields are less
frequent; therefore, the amount of thread serialization decreases. We already introduced
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in [3] the FP detection mechanism; however, this paper is the first one explaining it in
depth. Second, Dimmunix resumes the threads suspended to avoid deadlocks as soon as
the program execution reaches a point from which the deadlock situation becomes un-
reachable, i.e., the inner lock statements involved in the deadlock become unreachable
(§3.5). Resuming threads earlier reduces the duration of the yields, which means less
thread serialization. Previously, Dimmunix resumed the suspended threads only when
at least one lock involved in an avoided signature instantiation was released [3].

3.1 Inferring the Outer Call Stacks of a Signature

To be able to selectively instrument only the synchronized blocks/methods previously
involved in deadlocks, Dimmunix needs to automatically infer the outer call stacks of
a deadlock signature from the inner call stacks, which are available at the time of the
deadlock. Otherwise, Dimmunix would have to retrieve and store the call stack of the
caller thread upon each lock acquisition.

To deterministically infer the outer call stack of a signature, we require usage of prop-
erly nested synchronization statements, i.e., locks are released in the reverse order of
their acquisitions. For example, this is the case for Java’s synchronized blocks/methods,
but the technique is not limited to these only. Properly nested synchronization state-
ments enable us to deterministically obtain the outer call stacks of a signature from
inner call stacks by removing frames from the top of the latter, because the outer call
stacks are prefixes of the inner call stacks.

Inferring outer call stacks works as follows: first, Dimmunix finds the threads that
acquired the locks involved in a deadlock, as described in Algorithm 1. This requires
access to each thread’s lock stack, which contains the locks that thread acquired (and
still holds) and the requested one on top. For Java programs, these stacks are obtained
from the JVM. For each lock li involved in the deadlock, Dimmunix finds the program
position where lock li was acquired. It is not possible to infer this program position
based solely on the information provided by the CFG, because the CFG does not contain
lock identities. Therefore, Dimmunix needs to find the index k j of lock li in the lock
stack LSj of thread t j owning li (lines 1–4). Next, Dimmunix finds where thread t j

acquired li (i.e., its k j-th lock), by exploring backward the CFG the application and
popping call frames from the inner call stack, as shown in Algorithm 2 (lines 8–12).
Every time a lock (respectively unlock) statement is encountered, the counter knesting

storing the nesting level is incremented (respectively decremented); initially, knesting = 0
(lines 1–7). The outer lock statement is reached when knesting = kj, and the algorithm
returns the current call stack with the top frame replaced by the current lock statement
(lines 4–5). The algorithm is deterministic because exploring backward any execution
path leads to the same outer lock statement.

3.2 Selective Program Instrumentation

Dimmunix instruments only the synchronized blocks/methods previously involved in
deadlocks. To avoid previously encountered deadlocks, it is sufficient for Dimmunix to
instrument only these statements.
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Input: Deadlocked threads t1, ..., tn with call stacks CSinner
1 , ...,CSinner

n , lock stacks
LS1, ...,LSn, and requested locks l1, ..., ln.

Output: Signature S = {(CSouter
1 ,CSinner

1 ), ...,(CSouter
n ,CSinner

n )}, where CSouter
i are the

inferred outer call stacks.
foreach i ∈ [1,n] do1

Let t j be the thread holding li2

Find the index k j of li in LS j , corresponding to li’s acquisition3

foreach i ∈ [1,n] do4

CSouter
i := getOuterCallStack(CSinner

i ,ki,CSinner
i .top,0)5

return {(CSouter
1 ,CSinner

1 ), ...,(CSouter
n ,CSinner

n )}6

Algorithm 1. getSignature: building the signature of a deadlock

Input: Inner call stack CSinner; Lock stack index k; Current statement s, initially the
statement corresponding to CSinner’s top frame; Current nesting level knesting,
initially 0.

Data: Control flow graph (CFG) of the method containing s.
Output: Inferred outer call stack CSouter.
if there exists an unexplored predecessor s′ of s in the CFG then1

if s′ is lock acquisition then2

knesting := knesting +13

if knesting = k then4

return CSinner.pop().push(s′) // replace the top frame with s′5

if s′ is lock release then6

knesting := knesting−17

return getOuterCallStack(CSinner ,k,s′,knesting)8

else9

CSinner := CSinner.pop() // remove the top frame10

return getOuterCallStack(CSinner ,k,CSinner.top,knesting)11

Algorithm 2. getOuterCallStack(CSinner,k,s,knesting): recursively computes the outer
call stack corresponding to an inner call stack CSinner and a lock stack index k

Dimmunix instruments the outer and inner lock statements involved in a deadlock
(i.e., the program positions referenced by the top frames of the deadlock’s signature),
and the corresponding unlock statements. Since synchronized blocks are properly nested,
the unlock statements corresponding to a lock statement sl are easily found by explor-
ing forward the CFG and keeping track of the nesting level. Matching lock and unlock
statements have the same nesting level.

The outer call stacks of a deadlock signature cannot be inferred deterministically
(in the general case) for explicit lock acquisition statements, like Java’s Reentrant-
Lock.lock() Therefore, Dimmunix needs to intercept each explicit lock acquisition and
store the call stack of the caller thread, in order to obtain the outer call stacks. How-
ever, since Java programs mostly use synchronized blocks/methods to acquire locks,
the amount of instrumentation is substantially reduced for Java programs.
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Input: Outer call stack CS; Depth d. The call frame at depth d in CS is currently matched
by thread t’s execution.

Data: Counter matches[CS, t], initialized to CS.depth.
Output: True if CS is matched up to its matching depth CS.depth, False otherwise.
if d > CS.depth then1

return False2

if d = CS.depth then3

matches[CS, t] := d−14

else5

if d = matches[CS, t] then6

matches[CS, t] := matches[CS, t]−17

return matches[CS, t] = 08

Algorithm 3. inlineMatch(CS, d, t): checks whether thread t’s execution, currently
matching the frame at depth d in call stack CS, matches CS up to its matching depth
CS.depth, i.e., matches the top CS.depth frames of CS

3.3 Inline Call Stack Matching

A straightforward way to match a signature S is to retrieve the current call stack of
a thread upon a lock request and compare it to the outer call stacks of S up to their
matching depth. If the outer call stacks end in lock statements that execute often, this
matching mechanism becomes a bottleneck, because retrieving call stacks is expensive
for platforms like the JVM. Inlining the call stack matching considerably reduces the
performance overhead incurred by Dimmunix, as we show in §4.

In inline matching, the outer call stacks of a signature are incrementally matched,
as the program executes; we present this mechanism in detail in Algorithm 3. For each
outer call stack CS of a signature in the deadlock history, Dimmunix automatically
instruments the program bytecode before the statements referenced by the frames in
CS with code that works as follows: before a thread t executes such a statement, the
matching code decrements the counter matches[CS, t] (lines 3–7). The counter rep-
resents the number of frames in CS that are yet unmatched by thread t, starting from
CS’s matching depth, i.e., CS.depth; the counter is initialized to CS.depth. The matching
depth CS.depth is initialized and updated by Dimmunix, as shown in §3.4. The match-
ing is successful only if the depth d of the currently matched frame in CS is equal to
matches[CS, t] (line 6). If d = CS.depth, the matching restarts, i.e., the counter is re-
set to d− 1 (lines 3–4). Thread t’s execution matches CS up to CS.depth if and only if
matches[CS, t] = 0 (line 9).

Inline matching means accepting non-contiguous matches, i.e., extraneous frames in
a thread’s call stack are allowed, as long as the frames referenced by a signature are
in the correct order. Dimmunix is oblivious to method calls outside an outer call stack,
because they are not instrumented for matching. Since this matching mechanism is less
accurate than the straightforward one, the number of false positives may increase; how-
ever, the inline matching may protect the application against deadlock manifestations
that are not yet captured by the signature.
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3.4 Reducing the Number of False Positives

Approaches that try to predict the future with the purpose of avoiding bad outcomes may
suffer from false positives (FP), i.e., wrongly predict that the bad outcome will occur.
In Dimmunix, FPs can arise when the outer call stacks of a signature are matched too
shallowly, or when the lock order depends on inputs, program state, etc.

When an FP occurs, Dimmunix serializes threads in order to avoid an apparent im-
pending deadlock that would actually not have occurred; this can have negative effects
on performance, due to a loss in parallelism. Dimmunix “needlessly” serializes a por-
tion of the program execution, causing the program to run slower.

Dimmunix reduces the number of FPs as follows: whenever a deadlock signature S
is avoided, Dimmunix checks if the avoidance of S’s instantiation was an FP. If it was,
then Dimmunix recalibrates the matching accuracy for S.

Detecting False Positives. Dimmunix determines whether forcing a thread to yield
indeed avoided a deadlock or not, by looking for lock inversions after the yield. A
false positive (FP) is a situation where the deadlock could not have happened, under
any thread interleaving, for the current program inputs, even if Dimmunix had not
avoided the deadlock. Since a yield represents the avoidance of a signature instanti-
ation, Dimmunix associates the notion of false positive with a signature instantiation.
Dimmunix classifies an instantiation I as an FP when no lock inversion occurred after
avoiding I.

The following data structures are used for FP detection: in a signature instantiation
I = {(t1, l1,CS1), ...,(tn, ln,CSn)}, Dimmunix keeps for each lock li the set I.locksAcq[li]
of locks acquired while holding li; for each thread t and lock l, Dimmunix stores the set
instances[t, l] of signature instantiations involving t and l that Dimmunix avoided since
t acquired l last time. Dimmunix initializes with null each set I.locksAcq[li] when I is
constructed, and updates the set only when li is released. If a lock li is reacquired before
I is analyzed, Dimmunix does not change the set I.locksAcq[li], i.e., it freezes the set as
soon as li is released. We denote by I.sig the signature instantiated by I.

When a thread t is about to release a lock l, Dimmunix analyzes every signature
instantiation I = {(t1, l1,CS1), ..., (tn, ln,CSn)} from the instances[t, l] set to determine
whether it was a false positive (FP), as illustrated in Algorithm 4. When all the sets
I.locksAcq[li] are non-null, it means that all the locks li have been released, and Dim-
munix analyzes I (line 4). Dimmunix classifies I as an FP if and only if there is no lock
inversion in I, i.e., l1 /∈ I.locksAcq[l2], ..., or ln /∈ I.locksAcq[l1] (lines 5–6).

Classifying an instantiation I as an FP if no lock inversion occurred is sound, under
the assumption that the thread scheduling does not affect lock identities and expressions
controlling the inner lock statements (e.g., through data races).

Calibrating the Signature Matching Accuracy. A signature S captures all the pos-
sible manifestations of a deadlock bug if and only if all the possible signatures of the
same deadlock match S up to the matching depths of its outer call stacks. Choosing
too large matching depths can cause Dimmunix to miss manifestations of the deadlock,
while choosing too shallow ones can lead to mispredicting a runtime call flow as being
headed for deadlock (i.e., an FP).
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Input: Thread t releasing l; Set instances[t, l]; Sets I.locksAcq[li] for each instantiation
I = {(t1, l1,CS1), ...,(tn, ln,CSn)} in instances[t, l].

Output: Number of FPs numFPs[S] corresponding to each signature S.
// before releasing l, check if the instantiations avoided by t before l’s acquisition were FPs1

foreach I = {(t1, l1,CS1), ...,(tn, ln,CSn)} ∈ instances[t, l] do2

// if all the locks involved in I were released3

if ∀i ∈ [1,n] : I.locksAcq[li] �= null then4

if ∃i ∈ [1,n] s.t. li /∈ I.locksAcq[l(i+1)%n] then5

numFPs[I.sig] := numFPs[I.sig]+16

unlock(l)7

Algorithm 4. detectFPs(t, l): checks if the signature instantiations that t avoided last
time it requested l were FPs

We now describe how Dimmunix calibrates the matching depths at runtime to re-
duce FPs while maintaining effectiveness. When a signature S is created, the matching
depths of its outer call stacks are set to 1. Hence, S initially captures all the possible
manifestations of the deadlock bug. Every time an FP is encountered when avoiding an
instantiation of S, the matching depths of S’s outer call stacks are incremented.

A scenario where dynamically increasing the matching precision helps is one when
an application uses synchronization wrappers, and the lock acquisitions always execute
at the same program position. Keeping the matching depth at 1 serializes all the critical
sections, which is not desirable. Increasing the matching depth dynamically when FPs
are encountered solves this problem.

When the matching depth becomes too large, a signature may not capture all the
possible manifestations of the deadlock bug, because there may exist other signatures
of the same deadlock bug ending in call stack suffixes that no longer match S. To prevent
this situation, Dimmunix merges signatures.

Dimmunix merges the signature S′ of a new manifestation of a deadlock bug with the
existing signature S of the same deadlock as follows: first, it finds the common suffix
of maximum length of the outer call stacks of S and S′. Then, Dimmunix decrements
the matching depths for S’s outer call stacks to this length, and freezes them. Finally,
Dimmunix discards signature S′, to keep the deadlock history at a minimal size. If the
deadlock reoccurs, with another signature S′′, Dimmunix merges S and S′′, and so on.
This way, Dimmunix finds the deepest matching depth for S, while preserving the ability
to avoid all the possible manifestations of the deadlock bug.

From our experience, the number of signatures corresponding to a deadlock bug is
low, the maximum being two. If a deadlock bug has few signatures, it takes few oc-
currences of the deadlock to converge to an optimal matching precision. However, if
a deadlock bug has many manifestations with different outer call stack suffixes, Dim-
munix will most likely need to encounter only a couple of them to fully protect the
application against the deadlock bug, because with each newly discovered signature the
calibration algorithm decreases the matching depth of the original signature.
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Input: Signature S, with outer lock statements sout
1 , ...,sout

n and inner lock statements
sin
1 , ...,sin

n .
Data: Control flow graph (CFG).
Output: The set of escape branches.
escape := /01

foreach i ∈ [1,n] do2

foreach branch statement s ∈ CFG s.t. sout
i �s do3

Let B be the set of branches of s4

if ∃b ∈ B s.t. b�sin
i then5

escape := escape∪{b′ ∈ B | ¬b′�sin
i }6

return escape7

Algorithm 5. findEscapeBranches(S): finds the escape branches for a signature S

3.5 Reducing the Yielding Time

To reduce the duration of a yield, Dimmunix exploits the branches that escape the dead-
lock, i.e., branches that lead the program away from acquiring the inner lock that trig-
gers the deadlock. When such a branch is taken, Dimmunix stops the avoidance process
by canceling the active yields and preventing future ones, until the lock whose acquisi-
tion triggered the avoidance is released.

Given the outer and inner call stacks of a deadlock signature, Dimmunix statically de-
tects in the CFG of the application bytecode the “escape branches” that bypass the dead-
lock; we illustrate this mechanism in detail in Figure 5. To determine these branches,
Dimmunix first finds the “critical branches” that need to be taken in order to reach the
inner lock statements from the outer lock statements (lines 3–5). If a conditional state-
ment has one or more critical branches (line 5), the remaining branches (if any) are
escape branches (line 6). We use the notation x�y to denote the fact that statement y is
reachable from statement x in the CFG.

Dimmunix inserts code to stop the avoidance process at the escape branches and
right after the inner lock statement, if that statement is not in a loop. Since the deadlock
situation cannot be reached from these positions, the yielding threads can be safely
resumed. If a deadlock occurs due to stopping the avoidance, that deadlock will have
different inner lock statements, and therefore it is a new deadlock bug. A new signature
is constructed for this deadlock.

4 Evaluation

The goal of this section is to assess the performance improvements that result from
employing the five optimizations described above.

First, we evaluate the benefits brought by the optimizations in synchronization
-intensive scenarios on three real-world applications: Eclipse IDE, Vuze BitTorrent
client, and MySQL JDBC. We found that Eclipse and Vuze are synchronization-
intensive at startup: they perform 78,536 and respectively 28,872 synchronization op-
erations per second. For MySQL JDBC, we used the JDBCBench benchmark, which
performs 100,855 synchronization operations per second.
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The measurements for the three applications are end-to-end: for Eclipse and Vuze,
we compute the runtime overheads introduced by various Dimmunix configurations
by comparing the time it takes for the application to start and immediately shut down
when Dimmunix is running to the time it takes without Dimmunix; for MySQL JDBC,
we compare the number of transactions performed when Dimmunix is running to the
number of transactions when Dimmunix is not running.

Our experiments explore Dimmunix’s behavior in worst-case scenarios, even though
they are unlikely to manifest during steady state operation. In the original article [3]
we focus instead on realistic steady state scenarios. A worst-case scenario is one with
a high rate of synchronization operations and with deadlock signatures that cover fre-
quently executed nested synchronization statements. For our experiments, we manually
generate 20 such signatures for deadlocks involving two threads. By default, Dimmunix
is configured to use selective instrumentation, FP detection and matching depth calibra-
tion, inline call stack matching, and an initial matching depth of 5.

To measure the benefit of selective instrumentation, we compare the overhead intro-
duced by Dimmunix with and without selective instrumentation. Figure 1a shows that
this optimization reduces the overhead caused by Dimmunix by a factor of 1.3x–1.9x.
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(b) Inline call stack matching.

Fig. 1. Benefit of selective instrumentation and inline call stack matching

To measure the benefit of the inline call stack matching, we compare the use of
Java’s getStackTrace() method for call stack matching against the default configuration.
As Figure 1b shows, this optimization reduces the runtime overhead by up to 2x.

To measure the usefulness of a high signature matching accuracy, we change the
initial matching depth to 1 in the default configuration. As Figure 2a shows, increasing
the matching depth from 1 to 5 reduces the overhead by a factor of up to 2.6x.

We evaluate the benefit of enabling selective instrumentation and inline call stack
matching together, by comparing the runtime overhead introduced by Dimmunix when
both optimizations are missing against the default configuration. Figure 2b shows that
the effects of the two optimizations compound: together, they reduce Dimmunix’s over-
head by a factor of 2.8x–5.2x. The performance improvement is higher compared to
the sum of the improvements brought by the individual optimizations. The explanation
is that using heavy call stack matching for all the synchronization statements is worse
than using it for only several synchronization statements.

Although the signatures we generated end in program positions where most synchro-
nization operations execute, they are not instantiated often because the applications’
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Fig. 2. Benefit of high matching accuracy and enabling all the optimizations at once

threads seldom synchronize as described in our signatures. Therefore, the benefit of
automatically detecting FPs and increasing the matching accuracy, and exploiting the
escape branches is marginal. We evaluate the effectiveness of these two optimizations
on a separate microbenchmark in which signatures are instantiated often.

To dissect Dimmunix’s performance behavior and understand how it varies with var-
ious parameters, we wrote a synchronization-intensive microbenchmark that creates Nt

threads that synchronize on locks from a total of Nl shared locks. A thread acquires a
lock by executing one of Np lock acquisition statements, then executes δin statements,
then releases the lock, then executes δout statements, then acquires another lock. The δin

and δout delays are implemented as busy loops that execute incrementation statements,
to simulate computation. The threads call multiple functions within the microbench-
mark so as to build up different call stacks; which function is called is chosen randomly,
generating a uniformly distributed selection of call stacks.

We also wrote a tool that generates synthetic deadlock history files containing H
signatures of size 2 (the usual number of threads involved in a deadlock [4]). The H
signatures cover H lock acquisition statements. If H = Np, then all the lock acquisition
statements in the microbenchmark are instrumented. Each signature has two identical
call stacks that consist of combinations of the microbenchmark’s methods—not signa-
tures of real deadlocks, but avoided as if they were.

Figure 3a shows that the selective program instrumentation is effective for up to 64
signatures. The overhead of Dimmunix with selective instrumentation is 0–6.1% com-
pared to 5.2–16.4% for full instrumentation. With an empty history, there is no over-
head if Dimmunix uses selective instrumentation, while with full instrumentation, the
overhead is already 5.2%, comparable to selective instrumentation with 64 signatures,
because with full instrumentation Dimmunix performs signature matching at program
positions where it is not needed. For more signatures, the overhead increases rapidly.

Figure 3b shows that inline call stack matching considerably reduces performance
overhead: if Dimmunix uses the JVM’s call stack retrieval, the overhead is 26–27%; if
the call stack matching is inlined, the overhead goes down to 4–5%.

To measure the effect of detecting false positives and calibrating the signature match-
ing precision, we first show the effect of false positives (FPs) on performance. A FP
causes a thread to needlessly yield, decreasing the rate of synchronization operations.
Since our microbenchmark has no real deadlocks, all yields are unnecessary. We com-
pute the overhead caused by FPs by comparing the rate of synchronization operations
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Fig. 3. Results for selective instrumentation and inline call stack matching

performed when Dimmunix detects that a deadlock will manifest, but takes no avoid-
ance actions, to the same rate when Dimmunix suspends threads to avoid deadlocks.

Figure 4a shows the results: as the matching depth increases, the overhead induced
by FPs decreases. For a matching depth of 1, the overhead due to FP yields is 121%.
For a matching depth of 4, the overhead due to FP yields drops by 14x, to 8.56%.
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Fig. 4. Detecting false positives and calibrating the signature matching precision
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Fig. 5. Exploiting escape branches

Figure 4b shows the benefit of increas-
ing the matching accuracy as FPs are
encountered. Compared to the configu-
ration used for Figure 4a, here Dimmu-
nix is configured to dynamically calibrate
the matching depths. If we compare the
two figures, the benefit of dynamically
increasing the matching accuracy is ev-
ident: the overhead becomes acceptable
even for an initial matching depth of 1
(i.e., 5.7%).
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Figure 5 shows the benefit of exploiting escape branches to reduce yielding time.
The benefit is substantial if (a) the number of instructions on the escape paths that
bypass the deadlock (δescape) is substantially larger than the number of instructions in
the critical section preceding the escape branches, i.e., δin; (b) signatures are instantiated
very often, i.e., the matching depth is low and δout is small; and (c) there are no FPs,
even for shallow matching depths. We disable the matching depth calibration, in order
to simulate the scenario in which there are no FPs. For δescape = 0, there is no benefit in
exploiting escape branches. For δescape = 10,000 (respectively 50,000 and 100,000), the
overhead is 77% (respectively 67% and 50%) when escape branches are not exploited,
compared to 63% (respectively 40% and 32%) when exploiting escape branches.

5 Related Work

There is a spectrum of runtime techniques for avoiding or preventing deadlocks, i.e.,
techniques that (1) statically detect potential deadlocks and avoid them at runtime; (2)
dynamically prevent deadlocks; (3) transparently recover from deadlocks; and (4) tech-
niques that provide deadlock immunity.

Approaches like [1] and Gadara [8] detect potential deadlocks statically and avoid
them at runtime. In [1], authors propose to use new locks, while Gadara uses Petri nets.
If the static analysis has false positives, these approaches make the applications avoid
false deadlock bugs. This is not the case for Dimmunix, because it avoids only previ-
ously detected at runtime. Unlike the two approaches, Dimmunix requires no source
code. Unlike Dimmunix, Gadara needs source code annotations from the developers to
filter out the false positives, yet this is difficult.

A dynamic deadlock prevention technique is [10], which modifies the JVM to serial-
ize threads’ accesses to sets of locks acquired in a nested fashion. There are a couple of
shortcomings of this approach: First, the lock acquired at a particular program location
can change during the same execution; if it changes often (e.g., it may correspond to
an array element), then [10] is not effective. Every time new locks are used, [10] has
to update the lock sets. Whenever the lock sets are not up to date, the program is vul-
nerable to deadlocks. Second, the lock sets are not reusable in future runs: in each run,
[10] will have to restart the learning process from scratch. Dimmunix eliminates these
shortcomings by abstracting the locks involved in a deadlock to call stacks.

Sammati [6] dynamically detects deadlocks and transparently recovers the applica-
tions from deadlocks by executing critical sections in isolation from other threads. If
a deadlock happens during the execution of a critical section, the updates performed
within the scope of that section up to the deadlock are discarded, in effect rolling back
the critical section. Since Sammati is essentially a TM customized for deadlock recov-
ery, the TM challenges (e.g., large critical sections, I/O) apply to Sammati as well.

Deadlock immunity approaches include [5,9]. These approaches dynamically detect
deadlocks, then avoid future occurrences of the same deadlocks. If a deadlock involving
threads t1 and t2 and locks l1 and l2 occurs, the two approaches save into the signature
of the deadlock the program positions p1 and p2 where l1 and l2 were acquired; [9]
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saves, in addition, the positions p′1 and p′2 where t1 and t2 deadlocked. In future runs,
[5,9] prevent the deadlock from reoccurring by acquiring a “gate lock” every time the
lock statement at p1 or p2 is about to execute. If the lock at p′1 (or p′2) can be soundly
inferred at runtime from p1 (respectively p2), [9] swaps the lock acquisitions at p1

and p′1 (respectively p2 and p′2), instead of acquiring a gate lock. The latter avoidance
mechanism is difficult in the general case, because predicting which lock objects will
be used is undecidable. Therefore, speculatively acquiring the lock at p′1 (or p′2) does
not guarantee that the deadlock will be avoided.

Dimmunix shares ideas with [5,9], but uses a more accurate avoidance mechanism.
Like in these approaches, Dimmunix’s deadlock avoidance mechanism relies on tem-
porarily suspending threads. Dimmunix has fewer false positives, compared to these
techniques, thus alleviating the problem of lost parallelism. Finally, the efficiency of
Dimmunix’s critical-path computations is comparable to acquiring a gate lock.

6 Conclusion

In this paper, we presented the optimizations we brought to Dimmunix, a system that
enables applications to defend themselves against deadlocks.

We reduce the overhead introduced by Dimmunix’s deadlock detection by perform-
ing it offline, when the program terminates. We optimize the deadlock avoidance by
(1) performing selective program instrumentation to confine monitoring to only lock
statements previously involved in deadlocks, (2) inlining the matching of signatures,
(3) reducing the number of false positives, and (4) aborting deadlock avoidance when
the deadlock situation becomes unreachable.

We implemented these optimizations for the Dimmunix prototype targeting Java ap-
plications. Our evaluation shows that these optimizations significantly reduce the over-
head Dimmunix incurs on Java applications.
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Abstract. It is difficult to write parallel programs that are correct. This
is because of the potential for data races, when parallel tasks access shared
data in complex and unexpected ways. A classic approach to addressing
this problem is dynamic race detection, which has the benefits of working
transparently to the programmer and not raising any false alarms. Unfor-
tunately, dynamic race detection is very slow in practice; further, it can
only detect low-level races, not high-level races which are also known as
atomicity violations. In this paper, we present a new approach to dynamic
detection of data races and atomicity violations based on the concept of
permission regions, which are regions of code that have permission to read
or write certain variables. Dynamic checks are used to ensure that no con-
flicting permission regions execute in parallel, thereby allowing the granu-
larity of checks to be adjusted according to the size of permission regions.
We demonstrate that permission regions can be used to achieve signifi-
cantly better performance than past work on dynamic race detection, to
the point where they could be used to enable always on race detection for
both low- and high-level races in production code.

1 Introduction

As chip manufacturers turn towards multi-core processors for performance, par-
allel programming is becoming a critical bottleneck to future software perfor-
mance. Unfortunately, it is difficult to write parallel programs that are correct
because of the potential for data races, where parallel tasks can read and write
shared data in complex and unexpected ways. Except rare cases of parallelism
experts writing race-tolerant code, a data race is a bug, as it can cause code to
run in ways that were not intended by the programmer. It is a more devious sort
of bug than most, however, because data races are notoriously hard to detect
and reproduce.

A classic approach to dealing with data races is dynamic race detection
[32,17,28,16,30,35,14]. Under this approach, each memory access of a program
is instrumented to check, at runtime, whether it conflicts with a parallel access.
This approach has two powerful benefits: it works transparently to the program-
mer, since the instrumentation is done by the compiler or runtime system; and it
can work with many patterns of synchronization, since the dynamic checks need
not be aware of how synchronization is achieved. This last point is in contrast
with many other approaches, such as static race detection [20,40,6,15,4], trans-
actional memory [24], or approaches to deterministic parallelism [5,34], which
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generally require very specific approaches to synchronization and parallelism.
Unfortunately, past approaches to dynamic race detection have been very slow,
limiting its usefulness in practice. In addition, dynamic race detection cannot
detect high-level races, or atomicity violations, where a task modifies the data of
another in the absence of standard, or low-level, data races1. High-level races are
especially insidious because they depend on programmer intent, and can occur
even in well-synchronized code.

In this paper, we introduce a new programming language model that enables
a form of “always on” race detection for both low- and high-level races. More
specifically, our approach enforces a property which we call the permission prop-
erty, which ensures that no task is permitted to write to a memory location while
another task has permission to access that location. The permission property is
stronger than race-freedom, and in fact corresponds to the way most program-
mers write code. To enforce this “single-writer” property, we introduce a new
construct called a permission region. These constructs mark a region of code
with read and write sets of variables, to indicate that the region has permis-
sion to read or write those variables while it executes. Two permission regions
are said to conflict when the write set of one overlaps the read or write set of
the other. The runtime system then checks that no two conflicting permission
regions execute in parallel, throwing an exception if a conflict is detected.

Permission regions can be seen as an extension of dynamic race detection that
increases the granularity of dynamic checks to entire regions of code, instead of
to individual memory accesses. One of the key differences from dynamic race-
detection approaches is that permission regions are fundamentally a language-
based approach, where the dynamic checks and exceptions are an explicit part
of the language semantics; this is as opposed to dynamic race detection, where
checks are inserted without changing the semantics of a program. Having a
language-based approach has the following benefits: It allows the programmer
to control the granularity of dynamic checks in a straightforward manner that
does not require any knowledge of how the checks are actually performed; and
it allows for compiler insertion (inference) of permission regions, which can be
refined by the programmer as desired.

We demonstrate our approach with an implementation of permission regions
in the Habanero Java (HJ) programming language, an extension of Java with
task parallel constructs [9]. This implementation has successfully run 11 HJ
benchmarks totaling more than 9,000 lines of code. Most of the benchmarks
run less than 2.5× slower than their uninstrumented versions, with a geometric
mean around 1.5×. Compared with most of the state-of-art data race detection
implementations [32,28,16,3,30,35], which typically result in a slowdown of an
order of magnitude or more, our overhead is relatively low especially for parallel
runs. Further, the annotation burden of our approach is also low due to compiler
inference of permission regions. The main source of programmer annotations
observed in our approach is for array-based parallel loops that modify disjoint
parts of an array in parallel; the programmer is required to create these disjoint

1 We borrow the terms “low-level race” and “high-level race” from Artho et al. [3].
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array pieces as array sub-views, which generally requires one call to be inserted
per loop. Over our 11 benchmarks, this leads to an average of 3% of the lines
of code being modified. In addition, there was exactly one false positive due
to the compiler insertion algorithm. The annotation burden here is much lower
than comparable approaches, such as Deterministic Parallel Java [34,5], which
requires an average of 12% of the lines of code to be modified.

The rest of the paper is organized as follows. Section 2 introduces the Ha-
banero Java (HJ) parallel programming language and the Java Memory Model.
Section 3 introduces permission regions as an extension of HJ. Section 4 presents
compiler techniques to automatically insert permission regions into HJ programs.
Section 5 presents the implementation details of the language construct within
the Habanero-Java compiler and runtime. Section 6 shows the performance eval-
uation of our implementation of permission regions on a set of HJ benchmarks.
Section 7 discusses related work, and Section 8 presents conclusions and direc-
tions for future work.

2 Background: Data Races in Habanero-Java

In this section, we briefly introduce Habanero Java (HJ) [9] and explain low- and
high-level races. HJ is an extension of Java with several constructs for parallelism
and synchronization; in this paper, we consider async and finish which respec-
tively spawn a child task and wait for all tasks spawned in a lexically-scoped
block to complete2, as well as isolated which ensures mutual exclusion among
all instances of isolated statements (weak atomicity). The async and finish con-
structs are borrowed from X10 [10], and are more general that the spawn and
sync constructs of Cilk, respectively. The isolated work is borrowed from early
work on critical sections and recent work on transactions.

A low-level race in Java, and similarly in HJ, is defined by the Java Memory
Model (JMM). We refer the reader to other work [18,26,41] for the technical
details, but conceptually a low-level race occurs when two accesses to the same
memory location, one of which is a write, occur in distinct tasks without some
form of synchronization between them. The difficulty of low-level races is that, in
their presence, the actions of a task can appear to happen in a different order to
other tasks running in parallel. When a program has no low-level races, however,
then the JMM ensures sequential consistency (SC) [23], meaning it behaves as
if each instruction of each task appears to be atomic. When there are low-level
races, however, the possible behavior can be quite complex, making the program
difficult to understand.

As an example, consider the two tasks depicted in Figure 1, which perform
push and a pop operations on a stack (SNode) object, this , in parallel. (this is
assumed to be the same in both tasks.) Since there is no synchronization between
them, the write of this.next in task 1 has a low-level race with the read of the
same field in task 2. This means that, under the JMM, task 1 can appear to occur

2 We use the term “task” here instead of “thread” to distinguish semantically parallel
tasks from the OS threads to which they might be mapped by an implementation.
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vo id push (SNode n) {

n.next = t h i s .next;
t h i s .next = n;

}

(a) Task 1

SNode pop () {

SNode tmp = t h i s .next;
i f (tmp != n u l l )

t h i s .next = tmp.next;

r e tu r n tmp;

}

(b) Task 2

Fig. 1. A Simple Data Race

in a different order to task 2, allowing task 2 to see the newly pushed node n

with the old value of n.next. This execution can also be viewed as equivalent to
rewriting the body of Task 1 to “temp = this.next; this.next = n; n.next

= temp;”, a transformation that is permitted by the JMM if n and this refer
to distinct objects. In this scenario, the third line of pop() would set this.next
to the old value of n.next, obliterating the remainder of the stack after this .

Even assuming SC with no low-level data races (e.g., if every instruction were
protected by a lock), the code may still execute incorrectly if task 1 runs to
completion directly after the read of this.next in task 2, since n would be
removed from the stack when task 2 sets this.next. This represents a high-level
race, or atomicity violation, as task 2 intuitively assumes that this.next does
not change between the read and the write of this field.

3 Permission Regions

The syntax of a permission region is as follows:

permit read (x1, . . . , xm) wr i t e (y1, . . . , yn) { BODY }

This statement executesBODY under the assertion that, while BODY executes,
no conflicting permit statement will execute in a different task at the same time.
We call the variables xi and yj the read and write variables of the permission
region, respectively, and the set of objects they refer to during execution the
read and write sets3. Two dynamic instances of permit statements are said to
be conflicting if the write set of one overlaps the read or write sets of the other.
If a permission region begins executing while a conflicting permission region is
already executing in parallel, an exception is thrown. Otherwise, the permission
region’s execution is guaranteed to be in isolation relative to its read and write
sets. This means that the body cannot see any writes from another task after
entering the permission region, nor can any parallel task see its writes until
the permission region has completed. “Completion” includes both normal and
exceptional exit from BODY .

As an example, Figure 2 shows how compiler annotates the racy example of
Figure 1. (The algorithm used to place the annotations is discussed in Section 4.)

3 Note that there can be no data races on local variables in Java or HJ.
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vo id push (SNode n) {

permit w r i t e ( t h i s ,n) {

n.next = next;

next = n;

}

}

(a) Task 1

SNode pop () {

permit w r i t e ( t h i s ) {

SNode tmp = next;

i f (tmp != n u l l )
permit read (n)

next = n.next;

r e tu r n tmp;

}

}

(b) Task 2

Fig. 2. Adding permit to Figure 1

The push() method is annotated with a permission region whose write variables
include this , the stack on which a stack node is pushed, and n, the stack node
being pushed onto the current stack. This permission region ensures that the
call to push() must have write permission to these two objects while it executes.
The pop() method is annotated with two permission regions: the first has write
variable this , since this may possibly be modified to remove the next element
of the stack; the second has read variable n, which represents the top node of
the stack, since the next element of the stack after n must be read. Again, these
permission regions ensure that pop() must have these permission on these two
variables. Thus if one of push() and pop() begins executing before the other
completes, then that method will throw a PermissionViolationException.

Permission regions represent a combination of static and dynamic checks.
Checking that two conflicting permission regions do not run in parallel is in
general an undecidable problem, and although there has been much work on
static may-happen-in-parallel analysis (e.g., [1]), such analysis must in general
be conservative. Thus we leave happens-in-parallel checking as a dynamic check.
To ensure the permissions property, however, we must also be sure that all
reads and writes happen inside appropriate permission regions; i.e., writes to
x.f may only occur inside a permission region whose write variables include
x, and similarly, reads of x.f may only occur inside a permission region whose
read or write variables include x. The algorithm used to insert these checks is
discussed in Section 4. We now briefly summarize some of the salient points of
the design of permission regions.

Read and Write Variables can be Modified: It is allowed for the variables in the
variable set of a permission region to be modified in the body of the permission
region. For example, the following code performs a loop inside a permission
region which conditionally modifies the its write variable:

permit w r i t e (x) {

whi l e (...) {

i f (...) { x = ...; }

}

}
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This generalizes the semantics of permissions regions as follows: two permit
statements are said to be conflicting if the current values of the write set of one
overlaps the current values of the read or write sets of the other. Modifying a
read or write variable can also cause a permission region to come into conflict
with a concurrently executing permission region, and thus assignments to such
variables, such as the assignment to x above, can cause data race exceptions to
be thrown.

Final and Static Fields: Under the JMM, reading final fields do not is never
considered a data race. Similarly, we allow such fields to be read without in-
serting any permission regions4. Fields marked as static are global, and are not
associated with a particular object. Thus we also allow static fields to be read or
write variables in permission regions, where conflicts involving static fields can
only occur between regions that both use the field itself, not the value pointed
to by the field. Permissions on objects pointed to by static fields can be obtained
by reading the static field into local variables.

Constructors: The bodies of constructors are always implicitly contained inside
a permission region with write variable this , as the purpose of a constructor
is to initialize an object before it is used. Thus, although parallelism is allowed
in constructors, passing this to another task in a constructor will cause an
exception if the other task tries to access this before the constructor finishes.

Array Views: In order to support array-based parallelism, where tasks process
pieces of an array in parallel, a permission region can specify pieces of an array in
its read or write sets. This specification is supported by having users access arrays
through array views [36,22], which are objects in HJ that represent pieces, or sets
of cells, of an array. To create an array-based parallel loop, the programmer must
create one sub-view of an array view per parallel task, to represent the piece of
the array being processed by that task. This is illustrated by the code in Figure 3,
which shows a simple array-based parallel loop using sub-views. The loop creates
N sub-tasks, each of which creates a sub-view of the array-view A, where the syntax
int[.] denotes the type of an array-viewwith element type int . Each task creates
a sub-view subA of A and uses a permit to indicate that it will write to subA; it
then iterates over all points p in the region r, writing to subA[p].

This approach was chosen because allows programmer control and it fits nicely
with the rest of the system. It does have some notational overhead, however, as
it requires the programmer to explicitly create sub-views. In fact, this notational
overhead is the main source of programmer effort required to port existing HJ
benchmarks, as discussed in Section 6, since HJ itself does not require sub-views
to be created. It is good programming practice, however, for the programmer to
make explicit the pieces of the array that will be modified by each task. The only
other approach would be to allow permission regions to explicitly state the pieces

4 We ignore known issues with potential data races on final fields during object ini-
tialization.
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i n t [.] A = ...;

f o r ( i n t i = 0; i < N; ++i) { async {

region r = ...; i n t [.] subA = A.subView (r);

permit w r i t e (subA) {

f o r (point p : r) { subA[p] = ...; }

} } }

Fig. 3. An Array-Based Parallel Loop using Sub-Views

of an array-view that are allowed to be accessed, but this would require some form
of dependent types or dynamic checks to ensure that the array accesses inside
the permission region fall inside the specified array piece, further complicated
the system.

Inter-Method Permissions: It can often be useful to have permission regions cross
method boundaries. For example, accessor methods are often used in the context
of a more complex operation which is intended to be strongly isolated. To allow
inter-method permission regions, we introduce permission method annotations.
These take the form of two new keywords allowed in method signatures, reading
and writing, which mark arguments in a method signature that must be in
the read or write variables, respectively, of an enclosing permission region when
the method is called. The implicit this argument can also be modified with
these keywords by applying the keyword to an entire method, i.e., by listing the
keyword in the method signature before the return type.

For example, we could change the signature of the push() method of Figure
2 as follows:

vo id w r i t i n g push (wr i t i n g SNode n)

This states that any calls to p.push(q) must always occur inside permission
regions for p and q. In turn, the compiler need not insert the permission regions
for this method given in Figure 2. This can be useful to reduce the number of
dynamic checks performed at runtime. It also allows the user to state stronger
atomicity requirements; for example, code containing three consecutive calls to
push() with this new signature is guaranteed to push all three elements in order
with no intervening pushes or pops in parallel, since such parallel accesses would
result in an exception.

4 Compiler Insertion of Permission Regions

In this section, we describe the algorithm our compiler uses to insert permis-
sion regions, to reduce the annotation burden for the programmer. The basic
assumption of the algorithm is that, in general, a programmer does not intend
for an object to be modified in parallel while that object is in scope. Thus our
algorithm essentially tries to match permission regions to variable scopes. Nat-
urally, this approach will not always exactly capture the programmer’s intent;
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i.e., this approach may lead to false alarms when the original code had no data
races. However, this approach is always sound; i.e., an exception-free execution
using compiler-inferred checks is guaranteed to be data-race-free. Further, this
approach is almost always correct in practice: for the 11 benchmarks discussed
in Section 6, totaling about 9k lines of code, only one case was found that led
to a false positive, other than the requirement that regular parallel application
use array views in the manner discussed in Section 3. Note also that our algo-
rithm does not insert any of the method annotations of Section 3, as these could
potentially change the semantics of a program in ways the user did not intend.

We proceed as follows. Section 4.1 gives our insertion algorithm, while Section
4.2 describes two cases where this algorithm gives incorrect results and describes
why these cases are rare.

4.1 The Insertion Algorithm

As discussed above, our algorithm essentially tries to match permission regions
to variable scopes. This goal is modified by a number of concerns. First, per-
mission regions do not cross async statements; in fact, inserting an permission
region for x outside an async statement is drastically different than inserting
it inside the body of the async statement, since the former means the parent
process can access x while the latter means the child task can access x. Second,
if x is only accessed within the bodies of isolated statements — which spec-
ify critical sections in HJ (instead of using monitors like Java’s synchronized
keyword) — then the algorithm assumes that x should only be accessed inside
critical sections, and permission regions for x are only inserted inside the body
of isolated statements. Finally, if the programmer explicitly writes a permit
statement then the algorithm respects the placement of that permission region.

The inference algorithm works on a per-method basis by considering the ab-
stract syntax tree (AST) of a method body. The algorithm first finds all nodes
n in the AST where read or write access to each variable x is required such that
n does not already occur inside of an appropriate permission region. Read or
write access could be required either because of access to a field x.f or because
of a method call that specifies reading or writing for an argument position for
which x is passed. Next, for each such node n that requires access to x in the
AST, the algorithm finds the highest ancestor a of n such that the path from a
to n does not contain an async or an isolated . A permission region for x is then
inserted around a in the AST, with x in the appropriate variable set.

4.2 Limitations of the Insertion Algorithm

The inference algorithm presented above yields false positives in two poten-
tial programming patterns, which we call intra-scope parallel access and task-
dependent conditionals. Intra-scope parallel access is when a region of code that
accesses x somehow passes x to a parallel task, like this:

x.f = ...; compute(x); ... = x.f;
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where compute() performs some parallel computation on its argument. In this
case, the user does expect x to be accessed in parallel while compute() executes,
and thus the proper placement of permission regions for x would be to have two
regions, neither of which contains the call to compute(). Our algorithm, however,
inserts a single region around the whole piece of code, yielding a false positive
and requiring manual insertion by the user. This pattern occurred exactly once
in our study of over 9000 lines of HJ benchmarks, specifically in the PDFS
benchmark, so it is not incredibly common.

Task-dependent conditionals occur when accesses to an object are guarded by
a conditional that picks out a specific task, like this:

i f (isTask1) { x.f = ...; }

Our inference algorithm will insert the permission region around the entire con-
ditional; however, if this code is called in parallel by multiple tasks, where only
one task has isTask1 set to true, then the proper place for the permission re-
gion is arguably inside the conditional. This is a very rare programming pattern,
though, that we have not seen in any of our benchmarks. Further, the problem
only appears when the condition is guaranteed to hold for at most one parallel
task; otherwise, there really is a potential race, which should indeed be reported.

5 Implementation

Permission regions are implemented within the Habanero-Java (HJ) program-
ming language. Figure 4(a) depicts the main components of the Habanero-Java
compiler/runtime framework, with labels next to each component that had to
be modified to support permission regions, indicating modifications were made.
The parser was modified to support the new permit statement. The Analysis
and Transformation phase was modified in two ways, by adding new sorts of
AST nodes to the the parallel intermediate representation (PIR), to represent
permission regions, and by adding the permission region insertion algorithm of
Section 4 as a compiler pass. Finally, the HJ runtime was modified to track
potential conflicting permission regions, as follows.

The default root object HJ, hj.lang.Object, has been extended with four
new methods, acquireR(), releaseR(), acquireW(), releaseW(). These are
called on an object when the current task needs to acquire or release read or
write permission to that object; acquires happen on entry to a permission re-
gion and when a read or write variable is modified, while releases happen on exit
from a permission region. These methods perform transitions on a state machine,
maintained for each object, which is described in Figure 4(b). This includes the
following states: Null means no permissions are being held; private read indicates
that read permission are being held by one task; private write indicates that a
task holds write permissions; and shared readonly indicates that multiple tasks
hold read permissions. Any attempt to acquire conflicting permissions leads to
a runtime exception in the current task, though in fact the state machine of the
object is not modified. The state of an object is maintained by two fields: owner,
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(a) HJ Compiler/Runtime (b) State Machine

Fig. 4. The Implementation of Permission Regions in the HJ Compiler/Runtime

which contains the state as well as the associated task for private read and private
write; and count, which maintains the nesting of the current state. Similar meth-
ods have been added to the objects implementing array views, which maintain
lists of pieces of an array view in different states and compute intersections of
array pieces to determine if there are conflicts.

6 Performance Evaluation

In this section we evaluate permission regions along two dimensions, performance
and usability. To do this, we considered 11 benchmarks for HJ, including small-
to large-scale benchmarks from the JavaGrande benchmark suite [39], the NAS
Parallel Benchmark suite [13], the BOTS benchmark suite [11], and a Parallel
Depth First Search application (PDFS). These are listed in Table 1, which also
separates the benchmarks into loop vs functional parallelism.

For each benchmark, we performed the following experiment. We first con-
verted any parallel array processing in the benchmark to use array views, as
discussed in Section 3. Table 1 gives the number of lines of code that were mod-
ified in column 5. We then ran the code to determine if there were any false
positives; as discussed above in Section 4, there was exactly one false positive
in the PDFS benchmark. Next, we timed the benchmark with and without per-
mission regions, to measure the slowdown of permission regions. Finally, for the
5 benchmarks with the biggest slowdowns, we added permission method an-
notations to key methods to increase performance and timed the results. The
numbers of reading and writing keywords added to each benchmark are given
in columns 6 and 7 of Table 1, respectively. All timing results were obtained on
a 16-way (quad-socket, quad-core per socket) Intel Xeon 2.4GHz system with
30GB of memory, running Red Hat Linux (RHEL 5) and Sun JDK 1.6 64-bit
version. We used the linux taskset command to physically restrict the number
of cores involved in the experiment, from 1 to 16 cores, to measure scalability.

From a usability perspective, our results were promising. The biggest change
required was modifying the benchmarks to use array views, requiring an average
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Table 1. Benchmark Modifications in Terms of Lines of Code (LoC)

Type
Benchmark
Suite

Name LoC
LoC modified
for sub-views

Method Annotations
reading writing

Loop
Parallelism

NPB CG 1070 22 5 0

JGF

Series 225 2 0 0
LUFact 467 0 1 1
SOR 175 4 0 0
Crypt 402 4 0 0
Moldyn 741 29 6 18
RayTracer 810 22 31 22

Functional
Parallelism

BOTS
NQueens 95 0 1 0
Fibnacci 70 0 0 0
FFT 4480 209 0 0
PDFS 537 0 0 2

total 9072 292 44 43

of 3% of the lines of code to be edited; this resulted from adding explicit creation
of sub-views, as discussed in Section 3. Other work [37,22] has demonstrated that
array views are useful for other reasons as well, so this cannot be held against
permission regions too seriously. Otherwise, only one permission region had to
be added to remove a false positive, and the “optimization” step of adding
permission method annotation modified less than 1% of the code on average.

The timing results are given by the two graphs in Figure 5. These graphs give
the slowdowns of each benchmark run with permission regions versus without per-
mission regions, for 1, 2, 4, 8, and 16 cores. The first graph gives the slowdowns
for the first timing experiment, after removing false positives, while the second
gives those for the second timing experiment, including the permission method
annotations. Most of the benchmarks run less than 2.5× slower than their unin-
strumented versions, with a geometric mean around 1.5×. Compared with most
of the state-of-art data race detection implementations [32,28,16,3,30,35], which
typically result in a slowdown of an order of magnitude or more, our overhead
is relatively low. The main reason for the relatively low overhead is granularity;
we are checking object permissions once for each region rather than for each mem-
ory access. In addition, the permissionmethod annotations significantly improved
performance of 3 of the 5 benchmarks with which they were used, the lufact,
moldyn, and RayTracer benchmarks.

One benchmark that deserves a separate discussion is the RayTracer bench-
mark which has a 27.49× slowdown when running on 8 threads. The reason for
this drastic performance penalty is that RayTracer uses objects (3-dimensional
Points) as the basic computation units, which forces the compiler to insert per-
mission regions around each object access to ensure the correct permissions.
These object accesses are done within the innermost loop of the main kernel,
which does not have significant additional computation to hide the overhead.
More advanced compiler optimizations such as loop interchange and loop un-
rolling should be able to enable the compiler to create large enough permission
regions to eliminate a significant part of this overhead. This is future work.
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a. Slowdown of Instrumented  with Automatic Inference vs. Uninstrumented Code

b. Slowdown of Instrumented  with Automatic Inference and User Added Annotation vs. Uninstrumented Code

9.93 13.97 22.99 27.49 20.91

w/ raytracer w/o raytracer

w/ raytracer w/o raytracer

6.96 10.95 14.17 16.08 15.73

Fig. 5. Slowdown of Instrumented Code vs. Uninstrumented Code

7 Related Work

There have been significant recent work on runtime systems which detect low-
level data races before they happen and throw exceptions, thus ensuring sequen-
tial consistency. DRFx [38,27] is similar to our work except that all the regions
are automatically inserted by the compiler. This and similar [25,12] approaches
cannot prevent high-level data races, which one of the main advantages of the
permission regions described in this paper.

In Deterministic Parallel Java [34,5], each object has to be associated with a
specific data region when allocated, which limits expressivity of the programming
model. Also, methods must be annotated with effects, with an average of 12%
of the lines of code requiring annotation.

In Transactional Memory [24], it is difficult to allow I/O within transactions
since they may have to be restarted. Permission regions can have arbitrary code
within them, including I/O code. The semantics of nested transaction and nested
parallelism in transactional memory has also been a subject of much debate [2].
Permission regions offer a clear and intuitive semantic for nesting.

Dynamic race detection [32,28,16,3,30,35] is not efficient enough to be “always
on” as it may result in an order of magnitude slowdown over original code.

Type systems and static analyses that ensure shared accesses are guarded by
appropriate locks or other guards [33,20,40,29,6,15,4]; are often too restrictive
or cumbersome to use in general, preventing many concurrency patterns that
are safe and useful in practice. Static analyses and model-checking [31,21], in
contrast, generally are incomplete and/or report false positives.
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Also closely related are type systems based on linear types, such as fractional
permissions [8,7] and Scala capabilities [19]. Linear types can be used to control
the number and allowed uses of active references to an object, allowing the pro-
grammer to express concepts such as uniqueness, immutability, and borrowing
of an object. Unfortunately, linear type systems place complex restrictions on
how objects can be used, often making it difficult for programmers to use them
effectively. The present work can be seen as a “partially dynamic” approach to
linear types, allowing linear capabilities to be acquired and changed at runtime.

There has also been much prior work on techniques that eliminate low-level
data races. One approach is static race detection, which either checks that code
properly uses locks and/or inserts proper locking into code [20,40,6,15,4]. An-
other approach is dynamic race detection, which instruments a program to detect
possible low-level races at runtime [32,28,16,3,30,35,14]. Finally, a third approach
is to give a fail-stop semantics for racy programs, throwing an exception if a
low-level race occurs at runtime [38,27]. Very little work exists that addresses
high-level data races, however, and this work is either entirely based on correct
use of locks [33,3] or on transactional memory [24,2]. The former is unsatisfac-
tory because many concurrency patterns, such as those based on array tiling, do
not use locks. Transactional memory, although promising in many aspects, has
performance issues when transactions are too big, cannot perform certain non-
transactional actions such as spawning parallel tasks or performing system calls
inside transactions, and seems to require special hardware for good performance.

8 Conclusions and Future Work

In this paper, we introduced a construct called permission regions that enable
application programmers to ensure that low-level or high-level data races will
never occur during execution of their programs. The approach is based on the
permission property: data should be only accessed by a single task in read-write
mode, and any data that can be accessed by multiple tasks must be in read-only
mode. Any violation of the permission property results in an exception being
thrown at runtime prior to any data access that may participate in a data race.

The foundation of our approach lies in the insertion of permission regions
in the program through a combination of 1) automatic inference, 2) manual
insertion to avoid false positive exceptions, and 3) manual insertion to improve
the performance of permission checks across method call boundaries. Of the 11
benchmarks studied in this paper, 4 required no modification by the programmer
for 2) and 3), and the changes made in the remaining 7 benchmarks impacted
fewer than 5% of the lines of code. Further, no parallel programming expertise is
necessary to understand permission regions, since these permission annotations
can enable useful runtime checking for invariants in sequential programs as well.
Finally, the overhead for checking permissions in our approach is far lower than
that of state-of-the-art approaches for dynamic race detection. The geometric
mean of the slowdown relative to unchecked execution on 16 cores was only 1.58×
when the outlying raytracer benchmark is included, and 1.26× if raytracer
is excluded. Smaller slowdowns were observed for fewer numbers of cores.
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In contrast, the average slowdown reported by the state-of-the-art Fast-

Track dynamic low-level data race detector [17] for comparable benchmarks
was 8.5× for fine-grained location-level analysis and 5.3× for coarse-grained
object-level analysis. However, it is worth noting that the Permission Regions
and FastTrack approaches address different problems e.g., FastTrack does
not require any user interaction but also offers no solution for high-level races.

Permission regions offer a number of opportunities for future research. One
direction is to explore approaches that catch exceptions thrown by permission
regions and perform some kind of remediation to avoid the problem entirely e.g.,
by performing rollbacks and executing the conflicting tasks on a single worker.
Another direction is to simply log permission conflicts instead of throwing an
exception, and explore the use of conflict logs as debugging feedback at the end
of program execution. Finally, as discussed in the paper, there is a natural com-
plementarity between permission regions and software transactions that offers
new opportunities to explore hybrid combinations of both approaches.
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Abstract. Data races are among the most difficult to detect and costly
bugs. Race detection has been studied widely, but none of the existing
tools satisfies the requirements of high speed, detailed reports and wide
availability at the same time. We describe our attempt to create a tool
that works fast, has detailed and understandable reports and is available
on a variety of platforms. The race detector is based on our previous
work, ThreadSanitizer [1], and the instrumentation is done using the
LLVM compiler. We show that applying compiler instrumentation and
sampling reduces the slowdown to less than 1.5x, fast enough to use
instrumented programs interactively.

1 Introduction

Recently the growth of CPU frequencies has transformed into the growth of the
number of cores per CPU. As a result, multithreaded code became more popular
on desktops, and concurrency bugs, especially data races, became more frequent.
The classical approach to dynamic race detection assumes that program code
is instrumented and program events are passed to an analysis algorithm [8,11].
Some of the publicly available race detectors for native code [7,1,12] use run-time
instrumentation. There are also tools that use compiler instrumentation [3,6,10],
but none is publicly available on most popular operating systems.

In [1] we described ThreadSanitizer (TSan-Valgrind), a dynamic race detector
for native code based on run-time instrumentation. The tool has found hundreds
of harmful races in a number of C++ programs at Google, including some in
the Chromium browser [4]. Significant slowdown remains the largest problem
of ThreadSanitizer: for many tests we observed 5x–30x slowdown due to the
complex race detection algorithm; on heavy web applications the slowdowns
were even greater (50x and more) because of the underlying translation system
(Valgrind, [12])1. Another problem with Valgrind is that it serializes all threads;
with multicore machines this becomes a serious limitation. Finally, Valgrind is
not available on some platforms we are interested in (entirely unavailable on
Windows, hard to deploy on ChromiumOS).

1 Mainly because Valgrind had to execute much single-threaded JavaScript code.
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In this paper we present TSan-LLVM, a dynamic race detector that uses
compile-time instrumentation based on a widely available LLVM compiler2 [9].
The new tool shares the race detection logic with ThreadSanitizer, but has
greater speed and portability. Our work resembles LiteRace [10] (both use com-
piler instrumentation and sampling, the performance figures are comparable),
but the significant advantages of our tool are the more precise race detection
algorithm [1], the granularity of sampling and public availability.

2 Compiler Instrumentation

The compiler instrumentation is implemented as a pass for the LLVM compiler.
The resulting object files are linked against our runtime library.

2.1 Runtime Library

As opposed to a number of popular race detection algorithms [11,12,10], Thread-
Sanitizer [1] tracks both locksets and the happens-before relation. This allows
it to switch between the pure happens-before mode, which reports no false pos-
itives, but may miss potential bugs, and the hybrid mode, which finds more
potential races, but may give false reports. In both modes the tool reports the
call stacks of all the accesses constituting the race, along with the locks taken
and the origin of memory involved. This is vital in order to give all the necessary
information to the tool users.

The algorithm is basically a state machine – it receives program events, up-
dates the internal state and, when appropriate, reports a potential race. The ma-
jor events handled by the state machine are: Read, Write (memory accesses);
Signal, Wait (happens-before events); Lock, Unlock (locking events).

The runtime library provides entry points for the instrumented code, keeps all
the information about the running program (e.g. the location and size of thread
stacks and thread-local storage) and generates the events by wrapping the func-
tions that are of interest for the race detector: synchronization primitives and
thread manipulation routines, memory allocation routines, other functions that
imply happens-before relations in the real world programs (e.g. read()/write()),
and dynamic annotations [1].

2.2 Instrumentation

The instrumentation is done at the LLVM IR level. For each translation unit
the following steps are done:

Call stack instrumentation. In order to report nearly precise contexts for
all memory accesses that constitute a race, ThreadSanitizer has to maintain a
correct call stack for every thread at all times. We keep a per-thread stack with

2 We have also made an instrumentation plugin for GCC, but do not describe it here
due to the limited space.
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a pointer to its top; the stack is updated at every function entry and exit, as
well as at every basic block start3.

To keep the call stack consistent, the tool also needs to intercept setjmp()
and instrument the LLVM invoke instruction to roll back the stack pointer when
necessary. This is not done yet, because these features are rarely used at Google.

Memory access instrumentation. Each memory access event is a tuple of
5 attributes: thread id, ADDR, PC, isWrite, size. The last three are statically
known. Memory accesses that happen in one basic block4 are grouped together;
for each block the compiler module creates a passport – an array of tuples rep-
resenting each memory access. Every memory access is instrumented with the
code that records the effective address of the access into a thread-local buffer.
The buffer contents are processed by the ThreadSanitizer state machine [1] at
the end of each block.

2.3 Sampling

In order to decrease the runtime overhead even more, we’ve experimented with
sampling the memory accesses. We exploit the cold-region hypothesis [10]: data
races are more likely to occur in cold regions of well-tested programs, because
the races in hot regions either have been already found and fixed or are benign.

The technique we use for sampling is similar to that suggested in LiteRace [10]:
ThreadSanitizer adapts the thread-local sampling rate per code region such that
the sampling rate decreases logarithmically with the total number of executions
of a particular region. Unlike in LiteRace, the instrumented code is always ex-
ecuted and the memory access addresses are put into the buffer, which is then
either processed or ignored depending on the value of the execution counter.
Another difference from LiteRace is that we apply sampling to smaller regions
(basic blocks or superblocks, as opposed to whole functions), which allows to
find races in cold regions of hot functions with higher probability.

2.4 Limitations and Further Improvements

The compiler-based instrumentation has some disadvantages over the run-time
instrumentation: the races in the code which was not re-compiled with the in-
strumentation enabled (system libraries, JIT-ed code) will be missed, the tool
usage is less convenient since it requires a custom build5. As we show in the next
section, the benefit of much higher speed outweighs these limitations for our use
cases.

Much could be done to decrease the overhead even further by reducing the
number of instrumented memory accesses without losing races. A promising
direction is to use compiler’s static analysis to skip accesses that never escape the
current thread. Another optimization is to instrument only one of the accesses
to the same memory location on the same path.

3 Optimizations may apply.
4 We also extend this approach to handle larger acyclic regions of code (superblocks).
5 Valgrind-based tools also usually require a custom build to avoid false positives.
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3 Results

To estimate the performance of our tool, we ran it on two Chromium tests and a
synthetic microbenchmark. We’ve already used TSan-Valgrind to test Chromium
(see [1]) and were able to compare the results and assess the benefits of the
compile-time instrumentation approach for a real-word application. cross fuzz

[5] is a cross-document DOM binding fuzzer that is known to stress the browser
and reveal complex bugs, including races. net unittests [4] is a set of nearly
2000 test cases that test various networking features and create many threads.
The third test we ran just calls a simple non-inlined function6 many times:

void IncrementMe(int *x) { (*x)++; }

One variant of the test is single-threaded, the other variant spawns 4 threads
that access separate memory regions. The measurements were done on an HP
Z600 machine (2 quad-core Intel Xeon E5620 CPUs, 12G RAM).

Table 1 contains execution times for uninstrumented binaries run natively
and under TSan-Valgrind compared to the instrumented binaries tested in two
modes: with full memory access analysis (TSan-LLVM, sampling disabled) and
with race detection disabled (TSan-LLVM-null, an empty stub is called at the
end of each block). We’ve also measured run times under Intel Inspector XE [7],
Memcheck7 and Helgrind version 3.6.1 [12]. The comparison shows that TSan-
LLVM outperforms TSan-Valgrind by 1.7x–2.9x on the big tests. TSan-LLVM
does not instrument libc and other system libraries, but we estimate their per-
formance impact to be within 2%–3%.

Table 1. TSan-LLVM compared to other tools. Time in seconds.

tool cross fuzz net unittests synthetic, 1 thread synthetic, 4 threads

native run 71.6 87 0.9 0.9

Memcheck 1275 991 33 133

Inspector XE failed 1064 130 480

Helgrind failed 2529 40 154

TSan-Valgrind 325.2 592 49 191

TSan-LLVM 190.9 206 15.5 17

TSan-LLVM-null 78.6 119 2 2.1

Table 2 shows how the performance depends on the sampling parameter (a
number k which means that the tool starts ignoring some memory accesses
after executing the region 232−k times). Using the sampling value of 20 is 1.5x–
2x faster than without sampling on the chosen benchmarks. In this mode the
slowdown compared to the native run is less than 1.5x, and the tool is still capable

6 Part of racecheck unittest [2], a test suite for data race detectors.
7 Memcheck, the Valgrind memory error detector, does different kind of instrumenta-
tion and can not ignore JavaScript, but its figures may still serve as a data point.
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of finding a number of known races. We found over 15 races in Chromium while
running cross fuzz with TSan-Valgrind; these races (except one, which happens
in a system library) are also detectable with TSan-LLVM, without sampling and
even with sampling value 20.

Table 2. TSan-LLVM performance with various sampling values

test name sampling parameter - 10 20 30

cross fuzz
time, sec 190.9 142.3 94.5 78.1

accesses analyzed, % 100.0 77.8 16.2 3.6

net unittests
time, sec 206 190 134 117

accesses analyzed, % 100.0 33.7 14.1 13.4

4 Conclusions

We present a dynamic race detector based on low-level compiler instrumenta-
tion. This detector has a large speed advantage (1.7x–2.9x on the real-world
applications) over our previous Valgrind-based tool, and a slowdown factor of
2.5x (less than 1.5x, if sampling is used), which is fast enough to run interactive
UI tests on the instrumented Chromium browser. The achieved speedup can be
improved even further if additional compile-time static analysis is employed.
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Abstract. Protecting running programs from exploits has been the fo-
cus of many host-based intrusion detection systems. To this end various
formal methods have been developed that either require manual con-
struction of attack signatures or modelling of normal program behavior
to detect exploits. In terms of the ability to discover new attacks before
the infection spreads, the former approach has been found to be lacking
in flexibility. Consequently, in this paper, we present an anomaly moni-
toring system, NORT, that verifies on-the-fly whether running programs
comply to their expected normal behavior. The model of normal behavior
is based on a rich set of discriminators such as minimal infrequent and
maximal frequent iterative patterns of system calls, and relative entropy
between distributions of system calls. Experiments run on malware sam-
ples have shown that our approach is able to effectively detect a broad
range of attacks with very low overheads.

1 Introduction

Many techniques have been proposed to ensure the safety of computing systems.
Security policies on the flow of sensitive information [2] and encryption target
only the safety of highly sensitive data while neglecting the presence of malware
and infections. Traditional antivirus system target infections by searching for
known patterns of malware statically, within system files. Host-based intrusion
detection systems (IDS), on the other hand, monitor the dynamic behavior of a
computing system in order to detect infections.

Misuse IDS [11] are similar to traditional antivirus systems. They model
known intrusions and scan running programs to detect signatures of attacks.
While they benefit from a high degree of accuracy their main drawback is the
inability to detect novel attacks. Consequently, attackers exploit this weakness
by using various obfuscation techniques or developing new attacks. Built as a
response, anomaly-based IDS learn the normal behavior of programs and protect
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them by observing the events they generate and comparing them to the expected
behavior, thus are capable of detecting new attacks. The models of expected
behavior can be obtained either by static analysis [21, 8, 9] or dynamic analysis
[7, 13, 23, 24, 18, 6]. Although conservative static analysis approaches do not
exhibit false positives they suffer from generating and using imprecise models
due to the need to handle non-determinism, non-standard control flows, function
pointers, libraries, etc. Dynamic analysis, on the other hand, leverages specific
program’s input to yield more accurate models; it however admits false positives.

In this work we propose an anomaly-based IDS , called NORT, that models
dynamic behavior of programs and detects attacks by discovering deviations from
the expected behavior. Our motivation lies with the very nature of malware
that will usually reach our computers by exploiting vulnerabilities in running
programs, getting installed as a start-up service by using legitimate services and
hiding itself by modifying legitimate programs.

We build upon the work of Forrest et al [7] that was the first to propose a
simple yet effective model, based on contiguous sequences of system calls, to
describe the behavior of programs. We add to their success and strive to attain
better performance by considering arguments, return values and probability dis-
tributions of system calls (in addition to temporal information) in our model.
More importantly, we capture both frequent and infrequent system call patterns
and relative entropy between distributions of calls to distinguish between accept-
able and unacceptable behavior. Compared to other techniques based on data
mining [24, 13] one of our contributions is the richness of our feature set: NORT
is the first work that uses iterative patterns (of system calls) to model normal
behavior. Iterative patterns permit gaps between adjacent calls found in the pat-
terns, allowing for faster convergence and both effective and efficient detection
of variants of malware. They also succinctly capture repetitive call sequences,
resulting in patterns of shorter length and far less overhead in pattern manipu-
lations. We are also the first to employ relative entropy to detect anomalies in a
host machine (previously, this has mostly been used in network IDS). By adding
this extra layer of security we raise the likelihood of an intrusion being detected.

NORT addresses current security issues, including the zero-day attacks, and
the emergence of more a advanced malware phenomenon also known as Malware
2.0. These new security situations entail the development of adaptive methods,
such as NORT, that can detect attacks and intrusions without prior knowledge
about the malware itself. The contributions of our work are:

1. A new mining algorithm of frequent and infrequent patterns and a practical
application to runtime verification and malware detection.

2. An effective model to describe the dynamic behavior of programs, incorpo-
rating not only the temporal ordering of input events but also data-flow infor-
mation. This differs from past work on pattern based specification mining[15].

3. A prototype system, implemented and tested on Windows, to verify that
programs comply to their expected behavior. Most IDS so far focused on
Unix systems. However recent attacks such as the one on Google [1] showed
the need for an IDS for a commodity operating system such as Windows.
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The experiments aimed at evaluating our prototype system have shown a good
balance between the three main concerns of dynamically built program models:
accuracy, training convergence, and efficiency. Accuracy makes the model useful
while efficiency and the rate of convergence make it usable, especially on-the-fly.
Our results showed fast training convergence for both simple applications such
as the Windows printing service and complicated applications such as Internet
Explorer and Adobe Reader. In terms of accuracy, NORT showed the ability to
detect a broad range of attacks with runtime overhead of less than 10%.

2 Overall Picture

NORT is designed as a system that offers individual computers one more layer
of security, besides the ones already used: firewall, network IDS and antivirus.

It relies on the fact that software is used in a consistent manner and it detects
malicious changes by a two phase-system: first it learns the normal behavior of
the system and then it monitors the dynamic system to detect deviations from
normal. During the learning phase a stochastic vector capturing the distribution
of system calls for each program is computed, frequent iterative call patterns dis-
covered across programs are mined and minimal infrequent call patterns exhib-
ited within each program are identified and stored in a normal behavior database
(NBDB). When the detection mode is activated, NORT computes the relative
entropy between the stochastic vectors of the running processes and the corre-
sponding learned programs in the NBDB, mines maximal frequent and minimal
infrequent iterative patterns and compares them against those stored in NBDB.

Similar to usual dynamic machine learning approaches, a major challenge
that we face is with the incompleteness of the training data. In the ideal
case the normal database would contain all variations in normal behavior and
we could regard a single mismatch found to be significant. Unfortunately, in
real environments, it is practically impossible to collect all normal variations.
Our solution to this problem is to attach, to each process, a trust barometer
that increases the trust level when normal behavior is observed and decreases
when anomalies are detected. Different types of anomalies have different weights
associated to them. The weights of high entropy and new frequent patterns are
heavier since these are less likely to occur in traces while the weight of new
infrequent patterns is lighter such that several anomalies must occur before an
alert is raised. The weight associated with normal behavior is much smaller than
those associated with anomalies and has the effect of ignoring isolated anomalies.

The architecture of NORT is modular, being comprised of a kernel-driver, an
engine and the user interface, as seen in Figure 1(a). The kernel instrumentation
module acts as a sensor, recording system calls with their parameters and passing
them to the engine. Because these have to be done at real-time, kernel-level
buffers are used. The engine consists of several modules and is the core of the
system. The first module preprocesses the data and passes the results through
the learner/detector modules: entropy and data miner. The learner/detector
modules store or query information from the storage module. The graphical
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user interface allows the user to choose the programs to monitor and to view the
reports of specifications learned or detected and alerts generated.

3 Data Preprocessing

For runtime systems that deal with an infinite sequence of input events, it is
important to have efficient data collection and preprocessing techniques. This
section is thus dedicated to describing the kernel instrumentation module that
handles the interception of the input events (system calls) and the data prepro-
cessing module where we structure the stream of system calls by considering call
arguments and employing techniques such as aggregation.

3.1 System-Calls and Kernel Instrumentation

System calls represent the basic interaction unit between programs and the OS
kernel. We assume that any harmful attack to a system will require the compro-
mised applications to interact with the OS. Thus, we focus on inspecting system
calls, their arguments and return values to discriminate between normal and
abnormal dynamic program behaviors.

Several approaches have been proposed for intercepting system calls. User-
level mechanisms [18, 6] are deemed unsuitable, as they usually incur run-time
overheads in the range of 100% and 250% due to the additional task switching
operation required at each interception. Techniques that intercept system calls
within the kernel, through kernel modifications, incur much lower overheads.
We therefore adopt the latter approach and use techniques from BindView’s
strace open-source application to install a kernel driver. We also provide users
the option to monitor either all or part of the system calls and their parameters.

3.2 Handling Complex Behavior and Overcoming Obfuscation

Signature based antivirus programs easily become ineffective when viruses
employ obfuscation techniques [4]. Several types of obfuscation techniques are
described in [4] classifying viruses as either polymorphic or metamorphic. A
polymorphic virus tries to avoid detection by encrypting itself and applying
transformations to its decryption routine such as inserting instructions without
effect (nop, dead-code), changing the order of instructions and inserting jump
instructions to preserve the effect of the code (code transposition) or making use
of other registers. Metamorphic viruses change their code to an equivalent one
by employing more complex techniques such as code transposition, equivalent
instruction sequence substitution, and code insertion to the entire host binary.

By performing data mining on system calls sequences, it is possible to elimi-
nate threats from many of these obfuscation techniques. However, mining system
call patterns naively may not be effective, as it may attempt to distinguish call
patterns which differ by the ordering of calls made on different resources. For
instance, when a program opens two files and mixes reads and writes from these
two files, two call patterns describing this file operation behavior may deem
distinct as they capture different orderings of file operations.
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NORT performs clever data mining on system calls. It first overcomes the call
ordering problem mentioned earlier by using system call’s parameters. NORT
groups together system calls that refer to the same resource, thus ignoring the
order of operations that apply to different resources. Next, contiguous strings
of the same repeating system calls are aggregated into one system call; cf. [5].
These techniques also help in learning more complex behaviors and speeding up
the convergence rate of normal behavior as we will explain in the section on
Experiments.

(a) Architecture (b) A Sliding Window and Trace Partitioning

Fig. 1. NORT

3.3 Trace Partitioning

As NORT is required to analyze data in the form of possibly infinite sequences of
calls, we apply a sliding window model to split the data and mine and compute
relative entropy for windows of events. A definition of this model would be: each
element arrives at time t and expires at time t + w, where w is the window size.

On top of splitting the stream of system calls into windows we further struc-
ture it by process ids and then in thinner strands by handle and thread ids
(Figure 1(b)). We also apply an aggregation technique which involves adding a
system call to a strand only if it differs from the previous one. A thread strand
will contain all system calls generated by the thread execution and that are not
related to a handle. A handle strand will contain system calls that act upon an
object such as a file, socket, button (handles are some of the most important
data objects in Win32). Because handles may be reused in the process context,
they can be either in use (opened) or old (closed). Handles that are in use get
special treatment when a window expires. Specifically, in order to avoid losing
information, handles in use are kept beyond window expiration until they are
closed or they have reached a certain age (in terms of number of windows).

During preprocessing we also check the return values of system calls. If a
system call has executed successfully we will add its id to the preprocessing
database. Otherwise we will add an anomaly score (greater than the highest id
ever assigned to a system call) to its id and add this new value to the prepro-
cessing database. By using this additional information the training convergence
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of normal behavior is not adversely affected. Also, we are able to detect more
attacks such as the PDFKA attack on Adobe Reader.

4 Analysis Engine

To detect anomalous behavior we make use of both statistical analysis and a
specification mining approach that extends the algorithm proposed by Lo et
al [15]. In this section we describe these two layers of detection and the method
for storing the specifications that will be used for real time detection of malware.

4.1 Statistical Analysis

As the first layer of defence we build upon the approach expounded in [16] to
compute relative informational entropy [14] which captures the distance between
the regularity of two datasets. Our motivation lies with the fact that, similar to
Internet traffic, system call patterns have both randomness and structure, and
malware can alter both. Specifically, when most malware enter their infection
and multiplication phase, they start accessing files, creating network connections,
sending emails thus changing the randomness and patterns of system calls. To
detect such changes we use relative entropy which can be defined as follows:

Definition 1. The relative entropy between two probability distributions P and
Q that are defined over the same class Cx is:

Hrel(P | Q) =
∑

x∈CX

P (x) log
P (x)

Q(x)
.

In our interpretation of relative entropy, x represents a system call, the class CX

refers to the set of all system calls under consideration while the two probability
distributions P(x) and Q(x) refer respectively to the learned and current distri-
butions of system calls generated by a process. Specifically, Q(x) is implemented
as a stochastic vector that captures the degree of randomness of a process in
the currently processed window and P(x) is the corresponding stochastic vec-
tor computed and stored in the NBDB (for each program) during the learning
phase by aggregating the results from multiple windows. These two vectors are
used to compute the relative entropy between the current distribution for each
process and window and the learned distribution of the corresponding program
(found in NBDB). These relative entropies obtained during the learning phase
are used to determine the maximum relative entropy exhibited during learning
for each program. The relative entropies obtained during the detecting phase,
on the other hand, are compared against a threshold and the trust levels of the
appropriate programs are decremented or incremented according to the result.
The threshold chosen is relative to the maximum relative entropy observed in
the learning phase. It is thus unique for each program as a global absolute value
would not be appropriate due to differences among programs.

As entropy only measures the randomness of system calls, not all malware
could be detected via entropy measures. To further enhance the malware
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detection capability, we use a novel data mining algorithm that looks for both
frequent and infrequent patterns in the call stream, as described in the next
subsection.

4.2 Specification/Pattern Mining

To capture relevant patterns of software behavior we adapt two existing mining
algorithms – Efficient Mining of Iterative Patterns for Software Specification
Discovery [15] and Towards Rare Itemset Mining [20] – and obtain FEELER:
Frequent and infrEquent itErative sequentiaL pattErn mineR. In this subsection
we describe formally the notion of iterative patterns and how they are used by
FEELER to detect malware.

Basic Definitions. Let I be a set of distinct events which are the system calls
under consideration. Let a sequence S be an ordered list of events. We write S
as 〈e1, e2, . . . , eend〉 where each ei is an event from I. The input to the mining
algorithm is a set of sequences also referred to as the sequence database (SeqDB).

A pattern P1 (〈e1, e2, . . . , en〉) is considered a subsequence of another pattern
P2 (〈f1, f2, . . . , fm〉) if there exist integers 1 ≤ i1 < i2 < . . . < in ≤ m where
e1 = fi1 , . . . , en = fin . We denote this subsequence relationship by P1 ⊆ P2.

Concatenation of two patterns P1(〈e1, . . . , en〉) and P2(〈f1, . . . , fm〉) is defined
as follows: < e1, . . . , en > ++ < f1, . . . , fm >=< e1, . . . , en, f1, . . . , fm >.

Semantics of Iterative Patterns. For the rest of this section, we use itera-
tive pattern and pattern interchangeably. An iterative pattern is a pattern the
instances of which conform to a specific requirement, as defined below:

Definition 2. (Iterative Pattern Instance) Given an iterative pattern P = 〈e1, e2,
. . . , en〉, a substring SB = 〈sb1, sb2, . . . , sbn〉 of a sequence S in the sequence
database is an instance of P if SB can be described by the Quantified Regular
Expression:

e1; [−e1, . . . , en]; e2; [−e1, . . . , en]; . . . ; en
A Quantified regular expression is very similar to a standard regular expression
with ; as the concatenation operator and [-] as the exclusion operator.

Definition 3. (Support) The support of a pattern P (denoted as sup(P)) wrt.
to a sequence database SeqDB is the number of its instances in SeqDB.

Definition 4. (Frequent and Infrequent Patterns) A pattern P is considered
frequent in SeqDB when its support, sup(P) is greater or equal to a certain
threshold (min sup). Otherwise if sup(P ) < min sup, P is infrequent or rare.

The following theorem, the proof of which is omitted, provides a valuable means
to prune the search space during mining, rendering the mining process efficient.

Theorem 1. (Anti-monotonicity Property) If a pattern Q is infrequent and P
= Q ++ evs (where evs is a series of events), then P is also infrequent.



122 N.A. Milea et al.

As there may be too many frequent and infrequent patterns, we mine for two
compact sets of patterns: maximal frequent and minimal infrequent.

Definition 5. (Maximal Frequent Patterns) An iterative pattern P is considered
maximal frequent in a sequence database SeqDB if P is frequent and there exists
no super-sequence Q such that P ⊆ Q and Q is frequent in SeqDB.

Definition 6. (Minimal Infrequent Patterns) An iterative pattern P is consid-
ered minimal infrequent (minimal rare) in a sequence database SeqDB if P is rare
and there exists no sub-sequence R such that R ⊆ P and R is rare in SeqDB.

Generation of Iterative Patterns. Our algorithm for mining, FEELER,
adopts a depth-first pattern growth and prune strategy to obtain maximal fre-
quent and minimal infrequent iterative patterns. Its input comes from the pre-
processing module in the form of all strands (handle and thread) of system calls
corresponding to one process. These strands constitute the sequences in the Se-
qDB. The output of FEELER, the iterative patterns obtained for each running
process in a window of calls, are stored in the NBDB during the learning phase
and checked against the corresponding ones in the NBDB in the detection phase.

Procedure MinePat
Inputs : min sup : Minimum Support Threshold
Outputs : freqDB : Max. Frequent Patterns, infreqDB : Min. Infreq. Patterns
1 : Let FreqEv = All single events e where sup(e) ≥ min sup
2 : Let infreqDB = All single events e where 0 < sup(e) < min sup
3 : Let freqDB = {}
4 : For each f ev in FreqEv do
5 : Call GrowPat (f ev,min sup, FreqEv, freqDB, infreqDB)

Procedure GrowPat
Inputs : Pat : A frequent pattern

min sup : Minimum Support Threshold
EV : Frequent Events
freqDB : Max. Frequent Patterns, infreqDB : Min. Infrequent Patterns

6 : Let NxtFreq = {Pat++e | e ∈ EV ∧ (sup(Pat++e) ≥ min sup)}
7 : Let NxtInfreq = {Pat++e | e ∈ EV ∧ (0 < sup(Pat++e) < min sup)}
8 : For each iPat ∈ NxtInfreq
9 : If (�R. (R ∈ infreqDB ∧ R ⊆ iPat)) then
10 : infreqDB = infreqDB \ {Q | Q ∈ infreqDB ∧ (iPat ⊆ Q)}
11 : infreqDB = infreqDB ∪ {iPat}
12 : If |NxtFreq| = 0 then
13 : If (�Q. (Q ∈ freqDB ∧ Pat ⊆ Q)) then
14 : freqDB = freqDB \ {R | R ∈ freqDB ∧ (R ⊆ Pat)}
15 : freqDB = freqDB ∪ {Pat}
16 : Else For each fPat in NxtFreq
17 : Call GrowPat(fPat,min sup,EV, freqDB, infreqDB)

Fig. 2. FEELER Mining Algorithm
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The main procedure of FEELER, MinePat, shown in Figure 2, will first find
frequent patterns of length one (Line 1) and then call GrowPat which recur-
sively grows each pattern (Line 5). The length-1 patterns that are infrequent
(support < min sup) and minimal are added to infreqDB (Line 2).

Procedure GrowPat, shown at the bottom of Figure 2, receives as inputs a
frequent pattern (Pat), the support threshold, the set of frequent events and the
sets of maximal frequent (freqDB) and minimal infrequent (infreqDB) iterative
patterns. The recursive algorithm will grow the current pattern Pat by a single
event and collect the resultant frequent and infrequent patterns (Lines 6-7). For
each infrequent pattern iPat, GrowPat will check if any of its subsequences is
in infreqDB (Line 9) and will add iPat to infreqDB if no pattern is found. The
patterns in infreqDB that are not minimal are also removed (Line 10). For each
frequent pattern fPat it will try to grow further by calling GrowPat recursively
(Line 17). If however the growth of Pat resulted in non-frequent patterns, Pat is
added to freqDB if none of its super sequences is found in freqDB(Lines 12-15).

4.3 Storage

The Storage module interacts with the entropy and miner modules and manages
the extracted specifications. The unique feature that enables this module to
efficiently respond to queries is the use of bloom filters to store patterns [3](one
bloom filter for the frequent patterns from all the running processes and one per
process for the infrequent patterns). These data structures generate and store
a unique binary hash of a pattern and allow us to query for patterns without
having to enumerate them. However, depending on the bloom filter size and
hashing, the queries might have false positives. We have determined empirically
the size of all the bloom filters to be 4MB in order to reduce the false positives.

5 Experiments

Dynamically built program models for runtime intrusion detection can be eval-
uated on three criteria: accuracy, training convergence, and efficiency. Greater
accuracy makes the model useful while efficiency and fast convergence make the
model usable. In order to evaluate our model we gathered different types of real
world exploits and legitimate applications and confronted them against our pro-
totype. All the experiments were performed on a Quad Core i7 running Windows
XP SP 2 with 2GB of RAM inside VMWare Player on a Windows 7 host.

We started the experiments by first constructing models of normal behavior
for the internal components of the operating system (winlogon, explorer, spoolsv,
services), the pre-installed programs (Internet Explorer, notepad), and several
legitimate applications such as Adobe PDF Reader. The obtained models showed
fast training convergence rates for both simple and complex applications. Second,
we ran a series of cross-validation tests. These tests consisted of learning the
models of normal behavior and then feeding Nort in detection mode with new
data from a clean installation, data that has never been learned before. No
false positives were exhibited at the end of the tests. We next experimented
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with a broad range of malware samples and observed significant changes caused
by the exploits in legitimate applications (as exhibited by the introduction of
new frequent and infrequent patterns and a significant increase in entropy) that
resulted in all attacks being detected. Lastly, we evaluated the efficiency of NORT
by computing the runtime overhead of the system.

During the course of the experiments we used a window size of 10,000, a
minimum support of 20 for mining and a threshold of 150% for relative entropy.
From the list of 284 system calls of Windows XP we monitored a subset of 274.

5.1 Training Convergence

All anomaly detection techniques factor the time required to train and the con-
vergence of the model in their evaluation. The rate of convergence is of particular
interest as it governs the training time needed to attain a given level of false pos-
itives. The faster the convergence rate the smaller the training time needs to be.

We ran experiments with Internet Explorer, Adobe PDF Reader, spoolsv,
and the internals of the operating system (services such as explorer, svchost,
etc.). Internet Explorer and Adobe Reader were chosen as we wanted to show
how learning converges for complex applications with interfaces, and where user
behavior is perceived to yield slow convergence. The spoolsv printing service, for
which all executions differ, was chosen to demonstrate that fast convergence can
be attained by aggregating multiple reads and multiple writes.

The rate of convergence was measured in terms of the number of unique
frequent and infrequent patterns (as functions of the number of system calls)
required to learn applications. As shown in Figure 3, despite the initial surge, the

Fig. 3. Training convergence
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increase in new patterns tapers off after reasonable amount of training time. We
also ran alternative experiments that did not split the system calls by handles;
there we observed a larger number of learned patterns (due to the interleaving of
calls on resources such as keys, threads, etc.) and much longer times are needed
for learning to converge.

5.2 Performance Study

An improvement in security comes at a cost: the performance degradation caused
on a running system. As NORT has to continuously monitor legitimate applica-
tions without disrupting overall usability of the system, performance is critical.
To evaluate the efficiency of NORT we measured the impact of on-the-fly mon-
itoring on the runtime of 7-zip (a well known compression application) and on
the startup time of three interactive applications (Figure 4). We also observed
the system during viral tests, and found neither noticeable slow-down nor loss
in usability.

As the runtime overhead caused by NORT depends on the type and rate
of system calls it processes we ran experiments that would show a range of
system usage scenarios. In the first 7-zip test, a simple compression benchmark
was run mimicking the case in which an application is performing a CPU-bound
computation. In the second test, a mixed workload scenario was simulated. Here,
7-zip was used to compress and archive a folder that contained 733 MB of data
(404 files in 74 subfolders). The third test depicts an IO-bound workload scenario.
Here, 7-zip was used to archive the same folder without performing compression.
These results, as summarized in the left table in Figure 4, show that running
NORT causes very low overhead (less than 10%) for all applications.

The other set of experiments we ran were aimed at measuring the impact of
NORT on the startup time of Microsoft Office and Adobe Reader. To this end we
used a program to launch the tested applications and monitor the initialization
status through the WaitforInputIdle() API. The results – depicted at the right
of Figure 4 – showed that the monitoring activities only incur a slight overhead
on the tested applications although a higher rate of system calls was generated.

Baseline Monitored

7-zip Benchmark 5:29s 5:31s(0.6%)

7-zip Compress 2:43s 2:45s(1.22%)

7-zip Archive 18s 19s(5.55%)

Fig. 4. NORT monitoring runtime overhead

We also ran tests to find the rate of system calls NORT can intercept and
process. During the course of these experiments we found that when the OS is
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not intensively used (cmd, notepad, calc, etc.) the average number of system
calls/second is 1,600 whereas the peak is 26,000. When the system is used inten-
sively (a Trend Micro Office scan or running MS Visual Studio while browsing
the Web) the average number of calls/second is 12,476 and peaks at 65,000.
These findings are shown in Figure 5. In addition, the last two bars in this figure
also show NORT’s processing capability in two running modes. In the online
mode NORT was able to handle a high rate of calls while in the offline mode
(all calls are written in a MySql file) NORT is able to handle a smaller rate.

Fig. 5. NORT processing capability

During the course of all experiments NORT handled high rates of system
calls with a small runtime impact. We attribute these results to the efficient
interception of system calls, the small size of the window on which the algorithms
are run, and the aggregation of calls.

5.3 Accuracy

In this subsection, we show that NORT is able to accurately detect attacks by
real-world malware. Each viral experiment we performed involved, as the first
step, the analysis of the malware to find information about the applications
compromised and the nature of the changes. We then learned the behavior of
legitimate applications and ran the malware and NORT (in detection mode) to
capture the changes on legitimate applications. To avoid mixing malware, the
virtual machine was brought to its initial installation before every experiment.

W32/Virut.n is a polymorphic virus that infects PE and HTML files and
downloads other malware. In order to modify critical files the virus first disables
the System File Protection (SFP) by injecting code into winlogon. The injected
code modifies sfc os.dll in memory (which allows it to infect files protected by
SFP) and downloads malicious files such as worm bobax.f and worm bobax.bd.
The observable effects of the intrusion are an increase in entropy, new frequent
operations on files and the registry, new infrequent patterns containing unseen
system calls related to network activity (as winlogon downloads malicious files),
to the creation of processes and threads (as winlogon creates processes from the
files downloaded), to the deletion of keys or values from the registry, etc.

PDFKA takes the form of an innocent PDF document and is accounted
for 42.97% of all exploits detected by Kaspersky in the first quarter of 2010
[10]. In our experiments, running Win32.Pdfka.bo resulted in a large number
of unseen frequent and infrequent patterns in AcroRd32Info, AcroRd32 and
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AdobeARM. AcroRd32Info started exhibiting infrequent network activity and
infrequent activity on processes, threads and virtual memory. The new behavior
of AdobeARM was mostly related to activity on processes (virtual memory ac-
cesses and threads creation) as AdobeARM will open all running processes. The
new patterns generated by AcroRd32 were detected from the anomalous return
values reflecting the corrupted nature of the PDF file being opened.

Project Aurora surfaced in December 2009 when security experts at Google
identified a highly sophisticated attack targeted on their corporate infrastruc-
ture and another 20 large companies such as Adobe, Yahoo, etc. The 0-Day
widespread attack exploits a vulnerability in the way Internet Explorer handles
a deleted object which results in IE referencing a memory location where the
attacker dropped malicious code. In order to test this exploit we connected two
virtual machines (the attacker and the victim) and used reverse tcp as payload.
Employing the attack caused IE 6, running on the victim, to connect to the
attacker and execute commands (getting the user id and a screenshot). The new
patterns detected by NORT include system calls that create named pipes (the
new code in IE initiates communication with the attacker) and system calls on
threads, processes and virtual memory (memory is allocated for the payload).

Win32.Hydraq is a family of backdoor Trojans that was first used by the
Aurora Project, as a payload. The carefully crafted attack takes advantage of the
svchost process in Windows (a common technique used by malware to persist
on a compromised computer) and can be detected by our approach due to a
new service and the new patterns generated by it. The attack caused svchost
to exhibit network activity directed to 360.homeunix.com and was detected by
means of: new frequent patterns of network usage, of memory mapped IO and
files; infrequent patterns on the registry that returned anomalously, etc.

Other attacks For a more thorough evaluation we tested several more mal-
ware taken from the Top 10 malware list [19]. Z0mbie.MistFall.3, one of the best
metamorphic viruses, which infects other executables and causes many running
programs to exhibit abnormal behavior, was detected by NORT. We are also
able to detect NetSky.y and Mytob.x in different processes as these worms over-
write other executables and try to exploit components of the operating system
(services.exe and svchost.exe). In the experiments with Zhelatin.uq (aka Storm),
the newly installed malicious service component was detected as anomalous.

6 Related Work

Many models have been proposed that try to define normal system behavior in
such a way that the models are sensitive to dangerous foreign activity.

Models of program behavior obtained by dynamic analysis. Forrest
et al [7] were the first to propose the use of fixed length contiguous sequences of
system calls (n-grams) to define the expected behavior of programs. Their results
showed a fast convergence and good discrimination which made system calls
based IDS the most popular approach in detecting novel attacks. The downfall
of the simple n-gram model is that due to not allowing gaps between system
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calls forming sequences, one single misplaced system call will cause multiple
mismatches. In our mining approach we mitigate this weakness by allowing for
flexible gaps between system calls forming patterns of various sizes. We also
consider the frequencies of patterns and split the stream of system calls by
threads and handles to address the complexity due to concurrency.

Lee and Stolfo adopt a data mining approach by generalizing fixed length
sequences of system calls as a set of concise association rules [13]. They reported
a good degree of success in accurately detecting new attacks. We further improve
their success by (1) mining on variable length sequences thus allowing for flexible
gaps among call events and capturing long term correlations (2) involving call
arguments and return values in our mining.

In [24] Wespi et al introduce a technique based on the Teiresias algorithm
to create a table of maximal variable length patterns. While their model uses
variable-length maximal patterns and aggregation, they do not allow gaps in
patterns and do not consider using infrequent patterns and relative entropy.

Sekar et al [18] propose profiling normal system behavior via finite state au-
tomata with the states corresponding to the values of the innermost program
counter located at a static location and the transitions to system calls. They
thus are not able to characterize the behavior exhibited by dynamically linked
libraries which, as demonstrated in [6], may significantly impair their accuracy.

Feng et al. use both program counters and stack history to capture normal
behavior in [6]. This enables the detection of any attack that modifies the return
address of a function. The overheads reported in [18, 6] are unfortunately in the
range of 100 to 250%.

Pattern-Based Specification Mining. There have been a number of works
on mining patterns as specifications of a program [15, 17, 12]. In our approach
we leverage the efficiency of iterative patterns [15] and extend it to mine for both
minimal infrequent and maximal frequent events. This new algorithm combined
with a smart preprocessing of the input events and statistical analysis proved to
be an expressive way of modeling behavior and effective in detecting malware.

7 Conclusions and Future Work

As Malware 2.0 threatens to be more adaptive than what we have experienced
so far, we believe that data mining and artificial intelligence techniques will play
more prominent roles in managing the new security problem.

This paper describes a prototype system (NORT 1 that integrates advanced
pattern mining techniques and relative entropy to effectively and efficiently de-
tect malware intrusions. By using these layers of defence our prototype attained
a reasonably fast rate of training convergence for all applications and detected
all malware intrusions with at most 10% slowdown. Although further investiga-
tion is required, we believe that by using frequencies, distributions, and relative
entropy of system calls our system should be robust enough to mimicry attacks,
an invention of Wagner and Soto [22] tasked at evading IDS detection.

1 The prototype can be found at http://www.comp.nus.edu.sg/%7Especmine/nort/
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NORT is not meant to be a substitute of an antivirus, but rather to com-
plement one. The ability of NORT to detect malicious activity as anomalous
behavior can prevent spreading of viruses or worms and provide a modern tool
for security specialists to determine the installation of rootkits inside systems.

We envisage the use of NORT in an environment with multiple similar host
systems. Here, distributed data mining can be used to better detect intrusions
or to identify points of malware entry. Patterns discovered from all the machines
will be gathered and then compared, taking in account the time-window and
frequencies. Notifications can be redirected to a security specialist or a larger
cross-institution knowledge base of known patterns.
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Abstract. Linear Temporal Logic (LTL) on finite traces has proven to
be a good basis for the analysis and enactment of flexible constraint-
based business processes. The Declare language and system benefit from
this basis. Moreover, LTL-based languages like Declare can also be used
for runtime verification. As there are often many interacting constraints,
it is important to keep track of individual constraints and combinations of
potentially conflicting constraints. In this paper, we operationalize the no-
tion of conflicting constraints and demonstrate how innovative automata-
based techniques can be applied to monitor running process instances.
Conflicting constraints are detected immediately and our toolset (real-
ized using Declare and ProM) provides meaningful diagnostics.

Keywords: Monitoring, Linear Temporal Logic, Finite State Automata,
Declarative Business Processes, Operational Support, Process Mining.

1 Introduction

Linear Temporal Logic (LTL) provides a solid basis for design-time verification
and model checking. Moreover, LTL has also been used for the runtime verifica-
tion of dynamic, event-based systems. In this latter setting, desired properties
are expressed in terms of LTL. These properties and/or their conjunction are
translated to a monitor which can be used to dynamically evaluate whether the
current trace, representing an evolving run of the system, complies with the
desired behavior or not.

Traditionally, LTL-based approaches were mainly used to verify or moni-
tor running programs. However, the need for flexibility and a more declarative
view on work processes fueled the interest in the Business Process Management

� Research carried out as part of the Poseidon project at Thales under the re-
sponsibilities of the Embedded Systems Institute (ESI). The project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

�� Research supported by the Technology Foundation STW, applied science division
of NWO and the technology program of the Dutch Ministry of Economic Affairs.

� � � Research supported by the NWO “Visitor Travel Grant” initiative and by the EU
Project FP7-ICT ACSI (257593).

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 131–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



132 F.M. Maggi et al.

(BPM) field. The Declare language and system [11] show that it is possible to
model LTL constraints graphically such that end user can understand them,
while a workflow engine can enact the corresponding process. Constraints may
be enforced by the Declare system or are monitored while the process unfolds.

Each graphical constraint in Declare is represented as an LTL formula, and
the global process model is formalized as the conjunction of all such “local”
formulas. Hence, there are two levels: (a) individual constraints well-understood
by the end-user and (b) global constraints resulting from the interaction of local
constraints. Runtime verification must provide intuitive diagnostics for every in-
dividual constraint, tracking its state as the monitored process instance evolves,
but at the same time also provide diagnostics for the overall process model, giving
a meaningful feedback obtained from the combination of different constraints.

In [6], we have investigated automata-based techniques for the runtime verifi-
cation of LTL-based process models. In particular, we proposed colored automata
to provide intuitive diagnostics for singular constraints and ways to continue ver-
ification even after a violation has taken place. Intuitively, a colored automaton
is a finite state automaton built for the whole set of constraints composing a
process model, where each state contains specific information (colors) indicating
the state of individual constraints.

Here, we again use colored automata for runtime verification. However, now
we focus on the interplay of constraints, i.e., we detect violations that cannot
be attributed to a single constraint in isolation, but result from combinations of
conflicting constraints. To do so, we extend a variant of the four-valued RV-LTL
semantics [2] with the notion of conflicting constraint set, in effect adding a fifth
truth value indicating that while a constraint is not violating the specification on
its own, the interplay with other constraints makes it impossible to satisfy the
entire system. Given the current trace of a system’s instance, a set of constraints
is conflicting if, for any possible continuation of the instance, at least one of such
constraints will be eventually violated. Hence, our approach is able to detect
constraint violations as early as possible. We show how to compute minimal
conflicting sets, i.e., conflicting sets where the conflict disappears if one of the
constraints is removed. We present our framework in the context of process
models (as it was developed in that context), but it is applicable to any system
described, directly or indirectly, using a set of finite automata.

Our approach has been implemented in the context of the Declare system1

and ProM2. We provide diagnostics that assist end-users in understanding the
nature of deviations and suggest recovery strategies focusing on the constraints
that are truly causing the problem.

The remainder of this paper is organized as follows. Section 2 presents some
background material, and, in Sect. 3, we introduce our runtime verification
framework. Section 4 explains the core algorithms used in our approach. We
have been applying our approach to various real-world case studies. In Sect. 5,

1 www.win.tue.nl/declare/
2 www.processmining.org
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Fig. 1. Example Declare model

we report on the monitoring of Declare constraints in the context of maritime
safety and security. Section 6 concludes the paper.

2 Background

In this section, we introduce some background material illustrating the basic
components of our framework. Using a running example, we introduce Declare,
present RV-FLTL, an LTL semantics for finite traces, and an approach to trans-
late a Declare model to a set of automata for runtime verification.

2.1 Declare and Running Example

Declare is a declarative process modeling language and a workflow system based
on constraints [9]. The language is grounded in LTL, but has an intuitive graphi-
cal representation. Differently from imperative models that are “closed”, Declare
models are “open”, i.e., they specify undesired behavior and allow everything
that is not explicitly forbidden. The Declare system is a full-fledged workflow
management system that, being based on a declarative language, offers more
flexibility than traditional workflow systems.

Figure 1 shows a simple Declare model used within the maritime safety and
security field. We use this example to explain the main concepts. It involves four
events (depicted as rectangles, e.g., Under way using engine) and three constraints
(shown as arcs between the events, e.g., not coexistence). In our example, a vessel
can be Under way, either using an engine or sailing but not both, as indicated by
the not coexistence between the two events. A vessel can be Constrained by her
draught, but only after being Under way sailing (as a vessel with an engine cannot
be constrained by draught and a sailing vessel cannot be constrained before it is
under way). This is indicated by the precedence constraint. Due to harbor policy,
only vessels with an engine can be Moored (sailing ships are instead anchored).
This is indicated by the responded existence, which says that if Moored occurs,
Under way using engine has to occur before or after. Note that events represent
changes in the navigational state of a ship and then are considered to be atomic.

Each individual Declare constraint can be formalized as an LTL formula talk-
ing about the connected events. Let us consider, for example, Fig. 1, naming
the LTL formulas formalizing its different constraints as follows: ϕn is the not
coexistence constraint, ϕp is the precedence constraint and ϕr is the responded



134 F.M. Maggi et al.

existence constraint. Using M, S, E and C to respectively denote Moored, Under
way sailing, Under way using engine and Constrained by her draught, we then have

ϕn = (♦E)⇒ (¬♦S) ϕp = (♦C)⇒ (¬C � S) ϕr = (♦M)⇒ (♦E)

The semantics of the whole model is determined by the conjunction of these
formulas.

2.2 LTL Semantics for Constraint-Based Business Processes

Traditionally, LTL is used to reason over infinite traces. When focusing on
runtime verification, reasoning is carried out on partial, ongoing traces, which
describe a finite portion of the system’s execution. Among the possible LTL
semantics on finite traces, we use a variant of Runtime Verification Linear Tem-
poral Logic (RV-LTL), a four-valued semantics proposed in [2]. Indeed, the four
values used by RV-LTL capture in an intuitive way the possible states in which
Declare constraints can be during the execution. Differently from the original
RV-LTL semantics, which focuses on trace suffixes of infinite length, we limit
ourselves to possible finite continuations (RV-FLTL). This choice is motivated
by the fact that we consider process instances that need to complete eventually.
This has considerable impact on the corresponding verification technique: rea-
soning on Declare models is tackled with standard finite state automata (instead
of, say, Büchi automata).

We denote with u |= ϕ the truth value of an LTL formula ϕ in a finite trace u,
according to FLTL [5], a standard LTL semantics for dealing with finite traces.

Definition 1 (RV-FLTL). The semantics of [u |= ϕ]RV is defined as follows:

– [u |= ϕ]RV = � (ϕ permanently satisfied by u) if for each possible finite
continuation σ of u: uσ |= ϕ;

– [u |= ϕ]RV = ⊥ (ϕ permanently violated by u) if for each possible finite
continuation σ of u: uσ �|= ϕ;

– [u |= ϕ]RV = �p (ϕ possibly satisfied by u) if u |= ϕ but there is a possible
finite continuation σ of u such that uσ �|= ϕ;

– [u |= ϕ]RV = ⊥p (ϕ possibly violated by u) if u �|= ϕ but there is a possible
finite continuation σ of u such that uσ |= ϕ.

We denote B4 = {�,⊥,�p,⊥p} and assume an order ⊥ ≺ ⊥p ≺ �p ≺ �.

We say a formula is satisfied (or violated), if it is permanently or possible satisfied
(or violated).

As we have seen for Declare, we do not look at specifications that consist
of a single formula, but rather at specifications including sets of formulas. We
generalize this aspect by defining an LTL process model as a set of (finite trace)
LTL formulas, each capturing a specific business constraint.

Definition 2 (LTL process model). An LTL process model is a finite set of
LTL constraints Φ = {ϕ1, . . . , ϕm}.
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Fig. 2. Local automata for ϕn, ϕp, and ϕr from the example in Fig. 1

One way to verify at runtime an LTL process model Φ = {ϕ1, . . . , ϕm} is to test
the truth value [u |= Φ]RV = [u |=

∧
i=1,...,m ϕi]RV . This approach, however,

does not give any information about the truth value of each member of Φ in
isolation. A solution for that is to test the truth values [u |= ϕi]RV , i = 1, . . . ,m
separately. This is, however, still not enough. Let us consider, for example, the
Declare model represented in Fig. 1. After executing the traceMoored, Under way
sailing, the conjunction ϕn ∧ ϕp ∧ ϕr is permanently violated but each member
of the conjunction is not (ϕn is possibly satisfied, ϕp is permanently satisfied,
and ϕr is possibly violated). Therefore, to give insights about the state of each
constraint of an LTL process model and still detect non-local violations, we need
to check both global and local formulas.

2.3 Translation of an LTL Process Model to Automata

Taking advantage of finiteness of traces in the RV-FLTL semantics, we construct
a deterministic finite state automaton showing the state of each constraint given
a prefix (we simply refer to such an automaton as “automaton”). An automaton
accepts a trace if and only if it does not violate the constraint, and is constructed
by using the translation in [3].

For the constraints in the model in Fig. 1, we obtain the automata depicted
in Fig. 2. In all cases, state 0 is the initial state and accepting states are in-
dicated using a double outline. A gray background indicates that the state is
permanent (for both satisfied and violated). As well as transitions labeled with
a single letter (repesenting an event), we also have transitions labeled with one
or more negated letters; they indicate that we can follow the transition for any
event not mentioned. This allows us to use the same automaton regardless of
the exact input language. When we replay a trace on an automaton, we know
that if we are in an accepting state, the constraint is satisfied, and when we are
in a non-accepting state, it is violated. We can distinguish between the possi-
ble/permanent cases by the background; states with a gray background indicate
that the state is permanent.

We can use these local automata directly to monitor each constraint, but
to detect non-local violations we also need a global automaton. This can be
constructed as the automaton product of the local automata or equivalently as
the automaton of the conjunction of the individual constraints [12].

The global automaton for our example is shown in Fig. 3. We use state
numbers from each of the automata from Fig. 2 as state names, so state 202



136 F.M. Maggi et al.

000

001

M

FC

202
E

320

S

C,S
E

C,S

E,M

Fig. 3. Global automaton for our example

corresponds to constraint not coexistence being in state 2, constraint precedence
being in state 0, and constraint responded existence being in state 2. These
names are for readability only and do not indicate we can infer the states of
local automata from the global states. To not clutter the diagram, we do not
show self loops. These can be derived: every state also has a self-loop transition
for any transition not otherwise explicitly listed. Accepting states in the global
automaton correspond to states where all constraints are satisfied. In a non-
accepting state, at least one constraint is possibly violated. State F corresponds
to all situations where it is no longer possible to satisfy all constraints. We note
that state 321 is not present in Fig. 3 even though none of the local automata
is in a permanently violated state and it is in principle reachable from state
001 via a S. The reason is that from this state it is never possible to reach a
state where all constraints together are satisfied. Indeed, by executing the trace
Moored, Under way sailing, Under way with engine, for instance, we obtain the
trace 000→M 001→S F →E F . Hence, we correctly identify that after the first
event, we possibly violate some constraints, and after Under way sailing there is
a non-local violation and we cannot satisfy all constraints together anymore.

The global automaton in Fig. 3 allows us to detect the state of the entire
system, but not for individual constraints. In [6], we introduced a more elaborate
automaton, the colored automaton. This automaton is also the product of the
individual local automata, but now we include information about the acceptance
state for each individual constraint. The colored automaton for our example is
shown in Fig. 4. We retain the state numbering strategy, but add a second
line describing which constraints are satisfied. In this case, each state of the
colored automaton really contains indications about the acceptance state for each
individual constraint. If a constraint is satisfied in a state, we add the first letter
of the name of the constraint in uppercase (e.g., R indicating that the constraint
responded existence is permanently satisfied in state 202). If a constraint is only
possibly satisfied, we put parentheses around the letter (e.g., (R) in state 320). If
a constraint is possibly violated in a state, we add the letter in lowercase (e.g., r
in state 001), and if a constraint is permanently violated, we omit it entirely (e.g.,
precedence is permanently violated in state 011). Executing the trace Moored,
Under way sailing, Under way using engine on the colored automaton, we obtain
the trace 000 →M 001 →S 321 →E 122. We can see in state 122 that we have
permanently violated the constraint not coexistence and permanently satisfied
the others (PR). Note that the presence of an undesired situation, attesting an
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Fig. 4. Colored automaton for the example in Fig. 1

unavoidable future violation, is already detected in state 321. However, in 321,
the problem cannot be attributed to a single constraint. The problem is non-local
and is caused by the interplay between not coexistence and responded existence
(the first forbidding and the other requiring the presence of event Under way
using engine). We capture this kind of situation by introducing the notion of
conflicting constraint sets.

3 Conflicting Constraint Sets

The colored automaton described in the previous section is able to detect both
local and non-local violations. However, it does not provide enough information
for user-friendly diagnostics. To do so, we have to identify the smallest parts of
the original LTL process model that cause a problem. We tackle this issue by
characterizing the relationship between the overall state of the system and the
one of individual constraints. In particular, we show that the global state can
be determined from the local states only when an explicit notion of conflicting
set is defined and included in the semantics. In this respect, we first look at the
truth value of subsets of the original specification:

Definition 3 (Monitoring evaluation). Given an LTL process model Φ and
a finite trace u, we define the sets Ps(Φ, u) = {Ψ ⊆ Φ | [u |= Ψ ]RV = s}
for s ∈ B4. The monitoring evaluation of trace u w.r.t. Φ is then M(Φ, u) =
(P⊥(Φ, u), P⊥p(Φ, u), P�p(Φ, u), P�(Φ, u)).

As our goal is to deduce the global state of a system from the states of individual
constraints, we need to analyze the structure of elements of M(Φ, u). It can be
observed that M(Φ, u) is a partition of the powerset of Φ:

Property 1 (Partitioning). Given an LTL process model Φ and a finite trace u,
M(Φ, u) is a partition of the powerset of Φ, i.e.,

⋃
s∈B4

Ps(Φ, u) = 2Φ and for
s, s′ ∈ B4 with s �= s′: Ps(Φ, u) ∩ Ps′(Φ, u) = ∅.
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This is realized by observing that every subset of Φ has exactly one assigned
truth value. Second, for two subsets of Φ, Ψ ′ ⊆ Ψ ′′ ⊆ Φ, the larger one is not
easier to satisfy:

Property 2 (Inclusion). Given an LTL process model Φ and a finite trace u, then
for Ψ ′ ⊆ Ψ ′′ ⊆ Φ and an s ∈ B4, if Ψ

′ ∈ Ps(Φ, u) then Ψ ′′ ∈ Ps′(Φ, u) for some
s′ ∈ B4 with s′ � s.

This stems from monotonicity of truth values of conjunctions. Third, perma-
nently satisfied constraints do not change the truth value of sets of constraints:

Property 3 (Effect of permanently satisfied constraints). Given an LTL process
model Φ and a finite trace u, and a ψ ∈ Ψ such that [u |= ψ]RV = �, if
Ψ ∈ Ps(Φ, u) for some s ∈ B4, then Ψ \ {ψ} ∈ Ps(Φ, u).

This stems from the fact that for any extension, the permanently satisfied one
reduces to true and can be removed using identity �∧ψ = ψ for any constraint
ψ. This allows us to characterize the structure of sets with a given truth value:

Property 4 (Structure of global states). Given an LTL process model Φ and a
finite trace u, for a subset of constraints Ψ ⊆ Φ

1. Ψ ∈ P�(Φ, u) if and only if ∀ψ ∈ Ψ , [u |= ψ]RV = �,
2. Ψ ∈ P�p(Φ, u) if and only if ∀ψ ∈ Ψ , [u |= ψ]RV ∈ {�,�p} and ∃ψ ∈ Ψ such

that [u |= ψ]RV = �p,
3. if Ψ ∈ P⊥p(Φ, u), then ∀ψ ∈ Ψ , [u |= ψ]RV ∈ {�,�p,⊥p} and ∃ψ ∈ Ψ such

that [u |= ψ]RV = ⊥p, and
4. if Ψ ∈ P⊥(Φ, u) and ∀ψ ∈ Ψ , [u |= ψ]RV �= ⊥, then ∃ψ ∈ Ψ such that

[u |= ψ]RV = ⊥p.

The first item is seen by assuming that some constraint exists in Φ that is not
permanently satisfied for u. Equivalently, there exists a finite continuation of u
where this constraint is not satisfied and the conjunction of all constraints in
Φ is not satisfied for u. The second and third are seen by similar arguments.
The last one is seen by observing that if a set has only possibly or permanently
satisfied members, it is itself possibly or permanently satisfied.

Given an LTL process model Φ, a trace u, and a subset Ψ ⊆ Φ, we can easily
identify whether Ψ belongs to P�(Φ, u) or P�p(Φ, u) by simple inspection of the
state of individual constraints in the colored automatonmentioned earlier. For the
first two items of Prop. 4, the states of the constraints in a node completely char-
acterize, in this case, the global state of the system. However, we cannot determine
whether a set belongs to P⊥p(Φ, u) or P⊥(Φ, u) only by looking at the state of indi-
vidual constraints: Prop. 4 only gives us implication in one direction in this case.

We introduce a fifth truth value of constraints ⊥c that allows us to deduce
the state of the entire system from the state of individual constraints. This
reflects that a constraint is not permanently violated, but is in conflict with
others so the entire system cannot be satisfied again. To better characterize the
problem when a permanent violation occurs, we minimize the sets originating
the violation. Therefore, we look at minimal subsets Ψ ∈ P⊥(Φ, u). A first group
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of these minimal subsets are singletons {ψ} with ψ ∈ P⊥(Φ, u). A second group
consists of conflicting sets :

Definition 4 (Conflicting set). Given an LTL process model Φ and a finite
trace u, Ψ ⊆ Φ is a conflicting set of Φ w.r.t. u if:

1. Ψ ∈ P⊥(Φ, u),
2. ∀ψ ∈ Ψ , [u |= ψ]RV �= ⊥, and
3. ∀ψ ∈ Ψ , [u |= Ψ \ {ψ}]RV �= ⊥.

We extend the semantics of RV-FLTL to capture conflicting sets:

Definition 5 (RVc-FLTL). The semantics of [u, Φ |= ϕ]RV c is defined as

[u, Φ |= ϕ]RV c =

{
⊥c if there is a conflicting set Ψ ⊆ Φ s.t. ϕ ∈ Ψ

[u |= ϕ]RV otherwise.

Therefore, we can introduce a variant of Prop. 4 allowing us to determine the
global state solely using local values:

Theorem 1 (Structure of global states). Given an LTL process model Φ
and a finite trace u, then

1. [u |= Φ]RV = �, if and only if ∀ψ ∈ Φ, [u, Φ |= ψ]RV c = �,
2. [u |= Φ]RV = �p, if and only if ∀ψ ∈ Φ, [u, Φ |= ψ]RV c ∈ {�,�p} and
∃ψ ∈ Φ such that [u, Φ |= ψ]RV c = �p,

3. [u |= Φ]RV = ⊥p, if and only if ∀ψ ∈ Φ, [u, Φ |= ψ]RV c ∈ {�,�p,⊥p} and
∃ψ ∈ Φ such that [u, Φ |= ψ]RV c = ⊥p,

4. [u |= Φ]RV = ⊥ if and only if ∃ψ ∈ Φ such that [u, Φ |= ψ]RV c ∈ {⊥c,⊥}.

In [6], we explain how to modify the original LTL process model on the fly in an
efficient way when a violation occurs. Therefore, when a non-local violation is
detected, it can be useful to identify minimal sets of constraints to be removed
in the original LTL process model to recover from the violation. We capture this
as a recovery set :

Definition 6 (Recovery set). Given an LTL process model Φ and a finite
trace u such that [u |= Φ]RV = ⊥, then Ψ ⊆ Φ is a recovery set of Φ′ w.r.t. Φ
and u if

1. [u |= Φ \ Ψ ]RV �= ⊥
2. ∀ψ ∈ Ψ , [u |= Φ \ (Ψ \ {ψ})]RV = ⊥.

Intuitively, we must remove exactly one constraint from each conflicting set in
Φ, but if two (or more) conflicting sets overlap, we can remove one from the
intersection to make a smaller recovery set.

Let us consider the Declare model represented in Fig. 1. We name the LTL
constraints of this model as specified in Sect. 2.1. Figure 5 shows a graphical rep-
resentation of the constraints’ evolution: events are displayed on the horizontal
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Fig. 5. One of the views provided by our monitoring system. Colors show the state
constraints while the process instance evolves; red (viol) refers to ⊥, yellow (poss. viol)
to ⊥p, green (poss. sat) to �p, blue (sat) refers to �, and orange (conflict) to ⊥c.

axis. The vertical axis shows the three constraints. Initially, all three constraints
are possibly satisfied. Let u0 = ε denote the initial (empty) trace:

[u0, Φ |= ϕn]RV c = �p [u0, Φ |= ϕp]RV c = �p [u0, Φ |= ϕr ]RV c = �p

Event Moored is executed next (u1 = Moored), we obtain:

[u1, Φ |= ϕn]RV c = �p [u1, Φ |= ϕp]RV c = �p [u1, Φ |= ϕr ]RV c = ⊥p

Note that [u1 |= ϕr]RV = ⊥p because the responded existence constraint becomes
possibly violated after the occurrence of Moored. The constraint is waiting for
the occurrence of another event (execution of Under way using engine) to become
satisfied again. Then, Under way sailing is executed (u2 = Moored, Under way
sailing), leading to a situation in which constraint precedence is permanently
satisfied, but not coexistence and responded existence are in conflict.

[u2, Φ |= ϕn]RV c = ⊥c [u2, Φ |= ϕp]RV c = � [u2, Φ |= ϕr]RV c = ⊥c

Note that we have exactly one conflicting set, {ϕn, ϕr}. Indeed, if we look at
the automaton in Fig. 4, from 321 it is not possible to reach a state where both
these constraints are satisfied. Moreover, no supersets can be a conflicting set
(due to minimality). {ϕn, ϕp} is not a conflicting set as they are both satisfied
in 122, and {ϕn, ϕp} is not a conflicting set as it is temporarily satisfied. The
next event is Under way using engine (u3 = Moored, Under way sailing, Under
way using engine), resulting in:

[u3, Φ |= ϕn]RV c = ⊥ [u3, Φ |= ϕp]RV c = � [u3, Φ |= ϕr]RV c = �

not coexistence becomes permanently violated because Under way using engine
and Under way sailing cannot coexist in the same trace. Note that this violation
has been detected as early as possible by our monitoring system; already when
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Under way sailing occurred, the conflicting set of constraints showed that it would
be impossible to satisfy all constraints at the same time. However, it is still
possible to see that the responded existence constraint becomes permanently
satisfied by the Under way using engine event.

4 Deciding RVc-FLTL Using Automata

In this section, we give algorithms for detecting the state of sets of constraints.
We start by giving algorithms for the extra information we have added to the
automata in Sect. 2, and then focus on how to compute the information about
conflicting sets contained in the colored automaton.

4.1 Local Automata

We get most of the information exhibited in the local automata in Fig. 2 from
the standard translation in [3]. The only thing missing is the background color
indicating whether a constraint is permanently/possibly satisfied or violated.

We get the background information by marking any state from which an
accepting state is always/never reachable. We can do this efficiently using the
strongly connected components (SCCs) of the automaton (this can be computed
in linear time using Tarjan’s algorithm [10]). We look at components with only
outgoing arcs to components already processed (initially none), and we color a
component gray only if i) it contains nodes that are all accepting/non-accepting
and ii) all (if any) reachable components contain the same type states and are
colored. This is also linear in the input automaton.

If the automaton we get is deterministic and minimal, we know that at most
one accepting state will have gray background and at most one non-accepting
state will have gray background. These can be identified as the (unique) accept-
ing and non-accepting states with a self-loop allowing all events. All automata
in Fig. 2 satisfy this, and we see they all have at most one gray state of each
kind. Using these automata, we can decide the state of a constraint (�, ⊥, �p,
or ⊥p) with respect to each trace, but we cannot detect non-local violations.

4.2 Global Automaton and Its Combination with Local Automata

We can compute the global automaton directly using the same approach adopted
for local automata (following [12] for better performance). This is the approach
used for the automaton in Fig. 3. Using this automaton, we compute the state of
the global system, but not for individual constraints. In this way, we can detect
non-local violations, but we cannot compute conflicting sets nor decide the state
of individual constraints.

To infer the state of the entire system as well as of individual constraints, we
can use at the same time the local and global automata. However, this forces us
to replay the trace on many automata: the global one plus n local ones, where
n is the number of constraints. Moreover, we cannot here detect exactly which
constraints are conflicting, only that there are some, making this approach less
useful for debugging.
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4.3 Colored Automaton

To identify conflicting sets, we construct a colored automaton (like the one in
Fig. 4) using the method described in [6]. We then post-process it to distinguish
permanently/possibly satisfied or violated states (by computing SCCs, exactly
like we did for the local automata).

To additionally compute conflicting sets, we notice that they are shared among
states in an SCC (if a set of constraints cannot be satisfied in a state, it also
cannot be satisfied in states reachable from it, and all states in an SCC are
reachable from each other by definition). Furthermore, conflicting sets have to
be built using possibly satisfied and possibly violated constraints of an SCC. We
can ignore permanently satisfied constraints because of Prop. 3 and item 3 of
Def. 4. We can ignore permanently violated constraints due to item 2 of Def. 4.
In an SCC, all states share permanently violated and satisfied constraints as
they can all reach each other, so we can obtain all interesting constraints by
looking at one of the states in isolation.

Due to item 1 for Def. 4 and Prop. 2, we only have to consider states that
are permanently violated for computation of conflicting sets (gray states with
single outline in Fig. 4). We notice that the conflicting sets of an SCC have to be
super-sets of conflicting sets of all successor SCCs or contain a constraint that
in a successor SCC is permanently violated. This is seen by a weaker version
of the argument for members of SCCs sharing conflicting sets, as reachability
is only true in one direction. The inclusion may be strict due to minimality of
conflicting sets (item 3 of Def. 4).

We thus start in terminal SCCs (SCCs with no successors) and compute the
conflicting sets. This is done by considering all subsets composed of possibly
violated/satisfied constraints with more than one member and checking whether
they are satisfiable in the component. This can be done by examining all states
of the SCC and checking if there is one where all members of the considered
subset are (possibly) satisfied. We can perform this bottom-up or top-down.
The bottom-up approach starts with sets with two elements and adds elements
until a set become unsatisfiable, exploiting minimality (item 3 of Def. 4) in that
no superset of a conflicting set is a conflicting set. Alternatively, we can compute
the sets top-down, starting with all possible violated/satisfied constraints and
removing constraints until the set becomes satisfied, exploiting that subsets of
a set of satisfied constraints do not need to be considered due to monotonicity.
Which one is better depends on the size of the conflicting sets.

For each globally unsatisfiable SCC we recursively compute for all successors
and then build conflicting set bottom-up, starting with all possible (minimal)
unions of conflicting sets or singleton permanently violated properties of suc-
cessors. For the example in Fig. 4, state 112 has, for instance, no conflicting
sets, but two permanently violated constraints (ϕn and ϕp). Computing con-
flicting sets for 311 only needs to consider sets containing (at least) one of
these, and as ϕp is permanently violated, we can ignore it. The only possi-
bility, {ϕn, ϕr}, is indeed a conflicting set. For state 310 we need to consider
unions of the conflicting sets and permanently violated constraints of successors
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of 311 and 112, i.e., {C1 ∪ C2 | C1 ∈ {{ϕn}, {ϕp}}, C2 ∈ {{ϕn, ϕr}, {ϕp}}} =
{{ϕn, ϕr}, {ϕn, ϕp}, {ϕp, ϕn, ϕr}, {ϕp}} which can be reduced by removing sets
containing ϕp (which is permanently violated in 310) to {{ϕn, ϕr}}. We further-
more remove any supersets of contained sets (none in this case), and use the sets
as basis for computing conflicting sets. As {ϕn, ϕr} is satisfiable in 310, such
constraints do not constitute a conflicting set, hence 310 has no conflicting sets.

Each SCC can have exponentially many conflicting sets in the number of
constraints (assume we have n constraints and construct a SCC with all states
possibly satisfying exactly n

2 constraints and possibly violating the remaining;
as all sets have the same size, none can be subsets of the others, and we have
n!
n
2 ! ∈ O(2

n
2 ) such sets). In our initial experiments, we have never seen examples

with more than a few possibly violated/satisfied constraints, so in practice this
is acceptable. Future work includes validating that this is also true for large
real-life examples. If the pre-computation proves to be too expensive, we can
also perform the algorithm at run-time, only computing conflicting sets when
we reach a globally permanently violated state. By caching and sharing the
results between instances (as well as intermediate results imposed by recursion),
we should be able to provide acceptable runtime performance.

In our running example, executing the trace Moored, Under way sailing, we
obtain the trace 000 →M 001 →S 321. Using our algorithm to compute the
conflicting sets, we see that in terminal SCC 122 in Fig. 4, we have no conflicting
sets, but a single permanently violated constraint ϕn. In state 321, we have
exactly one conflicting set, {ϕn, ϕr}.

5 Case Study

We now present a real case study focused on monitoring vessel behavior in the
context of maritime safety and security. It has been provided by Thales, a global
electronics company delivering mission-critical information systems and services
for aerospace, defense, and security. For the sake of brevity, the results obtained
in the case study are only partially illustrated in this section. Here, we only want
to give an example of a possible application of our framework.

In our experiments, we use different logs describing the behavior of different
types of vessels. These logs have been collected by a maritime Automatic Identi-
fication System (AIS) [4], which acts as a transponder that logs and sends events
to an AIS receiver. Each log contains a set of process instances corresponding
to the behavior of vessels of the same type (e.g., Passenger ship, Fishing boat,
Dredger or Tanker). An event in a process instance is a change in the navigational
state of the vessel (e.g., Moored, Under way using engine, At anchor, Under way
sailing, or Restricted maneuverability). The logs are one-week excerpts of larger
logs tracing the behavior of each vessel in the long term.

Starting from these logs, exploiting process mining techniques [1], we discover
Declare models representing the behavior of each vessel type. A fragment of
the discovered model for Dredger is shown in Fig. 6. The ultimate goal is to
consequently use these models to monitor new vessel behaviors, using the colored
automata-based approach outlined in this contribution.
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Under way
using engine

Restricted 
maneuverability

Moored

At anchor

Under way 
sailing

Fig. 6. Discovered model for vessel type Dredger; dashed constraints represent a con-
flicting set arising after the occurrence of At anchor

More specifically, to construct the model in Fig. 6, we apply the Declare
discovery technique described in [7]. We fix the not coexistence and response
constraints as possible candidate constraints (the response indicating that if the
source event occurs, then the target event must eventually occur). The miner
identifies all the not coexistence and response constraints that are satisfied in all
the traces of the log. However, when the log is an excerpt of a larger log, it is pos-
sible to make the discovery process more flexible by accepting a constraint also
if it is possibly violated in some traces: being each execution trace incomplete,
such a constraint could be satisfied in the continuation of the trace.

Even though the miner only identifies constraints that never give rise to a
permanent violation by themselves, it is possible that conflicting sets of con-
straints exist in the discovered model. The conflicting sets are caused by the
fact that, to extract the reference models from the logs, the miner checks each
constraint separately while accepting possibly violated constraints. This makes
the approach presented in this paper relevant in the prompt identification of
an actual conflict during the monitoring process. For example, Fig. 6 contains
a conflict when At anchor is executed; the conflicting constraints are depicted
with dashed lines. In this specific case, each constraint of the conflicting set is a
recovery set: the conflict is solved by removing any of them from the model.

6 Conclusion

We have introduced the runtime verification of flexible, constraint-based process
models formalized in terms of LTL on finite traces, focusing on violations arising
from interference of multiple constraints. A conflicting set provides a minimal
set of constraints with no continuation where all constraints can be satisfied.

To do so, we have exploited in a novel way established results achieved in the
field of temporal logics and runtime verification. In particular, we have considered
a finite-trace variation of the RV-LTL semantics [2], following the finite state
automata approach of [3] and the optimized algorithms proposed in [12] for
the generation of automata. Such automata are employed to provide intuitive
diagnostics about the business constraints during execution of a model. More
specifically, we have shown how local and/or global information can be provided
by combining the use of local automata and of a global automaton, or using a
single colored automaton to provide full information.
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All the techniques presented in this paper have been fully implemented in
Declare and ProM. In particular, we have developed an Operational Support
(OS) provider for ProM [1,13], exploiting the recently introduced OS service. The
OS service is the backbone for implementing process mining techniques that are
not used in a post-mortem manner, i.e., on already completed process instances,
but are instead meant to provide runtime support to running executions. Our
provider takes in input a Declare model, and exploits the colored automata-
based techniques presented here to track running instances and give intuitive
diagnostics to the end users, graphically showing the status of each constraint,
as well as reporting local and non-local violations (see Fig. 5 for an example).
In the latter case, recovery sets are computed, showing the minimal possible
modifications that can be applied to the model to alleviate the detected conflict.

Monitoring business constraints can be also tackled by using the Event Calcu-
lus (EC) [8]. The two approaches are orthogonal to each other: the EC can only
provide diagnostics about local violations, but is easier to augment with other
perspectives such as metric time constraints and data related aspects. We plan to
investigate the incorporation of metric time aspects also in an automaton-based
approach, relying on timed automata for verification.
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Abstract. Given a dense-time real-valued signal and a parameterized temporal
logic formula with both magnitude and timing parameters, we compute the sub-
set of the parameter space that renders the formula satisfied by the trace. We
provide two preliminary implementations, one which follows the exact semantics
and attempts to compute the validity domain by quantifier elimination in linear
arithmetics and one which conducts adaptive search in the parameter space.

1 Introduction

Much of discrete verification is concerned with evaluating behaviors (traces) generated
by a system model against specifications that classify behaviors as good or bad. A simi-
lar approach is used in other engineering domains, where the system model is described
using some modeling and numerical simulation framework. Such models, which seman-
tically correspond to continuous or hybrid systems, generate finite traces (trajectories,
waveforms, signals). The simulation traces are then evaluated according to some per-
formance measures, which are typically quantitative in nature. Such trace evaluation
procedures are integrated in the development cycle of the system, where each time a
specification violation is found or a behavior of a poor performance is observed, the
systems is modified or fine-tuned to achieve its correctness or improve its performance.

The above description fits well the development of engineered systems constructed
from components with known input-output behavior. Simulation and verification are
required only because the outcome of the interaction between these components is hard
to predict beyond a certain complexity. The specifications describe at a high-level the
intended functionality that we want the system to achieve.

In this work we tackle the inverse problem, namely, given a trace or a set of traces,
find a specification that it satisfies. The procedure used to resolve this problem consists
in learning from examples (system identification, inductive inference, parameter esti-
mation), and can be very useful in the context of experimental science such as Biology
where one wants to come up with a succinct and human intelligible description of ex-
perimentally observed data. This approach can also help in the design of systems that
admit physical parts whose properties are characterized experimentally, for example,
analog components in digital circuits, and be integrated in a framework for composi-
tional reasoning based on assume-guarantee principles.

As a specification formalism, we adopt signal temporal logic (STL) introduced in
[17] to express and monitor temporal properties of dense-time real-valued signals. We
introduce PSTL, a parametric extension of STL, where threshold constants in numerical
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inequalities as well as delay bounds in temporal operators can be replaced by param-
eters. Then, we solve the following problem: Given a PSTL formula, find the range of
parameters that render the formula satisfied by a given set of traces. This work ex-
tends the pioneering work of Fages and Rizk [10] who identify parameter ranges for
numerical predicates on top of the discrete-time temporal logic LTL [22]. Our use of
a dense-time logic, where time is handled arithmetically, rather than as a sequence of
“ticks”, makes the whole framework more robust to changes in sampling rates or inte-
gration steps. More importantly, it allows us to use parameters in the temporal operators
and compute trade-offs between timing and magnitude parameters.

The rest of the paper is organized as follows. In Sect. 2 we present PSTL and its se-
mantics in terms of validity domains. In Sect. 3 we show that validity domains for PSTL
formulae relative to (interpolated) piecewise-linear signals are semilinear and show that
they can be computed, in principle, by quantifier elimination. In Sect. 4 we move to
an approximate computation based on adaptive sampling of the parameter space using
recently-developed techniques for approximating Pareto fronts. We demonstrate the vi-
ability of the approach by computing the validity domains on a non-trivial example of a
stabilization property with 3 parameters relative to a signal with 1024 sampling points.
We conclude with a discussion of past and future work.

2 Parametric Signal Temporal Logic

Parametric signal temporal logic (PSTL) is based on the logic STL introduced in
[17,21,18] for specifying and monitoring properties of real-valued continuous time sig-
nals, in particular those produced by analog circuits [13]. In the rest of the paper, we
assume a time domain T = [0,∞) (or a finite prefix of it) and traces (signals) of the
form x : T→ Rn. We use x[t] to denote the value of x at time t and xi[t] for the value
of its ith coordinate.

We abuse the same variables {x1, . . . , xn} to speak of the value of the signal in the
logical formulae. In addition we use two types of parameters, magnitude parameters
{p1, . . . , pg} and timing parameters {s1, . . . , sh}, ranging over their respective domains
P and S, say hyper-rectangles in Rg and Rh, respectively.We use p and s for the vectors
of all parameters. A numerical predicate μ is an inequality of the form f(x) < θ or
f(x) > θ where f is a function from Rn to R and θ is a threshold which is either a
constant c or a magnitude parameter pi. We use I to denote an interval of the form (a, b),
(a, b], [a, b), [a, b], (a,∞) or [a,∞)where each of a, b can be either a non-negative
constant or a timing parameter si. When both bounds are constants we require 0 ≤ a <
b. A PSTL formula is then defined by the grammar

ϕ := μ|¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 UIϕ2

The usual always and eventually operators are defined as: ♦Iϕ � true UIϕ and
�Iϕ � ¬♦I¬ϕ. For example, ϕ = ♦[0,s2]�[0,s1](x < p) is a PSTL formula with
one magnitude parameter p, and two temporal parameters s1 and s2.

A parameter valuation (u, v) ∈ Rg × Rh transforms a PSTL formula ϕ into an STL
formula ϕu,v obtained by substituting the values (u, v) in the parameters (p, s). We use
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the notation θu,v to denote the threshold obtained from θ by such a substitution and Iu,v
for the similar operation on the interval I .

The polarity π(p, ϕ) of a parameter p with respect to a formula ϕ is positive if it is
easier to satisfy ϕ as we increase the value of p and is negative if it is harder. Intuitively,
magnitude parameters satisfy

π(p, f(x) < p) = + π(p, f(x) > p) = −

and timing parameters satisfy

π(s, ϕ U[b,s]ψ) = + π(s, ϕ U[s,b]ψ) = −

We now formally define the polarity of a parameter. Let�, +,− and⊥ indicate, respec-
tively, undefined, positive, negative and mixed polarities. The polarity of a magnitude
parameter p in a formula ϕ is defined inductively as follows.

π(p, f(x) < c) = π(p, f(x) > c) = �
π(p, f(x) < p) = + π(p, f(x) > p) = −

π(p,¬ϕ) =∼ π(p, ϕ)
π(p, ϕ UIψ) = π(p, ϕ ∧ ψ) = π(p, ϕ) ◦ π(p, ψ)

For a timing parameter s we have

π(s, μ) = �
π(s, ϕ UIψ) = u ◦ (π(p, ϕ) ◦ π(p, ψ))

where

u =

⎧⎨⎩+ when I = [a, s]
− when I = [s, b]
� otherwise

The rules for negation and conjunction are identical to the rules for magnitude parame-
ters. Operations∼ and ◦ are defined as

◦ � + − ⊥
� � + − ⊥
+ + + ⊥ ⊥
− − ⊥ − ⊥
⊥ ⊥ ⊥ ⊥ ⊥

∼
� �
+ −
− +
⊥ ⊥

A formula is fine if the polarity of every parameter is either + or −. We consider only
fine formulae.

The semantics of a PSTL formula ϕ with respect to a signal x is given, following
[10], in terms of a validity domain D(x, ϕ) ⊆ P×S consisting of all tuples (u, v) such
that x satisfies ϕu,v in the usual sense of STL satisfaction. To compute it we will need
at intermediate stages extended validity domains of the form d(x, ϕ) ⊆ T × P × S
consisting of all tuples (t, u, v) such that (x, t) |= ϕu,v . Then D(x, ϕ) = {(u, v) :
(0, u, v) ∈ d(x, ϕ)} consists of all parameter values that yield satisfaction at time zero.
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Definition 1 (Validity Domain). The validity domain of a formula ϕ with respect to a
signal x is defined inductively as follows.

d(x, f(x) < θ) = {(t, u, v) : f(x(t)) < θu,v}
d(x, ϕ ∧ ψ) = d(x, ϕ) ∩ d(x, ψ)

d(x,¬ϕ) = d(x, ϕ)
d(x, ϕ UIψ) = {(t, u, v) : ∃t′ ∈ t⊕ Iu,v s.t. (t′, u, v) ∈ d(x, ψ)∧

∀t′′ ∈ [t, t′](t′′, u, v) ∈ d(x, ϕ)}

where t⊕ I = (t+ I) ∩ T.

Note that in the terminology of machine learning and inductive inference, our whole
setting is that of learning from positive examples: we observe traces that occur but
nobody gives us impossible traces. Hence it is natural to look for the minimal1 elements
of the validity domain that yield the tightest (strongest) formulae satisfied by the traces.

3 Computing Validity Domains

In this section, we present a procedure for exact computation of validity domains for
a given trace and PSTL formula, and illustrate it with a simple example. Finally, we
present experimental results that indicate how this exact technique scales both with
respect to the size of the input traces and the size of the PSTL formula.

3.1 Semilinear Validity Domains

To start with, observe that the semantics of STL formulae is defined in terms of dense-
time real-valued signals, but in reality the signals that one can observe, either experi-
mentally or via numerical simulators, are sampled signals consisting of sequences of
time stamped values of the form

(t0, x[t0]), (t1, x[t1]), . . . , (tk, x[tk]). (1)

for an increasing sequence of time stamps with t0 = 0. We interpret these sampled
signals as continuous-time signals using linear interpolation as in [18]. In each interval
of the form [tj , tj+1] we consider the value of x[t] to be

x[t] = x[tj ] +
x[tj+1]− x[tj ]

tj+1 − tj
· t = βj + αjt.

It follows that the validity domain of a formula ϕ with respect to a piecewise-linear
signal x, can be defined inductively as follows:

d(x, f(x) < p) = {(t, u, v) :
∨k−1

j=0 (tj < t < tj+1) ∧ (αjt+ βj < u)}
d(x, ϕ ∧ ψ) = {(t, u, v) : (t, u, v) ∈ d(x, ϕ) ∧ (t, u, v) ∈ d(x, ψ)}
d(x,¬ϕ) = {(t, u, v) : (t, u, v) �∈ d(x, ϕ)}
d(x, ϕ UIψ) = {(t, u, v) : ∃t′ (t+ v1 ≤ t′ ≤ t+ v2) ∧ (t′, u, v) ∈ d(x, ψ)∧

∀t′′(t ≤ t′′ ≤ t′)⇒ (t′′, u, v) ∈ d(x, ϕ)}
D(x, ϕ) = {(t, u, v) : t = 0 ∧ (t, u, v) ∈ d(x, ϕ)}

1 Or maximal, depending on the parameter polarity.
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We next show that the above rules for computing the validity domain ϕ with
respect to a piecewise-linear signal x result in a Boolean combination of linear
inequalities.

Definition 2 (Semilinear Validity Domains). A subset of the parameter space is semi-
linear if it can be written as a Boolean combination of linear inequalities on the corre-
sponding variables.

Proposition 1. For every PSTL formula ϕ and piecewise-linear signal x, the validity
domain D(x, ϕ) is semilinear.

Proof. We first prove that d(x, ϕ) is semilinear for every ϕ by a simple induction on
the structure of the formula. For the base case of a predicate f(x) < p we first construct
from x a derived sampled signal y = (t0, y[t0]), (t1, y[t1]), . . . with y[tj] = f(x[tj ])
that by interpolation is extended to the real time axis to obtain y[t] = αjt+βj whenever
t ∈ [tj , tj+1]. Then, we have seen that the validity domain can be written as

d(x, f(x) < p) = {(t, u, v) :
k−1∨
j=0

(tj < t < tj+1) ∧ (αjt+ βj < u)}

which is semilinear. For the inductive case, closure under Boolean operations is imme-
diate. For the until operator, we remind the reader that d(x, ϕ U[s1,s2]ψ) can be written
as

{(t, u, v) : ∃t′ (t+ v1 ≤ t′ ≤ t+ v2) ∧ (t′, u, v) ∈ d(x, ψ)∧
∀t′′(t ≤ t′′ ≤ t′)⇒ (t′′, u, v) ∈ d(x, ϕ)}

and since semilinear sets are closed under universal and existential projection (quantifier
elimination) and d(x, ϕ) and d(x, ψ) are semilinear by the inductive hypothesis, the
result follows. Finally, transforming d to D by projecting on t = 0 also preserves
semilinearity.

Note that a function f appearing in a predicate need not be necessarily linear. The
result also holds when each f is linear and parameters are allowed as coefficients. In
the discrete time logic used in [10], the restriction of parameters to threshold will lead
to rectangular validity domains. The extension of Proposition 1 to validity domains
associated with several signals is trivial: D({x, x′}, ϕ) = D(x, ϕ) ∩D(x′, ϕ).

We note that the validity domain computed by this procedure provides the exact
representation of all parameters for which the piecewise-linear signal x satisfies the
formula ϕ. Given that the validity domain is semilinear, i.e. can be represented as a
Boolean combination of linear inequalities, it follows that the problem of finding a
vector of parameters that satisfy ϕ with respect to x can be reduced to a constraint sat-
isfaction problem. However, given a validity domain, a user may not be interested only
in a vector of parameters that satisfy the formula ϕ with respect to x, but in such “opti-
mal” parameters, where the notion of optimality depends on the particular application.
Given that in this paper we consider only fine formulas, it makes sense to search for
tightest parameters, that is parameters with negative (positive) polarity whose increase
(decrease) of their value would make the formula ϕ violated. Tightest parameters give
the most precise specification that matches the observed traces, and are in particular
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useful for learning the model from the simulated behaviors. In that case, the problem
of searching such parameters reduces to the identification of multi-dimensional Pareto
fronts, that will be discussed in more detail in Section 4.

3.2 Example

Let us illustrate the computation of validity domains on the formula ϕ = ♦[0,s2]

�[0,s1](x < p) and some of its variants and subformulas relative to the signal x of
Fig. 1-(a). The formula admits two temporal parameters s1 and s2 and a magnitude
parameter p. The validity domain V1 = d(x, x < p), depicted in Fig. 1-(b), is

V1 = (t ≥ 0 ∧ t < 2 ∧ 2p > 4t) ∨
(t ≥ 2 ∧ t < 4 ∧ 2p+ 4t > 16) ∨
(t ≥ 4 ∧ t < 5 ∧ p > 2t− 8) ∨
(t ≥ 5 ∧ t < 6 ∧ p+ 2t > 12)

The validity domain V2 = d(x,�[0,s1](x < p)), which by definition is the set
{(t, p, s1) | ∀t′ ∈ [t, t+s2]∩[0, 6), (t′, p, s1) ∈ d(x, x < p)}, is obtained by eliminating
the universal quantifier, yielding a validity domain expressed by:

V2 = (p+ 2s1 + 2t < 12 ∨ p+ 2t > 12 ∨ p > 0 ∨ p ≤ 0)∧
(p+ 2s1 + 2t < 8 ∨ p+ 2t > 8 ∨ p+ 4 ≤ 0 ∨ p > 4)∧
(s1 + t ≥ 6 ∨ (p− 2s1 − 2t > 0 ∧ s1 + t < 2)∨
(p+ 2s1 + 2t > 8 ∧ s1 + t ≥ 2 ∧ s1 + t < 4)∨
(p− 2s1 − 2t+ 8 > 0 ∧ s1 + t ≥ 4 ∧ s1 + t < 5)∨
(p+ 2s1 + 2t > 12 ∧ s1 + t ≥ 5)) ∧ (p ≥ 2 ∨ s1 + t < 5 ∨ t ≥ 5)∧
(p > 0 ∨ s1 + t < 4 ∨ t ≥ 4) ∧ (p ≥ 4 ∨ s1 + t < 2 ∨ t1 ≥ 2)∧
(p > 0 ∨ s1 + t < 6 ∨ t ≥ 6)

Figures 1-(c,d) depict the projections of V2 on p = 1 and p = 2, respectively. Finally
the validity domain of the top-level formula, V3 = d(x,♦[0,s2]�[0,s1](x < p)), which
is the set {(t, p, s1, s2) | ∃t′ ∈ [t, t+ s2]∩ [0, 6) s.t. (t′, p, s1, s2) ∈ V2}, is obtained by
eliminating the existential quantifier. The projection of V3 on t = 0 and p = 2 yields
the domain expressed by the following quantifier-free formula:

V3 = (s1 + s2 ≥ 5 ∧ 0 ≤ s1 < 2 ∧ s2 ≥ 0)∨
(s1 + s2 > 5 ∧ s1 ≥ 0 ∧ s2 > 5)∨
(s1 + s2 ≥ 4 ∧ s1 + s2 < 5 ∧ s1 ≥ 0 ∧ s2 > 3)∨
(s1 + s2 > 3 ∧ s1 + s2 < 4 ∧ s1 ≥ 0 ∧ s2 > 3)∨
(s1 ≥ 0 ∧ s2 ≥ 6) ∨ (s1 < 1 ∧ s1 ≥ 0 ∧ s2 ≥ 0)∨
(s1 + s2 < 1 ∧ s1 ≥ 0 ∧ s2 ≥ 0)

The projections of V3 on (s1 = 1.5 ∧ p = 2) and on (t = 0 ∧ p = 2) are shown in
Figures 1-(e) and 1-(f), respectively.
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Fig. 1. (a) Signal x; (b) d(x, x < p); (c) d(x,�[0,s1](x < 1)); (d) d(x,�[0,s1](x < 2)); (e)
d(x,♦[0,s2]�[0,1.5](x < 2)); and (f) D(x,♦[0,s2]�[0,s1](x < 2))
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3.3 Experimental Results for Exact Computation of Validity Domains

We have implemented the above semantics using the linear quantifier elimination pro-
cedure of the tool Redlog [14]. It should be noted that our implementation consists of
a straightforward invocation of the elimination procedure with no attempt to tailor and
tune the procedure to the specificity of our problem (see further discussion in Sect. 5).
As a benchmark we use the following very typical stabilization (disturbance rejection)
property:

ϕst : �((x ≥ p)→ ♦[0,s2]�[0,s1](x < p)). (2)

The property speaks of a controlled signal which is required in normal conditions to
stay below a threshold p. If due to some disturbance the signal is driven above p, than
the control system should stabilize it with s1 time, that is, drive it again below p, and
moreover, stay below p for at least s2 time. Characterizing the parameters (delays and
amplitudes) of such a behavior is relevant for many systems ranging from heart pace-
makers to cooling systems in nuclear power plants.

We find validity domains for this formula relative to the signal xst of Fig. 2 repre-
sented by k = 1024 sampling points. Since the complexity of the validity domain and
quantifier elimination depends on k we apply our procedure to various under-samplings
of xst, see Fig. 2. Of course, below some sampling resolution, the signal loses its char-
acteristics and the results become less meaningful.

Fig. 2. The signal xst against which the stability property is tested: 1024 sampling points (con-
tinuous blue) and 16 sampling points (dashed red)
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Table 1 shows some statistics on computation time and description size of the validity
domain for the formula ϕst and its subformulae

ϕ1 : �[0,s1](x < p)
ϕ2 : ♦[0,s2]�[0,s1](x < p)
ϕ3 : (x ≥ p)→ ♦[0,s2]�[0,s1](x < p)

against various sampled versions of xst. The size of the solution corresponds to the
number of linear inequalities used for its representation (no redundancy elimination
applied at this point) and the symbol ∗ denotes a time-out after 10 minutes.

Table 1. Computation time and description size for the stabilization formula ϕst and its subfor-
mulas for different sampling of signal xst

formula ϕ1 ϕ2 ϕ3 ϕst

k time(s) size time(s) size time(s) size time(s) size
8 0.02 38 0.11 197 0.17 207 3 4219
16 0.10 66 0.81 855 0.74 375 83.79 37709
32 0.26 86 19.07 6553 18.27 2885 ∗ ∗
64 4.16 144 341.95 23103 308.93 10258 ∗ ∗
128 68.29 895 ∗ ∗ ∗ ∗ ∗ ∗
256 386.72 3098 ∗ ∗ ∗ ∗ ∗ ∗

Note that in the worst case, the Fourier-Motzkin quantifier elimination procedure
may square the number of constraints which gives a description size of k2

m

where m is
the number of nested simple (� or ♦) temporal operators, not counting the normaliza-
tion of the formula after each iteration.

4 Approximating Validity Domains

The limitations of the exact method motivate us to apply an alternative approximation
technique based on intelligent search in the parameter space. For every point (u, v) in
the parameter space we can pose a query concerning its membership in D(x, ϕ) by
constructing the STL formula ϕu,v and checking whether x |= ϕu,v. This approach to
parameter space exploration has been implemented in a tool [5] and applied to embed-
ded [7] and biological [6] case studies. To conduct this exploration efficiently we will
take advantage of an additional property of our validity domains due to the use of a
fixed polarity for each parameter.

Definition 3 (Monotonic Validity Domains). A subset V ⊆ P × S is monotonic if
for every i, whenever a parameter valuation (v1, . . . , vi, . . . , vg+h) is in V so is any
(v1, . . . , v

′
i, . . . , vg+h) ∈ P × S satisfying v′i > vi (when π(pi, ϕ) = +) or v′i < vi

(when π(pi, ϕ) = −).
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To facilitate the discussion we apply a coordinate transformation to the parameter space
and replace every negative polarity parameter p by its complement −p and thus deal
with validity domains which are upward closed relative to the parameter space, namely
v ∈ V implies v′ ∈ V for every v′ > v . The set of minimal parameter values that render
the formula satisfied is the boundary between the validity domain and its complement
relative to the parameter space. Such sets are known in the context of multi-criteria
optimization [9] as Pareto surfaces or Pareto fronts, see Fig. 3-(a). An ε-approximation
of the surface is a set of points S ⊆ V such that each point on the surface admits an
ε-close point in S. In other words, the set S consists of a representative sample of the
optimal trade-offs available in the problem. In the following we describe briefly the
exploration technique developed in [15] for efficient approximation of Pareto fronts,
which constitutes a multi-dimensional generalization of binary search.

D(x, ϕ)

p1

p2

p1

p2

D+

D−

(a) (b)

Fig. 3. (a) An upward-closed validity domain in 2 dimensions and its lower boundary (thick line);
(b) state of knowledge after 3 positive and 3 negative queries in the parameter space

Figure 3-(b) depicts our state of knowledge after performing 3 positive and 3 neg-
ative queries in the parameter space. Since the set is upward closed, we know that the
upward closure of the positive points (the set D+) is included in D(x, ϕ) while the
downward closure of the negative points (the set D−) is included in the the comple-
ment of D(x, ϕ). The frontier that we look for is situated between these two sets, and
the distance between their boundaries gives and upper bound the quality of the approxi-
mation (ε) provided by the set of positive points. Orienting subsequent queries to points
in the parameter space that reduce this distance provides for focusing the queries on the
boundary, see more details in [15]. Exponentionality in the dimension of the parameter
space cannot be, of course, avoided but the time for each query is linear in k. We have
implemented a search based approach to the example, and Fig. 4 depicts the surface
obtained for ϕst and the 1024-points version of xst.

4.1 Experimental Results for the Approximate Computation of Validity
Domains

The approximation technique for computing validity domains by parameter search ex-
ploration was evaluated by using the tool Breach [5]. This approach cannot be directly
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Fig. 4. Approximate boundary of the validity domain D(xst, ϕst) for the stabilization formula
ϕst with parameters s1, s2 and p, for signal xst of Fig. 2 with k = 1024

compared to the exact method presented in Section 3. Unlike the exact method, the
approximation algorithm does not compute the validity domain precisely. However, the
exact validity domain can be approximated to an arbitrary precision, of course at a price
of the number of queries required, and consequently the increased computation time.

In Table 2, we first show the computation time for checking the satisfaction query of
an STL formula with respect to an input signal of increasing size (where the input size
is expressed in terms of the number of sample points). The STL formula that we use
is an instantiation of the PSTL formula �((x ≥ p) → ♦[0,s2]�[0,s1](x < p)), used in
Section 3.3, with parameter values p = 1.5, s1 = 5 and s2 = 5. We can observe that for
a single query, the computation time grows linearly with the size of the inputs, and that
we are able to deal with much larger input traces than in the case of the exact method.

In Table 3, we study the computation time for checking satisfaction query with re-
spect to the size of the STL formulas. For this, we fix the input size, and consider an
artificial STL formula (x < 1.5) U i

[0,10](x < 1.5) with increasing number of nested

temporal operators, where ϕ U1
Iψ = ϕ UIψ and ϕ U i

Iψ = ϕ UI(ϕ U i−1
I ψ), for i > 1.

We can see from the experimental results that the computation time also increases lin-
early with the size of the STL formula.

These experimental results suggest that the approximate technique for computing
validity domains can be used to efficiently find parameters that satisfy the PSTL speci-
fication with respect to the given set of input traces, and additionally offers to the user
the possibility to decide the trade-off between the tightness of the parameters and the
computation time needed to compute them.
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Table 2. Execution time of the satisfaction query for the STL formula �((x ≥ 1.5) →
♦[0,5]�[0,5](x < 1.5))

input size time(s)

31416 0.18402
345566 0.407612
659716 0.755079
973866 1.09268
1288016 1.45865

Table 3. Execution time of the satisfaction query for the STL formula (x < 1.5) U i
[0,10](x < 1.5)

i time(s)

1 0.347465
2 0.46335
3 0.60599
4 0.760672
5 0.892014
6 1.03761

5 Discussion

We have shown how to synthesize magnitude and timing parameters in a quantitative
temporal logic formula so that it fits observed data. The only similar work we are aware
of is that of [10] that we extend by making the temporal dimension quantitative and
hence parameterizable. This line of work should not be confused with other types of
“temporal queries”, e.g. [4] where a parametric temporal formula contains a “place-
holder” that needs to be replaced by a proposition resulting in a formula that satis-
fies a given model. In the context of real-time model checking, the decision problems
for parametric timed automata and parametric extension of a real-time temporal logic
MITL were studied in [12,3].

We consider the following extensions of this work in order to enlarge its scope both
in terms of problem size and richer settings. We are investigating specialized ways to
organize the quantifier elimination process so as to proceed along the time axis, in the
same manner as qualitative [18] and quantitative [8] satisfaction is computed. A par-
ticular difficulty here is that validity domains do not decompose naturally into time
segments, that is, a disjunction where each disjuncts admits a distinct term of the form
a < t < b, but rather segments of the from a < t + s < b for a temporal parameters
s. Another technical problem to solve is the efficient derivation of the semilinear for-
mula characterizing the minimal facets of a non-convex validity domain. To this end we
intend to employ the novel quantifier elimination techniques of [19,20].
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Although the restriction to parameters of fixed polarity is justified in many cases and
simplifies life, one can imagine situations where it should be dropped, for example in a
predicate of the form p+ a < x < p+ b where the value of x is constrained to be in an
interval of a fixed size but a parameterized displacement. Likewise we may have param-
eterized temporal intervals of the form [s + a, s + b]. In such situations, semilinearity
is preserved but not monotonicity. Other relaxation of fixed polarity may be required in
the context of parameters in nonlinear functions. In the absence of monotonicity, finding
the minimal set of parameters is not the only natural choice. In fact, one my argue on
the contrary, that it is safer to pick parameters which are deep inside the validity domain
as they provide for more robust [23,11,8] satisfaction. Since tightness and robustness
are conflicting goals perhaps the best solution would be to provide trade-offs (Pareto
points) between the two.

The work presented in this paper was fully parametric in the sense that the template
formula ϕ is given and only parameters were sought. A more ambitious goal would be
to combine it with a search in the space of formula templates. While such a solution
will bring us closer to the science fiction scenario of automatic derivation of theories
from experiments, it is clear that it is very easy to face a combinatorial explosion if the
search space is not restricted to some small class of property templates. For example
one may consider response properties of the form �(ϕ ⇒ ♦Iψ) where both ϕ and ψ
are Boolean combinations of a small number of simple predicates.

In the more general context, the technique presented here may occupy an interesting
niche in all domains that deal with this kind of reverse engineering, e.g. system identifi-
cation [16], machine learning [2] or inductive inference [1]. In all these areas one wants
to generalize from observations and find a mathematical model compatible with them.
In the context of signals, one can think of two extreme classes of target models: detailed
models of dynamical systems that produce traces which are close to the observed ones
or more abstract logical theories that define logical dependencies between observa-
tions. Temporal logic [22], which is a logic tailored for describing dynamic behaviors,
augmented with quantitative constructs in time and space as in STL, can offer an inter-
esting tradeoff between the over determination of dynamic models and the quantitative
vagueness of too abstract logical statements such as A causes B that are sometimes used
to summarize experimental findings in the life sciences. A temporal formula express-
ing the quantitative temporal constraints between the evolution of real-valued observed
quantities might provide an optimal level of detail in some application domains.
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Automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 925–936. Springer, Heidelberg (2007)

4. Chan, W.: Temporal-Locig Queries. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 450–463. Springer, Heidelberg (2000)



160 E. Asarin et al.
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Abstract. Recent research has proposed several analyses to mitigate
the fact that finding concurrency bugs in multi-threaded software is no-
toriously hard. This work proposes a new analysis based on a correctness
criterion called “atomic-set serializability”, which incorporates both race
conditions and traditional atomicity/serializability. We present a novel
analysis based on conflict cycle detection that is guaranteed to find all
violations in the intercepted execution trace. A set of heuristics automat-
ically determines all annotations required for atomic-set serializability.
We implemented the analysis and evaluated it on a suite consisting of
real programs and benchmarks. The evaluation demonstrates the use-
fulness of our heuristics by finding a number of known (as well as new)
violations with competitive overhead and a very low false positive rate.

Keywords: Serializability, Atomicity, Data Races, Concurrent Object-
Oriented Programming, Dynamic Analysis.

1 Introduction

Multi-threaded programs have become more and more predominant as proces-
sor speeds cease to rise significantly, and manufacturers put multiple cores onto
one processor. However, writing correct multi-threaded code is notoriously hard,
which gave rise to several analyses that statically or dynamically enforce certain
correctness criteria. These criteria range from the weakest form, data races on
single memory locations, to atomicity for all memory involved in a given transac-
tion. Data races occur when two threads access the same shared variable without
synchronization, where one of the accesses is a write. Yet in general, data-race
freedom does not guarantee the absence of concurrency-related bugs [1, 2, 7].
A remedy has been found in various definitions of serializability (or atomicity)
[13, 23, 33, 38, 39]. According to these definitions, an execution performed by
a collection of threads is serializable if it is equivalent to a serial execution, in
which each thread’s transactions (or atomic sections) are executed in some se-
rial order. However, serializability/atomicity ignores invariants and consistency
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properties that may exist between shared memory locations, and therefore may
not accurately reflect the intentions of the programmer for correct behavior,
resulting in missed errors and false positives.

A more flexible correctness criterion that takes such relationships into ac-
count has been explored recently: Atomic-set serializability defines atomic sets
of memory locations related by some correctness constraint. It further defines
units of work, operations that preserve these invariants. Since the sets can range
from a single location to the entire heap atomic-set serializability subsumes low
level data races as well as atomicity [36]. Like serializability, atomic-set serial-
izability disallows concurrency-related errors [1, 2, 7], but it also permits certain
non-problematic interleaving scenarios. Atomic-set serializability is based on a
declarative specification about data, which can be checked independent from
the actual synchronization code, permitting the code to be checked against the
programmer’s intention, in particular it can be checked independently of spe-
cific synchronization constructs such as locks. Therefore, it can be used in set-
tings where many existing approaches cannot, such as classes from the Java 5
java.util.concurrent library and lock-free algorithms.

To detect concurrency errors, the intent of the programmer must still be
known in terms of the atomic sets of related locations and their corresponding
units of work. Declaring them explicitly could impose a significant burden; hence,
we explore whether they can be inferred using heuristics based on the assumption
that object-oriented code associates units of consistency with objects. We present
a set of heuristics (Sect. 4.1) and show that they generate very few false positives
(between 2–4%) in terms of our best manual understanding of what the evaluated
programs are meant to do.

This work presents a new approach for checking atomic-set serializability
based on cycle detection in conflict graphs. The new approach is guaranteed
not to miss errors in a given execution with respect to the given atomic sets and
units of work, while providing all advantages of atomic-set serializability over
previous correctness criteria. Key steps of our technique include:

– Using a simple static escape analysis to detect fields of objects that may be
accessed by multiple threads,

– Encoding the dynamic call stack of each thread efficiently [35] based on a
static approximation of the call graph,

– Maintaining a conflict graph of units of work in order to detect cycles during
execution, which indicates a serializability violation.

Note that all static analyses are for optimization purposes only, our analysis is
independent of these preprocessing steps. We implemented the analysis using
the Shrike bytecode instrumentation component of the WALA program analysis
infrastructure. Our tool instruments the bytecodes of an application in order to:
(i) intercept accesses to shared data, (ii) maintain a dynamic call graph [35] to
determine the units of work to which these accesses belong, and (iii) update the
conflict graph accordingly. To encourage problematic interleavings, we optionally
instrumented the code with yields, a technique also known as noise making [3].
To determine the units of work we made the heuristic assumptions that method
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boundaries delineate units of work, and that there is one atomic set for (each
instance of) each class, containing all the instance fields of that class.

We evaluated our tool on a number of benchmarks, including classes from the
Java Collections Framework, and applications from the ConTest suite [11]. We
found a significant number of violations, including known problems [11, 13], as
well as problems not previously reported. Our technique does not miss errors in
a given execution, provided our heuristics determine the atomic sets and units
of work appropriately. On average over all benchmarks, the instrumentation
inserted by our tool slows down program execution by a factor of 4, which is
similar to, or better than, the performance overhead incurred by other dynamic
serializability violation detection tools [13, 14, 19, 23, 30, 38–40]

In summary, this paper makes the following contributions:

1. We present a dynamic analysis guaranteed to detect all atomic-set serial-
izability violations in the intercepted execution trace based on discovering
cycles in a conflict graph. This graph is based on atomic sets and units of
work, rather than low-level memory and locking operations in prior work.

2. We incorporated an efficient dynamic call graph encoding scheme that com-
putes the callstack as a small number of integers, and still encompasses all
the complexities of object-oriented systems such as exceptions. This uses
both less time and less space than traditional approaches.

3. We model the semantics of Object.wait in the context of atomic sets, which
leads to a drastic reduction of the false positive rate.

4. We present a set of heuristics that automatically determine the atomic sets
and units of work of an application. We demonstrate the usefulness of these
heuristics by using them to find many known races and simultaneously keep-
ing the set of false positives very low (2–4%).

5. We implemented this analysis using the WALA infrastructure and show its
effectiveness on a number of Java benchmarks. We found known bugs as well
as bugs not detected by our previous approach.

2 Background

Our work is based on atomic-set serializability, a correctness criterion for concur-
rent programs defined by Vaziri et al. [36] which exploits that invariants typically
exist between specific memory locations; a well-encapsulated data structure will
have operations that update only its own memory locations. Atomic-set serial-
izability assumes the existence of atomic sets of memory locations that must be
updated atomically, and units of work, code fragments that preserve consistency
of the atomic set, when executed sequentially. Intuitively, the atomic set denotes
the elements of a specific data structure, and units of work are the operations
for manipulating that data structure.

For cases where an operation needs to happen across multiple data structures,
the language offers two more keywords. A parameter declared unitfor signifies
that the method is a unit of work for that parameter, and hence this method
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(a) class Account {
int checking, savings;
public Account(int i, int j){

checking = i; savings = j;}
synchronized void transfer(int n){

checking += n; Global.inc();
savings -= n; Global.inc();}}

class Global {
static int opCounter = 0;
static synchronized void inc(){opCounter++;}}

class Test {
public static void main(String[] args){

final Account x = new Account(4,7);
Thread T1 = new Thread(){

public void run(){ x.transfer(2); }};
Thread T2 = new Thread(){

public void run(){ Global.inc(); }};
T1.start(); T2.start();}}

(b) T1:

transfer()1︷ ︸︸ ︷
. . inc()2 . . . . . . . .inc()3 . .

T2: . . . . . . . . inc()4 . . . . . . . . .

(c) T1:

transfer()1︷ ︸︸ ︷
. . inc()2 . . inc()3 . . . . . . . .

T2: . . . . . . . . . . . . . . . . . inc()4

(d) T1: . . . . . . . .

transfer()1︷ ︸︸ ︷
. . inc()2 . . inc()3

T2: inc()4 . . . . . . . . . . . . . . . . . . .
� time

Fig. 1. (a) Example program. (b)–(d) Three different thread executions.

must appear atomic with respect to units of work upon that parameter. For
example, the ArrayList constructor from the JDK 1.5.0.18 takes another collection
c as parameter without synchronizing on it. Thus, another thread could add or
remove elements to c between retrieving the size of c and copying the elements
of c to the ArrayList, which results in an inconsistent value of the ArrayLists size.
Declaring c unitfor expresses the consistency requirement between the two calls.

The owned keyword conceptually declares that a given field is “part of” its
containing object by merging the respective atomic sets; this allows composition
of more-complex data structures from simpler ones. For example, in the Java
Collections, a HashSet is implemented with a backing HashMap stored in a field
called map that would be declared owned to express the invariant between the
state of the set itself and the backing map.

2.1 Example

Figure 1(a) shows a class Account that declares fields checking and savings, as well
as a method to transfer money from one to the other. Also shown is a class Global
declaring a field opCounter that counts the number of transactions that have taken
place. For the purposes of this example, we assume that the programmer intends
the following behavior: (1) Intermediate states in which the deposit to checking
has taken place without the accompanying withdrawal from savings cannot be
observed. (2) Concurrent executions of inc() are allowed provided that variable
opCounter is updated atomically. To this end, transfer() and inc() are protected by
separate locks. The class Test creates two threads that execute Account.transfer()
and Global.inc() concurrently.

Figure 1(b)-(d) depicts executions in which two threads, T1 and T2, concur-
rently execute the transfer() and inc() methods, respectively. For convenience,
each method execution is labeled with a distinct number (1 through 4). Observe
that, in Figure 1(b), the execution of inc() by T2 occurs interleaved between that
of the two calls to inc() by T1.
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2.2 Atomicity/Serializability

For brevity, we only describe these notions on a high level. For a more detailed
comparison and the details concerning the example in Figure 1 the reader is
referred to our previous work [19].

Atomicity. Atomicity is a non-interference property in which a method or
code block is classified as being atomic if its execution is not affected by and
does not interfere with that of other threads. In our example, the idea is to
show that checking and savings are updated atomically by demonstrating that
the transfer() method is an atomic section or a transaction. Lipton’s theory of
reduction [22] defines a pattern of operations that can be reduced to an equivalent
serial execution. However, method transfer() does not correspond to this pattern,
so the theory cannot show that no intermediate states are exposed to other
threads.

View-serializability. Two executions are view-equivalent [4, 38] if they con-
tain the same events, each read operation reads the result of the same write
operation in both executions, and both executions have the same final write
for any location. An execution is view-serializable if it is view-equivalent to a
serial execution. It is easy to see that execution (b) is neither view-equivalent
to serial execution (c), nor to serial execution (d). Hence, execution (b) is not
view-serializable.

Conflict-serializability. Two events that are executed by different threads
are conflicting if they operate on the same location and one of them is a write.
Two executions are conflict-equivalent [4, 38] iff they contain the same events,
and each pair of conflicting events appears in the same order. An execution
is conflict-serializable iff it is conflict-equivalent to a serial execution. Conflict-
serializability implies view-serializability [4, 38] as they only differ on how they
treat blind writes. Hence, execution (b) is not conflict-serializable.

2.3 Atomic-Set Serializability

Given assumption (1) stated above, we assume that checking and savings form
an atomic set S1, and that transfer()1 is a unit of work on S1. Moreover, from
assumption (2) stated above, we infer that opCounter is another atomic set S2 and
Global.inc()2, Global.inc()3, and Global.inc()4 are units of work on S2. Atomic-set
serializability is equivalent to conflict serializability after projecting the original
execution onto each atomic set, i.e., only events from one atomic set are included
when determining conflicts. The projection of execution (b) onto atomic set S1 is
trivially serial, because events from only one thread are included. Furthermore,
the projection onto atomic set S2 is also serial because the events of units of
work Global.inc()2, Global.inc()3, and Global.inc()4 are not interleaved. Therefore,
execution (b) is atomic-set serializable.

In conclusion, by taking the relationships between shared memory locations
(atomic sets) into account, atomic-set serializability provides a more fine-grained
correctness criterion than the traditional notions of atomicity, conflict- and view-
serializability. In practice, those would classify execution (b) as having a bug,
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(a)
x=3; y=2; z=1
fork;

//Unit of Work u1 (T1):
x = 4; y = 3

//Unit of Work u2 (T2):
z = x

//Unit of Work u3 (T3):
print(z, y)

(b) Wu1(x), Ru2(x), Wu2(z), Ru3(z), Ru3(y), Wu1(y)

Fig. 2. (a) Example threads. (b) Non-serializable execution

u1

u2

u3

x

u1

u2

u3

x z

u1

u2

u3

x z

y

Fig. 3. Conflict graph development for Fig. 2(b) showing a serializability violation as
a cycle of conflicts on variables x, y and z between the units of work u1, u2, and u3

but atomic-set serializability correctly reveals that there is none. Yet, if a coarser
granularity of data is desired, all three locations can be placed in a single atomic
set, in which case our method reverts to conflict-serializability.

2.4 Overview of Our Approach

The goal of this work is to check atomic-set serializability violations dynamically
during program execution. To that end our technique leverages a data structure
from database theory called a conflict graph. A conflict graph consists of nodes
representing the units of work (transactions), and edges modeling conflicts be-
tween those. Intuitively, a conflict between two nodes occurs when both units of
work access a memory location in an associated atomic set, where one access is
a write (see Sect. 3 for formal definitions.) The theory asserts that an execution
is serializable if and only if the conflict graph is acyclic.

As an example, consider Fig. 2(a), taken from Wang and Stoller [39, Sect. 6.3],
which displays a serializability violation involving 3 threads in part (b). Looking
at Fig. 3 reveals the nature of this serializability violation: The execution of
Fig. 2(b) induces a conflict graph involving three threads in units u1, u2 and u3
and the conflict edges are labeled with all three variables involved, so reasoning
about this bug is very natural.

3 Algorithm

This section presents the theory behind our new algorithm based on the defini-
tion of atomic-set serializability.

Let L be the set of all memory locations. A subset L ⊆ L is an atomic set,
indicating that there exists a consistency property between those locations. An
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event is a read R(l) or a write W (l) to a memory location l ∈ L, for some atomic
set L. We assume that each access to a single memory location is uninterrupted.
Given an event e, the notation loc(e) denotes the location accessed by e.

A unit of work u is a sequence of events, and is declared on a set of atomic
sets. Let U be the set of all units of work. We write sets(u) for the set of atomic
sets corresponding to u. We say that

⋃
L∈sets(u) L is the dynamic atomic set

of u. Units of work may be nested, and we write u ← u′ to indicate that u′ is
nested in u. Units of work form a forest via the ← relation.

An access to a location l ∈ L appearing in unit of work u belongs to the
top-most (with respect to the ← forest) unit of work u′ within u such that
L ∈ sets(u′). The notation Ru(l) denotes a read belonging to u, and similarly
for writes. So if a method foo calls another method bar, where both are declared
units of work for the atomic set L1 and bar reads a location l ∈ L1 in bar, then
this read belongs to foo, as foo ← bar. Given an event e, the notation unit(e)
denotes the unit of work of e.

A thread is a sequence of units of work. The notation thread(u) denotes the
thread corresponding to u. An execution is a sequence of events from one or
more threads. Given an execution E and an atomic set L, the projection of E
on L is an execution that has all events on L in E in the same order, and only
those events.

Definition 1 (Atomic-set serializability [36]). An execution is called atom-
ic-set serializable if its projections on each atomic set are serializable.

Definition 2 (Conflict). Let L be an atomic set, l ∈ L, and u and u′ be two
units of work for L. Unit u conflicts with u′ ( u�u’) if and only if both u and
u′ access l, at least one of these accesses is a write, and the access in u either
reads from or performs the first write of l temporally preceding the access in u′.

A conflict graph is a directed graph where the vertices are the units of work, U ,
and there exists an edge from u to u′ if and only if u � u′. Figure 3 depict the
development of the conflict graph for the executions in Fig. 2(b), with the code
shown in part (a).

Lemma 1. An execution is atomic-set serializable iff its conflict graph is acyclic

Proof. Follows from our definition of conflict together with previous serializabil-
ity results [5, 12, 15, 28].

Corollary 1 ([Serializability Violation). An execution has an atomic-set se-
rializability violation iff there exists a cycle in the conflict graph of the execution.

According to this corollary, the cycles in the conflict graphs of Fig. 3 establish
an atomic-set serializability violation in the respective executions of Fig. 2(b).

4 Implementation

This section presents details of our implementation. We first present our choice
of defaults for atomic sets and units of work (Sect. 4.1). We then discuss how
we perform instrumentation to capture events (Sect. 4.2).
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4.1 Automatic Detection of Atomic Sets and Units of Work

We assume that all (including inherited) non-final, non-volatile instance fields
of an object are members of an atomic set. All accessible non-static public and
protected methods of that object are considered initial units of work declared on
this atomic set. All its non-final, non-volatile static fields form another per-class
atomic set with all non-private methods of the class as initial units of work.

In order to satisfy that each access to an atomic set is done within a cor-
responding unit of work [36, Sect. 4.1], we assume that a method containing a
direct access to a field (or using a simple getter/setter function) is an additional
unit of work for the atomic set the field belongs to. A unit of work declared on
multiple atomic sets must be a unit of work on their union. Therefore, we merge
the original atomic set and the set accessed directly during the execution of the
additional unit of work. We support two modi for merging atomic sets: When the
direct access is accessing a field of a member of the atomic set, we assume that
field is owned, so we merge the current atomic set with the one of that member
field and propagate that atomic set to the top-most unit of work (see Sect. 3).
For direct access to any other field, we do not propagate to the top-most unit,
as we assume unitfor semantics. Our previous work supported only the owned
semantics, which may result in more false positives [19].

Apart from that, we model inner classes. Inner classes indirectly leak access
to fields of an enclosing class. For example, in Java Collections, Iterators expose
access to an ArrayList’s internals to a caller of the iterator() method. Thus, we
make the caller a unitfor the the enclosing ArrayList as well, protecting access to
its internal fields.

These heuristics have been found very effective. They deal correctly with a
huge number of access patterns in Java programs.Therefore, we did not add any
manual annotations to the programs. We also implemented an intra-procedural
static analysis that determines whether a method call is a simple getter/setter.

Modeling wait/notify. A call to a.wait() releases the lock associated with a
and waits for another thread to signal a certain condition (usually involving a’s
atomic set). The other thread changes shared state and calls notify(All). When
the first thread resumes, it re-evaluates the condition, which would lead to a
benign cycle in the conflict graph with a naïve heuristics of units of work. We
break a unit of work into two at a call to wait() due to its non-atomic semantics,
which is essential for a low false positive rate as shown by our experiments.

Discussion. These heuristics are designed to discover atomic sets that cover
individual data structures; for many applications, such as building concurrent
libraries, this is precisely what is required; however, it is certainly possible to
have atomicity violations across data structures. Such races imply dependences
between memory locations across data structures that are not isolated behind
abstraction boundaries. This suggests a severe breakage of modularity, of which
atomicity violations are merely one of many deleterious consequences. Much
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work, e.g. alias control such as ownership types [10], has focused on helping
programmers eliminate such errors.

4.2 Program Instrumentation

We instrument the program to intercept field access and to determine what
unit of work each access belongs to. To this end, we use the Shrike bytecode
instrumentor of the WALA program analysis infrastructure.1 For all benchmarks
other than those testing the collections, we did not instrument the Java library.
All inter-procedural static analyses are purely optimizations to reduce runtime
overhead, and we have fallback mechanisms if these analyses fail to complete.

Before instrumentation, our tool performs a simple static escape analysis that
determines a conservative set of possibly-escaping fields by computing the set
of all types that are transitively reachable from a static field or are passed to
a thread constructor. We instrument all non-final and non-volatile fields of such
types, as well as access to arrays.

Our tool uses a non-blocking queue similar to [17, Sect. 15.4.2] to store and
serialize events of different threads, keeping the probe effect [16] (i.e., changes
to the system behavior due to observation) as low as possible, and as, under
contention, blocking will show degraded performance due to context-switching
overhead and scheduling delays. Serializing events in a sequential order is a
prerequisite for detecting cycles in the conflict graph. As a field access and its
recording do not happen atomically, the scheduler could activate another thread
in-between. Nevertheless, the obtained execution is always a valid execution of
the program, as the recording takes place in the same thread, and any syn-
chronization that applies to the access also applies to the recording. Thus, the
intercepted execution must be consistent with the program’s synchronization
scheme, i.e., it might happen with a possible scheduling.

To determine in which unit of work each access belongs, we keep track of a
dynamic call graph, essentially a call stack, for each called method. An access to
a location in an atomic set belongs to its top-most unit of work. To maintain the
dynamic call graph, we exploit a technique from Sumner et al. that uses simple
arithmetic operations at the invocation points in the program [35]. A call stack
corresponds to a path in the static call graph. Using static analysis, we number
paths in the call graph and then compute the number of the current path at
runtime through addition and subtraction. To handle callbacks and recursion, we
represent the dynamic call graph as a list of numbers, saving the last computed
id to the list before such a callback and restoring it from the list afterward. We
further extend the technique to handle exceptions in Java by saving the id before
a try and restoring it within a catch or finally.

As an option, our instrumentation adds yields at certain points in the program
to achieve more interleavings, a technique is called noise making. Ben-Asher et
al. found that, with a more elaborate noise strategy, the probability of producing
a bug increases considerably [3].

1 http://wala.sf.net
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To reduce the memory overhead of our technique, we additionally garbage
collect old units of work that can no longer lead to cycles in the conflict graph.
When a unit of work completes and has no incoming conflict edges, it cannot
participate in a conflict and may be safely collected. This further allows any ter-
minated units of work conflicting only with the collected one to also be collected.

5 Evaluation

We evaluated our new analysis on the same set of benchmarks as the previous
analysis [19] and additional real world programs, including ConTest [11], Java
Collections, the Jigsaw webserver, and the Jspider and Weblech web crawlers
from [29]. We ran all benchmarks on a 64-bit 2.8GHz 4-core Intel machine with
6GB memory and used the Sun Hotspot JVM version 1.6.0_24-b07.

Table 1 shows the results of our analysis, where each benchmark was exe-
cuted twice. The column “Program” lists the name of each benchmark. We first
list benchmarks from the ConTest suite and then other benchmarks. The “LOC”
column contains the number of static lines of code. While the ConTest bench-
marks are small kernel programs, others range from a few thousand to more
than 100K LOC, showing the applicability of the technique to real world pro-
grams. The “#Threads” column lists the configured number of threads in the
benchmark. For the ConTest and Collections benchmarks, these are the same as
in previous work.

We evaluated the reported violations along several dimensions: The unique
cycles are counted in the “Cycle Sizes” column according to the number of units
of work that the cycle comprises. When multiple accesses (on possibly different
fields of an atomic set) can induce the same cycle in the conflict graph, they
are considered parts of the same violation and only counted once. However, we
listed cycles involving the same atomic set with different sizes separately.

The column “FP” displays the ratio of benign violations (false positives) and
the total violations reported based on manual inspection of the programmer’s
intentions. With our model of Object.wait, only few violations did not in fact
indicate a bug. For example, the programs BufWriter, Lottery and Manager had
cases where our heuristics for units of work were too coarse grained. Exploring
further options for splitting up units of work at certain places like thread fork or
join points is subject to future work. Overall, our false positive rate is just under
2%. The Collections benchmarks are admittedly pathological in the number of
violations they observe, but even excluding them, our false positive rate is 4%.
It was interesting to see the number of violations found for Piper reduce from 75
to 0 when we introduced splitting of the unit of work at Object.wait callsites (see
Sect. 4.1). Also BoundedBuffer, JSpider and Weblech would have had several
false positives without splitting. These numbers show that faithfully modeling
the semantics of wait reduces the false positive rate considerably.

The “New Vio” column compares the current technique with our previous
approach [19]. It lists the number of new serializability violations detected. Pro-
grams not previously evaluated are denoted by –. We interpret the substantial
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Table 1. For each benchmark, the table indicates the number of different violations
detected by cycle length, false positives, new violations, slowdown factor, max. size of
the conflict graph, and the avg. call stack size

Program LOC Cycle Sizes FP New SF SF |CG| Stack #Threads
2 3 4 5 6 7 8 9+ Vio Mem Disk Depth

Account 155 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 14 2.0 10
AirlineTickets 95 1 1 0 0 0 0 0 0 0/2 0 1.5 1.5 94 2.0 100
AllocationV 286 0 0 0 0 0 0 0 0 0/0 0 1.0 1.0 4 2.0 2
BoundedBuffer 328 0 0 1 0 0 0 0 0 0/1 – 1.0 1.0 10 2.0 3
BubbleSort 362 2 3 1 0 0 0 0 0 0/6 0 1.0 1.0 17 2.0 8
BubbleSort 2 130 1 1 1 1 1 1 1 27 0/34 34 10.4 1.4 201 2.0 200
BufWriter 255 1 2 0 0 0 0 0 0 2/3 2 – – 8 2.0 6
Critical 68 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 2 2.0 2
DCL 183 1 1 1 0 0 0 0 0 0/1 0 1.3 1.3 31 2.0 20
FileWriter 325 0 0 0 0 0 0 0 0 0/0 0 1.0 1.0 6 2.0 N/A
LinkedList 416 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 9 2.0 2
Lottery 359 2 1 1 1 1 0 0 0 1/6 5 1.5 1.5 98 2.0 33
Manager 188 4 0 0 0 0 0 0 0 2/4 2 1.0 1.0 7 2.0 3
MergeSort 375 1 0 0 0 0 0 0 0 1/1 0 1.1 1.1 12 3.4 4
MergeSortBug 257 2 1 2 1 1 0 0 0 0/7 1 8.7 1.1 27 3.6 4
PingPong 272 1 0 0 0 0 0 0 0 0/1 0 1.0 1.0 124 2.0 120
Piper 116 0 0 0 0 0 0 0 0 0/0 – – – 83 2.0 40
ProducerConsumer 223 3 3 0 0 0 0 0 0 0/6 – 1.0 1.0 12 2.0 6
Shop 273 2 1 1 1 1 1 1 17 0/25 1 1.0 1.0 122 2.0 7
SunsAccount 144 2 1 1 1 1 1 1 31 0/39 1 1.0 1.0 7613 2.0 N/A
Jigsaw 142K 1 0 0 0 0 0 0 0 0/1 0 3.9 3.9 94 8.0 3
Jspider 56K 4 0 0 0 0 0 0 0 0/4 – 1.2 1.2 128 3.4 6
Weblech 1874 2 0 0 0 0 0 0 0 0/2 – 1.1 1.0 12 2.0 9
ArrayBlockingQ 1576 1 1 0 0 0 0 0 0 0/7 2 26.6 14.12 725 4.1 10
ArrayList (sync) 2266 24 37 10 5 3 0 0 0 0/60 60 48.9 19.6 429 4.1 10
LinkedBlockingQ 1620 1 0 0 0 0 0 0 0 0/1 1 20.1 16.9 605 4.0 10
DelayQueue 1961 25 13 3 1 1 0 0 0 0/43 20 23 17.5 155 4.2 10
Vector 2636 18 38 36 24 11 4 0 0 0/131 131 52.8 10.4 63 4.0 10

number of new violations as an indication of the benefit over the old technique,
stemming from the fact that the new technique does not miss violations in the in-
tercepted execution. We note that the newly found violations also mean that our
technique has no false negatives with respect to the known bugs in the ConTest
and Collections benchmarks except for in AllocationV, FileWriter, and Merge-
Sort. In these benchmarks, poor object orientation as discussed in Sect. 4 and
an inability to reproduce a failing run prevented us from detecting violations.

The “SF” columns indicate the slowdown factor of the instrumented version
compared to the uninstrumented version of the program. “SF Mem” is the slow-
down when the conflict graph is maintained online during program execution,
and “SF Disk” is the slowdown when all accesses are logged to disk and cycle de-
tection is performed postmortem. Note that Piper exhibits a bug that prevented
it from terminating and being timed, and BufWriter terminates its threads pre-
dictably after 10 seconds. We excluded these from the average, denoted by –.
For Jigsaw, we measured the slowdown in response time for client requests, as
a web server runs in an infinite loop. Our technique is comparable or better
than previous approaches, which range from 10x-200x [13, 14, 19, 23, 30, 38–40],
having a 8.5x average overhead factor when performed online. This, however, is
biased by the pathological Collection benchmarks. When only the programs with
more realistic behavior are considered, the overhead diminishes to 1.9x. When
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cycle detection is performed postmortem, these numbers diminish to 4x and
1.1x respectively. Some benchmarks, in particular our synthetic test harness for
the Collections exhibit pathological behavior such that every field access must
be checked for potential conflicts, resulting in atypical overhead. We include the
Collections data to show that out technique works even on degenerate programs.
In particular, most techniques checking atomicity or serializability violations de-
pend on a particular locking discipline and are thus not suitable for the highly
concurrent data structures of the package java.util.concurrent.

Taken from our cycle detection algorithm [18], our technique has a theoretical
time complexity of O(n3/2) where n is the number of accesses to shared variables.
In reality, our technique is efficient and practical because real world programs do
not have such degenerate behavior. In practice, conflict graphs do not grow very
large, as seen in Table 1. This is the result of the pruning from Sect. 4.2, and it
reduces the practical cost of cycle detection. That is, the practical running time
of the algorithm is no longer proportional to an execution’s length. In addition,
the number of variables that escape across multiple threads is limited, ensuring
that much of an execution can usually be ignored by the analysis.

The column “ |CG|” shows the maximum size of the conflict graph before each
garbage collection, given as the number of units of work in the graph. “Stack
depth” shows the number of integers required for our compact stack encoding.
There is no consistent correspondence between these statistics and the apparent
slowdown factor, which supports our argument on the algorithm’s complexity.

6 Related Work

A data race occurs when there are two concurrent accesses to a shared memory
location not ordered by synchronization, at least one of which is a write. Dynamic
analyses for detecting data races include those based on the lockset algorithm
[32, 34], on the happens-before relation [25], or on a combination of the two [27].
Dynamic approaches to detecting races scale reasonably well for real applications
and have detected a large number of bugs in real software [27, 32, 33].

Narayanasamy et al. [26] present a dynamic race detection tool and an auto-
mated technique for classifying the races found by the tool as benign or malign.
This classification is based on replaying the execution of a piece of code that
exhibits a race according to two different executions, and observing whether or
not the resulting executions produce different results.

A program without data races may not be free of concurrency bugs as shown
in [2, 7]. Atomic-set serializability captures these forms of high-level data races
as a correctness criterion based on the programmer’s intentions for correct be-
havior directly. Unlike these techniques, our approach is independent of any
synchronization mechanism.

Atomizer [13] , is a dynamic atomicity checker based on Lipton’s theory of re-
duction. Wang and Stoller present a number of different algorithms for detecting
atomicity violations [38, 39]. The Block-Based Algorithm [39] is based on non-
serializable interleaving patterns. In addition, they view the heap as a single
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atomic set, whereas our approach is parameterized by a partitioning of the heap
into multiple atomic sets. Wang and Stoller also [38] present two Commit-Node
Algorithms for checking view serializability and conflict serializability (detailed
comparison presented in [19]).

Lu et al. [23] detect atomicity violations in C programs.They observe many cor-
rect “training” executions of a concurrent application and record nonserializable
interleavings of accesses to shared variables. Then, nonserializable interleavings
that only arise in incorrect executions are reported as atomicity violations. They
only detect atomicity violations that involve a single shared variable, whereas our
approach can handle multiple locations.

Another serializability violation detector was presented by Xu et al. [40]. It
dynamically detects atomic regions (called Computation Units or CUs) using a
region hypothesis, which proved useful in their experiments but is not sound in
general. Thus, their analysis produces both false positives and negatives. Non-
serializability checking is done using a heuristic based on strict two-phase locking.
Like us, it does not rely on the possibly buggy locking structure of the program.

Recently, Park et al. correlated access patterns with the observed likelihood
or suspicion that they cause a program to behave incorrectly [30]. They ignore
such problems as stale writes and inconsistent reads, and they do not handle
unserializable behaviors between more than two threads.

Other recent work uses cycle detection to find atomicity violations: Farzan
et al. use postmortem cycle detection to find atomicity violations requiring
user specified transactions [12]. Velodrome dynamically detects atomicity vio-
lations [14]. It uses a similar mechanism for safely garbage collecting terminated
transactions. Atomicity does not take the consistency properties between data
into account and thus may ignore the programmer’s intentions as exemplified in
Sect. 2.2. While Velodrome’s analysis should be both sound and complete, their
implementation is neither. This is due to slightly unsound optimizations, and
because Velodrome makes the heuristic assumption that all methods are atomic,
which is not generally the case, like for Thread’s run() methods. We argue that
our heuristics based on OO principles and the declarative approach to synchro-
nization models the programmer’s intentions better. As for false positives, they
report none; however, that is with respect to their very strong assumptions. In
contrast, our reports of false positives are with respect to the programmer’s in-
tentions as measured by potential to produce wrong answers. Finally, Velodrome
does not instrument array access for reasons of complexity, which would have
resulted in more than 22% missed violations in our ConTest benchmarks.

Related work also explores alternative thread schedules that might cause
atomicity violations to occur [6, 8, 9, 14, 20, 21, 31]. We leave this orthogo-
nal problem as future work. The work of Burnim et al. [6] also extends to such
difficult data structures as those in java.util.concurrent.

Martin et al. [24] propose dynamic ownership policy checking for shared ob-
jects in C/C++. Their approach requires manual ownership annotations and
imposes an average runtime overhead of 26%. Working on a very fine granularity



174 W.N. Sumner, C. Hammer, and J. Dolby

level, their annotations could in theory be used to check atomic-set serializability,
however, by annotating code instead of data their approach is not data-centric.

A previous approach of Hammer et al. [19] matches an intercepted execution
trace against a set of problematic interleaving patterns. Unlike conflict graphs,
that approach cannot find all possible atomic-set serializability violations in an
intercepted execution trace. Apart from that, that work used a different heuris-
tics to determine units of work and atomic sets. In particular it only supported
the owned annotation, did not infer direct field access in accessor methods, needed
to retain the exact index of array access for maximal precision and could not
optimize away events accessing the same atomic set and unit of work.

7 Conclusions

This work presents a new mechanism to dynamically detect atomic-set serial-
izability violations. It is both more powerful than previous atomic-set serializa-
bility violation detectors, for identifying all violations present in the intercepted
execution, as well as detectors of other correctness criteria like race freedom,
serializability, and atomicity, as these are subsumed by the notion of atomic-set
serializability. We have shown that our new algorithm scales to realistic program
sizes. We also proposed a set of heuristics to determine atomic sets and units
of work and demonstrate their effectiveness in the evaluation where they suc-
cessfully find many known concurrency bugs with a very low false positive rate.
Even though our analysis already finds a high number of violations due to noise
making, we envisage prediction of atomic-set serializability violations in alter-
native schedules of the program as a possible extension, to mitigate coverage of
the huge test space of concurrent programs.
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Abstract. Coverage metrics play a crucial role in testing. They allow one to es-
timate how well a program has been tested and/or to control the testing process.
Several concurrency-related coverage metrics have been proposed, but most of
them do not reflect concurrent behaviour accurately enough. In this paper, we
propose several new metrics that are suitable primarily for saturation-based or
search-based testing of concurrent software. Their distinguishing feature is that
they are derived from various dynamic analyses designed for detecting synchro-
nisation errors in concurrent software. In fact, the way these metrics are obtained
is generic, and further metrics can be obtained in a similar way from other analy-
ses. The underlying motivation is that, within such analyses, behavioural aspects
crucial for occurrence of various bugs are identified, and hence it makes sense to
track how well the occurrence of such phenomena is covered by testing. Next,
coverage tasks of the proposed as well as some existing metrics are combined
with an abstract identification of the threads participating in generation of the
phenomena captured in the concerned tasks. This way, further, more precise met-
rics are obtained. Finally, an empirical evaluation of the proposed metrics, which
confirms that several of them are indeed more suitable for saturation-based and
search-based testing than the previously known metrics, is presented.

1 Introduction

Despite the constant development of various approaches to verification and bug finding
based on formal roots, software testing still belongs among the most common ways
of discovering errors in programs. However, it has to face new challenges related to
the changes in programming paradigms commonly used in practice. In particular, in
the past years, concurrent programming has become much more common than before.
Testing concurrent software is much more difficult due to the non-determinism present
in scheduling executions of concurrent threads. Various ways how to improve testing of
concurrent software have been proposed, including, e.g., the use of noise injection or
various dynamic analyses.

In testing, a crucial role is played by the so-called coverage metrics. A coverage
metric is based on a coverage domain that is a set of coverage tasks representing dif-
ferent phenomena (such as reachability of a certain line, reachability of a situation in
which a certain variable has a certain value, etc.) whose occurrence in the behaviour
of a tested program is considered to be of interest. One can then measure how many
of the phenomena corresponding to the coverage tasks have been seen in the witnessed
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behaviours of the tested program. Such a measurement can be used to asses how well
the program has been tested. Moreover, in the so-called saturation-based testing [16],
one looks for the moment when the obtained coverage stops growing, and hence the
testing can be stopped. Further, in search-based testing [12], a fitness function driving
an optimisation algorithm used to control the testing process can be based on the values
of a coverage metric.

For metrics used in saturation-based or search-based testing, one can identify several
specific properties that they should exhibit. First, within the testing process, the ob-
tained coverage should as often as possible grow for a while and then stabilise. Hence,
it should not immediately jump to some value and stabilise on it. On the other hand, it
should not take too much time for the coverage to stabilise. Also, to enable a reliable de-
tection of stabilisation, the coverage should grow as smoothly as possible, i.e., without
growing through a series of distinctive shoulders. Next, in case of testing an erroneous
program, the stabilisation should ideally not happen before an error is detected. Finally,
the increase in coverage should be linked with witnessing more and more behaviours
that differ in their potential of exhibiting a bug.

In this paper, we propose several new coverage metrics suitable for saturation-
based or search-based testing of concurrent programs. These metrics are based on cov-
erage tasks derived from the information about program behaviour that is gathered
or computed by various dynamic analyses that have been proposed for discovering
synchronisation-related errors in concurrent programs. In fact, the idea of inferring
new metrics from these analyses is rather generic and can be applied to other dynamic
as well as static analyses (even those that will appear in the future) too. The proposal is
motivated by the idea that within the development of such analyses, behavioural aspects
of concurrent programs that are highly relevant for the existence of synchronisation-
related errors have been identified. Hence, it makes sense to measure how well the
aspects of the behaviour tracked by such analyses have been covered during testing.

Further, we also combine coverage tasks of the newly proposed as well as some
existing metrics with abstract identifiers of the threads involved in generating the phe-
nomena reflected in the concerned tasks. The identifiers abstract away the concrete nu-
merical identifiers of the threads, but preserve information on their type, the history of
their creation, etc. This way, an increased number of coverage tasks is obtained, forming
a new, more precise variant of the original metric.

We have performed an empirical comparison of the use of the newly proposed met-
rics against three common concurrency-related metrics. We show that several of the
newly proposed metrics indeed meet the criteria of suitability for saturation-based and
search-based testing in a significantly better way than the previously known metrics.

Plan of the paper. In Section 2, we discuss the related work. Section 3 details the pro-
posed way of deriving new coverage metrics and presents several concrete new metrics.
For comparison purposes, the section then also presents in a uniform way several exist-
ing metrics (one of these metrics is slightly extended too). Section 4 presents the tech-
niques we use for an abstract identification of objects and threads. Section 5 describes
our experimental setting and provides our experimental results. Finally, Section 6 con-
cludes the paper and provides some notes on the possible future work.
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2 Related Work

As said already in the previous section, testing is one of the most common approaches
used for discovering concurrency bugs. The testing process is typically empowered in
some way to cope with the fact that concurrency bugs often appear only under very
special scheduling circumstances. To increase chances of spotting a concurrency bug,
various ways of influencing the scheduling are often used. An example of this approach
is random or heuristic noise injection used in the IBM Concurrency Testing Tool (Con-
Test) [4] or a systematic exploration of all schedules up to some number of context
switches as used in the Microsoft CHESS tool [13].

Another way to improve traditional concurrency testing is to try to extrapolate the
behaviour seen within a testing run and to warn about a possible error even if such an
error was not in fact seen in the test execution. Such approaches are called dynamic
analyses. Many dynamic analyses have been proposed for detecting special classes of
bugs, such as data races [2,5,14,15], atomicity violations [10], or deadlocks [1,7]. These
techniques may find more bugs than classical testing, but on the other hand, their com-
putational complexity is usually higher, and they can also produce false alarms.

An alternative to testing and dynamic analyses is the use of static analyses. They
avoid execution of the given program or execute it on a highly abstract level only.
Various static analyses of concurrent software exist, including light-weight analyses
that look for specific patterns in the code that might lead to a bug [6] or, e.g., various
dataflow-based analyses that try to identify bugs like data races [8] or deadlocks [20].
Model checking [3] (sometimes viewed as a heavy-weight static analysis too) tries to
systematically analyse all possible interleavings of threads in a given program (the
CHESS approach can, in fact, be seen as a form of bounded model checking). Light-
weight static analyses may produce many false alarms and heavy-weight approaches
may have troubles with scalability. There also exist approaches that combine static and
dynamic analyses in an attempt to suppress their deficiencies.

We build our new coverage metrics on the information that is gathered or com-
puted by several different dynamic analyses mentioned above, namely, Eraser [15],
GoldiLocks [5], AVIO [10], and GoodLock [1]. In our experiments with these metrics,
we use ConTest and its noise injection mechanisms to generate different legal interleav-
ing scenarios in repeated executions of the considered test cases. Although not explored
in this paper, new coverage metrics could be derived from various static analyses too.

Many different coverage metrics have been proposed targeting probably all areas of
testing in the past decades. Testing of concurrent software is not an exception. Out of
the existing concurrency-related metrics, among the ones that we find as the probably
most promising from the point of view of their practical applicability there is the metric
based on du-pairs proposed in [21], the metric based on concurrent pairs of events from
[2], and the synchronisation coverage [18]. We discuss these metrics in more detail in
Section 3.3, and we experimentally compare our metrics with them in Section 5.

The idea of extending coverage tasks of metrics by further information has also been
presented in [16] where saturation-based testing of concurrent programs is introduced.
The authors propose three types of context information which can be used to refine
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existing metrics. The pair context handles situations where two events in the concurrent
programs interact and makes this information explicit for the metric. The group context
makes explicit the type of thread that performed an event (this is a special case of our
abstract thread identifiers). Finally, the thread context explicitly identifies the thread
which performed the event.

3 Concurrency Coverage Metrics

Our goal is to create metrics that are suitable for saturation-based and search-based
testing of concurrent software. As we have already said in the introduction, metrics to
be used in this context should have some special properties. In particular, during testing,
the coverage should as often as possible first increase for some reasonable amount of
time and then stabilise. The stabilisation should not happen too early nor too late. This
typically implies that the number of coverage tasks should not be too small nor too
large. The growth should not generate distinctive shoulders so that saturation can be
reasonably detected. In case of testing an erroneous program, the stabilisation should as
often as possible happen after the error is detected. Finally, a growth of coverage should
be in some relation to witnessing more and more behaviours distinct from the point of
view of their potential for generating some concurrency error. In addition, one should
also consider a generic requirement for the metrics not to be too costly to use

We now first discuss a methodology how metrics satisfying the above can be ob-
tained, and then propose several new concrete metrics. Finally, for comparison pur-
poses, we describe (and in one case also extend) some existing metrics too.

3.1 Methodology of Deriving Suitable Coverage Metrics

To derive metrics satisfying the criteria set up above, we propose to get inspired by vari-
ous existing dynamic (and possibly even static) concurrency error detection techniques.
This is motivated by two observations: (1) These detection techniques focus on those
events occurring in runs of the analysed programs that appear relevant for detection of
various concurrency-related errors. (2) The techniques build and maintain a represen-
tation of the context of such events that is important for detection of possible bugs in
the program. Hence, trying to measure how many of such events have been seen, and
possibly in how many different contexts, seems promising from the point of view of
relating the growth of a metric to an increasing likelihood of spotting an error.

The described idea is very generic, and we can speak about a new class of concur-
rency coverage metrics that can be obtained in the described manner. A crucial step in
the creation of a new coverage metric based on some error detection algorithm is to
choose suitable pieces of information available to or computed by the detection algo-
rithm, which are then used to construct the domain of the new coverage metric such that
the other, above mentioned criteria are met. This leads to a trade off among the preci-
sion of the metric and the amount of information tracked, the associated computational
complexity, and speed of saturation. One extreme is to build a coverage metric directly
on warnings about concurrency errors issued by the detection algorithm. In this case, we
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need to implement the detection algorithm entirely. Another extreme is to build a cov-
erage metric counting just the events tracked by the detection algorithm, without their
context. In such a case, we often obtain very similar metrics to already existing metrics.
Within this process—which can hardly be made algorithmic and which requires cer-
tain ingenuity and also experimental evidence, it can also of course turn out that some
detection algorithms are not suitable as a basis of a coverage metric at all.

Let us demonstrate the described problem on an example of two dynamic data race
detection algorithms. The vector-clock-based algorithms, e.g., [14], maintain for each
thread an internal clock which is an integer value representing the number of synchro-
nisation events that the thread executed so far. The algorithm then also maintains for
each thread, each lock, and each variable vectors of clocks representing synchronisa-
tion bindings among events performed on these program elements. The goal is to obtain
the so-called happens-before relation that says which events are guaranteed to happen
before other events, meaning that such events cannot participate on a data race (where
the order of the events must not be fixed). Nevertheless, vectors of clocks are not suit-
able for our purposes because they encode the history context using a too large number
of values. This would lead to a huge number of coverage tasks, a slow progress towards
saturation, and also a high cost of measuring the obtained coverage.

On the other hand, the Eraser algorithm [15] computes the so-called locksets. For each
thread, the algorithm computes a set of locks currently held by the thread, and for each
variable access, the algorithm uses these sets to derive the set of locks that were held by
each thread that had so far accessed the variable. These so-called locksets are maintained
according to a state assigned to each variable which represents how the variable has been
operated so far (e.g., exclusively within one thread, shared among threads, for reading
only, etc.). This algorithm is more suitable for our purposes because the history context
used by it gives rise to a reasonable number of coverage tasks (as we show below).

Finally, we note that, according to our experimental evidence mentioned later on, the
precision of the constructed metrics can further be suitably adjusted by combining their
coverage tasks with some abstract identification of the threads involved in generating
the phenomena reflected in the concerned tasks. The identification should of course not
be based on the unique thread identifiers, but it can preserve information on their type,
the history of their creation, etc. A similar identification can then also be used whenever
the coverage tasks contain some dynamically instantiated objects (e.g., locks).

3.2 New Coverage Metrics

We are now going to derive several new concrete coverage metrics. As we have already
said, they are all based on some dynamic analyses used for detecting errors in synchro-
nisation of concurrent programs. In order to allow for a quick comparison among the
metrics, Table 1 presents an overview of all the proposed metrics, together with some
other metrics that we will consider in our experiments. For each metric, the second
column shows a tuple defining coverage tasks of the metric, and the third column con-
tains information whether the metric is new (N), already existing (E), or whether it is
our modification of some already known metric (M). The first item of each of the tuples
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Table 1. The considered coverage metrics

metric coverage task note

Avio (pl1, pl2, pl3) N
Avio∗ (pl1, pl2, pl3, var, t1, t2) N
Eraser (pl1, state, lockset) N
Eraser∗ (pl1, var, state, lockset, t1) N
GoldiLock (pl1, goldiLockSetSC) N
GoldiLock∗ (pl1, var, goldiLockSetSC, t1) N
GoodLock (pl1, pl2, l1, l2) N
GoodLock∗ (pl1, pl2, l1, l2, t1) N
HBPair (pl1, pl2, syncObj) N
HBPair∗ (pl1, pl2, syncObj, t1, t2) N

ConcurPairs (pl1, pl2, switch) E
DUPairs (pl1, pl2, var) E
DUPairs∗ (pl1, pl2, var, t1, t2) M
Sync (pl1,mode) E

representing a coverage task (de-
noted as pl1) gives a primary pro-
gram location which generates the
given task when reached by some
thread. The rest of the tuples can
then be viewed as a context un-
der which the location is reached.
For most of the metrics, we provide
two versions: a basic version and a
version with an extended context,
denoted by ∗. In the following para-
graphs, the versions with the ex-
tended context are described only.
The basic versions can easily be de-
rived from them by dropping some
elements of the context.

In order to make the description
more concrete, in the rest of the pa-
per, we assume the Java memory
model [11]. In the text below, we use the following notation. V is a set of identifiers
of instances of non-volatile variables (i.e., non-volatile fields of objects) that may be
used in the tested program at hand, O is a set of identifiers of instances of volatile
variables used in the program, L is a set of identifiers of locks used in the program, T
is a set of identifiers of all threads that may be created by the program, and P is a set
of all program locations in the program. We discuss one possible concrete way how the
needed identifiers may be obtained in Section 4.

A coverage metric based on Eraser. The coverage metric Eraser∗ is based on the Eraser
algorithm [15] whose basics have been sketched above. Its coverage tasks have the form
of a tuple (pl1, var, state, lockset, t1) where pl1 ∈ P identifies the program location
of an instruction accessing a shared variable var ∈ V , state ∈ {virgin, exclusive,
exclusive′, shared,modified, race} gives the state in which the Eraser’s finite con-
trol automaton is when the given location is reached (we consider the extended version
of Eraser using the exclusive′ state as introduced in [19], which is more suitable for
the Java memory model), and lockset ⊆ L denotes a set of locks currently guarding
the variable var. Finally, t1 ∈ T represents the thread performing the access operation.

A coverage metric based on GoldiLocks. GoldiLocks [5] is one of the most advanced
lockset-based algorithms. The main idea of this algorithm is that it combines the use
of locksets with computing the happens-before relation. In GoldiLocks, locksets are al-
lowed to contain not only locks but also volatile variables and threads. If a thread t ap-
pears in the lockset of a shared variable when the variable is accessed, it means that t is
properly synchronised for using the given variable because all other accesses that might
cause a data race are guaranteed to happen before the current access. The algorithm uses
a limited number of elements placed in the lockset to represent an important part of the
synchronisation history preceding an access to a shared variable. This is in contrast with
the vector-clocks-based algorithms mentioned above. The basic GoldiLocks algorithm
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is still relatively expensive but can be optimised by the so-called short circuit checks
(SC) which are three cheap checks that are sufficient for deciding race freedom be-
tween the two last accesses to a variable. The original algorithm is then used only when
SC cannot prove race freedom. Our GoldiLock-based metric GoldiLock∗ is based on
coverage tasks having the form of tuples (pl1, var, goldiLockSet, t1) where pl1 ∈ P
gives the location of an instruction accessing a variable var ∈ V within a thread t1 ∈ T ,
and goldiLockSet ⊆ O ∪ L ∪ T represents the lockset computed by GoldiLocks.

A coverage metric based on Avio. The Avio algorithm that detects atomicity violation
over one variable is presented in [10]. We choose this algorithm because it does not
require any additional information from the user about instructions that should be exe-
cuted atomically. The algorithm considers any two consecutive accesses a1 and a2 from
one thread to a shared variable var to form an atomic block B. Serialisability is then
defined based on an analysis of what can happen when B is interleaved with some read
or write access a3 from another thread to the variable var. Out of the eight total cases
arising in this way, four (namely, r/w/r, w/w/r, w/r/w, r/w/w) are considered to lead to
an unserialisable execution. Tracking of all accesses that occur concurrently to a block
B can be very expensive. Therefore, we define our criterion to consider only the last
interleaving access to the concerned variable from a different thread. Our Avio∗ met-
ric uses coverage tasks in the form of tuples (pl1, pl2, pl3, var, t1, t2) where var ∈ V ,
pl1, pl2, pl3 ∈ P , and t1, t2 ∈ T . The considered atomic block B spans between pl1
and pl2, and it is executed by a thread t1. Finally, pl3 gives a location of an instruction
executed in a thread t2 that interferes with the block B.

A coverage metric based on GoodLock. GoodLock is a popular deadlock detection
algorithm that exists in several modifications—we, in particular, build on its modifi-
cation published in [1]. The algorithm builds the so-called guarded lock graph which
is a labelled oriented graph where nodes represent locks, and edges represent nested
locking within which a thread that already has some lock asks for another one. Labels
over edges provide additional information about the thread that creates the edge. The
algorithm searches for cycles in the graph wrt. the edge labels in order to detect dead-
locks. Our metric focuses on occurrence of nested locking that is considered interesting
by GoodLock. We omit collection of the locksets of the threads which the original al-
gorithm uses as one element of the edge label because this information is used in the
algorithm to suppress certain false alarms only. Our GoodLock∗ metric is therefore
based on coverage tasks in the form of tuples (pl1, pl2, l1, l2, t1) where pl1, pl2 ∈ P ,
l1, l2 ∈ L, and t1 ∈ T . Such a task is covered when the thread t1 has obtained the lock
l1 at pl1, and now the same thread is obtaining the lock l2 at pl2.

A coverage metric based on happens-before pairs. This coverage metric is motivated
by observations we get from the GoldiLocks algorithm and the vector-clock algorithms,
both of them depending on computation of the happens-before relation. In order to get
rid of the possibly huge number of coverage tasks produced by the vector-clock al-
gorithms and trying to decrease the computational complexity needed when the full
GoldiLocks algorithm is used, we focus on pieces of information the algorithms use
for creating their representations of the analysed program behaviours (without actually



184 B. Křena, Z. Letko, and T. Vojnar

computing and using these representations). All of these algorithms rely on synchro-
nisation events observed along the execution path. Inspired by this, we propose the
HBPair∗ metric that tracks successful synchronisation events based on locks, volatile
variables, wait-notify operations, and thread start and join operations used in Java.
A coverage task is defined as a tuple (pl1, pl2, syncObj, t1, t2) where pl1 ∈ P is a pro-
gram location in a thread t1 ∈ T that was synchronised with the location pl2 ∈ P of
the thread t2 ∈ T using the synchronisation objects syncObj ∈ L∪O ∪ {⊥}. Here,⊥
represents a thread start or a successful join synchronisation where no synchronisation
object is needed.

3.3 Existing Metrics

In order to compare our metrics with already existing metrics, we further consider—and
in one case also extend—the following metrics.

Coverage based on concurrently executing instructions (ConcurPairs). The coverage
of concurrent pairs of events proposed in [2] is a metric in which each coverage task is
composed of a pair of program locations that are assumed to be encountered consecu-
tively in a run and a third item that is true or false. It is false iff the two locations are
visited by the same thread and true otherwise—that is, true means that there occurred
a context switch between the two program locations. This metric provides statement
coverage information (using the false flag) and interleaving information (using the
true flag) at once. In our notation, each task of the metric is a tuple (pl1, pl2, switch)
where pl1, pl2 ∈ P represent the consecutive program locations (only concurrency
primitives and variable accesses are monitored), and switch ∈ {true, false} denotes
whether the context switch occurs in between of them. Since this metric produces a large
number of coverage tasks even for small programs, we decided not to enrich it with any
further context information.

Definition-use coverage. This coverage metric is based on the all-du-path coverage
metric for parallel programs described in [21]. This metric considers coverage tasks in
the form of triples (var, d, u) where var is a shared variable, d is a node in the parallel
program flow graph (PPFG) where the value of var is defined, and u is a node in the
PPFG where the value is read. The du-pair therefore denotes an existing path in the
PPFG from a node d to a node u where the value of var from d is still available, i.e.,
there is no node redefining the value of var on the path between d and u. We consider
the original all-du-pair coverage metric (denoted as DUPairs), and we also extend it
to a metric which adds more context information to the coverage tasks. Our metric
DUPairs∗ is based on coverage tasks in the form of tuples (pl1, pl2, var, t1, t2) where
pl1, pl2 ∈ P represent program locations where the value of the variable var ∈ V is
defined and used, respectively, t1 ∈ T denotes the thread that performed the definition
of var at pl1, and t2 ∈ T denotes the thread that subsequently uses the value at pl2.

Synchronisation coverage (Sync). The synchronisation coverage [18] focuses on the
use of synchronisation primitives and does not directly consider thread interleavings.
Coverage tasks of the metric are defined based on various distinctive situations that can
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occur when using each specific type of synchronisation primitives. For instance, in the
case of a synchronised block (defined using the Java keyword synchronised), the
obtained tasks are: synchronisation visited, synchronisation blocking, and synchronisa-
tion blocked. The synchronisation visited task is basically just a code coverage task.
The other two are reported when there is an actual contention between synchronised
blocks—when a thread t1 reaches a synchronised block A and stops because another
thread t2 is inside a block B synchronised on the same lock. In this case, A is reported
as blocked, and B as blocking (both, in addition, as visited). In our notation, the metric
is defined using tuples of the form (pl1,mode) where pl1 ∈ P represents the program
location of a synchronisation primitive, and mode represents an element from the set of
the distinctive situations relevant for the given type of synchronisation.

4 Abstract Object and Thread Identification

Our coverage metrics introduced in Section 3 are based on tasks that include identifi-
cation of threads and instances of variables and locks. The Java virtual machine (JVM)
generates identifiers of objects and threads dynamically. Such identifiers are, however,
not suitable for our purposes: (1) In long runs, too many of them may be generated.
(2) We would like to be able to match semantically equivalent tasks generated in dif-
ferent runs (may be not precisely, but at least with a reasonable precision), and the
identifiers generated by JVM for the same threads (from the semantical point of view)
in different runs will quite likely be different.

Previous works, such as [16], used Java types to identify threads. We consider this
type-based identification of elements as too rough. Our goal is to create identifiers
which distinguish behaviour of objects and threads within the program more accurately,
but still keeping a reasonable level of abstraction so the set of such abstract identifiers
remains of a moderate size.

The abstract object identification that we consider in this work (to identify locks as
well as instances of variables1) is based on the observation that, usually, objects created
in the same place in the program are used in a similar way. For instance, there are usually
many instances of the class String in an average Java program, but all strings that are
created within invocations of the same method will probably be manipulated similarly.
Therefore, we define an object identifier as a tuple (type, loc) where type refers to the
type of the object, and loc refers to the top of the stack (excluding calls to constructors)
when the object is created. The record at top of the stack contains a method, source file,
and line of code.

Next, our abstract thread identification is based on an observation that the type and
place of creation are not sufficient to build a thread identifier. Several threads created at
the same program location (e.g., in a loop) can subsequently process different data and
therefore behave differently. We need more information concerning the thread execution
trace to better capture the behaviour of threads. Therefore, we use as the identifier a tu-
ple (type, hash) where type denotes the type of the object implementing the thread,

1 Instances of variables are identified by an object identifier and the appropriate field of the
object.
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and hash contains a hash value computed over a sequence of n first method identi-
fiers that the thread executed after its creation (if the thread terminates sooner, then all
methods it executed are taken into account). The value of n influences precision of the
abstraction. Of course, when a pool of threads (a set of threads started once and used for
several tasks) is used, the computation of the hash value must be restarted immediately
after picking the thread up from the pool.

5 Experiments

Our architecture for collecting concurrency related coverage is built upon the IBM Java
Concurrency Testing Tool (ConTest) [4]—an advanced tool for testing, debugging, and
measuring test coverage for concurrent Java programs. The tool provides a facility for
bytecode instrumentation and a listeners infrastructure allowing one to create plug-ins
for collecting various pieces of information about the multi-threaded Java programs
being executed as well as to easily implement various algorithms for dynamic analyses.
The tool is itself able to collect structural coverage metrics (basic blocks, methods) and
some concurrency-related metrics (ConcurPairs, Sync) too. ConTest further provides
a noise injection facility which injects the so-called noise into the execution of a tested
application and so allows us to observe different legal interleavings if the test is executed
repeatedly. We use our platform called SearchBestie [9] to set up and execute tests with
ConTest, and to collect, maintain, and export results produced by ConTest and its plug-
ins from multiple executions of a test.

5.1 Test Cases

We have evaluated the metrics discussed in Section 3 on four small test cases (Dining
philosophers, Airlines, Crawler, FtpServer) and one large test case (TIDOrbJ).

The Dining philosophers test case is an implementation of the well-known
synchronisation problem of dining philosophers. Our implementation is taken from
the distribution of the Java PathFinder model checker. The program generates a set
of 6 philosophers (each represented by a thread) and the same number of shared objects
representing forks. A deadlock can occur when executing the test case.

The Airlines test case is a simple artificial program simulating an air ticket reser-
vation system. It generates a database of air tickets and then allows 2 resellers (each
represented by a separate thread) to sell tickets to 4 sets of 10 customers (each set is
represented by a separate thread). Finally, a check whether the number of customers
with tickets is equal to the number of sold tickets is done. The program contains a high-
level atomicity violation whose occurrence makes the final check fail.

The three other considered programs are real-life case studies. Crawler is a part of an
older version of a major IBM production software. It demonstrates a tricky concurrency
bug detected in this software. The crawler creates a set of threads waiting for a connec-
tion. If a connection simulated by a testing environment is established, a worker thread
serves it. There is a bug in a method that is called when the crawler shuts down. The
bug causes an exception sometimes leading to a deadlock. The trickiness of the bug can
be seen from its very low error probability shown in Table 2.
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Our second real-life case study is an early development version of an open-source
FtpServer produced by Apache. This case study has 120 classes. The server creates
a new worker thread for each new incoming connection to serve it. The version of the
server we used contains several data races that can cause exceptions during the shut
down process when there is still an active connection. The probability of spotting an
error when noise injection is enabled is quite high in this example because there are
multiple places in the test where an exception can be thrown.

Our biggest test case is TIDOrbJ—a CORBA-compliant ORB (Object Request Bro-
ker) product that is a part of the MORFEO Community Middleware Platform [17].
The instrumented part of the middleware has 1399 classes. We have used the Echo
concurrent test which checks how the infrastructure handles multiple concurrent sim-
ple requests. The test starts an instrumented server and then 10 clients, each sending
5 requests to the server. There was originally no error in this test, and therefore we in-
troduced one by commenting one synchronised statement in the part of code that
is executed by the test. This way, we introduced a high-level atomicity violation that
leads to a null pointer exception.

5.2 Experimental Setup

We used our infrastructure introduced above to collect relevant data from 10,000 ex-
ecutions of the small test cases and 4,000 executions of TIDOrbJ. In order to see as
many different legal interleaving scenarios as possible, we set up ConTest to randomly
inject noise into the executions. We have implemented ConTest plug-ins to collect cov-
erage information and set up SearchBestie to detect occurrences of errors (deadlocks
were detected using a timeout, other errors by detection of unhandled exceptions). All
further studies of the metrics were done using the collection of executions obtained this
way. For instance, we often needed to evaluate the behaviour of the metrics on series
of executions. To generate the needed series of executions, we used SearchBestie to
randomly select a needed number of executions out of the recorded collection and to
compute accumulated values of the chosen metrics on such series. All tests were exe-
cuted on a computer with an Intel 6600 processor and 2 GB of memory, running Sun
Java version 1.6 under GNU Linux.

5.3 Results of Experiments

Object and Thread Abstract Identification. Table 2 summarises information on our
test cases (both from the point of view of the source code as well as the runtime be-
haviour) and—most importantly—it illustrates the effect of our abstract object and
thread identifiers. In particular, the second column of Table 2 shows the number of
instrumented classes for each test case. The following column shows the probability
of spotting an error during a test execution when random noise injection is used (com-
puted as the number of executions where an error occurs divided by the total number
of executions). The rest of the columns provide information about the size of the case
studies in terms of the numbers of threads and objects created in them. These columns
also illustrate precision of our abstract identifiers of objects and threads. The Real col-
umn contains the total number of distinct objects (or threads) we encountered in 10
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Table 2. Test cases and abstract identifiers

Error ObjectAbstraction ThreadAbstraction
Classes Ratio Real Type Abs Real Type Abs10 Abs20

Dining phil. 2 0.4151 130 3 3 7 2 2 2
Airlines 8 0.0333 15 210 6 6 60 3 3 4
Crawler 19 0.0006 1 828 13 14 180 4 9 12
FtpServer 120 0.4032 26 110 27 29 1 641 5 5 6
TIDOrbJ echo 1 399 0.0170 180 320 98 129 79 5 9 11

performed executions of the tests. The Type column shows the total number of distinct
object (or thread) types we have spot, and the Abs columns show the total number of
distinct abstract objects (or threads) we distinguish using our abstract identifiers in-
troduced in Section 4. For the thread abstraction, two values are given showing the
influence of the length n of the considered sequence of methods called by the threads.

Typical Saturation Behaviour of the Metrics. To decide whether a coverage metric
is suitable for saturation-based testing or not, one needs to evaluate several aspects of
its behaviour. The typical behaviour of the considered coverage metrics can be seen
in Figure 1. All four sub-figures show the cumulative number of coverage tasks of the
metrics covered during one randomly chosen series of the Crawler test case executions
(with the thread abstraction variable n set to 20).

Figure 1(a) shows the behaviour of the metrics that, according to our opinion, do
not capture the concurrent behaviour accurately enough. One coverage metric for non-
concurrent code measuring the number of basic blocks covered during tests is added to
demonstrate the difference between classical and concurrency-related coverage metrics.
The coverage obtained under the metric based on basic blocks is nearly constant all the
time because we are repeatedly executing the same code with the same inputs. For the
rest of the metrics shown in Figure 1(a), the cumulative number of tasks covered during
test executions increases only within approximately the 200 first executions, and then
a saturation is reached. The only metrics which slightly differ from the others in this
group are Eraser and DUPairs. The Eraser metric has a similar behaviour to the Avio
metric (and the metrics close to it) but approximately four times higher numbers of
covered tasks. This is caused by the fact that the tracked shared variables usually get to
four Eraser states. The DUPairs metric has also higher numbers of covered tasks but it
is almost all the time stabilised.

The most interesting part of Figure 1(a) between 0 and 200 executions is zoomed in
Figure 1(b). One can see that the saturation effect occurs earlier (at about 100 execu-
tions) for the HBPair and Sync metrics which both focus on synchronisation events only.
The Avio metric (and also the Eraser metric which is not shown) that focus on accesses
to shared variables saturate a bit later. The depicted curves demonstrate one further dis-
advantage of the concerned metrics—a presence of distinctive shoulders. A repeated
execution of the test case does examine different concurrent behaviours (which is indi-
cated by the later discussed metrics) but the metrics concerned in the figure are not able
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Fig. 1. Saturation of different metrics on the Crawler test case (the horizontal axis gives the num-
ber of executions, the vertical axis gives the cumulative number of covered tasks)

to distinguish differences in these behaviours, and therefore we can see clear shoulders
in the curves (i.e., sequences of constant values). The presence of such shoulders makes
automatic saturation detection harder.

Figure 1(c) demonstrates a positive effect of considering an extended context of the
tracked events as proposed in Section 3. The metrics concerned in this sub-figure (i.e.,
Avio∗, Eraser∗, DUPairs∗, HBPair∗, GoodLock∗, and GoldiLock) are able to distin-
guish differences in the behaviour of the executed tests more accurately, leading to
shorter shoulders, bigger differences in the cumulated values, and a later occurrence
of the saturation effect—indicating that the concerned metrics behave in a way much
better for saturation-based testing. As can be seen from a similar jump in the obtained
coverage of the HBPair∗, Eraser∗, and Avio∗ metrics at around 1300 executions, the
extended context can sometimes have a dramatic influence. The jump is caused by the
abstract thread identifiers. At the given point, a thread with a new abstract identifier
appears, and all tasks involving this thread are different to those already known. This
leads to a much more significant increase in the cumulative coverage. A special atten-
tion should be paid to the GoldiLock metric. This metric does not suffer from shoulders
nor sudden, dramatic increases of the obtained coverage, and it reaches saturation near
the saturation points of the other metrics. This is a very positive behaviour, and the
GoldiLock metric is clearly winning here.
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Figure 1(d) shows problems of metrics that are too accurate, namely, ConcurPairs
and GoldiLock∗. These metrics work fine for small test cases but when used on a bigger
test case they tend to saturate late and produce enormous numbers of covered tasks.

Quantitative Properties of the Metrics. Quantitative properties of the considered
metrics in all our test cases can be seen in Table 3. In particular, Table 3 shows, for
each metric and each test case, three values computed from a set of 100 different ran-
dom series consisting of 2,000 test executions. The columns labelled as Total show the
average total number of distinct tasks produced by the metric. This number demon-
strates a big disadvantage of the ConcurPairs coverage metric, namely, its problem with
scalability. The metric produced nearly 5 million of distinct tasks for 2,000 executions
of the TIDOrbJ test case which makes further analyses quite time demanding.

The columns of Table 3 labelled as Average percentage represent the ratio between
the average number of tasks covered within one execution and Total. A high number in
this column means that most of the total number of covered tasks were covered within
one execution. The cumulative coverage under such metrics (for DUPairs, Eraser, and
Sync) usually stabilises early or grows very slowly. In both of these cases, the detection
of saturation is difficult. Contrary, if the average percentage is too low (for ConcurPairs
and GoldiLock∗), the cumulative coverage grows for a very long time.

Finally, the columns of Table 3 labelled Smooth percentage give an insight in how
smooth the growth of the accumulated coverage is. The column contains the ratio be-
tween the average number of the distinct cumulative coverage values reached under
a metric when going through the considered executions and the number of test execu-
tions (2,000). High values (for ConcurPairs and GoldiLock∗) mean that the cumulated

Table 3. A quantitative comparison of the metrics
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Avio 6 47 0 17 60 1 40 22 1 529 45 10 822 50 8
Avio∗ 30 10 0 490 2 10 418 3 9 1 023 33 16 3 280 29 22
ConcurP. 4 059 6 38 16 730 6 85 20 866 3 83 526 280 6 100 4 908 100 2 100
DUPairs 18 76 0 43 97 0 105 81 1 330 92 2 1 933 98 2
DUPair∗ 72 19 0 1 401 3 9 921 11 8 646 82 3 3 092 90 4
Eraser 29 76 0 73 96 0 217 64 2 684 88 4 2 978 90 4
Eraser∗ 89 25 0 1 429 5 8 861 19 5 1 086 79 4 4 886 83 6
GoldiLock 26 73 0 102 64 2 384 20 12 1 091 61 9 6 265 51 29
GoldiLock∗ 119 16 0 4 217 1 20 3 335 3 26 2 210 47 12 10 434 41 46
GoodLock 9 56 0 0 - 0 57 52 1 0 - 0 321 63 3
GoodLock∗ 22 23 0 0 - 0 258 17 4 0 - 0 915 34 6
HBPair 6 62 0 25 79 0 61 39 1 13 73 0 131 70 2
HBPair∗ 29 13 0 1 013 2 13 984 4 12 28 49 0 420 46 5
Sync 8 56 0 27 78 0 49 46 1 22 66 0 172 79 2
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coverage under the metric changed many times, and therefore there was contiguously
growing. Low values (for Avio, DUPairs, Eraser, GoodLock, and Sync) mean that the
cumulated coverage changed only a few times, and therefore there either occurred a fast
saturation or there appeared long shoulders. Both of these phenomena are problematic
for a good metric to be used in saturation-based testing.

The table also shows a disadvantage of the GoodLock∗ metric. The metric focuses on
nested locking as was described in Section 3.2. If such a phenomenon does not occur in
the tested program, the metric provides no information as can be seen in the Airlines and
FtpServer test cases. On the other hand, the metric can provide additional information
which cannot be directly inferred by other metrics in programs which contains this
phenomenon. In total, the evaluation in Table 3 gives similar champions for a good
metric to be used in saturation-based testing as what we saw in Figure 1(c). Namely,
this is the case of the Avio∗, Eraser∗, DUPairs∗, HBPair∗, and GoldiLock metrics.

6 Conclusions and Future Work

We have proposed a methodology of deriving new coverage metrics to be used in testing
of concurrent software from dynamic (and possibly also static) analyses designed for
discovering bugs in concurrent programs. Using this idea, we have derived several new
concrete metrics. We have performed an empirical evaluation of these metrics, which
has shown that several of them are indeed better for use in saturation-based and search-
based testing than various previously known metrics.

As an additional advantage of the metrics that we have proposed, we can mention
their better applicability in debugging. For debugging, understandability of each cover-
age task is important. We believe that tasks generated by our metrics provide much more
problem-related information to the tester than existing metrics such as ConcurPairs or
DUPairs. The tester can track the threads and objects that appear in the covered tasks
to their place of creation or use some additional information (e.g., a lockset) present in
the tasks to better understand what happened during the witnessed executions.

In the future, more experimental evidence about the proposed metrics should be ob-
tained to further explore their properties. Metrics based on other dynamic as well as
static analyses could be considered too. Finally, an evaluation of the metrics within the
entire framework of search-based testing should be done.
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Abstract. We introduce the concept of Runtime Verification with State
Estimation and show how this concept can be applied to estimate the
probability that a temporal property is satisfied by a run of a program
when monitoring overhead is reduced by sampling. In such situations,
there may be gaps in the observed program executions, thus making ac-
curate estimation challenging. To deal with the effects of sampling on
runtime verification, we view event sequences as observation sequences
of a Hidden Markov Model (HMM), use an HMM model of the monitored
program to “fill in” sampling-induced gaps in observation sequences, and
extend the classic forward algorithm for HMM state estimation (which
determines the probability of a state sequence, given an observation se-
quence) to compute the probability that the property is satisfied by an
execution of the program. To validate our approach, we present a case
study based on the mission software for a Mars rover. The results of
our case study demonstrate high prediction accuracy for the probabili-
ties computed by our algorithm. They also show that our technique is
much more accurate than simply evaluating the temporal property on
the given observation sequences, ignoring the gaps.

1 Introduction

Runtime verification (RV) is the problem of, given a program P , execution trace
τ of P , and temporal logic formula φ, decide whether τ satisfies φ. To perform
RV, one typically transforms φ into a monitor (a possibly parametrized finite
state machine) Mφ and instruments P so that it emits events of interest to
Mφ. This allows Mφ to process these events and determine whether the event
sequence satisfies φ.

RV does not come for free. The overhead associated with RV is a measure of
how much longer a program takes to execute due to runtime monitoring. If the
original program executes in time R, and the instrumented program executes in
time R+M with monitoring, we say that the monitoring overhead is M

R .
Recently, a number of techniques have been developed to mitigate the over-

head due to RV [13,9,1,14,5]. Common to these approaches is the use of event
sampling to reduce overhead. Sampling means that some events are not processed
at all, or are processed in a limited (and thus less expensive) manner than other
events. A natural question is: how does sampling affect the results of RV? This

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 193–207, 2012.
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issue has been largely ignored in prior work: the monitor simply reports the re-
sult of processing the observed events, without indicating how sampling might
have affected the results.

For example, let φ be the formula �(a ⇒ �c) (invariably, a is eventually
followed by c) and let τ be the trace a b c a b c a b c. Clearly τ satisfies φ. Suppose
now that τ is an incomplete trace of an execution with implicit gaps due to
sampling. Although we cannot decisively say whether the execution satisfies φ
(for example, there could be an unobserved a event after the last c event), we
would like to compute a confidence measure that the execution satisfies φ.

In this paper, we introduce the concept of runtime verification with state
estimation (RVSE), and show how this concept can be applied to estimate the
probability that a temporal property is satisfied by a run of a program when
monitoring overhead is reduced by sampling. In such situations, there may be
gaps in observed program executions, making accurate estimation challenging.

The main idea behind our approach is to use a statistical model of the mon-
itored system to “fill in” sampling-induced gaps in event sequences, and then
calculate the probability that the property is satisfied. In particular, we appeal
to the theory of Hidden Markov Models [17]. An HMM is a Markov model in
which the system being modeled is assumed to be a Markov process with unob-
served (hidden) states. In a regular Markov model, states are directly visible to
the observer, and therefore state transition probabilities are the only required
parameters. In an HMM, states cannot be observed; rather, each state has a
probability distribution for the possible observations (formally called observa-
tion symbols). The classic state estimation problem for HMMs is to compute the
most likely sequence of states that generated a given observation sequence.

The main contributions of this paper are:

– We use HMMs to formalize the RVSE problem as follows. Given an HMM
system model H , temporal property φ, and observation sequence O (an ex-
ecution trace that may have gaps due to sampling), compute Pr(φ | O,H),
i.e., the probability that the system’s behavior satisfies φ, given O and H .
Note that we use Hidden Markov Models, meaning that the states of the
system are hidden from the observer. This is because we intend to use ma-
chine learning to learn the HMM from traces that contain only observable
actions of the system, not detailed internal states of the system.

– The forward algorithm [17] is a classic recursive algorithm for computing
the probability that, given an observation sequence O, an HMM ended in a
particular state. This problem is the so-called filtering version of the state
estimation problem for HMMs. We present an extension of the forward al-
gorithm for the RVSE problem that computes a similar probability, but in
this case for the paired execution of an HMM system model and a monitor
automaton for the temporal property φ. We first present a version of the
algorithm that does not consider gaps; in this case, the states of the monitor
are completely determined by O, because the monitor is deterministic.

– We then present an algorithm that handles gaps. We use a special sym-
bol to mark gaps, i.e., points in the observation sequence where unobserved
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events might have occurred. Gap symbols may be inserted in the trace by
the instrumentation when it temporarily disables monitoring; or, if gaps
may occur everywhere, a gap symbol can be inserted at every point in
the trace. When the algorithm processes a gap, no observation is available,
so the state of the monitor automaton is updated probabilistically based on
the current state estimation for the HMM and the observation probability
distribution for the HMM. Since the length of a gap (i.e., the number of
consecutive unobserved events) might be unknown, we allow the gap length
to be characterized by a probability distribution.

– We evaluate our RVSE methodology using a case study based on human op-
erators in a ground station issuing commands to a Mars rover [3]. Sampling
of execution traces is simulated using SMCO-style overhead control [14].
Our evaluation demonstrates high prediction accuracy for the probabilities
computed by our algorithm. It also shows that our technique is much more
accurate than simply evaluating the temporal property on the given obser-
vation sequences, ignoring the gaps.

2 Related Work

To the best of our knowledge, Runtime Verification with State Estimation has
not been studied before, and our HMM-based technique to support the cal-
culation of the conditional probability that a system satisfies a temporal logic
formula given a sampled event trace (observation sequence) is new. In this sec-
tion, we discuss related work on runtime verification of statistical properties and
on probabilistic model checking.

Sammapun et al. [18] consider runtime verification of probabilistic properties
of the form: given a condition A, does the probability that an outcome B occurs
fall within a given range? Their technique determines statistically, and with an
adequate level of confidence, whether a system satisfies a probabilistic property.
Wang et al. [19] apply a similar statistical RV technique, in conjunction with
Monte Carlo simulation, to analog and mixed signal designs. Recent work on the
runtime verification of probabilistic properties [11,21] uses acceptance sampling
and sequential hypothesis testing to outperform these approaches. In contrast,
we perform runtime verification of traditional non-probabilistic properties, but
in the presence of sampling.

Finkbeiner et al. [10] extend LTL to perform statistical experiments over run-
time traces, but they do not consider sampling. For example, their methodology
can be used to determine the percentage of positions in a trace at which the
trace satisfies a temporal property. This is a different statistic than the condi-
tional probabilities we compute. LarvaStat [7] incrementally computes statistical
information about runtime executions, but it, too, does not consider sampling.

Probabilistic model checking [15,2] can be used to compute the probability
that a Markov model, such as a Discrete-Time or Continuous-Time Markov
Chain, satisfies a probabilistic temporal logic formula. Zhang et al. [20] extend
probabilistic model checking to HMMs, so that the probability that an HMM
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produces a given sequence of observations can be computed. In contrast, we use
HMMs to probabilistically fill in gaps in sampled event traces, enabling us to
estimate the probability that a (non-probabilistic) temporal property is satisfied
by a trace that contains gaps due to sampling. It is important to note that for
filling in the gaps, a considerably less accurate HMM model is acceptable.

3 Case Study: A Mars Rover Scenario

We illustrate and evaluate our approach on a software model of a planetary rover
mission. The model is written in the Scala programming language,1 allowing
for fast prototyping. Its architecture, depicted in Figure 1, is representative, in
general terms, of actual rover missions, such as the current Mars Science Lab-
oratory2 (MSL) mission. The scenario we consider consists of a rover operating
on the surface of Mars, controlled by commands from ground-based human op-
erators. The rover consists of a collection of instruments (e.g., camera, drill,
temperature sensor) performing specialized tasks. For this case study, the rover
hosts two generic instruments, A and B. Furthermore, every event of importance
occurring on the rover is recorded in a log, which is maintained on the ground.
A ground-based logger module receives and stores such events.

ground rover 

instrument A 

instrument B 

logger 

Command(instrument, name, time)  
         where instrument = A or B  

i

i

Command(A, name, time) 

Command(B, name, time) 

Command(instrument, name, time)  ent name time)ment, name, time) 

Dispatch(A, name, time)  
Success(A, name, time)  

Fail(A, name, time)  
or 

Dispatch(B, name, time)  
Success(B, name, time)  

Fail(B, name, time)  
or 

Fig. 1. Mission architecture

We consider four kinds of events, presented in Figure 2 and inspired by the
scenario explained by Barringer et al. [3]. Commands are issued from ground to
the rover and are characterized by three parameters: instrument id (A or B),
command name, and a time stamp indicating when the event occurred. The
other three events have similar parameters. Upon receipt of a command, the
rover reports this event to the logger (by sending the command to the logger),

1 http://www.scala-lang.org
2 http://mars.jpl.nasa.gov/msl

http://www.scala-lang.org
http://mars.jpl.nasa.gov/msl
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Command(instrument, name, time) commands submitted to rover
Dispatch(instrument, name, time) dispatch of command from rover to instrument
Success(instrument, name, time) success of command on instrument
Fail(instrument, name, time) failure of command on instrument

Fig. 2. Events observed

and then sends the command to the relevant instrument. The instrument, upon
receipt of the command, issues a dispatch event to the logger (recording that it
was dispatched to the instrument). The instrument then executes the command.
If the execution is successful, a success is reported to the logger. If execution fails,
a fail status is reported. It is possible that neither a success nor a fail occur, and
that the command is simply lost for some reason. An example log collected during
the execution of this system could be: Command(A, START, 1008), Command(B,
RESET, 2303), Success(A, START, 4300), Success(B, RESET, 5430).

One aspect of the desired behavior of the rover system is expressed by the
requirement: Every Command(i, n, t1) event should eventually be followed by a
Success(i, n, t2) event, with no Fail(i, n, t3) event occurring in between.

The above trace satisfies this property. The following trace does not satisfy the
property, because the first command fails explicitly, and the second command
fails implicitly (neither success nor failure occurs): Command(A, START, 1008),
Command(B, RESET, 2303), Fail(A, START, 4520).

This property can be expressed in LTL as follows, where � means “always”,
U means “until”, underscore means “don’t care”, and the subscript “cs” is
mnemonic for “command success”.

φcs = (∀ i : Instrument, n : Name.
�(Command(i, n, )⇒ ¬Fail(i, n, ) U Success(i, n, )))

(1)

The property was formulated and checked with TraceContract [4], a Scala

API for trace analysis supporting parameterized state machines and temporal
logic. In TraceContract, the property is expressed as follows, where Scala

keywords are in bold, TraceContract features are underlined, and the hot
state waits for an event that matches the pattern in one of the case statements
and represents the requirement that such an event eventually occurs:

class Contract extends Monitor[Event] {
require {

case Command(i,n,_) =>

hot {
case Fail(`i`, `n`, _) => error

case Success(`i`, `n`, _) => ok

}
}

}
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4 Background

Hidden Markov Models. A Hidden Markov Model (HMM) [17] is a tuple H =
〈S,A, V,B, π〉 containing a set S of states, a transition probability matrixA, a set
V of observation symbols, an observation probability matrixB (also called “emis-
sion probability matrix” or “output probability matrix”), and an initial state dis-
tribution π. The states and observations are indexed (i.e., numbered), so S and
V can be written as S = {s1, s2, . . . , sNs} and V = {v1, . . . , vNo}, whereNs is the
number of states, and No is the number of observation symbols. Let Pr(c1 | c2)
denote the probability that c1 holds, given that c2 holds. The transition probabil-
ity distribution A is anNs×Ns matrix indexed by states in both dimensions, such
that Ai,j = Pr(state is sj at time t+ 1 | state is si at time t). The observation
probability distribution B is an Ns ×No matrix indexed by states and observa-
tions, such that Bi,j = Pr(vj is observed at time t | state is si at time t). πi is
the probability that the initial state is si.

An example of an HMM is depicted in the left part of Figure 3. Each state is
labeled with observation probabilities in that state; for example, P(Succ)=.97
in state s3 means B3,Succ = 0.97, i.e., an observation made in state s3 has
probability 0.97 of observing a Success event. Edges are labeled with transition
probabilities; for example, .93 on the edge from s2 to s3 means that A2,3 = 0.93,
i.e., in state s2, the probability that the next transition leads to state s3 is 0.93.

An HMM generates observation sequences according to the following five-
step procedure [17]. (1) Choose the initial state q1 according to the initial state
distribution π. (2) Set t = 1. (3) Choose the tth observation Ot according to the
observation probability distribution in state qt. (4) Choose the next state qt+1

according to the transition probability distribution in state qt. (5) Increment t
and return to step (3), or stop.

P(Cmd) = 1 

P(Succ) = 0
P(Disp) = 0 

P(Fail) = 0 

P(Cmd) = 0 

P(Succ) = .97 
P(Disp) = 0 

P(Fail) = .03 

P(Cmd) = 0 

P(Succ) = 0 
P(Disp) = 1 

P(Fail) = 0 

.07 

1 

.93 

1 
Fail 

Succ 

Cmd 
Disp 

Cmd 
Disp 
Fail 
Succ 

Cmd 

Disp 
Fail 
Succ 

DFSM HMM s1 

s2 s3 m1 m2 m3 

Fig. 3. Left: an example of an HMM. The initial state distribution is: π1 = 1, π2 = 0,
π3 = 0. Right: Mcs, an example of a DFSM. States with a double border are ac-
cepting states. In both machines, Cmd abbreviates Command(i, n, ), Disp abbreviates
Dispatch(i, n, ), Succ abbreviates Success(i, n, ), and Fail abbreviates Fail(i, n, ).
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The forward algorithm [17] is a classic algorithm for computing the probability
that an HMM ended in a particular state, given an observation sequence O =
〈O1, O2, . . . , OT 〉. Let Q = 〈q1, q2, . . . , qT 〉 denote the (unknown) state sequence
that the system passed through, i.e., qt denotes the state of the system when
observation Ot is made. Let αt(i) = Pr(O1, O2, . . . , Ot, qt = si | H), i.e., the
probability that the first t observations yield O1, O2, . . . , Ot and that qt is si,
given the model H . To hide the notational clutter from indexing of V , we access
the B matrix using the traditional notation [17]:

bi(vk) = Bi,k (2)

The forward algorithm for computing α is:

α1(j) = πjbj(O1) for 1 ≤ j ≤ Ns (3)

αt+1(j) =
(∑

i=1..Ns
αt(i)Ai,j

)
bj(Ot+1)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns

(4)

In the base case, α1(j) is the joint probability of starting in state sj and emitting
O1. Similarly, the recursive case calculates the joint probability of reaching state
sj and emitting OT . The probability of reaching sj is calculated by summing over
the immediate predecessors si of sj ; the summand αt(i)Ai,j is the joint prob-
ability of reaching si while observing O1 through OT−1 and then transitioning
from si to sj . The cost of computing α using these equations is O(N2

s T ).

Learning an HMM. One can obtain an HMM for a system automatically, by
learning it from complete traces using standard HMM learning algorithms [17].
These algorithms require the user to specify the desired number of states in
the HMM. These algorithms allow (but do not require) the user to provide
information about the structure of the HMM, specifically, that certain entries
in the transition probability matrix and the observation probability matrix are
zero. This information can help the learning algorithm converge more quickly
and find globally (instead of locally) optimal solutions. If the temporal property
or properties to be monitored are known before the HMM is learned, then the
set of observation symbols can be limited to contain only events mentioned in
those properties, and the number of states can be chosen just large enough to
be able to model the relevant aspects of the system’s behavior. Note that we
use Hidden Markov Models, meaning that the states of the system are hidden
from the observer, because we intend to learn H from traces that contain only
observable actions of the system, not detailed internal states of the system.

Deterministic Finite State Machines. Our algorithm assumes that the tem-
poral property φ to be monitored is expressed as a parametrized determin-
istic finite state machine (DFSM). The DFSM could be written directly or
obtained by translation from a language such as LTL. A DFSM is a tuple
M = 〈SM ,minit , V, δ, F 〉, where SM is the set of states, minit in SM is the initial
state, V is the alphabet (also called the set of input symbols), δ : SM ×V → SM

is the transition function, and F is the set of accepting states (also called “final
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states”). Note that δ is a total function. A trace O satisfies the property iff it
leaves M in an accepting state.

For example, a DFSM Mcs that expresses the property φcs in Equation 1 is
depicted in the right part of Figure 3. The Dispatch event is not in the alphabet
of the TraceContract property φ and hence normally would be omitted from
the alphabet of the DFSM; we include it in this DFSM for illustrative purposes,
so that the alphabets of the HMM and DFSM are the same.

5 Algorithm for RVSE

The first subsection defines the problem more formally and presents our algo-
rithm for RVSE. Our algorithm is based on the forward algorithm in Section 4
and hence can be used for on-line or post-mortem analysis. The second subsec-
tion describes how we handle parameterized properties.

5.1 Problem Statement and Algorithm

A problem instance is defined by an observation sequence O, an HMM H , and
a temporal property φ over sequences of actions of the monitored system.

The observation sequence O contains events that are occurrences of actions
performed by the monitored system. In addition, O may contain the symbol
gap(L) denoting a possible gap with an unknown length. The length distribution
L is a probability distribution on the natural numbers: L(
) is the probability
that the gap has length 
.

If no information about the location of gaps is available (and hence no gap
events appear in the trace obtained from the runtime monitor), we insert a gap
event at the beginning of the trace and after every event in the trace, to indicate
that gaps may occur everywhere.

The HMM H = 〈S,A, V,B, π〉 models the monitored system, where S =
{s1, . . . , sNs} and V = {v1, . . . , vNo}. Observation symbols of H are observable
actions of the monitored system. H need not be an exact model of the system.

The property φ is represented by a DFSM M = 〈SM ,minit , V, δ, F 〉. For sim-
plicity, we take the alphabet of M to be the same as the set of observation
symbols of H . It is easy to allow the alphabet of M to be a subset of the obser-
vation symbols ofH , by modifying the algorithm so that observations of symbols
outside the alphabet of M leave M in the same state.

The goal is to compute Pr(φ | O,H), i.e., the probability that the system’s
behavior satisfies φ, given observation sequence O and model H .

First, we extend the forward algorithm in Section 4 to keep track of the state
of M . Let mt denote the state of M immediately after observation Ot is made.
Let αt(i,m) = Pr(O1, O2, . . . , Ot, qt = si,mt = m | H), i.e., the joint probability
that the first t observations yield O1, O2, . . . , Ot and that qt is si and that mt is
m, given the model H . Let pred(n, v) be the set of predecessors of n with respect
to v, i.e., the set of states m such that M transitions from m to n on input v.
A conditional expression c ? e1 : e2 equals e1 if c is true, and it equals e2 if c
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is false. The extended forward algorithm appears below. The main changes are
introduction of a conditional expression in equation (6), reflecting that the initial
state of M is minit , and introduction of a sum over predecessors m of n with
respect to Ot+1 in equation (7), analogous to the existing sum over predecessors
i of j, so that the sum takes into account all ways of reaching the configuration
in which H is in state si and M is in state m.

pred(n, v) = {m ∈ SM | δ(m, v) = n} (5)

α1(j, n) = (n = δ(minit , O1)) ? πjbj(O1) : 0
for 1 ≤ j ≤ Ns and n ∈ SM

(6)

αt+1(j, n) =

⎛⎜⎜⎜⎜⎜⎝
∑

i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

⎞⎟⎟⎟⎟⎟⎠ bj(Ot+1)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(7)

Now we extend the algorithm to handle gaps. The result appears in Figure 4.
An auxiliary function pi is used to calculate the probability of transitions of
M during gaps. When H is in state si and M is in state m, pi(m,n) is the
probability that the next observation (i.e., the observation in state si) causes
M to transition to state n. Since we do not know which event occurred, we
sum over the possibilities, weighting each one with the appropriate observation
probability from B.

Another auxiliary function g�, called the gap transition relation, is used to
compute the overall effect of a gap of length 
. Specifically, g�(i,m, j, n) is the
probability that, if H is in state si and M is in state m and a gap of length 

occurs, then the H is in state sj and M is in state n after the gap. The definition
of g�+1 uses a recursive call to g� to determine the probabilities of states reached
after a gap of length 
 (these intermediate states are represented by i′ and m′),
and then calculates the effect of the (
 + 1)th unobserved event as follows: Ai′,j
is the probability that H transitions from state si′ to state sj , and pj(m

′, n) is
the probability that M transitions to state n.

In the definition of α1, for the case O1 = gap(L), there is a probability L(0)
that no gap occurred, in which case M remains in its initial state minit and
the probability distribution for states of H remains as πj ; furthermore, for each

 > 0, there is a probability L(
) of a gap of length 
, whose effect is computed
by a call to g�, and πi is the probability that H is in state si at the beginning
of the gap.

In the definition of αt+1, for the case Ot+1 = gap(L), there is a probability
L(0) that no gap occurred, in which case the state of the HMM and the DFSM
remain unchanged, so αt+1(j, n) = αt(j, n); furthermore, for each 
 > 0, there is
a probability L(
) of a gap of length 
, whose effect is computed by a call to g�,
and αt(i,m) is the probability that H is in state si and M is in state m at the
beginning of the gap.
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pi(m,n) =
∑

v∈V s.t. δ(m,v)=n

bi(v) (8)

g0(i,m, j, n) = (i = j ∧m = n) ? 1 : 0 (9)

g�+1(i,m, j, n) =
∑

i′∈[1..Ns],m′∈SM

g�(i,m, i′,m′)Ai′,jpj(m
′, n) (10)

α1(j, n) = (11){
(n = δ(minit , O1)) ?πjbj(O1) : 0 if O1 �= gap(L)
L(0)(n = minit ?πj : 0) +

∑
�>0,i∈[1..Ns]

L(�)πig�(i,minit , j, n) if O1 = gap(L)

for 1 ≤ j ≤ Ns and n ∈ SM

αt+1(j, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

∑
i∈[1..Ns]

m∈pred(n,Ot+1)

αt(i,m)Ai,j

⎞
⎟⎟⎟⎟⎟⎠ bj(Ot+1) if Ot+1 �= gap(L)

L(0)αt(j, n) +
∑
�>0

L(�)
∑

i∈[1..Ns]

m∈SM

αt(i,m)g�(i,m, j, n) if Ot+1 = gap(L)

for 1 ≤ t ≤ T − 1 and 1 ≤ j ≤ Ns and n ∈ SM

(12)

Fig. 4. Forward algorithm modified to handle gaps

Although the algorithm involves a potentially infinite sum over 
, typically
L(
) is non-zero for only a finite number of values of 
, in which case the sum
contains only a finite number of non-zero terms. For example, if the system uses
lightweight instrumentation to count events during gaps, then the position and
length of all gaps are known. In this case, for each gap, L(
) is non-zero only for
the value of 
 that equals the number of unobserved events (i.e., the gap length).
If counts of unobserved events are unavailable (because monitoring is completely
disabled during gaps), it is sometimes possible to determine (based on charac-
teristics of the system and how long monitoring was disabled) a threshold such
that L(
) is non-zero only below that threshold. Even if no such threshold exists,
L(
) typically approaches 0 as 
 becomes large, so the sum can be approximated
by truncating it after an appropriate number of terms.

5.2 Handling Parameterized Temporal Properties

Our approach supports parameterized temporal properties. Specified events trig-
ger creation of a new instance of the parameterized property, and parameters
of the trigger event are used as parameters of the property. For example, the
property φcs in equation (1), and the corresponding DFSM Mcs in Figure 3,
are parameterized by the instrument i and the name n. The parameters of the
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DFSM may be used in the definition of the alphabet of the DFSM; in other
words, the alphabet is also parameterized. For example, the alphabet of Mcs is
{Command(i , n, ), Dispatch(i , n, ), Success(i , n, ), Fail(i , n, )}.

For a parameterized property, we decompose (or “demultiplex”) a given trace
into a set of subtraces by projecting it onto the alphabet of each instance of the
property. The HMM is learned from these subtraces; thus, the HMM represents
the slice of the system’s overall behavior relevant to a single instance of the
property. When learning the HMM, we abstract from the specific values of the
parameters in each subtrace, because the values are, of course, different in each
subtrace, and we do not aim to learn the distribution of parameter values.

When applying our modified forward algorithm for a parameterized property,
we run the algorithm separately for each instance of the property, and use the
corresponding subtrace (i.e., the projection of the trace onto the alphabet of
that property instance) as the observation sequence O.

When projecting a trace containing gaps onto the alphabet of a property
instance, it is typically unknown whether the unobserved event or events that
occurred during a gap are in that alphabet. This can be reflected by modifying
the length distribution parameter of the gap symbol appropriately before insert-
ing the gap in the subtrace for that property instance. Developing a method to
modify the length distribution appropriately, based on the nearby events in the
trace and the HMM, is future work. Lee et al.’s work on trace slicing [16] might
provide a basis for this.

The above approach does not assume any relationship between the property
parametrization and the sampling strategy. An alternative approach is to adopt
a sampling strategy in which, for each property instance, either all relevant
events are observed, or none of them are. For example, when QVM [1] checks
properties of Java objects, it selects some objects for checking, monitors all events
on those objects, and monitors no events on other objects. With this approach,
the property is checked with 100% confidence for the selected objects, but it is
not checked at all for other objects. This trade-off might be preferable in some
applications but not in others. Also, this property-directed sampling may incur
more overhead than property-independent sampling, because it must ensure that
all events relevant to the selected property instances are observed.

6 Evaluation

6.1 Evaluation Methodology

We used the following methodology to evaluate the accuracy of our approach for
a given system.

1. Produce a set TL of traces by monitoring the system without sampling, and
learn an HMM H from them.

2. Produce another set TE of traces by monitoring the system without sampling,
and use them for evaluation as follows.
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3. Produce a sampled version Ǒ of each trace O in TE . If the system is deter-
ministic, Ǒ can be produced by re-running the system on the same input as
for O while using sampling. An alternative approach, applicable regardless
of whether the system is deterministic, is to write a program that reads a
trace, simulates the effect of sampling, and outputs a sampled version of the
trace.

4. For each trace O in TE , apply our algorithm to compute the probability
Pr(φ|Ǒ,H).

5. Compare the probabilities from the previous step to reality, by partitioning
the traces in TE into “bins” (i.e., sets) based on Pr(φ|Ǒ,H), and checking
whether the expected fraction of the traces in each set actually satisfy φ.
Specifically, using B +1 bins, for b ∈ [0..B], the set of traces placed in bin b
is TE(b) = {O ∈ TE | b/B ≤ Pr(φ|Ǒ,H) < (b+ 1)/B}. Let satact(b) denote
the fraction of traces in bin b that actually satisfy φ. Based on the results
from our algorithm, satact(b) is expected to be approximately satest(b) =
average({Pr(φ|Ǒ,H) | O ∈ TE(b)}). The subscript “est” is mnemonic for
“estimation”, i.e., “expected based on state estimation”.

6. Quantify the overall inaccuracy as a single number I between 0 and 1,
where 0 means perfect accuracy (i.e., no inaccuracy), by summing the dif-
ferences between the actual and expected fractions from the previous step
for non-empty bins and normalizing appropriately (“ne” is mnemonic for
“non-empty”):

Bne = {b ∈ [0..B] | TE(b) �= ∅} (13)

I =
1

|Bne|
∑

b∈Bne

|satact(b)− satest(b)|. (14)

7. Put this inaccuracy into perspective by comparing it with the inaccuracy
of the naive approach that ignores the effect of sampling and simply evaluates
the property on sampled traces, ignoring gaps. Specifically, satnaive(b) is
the fraction of traces in TE(b) such that the sampled trace satisfies φ, i.e.,
satnaive(b) = |{O ∈ TE(b) | Ǒ |= φ}|/|TE(b)|, and

Inaive =
1

Bne

∑
b∈Bne

|satact(b)− satnaive(b)|. (15)

If the sampling strategy has a parameter that controls how many events are
observed, then the inaccuracy I can be graphed as a function of that sampling
parameter. For example, SMCO has a parameter ot, the target overhead. We
expect the inaccuracy to approach 0 as the fraction of events that are observed
approaches 1. Similarly, for a particular trace O, Pr(φ|Ǒ,H) can be graphed as a
function of that sampling parameter; if the trace O satisfies φ, this curve should
monotonically increase towards 1 as the fraction of events that are observed
approaches 1.
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6.2 Experiments

We applied the above methodology to the rover case study described in Section
3. The Scala model was executed to generate 200 traces, each containing 200
issued commands. The average length of the traces is 587 events. To facilitate
evaluation of our approach, the model was modified to pseudo-randomly intro-
duce violations of the requirement φcs in Equation 1. Approximately half of the
traces satisfy the requirement. In the other half of the traces, the requirement
is violated by approximately 30% of the commands; among those commands,
approximately half have an explicit Fail event, and the other half do not have
a Success or Fail event. We wrote a program that reads a trace, simulates the
sampling performed by SMCO with a global controller [14], and then outputs the
trace with some events replaced by gap(L0), where L0(0) = 0, L0(1) = 1, and
L0(
) = 0 for 
 > 1. Note that gap(L0) represents a definite gap of length 1. The
use of a definite gap reflects that the SMCO controller knows when it disables
and enables monitoring, and that (in an actual implementation) lightweight in-
strumentation would be used to count the number of unobserved events when
monitoring is (mostly) disabled. With the target overhead that we specified, the
SMCO simulator replaced 47% of the events with gaps.

Based on the parameters of the property φcs, each sampled trace was decom-
posed into a separate subtrace for each instrument and command, following the
approach in Section 5.2. When decomposing the trace, we assigned each gap to
the appropriate subtrace by referring to the original (pre-sampling) trace. Al-
though it is generally unrealistic to assume that the monitor can assign gaps to
subtraces with 100% accuracy, this assumption allows us to isolate this source
of inaccuracy and defer consideration of it to future work, in which we plan to
introduce uncertain gaps into subtraces corresponding to nearby events in the
full trace, using the HMM to compute probabilities for the uncertain gaps.

To obtain the HMM H , we manually specified the number of states (six) and
the structure of the HMM, and then learned the transition probability matrix
and observation probability matrix from half of the generated traces. We used
the other half of the generated traces for evaluation.

We measured the inaccuracy of our approach using B = 10, and obtained
I = 0.0205. This level of inaccuracy is quite low, considering the severity of
the sampling: recall that sampling replaced 47% of the events with gaps. In
comparison, the inaccuracy of the naive approach is Inaive = 0.3135; this is
approximately a 15× worse I.

7 Conclusions and Future Work

This paper introduces the new concept of Runtime Verification with State Es-
timation (RVSE) and shows how this concept can be applied to estimate the
probability that a temporal property is satisfied by a run of a system given a
sampled execution trace. An initial experimental evaluation of this approach
shows encouraging results.
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One direction for future work, mentioned in Section 5.2, is to determine the
probability that a gap belongs to each subtrace of a parameterized trace, in order
to more accurately determine the length distribution parameter for gap events
inserted in subtraces. Because the parameters of events in gaps are unknown, it
is impossible to directly determine the subtrace to which a gap belongs.

Although our Mars rover case study is based on actual rover software, due to
ITAR restrictions, our evaluation used parametrized event traces synthetically
produced by a simulator. We plan to conduct additional case studies involving
actual traces obtained from publicly available real-world software. Likely target
software systems include the GCC compiler suite and the Linux kernel.

Another direction for further study is RVSE of quantitative properties. For
example, the goal of integer range analysis [9,14] is to compute the range (upper
and lower bounds) of each integer variable in the program. Performing this kind
of analysis on traces with gaps can lead to inaccuracies in the ranges computed,
due to unobserved updates to integer variables. In this case, we would like to
extend our RVSE algorithm to adjust (improve) the results of the analysis as
well as provide a confidence level in the adjusted results. Similar comments apply
to other quantitative properties, such as runtime analysis of NAPs (non-access
periods) for heap-allocated memory regions [13,14].

Our broader goal is to use probabilistic models of program behavior, learned
from traces, for multiple purposes, including program understanding [6], program
visualization [8], and anomaly detection [12] (by checking future runs of the
program against the model).
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Abstract. Time-triggered runtime verification aims at tackling two de-
fects associated with runtime overhead normally incurred in
event-triggered approaches: unboundedness and unpredictability. In the
time-triggered approach, a monitor runs in parallel with the program and
periodically samples the program state to evaluate a set of properties.
In our previous work, we showed that to increase the sampling period of
the monitor (and hence decrease involvement of the monitor), one can
employ auxiliary memory to build a history of state changes between
subsequent samples. We also showed that the problem of optimization
of the size of history and sampling period is NP-complete.

In this paper, we propose a set of heuristics that find near-optimal
solutions to the problem. Our experiments show that by employing neg-
ligible extra memory at run time, we can solve the optimization prob-
lem significantly faster, while maintaining a similar level of overhead
as the optimal solution. We conclude from our experiments that the
NP-completeness of the optimization problem is not an obstacle when
applying time-triggered runtime verification in practice.

Keywords: Runtime monitoring, instrumentation, optimization, verifi-
cation, time-triggered, predictability.

1 Introduction

Runtime verification [1, 2, 4, 7, 9, 12] refers to a technique where a system under
inspection is continually checked by amonitor at run time with respect to its spec-
ification. In the literature, deploying runtime verification involves instrumenting
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Fig. 1. Memory usage vs. sampling period [3]

the program under inspection, so that upon occurrence of events (e.g., change of
value of a variable) that may change the truthfulness of a property, the monitor
is called to re-evaluate the property. We call this method event-triggered runtime
verification, because each change prompts a re-evaluation. Event-triggered run-
time verification suffers from two drawbacks: (1) unpredictable overhead, and (2)
possible bursts of events at run time. These defects can lead to undesirable tran-
sient overload situations in time-sensitive systems such as real-time embedded
safety-critical systems. To address these issues, in [3], we introduced the notion
of time-triggered runtime verification, where a monitor runs in parallel with the
program and samples the program state periodically to evaluate a set of system
properties.

The main challenge in time-triggered runtime verification is to guarantee accu-
rate program state reconstruction at sampling time. To this end, we introduced
an optimization problem where the objective is to find the minimum number
of critical events that need to be buffered for a given sampling period [3]. Con-
sequently, the time-triggered monitor can successfully reconstruct the state of
the program between two successive samples. We showed that this optimization
problem is NP-complete and proposed a transformation of this problem to an
integer linear program (ILP). This transformation enables us to employ powerful
ILP-solvers to identify the minimum buffer size and instrumentation instructions
for state reconstruction. It is possible to solve the corresponding ILP model for
some applications, but for larger applications, the exponential complexity poses
a serious stumbling block.

With this motivation, in this paper, we focus on developing polynomial-time
algorithms that find near-optimal solutions to the optimization problem. Our
algorithms are inspired by an observation made in [3]. Figure 1, taken from [3],
shows the decrease in execution time and increase in total memory usage of
a program (y-axis) when the sampling period (denoted MSP in Figure 1) is
increased by factors of 20, 50, 70, and 100 (x-axis). Increasing the sampling
period requires storing more events, and hence, requiring larger buffers. However,
Figure 1 shows that when we increase the sampling period even by a factor of
100, the increase in memory usage is only 4%. In other words, the impact of
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increasing the sampling period on memory usage is negligible. Our experiments
on other programs exhibit the same behavior. This observation suggests that
nearly optimal solutions to the optimization problem are likely to be effective.

We propose three polynomial-time heuristics. All heuristics are
over-approximations and, hence, sound (they do not cause overlooking of events
to be monitored). The first heuristic is a greedy algorithm that aims at in-
strumenting variables that participate in many execution branches. The second
heuristic is based on a 2-approximation algorithm for solving the minimum ver-
tex cover problem. Intuitively, this heuristic instruments variables that are likely
to cover all cases where variable updates occur within time intervals less than
the sampling period. The third heuristic uses genetic algorithms, where the pop-
ulation generation aims at minimizing the number of variables that need to be
instrumented and buffered.

The results of our experiments show that our heuristics are significantly faster
than the ILP-based solution proposed in [3]. More importantly, the solutions re-
turned by all three algorithms lead to a negligible increase in instrumentation
overhead and total memory usage at run time as well as negligible increase in
the total execution time of the monitored program. We also observe that in gen-
eral, extra instrumentation instructions are evenly distributed between samples.
Moreover, our genetic algorithm generally produces instrumentation schemes
closest to the optimal solution as compared to the other heuristics. Based on
the results of our experiments, we conclude that the NP-completeness of the
optimization problem is not an obstacle when applying time-triggered runtime
verification in practice.

2 Preliminaries

Time-triggered runtime verification [3] consists of a monitor and an application
program under inspection. The monitor runs in parallel with the application pro-
gram and interrupts the program execution at regular time intervals to observe
the state of the program. The state of the program is determined by evaluat-
ing the value of a set of variables being monitored. The key advantage of this
technique is bounded and predictable overhead incurred during program execu-
tion. This overhead is inversely proportional to the sampling period at which
the monitor samples the program.

Formally, let P be a program and Π be a logical property (e.g., in Ltl), where
P is expected to satisfy Π. Let VΠ denote the set of variables that participate in
Π. In time-triggered runtime verification, a monitor reads the value of variables
in VΠ at certain time intervals and evaluates Π. The main challenge in this
mechanism is accurate reconstruction of states of P between two consecutive
samples; i.e., if the value of a variable in VΠ changes more than once between
two consecutive samples, then the monitor may fail to detect violations of Π.
Control flow analysis helps us to reconstruct the states of P . To reason about
the control-flow of programs at run time, we utilize the notion of control-flow
graphs (CFG).
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1: a = scanf(...);

2: if (a % 2 == 0) goto 9

3: else {
4: printf(a + "is odd");

5:* b = a/2;

6:* c = a/2 + 1;

7: goto 10;

8: }
9: printf(a + "is even");

10: end program

(a) A simple C program

10

2 2

4 1

A
1, 2

B C

D

4..7 9

(b) Control-flow graph

Fig. 2. A C program and its control-flow graph

Definition 1. The control-flow graph of a program P is a weighted directed
simple graph CFGP = 〈V, v0, A, w〉, where:

– V : is a set of vertices, each representing a basic block of P . Each basic block
consists of a sequence of instructions in P .

– v0: is the initial vertex with in-degree 0, which represents the initial basic
block of P .

– A: is a set of arcs (u, v), where u, v ∈ V . An arc (u, v) exists in A, if and
only if the execution of basic block u immediately leads to the execution of
basic block v.

– w: is a function w : A → N, which defines a weight for each arc in A. The
weight of an arc is the best-case execution time (BCET) of the source basic
block. 
�

For example, consider the C program in Figure 2(a) (taken from [3]). If each
instruction takes one time unit to execute in the best case, then the resulting
control-flow graph is the one shown in Figure 2(b). Vertices of the graph in
Figure 2(b) are annotated by the corresponding line numbers of the C program
in Figure 2(a).

In order to accurately reconstruct program states between two samples, we
modify CFGP in three steps.

Step 1: Identifying Critical Vertices
We ensure that each critical instruction (i.e., an instruction that modifies a vari-
able in VΠ) is in a basic block that contains no other instructions. We refer to
such a basic block as a critical basic block or critical vertex. For example, in
Figure 2(a), if variables b and c are of interest for verification of a property
at run time, then instructions 5 and 6 will be critical and we will obtain the
control-flow graph shown in Figure 3(a).

Step 2: Calculating the Minimum Sampling Period
Since uncritical vertices play no role in determining the sampling period, in the
second step, we collapse uncritical vertices as follows. Let CFG = 〈V, v0, A, w〉
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be a control-flow graph. Transformation T (CFG , v), where v ∈ V \{v0} and the
out-degree of v is positive, obtains CFG ′ = 〈V ′, v0, A′, w′〉 via the following
ordered steps:

1. Let A′′ be the set A ∪ {(u1, u2) | (u1, v), (v, u2) ∈ A}. Observe that if an arc
(u1, u2) already exists in A, then A′′ will contain parallel arcs (such arcs can
be distinguished by a simple indexing or renaming scheme). We eliminate
the additional arcs in Step 3.

2. For each arc (u1, u2) ∈ A′′,

w′(u1, u2) =

{
w(u1, u2) if (u1, u2) ∈ A
w(u1, v) + w(v, u2) if (u1, u2) ∈ A′′\A

3. If there exist parallel arcs from vertex u1 to u2, we will only include the one
with minimum weight in A′′.

4. Finally, A′ = A′′\{(u1, v), (v, u2) | u1, u2 ∈ V } and V ′ = V \ {v}.

We clarify a special case of the above transformation, where u and v are two
uncritical vertices with arcs (u, v) and (v, u) between them. Deleting one of the
vertices, say u, results in a self-loop (v, v), which we can safely remove. This is
simply because a loop that contains no critical instructions does not affect the
sampling period.

We apply the above transformation on all uncritical vertices. We call the
result a critical control-flow graph. Such a graph includes (1) an uncritical initial
basic block, (2) possibly an uncritical vertex with out-degree 0 (if the program
is terminating), and (3) a set of critical vertices. Figure 3(b) shows the critical
control-flow graph of the graph in Figure 3(a).

Definition 2. Let CFG = 〈V, v0, A, w〉 be a critical control-flow graph. The
minimum sampling period for CFG is MSPCFG = min{w(v1, v2) | (v1, v2) ∈
A ∧ v1 is a critical vertex}. 
�

Intuitively, the minimum sampling period is the minimum timespan between two
successive changes to any two variables in VΠ. For example, the minimum sam-
pling period of the control-flow graph in Figure 3(b) is MSP = 1. By applying
this sampling period, all property violations can be detected [3].

Step 3: Increasing the Sampling Period using Auxiliary Memory
To increase the sampling period (and, hence, the involvement of the monitor), we
use auxiliary memory to build a history of critical state changes between consec-
utive samples. More specifically, let (u, v) be an arc and v be a critical vertex in a
critical control-flow graph CFG, where critical instruction inst changes the value
of a variable a. We apply transformation T (CFG, v) and append an instruction
inst ′ : a′ ← a, where a′ is an auxiliary memory location, to the sequence of
instructions in vertex u. We call this process instrumenting transformation and
denote it by IT (CFG , v). Observe that deleting a critical vertex v results in
incorporating an additional memory location.
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Fig. 3. Steps for obtaining optimized instrumentation and sampling period

Unlike uncritical vertices, the issue of loops involving critical vertices needs to
be handled differently. Suppose u and v are two critical vertices with arcs (u, v)
and (v, u) between them and we intend to delete u. This results in a self-loop
(v, v), where w(v, v) = w(u, v) +w(v, u). Since we do not know how many times
the loop may iterate at run time, it is impossible to determine the upper bound
on the size of auxiliary memory needed to collapse vertex v. Hence, to ensure
correctness, we do not allow applying the transformation IT on critical vertices
that have self-loops.

Given a critical control-flow graph, our goal is to optimize two factors through a
set of IT transformations: (1) minimizing auxiliary memory, and (2) maximizing
sampling period. In [3], we showed that this optimization problem is NP-complete.

3 Heuristics for Optimizing Instrumentation and
Auxiliary Memory

An interesting observation from the ILP-based experiments conducted in [3] is
that increasing the sampling period even by a factor 100 resulted in at most a 4%
increase in total memory usage for tested programs. This observation strongly
suggests that for a fixed sampling period, even nearly optimal solutions to the
problem (in terms of the size of auxiliary memory) are likely to be quite ac-
ceptable. With this intuition, in this section, we propose two polynomial-time
heuristics. Both heuristics take a control-flow graph G and a desired sampling
period SP as input and return a set U of vertices to be deleted as prescribed
by Step 3 (i.e., IT (CFG , v)) in Section 2. This set identifies the extra memory
locations and the corresponding instrumentation instructions.

3.1 Heuristic 1

Our first heuristic is a simple greedy algorithm (see Heuristic 1):
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– First, it prunes the input control-flow graph G (Line 2). That is, it removes
all vertices where the weights of all its incoming and outgoing arcs are greater
than or equal to SP . Obviously, such vertices need not be deleted from the
graph, because they leave the minimal sampling period unaffected.

– Next, it explores G to find the vertex incident to the maximum number of
incoming and outgoing arcs whose weights are strictly less than SP (Line
4). Our intuition is that deleting such a vertex results in removing a high
number of arcs whose weights are less than the desired sampling period.

– Then, it collapses vertex v identified on Line 4. This operation (Line 5)
results in merging incoming arcs to v with outgoing arcs from v in the fashion
described in Step 3 in Section 2.

– Obviously, basic block v contains a critical instruction for which we add an
auxiliary memory location to build history of this instruction. Thus, we add
v to U (Line 6).

– We repeat Lines 3-7 until the minimum arc weight of G is greater than or
equal to SP (the while-loop condition in Line 3).

– If the graph cannot be collapsed further (i.e., all vertices are collapsed), then
the graph’s structure will not permit increasing the sampling period to SP
and the algorithm declares failure.

3.2 Heuristic 2

Our second heuristic is an algorithm based on a solution to the minimum vertex
cover problem: Given a (directed or undirected) graph G = 〈V,E〉, our goal is
to find the minimum set U ⊆ V , such that each edge in E is incident to at least
one vertex in U . The minimum vertex cover problem is NP-complete, but there
exists several approximation algorithms that find nearly optimal solutions (e.g.,
the 2-approximation in [5]).

Our algorithm (see Heuristic 2) works as follows:

– First, it prunes G (Line 2). That is, it removes all vertices where the weights
of all its incoming and outgoing arcs are greater than or equal to SP . Obvi-
ously, such vertices can remain in the graph.

– Next, we compute an approximate vertex cover of graph G (Line 4), denoted
as vc. Our intuition is that since the graph is pruned and the vertex cover
vc covers all arcs of the graph, collapsing all vertices in vc may result in
removing all arcs whose weights are strictly less than SP . We note that the
approximation algorithm in [5] is a non-deterministic randomized algorithm
and may produce different covers for the same input graph. To improve our
solution, we run Line 4 multiple times and select the smallest vertex cover.
This is abstracted away from the pseudo-code.

– Then, similar to Heuristic 1, we collapse each vertex v ∈ vc (Lines 5-7). This
operation (Lines 5-7) results in merging incoming arcs to v with outgoing
arcs from v in the fashion described in Step 3 in Section 2. Basic block v
contains a critical instruction for which we add an auxiliary memory location
to build history of this instruction. Thus, we add v to U (Line 7).
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Heuristic 1. Greedy

Input: A critical control-flow graph G =
〈V, v0, A,w〉 and desired sampling pe-
riod SP .

Output: A set U of vertices to be deleted
from G.

1: U := {};
2: G := PruneCFG(G, SP);

3: while (MW (G) < SP ∧ U �= V ) do
4: v := GreedySearch(G);
5: G := CollapseVertex(G, v);
6: U := U ∪ {v};
7: end while

8: if (U = V ) then declare failure;
9: return U ;

Heuristic 2. Vertex Cover Based
Input: A critical control-flow graph G =

〈V, v0, A,w〉 and desired sampling pe-
riod SP .

Output: A set U of vertices to be deleted
from G.

1: U := {};
2: G := PruneCFG(G,SP);

3: while (MW (G) < SP ∧ U �= V ) do
4: vc := Approximate-Vertex-

Cover(G);
5: for each vertex v ∈ vc do
6: G := CollapseNode(G, v);
7: U := U ∪ {v};
8: end for
9: end while

10: if (U = V ) then declare failure;
11: return U ;

– We repeat Lines 3-8 until the minimum arc weights of G are greater than or
equal to SP (the while-loop condition in Line 3).

– If the graph cannot be collapsed further (i.e., all vertices are collapsed), then
the graph’s structure will not permit increasing the sampling period to SP
and the algorithm declares failure.

4 Optimization Using a Genetic Algorithm

In our genetic model, we define a desirable sampling period SP and aim at
collapsing a minimum number of vertices in a given critical control-flow graph
G, so that we achieve a sampling period of at least SP .

We map our optimization problem to the following genetic model and will
describe it in detail in the following subsections:

1. Chromosomes : Each chromosome represents the list of vertices in a critical
control-flow graph, G. Each vertex in a chromosome is flagged by either the
value true or false. The value true represents the condition where the vertex
has been chosen to be collapsed in G.

2. Fitness Function: The fitness function of a chromosome is the number of
collapsed vertices represented by the chromosome.
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3. Reproduction: To create a new generation of chromosomes, we use both mu-
tation and crossover.

4. Termination: The genetic algorithm terminates when a chromosome with
the optimal number of collapsed vertices is found, or the upper limit on
creating new generations is reached.

4.1 The Chromosomes

Let G = 〈V, v0, A, w〉 be a critical control-flow graph. Each chromosome in the
genetic model has a static length of |V |. Each entry of the chromosome is a
tuple 〈vertex id,min-SP, value〉 that represents a vertex in G. Vertex id is the
vertex identifier, min-SP is the minimum weight of the incoming and outgoing
arcs of the vertex and value indicates whether the vertex is collapsed in G.
If value = true for a vertex v, then v is collapsed and we add an auxiliary
memory location to build a history of the instruction in v. The sampling period
of the control-flow graph resulting from the collapsed vertices identified by the
chromosome must always be at least SP . We refer to the sampling period of the
resulting control-flow graph as the chromosome’s sampling period.

Upon initialization, we create the initial generation. First, We choose the size
|G| (i.e., number of chromosomes) of the generations. Second, we randomly create
|G| chromosomes for the initial generation. To create a chromosome, we randomly
collapse a set of vertices resulting in a control-flow graph with a sampling period
of at least SP . Our genetic algorithm executes the following steps to generate
such a chromosome:

– First, it finds the set of vertices, SV , in G where min-SP is less than SP for
each vertex in SV .

– Second, it randomly chooses a vertex v ∈ SV and collapses v from G and
produces a new control-flow graph G′ = T (G, v).

– Third, it calculates the sampling period of G′. If the sampling period is less
than SP , it returns back to the first step and chooses the next vertex to
collapse.

4.2 Selection/Fitness Function

Since we aim at increasing the sampling period to SP with the least number
of collapsed vertices, the chromosome is more fit when the number of collapsed
vertices in the chromosome is closer to the optimal number of collapsed vertices.
Hence, we define the fitness function as: F = Cchr, where Cchr is the number
of collapsed vertices in chromosome chr. Consequently, if F is smaller, then the
chromosome will be more fit.

4.3 Reproduction

We use both mutation and crossover to evolve the current generation into a
new generation. First, we use a one-point crossover to create new chromosomes
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for the next generation. The choice of parents is random. In the crossover, we cut
the two parents into half and create two children by swapping halves between
the parents. We check both children to see if their sampling period is at least SP .
If so, the child will be added to the set of chromosomes of the next generation;
if not, the child will be passed on to the mutation step.

Second, the mutation process takes the children passed over by the crossover
process and processes each child by the following steps:

1. It finds the set of vertices, SV , where min-SP is less than SP for each vertex
in SV .

2. It randomly chooses a vertex v ∈ SV to collapse by using T (G, v).
3. It finds the set of collapsed vertices, PV , in the child chromosome for vertices

where min-SP is larger than SP .
4. It randomly chooses a vertex u ∈ PV to un-collapse, meaning that u is

restored to the control-flow graph represented by the child chromosome.
5. It will check if the minimum sampling period of the new child chromosome

is at least SP . If the sampling period is less than SP , it will return to the
first step and repeat the steps again, until the sampling period of the child
chromosome is at least SP or when it exhausts the limit we set for the
number of times a chromosome can be mutated.

6. If a new child chromosome with a sampling period of at least SP is reached
at step five, it is added to the next generation.

Sometimes the crossover and mutation processes fails to create |G| chromosomes
to populate the next generation, since fewer than |G| children satisfy the sampling
period restriction for chromosomes. In this case, our genetic algorithm chooses
the most fit chromosomes from the current generation and adds them to the
next generation to create a population of |G| chromosomes. In the case that
duplicates chromosomes appear in this process, it discards the duplicates and
randomly creates new chromosomes as described in Section 4.1.

4.4 Termination

Two conditions can terminate the process of creating a new generation: (1) when
we find a chromosome with a sampling period of at least SP and has collapsed
the same number of vertices as the optimal solution; (2) when we reach an
upper bound on the number of generations. In the second case, we choose from
all generations the chromosome with the lowest fitness value F .

5 Experimental Results

Our tool chain consists of the following: We generate the control-flow graph of a
given C program using the tool CIL [11]. Next, we generate the critical control-
flow graph and either transform it into an ILP model using the method in [3]
and solve the model using lp solve [10] or we feed the critical control-flow graph
into our heuristics. In either case, we obtain the set of instructions and variables
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Table 1. Performance of different optimization techniques

CFG ILP Heuristic 1 (Greedy) Heuristic 2 (VC) Genetic Algorithm
Size(|V |) time (s) SOF time (s) SOF time (s) SOF time (s) SOF

Blowfish 177 5316 − 0.0363 7.8 0.8875 8 383 2.5

CRC 13 0.35 − 0.0002 3.5 0.0852 3 0.254 1.5

Dijkstra 48 1808 − 0.0064 1.2 0.1400 1.2 116 1.7

FFT 47 269 − 0.0042 1.7 0.1737 1.8 74 1.1

Patricia 49 2084 − 0.0054 1.4 0.1369 1.6 140 1.5

Rijndael 70 3096 − 0.0060 1.6 0.2557 2.1 370 1.9

SHA 40 124 − 0.0039 2.2 0.1545 2.2 46 1.3

Susan 20 259 ∞ − 3 181 N/A 26 211 N/A 923 N/A

in the program that need to be instrumented using auxiliary memory. We use
the breakpoint mechanism of gdb [6] to implement time-triggered monitors. Fi-
nally, a Python script controls gdb. Our case studies are from the MiBench [8]
benchmark suite. We fix a sampling period of 40 × MSP , where MSP is the
minimum sampling period of the program (see Definition 2). All experiments in
this section are conducted on a personal computer with a 2.26GHz Intel Core 2
Duo processor and 6GB of main memory.

5.1 Performance of Heuristics

Table 1 compares the performance of the ILP-based solution [3] with the heuris-
tics presented in Section 3 and the genetic algorithm proposed in Section 4 for
different programs from MiBench. The first column shows the size of the critical
control-flow graph of programs in terms of the number of vertices. With each
approach, we record the time spent to solve the optimization problem (in sec-
onds) and the suboptimal factor (SOF). SOF is defined as sol

opt , where sol and
opt are the number of vertices requiring instrumentation returned by a heuristic
and the ILP-based solution (i.e., the optimal solution), respectively.

Clearly from Table 1, all three heuristic algorithms perform substantially
faster than solving the exact ILP problem. On average, Heuristic 1, Heuristic 2,
and the genetic algorithm yield in speedups of 200 000, 7 000, and 9, respectively,
where the speedup is defined as the ratio between the execution time required
to solve the ILP problem and the time required to generate an approximate so-
lution using one of the heuristics. The execution times of Heuristic 2 are based
on running Approximate-Vertex-Cover 500 times to cope with the randomized
vertex cover algorithm (see Line 4 in Heuristic 2). Table 1 shows that for large
programs, such as Susan, solving for the optimal solution becomes infeasible be-
cause of the problem’s intractability. However, we see that all three heuristics
are able to generate some approximate solution that can be used to instrument
the program for time-triggered runtime verification.

In general, the genetic algorithm produces results that are closer to the opti-
mal solution than Heuristics 1 and 2. The spread of the SOFs for the conducted
experiments is small for the genetic algorithm. For the conducted experiments,
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Fig. 4. The impact of different instrumentation schemes on memory usage and total
execution time

the worst SOF for the genetic algorithm is 2.5 (i.e., for Blowfish), which indicates
that this solution will collapse 2.5 times more vertices in the critical control-flow
graph than the optimal solution. With the exception of Blowfish, Heuristics 1 and
2 also perform well, where the SOF ranges from 1.2 to 3.5. We cannot conclude
that the performance of Heuristics 1 and 2 suffers as the size of the problem
increases because for Susan, Heuristics 1 and 2 indicate that SP may be satis-
fied by collapsing 104 and 180 vertices, respectively, while the genetic algorithm
produces a solution where 222 vertices must be collapsed. The SOFs for Dijkstra
also indicate an anomaly in the overall trend. Therefore, the performance of the
heuristics likely depends on the structure of the critical control-flow graph. For
Susan, the number of vertices being collapsed is approximately 0.5% to 1% of
|V |, which indicates that the instrumentation overhead should be small.

5.2 Analysis of Instrumentation Overhead

We also collected the execution times and memory usage of the instrumented
benchmark programs during experimentation. Figure 4 shows the execution
times and memory usage of four of the eight benchmark programs (for reasons of
space) we used for our experiments. Each plot in Figure 4 contains the execution
times and memory usage for the unmonitored program, the program monitored
with a sampling period of MSP , and the program monitored at 40×MSP with
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the inserted instrumentation points indicated by the optimal and heuristic so-
lutions. The benchmark program results not shown in Figure 4 exhibit similar
trends as Figure 4(c).

Based on Figure 4, we observe that instrumented benchmark programs with no
history always run slower than the programs instrumented with SP = 40×MSP .
This is expected because the external monitor requires more processing resources
when it samples at higher frequencies.

We also observe that the variation of the execution times of programs instru-
mented based on the optimal and heuristic solutions (i.e., ILP, Heuristics 1 and 2,
GA) are negligible. Therefore, using suboptimal instrumentation schemes do not
greatly affect the execution time of the program as compared to the execution
time of optimally instrumented program.

From Figure 4, we observe that utilizing the instrumentation schemes returned
by solving the ILP or running the heuristics result in an increase in the memory us-
age during program execution. This is expected because to increase the sampling
period of the monitor, some program state history must be retained to ensure that
the program can be properly verified at run time. With the exception of Blowfish,
the memory usage increase is negligible for the benchmark programs.

Using the instrumentation schemes generated by the heuristics, the increase
in memory usage is negligible during program execution with respect to the
optimally instrumented program, except for Blowfish. The variation of memory
usage for all benchmark programs except for Blowfish generally spans from 0MB
to 0.1MB. Even though the memory usage of Blowfish instrumented with the
schemes produced by Heuristic 2 and the genetic algorithm is relatively larger
than the optimal scheme, an increase of 15MB of virtual memory is still negli-
gible to the amount of memory that is generally available on the machine used
to verify a program. Of the three heuristics, we cannot conclude which heuristic
generally produces the best instrumentation scheme, as each heuristic behaves
differently for different types of control-flow graphs.

Figure 5 shows the percentage increase in the number of instrumentation in-
structions executed and the percentage increase in the maximum size of history
between two consecutive samples with respect to the optimally instrumented
benchmark programs. Note that logarithmic scales are used in the charts in Fig-
ure 5. Observe that Susan is not shown in the figure, because solving for the
optimal solution is infeasible. Blowfish performed the poorest with respect to
the two measures when the instrumentation schemes generated by Heuristics 1
and 2 were used. In most cases, the percentage increase in the number of instru-
mentation instructions that are executed and the maximize size of history are
below 50% if we remove the two largest percentages from each set. If we ignore
a few more outliers, then most of the percentage increases for both measures
will be below 20%. We also observe that the percentage increase in the number
of instrumentation instructions executed is proportional to the increase in the
maximum size of the history between two consecutive samples. This implies that
the extra instrumentation instructions (as compared to the optimal solution) are
evenly distributed among sampling points.
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Fig. 5.The impact of sub-optimal solutions on execution of instructions to build history
and its maximum size

Recall that the collapsed vertices during the transformation IT (see Section 2)
determine the instrumentation instructions added to the program under inspec-
tion. These instructions in turn store changes in critical variables to the history.
Although one may argue that auxiliary memory usage at run time must be in
direct relationship with the number of collapsed vertices (i.e., instrumentation
instructions), this is not necessarily true. This is because the number of added in-
strumentation instructions differs in different execution paths. For example, one
execution path may include no instrumentation instruction and another path
may include all such instructions. In this case, the first path will build no his-
tory and the second will consume the maximum possible auxiliary memory. This
observation also holds in our analysis on other types of overheads as well as the
total execution time. This is why in Table 1, the genetic algorithm does the best
job of optimizing the Blowfish benchmark for the fewest critical instructions, but
in Figure 4(a), the benchmark uses substantially more memory than the greedy
heuristic. This is also why in Figure 5, the amount of auxiliary memory used by
a monitored program is not proportional to the number of instrumented critical
instructions.

6 Conclusion

In this paper, we proposed three efficient algorithms to address the NP-complete
problem of optimizing the instrumentation of programs in the context of time-
triggered runtime verification [3]. This instrumentation is needed for constructing
history to record events between two consecutive samples at run time. Our al-
gorithms are inspired by different techniques, such as greedy heuristics, finding
the minimum vertex cover, and biological evolution. We rigorously benchmarked
eight different programs using our algorithms. The results show that the solutions
returned by all three algorithms lead to negligible increase in instrumentation
overhead and total memory usage at run time as well as the total execution time
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of monitored program. Moreover, we found our genetic algorithm more efficient
and robust than the other two. In summary, we conclude from our experiments
that the NP-completeness of the optimization problem is not an obstacle when
applying time-triggered runtime verification in practice.

In the future, we plan to develop more sophisticated heuristics that specifically
aim at distributing instrumentation instructions between sampling points evenly.
We are also working on other polynomial-time techniques, such as ILP relaxation,
for solving the instrumentation optimization problem.
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Abstract. We present CoMA (Conformance Monitoring by Abstract
State Machines), a specification-based approach and its supporting tool
for runtime monitoring of Java software. Based on the information ob-
tained from code execution and model simulation, the conformance of the
concrete implementation is checked with respect to its formal specifica-
tion given in terms of Abstract State Machines. At runtime, undesirable
behaviors of the implementation, as well as incorrect specifications of the
system behavior are recognized.

The technique we propose makes use of Java annotations, which link
the concrete implementation to its formal model, without enriching the
code with behavioral information contained only in the abstract spec-
ification. The approach fosters the separation between implementation
and specification, and allows the reuse of specifications for other purposes
(formal verification, simulation, model-based testing, etc.).

1 Introduction

Runtime software monitoring has been used for software fault-detection and re-
covery, as well as for profiling, optimization, performance analysis. Software fault
detection provides evidence whether program behavior conforms with its desired
or specified behavior during program execution. While other formal verification
techniques, such as model checking and theorem proving, aim to ensure univer-
sal correctness of programs, the intention of runtime software-fault monitoring
is to determine whether the current execution behaves correctly; thus, monitor-
ing aims to be a lightweight verification technique that can be used to provide
additional defense against failures and confidence of the system correctness.

In most approaches dealing with runtime monitoring of software, the required
behavior of the system is formalized by means of correctness properties [11] (often
given as temporal logic formulae) which are then translated into monitors. The
monitor is then used to check if the properties are violated during the execution of
a system. The properties specify all admissible individual executions of a system
and may be expressed using a great variety of different formalisms. Some of
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these approaches are, for example, language oriented formalisms like extended
regular expressions or tracematches by Allan et al. [1]. Temporal logic-based
formalisms, which are well-known from model checking, are also very popular in
runtime verification, especially variants of linear temporal logic, such as LTL, as
seen for example in [13,5].

Our approach requires a shift from a declarative style of monitoring to an
operational style. Declarative specifications are used to state the desired prop-
erties of a software system by using a descriptive language. Examples of such
notations are logic formulae, JML [16] or the LTL temporal logic. An operational
specification describes the desired system behavior by providing a model imple-
mentation or model program of the system, generally executable. Examples of
operational specifications are abstract automata and state machines. In [19], for
instance, the specification is given in the Z language and it describes the system
state and the ways in which it changes.

Specification styles (and languages) may differ in their expressiveness and
very often their use depends on the preference and taste of the specifier, the
availability of supporting tools, and so forth. Up to now, descriptive languages
have been preferred for runtime software monitoring, while the use of operational
languages has not been investigated with the same strength. Section 2 presents
the current state of the art.

In this paper, we assume that the desired system behavior is given in an
operational way by means of an Abstract State Machine (ASM), whose notation
is presented in Section 3. We also assume that the implementation is a Java
program and the technique we propose makes use of Java annotations. However,
annotations do not contain the specification of the correct behavior (like in
JML [16]) but they are used only to link the concrete implementation to its
formal model, keeping separated the implementation of the system and its high-
level specification. The approach has, therefore, the advantage of allowing the
reuse of abstract formal specifications for other purposes, like formal verification,
model simulation, model-based testing, and so forth. Indeed, the result of this
work has to be also viewed towards the goal of engineering and building an
environment able to support the major software life cycle activities by means of
the integration of several tools that can be used for different purposes on the base
of the same specification model. We are trying to achieve this goal through the
open project ASMETA (ASM mETAmodeling) [3], which permits the integrated
use of different tools for ASM model development and manipulation. Currently,
the ASMETA tool-set allows creation, storage, interchange, Java representation,
simulation, testing, scenario-based validation, model checking, and model review
of ASM models for software systems1.

In Section 4, we present the theoretical framework of CoMA (Conformance
Monitoring by ASMs), in which we explain the relationship between the Java
implementation and its ASM specification. This relationship defines syntacti-
cal links or mappings between Java and ASM elements and a semantical re-
lation which represents the conformance. In Section 5, we introduce the actual

1 See the Asmeta web site http://asmeta.sourceforge.net, 2011.

http://asmeta.sourceforge.net
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implementation of our conformance monitoring approach which is based on Java
annotations and AspectJ. A particular form of non-determinism is dealt with in
Section 6. In Section 7, we discuss some advantages and limits of our approach;
by means of diverse examples, we evaluate performance, expressiveness and us-
ability of different ways (compiled vs built-in) of using CoMA, as well as w.r.t.
other approaches for runtime monitoring, while Section 8 concludes the paper.

2 Related Work

Complete surveys about runtime verification can be found in [9,18,11].
Our work has been inspired by the work presented in [19], in which the authors

describe a formal specification-based software monitoring system. In their system
they check that the behavior of a concrete implementation (a Java code) complies
with its formal specification (a Z model). We share with their work the fact
that the concrete implementation is separated from the specification. In their
monitoring system, a user of the Java program must use a specific tool to define
the sequence of methods to execute. Therefore, their monitoring system is useful
at testing and debugging time, but can not be used in the deployed system in
which the monitoring system should be hidden to the final user. The final user,
indeed, could be different from the developer of the code: he could be a normal
user who wants to execute the code or another developer who wants to reuse the
code. In both cases the user should be unaware of the formal specification; he
could only be aware that some kind of monitoring is performed. In our system,
instead, a developer can deploy a Java code linked with its formal specification.
The final user can use the monitored code without knowing anything about the
formal specification; the only thing that he must know is that, if he wants to
enable the monitoring to the code, he must execute it with AspectJ.

Monitored-oriented programming (MOP) [7] permits to execute runtime mon-
itoring by means of annotating the code with formal property specifications. The
specifications can be written in any formalism for which a logic plug-in has been
developed (LTL, ERE, JML, . . . ). The formal specifications are translated (in
two steps) in the target programming language. The obtained monitoring code
can be used in an in-line mode in which the monitoring code is placed in the
monitored program, and in an out-line mode in which it is used to check traces
recorded by adequate probes. Similarly to us, they use AspectJ to weave the
monitoring code into the monitored code; in particular AspectJ gives them the
ability to execute the monitoring code before or after some methods invocations.
A similar approach is taken by Lime [15]. This tool permits to monitor the invo-
cations of the methods of an interface by defining pre and post conditions, called
call specifications (CS) and return specifications (RS). Specifications can be writ-
ten as past/future LTL formulas, as regular expressions and as nondeterministic
finite automata. The specifications are then translated into deterministic finite
state automata encoded in Java that function as observers. AspectJ is used to
weave the observer code into the original program that is being tested.
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Another approach that uses ASMs as formal specification for system monitor-
ing purpose is presented in [4]. That approach shares with ours many common
features as using operational specifications (called model programs) and dealing
with method calls ordering. However, the approach is mainly applied to spec-
ify all of the traditional design-by-contract concepts of pre- and post-conditions
and invariants. The technological framework is completely different, since .NET
components are considered.

Different approaches exist for system monitoring that are based on runtime
verification of temporal properties. In [5], traces of programs are examined in
order to check if they satisfy some temporal properties expressed in LTL3, a
linear-time temporal logic designed for runtime verification.

3 Abstract State Machines

Abstract State Machines (ASMs), whose complete presentation can be found in
[6], are an extension of FSMs, where unstructured control states are replaced
by states with arbitrary complex data. The states of an ASM are multi-sorted
first-order structures, i.e. domains of objects with functions and predicates de-
fined on them. ASM states are modified by transition relations specified by
“rules” describing the modification of the function interpretations from one
state to the next one. There is a limited but powerful set of rule constructors
that allow to express guarded actions (if-then), simultaneous parallel actions
(par) or sequential actions (seq). Appropriate rule constructors also allow non-
determinism (existential quantification choose) and unrestricted synchronous
parallelism (universal quantification forall).

An ASM state is a set of locations, namely pairs (function-name, list-of-
parameter-values). Locations represent the abstract ASM concept of basic object
containers (memory units). Location updates represent the basic units of state
change and they are given as assignments, each of the form loc := v, where loc
is a location and v its new value.

Functions may be static (never change during any run of the machine) or
dynamic (may change as a consequence of agent actions or updates). Dynamic
functions are distinguished between monitored (only read by the machine and
modified by the environment), and controlled (read and written by the machine).

A computation of an ASM is a finite or infinite sequence s0, s1, . . . , sn, . . . of
states of the machine, where s0 is an initial state and each sn+1 is obtained from
sn by executing its (unique) main rule. An ASM can have more than one initial
state. It is possible to specify state invariants. Because of the non-determinism
of the choose rule and of moves of the environment, an ASM can have several
different runs starting in the same initial state.

Code in Fig. 1 reports the ASM specification of a counter limited to 10 (ac-
cording to the invariant) and initialized to the monitored value initValue; counter
and initValue are both 0-ary functions.

The ASMETA tool set is a set of tools around the ASMs [3]. They can assist
the user in developing specifications and proving model correctness by checking
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asm counterMax10
signature: dynamic controlled counter: Integer

dynamic monitored initValue: Integer

definitions: invariant inv a over counter: counter <= 10

main rule r Main = if counter < 10 then counter := counter + 1 endif

// initizialize counter
default init s0: function counter = initValue

Fig. 1. ASM Counter in AsmetaL

Fig. 2. The CoMA runtime monitor for Java

state invariants and temporal logic properties. For instance, the invariant in Fig.
1 can be proved invalid if initValue is greater than 10 by model checking.

Among the ASMETA tools, those involved in our conformance analysis pro-
cess are: the textual notationAsmetaL, used to encode fragments of ASMmodels,
and the simulator AsmetaS, used to execute ASM models.

4 Runtime Conformance Monitoring Based on ASMs

A runtime software-fault monitor, or simply a monitor, is a system that observes
and analyzes the states of an executing software system. The monitor checks the
correctness of the system behavior by comparing an observed state of the system
with an expected state. The expected behavior is generally provided in terms of a
formal specification. We here intend runtime monitoring as conformance analysis
at runtime and we propose CoMA, runtime Conformance Monitoring of Java
code by ASM specifications.

The CoMA monitor allows online monitoring, namely it considers executions
in an incremental fashion. It takes as input an executing Java software system
and an ASM formal model. The monitor observes the behavior of the Java system
and determines its correctness w.r.t. the ASM specification working as an oracle
of the expected behavior. While the software system is executing, the monitor
checks conformance between the observed state and the expected state.

As shown in Fig. 2, the monitor is, therefore, composed of: an observer that
evaluates when the Java (observed) state is changed (1), and leads the abstract
ASM to perform a machine step (2), and an analyzer that evaluates the step
conformance between the Java execution and the ASM behavior (3). When the
monitor detects a violation of conformance, it reports the error. It can also
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produce a trace in form of couterexample, which may be useful for debugging.
Note that the use of CoMA can be twofold: also faults in the specification can be
discovered by monitoring software. For instance, by analysing and re-executing
counterexamples, faults in the model can be exposed.

In the following sections, we introduce the theoretical basis of our monitoring
system. We, therefore, formally define what is an observed Java state, how to
establish a conformance relation between Java and ASM states, and, therefore,
step conformance and runtime conformance between Java and ASM executions.

4.1 Observable Java Elements and Their Link with ASM Entities

In order to mathematically represent a class and the state of its objects, we
introduce the following definitions.

Definition 1. Class A class C is a tuple 〈c, f,m〉 where c denotes the non-
empty set of constructors, f is the set of all the fields, m is the set of methods.

We denote the public fields of C as fpub while the public methods are denoted
as mpub . Among the methods of a class, we distinguish also the pure methods:

Definition 2. Pure method Pure methods mpure are side effect free, with re-
spect to the object/program state. They return a value but do not assign values
to fields. mpub

pure denotes the set of all pure public methods in m.

Pure methods [10] are useful and common specification constructs. By marking
a method as pure, the specifier indicates that it can be treated as a function of
the state (as in JML [16]). We consider only pure methods without arguments.

Definition 3. Virtual State Given a class C = 〈c, f,m〉, the virtual state,
VS(C), is given by VS(C) = fpub ∪mpub

pure.

Definition 4. Observed State We define observed state, OS(C) ⊆ VS(C),
as the subset of the virtual state consisting of all public fields, and pure public
methods of the class C the user wants to observe.

Therefore, OS(C) is the set of Java elements monitored at runtime. For con-
venience, we can see OS(C) = OF (C) ∪ OM (C) to distinguish between the
subset of observed fields OF (C) and the subset of observed methods OM (C) of
OS(C). Note that OF (C) ⊆ fpub and OM (C) ⊆ mpub

pure . The (returned) values
of the elements of OS(C) can change by executing any not pure method (in
m¬pure = m−mpure).

Definition 5. Changing Method Given a Java class C, we define changing
methods, changingMethods (C) ⊆ m¬pure, all methods of C whose execution is
responsible for changing an element of OS (C) and that the user wants to observe.
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Linking observable Java elements to ASM entities. In order to be run-
time monitored, a Java class C = 〈c, f,m〉 should have a corresponding ASM
model, ASMC , abstractly specifying the behavior of an instance of the class C.

Observable elements of a class C must be linked to the dynamic functions
Funcs ASMC of the ASM model ASMC . The function

link : OS (C )→ Funcs ASMC (1)

yields the set of the ASM dynamic functions linked to the observable Java ele-
ments of C. The function link is not surjective because there are ASM dynamic
functions that are not used in the conformance analysis.

Execution step in Java and ASM. In order to define a step of a Java class
execution, we rely on the concept of machine step and last state of execution
sequence defined in the Unifying Theories of Programming (UTP) [14]. A Java
state of an instance of a class C is the set of the actual values of its fields.

Definition 6. Java Step Let m be a method of a Java class. A Java step is
defined as the relation (s,m,s’) where s is the starting state of the execution of
m and s′ the last state of this execution.

Definition 7. Change Step Let C be a Java class. A change step is defined
as a Java step for m ∈ changingMethods (C).

Note that, choosing the granularity of the Java step at the level of class method
and not at the level of single assignment, allows the designer to tune the desired
granularity of the monitoring.

ASM state and ASM computation step have been defined in Section 3.

4.2 State Conformance, Step Conformance and Run Conformance

We have formally related a Java class and the execution of a Java class instance
with the corresponding abstract ASM model and relative execution(s). In the
following definitions, let C be a Java class, OC any instance of C, and ASMC

its corresponding ASM abstract model.
We assume that the function valJava(e, s) yields the value of a Java element

e ∈ VS (C ) of C in a given state s of OC , while the value of an ASM function
l in a state S is given by valASM (l, S). Moreover we assume that there exists a

conformance
conf
= relation among Java and ASM values [2].

Definition 8. State Conformance We say that a state s of OC conforms to
a state S of ASMC if all observed elements of C have values in OC conforming
to the values of the locations in ASMC linked to them; i.e.

conf (s, S) ≡ ∀e ∈ OS(C) : valJava (e, s)
conf
= valASM (link(e), S) (2)
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Definition 9. Step Conformance
We say that a change step (s,m, s′)
of an instance OC , with m a method
of C, conforms with a step (S, S′) of
ASMC if conf (s , S ) ∧ conf (s ′, S ′).

ASMC S
step �� S′

OC s

conf

��

m �� s′

conf

��

Definition 10. Runtime Conformance Given an observed computation of
a Java instance OC , we say that C is runtime conforming to its specification
ASMC if the following conditions hold:

– the initial state s0 of the computation of OC conforms to the initial state
S0 of the computation of ASMC , i.e. it yields conf (s0, S0);

– every observed change step (s,m, s′) with s the current state of OC , con-
forms with the step (S, S′) of ASMC with S the current state of ASMC ;

– no specification invariant of ASMC is ever violated.

ASMC
init �� S0

�� Sj
step �� Sj+1

step ��

OC
inst �� s0

��

�� sk

��

CM �� sk+1

��

notCM∗
�������� sk+2

��

CM ��

Fig. 3. Runtime conformance

Fig. 3 depicts the co-simulation of an instance OC and its specification ASMC .
Def. 10 requires conformance between s0 and S0. If OC is in state sk, executes
a change method CM , and moves to state sk+1, then sk must conform to the
current ASM state Sj and sk+1 must conform to the next ASM state Sj+1. Then,
no conformance check is performed until the next observed state sk+2 when a
changing method is invoked again. Note that the final state of a Java change step
and the initial state of the subsequent change step are both state conforming to
the same abstract state of the ASM.

5 Monitor Implementation

We here describe how CoMA works. We provide technical details on how the run-
time monitor is implemented by exploiting the mechanism of Java annotations
to link observable Java elements to corresponding ASM entities, and AspectJ to
observe code execution and establish conformance relation.

5.1 Using Java Annotations

Java annotations are meta-data tags that can be used to add some information
to code elements as class declarations, field declarations, etc.
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In addition to the standard ones, annotations can be defined by the user
similarly as classes. For our purposes we have defined a set of annotations in
order to link the Java code to its abstract specification. The retention policy, i.e.
the way to signal how and when the annotation can be accessed, of all of our
annotations is runtime – annotations can be read by the compiler and by the
monitor at run-time through reflection.

In order to link a Java class C with its corresponding ASM model ASMC ,
the class must be annotated with the @Asm annotation having the path of the
ASM model as string attribute. Fig. 4 reports the Java class Counter linked to
its ASM specification (see Fig. 1).

To establish the mapping defined by the function link, we annotate each ob-
served field f ∈ OF (C) by @FieldToFunction, and each observed method
m ∈ OM(C) by @MethodToFunction; both these annotations have a string
attribute yielding the name of the corresponding ASM function. In the example,
the Java field counter and the Java pure method getCounter are both linked
to the counter ASM function.

All methods of changingMethods(C) are annotated with the @RunStep. In
the example, the observed method is inc() that simply increments the counter.

Finally, the user has to decide the starting point of the monitoring. The an-
notation @StartMonitoring is used to select a proper (not empty) subset of
constructors2. All or some constructor parameters (if any) can be annotated
with the @Init annotation that permits to link a parameter with a monitored
function (i.e. only read, as events provided by the environment) of the ASM
model. This allows initializing the ASM model with the same values used to
create the Java instance. In the example there is just one constructor whose
parameter is linked with the ASM monitored function initValue which fixes the
initial value of the counter (see the specification in Fig. 1).

@Asm(”counterMax10.asm”)
class Counter {

@FieldToFunction(”counter”)
public int counter;

@StartMonitoring
Counter(@Init(”initValue”) int x){counter = x}

@MethodToFunction(”counter”)
public int getCounter(){ return counter;}

@RunStep
public void inc(){ counter ++; }}

Fig. 4. Java Counter Annotated

Our use of the annotation
mechanism requires a very lim-
ited code modification and dif-
fers from that usually exploited in
other approaches for system mon-
itoring. Usually annotations are
used to enrich the code with ex-
tra formal specifications to ob-
tain behavioral information about
the target program [7,15]. This
leads to the lack of separation be-
tween the implementation of the
system and its high-level require-
ments specification. In our ap-
proach, the few annotations are

2 We do not consider the default constructor. If the class does not have any con-
structor, the user has to specify an empty constructor and annotate it with
@StartMonitoring.



232 P. Arcaini, A. Gargantini, and E. Riccobene

only used to link the code to its specification, but keeping them separate. Fur-
thermore, annotations are statically type checked and since the annotations are
read reflectively at runtime, the monitoring setup can be carried out very easily.
This is much more convenient than inserting special comments (like JML) and
writing our own parser for them. Moreover, Java annotations make the links
more robust when code refactoring is applied. Our approach fosters the reuse of
specifications when code changes.

5.2 Runtime Monitor and AspectJ

The runtime monitor (see Fig. 2) is implemented through the facilities of AspectJ
that permits to easily observe the execution of Java objects. AspectJ allows
programmers to define special constructs called aspects.

(1) Observer. By means of an aspect, AspectJ allows to specify different
pointcuts, that are points of the program execution one wants to capture; for
each pointcut it is possible to specify an advice, that is the actions that must be
executed when a pointcut is reached. AspectJ permits to specify when to execute
the advice: before or after the execution of the code specified by the pointcut.

The CoMA tool supports two different ways, built-in and compiled, of devel-
oping an aspect.

Built-in. In this approach there is just one aspect that permits to monitor all
the objects of the classes that must be monitored: (i) the pointcuts are general
enough to capture the instantiations and the method executions of all the objects
that must be monitored; (ii) the advices are able to dynamically inspect the Java
and the ASM state in order to do the conformance checking.

The main advantage of this approach is that the developer does not have to
care about building the aspect: after having written the Java class and the ASM
specification, and after having linked them properly, he/she can execute the code
immediately.

The main disadvantage of this approach is that, since the aspects are very
general, they introduce an overhead in the pointcuts and in the advices that
execute the conformance checking. For instance, the pointcuts to detect the
creation of an observed object and to capture the execution of a changing method
(we do not consider changing methods that are executed in the scope of other
changing methods) are reported below.

pointcut objCreated(): call(@StartMonitoring ∗.new(..));
pointcut runStepCalled(): call(@RunStep ∗ ∗.∗(..))

&& !cflowbelow(call(@RunStep ∗ ∗.∗(..)));
In order to read the values of the fields that are monitored, we have implemented
two techniques: (i) reading them through reflection at the beginning and at the
end of the execution of a changing method; (ii) using the AspectJ pointcut set
in order to capture all their updates.
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The main advantage of using reflection is that we can get their values just
once for each changing method execution; using the set pointcut, instead, ev-
ery time a monitored field is updated we collect its value: if a field is updated
frequently (e.g. in a loop), using the set pointcut the performances of the mon-
itoring module can get worse. However, the set pointcut can read private fields
without programmatically changing their visibility.

Compiled. In this approach, for each Java class that must be monitored, a
suitable aspect is built. The main advantage of this approach is that the aspect
definitions (pointcuts and advices) can be more precise (e.g. the pointcut that
captures the execution of the changing methods can specify exactly the methods
whose execution must be captured: in the built-in approach, instead, we must
capture all the methods annotated with @RunStep). The main disadvantage is
that the developer, before running his code, must build the aspect: if the Java
code and/or the ASM specification change, the aspect may need to be rebuilt.
For instance, the pointcuts for the CounterDec class are:

pointcut objCreated(): call(CountercDec.new(..));
pointcut methodCalled(): call(@RunStep public void CountercDec.inc()) ||

call(@RunStep public void CountercDec.dec());
pointcut runStepCalled(CountercDec target): methodCalled() &&

!cflowbelow(methodCalled()) && target(target);

(2) Simulator. Upon a Java change step signaled by the observer, the sim-
ulator performs an ASM step by AsmetaS [12]. Before a change step, an advice
reads the values of the monitored fields, sets the ASM monitored functions, and
executes a state conformance check (conf (s, S) in Def. 9). After a change step,
another advice simulates a step of the ASM and forces the Analyzer to check
again the state conformance (conf (s′, S′) in Def. 9).

(3) Analyzer. The analyzer compares the Java and the ASM state. To check
state conformance (see Def. 8), we have implemented the conformance relation
conf
= among Java and ASM values as a string comparison. Therefore, the Java
and the ASM values are both transformed into strings for comparison.

@Asm(”CounterDec.asm”)
class CounterDec {
@FieldToLocation(”counter”)
public int counter;

@RunStep(setFunction = ”action”, toValue = ”dec”)
public void dec() {

counter −−; }

@RunStep(setFunction = ”action”, toValue = ”inc”)
public void inc() {

counter ++; } }

asm CounterDec
signature:

controlled counter: Integer
monitored action: String

definitions:
main rule r Main =

if action = ”inc” then
counter := counter + 1

else if action = ”dec” then
counter := counter −1

endif endif

Fig. 5. Counter with decrement
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6 Dealing with Multiple Changing Methods

Definition 10 is adequate for runs where the next state of a Java class C and of its
specification ASMC are unique. Thus, nondeterminism is limited to monitored
quantities, which, once not deterministically fixed by the environment, make the
evolution of the system deterministic. In this Section, we extend our conceptual
framework to deal with a limited form of nondeterminism due to the presence of
more than one changing method, each of which takes C to a possible different
correct next state in a deterministic way; however, the choice of the changing
method that causes a change step is non-deterministic.

In this case, the observer must signal to the ASM under simulation, which step
has been chosen by the program. To this scope, we introduce two fields in the
@RunStep annotation: setFunction permits to specify the name of a monitored
function of the ASM model, and toValue the value to whom it must be set.

In the Java code in Fig. 5, the @RunStep annotations of the changing meth-
ods dec() and inc() specify that the monitored function action must be set,
respectively, to dec and inc.

7 Evaluation

In order to assess the viability of our approach, we have taken several examples
in literature and checked whether we were able to apply our approach to existing
runtime case studies, including the Railroad Gate [9], the Initialization Fiasco
problem [5], a robotic assembly system [19], the Knight’s Tour problem [20]. We
have written the Java code, if not available, and their ASM specifications (see
[2] for details). We applied also CoMA to several Java programs borrowed from
JavaMOP [7], like Iterator and FileWriter. Overall we found our approach
applicable to all the considered case studies.

Execution time. In order to evaluate the runtime overhead of our approach, we
have considered three examples, the Counter, the Iterator and the Initialization
Fiasco, and we have monitored them with CoMA, JavaMOP (FSM or LTL), and
JML, when applicable. A comparison with [19] is not possible. They use, like
CoMA, interpretation of formal specifications, but their tool is not available and
no time data are published.

Table 1 reports the average of the time required for 20 runs with 100 instances
running in parallel for 1000 steps. JML cannot be used with the Iterator and the
Initialization Fiasco. For the CoMA, Table 1 reports the time for the three kinds
of aspects described in Section 5.2; we have divided the overall time between the
time taken by the simulator (column AsmetaS) and the time taken by the code
under analysis and the monitor module.

It is apparent that most of the time is taken by the simulator, which is based
on the Eclipse Modelling Framework, widely uses reflection and visitor design
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Table 1. Execution time in the experiments (in secs)

Java JML JavaMOP CoMA
AsmetaS compiled set reflection

Counter 4 280 (FSM) 109 4837 + 783 + 825 + 898
Iterator 8 N/A (FSM) 91 866306 + 1439 + 1812 + 1820
Initialization Fiasco 7 N/A (LTL) 72 870719 +1914 + 2235 + 2366

patterns, and has never been optimized for performance. On the average, using
reflection or using the set pointcut is almost equivalent. However, set point-
cuts may perform worst when an observed field is updated frequently. Instead,
compiled pointcuts provide the best results.

Although our approach seems not competitive with others in terms of time
overhead, we believe that it provides several advantages (explained below) and
it can be used when performances are not critical. As a future work, we plan
to decrease the running time of the simulation by translating the ASM machine
directly into Java code (similarly of what is done in JavaMOP and in Lime).
However, encoding ASM into Java would require the semantic correctness proof
of the translation. Approaches translating to Java/AspectJ are more efficient
but the preservation of the semantics by the translation may become an issue.

At the current development stage of our framework, we have been more inter-
ested in assessing the usability and expressiveness of our approach than its time
performance.

Usability and expressiveness. Although any comparison of our approach
with others in terms of usability and expressiveness may be disputable, since it
may depend on the expertise and taste of the user, some general considerations
follow.

In comparison with JML, CoMA can be used to express the behavior of a
single method call and also the interaction among calls, while JML concentrates
on single methods. There exist JML extensions that allow the specification of
temporal aspects of Java interfaces (like LIME [15] and trace assertions of Jass).
Another difference is that CoMA has a model separated from the implemen-
tation, while JML follows a unique model paradigm in which the code itself
contains its specification. The advantage of CoMA is that the specification can
exist even before its implementation and can be used for several preliminary
activities (like model simulation, model review, and formal verification).

The expressiveness of CoMA is greater than approaches using plain FSMs,
since ASMs can have infinite states and can be viewed as pseudo-code over
abstract data type. In many approaches, like in JavaMOP and in JavaMAC
(which uses automata with auxiliary variables) [17], FSMs are enriched with
state variables. For instance, the FSM for the counter in JavaMOP becomes:
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CheckCounter(Counter c) {
// counter value
int count = 0;
// inc call event
event inc before(Counter c): call(∗ Counter.inc()) && target(c) {count ++;}
// error event
event err after(Counter c): call(∗ Counter.inc()) && target(c) &&

condition(c.getCounter() != count) {}
// the FSM
fsm: safe [ inc −> safe err −> error] error []

@error { System.out.println(”Counter not incremented”); }}

Since JavaMOP specifications are compiled into AspectJ, JavaMOP can include
and use all the power of AspectJ. However, we believe that mixing implementa-
tion and specification notations may encourage the user to insert implementation
details in the specification at the expense of abstractness. An important feature
of our methodology is the clear separation between the monitored implementa-
tion and the high level specification also in terms of notation, as in [17,19].

Comparison with property-based approaches. An objective comparison
with approaches based on the use of properties is more questionable. In this
paper, we assume that the specification is given in operational style instead of the
more classical declarative style. There has been an endless debate about which
style fits better the designer needs: some argue that with an operational style
the designers tend to insert implementation details in the abstract specifications,
others observe that practitioners feel uncomfortable with declarative notations
like temporal logics. The scope of this paper is to provide evidence that also
abstract operational notation can be effectively used for runtime monitoring.
Sometimes, operational specifications are easier to write and understand; other
times, declarative specifications are preferable. For instance, LTL and PLTL
can describe correct sequences of method calls with ease. The correct order of
calls for an Iterator, is specified by the following PLTL formula: �(next =⇒⊙

hasNext), where the operator
⊙

means in the previous time step. However,
properties about states are more difficult (and sometimes impossible) to write.
For instance, the fact that an unbounded counter is correctly incremented is
not expressible by LTL. Indeed, LTL does not allow variable quantifiers and,
therefore, formulas like ∀x �(counter = x =⇒ ©(counter = x + 1)) are
incorrect.

8 Conclusions and Future Work

We have presented and briefly evaluated CoMA, a framework for runtime confor-
mance monitoring of Java code with respect to its specification given in terms
of Abstract State Machines. The source code must be annotated to link Java



CoMA: Conformance Monitoring of Java Programs by Abstract State Machines 237

elements to ASM elements. The CoMA monitor, based on AspectJ, checks run-
time conformance between Java executions and ASM specifications. While the
software executes, the monitor simulates step by step the ASM specification and
checks the state conformance.

Our approach has some limits. The use of an operational specification can lead
the designer into inserting implementation details in the specification. Since each
class is linked to its specification, monitoring safety properties involving collec-
tions of two or more objects [8] is not possible, but we plan to extend CoMA to
support also these scenarios. We deal only with restricted forms of nondetermin-
ism, but we are working on supporting more generic forms of it [2]. Monitoring
real time requirements seems problematic: we believe that a monitored function
time may model the real time and would allow its measurement, but further
experiences are needed and the runtime overhead may be an issue. Since CoMA
currently checks conformance by interpreting the ASM, it performs much slower
than other approaches. We plan to optimize the monitoring process to reduce
the temporal overhead.

Despite these limits, we believe that our approach presents a viable technique
for checking conformance of an implementation (as Java program) with respect
to its formal and abstract operational specification (as ASM). Although it is
difficult to give a definitive evaluation, we believe that the operational style
should be appealing for those preferring executable models instead of properties
and that an operational abstract style of describing system behavior may be
more easy to write and understand. In our approach, specifications are developed
independently from the implementations and they are linked by Java annotations
which however contain minimal behavioral information.

There are some advantages not related to runtime verification in using ex-
ecutable specifications (as also discussed in [4]), including that a specification
can be executed in isolation, even before its implementation exists. CoMA fos-
ters the reuse of specifications for further purposes thanks to its integration in
the ASMETA framework [3], which supports editing, type checking, simulation,
review, formal verification, and test case generation for ASMs.
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Abstract. This paper presents a non-intrusive framework for runtime
verification of executable microcontroller code. A dedicated hardware
unit is attached to a microcontroller, which executes the program un-
der scrutiny, to track atomic propositions stated as assertions over pro-
gram variables. The truth verdicts over the assertions are the inputs to a
custom-designed μCPU unit that evaluates past-time LTL specifications
in parallel to program execution. To achieve this, the instruction set of
the μCPU is tailored to determining satisfaction of specifications.

1 Introduction

Real software runs on real machines. Ideally, verification should thus take place
on the execution level. A main advantage of this approach is that it eliminates the
need for compiler correctness, which is extremely difficult to establish. However,
analyzing programs on the machine-level poses other challenges, even more so
in the embedded systems domain where there is heavy interaction between the
software and its environment. As a consequence, in practice, only certain parts
of the program may be backed up with a formal correctness argument. For the
remaining part of the program, testing is often the technique of choice to increase
confidence in correctness of the program without proving absence of errors.

Testing is based on a guess-and-check paradigm: one (a) guesses a configu-
ration of the program’s inputs (the test-case) and (b) checks the result of the
individual test runs. While the former can — to a large extent — be auto-
mated by automated test-case generation [1], the latter often turns out to be
a time-consuming and manual activity, remaining a core task of test engineers.
With respect to test automation, it is therefore highly desirable to automatically
evaluate the validity of a single test trace when running in the intended execu-
tion environment. Runtime verification further ties verification to testing: The
intended behavior of the system is described in some suitable temporal logic
formula, the validity of which is monitored dynamically, while the test case is
executed. Yet, in the context of safety-critical embedded systems, the applica-
tion of runtime verification on execution level is hampered by the fact that code
instrumentation — which is required by traditional techniques — is likely to af-
fect certain real-time and memory constraints of the system. This is specifically
serious in applications where the design tightly fits into the available resources.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 239–244, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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In previous work [8], we synthesized VHDL code representing a monitor for a
past-time LTL [4] (ptLTL) formulae. The truth values of the atomic propositions
(APs) as well as the validity of the specification were evaluated in a pure hardware
solution. The approach proves feasible in a static setting, where one checks a
fixed set of properties at every run of the program, e.g., after the product is
shipped. However, in a dynamic setting such as testing, the specification is likely
to change with every single test execution. Since generating a hardware observer
from VHDL requires invoking a logic synthesis tool (which may take several
minutes), this approach is infeasible for testing. To make runtime verification
amenable to real-world testing, this paper proposes a more general approach
that relies on a μCPU to determine satisfaction of ptLTL properties on-the-fly.
APs are (still) evaluated by a dedicated, configurable hardware unit.

2 Runtime Verification for Microcontroller Binary Code

This section presents our framework for non-intrusive runtime verification of mi-
crocontroller binary code (see Fig. 1). APs are evaluated in a component called
the atChecker, whereas satisfaction of a ptLTL formula is determined by a μCPU
unit, the μMonitor. A control unit wiretaps the memory of the microcontroller
that executes the software under investigation. To illustrate our (mostly generic)
approach, we employ an off-the-shelf Intel MCS-51 microcontroller IP-core for
our experiments. Since verification is performed on the binary program, this
approach does not impose any constraints on the high-level implementation lan-
guage.

Specification. Our framework supports specifications in ptLTL augmented
with monitoring operators [7]. A GUI-based host application compiles a spec-
ification (consisting of a set of formulae) into a pair 〈Π, C〉, where C is a configu-
ration for the atChecker and Π is a set of native programs for the μMonitor. To
do so, we instantiate an algorithm proposed by Havelund and Roşu [7] to gen-
erate observers for ptLTL. If available, we parse debug information generated
during compilation to relate program symbols to memory locations on the mi-
crocontroller. This allows us to use high-level program symbols in specifications,
for example, ψ : ↑ (foo = 20)⇒ bar ≤ 50; where foo and bar are variables.

Evaluating Assertions On-The-Fly. The atChecker supports a subclass of
two-variable inequalities, namely those of the form α ·m1 + β ·m2 �� C where
α, β ∈ {0,±2n |n ∈ N}, m1,m2 are locations within RAM, �� ∈ {<,>,≤,≥,=
, �=}, and C ∈ Z is a constant. These assertions are easily evaluated in hardware
using shifters and adders. One unit is used for each AP of the specification.

Evaluating ptLTL specifications. The μMonitor is a non-pipelined, RISC-
based microcomputer featuring an instruction set that supports sequential eval-
uation of ptLTL specifications. It has separate address spaces for program and
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Fig. 1. μMonitor (top), atChecker (bottom right), and the SUT (bottom left)

data memory, i.e., represents a Harvard architecture. The data memory consists
of two registers, one holding the evaluations (true, false) of all subformulae of the
formula ψ in the current execution cycle q[0 . . . n] and one the results of the pre-
vious cycle p[0 . . . n]. All bits in the data memory are directly addressable. The
program memory, in turn, is partitioned into n sections, each holding a program
πψ ∈ Π compiled from ψ. The host computer selects an individual program by
setting an offset that is added to the current program counter. This easily allows
to change the specification on-the-fly, e.g., whenever a new test-case is loaded.

Each program πψ is executed in cycles. A cycle starts with the first address
belonging to πψ and ends when the last instruction was executed. At the end of a
cycle, the verdict is updated to indicate whether ψ holds up to the current state
of the program. The start of a cycle is triggered whenever any of the APs change
their truth values. To illustrate, consider again ψ : ↑ (foo = 20) ⇒ bar ≤ 50. A
cycle of πψ is triggered iff [foo = 20] or [bar ≤ 50] toggle their truth values.

The instruction set features 16 opcodes to handle the ptLTL operators, where
each opcode is three bytes long. An instruction decoder allows to address individ-
ual bits in the data memory and set the operator for the logical unit. A multi-way
multiplexer (the logical unit) connects bits, originating from either p[0 . . . n] or
q[0 . . . n], with a Boolean operator op ∈ {¬,∧,∨} and transfers the result back
to memory. The whole framework results in an efficient hardware design. The
μMonitor unit synthesizes down to 367 logic cells (with fmax = 145MHz) and
a single atChecker unit to 290 logic cells (with fmax = 80MHz) on an Altera
Cyclone III EP3C16 FPGA device. By way of comparison, the Intel MCS-51 core
consumes roughly 4000 logic cells on the same device and runs at clock speed of
up to 16 MHz.
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SINT8 temp1, temp2, fanOn;
...
void main(){

while(true) controlLoop();
}
void controlLoop(){

if ((temp1>T1)||(temp2>T2)){
fanOn = controlAlgo();
...
setCooling(fanOn);

}
...

}
void updateTemp(){

temp1 = readTemp(M1);
temp2 = readTemp(M2);

}

Fig. 2. Application (left), specification (mid), and the source code (right)

3 Worked Example

To exemplify our framework, we turn to an application in industrial automation
with the following specification: “The program under scrutiny is a digital con-
troller implementation controlling the temperature of two DC motors M1 and
M2 by driving a fan. The motors have a maximum operating temperature Θ1

and Θ2, respectively. The target application continuously reads the current oper-
ating temperatures ϑ1 and ϑ2. The applications invokes cooling whenever either
ϑ1 > Ton1 or ϑ2 > Ton2 . To avoid damage of the motors along with functional
deficiency, the fan needs to be turned on before the temperature of the motors
reaches their critical temperature. Both motors operate on the same shaft, thus,
an additional sanity check is that the absolute temperature difference |ϑ1 − ϑ2|
remains within Δmax, otherwise, we could assume that one of the motors is
blocking while the other needs to apply an unusually high torque.”

The implementation consists of approx. 250 lines of C (compiled with Keil
μVision3). An outline of the code structure is shown in Fig. 2 (right). The
function updateTemp() is periodically called from a timer interrupt, whereas
controlAlgorithm() holds the controller implementation. Intuitively, the different
temperature bounds describe four hyper-planes as shown in Fig. 2 (mid). Con-
sider the temperature pattern from p1 to q1 . The controlLoop turns on the
cooling in p1 after one of the thresholds is reached. After returning from con-
trolAlgorithm() and turning on the fan, the temperatures are already at q1 ,
violating the temperature requirement of M1. However, the pattern from p2

to q2 is valid wrt. the specification as the temperature curve never leaves the
hatched area until the fan is turned on. It is thus straightforward to come up
with the specification:

ψ : Inv(|ϑ1 − ϑ2| ≤ Δmax)
∧

↑ (fanOn = #F ON)⇒ [ϑ1 > Ton1 ∨ ϑ2 > Ton2 ; ϑ1 ≥ Θ1 ∨ ϑ2 ≥ Θ2)s

The symbols ϑ1 and ϑ2 inψ refer to the variables temp1 and temp2.ψ requires that:
(a) The absolute temperature difference betweenM1 andM2 shall never be greater
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than Δmax and (b) whenever the fan is turned on then one of the motor tempera-
tures exceeded its threshold in the past, and since then none of the temperatures
exceeded its critical temperature. Inv stands for invariant, i.e., holds in every state,
↑means rising (false in the previous state but true in the current), and [p; q)s is the
strong interval operator [7] (q was never true since the last time p was observed to
be true, including the state when pwas true). The bounds are set toΔmax = 40◦C,
Ton1 = 30◦C, Ton2 = 35◦C, Θ1 = 100◦C, and Θ2 = 90◦C. For ψ, the host appli-
cation generates a program consisting of 13 instructions for the μMonitor and a
configuration to evaluate the 7 APs of ψ for the atChecker. The application as well
as the monitor execute at full clock rate.

4 Concluding Discussion

This paper presents a custom-designed μCPU unit for non-intrusive runtime
monitoring of ptLTL. The μCPU as well as hardware circuits for checking APs
are wiretapped to an FPGA running the target hardware. The force of this
approach is that the μCPU can be reprogrammed dynamically, depending on
the specification to be checked, whereas previous approaches evaluated formu-
lae using fixed hardware circuits, which is clearly not as flexible. In contrast to
software-based solutions such as Temporal Rover [3], JPaX [5], or Rmor [6],
our framework does not require instrumentation. Existing hardware-based ap-
proaches [2, 9] require sophisticated monitoring devices, whereas our framework
simply wiretaps the microcontroller’s memory on an FPGA. Future work will
be the integration of our framework with binary code analysis frameworks that
generate the actual test cases, rather than using randomly generated executions
as done currently.
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Abstract. Programmers need to understand their systems. They need
to understand how their systems work and why they fail; why they per-
form well or poorly, and when the systems are behaving abnormally.
Much of this involves understanding the dynamic behavior of complex
software systems. These systems can involve multiple processes and
threads, thousands of classes, and millions of lines of code. These systems
are designed to run continuously, often running for months at a time. We
consider the problem of using dynamic analysis and visualization to help
programmers achieve the necessary understanding. To be effective this
needs to be done on running applications with minimal overhead and in
the high-level terms programmers use to think about their system. After
going over past efforts in this area we look at our current work and then
present a number of challenges for the future.

Keywords: program understanding, visualization.

1 Introduction

Today’s software is complex. It involves multiple threads and processes, complex
locking behavior, large code bases, nondeterminism, and long-running systems.
It is often reactive, responding to external or user events in an asynchronous
manner. The software is often written by teams of programmers, uses a variety
of external libraries, and interacts asynchronously with existing hardware and
software. Understanding the static structure of several millions of lines of code
is a daunting task. Understanding the dynamic behavior of complex interacting
systems is often worse.

The goal of our research is to provide programmers with an understanding
of the dynamics of their complex systems. While there are a wide variety of
tools for analysis and understanding the static structure of software systems,
there are few tools for understanding the dynamic behavior. Moreover, these
tools are generally inadequate for dealing with today’s systems and the actual
problems that programmers face. To fully appreciate why this is so, we need to
understand why programmers want to understand the dynamics of their systems,
what understanding really means, how current tools address the issues, and why
programmers don’t use these tools.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 245–259, 2012.
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There are several reasons for looking at and trying to understand the behavior
of today’s software. The simplest is just to understand what is happening. This
can be a prelude to rewriting the system, to adding new features, or simply to
verify that the system behaves correctly. Another reason is to understand unusual
behavior such as performance problems, bugs that only show up occasionally
and are difficult to reproduce, or locking problems. A third reason is to facilitate
system evolution and maintenance. Here programmers might want to know what
triggers certain behaviors of the system or what might happen if a portion of the
code changes. They might also want to understand how setting various system
parameters such as the number of threads in a thread pool or the number of
active connections might affect system behavior, effectively asking “what if”
questions about their systems.

What does it mean for programmers to understand their systems? As pro-
grammers, we want to understand the system in our terms. We typically have a
model of the system in our heads and want to understand the system in terms
of that model. While that model might correspond to the actual system, more
likely it represents an abstraction of the system. This might be the simple high-
level model of the system; it might be the more complex model that was used
initially but became obscured in the process of translating the design into code;
or it might be a skewed model of a programmer who only knows one portion of
the system and effectively abstracts away all others.

Programmers also need to understand their system’s behavior as it happens.
When abnormal behavior occurs, they want to correlate it with the external
events that are currently happening; when the program seems to be running
slowly, they need to look at its behavior right then and there.

Finally, programmers need to understand real problems in real systems. They
need to understand the behavior of long-running production systems when the
requisite behaviors only arise occasionally and can’t be easily reproduced. They
need to understand interactive systems and still have those systems interact.

Our research attempts to build tools that satisfy these goals. We want tools
that describe the system in the programmers terms. We want tools that work
on production systems in real time. Moreover, we want a variety of tools to
address the different types of problems that programmers face. Most importantly,
however, we want tools that will actually be used.

2 Examples

Every programmer working on complex systems faces run time problems. While
many of these problems are simple, the more complex problems are the most
interesting ones. Below we describe some of the problems that we have encoun-
tered over the past several years. These problems serve in part as our motivation
for dynamic analysis tools.

One simple program we wrote as a prelude to a class project, was a mul-
tithreaded web crawler. It kept a queue of URLs to look at, and had a pool
of threads each of which would repeatedly take an URL off the queue, get the
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corresponding page, process the page, save the results, and possibly add more
URLs to the queue. We had two basic problems with the system. The first was
deciding what is the optimum number of threads for a machine with a given
number of CPU cores. The second problem was that the system would occasion-
ally (every five minutes or so), pause; all the threads would either be waiting or
doing I/O and no work would be done. While this could have been due to the
time to access a web page, but with 32 or 64 threads it seemed unlikely to be
the case. Analysis with our preliminary tools showed that the bottleneck was in
accessing robots.txt files to determine if pages should be crawled or not.

A somewhat more complex system involved a peer-to-peer network designed
for Internet-scale programming [21]. We still have two outstanding problems on
this system that we eventually hope to use dynamic analysis to solve. The first
problem occurs rarely, generally after the system has been running for a month
or two. Here one of the nodes will suddenly run out of memory for no apparent
reason. The second problem occurs sometimes where there are severe network
glitches that affect multiple nodes. In this case, the ring of nodes in the network
becomes malformed.

Another system we have does a gravity-based simulation of large numbers of
particles. This system was originally written as single threaded but was then
retrofitted to work with multiple threads. The problem here is that we are only
getting about half of the expected speed up. Detailed analysis using our tools
showed that we did a good job of parallelizing the gravity computations, but a
poor job of parallelizing the task of adding up the forces.

A web service we built does semantics based-code search [26]. The server for
this is uses multiple thread pools (for getting source, for doing code transforma-
tions, and for testing) with overlapping threads. The system can easily consider
tens or hundreds of thousands of potential solutions for a particular request. We
had two problems here for which we used our dynamic analysis tools. The first
involved excessive memory use, with the system using over 24G of memory to
process what we though was a moderately complex request. The second was that
when the server got multiple requests, it seemed to only handle one at a time.

Our current work is centered around the Code Bubbles programming environ-
ment. This is a multithreaded user interface for programming that runs Eclipse
as a background process. It uses a message bus and has separate processes run-
ning to deal with version management and testing.

The workings of this system can be quite complex. Even something as simple
and common as typing a character into an editor is difficult to understand.
Typing a character edits the underlying document; changes to the document
result in callbacks that update the document structure to reflect the updated line,
send a message to Eclipse describing the edit, update the caret position, update
the locations of annotations (e.g. breakpoints), and update the editor’s title bar
(in case the edit changed the name of the method). At some point, Eclipse sends
back two messages which are processed by separate threads. One describes the
modified syntax tree for the method being edited, which then has to be analyzed
to update the document structure a second time. Another contains the set of
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error and warning messages for the changed file which affect annotations in
the editor as well as the display of tokens. These messages will not be sent if
there is another edit within a given time limit. Moreover, additional message
with errors for other files might also be sent. Changes to the editor document
or new error messages will generate repaint requests which then result in a
recomputation of line reflows and line elisions, which might require updating the
location of annotations on the side of the editor. This process is complicated in
that the document for an editor on a single method is actually a virtual document
referring to another document for the file containing the method; in that both
documents require read/write locking; in that messages from Eclipse are handled
by a thread pool and queue; and in that much of the work is done through vaguely
ordered callbacks registered on the documents, Eclipse messages, or Java Swing.

In working with this system we have had and continue to have a wide range
of dynamic problems. One outstanding problem is that occasionally, there will
be an access to the structured view of an editor document that has invalid po-
sitions. This happens infrequently and under a variety of different conditions.
We presume this is a timing problem, but haven’t been able to understand the
exact sequence of events that leads to it. In addition to this, we have encoun-
tered (and hopefully fixed) a variety of locking problems, most of which involved
complex interactions of java locks both in our code and in the Java libraries, the
read/write locks implemented for Swing documents, and messages to Eclipse
that require responses. Another set of problems that are timing dependent are
display anomalies, for example the squiggle under an undefined identifier, that
sometimes don’t go away until the user moves the mouse or does more editing.
Another set of issues we have and continue to deal with are performance prob-
lems. Typing text at the editor, even as complex as it is, is now fast enough.
However, the system seems to occasionally pause for no apparent reason (we
blame Eclipse, but that’s probably wrong), and some operations such as select-
ing an identifier occasionally take much longer than expected.

3 Current Tools

Dynamic program understanding is a topic of continuing interest to developers.
A good survey of work in this area can be found in [4]. Our own efforts over the
past twenty-five years are a significant part of this [24].

3.1 Related Current Work

A variety of techniques are being used to help programmers understand the
behavior of their systems. Run time anomaly detection techniques treat bugs
as anomalies and use programming rules, either explicitly specified by the user
[5] or automatically extracted using statistical, mining techniques [11], [13] to
cross-check their presence.

Thereska collects dynamic information in order to predict program behav-
ior of complex distributed services consisting of multiple interacting processes
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and I/O systems under different circumstances [34]. Ko’s Whyline collects trace
data during a program run and then lets the user ask questions about specific
behaviors that are answered from the trace [9].

Barham and Isaacs use Magpie for request extraction and workload model-
ing [2]. Magpie builds the model of the software using existing instrumentation
mechanisms in the OS and the applications being analyzed, with the data points
being chosen manually. A similar framework is used by Hellerstein in the ETE
system, with manual instrumentation used to define event probes. Their out-
put is then glued together to form a request using a user-provided schema [7].
The resultant request is visualized and the visualization can be used to detect
problems such as bottlenecks in the application.

Aguilera, et al. does performance analysis of large distributed systems built
from legacy components by monitoring network traffic between the components
[1]. This work builds a call tree among the system components and annotates
each node with the expected time for processing. BorderPatrol takes a similar
approach, but uses a variety of instrumentation techniques to isolate particular
messages and their corresponding processing [10].

Chen’s Pinpoint system uses instrumentation and a statistical framework to
look for path-based models of programs [3]. Software health management uses a
formal definition of normal behavior and then uses techniques such as Bayesian
analysis and fault trees to detect anomalies [33]. Widely used programs can be
also monitored statistically [14].

Program analysis is also used for performance prediction. Pace uses static
analysis to infer a control flow of a parallel or distributed program that uses
MPI or PVM for communication, and then generates its analytical performance
model [15]. The Same system relies on program traces to construct performance
models of message passing programs using a layered queuing network [8].

Another technique used for performance prediction is statistical modeling.
Gupta et al. uses classifiers to predict query running times in DBMS [6]. Lee et
al. used non-linear regressions and neural networks to predict the running time
of scientific computing applications on the grid [12].

3.2 Our Work on Dynamic Analysis

Our early work on Garden [17], and Field [18] attempted to illustrate program
dynamics by showing program execution in terms of source constructs. In Field,
this was extended to show execution in more abstract terms, using both call
graph and class hierarchy displays to show what is currently executing. Field
also included views to look at I/O activity, memory behavior, and both general
and line-specific performance as the program executed.

Our first attempt at dynamic monitoring and model building was with the
Bloom system [29]. Here we collected full traces of multithreaded C/C++ and
Java systems on a variety of platforms. The trace data was analyzed off-line to
build a variety of probabilistic finite-state and context-free models of program
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behavior mainly for the purpose of program visualization. We also used the trace
data to find event handlers in the code based on dynamic behavior, and then to
trace and model transactions [19]. Finally, we used control flow traces from C
programs as a means for fault localization [32], [31].

The off-line approach that we took in Bloom is quite common among dynamic
analysis tools. It has several advantages. First, the tool can have access to a large
amount of potential information by collecting a broad range of detailed trace
data. Second, the displays and the underlying analysis can be more sophisticated
since they don’t have to be done in real time as the program executes. Third,
once the run is complete, programmers can use the resultant visualization at
their leisure, spending time appropriate to understanding their problem. An
industrial example of such a system is Jinsight [16].

Having worked on and with such tools, we have come to the conclusion that
they are not going to work for the types of problems and programs we want to
address. There are several reasons for this. First, these tools tend to generate a
significant amount of trace data. The cost of generating and storing this data

Fig. 1. Jive and Jove dynamic visualizations. The first window shows Jive with the
lefthand panel shows execution time and allocations by class or package; the right
hand panel shows thread activity and interactions. The second window shows Jove
which provides line-level usage information for the classes in a system.
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significantly slows the execution of the program, making it difficult to analyze
programs that are interactive and long running. Second, because the trace files
are large, the analyses that need to be done can also take a significant amount of
time; the cost of just getting to the point of being able to see the analysis is high
and is discouraging to potential users. Third, the tools typically model the whole
run and show the result after execution is over. This makes it difficult for the user
to correlate a particular external event with the analysis or even to remember
what was going on at a point where the analysis might look interesting. Fourth,
the collection of large amounts of trace data tends to significantly perturb the
behavior of the program, making problems involving timing, threads, or process
interaction difficult to reproduce.

Fig. 2. Dyper visualizations. The first window shows a performance analysis summary,
with the dots showing different performance aspects and their priorities; the gauges
showing detailed information about what is currently happening, and the bottom de-
tails providing summary information. The second window shows a summary of memory
ownership information, with color showing the classes that are using most of the space
and the right hand bar showing usage over time.
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Our next attempt at dynamic analysis tried to overcome the complexities
and difficulties of full tracing. Here we developed two systems, Jive and Jove,
shown in Figure 1, that provided dynamic information about program behavior
as the program ran. Jive provided an overview of the number of method calls and
allocations by class, and time view of thread state changes and thread blocking
interactions [20]. Jove provided basic-block level execution counts [30]. Both
operated by accumulating data over a short time interval and only reporting
summary data. They were able to run without slowing the application by more
than a factor of two. In addition to providing dynamic visualizations of the above
information, we did on-line analysis of the data to build a program phase model
[22] where we demonstrated the ability to dynamically detect phases using the
accumulated information as a statistical model.

While these two systems produced useful visualizations, they were not detailed
enough to model specific program behaviors that might be considered abnormal
or interesting, and the instrumentation was still too costly to be used with
production systems.

Our next system, Dyper, concentrated on controlling the costs associated with
dynamic monitoring [25]. This system used a combination of periodically exam-
inations of the stacks of active threads and detailed analysis based on problems
detected from the stack samples. The user was able to set a limit on the moni-
toring overhead and the system dynamically adjusted its behavior to stay within
this limit. A later extension of Dyper used the monitoring framework to build
models of memory usage based on the concept of memory ownership [27]. Dyper
models were built for visualization and were used to manually detect abnormal
behaviors, for example, excessive thread blocking and unexpected or excessive
memory utilization. Example views are shown in Figure 2.

4 Our Current Research: Tools That Meet the
Requirements

Dyper did not address the problem of collecting question-specific information.
Indeed, our experience with both our and other systems for dynamic analysis was
that generic tools provide generic results that are not useful for answering the
specific questions that programmers actually have. This led to several projects.

4.1 Analyzing Program Dynamics for Program Understanding

Our first attempt at addressing specific questions was in the Veld system [23].
In Veld, the programmer defined event-driven parameterized automata that de-
scribed the expected program behavior. Veld would then instrument the program
with a small set of high-level calls corresponding to the programmer’s defined
events, and then monitor instances of the defined automata dynamically, both
to visualize the program and to detect unexpected behavior.

The problem with the approach taken in Veld was that the program
models were difficult for the programmer to define and get right. Many of the
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behaviors of interest to the programmer do not correspond directly to simply
defined events. Programmers often have models of program behavior that are not
directly reflected in the underlying code. Finally, while we were able to construct
some relatively complex models (with 20-30 events and a corresponding set of
states), we noted that the actual program models are significantly more complex,
often involving a hundred or more events and automata that are too complex
for the programmer to easily create or understand.

As a result of this analysis, we built a successor system, Dyview, based on
the monitoring technology provided by Dyper [28]. Dyview addressed a limited
goal, understanding the behavior of threads, transactions and tasks in an event-
based system. The notions of transaction and task are flexible to accommodate
many type of applications and to provide differing views of those applications
based on programmer needs. Typically transactions correspond to requests in
the program, while tasks are actions performed to process transactions.

Dyview first asks programmers to specify the class or set of classes that repre-
sent transactions, any classes they want to explicitly consider as separate tasks,

Fig. 3. Visualization of the search server in action. The scroll bar on the bottom allows
the user to select the time span to be visualized. The scroll bar on the right lets the
users restrict the display to different threads. Each row in the display corresponds to
a thread in the application. Colored bars in the rows indicate processing. The outside
colors of the bar represent the transaction being processed. The inside color represents
the task. Gray lines show where tasks are created and then first used. This particu-
lar visualization illustrates a problem with the search server in dealing with multiple
transactions simultaneously. For the latter half of the time, there are always two trans-
actions being processed at once. However, the processing shows that most of the time
one transaction dominates and the other can make little progress.
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and any classes that represent specific threads of interest. It then uses a com-
bination of static and dynamic analysis to find the event handlers, task and
transaction processing points, and significant processing events in the tasks. Fi-
nally, Dyview associates thread activity with a corresponding transaction and,
optionally, with a task. This analysis is done automatically without user in-
tervention. Its results are used to build a simple model of program behavior,
which, in turn, is used to derive an appropriate set of high-level instrumentation
points. Information collected by instrumentation is used to visualize program
execution in terms of threads, transactions and tasks. An example can be seen
in Figure 3. Dyview’s visualizations have been used to answer difficult run time
problems such as unexpected behaviors, poor thread performance, and unusual
interactions between transactions in a variety of event-based systems.

Fig. 4. Thread-based visualization of locks in an n-body simulation. Each thread is
represented as a tube where the outside color indicates the lock being used and the
inside fill indicates the lock state. Blocks are indicated by vertical lines indicating the
from (green) thread and to (red) thread.

Another tool we have developed along similar lines analyzes locking behavior
in an application. Java programs, especially those written before Java introduced
a full range of concurrency types, used Java synchronized regions along with wait
and notify to implement a variety of high-level lock types such as semaphores
and barriers. Our system uses the JVMTI for low-overhead instrumentation of
locking operations in an application. It then does an off-line analysis of the resul-
tant trace to find those locks which play a significant part in the application and
to characterize those locks as mutexes, semaphores, delays, barriers, producer-
consumer locks, read-write locks, latches, and conditional locks according to their
use. Then it does byte-code instrumentation of the application using the locking
information to track and then visualize the use of locks as the application is run.
An example can be seen in Figure 4.



What Is My Program Doing? Program Dynamics in Programmer’s Terms 255

4.2 Analyzing Program Dynamics for Performance Prediction

Currently, we are working on a more ambitious effort that combines static and
dynamic analysis in an attempt to build performance prediction models. These
models will predict performance of various multithreaded applications based
on values of their configuration parameters. Parameters include configuration
options of the program such as the number of working threads and workload
characteristics, parameters of the OS such as limits on the number of file de-
scriptors and the type of I/O scheduler, and parameters of the hardware such
as the number of CPU cores and hard drive and network performance.

Building such models by hand is difficult. The models must simulate function-
ing of the system on various levels, including the program itself, the underlying
OS, and the hardware. Although certain components of the system, such as
hard drives or networking can be simulated by analytical or statistical mod-
els, computer programs are much more diverse in their structure and behavior.
They must be simulated with more sophisticated modeling techniques, such as
stochastic automata and queuing networks. To be useful, such models must be
also built automatically.

Our automatic approach to generating these models involves a combination
of static and dynamic analysis. We start by using static analysis to find informa-
tion on hierarchy of classes and packages, information on types (types of class
fields, global fields, local variables, and the types allocated by each method), and
synchronization information.

Next we run the program and collect stack samples using the low-overhead
instrumentation. Stack samples are used to build a trie that contains all the paths
detected during the program’s execution. The trie is then analyzed off-line to
find thread pools; routines that represent callbacks (which can be either calls to
user code from system routines or calls from a low level of the package hierarchy
to a higher level); event handlers (routines that are invoked after data is read
or after a wait); and significant program states. Program states are defined as
a particular region of the program and are flagged either as a CPU-bound, I/O
bound, or WAIT-bound state.

Using data from both the static and dynamic analysis, we next determine what
user objects represent transactions. Transactions objects correspond to requests
in the program; they are accessible from event handlers and callbacks and are
central to building the model. Currently we can automatically determine only
candidate classes that might represent transactions, and we let the user select
the appropriate classes from the set of candidates.

Once we know the transactions classes, we instrument the byte code of the
program and run it again to generate a more detailed view of program’s execu-
tion. This view contains a per-thread trace of all uses of event handlers, callbacks,
synchronization routines, and program states. We also instrument the OS kernel
to obtain data on I/O operations initiated by the program. We use this data
to define properties of I/O-bound program states, which include number and
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properties of the disk I/O requests for each state. Because the set of items traced
is selective, this new round of instrumentation can also be done with relatively
low overhead.

The generated trace is then analyzed off-line to actually build the model. This
includes determining the types and parameters of synchronization mechanisms
that exist in the program, finding the transition diagram between program states,
determining computation requirements for CPU-bound states, and associating
wait states with the corresponding synchronization calls.

5 Challenges

Dynamic analysis is useful only if it is used. While the research community
has produced many dynamic analysis tools, they are generally not being used by
programmers to investigate complex run time bugs or unexpected behaviors. The
primary reason for this is that programmers will learn and use only those tools
that can answer real questions about real systems in a way that is more effective
and more efficient than existing tools such as debuggers or print statements. The
mission of our community should be to develop this kind of analysis tools.

This is a multipart problem. We first have to be able to address real sys-
tems, especially those systems where programmers are likely to have problems.
This means our tools have to address production systems that may run for days
or weeks before showing the unexpected behavior; systems that involve multi-
ple communicating processes each of which involves multiple threads. Designing
tools that can handle yesterday’s simpler systems won’t work. We need to think
about tools that can handle tomorrow’s systems.

The key challenges here are devising very efficient and lightweight dynamic
analysis, coordinating dynamic analysis from multiple threads and multiple pro-
cesses, doing automatic instrumentation, automatically building high-level mod-
els of systems that match the programmers models, and determining how to
use sampling and heuristic techniques to infer detailed information from sparse
input.

The second part of the problem involves addressing real questions. Most
current dynamic tools provide information about the system at a fixed level,
typically at the level provided by either the underlying system or by the pro-
gramming language. For example, tools for Java locking look at locking in terms
of Java’s synchronized regions. Similarly, tools for performance analysis look at
performance in terms of code blocks or methods executed.

Programmers, however, tend to work with the higher-level abstractions they
used to design and code the system. For example, instead of synchronized regions,
they might think in terms of the semaphores, producer-consumer locks, or read-
write locks that they implemented and treat as primitives in their code. Similarly,
rather than looking at performance of individual blocks and methods, they want
to understand performance of individual transactions and tasks, where a task is
typically a programmer-defined concept.
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Moreover, the actual questions that programmers have about run time behav-
ior of their systems do not fall into nice, simple categories that can be addressed
easily by a single tool. Examples of such questions presented in Section 2 are
quite diverse and require different types of analysis and different levels of mod-
eling. A useful tool suite will need to handle a wide variety of problems and be
able to map those problems into the abstractions that the programmer actually
uses.

The challenges here involve mapping low level information to an appropriate
level of abstraction; obtaining a wide variety of different types of information,
possibly using the same information sources; combining appropriate static and
dynamic analyses along with heuristics; and determining what types of informa-
tion might be the most relevant to the programmer.

The next problem here is producing a tool that is effective and easy to use
from the programmer’s perspective. Programmers typically know that they have
a run time problem and have some sense of what information they might need to
understand the unexpected or abnormal behavior. However, they think of that
problem in terms of higher-level abstractions they used in developing and work-
ing on that application. An effective tool needs to elicit this information from
the programmer in terms the programmer can easily express and understand.

Just as important, an effective tool needs to provide output in a way that actu-
ally addresses the programmers’ problems. This means providing output in high
level terms that clearly distinguishes the abnormal behavior that is interesting
to a programmer.

The challenges here involve building models of the types of problems that
programmers are likely to have and then parameterizing these models in ways
that make it easy for the programmer to state their problem. They also include
creating visualizations and other data presentations that can show the large
amounts of data while highlighting the cases that are of interest. Finally, they
involve building heuristics, possibly with the help of the programmer, that would
allow the system to sift through the dynamic information that is gathered to
determine what is actually relevant to the programmer.
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Abstract. We present and analyze monitoring algorithms for a safety
fragment of metric temporal logics, which differ in their underlying time
model. The time models considered have either dense or discrete time
domains and are point-based or interval-based. Our analysis reveals dif-
ferences and similarities between the time models for monitoring and
highlights key concepts underlying our and prior monitoring algorithms.

1 Introduction

Real-time logics [2] allow us to specify system properties involving timing con-
straints, e.g., every request must be followed within 10 seconds by a grant. Such
specifications are useful when designing, developing, and verifying systems with
hard real-time requirements. They also have applications in runtime verification,
where monitors generated from specifications are used to check the correctness
of system behavior at runtime [10]. Various monitoring algorithms for real-time
logics have been developed [4, 5, 7, 12, 14, 15, 17, 20] based on different time mod-
els. These time models can be characterized by two independent aspects. First, a
time model is either point-based or interval-based. In point-based time models,
system traces are sequences of system states, where each state is time-stamped.
In interval-based time models, system traces consist of continuous (Boolean) sig-
nals of state variables. Second, a time model is either dense or discrete depending
on the underlying ordering on time-points, i.e., whether there are infinitely many
or finitely many time-points between any two distinct time-points.

Real-time logics based on a dense, interval-based time model are more natural
and general than their counterparts based on a discrete or point-based model.
In fact, both discrete and point-based time models can be seen as abstractions
of dense, interval-based time models [2, 18]. However, the satisfiability and the
model-checking problems for many real-time logics with the more natural time
model are computationally harder than their corresponding decision problems
when the time model is discrete or point-based. See the survey [16] for further
discussion and examples.

In this paper, we analyze the impact of different time models on monitor-
ing. We do this by presenting, analyzing, and comparing monitoring algorithms
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for real-time logics based on different time models. More concretely, we present
monitoring algorithms for the past-only fragment of propositional metric tem-
poral logics with a point-based and an interval-based semantics, also considering
both dense and discrete time domains. We compare our algorithms on a class of
formulas for which the point-based and the interval-based settings coincide. To
define this class, we distinguish between event propositions and state proposi-
tions. The truth value of a state proposition always has a duration, whereas an
event proposition cannot be continuously true between two distinct time-points.

Our analysis explains the impact of different time models on monitoring. First,
the impact of a dense versus a discrete time domain is minor. The algorithms
are essentially the same and have almost identical computational complexities.
Second, monitoring in a point-based setting is simpler than in an interval-based
setting. The meaning of “simpler” is admittedly informal here since we do not
provide lower bounds. However, we consider our monitoring algorithms for the
point-based setting as conceptually simpler than the interval-based algorithms.
Moreover, we show that our point-based monitoring algorithms perform better
than our interval-based algorithms on the given class of formulas on which the
two settings coincide.

Overall, we see the contributions as follows. First, our monitoring algorithms
simplify and clarify key concepts of previously presented algorithms [4, 13–15]. In
particular, we present the complete algorithms along with a detailed complexity
analysis for monitoring properties specified in the past-only fragment of propo-
sitional metric temporal logic. Second, our monitoring algorithm for the dense,
point-based time model has better complexity bounds than existing algorithms
for the same time model [20]. Third, our comparison of the monitoring algo-
rithms illustrates the similarities, differences, and trade-offs between the time
models with respect to monitoring. Moreover, formulas in our fragment benefit
from both settings: although they describe properties based on a more natural
time model, they can be monitored with respect to a point-based time model,
which is more efficient.

2 Preliminaries

Time Domain and Intervals. If not stated differently, we assume the dense
time domain1 T = Q≥0 with the standard ordering ≤. Adapting the following
definitions to a discrete time domain like N is straightforward.

A (time) interval is a non-empty set I ⊆ T such that if τ < κ < τ ′ then κ ∈ I,
for all τ, τ ′ ∈ I and κ ∈ T. We denote the set of all time intervals by I. An interval
is either left-open or left-closed and similarly either right-open or right-closed.
We denote the left margin and the right margin of an interval I ∈ I by 
(I) and

1 We do not use R≥0 as dense time domain because of representation issues. Namely,
each element in Q≥0 can be finitely represented, which is not the case for R≥0.
Choosing Q≥0 instead of R≥0 is without loss of generality for the satisfiability of
properties specified in real-time logics like the metric interval temporal logic [1].
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r(I), respectively. For instance, the interval I = {τ ∈ T | 3 ≤ τ}, which we also
write as [3,∞), is left-closed and right-open with margins 
(I) = 3 and r(I) =∞.

For an interval I ∈ I, we define the extension I≥:=I∪(
(I),∞) to the right and
its strict counterpart I> := I≥ \ I, which excludes I. We define ≤I := [0, r(I))∪ I
and <I := (≤I) \ I similarly. An interval I ∈ I is singular if |I| = 1, bounded if
r(I) < ∞, and unbounded if r(I) = ∞. The intervals I, J ∈ I are adjacent if
I ∩J = ∅ and I ∪J ∈ I. For I, J ∈ I, I ⊕J is the set {τ + τ ′ | τ ∈ I and τ ′ ∈ J}.

An interval partition of T is a sequence 〈Ii〉i∈N of time intervals withN = N or
N = {0, . . . , n} for some n ∈ N that fulfills the following properties: (i) Ii−1 and
Ii are adjacent and 
(Ii−1) ≤ 
(Ii), for all i ∈ N \ {0}, and (ii) for each τ ∈ T,
there is an i ∈ N such that τ ∈ Ii. The interval partition 〈Jj〉j∈M refines
the interval partition 〈Ii〉i∈N if for every j ∈ M , there is some i ∈ N such
that Jj ⊆ Ii. We often write Ī for a sequence of intervals instead of 〈Ii〉i∈N .
Moreover, we abuse notation by writing I ∈ 〈Ii〉i∈N if I = Ii, for some i ∈ N .

A time sequence 〈τi〉i∈N is a sequence of elements τi ∈ T that is strictly
increasing (i.e., τi < τj , for all i, j ∈ N with i < j) and progressing (i.e., for all τ ∈
T, there is i ∈ N with τi > τ). Similar to interval sequences, τ̄ abbreviates 〈τi〉i∈N.

Boolean Signals. A (Boolean) signal γ is a subset of T that fulfills the following
finite-variability condition: for every bounded interval I ∈ I, there are intervals
I0, . . . , In−1 ∈ I such that γ ∩ I = I0 ∪ · · · ∪ In−1, for some n ∈ N. The least such
n ∈ N is the size of the signal γ on I. We denote it by ||γ ∩ I||.

We use the term “signal” for such a set γ because its characteristic function
χγ : T → {0, 1} represents, for example, the values over time of an input or
an output of a sequential circuit. Intuitively, τ ∈ γ iff the signal of the circuit
is high at the time τ ∈ T. The finite-variability condition imposed on the set
γ prevents switching infinitely often from high to low in finite time. Note that
||γ ∩ I|| formalizes how often a signal γ is high on the bounded interval I, in
particular, ||γ ∩ I|| = 0 iff γ ∩ I = ∅.

A signal γ is stable on an interval I ∈ I if I ⊆ γ or I ∩ γ = ∅. The induced
interval partition ııp(γ) of a signal γ is the interval partition Ī such that γ is stable
on each of the intervals in Ī and any other stable interval partition refines Ī. We
write ııp1(γ) for the sequence of intervals I in ııp(γ) such that I∩γ �= ∅. Similarly,
we write ııp0(γ) for the sequence of intervals I in ııp(γ) such that I ∩ γ = ∅.
Intuitively, ııp1(γ) and ııp0(γ) are the sequences of maximal intervals on which
the signal is γ is high and low, respectively.

Metric Temporal Logics. To simplify the exposition, we restrict ourselves to
monitoring the past-only fragment of metric temporal logic in a point-based and
an interval-based setting. However, future operators like �I , where the interval I
is bounded, can be handled during monitoring by using queues that postpone
the evaluation until enough time has elapsed. See [4], for such a monitoring
algorithm that handles arbitrary nesting of past and bounded future operators.

Let P be a non-empty set of propositions. The syntax of the past-only fragment
of metric temporal logic is given by the grammar φ ::= p | ¬φ | φ ∧ φ | φ SI φ,
where p ∈ P and I ∈ I. In Figure 1, we define the satisfaction relations |= and

•|=,
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γ̂, τ |= p iff τ ∈ γp

γ̂, τ |= ¬φ iff γ̂, τ �|= φ
γ̂, τ |= φ ∧ ψ iff γ̂, τ |= φ and γ̂, τ |= ψ
γ̂, τ |= φ SI ψ iff there is τ ′ ∈ [0, τ ] with

τ − τ ′ ∈ I,
γ̂, τ ′ |= ψ, and
γ̂, κ |= φ, for all κ ∈ (τ ′, τ ]

(a) interval-based semantics

γ̂, τ̄ , i
•|= p iff τi ∈ γp

γ̂, τ̄ , i
•|= ¬φ iff γ̂, τ̄ , i � •|= φ

γ̂, τ̄ , i
•|= φ ∧ ψ iff γ̂, τ̄ , i

•|= φ and γ̂, τ̄ , i
•|= ψ

γ̂, τ̄ , i
•|= φ SI ψ iff there is i′ ∈ [0, i] ∩ N with

τi − τi′ ∈ I,
γ̂, τ̄ , i′ •|= ψ, and
γ̂, τ̄ , k

•|= φ, for all k ∈ (i′, i] ∩ N

(b) point-based semantics

Fig. 1. Semantics of past-only metric temporal logic

where γ̂ = (γp)p∈P is a family of signals, τ̄ a time sequence, τ ∈ T, and i ∈ N.
Note that |= defines the truth value of a formula for every τ ∈ T. In contrast, a
formula’s truth value with respect to

•|= is defined at the “sample-points” i ∈ N

to which the “time-stamps” τi ∈ T from the time sequence τ̄ are attached.
We use the standard binding strength of the operators and standard syntactic

sugar. For instance, φ ∨ ψ stands for the formula ¬(¬φ ∧ ¬ψ) and �I ψ stands
for (p∨¬p)SI ψ, for some p ∈ P . Moreover, we often omit the interval I = [0,∞)
attached to a temporal operator. We denote the set of subformulas of a formula φ
by sf(φ). Finally, |φ| is the number of nodes in φ’s parse tree.

3 Point-Based versus Interval-Based Time Models

3.1 State Variables and System Events

State variables and system events are different kinds of entities. One distinguish-
ing feature is that events happen at single points in time and the value of a state
variable is always constant for some amount of time. In the following, we distin-
guish between these two entities. Let P be the disjoint union of the proposition
sets S and E. We call propositions in S state propositions and propositions in E
event propositions. Semantically, a signal γ ⊆ T is an event signal if γ ∩ I is
finite, for every bounded interval I, and the signal γ is a state signal if for every
bounded interval I, the sets γ ∩ I and (T \ γ) ∩ I are the finite unions of non-
singular intervals. Note that there are signals that are neither event signals nor
state signals. A family of signals γ̂ = (γp)p∈S∪E is consistent with S and E if γp
is a state signal, for all p ∈ S, and γp is an event signal, for all p ∈ E.

The point-based semantics is often motivated by the study of real-time sys-
tems whose behavior is determined by system events. Intuitively, a time se-
quence τ̄ records the points in time when events occur and the signal γp for a
proposition p ∈ E consists of the points in time when the event p occurs. The
following examples, however, demonstrate that the point-based semantics can
be unintuitive in contrast to the interval-based semantics.

Example 1. A state proposition p ∈ S can often be mimicked by the formula
¬f S s with corresponding event propositions s, f ∈ E representing “start” and
“finish.” For the state signal γp, let γs and γf be the event signals where γs
and γf consist of the points in time of γp when the Boolean state variable starts
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and respectively finishes to hold. Then (γs, γf ), τ |= ¬f S s iff γp, τ |= p, for any
τ ∈ T, under the assumption that I ∩ γp is the finite union of left-closed and
right-open intervals, for every bounded left-closed and right-open interval I.

However, replacing p by ¬f S s does not always capture the essence of a
Boolean state variable when using the point-based semantics. Consider the for-
mula �[0,1] p containing the state proposition p and let γp = [0, 5) be a state
signal. Moreover, let (γs, γf ) be the family of corresponding event signals for
the event propositions s and f , i.e., γs = {0} and γf = {5}. For a time se-
quence τ̄ with τ0 = 0 and τ1 = 5, we have that (γs, γf ), τ̄ , 1 � •|= �[0,1](¬f S s) but
γp, τ1 |= �[0,1] p. Note that τ̄ only contains time-stamps when an event occurs.
An additional sample-point between τ0 and τ1 with, e.g., the time-stamp 4 would
result in identical truth values at time 5.

Example 2. Consider the (event) signals γp = {τ ∈ T | τ = 2n, for some n ∈ N}
and γq = ∅ for the (event) propositions p and q. One might expect that these
signals satisfy the formula p → �[0,1] ¬q at every point in time. However, for a
time sequence τ̄ with τ0 = 0 and τ1 = 2, we have that γ̂, τ̄ , 1 � •|= p → �[0,1] ¬q.
The reason is that in the point-based semantics, the �I operator requires the
existence of a previous point in time that also occurs in the time sequence τ̄ .

As another example consider the formula �[0,1] �[0,1] p. One might expect
that it is logically equivalent to �[0,2] p. However, this is not the case in the
point-based semantics. To see this, consider a time sequence τ̄ with τ0 = 0 and
τ1 = 2. We have that γ̂, τ̄ , 1 � •|= �[0,1] �[0,1] p and γ̂, τ̄ , 1

•|= �[0,2] p if τ0 ∈ γp.

The examples above suggest that adding additional sample-points restores a
formula’s intended meaning, which usually stems from having the interval-based
semantics in mind. However, a drawback of this approach for monitoring is that
each additional sample-point increases the workload of a point-based monitoring
algorithm, since it is invoked for each sample-point. Moreover, in the dense time
domain, adding sample-points does not always make the two semantics coincide.
For instance, for γp = [0, 1) and τ ≥ 1, we have that γp, τ �|= ¬p S p and
γp, τ̄ , i

•|= ¬p S p, for every time sequence τ̄ with τ0 < 1 and every i ∈ N.

3.2 Event-Relativized Formulas

In the following, we identify a class of formulas for which the point-based and the
interval-based semantics coincide. For formulas in this class, a point-based mon-
itoring algorithm can be used to soundly monitor properties given by formulas
interpreted using the interval-based semantics. We assume that the propositions
are typed, i.e., P = S ∪ E, where S contains the state propositions and E the
event propositions, and a family of signals γ̂ = (γp)p∈S∪E is consistent with S
and E. Moreover, we assume without loss of generality that there is always at
least one event signal γ in γ̂ that is the infinite union of singular intervals, e.g.,
γ is the signal of a clock event that regularly occurs over time.

We inductively define the sets rel∀ and rel∃ for formulas in negation normal
form. Recall that a formula is in negation normal form if negation only occurs
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directly in front of propositions. A logically-equivalent negation normal form
of a formula can always be obtained by eliminating double negations and by
pushing negations inwards, where we consider the Boolean connective ∨ and the
temporal operator “trigger” TI as primitives. Note that φTI ψ = ¬(¬φ SI ¬ψ).

¬p ∈ rel∀ if p ∈ E (∀1)
φ1 ∨ φ2 ∈ rel∀ if φ1 ∈ rel∀ or φ2 ∈ rel∀ (∀2)
φ1 ∧ φ2 ∈ rel∀ if φ1 ∈ rel∀ and φ2 ∈ rel∀ (∀3)

p ∈ rel∃ if p ∈ E (∃1)
φ1 ∧ φ2 ∈ rel∃ if φ1 ∈ rel∃ or φ2 ∈ rel∃ (∃2)
φ1 ∨ φ2 ∈ rel∃ if φ1 ∈ rel∃ and φ2 ∈ rel∃ (∃3)

A formula φ is event-relativized if α ∈ rel∀ and β ∈ rel∃, for every subformula
of φ of the form αSI β or βTI α. We call the formula φ strongly event-relativized
if φ is event-relativized and φ ∈ rel∀ ∪ rel∃.

The following theorem relates the interval-based semantics and the point-
based semantics for event-relativized formulas.

Theorem 1. Let γ̂ = (γp)p∈S∪E be a family of consistent signals and τ̄ the
time sequence listing the occurrences of events in γ̂, i.e., τ̄ is the time sequence
obtained by linearly ordering the set

⋃
p∈E γp. For an event-relativized formula φ

and every i ∈ N, it holds that γ̂, τi |= φ iff γ̂, τ̄ , i
•|= φ. Furthermore, if φ is

strongly event-relativized, then it also holds that (a) γ̂, τ �|= φ if φ ∈ rel∃ and
(b) γ̂, τ |= φ if φ ∈ rel∀, for all τ ∈ T \ {τi | i ∈ N}.
Observe that the formulas in Example 1 and 2 are not event-relativized. The
definition of event-relativized formulas and Theorem 1 straightforwardly extend
to richer real-time logics that also contain future operators and are first-order.
We point out that most formulas that we encountered when formalizing security
policies in such a richer temporal logic are strongly event-relativized [3].

From Theorem 1, it follows that the interval-based semantics can simulate
the point-based one by using a fresh event proposition sp with its signal γsp =
{τi | i ∈ N}, for a time sequence τ̄ . We then event-relativize a formula φ with
the proposition sp, i.e., subformulas of the form ψ1 SI ψ2 are replaced by (sp →
ψ1) SI (sp ∧ ψ2) and ψ1 TI ψ2 by (sp ∧ ψ1) TI (sp → ψ2).

4 Monitoring Algorithms

In this section, we present and analyze our monitoring algorithms for both the
point-based and the interval-based setting. Without loss of generality, the algo-
rithms assume that the temporal subformulas of a formula φ occur only once
in φ. Moreover, let P be the set of propositions that occur in φ.

4.1 A Point-Based Monitoring Algorithm

Our monitoring algorithm for the point-based semantics iteratively computes
the truth values of a formula φ at the sample-points i ∈ N for a given time
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step•(φ, Γ, τ)
case φ = p

return p ∈ Γ

case φ = ¬φ′

return not step•(φ′, Γ, τ)
case φ = φ1 ∧ φ2

return step•(φ1, Γ, τ) and step•(φ2, Γ, τ)
case φ = φ1 SI φ2

update•(φ,Γ, τ)
if Lφ = 〈〉 then return false

else return τ − head(Lφ) ∈ I

init•(φ)
for each ψ ∈ sf(φ) with ψ = ψ1 SI ψ2 do

Lψ := 〈〉

update•(φ, Γ, τ)
let φ1 SI φ2 = φ

b1 = step•(φ1, Γ, τ)
b2 = step•(φ2, Γ, τ)
L = if b1 then drop•(Lφ, I, τ) else 〈〉

in if b2 then Lφ := L ++ 〈τ〉
else Lφ := L

Fig. 2. Monitoring in a point-based setting

sequence τ̄ and a family of signals γ̂ = (γp)p∈P . We point out that τ̄ and γ̂ are
given incrementally, i.e., in the (i+1)st iteration, the monitor obtains the time-
stamp τi and the signals between the previous time-stamp and τi. In fact, in the
point-based setting, we do not need to consider “chunks” of signals; instead, we
can restrict ourselves to the snapshots Γi := {p ∈ P | τi ∈ γp}, for i ∈ N, i.e., Γi

is the set of propositions that hold at time τi.
Each iteration of the monitor is performed by executing the procedure step•.

At sample-point i ∈ N, step• takes as arguments the formula φ, the snapshot Γi,
and i’s time-stamp τi. It computes the truth value of φ at i recursively over
φ’s structure. For efficiency, the procedure step• maintains for each subformula
ψ of the form ψ1 SI ψ2 a sequence Lψ of time-stamps. These sequences are
initialized by the procedure init• and updated by the procedure update•. These
three procedures2 are given in Figure 2 and are described next.

The base case of step• where φ is a proposition and the cases for the Boolean
connectives ¬ and ∧ are straightforward. The only involved case is where φ is
of the form φ1 SI φ2. In this case, step• first updates the sequence Lφ and then
computes φ’s truth value at the sample-point i ∈ N.

Before we describe how we update the sequence Lφ, we describe the elements
that are stored in Lφ and how we obtain from them φ’s truth value. After
the update of Lφ by update•, the sequence Lφ stores the time-stamps τj with
τi − τj ∈ ≤I (i.e., the time-stamps that satisfy the time constraint now or that
might satisfy it in the future) at which φ2 holds and from which φ1 continuously
holds up to the current sample-point i (i.e., φ2 holds at j ≤ i and φ1 holds at
each k ∈ {j+1, . . . , i}). Moreover, if there are time-stamps τj and τj′ with j < j′

in Lφ with τi − τj ∈ I and τi − τj′ ∈ I then we only keep in Lφ the time-stamp
of the later sample-point, i.e., τj′ . Finally, the time-stamps in Lφ are ordered
increasingly. Having Lφ at hand, it is easy to determine φ’s truth value. If Lφ is
the empty sequence then obviously φ does not hold at sample-point i. If Lφ is
non-empty then φ holds at i iff the first time-stamp κ in Lφ fulfills the timing
constraints given by the interval I, i.e., τi − κ ∈ I. Recall that φ holds at i iff

2 Our pseudo-code is written in a functional-programming style using pattern match-
ing. 〈〉 denotes the empty sequence, ++ sequence concatenation, and x :: L the
sequence with head x and tail L.
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drop•(L, I, τ)
case L = 〈〉

return 〈〉
case L = κ :: L′

if τ − κ �∈ ≤I then return drop•(L′, I, τ)
else return drop′•(κ, L′, I, τ)

drop′•(κ, L′, I, τ)
case L′ = 〈〉

return 〈κ〉
case L′ = κ′ :: L′′

if τ − κ′ ∈ I then return drop′•(κ′, L′′, I, τ)
else return κ :: L′

Fig. 3. Auxiliary procedures

there is a sample-point j ≤ i with τi − τj ∈ I at which φ2 holds and since then
φ1 continuously holds.

Initially, Lφ is the empty sequence. If φ2 holds at sample-point i, then update•

adds the time-stamp τi to Lφ. However, prior to this, it removes the time-stamps
of the sample-points from which φ1 does not continuously hold. Clearly, if φ1

does not hold at i then we can empty the sequence Lφ. Otherwise, if φ1 holds
at i, we first drop the time-stamps for which the distance to the current time-
stamp τi became too large with respect to the right margin of I. Afterwards, we
drop time-stamps until we find the last time-stamp τj with τi − τj ∈ I. This is
done by the procedures drop• and drop′• shown in Figure 3.

Theorem 2. Let φ be a formula, γ̂ = (γp)p∈P be a family of signals, τ̄ be
a time sequence, and n > 0. The procedure step•(φ, Γn−1, τn−1) terminates,
and returns true iff γ̂, τ̄ , n − 1

•|= φ, whenever init•(φ), step•(φ, Γ0, τ0), . . . ,
step•(φ, Γn−2, τn−2) were called previously in this order, where Γi = {p ∈ P |
τi ∈ γp}, for i < n.

We end this subsection by analyzing the monitor’s computational complexity.
Observe that we cannot bound the space that is needed to represent the time-
stamps in the time sequence τ̄ . They become arbitrarily large as time progresses.
Moreover, since the time domain is dense, they can be arbitrarily close to each
other. As a consequence, operations like subtraction of elements from T cannot
be done in constant time. We return to this point in Section 4.3.

In the following, we assume that each τ ∈ T is represented by two bit strings
for the numerator and denominator. The representation of an interval I consists
of the representations for 
(I) and r(I) and whether the left margin and right
margin is closed or open. We denote the maximum length of these bit strings by
||τ || and ||I||, respectively. The operations on elements in T that the monitoring
algorithm performs are subtractions and membership tests. Subtraction τ − τ ′

can be carried out in time O(m2), where m = max{||τ ||, ||τ ′||}.3 A membership
test τ ∈ I can also be carried out in time O(m2), where m = max{||τ ||, ||I||}.

The following theorem establishes an upper bound on the time complexity of
our monitoring algorithm.

3 Note that p
q
− p′

q′ = p·q′−p′·q
q·q′ and that O(m2) is an upper bound on the multiplication

of twom bit integers. There are more sophisticated algorithms for multiplication that
run in O(m logm log logm) time [19] and O(m logm2log

∗ m) time [8]. For simplicity,
we use the quadratic upper bound.



268 D. Basin, F. Klaedtke, and E. Zălinescu

Theorem 3. Let φ, γ̂, τ̄ , n, and Γ0, . . . , Γn−1 be as in Theorem 2. Executing the
sequence init•(φ), step•(φ, Γ0, τ0), . . . , step

•(φ, Γn−1, τn−1) requires O
(
m2 ·n·|φ|

)
time, where m = max

(
{||I|| | α SI β ∈ sf(φ)} ∪ {||τ0||, . . . , ||τn−1||}

)
.

4.2 An Interval-Based Monitoring Algorithm

Our monitoring algorithm for the interval-based semantics determines, for a
given family of signals γ̂ = (γp)p∈P , the truth value of a formula φ, for any τ ∈ T.
In other words, it determines the set γφ,γ̂ := {τ ∈ T | γ̂, τ |= φ}. We simply
write γφ instead of γφ,γ̂ when the family of signals γ̂ is clear from the context.
Similar to the point-based setting, the monitor incrementally receives the input γ̂
and incrementally outputs γφ, i.e., the input and output signals are split into
“chunks” by an infinite interval partition J̄ . Concretely, the input of the (i+1)st
iteration consists of the formula φ that is monitored, the interval Ji of J̄ , and the
family Δ̂i = (Δi,p)p∈P of sequences of intervals Δi,p = ııp1(γp ∩ Ji), for propo-
sitions p ∈ P . The output of the (i+ 1)st iteration is the sequence ııp1(γφ ∩ Ji).

Observe that the sequence ııp1(γp ∩ Ji) only consists of a finite number of
intervals since the signal γp satisfies the finite-variability condition and Ji is
bounded. Moreover, since γp is stable on every interval in ııp(γp) and an interval
has a finite representation, the sequence ııp1(γp∩Ji) finitely represents the signal
chunk γp ∩ Ji. Similar observations are valid for the signal chunk γφ ∩ Ji.

Each iteration is performed by the procedure step. To handle the since op-
erator efficiently, step maintains for each subformula ψ of the form ψ1 SI ψ2, a
(possibly empty) interval Kψ and a finite sequence of intervals Δψ. These global
variables are initialized by the procedure init and updated by the procedure
update. These three procedures are given in Figure 4 and are described next.

The procedure step computes the signal chunk γφ ∩ Ji recursively over the
formula structure. It utilizes the right-hand sides of the following equalities:

γp ∩ Ji =
⋃

K∈ııp1(γp∩Ji)
K (1)

γ¬φ′ ∩ Ji = Ji \
(⋃

K∈ııp1(γφ′∩Ji)
K
)

(2)

γφ1∧φ2 ∩ Ji =
⋃

K1∈ııp1(γφ1
∩Ji)

K2∈ııp1(γφ2
∩Ji)

(K1 ∩K2) (3)

γφ1SIφ2 ∩ Ji =
⋃

K1∈ııp1(γφ1
) with K1∩Ji �=∅

K2∈ııp1(γφ2
) with (K2⊕I)∩(J≥

i ) �=∅

((
(K2 ∩ +K1)⊕ I

)
∩K1 ∩ Ji

)
(4)

where +K := {
(K)} ∪K, for K ∈ I, i.e., making the interval K left-closed.
The equalities (1), (2), and (3) are obvious and their right-hand sides are

directly reflected in our pseudo-code. The case where φ is a proposition is
straightforward. For the case φ = ¬φ′, we use the procedure invert, shown in
Figure 5, to compute ııp1(γφ ∩ Ji) from Δ′ = ııp1(γφ′ ∩ Ji). This is done by
“complementing” Δ′ with respect to the interval Ji. For instance, the output
of invert

(
〈[1, 2] (3, 4)〉, [0, 10)

)
is 〈[0, 1) (2, 3] [4, 10)〉. For the case φ = φ1 ∧ φ2,

we use the procedure intersect, also shown in Figure 5, to compute ııp1(γφ ∩ Ji)
from Δ1 = ııp1(γφ1 ∩ Ji) and Δ2 = ııp1(γφ2 ∩ Ji). This procedure returns the



Algorithms for Monitoring Real-Time Properties 269

step(φ, Δ̂, J)
case φ = p

return Δp

case φ = ¬φ′

let Δ′ = step(φ′, Δ̂, J)

in return invert(Δ′, J)
case φ = φ1 ∧ φ2

let Δ1 = step(φ1, Δ̂, J)

Δ2 = step(φ2, Δ̂, J)
in return intersect(Δ1, Δ2)

case φ = φ1 SI φ2

let (Δ′
1, Δ

′
2) = update(φ, Δ̂, J)

in return merge(combine(Δ′
1, Δ

′
2, I, J))

init(φ)
for each ψ ∈ sf(φ) with ψ = ψ1 SI ψ2 do

Kψ := ∅
Δψ := 〈〉

update(φ, Δ̂, J)
let φ1 SI φ2 = φ

Δ1 = step(φ1, Δ̂, J)

Δ2 = step(φ2, Δ̂, J)

Δ′
1 = prepend(Kφ, Δ1)

Δ′
2 = concat(Δφ, Δ2)

in Kφ := if Δ′
1 = 〈〉 then ∅ else last(Δ′

1)

Δφ := drop(Δ′
2, I, J)

return (Δ′
1, Δ

′
2)

Fig. 4. Monitoring in an interval-based setting

cons(K,Δ)
if K = ∅ then

return Δ
else

return K :: Δ

invert(Δ, J)
case Δ = 〈〉

return 〈J〉
case Δ = K :: Δ′

return cons(J ∩ <K, invert(Δ′, J ∩ (K>)))

intersect(Δ1, Δ2)
if Δ1 = 〈〉 or Δ2 = 〈〉 then

return 〈〉
else

let K1 :: Δ′
1 = Δ1

K2 :: Δ′
2 = Δ2

in if K1 ∩ (K>
2 ) = ∅ then

return cons(K1 ∩ K2, intersect(Δ
′
1, Δ2))

else

return cons(K1 ∩ K2, intersect(Δ1, Δ
′
2))

Fig. 5. The auxiliary procedures for the Boolean connectives

sequence of intervals that have a non-empty intersection of two intervals in the
input sequences. The elements in the returned sequence are ordered increasingly.

The equality (4) for φ = φ1 SI φ2 is less obvious and using its right-hand side
for an implementation is also less straightforward since the intervals K1 and K2

are not restricted to occur in the current chunk Ji. Instead, they are intervals in
ııp1(γφ1) and ııp1(γφ2), respectively, with certain constraints.

Before giving further implementation details, we first show why equality (4)
holds. To prove the inclusion ⊆, assume τ ∈ γφ1SIφ2 ∩Ji. By the semantics of the
since operator, there is a τ2 ∈ γφ2 with τ−τ2 ∈ I and τ1 ∈ γφ1 , for all τ1 ∈ (τ2, τ ].

– Obviously, τ2 ∈ K2, for some K2 ∈ ııp1(γφ2). By taking the time constraint I

into account, K2 satisfies the constraint (K2⊕ I)∩ (J≥
i ) �= ∅. Note that even

the more restrictive constraint (K2⊕ I)∩ Ji �= ∅ holds. However, we employ
the weaker constraint in our implementation as it is useful for later iterations.

– Since ııp(γφ1) is the coarsest interval partition of γφ1 , there is an interval
K1 ∈ ııp1(γφ1) with (τ2, τ ] ⊆ K1. As τ ∈ Ji, the constraint K1∩Ji �= ∅ holds.

It follows that τ ∈ K1 and τ2 ∈ +K1, and thus τ2 ∈ K2 ∩ +K1. From τ − τ2 ∈ I,
we obtain that τ ∈ (K2 ∩ +K1) ⊕ I. Finally, since τ ∈ K1 ∩ Ji, we have that
τ ∈ ((K2 ∩ +K1)⊕ I) ∩K1 ∩ Ji. The other inclusion ⊇ can be shown similarly.
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prepend(K,Δ)
if K = ∅ then

return Δ
else

case Δ = 〈〉
return 〈K〉

case Δ = K′ :: Δ′

if adjacent(K,K′) or K ∩ K′ �= ∅ then

return K ∪K′ :: Δ′

else
return K :: Δ

combine(Δ′
1, Δ

′
2, I, J)

if Δ′
1 = 〈〉 or Δ′

2 = 〈〉 then return 〈〉
else

let K2 :: Δ′′
2 = Δ′

2
in if (K2 ⊕ I) ∩ J = ∅ then return 〈〉

else

let K1 :: Δ′′
1 = Δ′

1

Δ = if K>
2 ∩ +K1 = ∅ then

combine(Δ′′
1 , Δ′

2, I, J)
else

combine(Δ′
1, Δ

′′
2 , I, J)

in return (K2 ∩ +K1) ⊕ I) ∩ K1 ∩ J :: Δ

concat(Δ1, Δ2)
case Δ1 = 〈〉

return Δ2

case Δ1 = Δ′
1 ++ 〈K1〉

return Δ′
1 ++ prepend(K1, Δ2)

merge(Δ)
case Δ = 〈〉

return Δ

case Δ = K :: Δ′

return prepend(K,merge(Δ′))

drop(Δ′
2, I, J)

case Δ′
2 = 〈〉

return 〈〉
case Δ′

2 = K2 :: Δ′′
2

let K = (K2 ⊕ I) ∩ (J>)

in if K = ∅ then return drop(Δ′′
2 , I, J)

else return drop′(K,Δ′
2, I, J)

drop′(K,Δ′
2, I, J)

case Δ′
2 = 〈〉

return 〈K〉
case Δ′

2 = K2 :: Δ′′
2

let K′ = (K2 ⊕ I) ∩ (J>)

in if K ⊆ K′ then return drop′(K′, Δ′′
2 , I, J)

else return Δ′
2

Fig. 6. The auxiliary procedures for the since operator

For computing the signal chunk γφ1SIφ2 ∩ Ji, the procedure step first deter-
mines the subsequences Δ′

1 and Δ′
2 of ııp1(γφ1) and ııp1(γφ2) consisting of those

intervals K1 and K2 appearing in the equality (4), respectively. This is done
by the procedure update. Afterwards, step computes the sequence ııp1(γφ ∩ Ji)
from Δ′

1 and Δ′
2 by using the procedures combine and merge, given in Fig-

ure 6. We now explain how merge(combine(Δ′
1, Δ

′
2, I, J)) returns the sequence

ııp1(γφ1SIφ2 ∩ Ji). First, combine(Δ′
1, Δ

′
2, I, J) computes a sequence of intervals

whose union is γφ1SIφ2 ∩ Ji. It traverses the ordered sequences Δ′
1 and Δ′

2 and
adds the interval ((K2∩+K1)⊕I)∩K1∩Ji to the resulting ordered sequence, for
K1 in Δ′

1 and K2 in Δ′
2. The test K>

2 ∩ +K1 = ∅ determines in which sequence
(Δ′

1 or Δ′
2) we advance next: if the test succeeds then K ′

2∩+K1 = ∅ where K ′
2 is

the successor of K2 in Δ′
2, and hence we advance in Δ′

1. The sequence Δ′
2 is not

necessarily entirely traversed: when (K2⊕I)∩Ji = ∅, one need not inspect other
elements K ′

2 of the sequence Δ′
2, as then ((K ′

2 ∩ +K1) ⊕ I) ∩K1 ∩ Ji = ∅. The
elements in the sequence returned by the combine procedure might be empty, ad-
jacent, or overlapping. The merge procedure removes empty elements and merges
adjacent or overlapping intervals, i.e., it returns the sequence ııp1(γφ1SIφ2 ∩ Ji).

Finally, we explain the contents of the variables Kφ and Δφ and how they
are updated. We start with Kφ. At the (i + 1)st iteration, for some i ≥ 0, the
following invariant is satisfied by Kφ: before the update, the interval Kφ is the
last interval of ııp1(γφ1 ∩ ≤Ji−1) if i > 0 and this sequence is not empty, and
Kφ is the empty set otherwise. The interval Kφ is prepended to the sequence
ııp1(γφ1 ∩Ji) using the prepend procedure from Figure 6, which merges Kφ with
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the first interval of Δ1 = ııp1(γφ1 ∩ Ji) if these two intervals are adjacent. The
obtained sequence Δ′

1 is the maximal subsequence of ııp1(γφ1 ∩ ≤Ji) such that
K1 ∩ Ji �= ∅, for each interval K1 in Δ′

1. Thus, after the update, Kφ is the last
interval of ııp1(γφ1 ∩ ≤Ji) if this sequence is not empty, and Kφ is the empty
set otherwise. Hence the invariant on Kφ is preserved at the next iteration.

The following invariant is satisfied by Δφ at the (i + 1)st iteration: before
the update, the sequence Δφ is empty if i = 0, and otherwise, if i > 0, it
stores the intervals K2 in ııp1(γφ2 ∩ ≤Ji−1) with (K2 ⊕ I) ∩ (J>

i−1) �= ∅ and
(K2 ⊕ I) ∩ (J>

i−1) �⊆ (K ′
2 ⊕ I) ∩ (J>

i−1), where K ′
2 is the successor of K2 in

ııp1(γφ2 ∩ ≤Ji−1). The procedure concat concatenates the sequence Δφ with the
sequence Δ2 = ııp1(γφ2 ∩ Ji). Since the last interval of Δφ and the first interval
of Δ2 can be adjacent, concat might need to merge them. Thus, the obtained
sequence Δ′

2 is a subsequence of ııp1(γφ2 ∩≤Ji) such that (K2⊕I)∩(J≥
i ) �= ∅, for

each element K2. Note that J>
i−1 = J≥

i . The updated sequence Δφ is obtained
from Δ′

2 by removing the intervals K2 with (K2 ⊕ I) ∩ (J>
i ) = ∅, i.e., the

intervals that are irrelevant for later iterations. The procedure drop from Figure 6
removes these intervals. Moreover, if there are intervals K2 and K ′

2 in Δφ with
(K2 ⊕ I) ∩ (J>

i ) ⊆ (K ′
2 ⊕ I) ∩ (J>

i ) then only the interval that occurs later is
kept in Δφ. This is done by the procedure drop′. Thus, after the update, the
sequence Δφ stores the intervals K2 in ııp1(γφ2 ∩ ≤Ji) with (K2 ⊕ I) ∩ (J>

i ) �= ∅
and (K2 ⊕ I) ∩ (J>

i ) �⊆ (K ′
2 ⊕ I) ∩ (J>

i ), where K ′
2 is the successor of K2 in

ııp1(γφ2 ∩ ≤Ji). Hence the invariant on Δφ is preserved at the next iteration.

Theorem 4. Let φ be a formula, γ̂ = (γp)p∈P a family of signals, J̄ an infi-

nite interval partition, and n > 0. The procedure step(φ, Δ̂n−1, Jn−1) terminates
and returns the sequence ııp1(γφ ∩ Jn−1), whenever init(φ), step(φ, Δ̂0, J0), . . . ,

step(φ, Δ̂n−2, Jn−2) were called previously in this order, where Δ̂i = (Δi,p)p∈P

with Δi,p = ııp1(γp ∩ Ji), for i < n.

Finally, we analyze the monitor’s computational complexity. As in the point-
based setting, we take the representation size of elements of the time domain T

into account. The basic operations here in which elements of T are involved are
operations on intervals like checking emptiness (i.e. I = ∅), “extension” (e.g. I>),
and “shifting” (i.e. I ⊕ J). The representation size of the interval I ⊕ J is
in O(||I||+||J ||). The time to carry out the shift operation is in O(max{||I||, ||J ||}2).
All the other basic operations that return an interval do not increase the repre-
sentation size of the resulting interval with respect to the given intervals. How-
ever, the time complexity is quadratic in the representation size of the given
intervals whenever the operation needs to compare interval margins.

The following theorem establishes an upper bound on the time complexity of
our monitoring algorithm.

Theorem 5. Let φ, γ̂, J̄ , n, and Δ̂i be given as in Theorem 4. Executing the
sequence init(φ), step(φ, Δ̂0, J0), . . . , step(φ, Δ̂n−1, Jn−1) requires O

(
m2 · (n +

δ · |φ|) · |φ|3
)
time, where m = max

(
{||I|| | α SI β ∈ sf(φ)} ∪ {||J0||, . . . , ||Jn−1||} ∪⋃

p∈P {||K|| | K ∈ ııp1(γp ∩ (<Jn))}
)
and δ =

∑
p∈P ||γp ∩ (<Jn)||.
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We remark that the factor m2 · |φ|2 is due to the operations on the margins of
intervals. With the assumption that the representation of elements of the time
domain is constant, we obtain the upper bound O

(
(n+ δ · |φ|) · |φ|

)
.

4.3 Time Domains

The stated worst-case complexities of both monitoring algorithms take the rep-
resentation size of the elements in the time domain into account. In practice, it is
often reasonable to assume that these elements have a bounded representation,
since arbitrarily precise clocks do not exist. For example, for many applications it
suffices to represent time-stamps as Unix time, i.e., 32 or 64 bit signed integers.
The operations performed by our monitoring algorithms on the time domain
elements would then be carried out in constant time. However, a consequence
of this practically motivated assumption is that the time domain is discrete and
bounded rather than dense and unbounded.

For a discrete time domain, we must slightly modify the interval-based mon-
itoring algorithm, namely, the operator +K used in the equality (4) must be
redefined. In a discrete time domain, we extend K by one point in time to the
left if it exists, i.e., +K := K ∪ {k− 1 | k ∈ K and k > 0}. No modifications are
needed for the point-based algorithm. If we assume a discrete and unbounded
time domain, we still cannot assume that the operations on elements from the
time domain can be carried out in constant time. But multiplication is no longer
needed to compare elements in the time domain and thus the operations can be
carried in time linear in the representation size. The worst-case complexity of
both algorithms improves accordingly.

When assuming limited-precision clocks, which results in a discrete time do-
main, a so-called fictitious-clock semantics [2, 18] is often used. This seman-
tics formalizes, for example, that if the system event e happens strictly before
the event e′ but both events fall between two clock ticks, then we can distin-
guish them by temporal ordering, not by time. In a fictitious-clock semantics,
we time-stamp e and e′ with the same clock value and in a trace e appears
strictly before e′. For ordering e and e′ in a trace, signals must be synchronized.
Our point-based monitoring algorithm can directly be used for a fictitious-clock
semantics. It iteratively processes a sequence of snapshots 〈Γ0, Γ1, . . . 〉 together
with a sequence of time-stamps 〈τ0, τ1, . . . 〉, which is increasing but not nec-
essarily strictly increasing anymore. In contrast, our interval-based monitoring
algorithm does not directly carry over to a fictitious-clock semantics.

4.4 Comparison of the Monitoring Algorithms

In the following, we compare our two algorithms when monitoring a strongly
event-relativized formula φ. By Theorem 1, the point-based setting and the
interval-based setting coincide on this formula class.

First note that the input for the (i+1)th iteration of the point-based monitor-
ing algorithm can be easily obtained online from the given signals γ̂ = (γ)p∈S∪E .
Whenever an event occurs, we record the time τi ∈ T, determine the current
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truth values of the propositions, i.e., Γi = {p ∈ P | τi ∈ γp}, and invoke the
monitor by executing step•(φ, Γi, τi). The worst-case complexity of the point-
based monitoring algorithm of the first n iterations is O(m2 · n · |φ|

)
, where m

is according to Theorem 3.
When using the interval-based monitoring algorithm, we are more flexible in

that we need not invoke the monitoring algorithm whenever an event occurs.
Instead, we can freely split the signals into chunks. Let J̄ be a splitting in which
the n′th interval Jn′−1 is right-closed and r(Jn′−1) = τn−1. We have the worst-
case complexity of O

(
m′2 · (n′ + δ · |φ|) · |φ|3

)
, where m′ and δ are according to

Theorem 5. We can lower this upper bound, since the formula φ is strongly event-
relativized. Instead of the factor m′2 · |φ|2 for processing the interval margins in
the n′ iterations, we only have the factor m′2. The reason is that the margins
of the intervals in the signal chunks of subformulas of the form ψ1 SI ψ2 already
appear as interval margins in the input.

Note that m′ ≥ m and that δ is independent of n′. Under the assumption
that m′ = m, the upper bounds on the running times for different splittings
only differ by n′, i.e., how often we invoke the procedure step. The case where
n′ = 1 corresponds to the scenario where we use the monitoring algorithm offline
(up to time τn−1). The case where n′ = n corresponds to the case where we
invoke the monitor whenever an event occurs. Even when using the interval-
based monitoring algorithm offline and assuming constant representation of the
elements in T, the upper bounds differ by the factors n and δ · |φ|. Since δ ≥ n,
the upper bound of the point-based monitoring algorithm is lower. In fact, there
are examples showing that the gap between the running times matches our upper
bounds and that δ · |φ| can be significantly larger than n.

5 Related Work

We only discuss the monitoring algorithms most closely related to ours, namely,
those of Basin et al. [4], Thati and Roşu [20], and Nickovic and Maler [14, 15].

The point-based monitoring algorithms here simplify and optimize the mon-
itoring algorithm of Basin et al. [4] given for the future-bounded fragment of
metric first-order temporal logic. We restricted ourselves here to the proposi-
tional setting and to the past-only fragment of metric temporal logic to compare
the effect of different time models on monitoring.

Thati and Roşu [20] provide a monitoring algorithm for metric temporal logic
with a point-based semantics, which uses formula rewriting. Their algorithm is
more general than ours for the point-based setting since it handles past and
future operators. Their complexity analysis is based on the assumption that op-
erations involving elements from the time domain can be carried out in constant
time. The worst-case complexity of their algorithm on the past-only fragment is
worse than ours, since rewriting a formula can generate additional formulas. In
particular, their algorithm is not linear in the number of subformulas.

Nickovic and Maler’s [14, 15] monitoring algorithms are for the interval-based
setting and have ingredients similar to our algorithm for this setting. These in-
gredients were first presented by Nickovic and Maler for an offline version of their
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monitoring algorithms [13] for the fragment of interval metric temporal logic with
bounded future operators. Their setting is more general in that their signals are
continuous functions and not Boolean values for each point in time. Moreover,
their algorithms also handle bounded [15] and unbounded [14] future operators
by delaying the evaluation of subformulas. The algorithm in [14] slightly differs
from the one in [15]: [14] also handles past operators and before starting monitor-
ing, it rewrites the given formula to eliminate the temporal operators until and
since with timing constraints. The main difference to our algorithm is that Maler
and Nickovic do not provide algorithmic details for handling the Boolean con-
nectives and the temporal operators. In fact, the worst-case complexity, which
is only stated for their offline algorithm [13], seems to be too low even when
ignoring representation and complexity issues for elements of the time domain.

We are not aware of any work that compares different time models for runtime
verification. The surveys [2, 6, 16] on real-time logics focus on expressiveness,
satisfiability, and automatic verification of real-time systems. A comparison of a
point-based and interval-based time model for temporal databases with a discrete
time domain is given by Toman [21]. The work by Furia and Rossi [9] on sampling
and the work on digitization [11] by Henzinger et al. are orthogonal to our
comparison. These relate fragments of metric interval temporal logic with respect
to a discrete and a dense time domain.

6 Conclusions

We have presented, analyzed, and compared monitoring algorithms for real-time
logics with point-based and interval-based semantics. Our comparison provides a
detailed explanation of trade-offs between the different time models with respect
to monitoring. Moreover, we have presented a practically relevant fragment for
the interval-based setting by distinguishing between state variables and system
events, which can be more efficiently monitored in the point-based setting.

As future work, we plan to extend the monitoring algorithms to handle
bounded future operators. This includes analyzing their computational complex-
ities and comparing them experimentally. Another line of research is to establish
lower bounds for monitoring real-time logics. Thati and Roşu [20] give lower
bounds for future fragments of metric temporal logic including the next opera-
tor. However, we are not aware of any lower bounds for the past-only fragment.
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Abstract. Correct functioning of cyber-physical systems is of critical
importance. This is more so in the case of safety critical systems such
as in medical, automotive and many other applications. Since verifica-
tion of correctness, in general, is infeasible and testing is not exhaustive,
it is of critical importance to monitor such system during their oper-
ation and detect erroneous behaviors to be acted on. A distinguishing
property of cyber-physical systems is that they are described by a mix-
ture of integer-valued and real-valued variables. As a result, approaches
that assume countable number of states are not applicable for runtime
monitoring of such systems. This paper proposes a formalism, called Ex-
tended Hidden Markov systems, for specifying behavior of systems with
such hybrid state. Using measure theory, it exactly characterizes when
such systems are monitorable with respect to a given property. It also
presents monitoring algorithms and experimental results showing their
effectiveness.

1 Introduction

As traditional control systems are replaced by ever more powerful networks of
microprocessors, cyber-physical systems are becoming an integral part of modern
society. Their correct functioning is of paramount importance since a malfunction
can lead to a serious injury or a loss of life. Monitoring at run time and shutting
the system down safely in case of malfunctioning can thus provide a mechanism
for safe operation of such systems.

The monitor observes the inputs and outputs of the component and checks
whether the behavior of the system is consistent with the expected behavior.
The fundamental advantage of monitors is that they are in principle easy to
implement, and they are independent of the design procedures used to develop
a component. While wrong assumptions might lead to a faulty design, the mon-
itor is independent of design decisions and can therefore easily detect that the
component is failing to perform its function.

In our earlier works [10, 29], we addressed the problem of monitoring a system,
modeled as a Hidden Markov Chain (HMC) H , when the correctness specifica-
tion is given by a deterministic Streett automaton A on the outputs generated

� This research was supported in part by NSF grants IIS-0905593, CNS-0910988, CCF-
0916438 and CNS-1035914.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 276–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Runtime Monitoring of Stochastic Cyber-Physical Systems 277

by the system. In these works, we defined two measures, called Acceptance Ac-
curacy (AA) and Rejection Accuracy (RA) that capture the effectiveness of the
monitor. Here (1−AA) and (1−RA) give measures of false alarms and missed
alarms, respectively. Monitoring algorithms for achieving arbitrary high values
of accuracies were presented when H and A are finite state systems.

In a more recent paper [31], we considered the case of internal monitoring, i.e.,
when the property A to be monitored is specified on the states of the system and
when both the systemH and the automatonAmay have countably infinite num-
ber of states. In this setting, we defined a notion of monitorability, which states
that a system is monitorable with respect to a property if arbitrary high levels
of accuracy, close to one, can be achieved. We proved a fundamental theorem,
called monitorability theorem, that exactly characterizes when a system is mon-
itorable with respect to a property. The paper also gave monitoring algorithms
that achieve high accuracies for monitorable cases. We applied the algorithms to
systems modeled by probabilistic hybrid automata by approximating its hybrid
state space by a discrete state space through quantization.

In this paper, we consider Extended Hidden Markov Systems (EHMS), which
are like HMCs, but in which the state space is a hybrid state space. In these sys-
tems, the system variables and the output variables are partitioned into discrete
and continuous variables. We consider probability functions over such hybrid
state spaces. A probability function can be considered as a set of sub-probability
density functions on the continuous part of the state space where each density
function is indexed by a discrete part of the state. An EHMS is given by a next
state function and an output function that give the probability functions on the
next state and outputs, given the current state. We extend the monitorability
theorem to EHMSes. This extension is non-trivial, and relies on results from
measure theory, as we have to deal with continuous as well as discrete proba-
bility distributions. We present monitoring algorithms and experimental results
showing the effectiveness of our approach for a more complex version of the
example considered in [31].

In summary the main contributions of the paper are as follows: (1) an Ex-
tended Hidden Markov model for modeling cyber-physical systems, without dis-
cretization; (2) exact characterizations of systems that are monitorable with
respect to a property; (3) monitoring algorithms when the system and property
automata are specified by probabilistic hybrid automata; and (4) experimental
results showing the effectiveness of our approach.

2 Related Work

A wealth of literature is available for the modeling and control of hybrid systems
and we refer the reader to the overview articles [1, 5] and the books [20, 33]. In
these systems, safety requirements are described by a set of system states which
are permissible, or equivalently, by a set of system states that are forbidden.
A closely related problem is checking liveness properties, where in general we
require that a set of states is visited infinitely often. Formally, safety and liveness
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properties can be described using temporal logic [16, 18]. Safety and liveness
verification thus becomes a verification problem for a hybrid automaton modeling
the robotic system [12, 24]. It was shown that except for the simplest hybrid
automata this verification problem is undecidable [12].

A problem that has been extensively studied is monitoring and diagnosis of
hybrid automata [2, 3, 9, 13, 17, 19, 23, 34], where the aim is to detect when
the automaton enters a fail state so that the system can appropriately react.
Similar work has been done in the Artificial Intelligence community on failure
detection and recovery from failures using Hidden Markov models [27]. In most
cases, these works employ techniques that depend on the specific possible modes
of failure. Furthermore, even if such methods are employed, one still needs to
monitor the correct functioning of the overall system for correct functioning.
None of the above works addresses this general problem of monitoring system
behaviors against specifications given in an expressive formal system such as the
hybrid automata. Furthermore, they do not address the problem of monitoring
liveness properties.

An alternative to verification is to directly incorporate the safety requirements
into the design process itself so that no verification step is necessary [16, 18, 21].
These approaches are not yet able to adequately address systems with com-
plex continuous dynamics, nor can they deal with stochastic phenomena such as
sensor and actuator failures.

There has been much work done in the literature on monitoring violations
of safety properties in distributed systems, for example [4]. This work assumes
that it can fully observe the system state and it instruments the program with
commands to gather its state information and use it for monitoring. In contrast,
we assume that the system is not directly observable. A method for monitoring
and checking quantitative and probabilistic properties of real-time systems has
been given in [11, 28]. These works take specifications in a probabilistic temporal
logic (called CSL) and monitor for its satisfaction. The probabilities are deduced
from the repeated occurrence of events in a computation. The work presented in
[25] considers monitoring interfaces for faults using game-theoretic framework.
Run-time monitoring is used to verify that the interface has a winning strategy.
Conservative run time monitors were proposed in [22, 30]. In this scheme, one
identifies a safety property that implies the given property f (in general, f is
the intersection/conjunction of a safety and a liveness property). None of these
works is intended for monitoring of hybrid systems.

3 Definitions and Notation

Sequences. Let S be a set. Let σ = s0, s1, . . . be a possibly infinite sequence
over S. The length of σ, denoted as |σ|, is defined to be the number of elements
in σ if σ is finite, and ω otherwise. For any i ≥ 0, σ[0, i] denotes the prefix of
σ up to si. If α1 is a finite sequence and α2 is either a finite or an ω-sequence
then α1α2 denotes the concatenation of the two sequences in that order. We let
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S∗, Sω denote the set of finite sequences and the set of infinite sequences over
S. If C ⊆ Sω and α ∈ S∗ then αC denotes the set {αβ : β ∈ C}.
Safety Properties. For any σ ∈ Sω, let prefixes(σ) denote the set of prefixes
of σ and for any C ⊆ Sω, let prefixes(C) = ∪σ∈C(prefixes(σ)). We say that
C ⊆ Sω is a safety property if the following condition holds: for any σ ∈ Sω, if
prefixes(σ) ⊆ prefixes(C) then σ ∈ C. For any C ⊆ Sω, let closure(C) be the
smallest safety property such that C ⊆ closure(C).

Extended Hidden Markov systems. We assume that the reader is familiar
with basic probability theory, random variables and Markov chains. We consider
stochastic systems over discrete time with both discrete and continuous states.
Let R,N denote the set of real numbers and non-negative integers, respectively.
Throughout the paper, we will be using integrals over measurable functions
which are taken to be Lebesgue integrals (see [26] for definitions).

Let σ = (σ0, ..., σn−1) be a vector in {0, 1}n. For each such σ, we define the
hybrid domain Sσ = T0 × T1 × ...× Tn−1 where Ti = N or Ti = R depending
on whether σi = 0 or σi = 1, respectively. We define a class Dσ of measurable
subsets of Sσ as follows. Let I be the set of all values of i such that σi = 0 and J
be the set of all values of j such that σj = 1. Let n1, n2 be the cardinalities of I, J
respectively. Clearly n1 + n2 = n. For any s ∈ Sσ, let s|I and s|J ,respectively,
be the projections of s on to the coordinates in I and J . That is, s|I, s|J give
the values of discrete and continuous elements in s. For any a ∈ Nn1 and any
C ⊆ Rn2 , let Da,C = {s : s|I = a, s|J ∈ C}. Now, we define Dσ to be the
σ-algebra generated by the sets in {Da,C : a ∈ Nn1 , C ⊆ Rn2 is a Borelset}.
A function μ : Sσ → [0,∞) is called a probability function if it is a measurable
function and

∑
x∈Nn1

∫
Rn2

μ(x, x′)dx′ = 1, where x is a vector of n1 variables
ranging over N, and x′ is a vector of n2 variables ranging over R. Note that,
we first integrate over the continuous variables, keeping the discrete variables
constant, and then sum over all possible values for the discrete variables. Note
that, if σ has no 0s, i.e., Sσ = Rn, then μ will be the standard probability
density function. We say that μ is a sub probability function if it is a measurable
function and

∑
x∈Nn1

∫
Rn2

μ(x, x′)dx′ ≤ 1.
Let n1, n2,m1,m2 ≥ 0 be integers and σ1, σ2 be the vectors 0n11n2 and

0m11m2 , respectively. Intuitively, n1, n2 give the number of discrete and con-
tinuous state variables, while m1,m2 give the number of discrete and con-
tinuous outputs of the system being described. An Extended Hidden Markov
System (EHMS) H of dimensions (n1, n2,m1,m2), is a triple (f, g, μ) where
f : (Sσ1 × Sσ1) → [0,∞), g : (Sσ1 × Sσ2) → [0,∞) and μ are functions, sat-
isfying the following properties. Let x, y be sequences of n1 + n2 variables each
and z be a sequence of m1+m2 variables. The function f(x, y), called next state
function, is a probability function in the arguments in y; that is, for any appro-
priate fixed values for variables in x, f is a probability function on Sσ1 in the
argument y. Similarly g(x, z), called output function, is a probability function in
the arguments in z. Finally, μ is a probability function on Sσ1 .

Intuitively, the first set of arguments in f() and g() give the discrete and
continuous parts of the current state. In f() the last set of arguments give discrete
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and continuous parts of the next state, while in g() they give the discrete and
continuous parts of the output values.

For convenience, from here onwards, we let S denote Sσ1 and Σ denote Sσ2

which represent the set of possible system states and outputs respectively. Intu-
itively, H describes a dynamic stochastic system with n1, n2 discrete, continuous
state variables respectively, and with m1,m2 discrete,continuous output values
respectively. The state of such a system, at any instance of time, is given by a
value in S, denoting the values of the state variables. The outputs generated by
the system at any instance is given by an element in Σ denoting the values of
the m1 +m2 outputs. Essentially, given that the current state of the system is
given by x, f(x, y) denotes the probability density that the system is in state
given by y at the next time instance. Similarly, g(x, z) denotes the probability
function in variables in z denoting the probability that the system generates the
output values given by z. The function μ gives the probability distribution on
the initial state. Many times we write the function f() to be over four vectors of
variables, i.e., f(x, x′, y, y′) where x, x′ denote the discrete and continuous part
of the current state, and y, y′ denote the discrete and continuous parts of the
next state. Similar convention is followed for g() and μ() as well.

We consider an ω-sequence over S as a computation/trajectory of H . The
semantics of the EHMS H are given by three probability spaces (Sω, EH , φH),
(Σω,FH , ψH) and ((S ×Σ)ω,PH , ζH) defined as follows.

First, we define the following notation. Let n′, n′′ ≥ 0 be integers. For a
finite sequence a = (a0, ..., al−1) of elements from Nn′

and a finite sequence
C = (C0, C1, ..., Cl−1) of Borel subsets of Rn′′

, let E(a,C) be the set of all ω-
sequences (s0, ..., si, ...) of states in S0n′1n′′ such that si ∈ {ai} × Ci for 0 ≤
i < l. Note that, if a, C are empty sequences, i.e., sequences of length zero, then
E(a,C) = (S0n′1n′′ )ω. Note that Ea,C is well defined, for any n′, n′′ ≥ 0, if a, C
are of the same length.

Now, EH is the smallest σ-algebra which contains the class of sets {E(a,C) :

∃ l ≥ 0, a ∈ (Nn1)l and C is a finite sequences of Borel sets in Rn2 of length l}.
For any μ′, which is a probability function or is a sub-probability function, we

define a unique probability measure Θ(μ′) on EH such that for any a ∈ (Nn1)l,
and any finite sequence C = (C0, ..., Cl−1) of Borel sets in Rn2 ,

Θ(μ′)(E(a,C)) =

∫
C
μ′(a0, x0)(

∏
0≤i<l−1

f(ai, xi, ai+1, xi+1) dxi+1) dx0,

where the integral is taken over the region C in which variables in xi range over
the region Ci, for 0 ≤ i < l − 1. The probability measure φH is defined to be
Θ(μ).

The class FH is the smallest σ-algebra which contains the class of sets {E(b,C) :

∃ l ≥ 0, b ∈ (Nm1)l, C = (C0, ..., Cl−1) is a sequence of Borel sets in Rm2}. ψH

is the unique probability measure on FH such that

ψH(E(b,C)) =
∑

ai∈Nn1 ,i<l

∫
D

∫
C
μ(a0, x0)g(a0, x0, b0, y0)(

∏
0≤i<l−1

Fi dxi+1dyi+1) dx0dy0,
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where Fi = f(ai, xi, ai+1, xi+1)g(ai+1, xi+1, bi+1, yi+1), and C is the region in
which the variables in x0, ..., xl−1 range over Rn2 and D is the region where the
variables in y0, ..., yl−1 range over C0, ..., Cl−1, respectively.

For any l ≥ 0 and a ∈ (Nn1+m1)l and any finite sequence C = (C0, ..., Cl−1)
of Borel sets of Rn2+m2 , let Fa,C be the set of all ω-sequences in (S × Σ)ω of
the form ((s0, t0), ..., (si, ti), ...) such that, for i ≥ 0, si = (bi, ui), ti = (ci, vi)
where bi, ci are, respectively, the vectors consisting of the first n1 and the last
m1 elements of ai, and ui, vi are, respectively, the vectors consisting of the fist
n2 and the last m2 elements of a vector in Ci.

The class PH is the smallest σ-algebra which contains the class of sets {F(a,C) :

∃ l ≥ 0, a ∈ (Nn1+m1)l, C = (C0, ..., Cl−1) is a finite sequence of open sets in
Rn2+m2}. ζH is the unique probability measure on FH such that

ζH(F(a,C)) =

∫
C
μ(b0, x0)g(b0, x0, c0, y0)dx0dy0

∏
0≤i<l−1

Gi dxi+1dyi+1,

where Gi = f(bi, xi, bi+1, xi+1)g(bi+1, xi+1, ci+1, yi+1), and bi is the vector con-
sisting of the first n1 values and ci is the vector consisting of the last m1 values
of the vector ai and C is the region in which the n2 +m2 variables in xi and yi
range over Ci, for each i = 0, ..., l− 1.

For any s = (s0, s1, ...sn1+n2−1) ∈ S and t = (t0, t1, ...tm1+m2−1) ∈ Σ, let
s⊗ t denote the vector obtained by concatenating elements of s, t in that order.
For any u ∈ Sω and v ∈ Σω, given by u = (u0, ..., ui, ...) and v = (v0, ..., vi, ...),
let u ⊗ v denote the unique w = (w0, ..., wi, ...) where wi = ui ⊗ vi, for each
i ≥ 0. Now, for any X ⊆ Sω and Y ⊆ Σω, let X ⊗ Y = {u⊗ v : u ∈ X, v ∈ Y }.
Observe that X ⊗ Y ⊆ (S ×Σ)ω.

The following lemma is fairly straightforward to prove.

Lemma 1. If X ∈ EH and Y ∈ FH then X ⊗ Y ∈ PH .

Probabilistic Hybrid Automata. Probabilistic Hybrid Automata (PHA) were
defined in [13, 14]. They provide a convenient formalism for specifying systems.
A probabilistic hybrid automaton A is a tuple (Q, V,Δt, E , T , c0) where Q is
a countable set of discrete states (modes); V is a disjoint union of three sets
V1, V2 and V3 called the continuous state variables, output variables and noise
variables, respectively, that all take values in R; Δt is the sampling time; E is a
function that with each q ∈ Q associates a set E(q) of discrete-time state equa-
tions [8] describing the evolution of the continuous state (value of the variables
in V1) and the output (value of the variables in V2) at time t+Δt as functions of
the state at t and the noise variables1; T is a function that assigns to each q ∈ Q
a set of transitions (φ, p), where the guard φ is a measurable predicate over the
set of continuous (and possibly discrete) state variables and p is a probability
distribution over Q; and c0 is a pair giving the initial discrete state and an initial

1 Additional explicit discrete state variables can be added to the variables in V pro-
vided their update equations only involve deterministic functions of such discrete
state variables.
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continuous probability distribution on the variables in V1. We require that for
each q ∈ Q, the state equations in E(q) have noise variables on the right hand
side and that the set of guards on the transitions in T (q) be mutually exclusive
and exhaustive.

We next give the semantics of the PHA. Within each mode q, the evolution
of the PHA is given by the difference equations. When the guard φ of a tran-
sition (φ, p) ∈ T (q) becomes satisfied, a transition takes place from q to some
target mode q′ according to the probability distribution p. Since there are no
deterministic resets to variables in the transitions, it is quite easy to see that the
semantics of A can be given in terms of an EHMS system HA.

Monitors. We consider monitors that take outputs Σ, generated by a EHMC
H , as inputs and accept or reject them. Formally, a monitor M : Σ∗ → {0, 1} is
a function with the property that, for any α ∈ Σ∗, if M(α) = 0 then M(αβ) = 0
for every β ∈ Σ∗. For an α ∈ Σ∗, we say thatM rejects α, ifM(α) = 0, otherwise
we say M accepts α. Thus if M rejects α then it rejects all its extensions. For
an infinite sequence σ ∈ Σω, we say that M rejects σ iff there exists a prefix α
of σ that is rejected by M ; we say M accepts σ if it does not reject it. Let L(M)
denote the set of infinite sequences accepted by M . It is not difficult to see that
L(M) is a safety property. We require that L(M) is a measurable set, i.e., is in
FH .

It is to be noted that, in practice, a monitor is given as an algorithm that
takes a finite sequence of elements from Σ as input, and raises an alarm or
not. Here raising an alarm is considered as rejection. Associated with such an
algorithm, there is a monitor function as defined above. Note that such a function
is computable. Thus, for a monitor M to be feasible it has to be computable.

Accuracy Measures. Let H = (f, g, μ) be a EHMC over (n1, n2,m1,m2)-
dimensions. Let S,Σ be the states and outputs of H as defined earlier. Let
GOOD be a set in EH denoting a measurable set. We fix GOOD and call its
members as good computations of H . Let M : Σ∗ → {0, 1} be a monitor as given
above. The acceptance accuracy of M for GOOD with respect to H , denoted by
AA(M,H,GOOD), is defined to be the conditional probability that M accepts
the output generated by H given that the computation of H is in GOOD.
Formally, it is defined to be the value given by

AA(M,H,GOOD) =
ζH(GOOD ⊗ L(M))

ζH(GOOD ⊗Σω)
.

Note that ζH(GOOD ⊗ L(M)) denotes the probability that a computation in
GOOD generates an output in L(M), while ζH(GOOD⊗Σω) denotes the prob-
ability that the system generates a computation in GOOD. Also note that the
later value is same as φH(GOOD).

All computations that are not in GOOD are called bad and we denote this set
by BAD, i.e.,BAD = Sω−GOOD. The rejection accuracy ofM for GOOD with
respect to H , denoted by RA(M,H,GOOD), is defined to be the conditional
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probability that M rejects the output generated by a bad computation of H .
Formally, it is defined to be the value given by

RA(M,H,GOOD) =
ζH(BAD ⊗ (Σω − L(M)))

ζH(BAD ⊗Σω)
.

Note that the ζH(BAD ⊗ (Σω − L(M))) denotes the probability that a bad
computation is rejected by M , while ζH(BAD ⊗ Σω) denotes the probability
that the system generates a bad computation. Clearly, both the above accuracies
are defined only when 0 < φH(GOOD) < 1.

Monitorability. We say that a system H is monitorable with respect to GOOD
if for every x ∈ [0, 1) there exists a monitor M such that AA(M,H,GOOD) ≥ x
and RA(M,H,GOOD) ≥ x. In the next section, we give necessary and sufficient
conditions for these properties to be satisfied.

It is worth noting that monitorability, while related to the classical notion of
observability, is fundamentally different from it. It is not difficult to construct
cyber-physical systems that are not observable or even discrete-state observable
but are monitorable.

4 Monitorability

In this subsection, we give necessary and sufficient conditions for monitorability.
Let H = (f, g, μ) be the given EHMS over (n1, n2,m1,m2)-dimensions. Let
GOOD be a member of EH , i.e., is a measurable subset of Sω such that 0 <
φH(GOOD) < 1.

Consider an integer l > 0 and let O = (y0, ..., yl) denote a sequence of variables
denoting an output sequence of elements from Σm; each yi consists of m1 +
m2 variables corresponding to discrete as well as continuous outputs. Define a
function I(y0, ..., yl) as follows.

I(y0, ..., yl) =
∑∫

μ(u0, x
′
0)g(u0, x

′
0, y0)(

∏
0≤i<l

Fi dx
′
i+1)dx

′
0

where Fi = f(ui, x
′
i, ui+1, x

′
i+1)g(ui+1, x

′
i+1, yi+1).

In the above equation, ui, x
′
i denote n1 discrete state variables and n2 con-

tinuous state variables, respectively. The integration is over variables in x′
i, for

i = 0, ...,, where each such variable ranges over R. The summation is over all
discrete variables in ui, for i = 0, ..., l. Each such variable ranges over N.

Essentially, I(y0, ..., yl) defines a probability function, over (l+ 1)m1 discrete
variables and (l+1)m2 continuous variables, giving the probability of generation
of the output sequence O by all the computations of the system. Using the fact
that sums and products of measurable functions are also measurable, and using
Fubini’s theorem ( see [26]) we see that I(y0, ..., yl) is a measurable function.

Now, we define sub-probability function J(y0, ..., yl) for the probability of
generation of the output sequence O by computations of H that are in GOOD.
For any sequence α = (x0, ..., xl) of states of the system, let GOOD|α denote
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the set of all sequences β ∈ Sω such that αβ ∈ GOOD. For i = 0, ..., l, each
xi has n1 discrete and n2 continuous variables. Intuitively, GOOD|α is the set
of sequences obtained by dropping the prefix α from those sequences in GOOD
that have α as a prefix. It is easy to show that GOOD|α is a measurable set.
Now, let μ′

O,α(z) be a probability function on S defined by:

μ′
O,α(z) = μ(x0)(

∏
0≤i<l

g(xi, yi)f(xi, xi+1))g(xl, yl)f(xl, z)

Essentially, it gives the probability that the output sequence O is generated by
the sequence of states given by α followed by the state given by z. Note that, in
the above equation each xi has n1 discrete variables and n2 continuous variables.
Let UO(α) be the measure of the set GOOD|α defined by the initial probability
density function μ′

O,α, i.e., UO(α) = Θ(μ′
O,α)(GOOD|α). Now, define

J(y0, ..., yl) =
∑ ∫

UO(u0, x
′
0, ..., ul, x

′
l)dx0...dxl

In the above equation, for each i = 0, ..., l, each ui denotes n1 discrete variables
and each x′

i denotes n2 continuous variables. Furthermore, the integration is over
all variables in x′

i, for i = 0, ..., l, while the summation is over all variables in
ui, for i = 0, ..., l. Each continuous variable ranges over R, while each discrete
variable ranges overN. Notice that J(y0, ..., yl) is the probability function for the
probability of generation of outputs given by O by computations of the system
that are in GOOD. It should be easy to see that J(y0, ..., yl) ≤ I(y0, ..., yl) for
all appropriate values for variables in yi, i = 0, ..., l.

Lemma 2. GOOD|α is a measurable set and J(y0, ..., yl) is a measurable
function.

Let GoodProb(O) be the value defined by

GoodProb(O) =
J(y0, ..., yl)

I(y0, ..., yl)

Observe that GoodProb(O) ≤ 1. Essentially GoodProb(O) gives the conditional
probability that the computation of the system is good, i.e. in GOOD, given that
the output generated in the first l+1 states is given by O. It is not difficult to see
that GoodProb(y0, ..., yl) is a measurable function since I(y0, ..., yl), J(y0, ..., yl)
are measurable functions.

Recall that for any β ∈ Σω and integer i ≥ 0, β[0, i] denotes the
prefix of β of length i + 1. Now, let OneSeq(H,GOOD) be the set of
all β ∈ Σω such that limi→∞ GoodProb(β[0, i]) exists and it’s value is
1. Similarly, let ZeroSeq(H,GOOD) be the set of all β ∈ Σω such that
the above limit exists and is equal to 0. Let ZeroOneSeq(H,GOOD) =
OneSeq(H,GOOD)∪ZeroSeq(H,GOOD). The following lemma states that the
sets OneSeq(H,GOOD) and ZeroSeq(H,GOOD) are measurable. It also states
that the measure of the computations of H that generate output sequences in
OneSeq(H,GOOD) (sequences in ZeroSeq(H,GOOD)) and that are bad (that
are good) is zero.
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Lemma 3. The sets OneSeq(H,GOOD) and ZeroSeq(H,GOOD) are measur-
able (both are members of FH). Furthermore,

ζH(BAD ⊗OneSeq(H,GOOD)) = 0 and

ζH(GOOD ⊗ ZeroSeq(H,GOOD)) = 0.

The following monitorability theorem gives a necessary and sufficient condi-
tion for the monitorability of H with respect to GOOD and is a generaliza-
tion of the corresponding theorem for HMCs, i.e.,discrete state systems proved
in [31]. The theorem states that H is monitorable with respect to GOOD iff
with probability 1, any random infinite output sequence generated by H is in
ZeroOneSeq(H,GOOD).

Theorem 1. For any EHMS H and measurable set GOOD in EH , H is moni-
torable with respect to GOOD iff ψH(ZeroOneSeq(H,GOOD)) = 1.

Proof. Let H = (f, g, μ) be a EHMS of dimension (n1, n2,m1,m2) and GOOD
be a measurable set in EH . Assume thatH is monitorable with respect to GOOD.

Suppose that ψH(ZeroOneSeq(H,GOOD)) < 1. Let F = Σω −
ZeroOneSeq(H,GOOD). Clearly ψH(F ) > 0. Consider any β ∈ F . It should
be easy to see that for some u > 0, the following property (*) holds:
(*) For infinitely many values of i, GoodProb(β[0, i]) < (1 − 1

2u ) and for
infinitely many values of j, GoodProb(β[0, j]) > 1

2u

For each u > 0, define Fu to be the set of sequences β ∈ F such that u is the
smallest integer that satisfies (*). It is easy to see that the set {Fu : u > 0} is
a partition of F . It should also be easy to see that Fu ∈ FH , i.e., is measurable,
for each u > 0. Since ψH(F ) > 0, it follows that for some u > 0, ψH(Fu) > 0.
Fix such an u and let x = ψH(Fu). From property (*), it can be shown that for
any C ∈ FH , such that C ⊆ Fu and y = ψH(C) > 0, the following property
(**) holds:

(**) ζH(GOOD ⊗ C) ≥ y
2u and ζH(BAD ⊗ C) ≥ y

2u .

Now, consider any monitor M . Recall that L(M) is the set of infinite sequences
in Σω that are accepted by M . Further more, L(M) is a safety property and
is measurable, i.e., L(M) ∈ FH . Now, since x = ψH(Fu) and Fu = (Fu ∩
L(M)) ∪ (Fu − L(M)), it is the case that either ψH(Fu ∩ L(M)) ≥ x

2 or
ψH(Fu − L(M)) ≥ x

2 . In the former case, by taking C = Fu ∩ L(M) and
using property (**), we see that the measure of bad computations of the sys-
tem (i.e., those in BAD) that are accepted by the monitor is ≥ x

2u+1 and in
the later case, by taking C = (Fu − L(M)), the measure of good computa-
tions of the system (i.e., those that are in GOOD) that are rejected is ≥ x

2u+1 .
Now, let z = max{φH(GOOD), φH (BAD))}. From the above arguments, we
see that , for every monitor M , either RA(M,H,GOOD) ≤ 1 − x

z·2u+1 or
AA(M,H,GOOD) ≤ 1 − x

z·2u+1 . This contradicts our assumption that H is
monitorable with respect to A.
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Now, assume that ψH(ZeroOneSeq(H,GOOD)) = 1. Let z ∈ (0, 1). Let
Mz : Σ∗ → {0, 1} be a function such that for any α ∈ Σ∗, Mz(α) = 0 iff
there exists a prefix α′ of α such that GoodProb(α′) < 1 − z. Clearly Mz is
a monitor. When extended to infinite sequences Mz(β) = 0 for every β ∈
ZeroSeq(H,GOOD), i.e., it rejects all of them. The second part of Lemma 3
implies that ζH(GOOD ⊗ ZeroSeq(H,GOOD)) = 0, and it can further be
deduced that ζH(BAD⊗ZeroSeq(H,GOOD)) = 1. From these observations, it
follows that RA(Mz, H,GOOD) = 1. It should be easy to see that the measure
of good computations of H that are rejected by Mz is ≤ min{y, 1 − z} where

y = φH(GOOD). Therefore, AA(Mz , H,GOOD) ≥ 1− min{y,1−z}
y . Now, for any

given x ∈ (0, 1), we can chose a value of z such that AA(Mz , H,GOOD) ≥ x
and RA(Mz, H,GOOD) = 1. This implies that H is monitorable with respect
to GOOD. 
�

5 Monitoring Algorithms

In this section we describe how the formal methodology developed above can be
used in applications. We assume that the system to be monitored is specified by
a probabilistic hybrid automaton (PHA) [13, 14] as described in Sec. 3. Let the
system under consideration be specified by a PHA A. Recall that HA denotes
the EHMS capturing the behavior of A.
Property Automaton. We consider traditional deterministic Buchi automata
to specify properties over sequences of states of HA. We allow these automata
to have possibly infinite, but countable, number of states. It is well known that
the set of inputs accepted by a Buchi automaton P is a measurable set, i.e., is a
member of EHA . A safety automaton is a property automaton having a special
absorbing state called error state with all the other states being the accepting
states. The set of sequences accepted by a safety automaton is a safety property.

Product Automaton. In order to monitor whether the system specified by A
satisfies the property specified by P , we construct the product of A and P in a
natural way. This product is a hybrid automaton and we designate it by B. The
formal specification of B is left out due to space limitations. Each discrete state
of B is a pair (q, q′) where q is the discrete state of A and q′ is a state of P .
Essentially, B behaves like A and at the same time runs P on the sequence of
states of A. Observe that the outputs generated by A and B are same.

5.1 Monitoring Safety Properties

Let A be a system automaton, P be a safety property automaton specified on
A and B be the product hybrid automaton. Let GOOD be the set of all input
sequences accepted by P . Consider an infinite sequence α of outputs generated by
the EHMSHA. Recall that α[0, i] denotes the prefix of α of length i+1. For EHMS
HA, let ui = 1−GoodProb(α[0, i]) and vi be the probability that the EHMSHB
is in an error state given that α[0, i] is the sequence of outputs generated by it.
The following lemma shows that ui and vi converge to the same value.
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Lemma 4. For all i ≥ 0, vi ≤ ui and limi→∞ (vi) = limi→∞ (ui).

Assume that A is monitorable with respect to P . For any z > 0, let Mz be a
monitor that works as follows. On any infinite sequence α of outputs generated
by the system given by A and at instance of time i ≥ 0, Mz estimates the
probability vi using the product system B, and rejects if vi > z. Using the proof
of Theorem 1 and Lemma 4, we see that by increasing z arbitrarily close to 1,
we can get monitors whose accuracies are arbitrarily close to 1.

5.2 Liveness Monitoring

Now we give an approach for monitoring properties specified by liveness au-
tomata using the methods given in [22, 30]. Let P be a property automaton
which is a liveness automaton. We convert it into a safety automaton P ′ by us-
ing timeouts as follows. Let T be a large time constant. We modify P so that it
goes to a special error state qerror if it does not reach an accepting state with in
T steps initially, and also after each occurrence of an accepting state. It is fairly
straightforward to obtain such an automaton P ′. P ′ is a safety automaton. It is
fairly easy to show that any input sequence that is rejected by P is also rejected
by P ′; however P ′ rejects more input sequences. Thus, P ′ is an approximation
of P . Note that we get better approximations by choosing larger values of T .

We can also construct a safety automaton P ′ that is even a better approxi-
mation by increasing the time outs after each occurrence of an accepting state.
Let h be a monotonically increasing function from N+ to N+ where N+ is the
set of natural numbers. We construct P ′ which behaves like P except that it
goes to the errors state qerror if the next accepting state is not reached with in
h(i) steps after the ith occurrence of an accepting state, for each i ≥ 0. Such
an automaton can be defined using countable number of states or concisely us-
ing the hybrid automata formalism using discrete state variables. When h is a
constant function then we get constant time outs; when it is a linear function
we get linearly increasing time outs. By using functions h that start with high
initial values and that grow fast, we can get monitors with higher accuracies.

6 Example

Consider the operation of a train with electronically-controlled pneumatic (ECP)
brakes [7]. In this case, a braking signal is sent to each of the N cars (N = 5
for the simulations) of the train that subsequently engage their own brakes. We
consider the case when the braking systems of individual cars can fail. If this
happens to more than a given number of cars (2N/3 in our example) the train
might not be able to stop and it should start an emergency stopping procedure
(for example, engaging the brakes using the traditional pneumatic system). Fur-
thermore, when some of the brakes can fail, the links that connect the cars can
be subject to excessive levels of stress. To prevent possible damage to the links
we also want to trigger the emergency stopping procedure if any of the links are
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subject to a stress force above a safe threshold. We would thus like to develop
a monitor that can correctly trigger the emergency stopping procedure when ei-
ther the number of failed brakes is excessive, or when the braking pattern might
result in unsafe level of stress on links between the cars, allowing the train op-
erators to take the advantage of the superior braking performance of the ECP
while not sacrificing the safety of the train.

Velocity System

q
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Fig. 1. Velocity subsystem and measured outputs for the train with ECP brakes

Figure 1 describes how the train velocity v evolves. The train starts in the
discrete state qv = 1 and remains in that state until the velocity exceeds a
threshold VU = 28.5, when it switches to the discrete state qv = 2. The train
remains in the state qv = 2 until one of the brakes engages and it switches to state
qv = 3. The velocity in states qv = 2 and qv = 3 depends on the number of brakes
that have been engaged through the braking force term −

∑
j∈Engaged Fj , where

Fj is the braking force of car j and Engaged is the set of indeces of the cars whose
brakes are engaged. When all the brakes disengage, the velocity system switches
back to the state qv = 1. When in the state qv = 1, the train accelerates to a
constant velocity VC = 25 and oscillates around it with the amplitude 2.5. The
measured variables are the velocity v and the link forces Stress1 and Stress4. All
the measurements are corrupted by a measurement noise. It can be shown that
the link forces Stressi depend on the braking pattern but not on the velocity of
the train.

It is worth noting that the dynamics of the system (and thus statistical prop-
erties of output sequences) are different for qv = 1 and qv = 3. We assume that
the braking forces have the form Fj = κn + κpb

j for some appropriate constants
κn, κp and b (for simulations, κn = 11.7, κp = 9.6 and b = 1.2). These two
properties can be used to show that the system is monitorable. If the braking
forces were all equal, it is not difficult to see that it would not be possible to
determine the braking pattern from the measurements.

Figure 2 describes the operation of the braking system of each of the cars.
The braking system starts in the discrete state qb = 1 and remains in that state
until the velocity exceeds a threshold VU = 28.5, when it switches to the discrete
state qb = 2. The braking system remains in the state qb = 2 until the timer c1
reaches L1 = 1 (modeling delays in actuation and computational delays). Note
that the initial value of the timer c1 in the state qb = 2 is not deterministic, so
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Fig. 2. ECP braking subsystem of each car of the train

the duration of time the system remains in qb = 2 is a random variable. After
the timer reaches L1, the braking system can fail with a probability p = 0.1 and
permanently switch to qb = 3. With the probability p = 0.9 it either returns to
state qb = 1 if the velocity already fell below the threshold VL = 20, or switches
to qb = 4 and engages in braking sequence otherwise. When the brake engages
the variable i is increased by 1, thereby affecting the velocity of the train as
described above. When the velocity falls below VL = 20, the brake disengages
after a random amount of time (modeled by the timer c2 in the state qb = 5),
when it switches to the state qb = 1.

Since the braking system is defined for each car, the overall model of the
system is roughly a product of N copies of the braking system with the velocity
system. For N = 5, the number of discrete states of the resulting automaton
is more than 9000. Observe that if the system above is allowed to run forever
then all the breaks will eventually fail with probability one. To prevent this,
we assume that the brakes can only fail in the first τ units of time. To capture
this, we add an additional counter in the breaking subsystem that allows the
transition from qb = 2 to the qb = 3 only if this counter is less than τ ; this is not
shown in the figure. For the simulations, τ = 500.

The desired behavior of the train is given by the following specification: (1)
every time the train velocity increases beyond VU , the train should brake so that
the velocity decreases below VL; and (2) the link force Stressk for any link k
should never stay above the safe threshold Stressmax for more than T2 (T2 = 4
for simulations). The first property can be described by a liveness automaton
that can be converted to a safety automaton using a static time out T1 according
to the approach given in Section 5.2. For the simulations, the force threshold
was set to Stressmax = 30. Out of 32 possible braking patterns, 5 cause the link
force to exceed this threshold, however the forces that exceed the threshold are
not those that are directly measured.

State estimation. Let S be the system automaton and P the property au-
tomaton . We construct the product of S and P to obtain the product au-
tomaton S ×P . Using this product automaton and using the outputs generated
by the actual system, our Monitor M estimates the probability that the state



290 A.P. Sistla, M. Žefran, and Y. Feng

component of the property automaton P is the bad state. Thus, it becomes nec-
essary to estimate the probability that the property automaton P enters the bad
state. This can be achieved by propagating the belief (probability distribution
over the states of the product automaton) from the current state to the next
state, given the new observation [27]. A similar approach has been used in [35].
Particle filters were developed as a computationally efficient approximation of
the belief propagation [6, 15, 32]. They have been successfully applied in the
hybrid system community for state estimation [3, 17, 23, 34]. These methods
become impractical for realistic systems with high number of states and several
improvements have been suggested in recent years. It is also worth noting that
for particle filters, both estimation accuracy and time complexity increase with
the number of particles. The exact relationships depend on the structure of the
system and transition probabilities and are difficult to characterize. All these
issues are beyond the scope of the present paper.

Experimental results. As described in Section 4, the monitor M computes
the probability that the property automaton P is in a bad state and raises an
alarm when this probability surpasses a given threshold z. In order to evaluate
the performance of the monitor numerically, the system was run 500 times.
Particle filter was used to estimate the probability of each state of the product
automaton S × P . The number of particles for the particle filter was η = 2000.
The simulation was terminated when either an alarm was raised, or the discrete
time (number of steps the system has taken) reached Td = 700. As explained
above, the brakes can only fail during the first τ = 500 units of time. For each
run, the state of the property automaton was recorded, as well as the state of
the monitor. The acceptance and rejection accuracies, respectively, denoted by
AA(M,S,P) and RA(M,S,P) were computed according to:

AA(M,S,P) = ga
ga + gr

RA(M,S,P) = br
ba + br

,

where ga (resp., gr) is the number of good runs that were accepted (resp., re-
jected), and br (resp., ba) is the number of bad runs that were rejected (resp.,
accepted). Note that gr corresponds to the number of false alarms, and ba to the
number of missed alarms; accuracies approach 1 as these numbers approach 0.
A run was considered good if the state of the property automaton at Td = 700
was not an error state, and bad otherwise.

An example of the monitor performance for T1 = 30 and different values of
the threshold probability z is shown in Table 1a. In general, if z increases the
number of false alarms (gr) decreases while the number of missed alarms (ba)
increases as it becomes more difficult for the particle filter to estimate that the
property automaton entered the fail state with such a high probability.

Table 1b shows accuracy measures of the monitor for different values of the
probability threshold z and time out value T1. As z increases the acceptance
accuracy in general increases and the rejection accuracy decreases. The reason
for this is that as z increases, the estimate of the probability that the state of
the property automaton P is bad must be higher before the monitor raises an
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Table 1. Monitor performance for different values of z and T1 (500 runs)

(a) Monitor outcomes for T1 =
30.

z
T1 = 30

ga gr ba br RA AA

0.050 313 76 7 104 0.937 0.805
0.100 313 75 7 105 0.938 0.807
0.300 314 73 7 106 0.938 0.811
0.500 314 72 8 106 0.930 0.813
0.750 314 72 8 106 0.930 0.813
0.875 315 70 8 107 0.930 0.818
0.950 315 70 8 107 0.930 0.818

(b) Monitor accuracies. The last two columns
assume correct braking mode estimation (67%
of the runs).

z
T1 = 30 T1 = 60 T1 = 80 T1 = 80∗

RA AA RA AA RA AA RA AA

0.050 0.937 0.805 0.853 0.824 0.838 0.845 0.982 0.978
0.100 0.938 0.807 0.853 0.826 0.838 0.845 0.982 0.978
0.300 0.938 0.811 0.853 0.826 0.838 0.847 0.982 0.982
0.500 0.930 0.813 0.853 0.828 0.838 0.847 0.982 0.982
0.750 0.930 0.813 0.840 0.828 0.838 0.847 0.982 0.982
0.875 0.930 0.818 0.840 0.828 0.838 0.847 0.982 0.982
0.950 0.930 0.818 0.840 0.828 0.838 0.847 0.982 0.982

alarm. Clearly for z1 < z2, if the monitor with the threshold z2 would raise an
alarm so would the monitor with the threshold z1, while the reverse is not true.
So with lower z, the probability that a false alarm is declared is higher. Similar
argument applies to rejection accuracy. On the other hand, for our example this
effect is not that pronounced since the particle filter quickly converges to either
zero probability or probability one for the braking pattern. This is because the
link force measurements strongly correlate with the braking pattern.

Recall that T1 is the time out used to (conservatively) approximate a liveness
property with a safety property. As T1 increases, the acceptance accuracy for
monitoring the liveness property (and therefore overall acceptance accuracy)
increases. The rejection accuracy decreases since we run the experiment for a
finite time and the estimator does not have enough time to converge to the
correct value of the state.

Due to the high number of possible discrete states, particle filter faces the
problem of particle depletion [32]. In fact, in our experiments the particle filter
only correctly estimated the braking pattern in 67% of the cases. The last two
columns in Table 1b thus show monitor performance when only these runs are
considered; it is clearly much improved.

It is worth noting that while Theorem 1 provides necessary and sufficient
conditions for monitorability, in order for the monitor to be implementable, the
system also needs to allow robust state estimation. When state estimation can
not be performed reliably, a system designer might use additional sensors that
provide more information about the system and thus better state estimation.

7 Conclusion

In this paper, we introduced Extended Hidden Markov Systems as models for
cyber physical systems and considered the monitoring problem for them. This
model does not discretize continuous variables. We exactly characterized when
such systems are monitorable. We presented highly accurate monitoring algo-
rithms when the system is specified by probabilistic hybrid automata and when
it is monitorable with respect to the given property.
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The monitors have been implemented for an automotive example using parti-
cle filters as state estimators. Experimental results showing the effectiveness of
our approach are presented.

We used certain class of probabilistic hybrid automata for specifying systems.
However, we required such automata should not contain resets of continuous
variables on transitions. Removing this restriction, will be part of future work.
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Abstract. In this paper, we investigate formalisms for specifying periodic sig-
nals using time and frequency domain specifications along with algorithms for
the signal recognition and generation problems for such specifications. The time
domain specifications are in the form of hybrid automata whose continuous state
variables generate the desired signals. The frequency domain specifications take
the form of an “envelope” that constrains the possible power spectra of the pe-
riodic signals with a given frequency cutoff. The combination of time and fre-
quency domain specifications yields mixed-domain specifications that constrain
a signal to belong to the intersection of the both specifications.

We show that the signal recognition problem for periodic signals specified by
hybrid automata is NP-complete, while the corresponding problem for frequency
domain specifications can be approximated to any desired degree by linear pro-
grams, which can be solved in polynomial time. The signal generation problem
for time and frequency domain specifications can be encoded into linear arith-
metic constraints that can be solved using existing SMT solvers. We present some
preliminary results based on an implementation that uses the SMT solver Z3 to
tackle the signal generation problems.

1 Introduction

The combination of time and frequency domain specifications often arises in the de-
sign of analog or mixed signal circuits [16], digital signal processing systems [20] and
control systems [3]. Circuits such as filters and modulators often specify time-domain
requirements on the input signal. Common examples of time domain specifications in-
clude setup time and hold time requirements for flip-flops, the slew rate for clocks and
bounds on the duty cycle for pulse width modulators [16]. Likewise, the behavior of
many components are also specified in terms of their frequency responses. Such re-
quirements concern the effect of a subsystem on the various frequency components of
a input signal. The problem of combining these specification styles is therefore of great
interest, especially in the runtime verification setting.
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In this paper, we study models for specifying real-valued periodic signals using
mixed-domain specifications. Such specifications combine commonly used automata-
theoretic models that can specify the characteristics of a signal over time with frequency-
domain specifications that constrain the distribution of amplitude (or the power) of the
sinusoidal components over some range of frequencies. Given such a mixed-domain
specification, we consider the signal recognition and generation problems. The signal
generation problem seeks test cases for an analog or a mixed-signal circuit from its input
specifications. Since specifications are often non-deterministic, an exhaustive genera-
tor explores all the possible cases encoded in the specification by generating a set of
representative signals. Likewise, the signal recognition or monitoring problem decides
whether a given signal conforms to specifications.

In this paper, we present an encoding that reduces both problems to constraints in lin-
ear arithmetic. While such an encoding is easily obtained time domain specifications, a
naive encoding of the frequency domain constraints yields a system of non-linear con-
straints that are hard to solve. We demonstrate how such non-linear constraints can be
systematically approximated to arbitrary precision using constraints from linear arith-
metic. Finally, we present some preliminary results on a prototype implementation of
our technique that uses the SMT solver Z3 to solve the resulting constraints [5]. Ow-
ing to space restrictions, we have omitted some of the finer details including proofs of
key lemmas. An extended version containing proofs along with supplementary material
containing the source code and models for our experiments are available upon request.

Related Work. Automata, especially timed and hybrid automata, are quite natural for-
malisms for specifying the behavior of signals over time [1,12]. Likewise, the study
of Fourier transforms and power spectra of signals forms the basis for specifying ana-
log and mixed signal systems [20]. The problem of matching observations to runs for
timed and hybrid automata was studied by Alur et al. [2]. Whereas Alur et al. study the
problem of matching a trace consisting of a set of events generated by discrete transi-
tions, the traces here are partial observations over the run, sampled discretely. Therefore,
while the timestamp generation problem is shown to be polynomial time by Alur et al.,
its analog in our setting is NP-complete.

Monitoring algorithms for discrete-time Boolean valued signals have been well-
studied [26,13,10,9,7]. Such specifications can capture Boolean abstractions of discrete-
time signals sampled over the output signals generated by hybrid/embedded systems.
An off-line algorithm for temporal logic analysis of continuous-time signals was pro-
posed by Nickovic et al. [15] and extended to an on-line algorithm [19]. Thati et al. [26]
and Kristoffersen et al. [13] presented algorithms for monitoring timed temporal logics
over timed state sequences. While fragments temporal logics and a restricted class of
automata are well known to be efficiently monitorable, it is not easy to express proper-
ties of oscillators such as periodicity, rise times, duty cycles and bounds on derivatives
in these fragments without introducing extraneous constraints or quantifiers. Fainekos
et al. [6], considered the problem of monitoring continuous-time temporal logic prop-
erties of a signal based solely on discrete-time analysis of its sampling points. Tan
et al. [24,25] consider hybrid automaton specifications for synthesizing monitors for
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embedded systems, wherein the monitor’s execution is synchronized with the model of
the system during run-time. Specification and verification of the periodicity of oscilla-
tors has been considered by Frehse et al. [8] and Steinhorst et al.[23].

On the other hand, specification formalisms for frequency domain properties of sys-
tems have not received as much attention. Hedrich et al. [11] study the problem of
verifying frequency domain properties of systems with uncertain parameters. Our en-
coding for frequency domain specifications is similar to techniques used in regression,
wherein the goal is to find a function from a given family that best fits a given set of
points, wherein the “best fit” can be defined as the sum of the distances between the
data points and the function under some norm. The connection between regression and
optimization is discussed in many standard textbooks on convex optimization [4].

2 Signals and Automata

Let R denote the set of real numbers. A signal f(t) is a function f : R �→ R. A signal
is periodic iff there is a time period T > 0 such that for all t ≥ 0, f(t + T ) = f(t).
Let Σ represent the set of all signals f : R �→ R. Note that in most applications, the
domain of a signal is the continuous time domain t ∈ R≥0. Let τ = 〈t0, t1, . . . , tk〉 be
some set of time instants such that 0 ≤ t0 < t1 . . . < tk. A sample of a signal f at the
time instants τ is given by f(τ ) = 〈f(t0), f(t1), . . . , f(tk)〉.

Hybrid Automaton: Our discussion will focus mostly on hybrid automata with dynam-
ics specified by rectangular differential inclusions.

Definition 1 (Linear Hybrid Automata). A Linear Hybrid Automaton H consists of
a tuple 〈Q,x, T ,D, I, q0, Θ〉:

1. Q is a finite set of discrete modes,
2. x is a vector of finitely many continuous system variables.
3. T is a set of discrete transitions. Each transition τ ∈ T is a tuple τ : 〈s, t, ρτ 〉

where s, t ∈ Q are the pre- and the post-modes respectively and ρτ [x,x
′] is a

transition relation that relates the current value of x with the next state values x′.
4. D maps each q ∈ Q to a rectangular differential inclusion �(q) ≤ dx

dt ≤ u(q).
5. I maps each mode q ∈ Q to a mode invariant set I(q).
6. q0 is the start state and Θ is a logical assertion over x that specifies the initial

conditions for the continuous variables.

A state of the hybrid automaton is a pair (s,x) consisting of a discrete mode s ∈ Q
and a continuous state x ∈ I(q). The semantics of a hybrid automaton are defined in
terms of runs. In this paper, we will describe periodic signals by means of finite runs of
a hybrid system.

Definition 2 (Runs). A finite run of a linear hybrid automaton H is a finite sequence
of states and actions: σ : (s0,x0)

a1−→ (s1,x1)
a2−→ (s2,x2)

a3−→ · · · aN−−→ (sN ,xN ),
wherein each action ai is of the form τ for some discrete transition or (tick(δi), fi), for
some time interval δi ≥ 0 and function fi : [0, δi) �→ Rn, such that:



Combining Time and Frequency Domain Specifications for Periodic Signals 297

high
V ∈ [4.5, 5.5]

−.6 ≤ dV
dt

≤ .6
dT
dt

= 1

highToLow
V ∈ [−5.5, 5.5]

−8 ≤ dV
dt

≤ −6.3
dT
dt

= 1

lowToHigh
V ∈ [−5.5, 5.5]

5 ≤ dV
dt

≤ 7.5
dT
dt

= 1

low
V ∈ [−5.5,−4.5]

−.6 ≤ dV
dt

≤ .6
dT
dt

= 1

v ≤ 4.6

true

v ≥ −4.6

true

Fig. 1. Hybrid automaton model for example signal specification

– If action ai is a discrete transition τi then τi must be of the form 〈si−1, si, ρi〉 (i.e,
the transition must take us from state si−1 to state si) and (xi−1,xi) |= ρi, i.e., the
continuous variables change according to the transition relation.

– If ai is a “tick” of the form (tick(δi), fi), wherein si = si−1 (i.e., no mode change
can occur). The function fi : [0, δi] �→ Rn is a continuous and piecewise differ-
entiable function such that: (1) fi(0) = xi, fi(δi) = xi+1, (2) fi(t) satisfies the
mode invariant I(si) for all t ∈ [0, δ), and (3) dfi

dt ∈ [�(si), u(si)] at all instances
t ∈ [0, δ) where fi is differentiable.

Example 1. Consider the following signal specification for a square wave generator:
(1) The signal has two stable phases: high (5 ± 0.5V ) or low (−5 ± 0.5V ). (2) If the
signal transitions from one phase to another, the value of v at the start of the transition
must be in the range [−4.6, 4.6]. (3) The signal remains a minimum of 0.5 seconds in
each mode. (4) The rate of signal rise during transition from low to high lies within
[5, 7.5]V/s. (5) The rate of signal fall during transition from high to low lies within
[−6.3,−8]V/s. (6) In any stable phase, the rate of change lies between [−.6, .6]V/s.

Figure 1 shows a hybrid automaton that specifies the signal. The modes high and low
specify the stable phases for the signal. Similarly, the modes highToLow and lowToHigh
represent the transitions.

3 Periodic Signals in Time Domain

We will now explore the use of hybrid automata with piecewise constant dynamics to
specify periodic signals. We will observe that the problem of checking if a sampled
signal can be generated by some run of a hybrid automaton is NP-Complete. In fact,
the problem of checking if a given path through the automaton generates the samples
of a given signal is itself NP-complete. As a result, barring restrictions, linear hybrid
automata by themselves are too rich a formalism for use in monitoring of signals. There-
after, we focus on signal generation, presenting techniques for generating runs using a
systematic exploration of the state-space of the automaton using LP solvers.

We augment the basic hybrid automaton by designating a set of modes as final modes
and an output function y = f(x) that specifies the output signal as a function of the
continuous state variables. Additionally, we require that the runs of the automaton σ :
(x0, s0)→ (x1, s1)→ · · · → (xN , sN ), satisfy the following constraints:
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0 TT1 T2 · · · Tm

τ1 τ2 τm

x0 x1 x′
1 x2 x′

2 xm x′
m xm+1

s0 s1
sm

Fig. 2. Run Encoding along a path π with transitions τ1, . . . , τm

Constraints Remarks
Θ[x0] Initial condition
f(x0) = f(xm+1) Periodicity of the trace∧m

i=1 Ti − Ti−1 ≥ δmin Minimum Dwell Time.∧m
k=1

(
�(sk)(Tk+1 − Tk) ≤ (xk+1 − x′

k)
(xk+1 − x′

k ≤ u(sk)(Tk+1 − Tk)

)
x′

k reachable from xk in mode sk∧m
k=1

[Isk−1(xk) ∧ Isk(x
′
k)
]

Invariants for mode sk

Fig. 3. Constraints encoding the existence of a run along a path. Note: The guards, invariant sets,
initial conditions of H are convex polyhedra. The function f is affine.

1. There is a minimum dwell time δmin for each mode such that whenever a run enters
a mode q, it will remain in that mode for time at least δmin before taking a transition.

2. The terminal mode sN ∈ F .
3. The initial state (s0,x0) and the terminal state (sN ,xN ) yield the same output

f(x0) = f(xN ), so that the signal is periodic.

The minimum dwell time requirement seems quite natural for signal specifications, and
furthermore, it considerably simplifies the complexity of signal membership checking
and generation problems that we will discuss subsequently (also Cf. [2]). As a result of
the requirements above, the output y(t) obtained on any finite run of the automaton can
be thought of as constituting a single period of the signal. Repeating this output with
time shifted yields the overall periodic signal.

Definition 3 (Time Domain Periodic Signal Specification). A time domain period
signal specification consists of a hybrid automatonH with a set of final modes F ⊆ Q,
an output function y = f(x) and a minimum dwell time δmin.

3.1 Run Encoding

Let 〈H, F, f, δmin〉 be a hybrid automaton for a signal specification. Consider a syntac-
tic path through π : s0

τ1−→ s1
τ2−→ · · · sm−1

τm−−→ sm such that s0 is initial, sm ∈ F

and m ≤
⌊

T
δmin

⌋
. We wish to encode the (possibly empty) set of runs that yield a peri-

odic signal of time period T along the path π in terms of a linear program (LP) ΨT,π.
We describe the variables that will be used in our encoding, as depicted in Figure 2. (A)
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0 TT1 T2 · · · Tm

τ1 τ2 τm

x0 x1 x′
1 x2 x′

2 xm x′
m xm+1

s0 s1
sm

y0 y1

δs

y2

2δs

y3

3δs

y4

4δs

y5

5δs

yN−1

(N − 1)δs

yN

Nδs

Fig. 4. Encoding membership of a sampled trace

T1, . . . , Tm represent the transition times. We add two constants T0 = 0 and Tm+1 = T
to denote the start and end times of the trace, respectively. (B) x0 and xm+1 denote the
initial and terminal values for continuous variables. (C) x1,x

′
1, . . . ,xm,x′

m encode
the continuous states before and after each of the m discrete transitions. The overall
encoding is a conjunction of linear inequalities as described in Figure 3. This encoding
is similar to the timestamp generation encoding provided by Alur et al. [2].

Note that the encoding yields a linear program ΨT,π, assuming that all transition
relations, mode invariants are polyhedral and the output function f is affine. Note that
models of ΨT,π , if they exist, do not fully specify a run of the hybrid automaton. A run
σ ofH corresponds to a model (x0,x

′
1, T1,x1, . . . ,x

′
m, Tm,xm,xm+1) of ΨT,π if the

initial, terminal states, switching times and states before/after the discrete transitions of
σ coincide with those specified by the model.

Theorem 1. The encoding of a run ΨT,π is a linear assertion such that (a) each model
of ΨT,π corresponds to a run σ of duration T , and (b) conversely, every run σ of dura-
tion T along the path π corresponds to a model of ΨT,π .

3.2 Testing Membership

We first consider the problem of deciding signal membership given N samples of pe-
riodic signal g(t) with time period T , sampled at some fixed rate δs = T

N for a single
time period. Let g0, . . . , gN−1 be the signal values at times 0, δs, . . . , (N − 1)δs, re-
spectively. Since the signal is periodic, we have gN = g(Nδs) = g0. We assume that
δs the sampling time, is strictly less than δmin, the minimum dwell time.

We use the following strategy to search for a run σ of the hybrid automaton H that
coincides with the samples of g(t).

1. Explore paths from s0 to a final state sm ∈ F explicitly 1.
2. For each path π with transitions τ1, . . . , τm, we encode the existence of a run along

the path using ΨT,π, and
3. We conjoin ΨT,π with a formula Γπ,g that encodes that the samples g0, . . . , gN−1

conform to the run encoded in Ψ .

We encode the unknown continuous state at time t = iδs by variable yi. The encoding
for Γπ,g will contain the following clauses:

1 This search can also be encoded implicitly as a SAT formula.
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Continuous State and Output: The signal value gi at t = iδs, i ∈ [0, N ] must corre-
spond to the continuous state: f(yi) = gi.

Mode change rule: If a discrete transition happens between time ((i − 1)δs, iδs) then
xj is reachable from yi−1 and likewise, yi is reachable from x′

j .

m∧
i,j=1

[
(i − 1)δs ≤ Tj∧

Tj < iδs

]
⇒

[
(iδs − Tj)�(sj) ≤ (yi − x′

j) ≤ u(sj)(iδs − Tj) ∧
(Tj − (i − 1)δs)�(sj−1) ≤ (xj − yi−1) ≤ u(sj−1)(Tj − (i − 1)δs)

]

On the other hand, if no mode change happens in the interval [(i − 1)δs, iδs) then the
mode at time iδs is the same as that at time (i + 1)δs. Furthermore, it is possible to
reach the state yi from yi−1 by evolving according to the dynamics at this mode:

N∧
i=1

m∧
j=1

[(
Tj < (i − 1)δs ∧
Tj+1 ≥ iδs

)]
⇒

[
δs�(sj) ≤ (yi − yi−1) ≤ δsu(sj)

]
Simplifying the Encoding: The encoding presented above can be simplified consider-
ably by noting the minimum dwell time requirement on the runs. As a result of this
requirement, we may deduce that the switching time for the jth transition Tj must lie
in the range [jδmin, T − (m + 1 − j)δmin], wherein δmin is the minimum dwell time.
As a result, some of the antecedents of the implications for the mode change rule are
always false. This allows us to reduce the size of the encoding, in practice.

Let g0, . . . , gN−1 be the signal samples at times 0, δs, 2δs, . . . , (N − 1)δs, wherein
we assume that δs is smaller than the minimum dwell time. Let us assume that Γg,π is
the formula obtained over variables x0, . . . ,xm+1, y0, . . . ,yN , T1, . . . , Tm using the
encoding presented in this section.

Theorem 2. The samples g0, . . . , gN−1 of a periodic signal with sample time δs <
δmin are generated by some run of the hybrid automaton H if and only if the linear
arithmetic formula Γπ ∧ ΨT,π is satisfiable for some path π from an initial mode s0 to
a final mode sm ∈ F with m ≤

⌊
T
δ

⌋
discrete transitions.

Given samples g0, . . . , gN of a signal, the algorithm thus far searches for a path π, a se-
quence of switching times and values of continuous states x0, . . . ,xm+1, y0, . . . ,yN

by solving a linear arithmetic formula using a SMT solver. Naturally, it is worth asking
if there is an efficient algorithm for signal recognition using hybrid automata. We show
that this is unlikely by proving the NP-completeness of the signal recognition prob-
lem. We observe the following surprising result for the seemingly simply problem of
deciding if a given feasible path π can yield a run generating the samples g0, . . . , gN .

Theorem 3. Let g0, . . . , gN be samples of a periodic signal g(t) and π be a path from
initial to final mode in H. Deciding if the given samples are generated by some run of
along path π is NP-complete.

Membership in NP is clear from the SMT encoding to a linear arithmetic formula which
can be solved by a non-deterministic polynomial time TM coupled with a LP solver
which operates in polynomial time. The proof of NP-hardness is by reduction from
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CNF-SAT problem and is presented in an extended version of this paper available upon
request. Our results show that significant restrictions are required on the linear hybrid
automaton model to make it suitable for signal monitoring. For instance, such restric-
tions have to go beyond simply restricting the number of paths from the initial to the
final mode.

3.3 Signal Generation

We will now consider the problem of generating signals at random from a given hybrid
automaton specification. The signal generator explores all the paths in the hybrid au-
tomaton up to a depth bound. For each path π, the set of signals form a convex set given
by the convex polyhedron ΨT,π (Cf. Section 3.1). The notion of sampling uniformly at
random from a convex set is defined rigorously in most standard textbooks [21]. Our
generator samples a fixed number of solutions uniformly at random.

1. Systematically explore paths of length m ≤
⌊
T
δ

⌋
from initial to a final mode.

2. For each path π, encode the formula ΨT,π to generate switching times and contin-
uous state values xi,x

′
i before and after transitions (Cf. Section 3.1).

3. Extract solutions uniformly at random from ΨT,π.
4. For each solution, generate sampled signals according the dynamics of each mode.

Extracting Random Solutions from Linear Programs

As shown in Section 3.1, let ΨT,π be the LP correspond-

yi

v

yi + lv

yi + uv

yi+1

Fig. 5. Hit-and-run sampling

ing to a path π over variables (x0,x1,x
′
1, . . . , T1, . . . , Tm)

that we shall collectively refer to as y. We assume that
Ψ is feasible. Our goal is to extract solutions at random
from the polyhedron that represents all feasible solutions
of Ψ . This is achieved by a simple Monte-Carlo sampling
scheme known as hit-and-run sampling [21]. Let y0 be
some feasible point in Ψ obtained by using a LP solver.
At each step, we generate a new solution yi+1, at ran-
dom, from the current sample yi (Cf. Fig. 5):

(1) Choose a random unit vector v uniformly. A simple
scheme is to generate a vector h whose entries are uni-
form random numbers in [0, 1] and compute v = 1

||h||2h.
(2) Discover the interval [l, u], such that ∀λ ∈ [l, u], yi+λv ∈ [[Ψ ]]. In other words, v
yields a line segment containing the point x along the directions±v and [l, u] represent
the minimum and maximum offsets possible along the direction v starting from yi.
Since [[Ψ ]] is a polyhedron, bounds [l, u] may be obtained by simply by substituting
x �→ yi +λv in each inequality wherein λ is an unknown. This yields upper and lower
bounds on λ.
(3) Finally, we choose a value λ ∈ [l, u] uniformly at random. The new solution sample
is yi+1 = yi + λv.

The analysis of this scheme and proof of convergence to the uniform distribution
follows from the theory of Markov Chain Monte Carlo sampling [21,22]. However,
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Fig. 6. Periodic signals generated for the automaton in Example 1

care must be taken to ensure that the polyhedron Ψ is not skewed along some direction
r. In the worst case, we may imagine Ψ as a straight line segment. In such cases, it is
essential to ensure that random unit vectors at each step belong to any subspace that Ψ
itself is contained in. Finally, the scheme works best if the initial point y0 is an interior
point. Lovasz et al. [14] analyze the convergence of hit-and-run samplers for generating
uniformly distributed points belonging to a convex set.

From Switching Times To Sampled Signal

Thus far, we have presented a scheme for encoding runs by means of a linear pro-
gram ΨT,π and choosing solutions at random efficiently from the polyhedron represent-
ing Ψ by means of hit-and-run samplers. The next step is to construct signal samples
g0, . . . , gN−1 given the switching times T1, . . . , Tm, the continuous states x0, xm+1

at the beginning and end of the run, and the continuous states xj ,x
′
j before and after

transition τj , respectively.
Let δs be the sampling time. We will first generate the continuous state values

y0, . . . ,yN corresponding to the samples and thereafter, compute gi = f(yi).
From the switching times, it is known that all samples in the time interval (Tj , Tj+1)

will belong to the mode sj (Cf. Figure 2). Our goal is to generate values yi, . . . ,yi+k

that lie between these time intervals, to ensure that (A) yi is reachable from x′
j in time

iδs − Tj evolving according to the mode sj ; (B) yi+l for 1 ≤ l ≤ k is reachable from
yi+l−1 in time δs; and (C) xj+1 is reachable from yi+k .

Once again, these requirements can be encoded as a linear program since the dy-
namics at mode sj and the number of samples in the interval (Tj, Tj+1) are all known.
We may then use hit-and-run sampler to choose values for the continuous variables
yi, . . . ,yi+k and thereafter, the signal samples by applying the function f .

Example 2. Consider the signal in Example 1. We will designate the state high as both
the start and the end states. Figure 6 plots two signals that were generated using the
models obtained for two paths π1, π2 of lengths 4 and 8 going around the cycle once
and twice, respectively. For each path, we generate one solution for the switching times
and one set of samples.

4 Frequency Domain Specifications

We will now consider the specification of periodic signals in the frequency domain by
specifying constraints on its power spectrum. Let g(t) be a continuous signal with time



Combining Time and Frequency Domain Specifications for Periodic Signals 303

period T > 0. Its unique frequency domain representation can be derived by its Fourier
series representation:

g(t) = a0 +
∞∑
k=1

(
ak sin

(
2kπt

T

)
+ bk cos

(
2kπt

T

))
The coefficient a0 represents D.C component of the signal and coefficients ak, bk rep-
resent the amplitude variable for the components at frequency f = k

T = kf0. We will
term f0 = 1

T as the fundamental frequency. The amplitude at frequency fk = kf0 is
given by

√
a2k + b2k.

Let G : [0, fmax] �→ R≥0 be a function mapping each frequency f ∈ [0, fmax] to a
non-negative number G(f). We assume that G is a computable function so that G(f)
can be computed for any given f to arbitrary precision. The function G along with the
maximum frequency fmax are said to form a power spectral envelope. Consider periodic
signal g(t) with fundamental frequency f0 and Fourier coefficients a0, a1, b1, . . . , an, bn.

Definition 4 (Membership in Power Spectral Envelope). The signal g belongs to the
power spectral envelope 〈fmax, G〉, defined by G : [0, fmax] �→ R≥0 if and only if:

1. The amplitudes vanish for all frequency components in (fmax,∞): ∀ k ∈ N, (k ·
f0 > fmax) ⇒ ak = bk = 0.

2. The amplitudes for all frequency components in (0, fmax] are bounded by G(f):

∀ k ∈ N, 0 < kf0 < fmax ⇒
√
a2k + b2k ≤ G(kf0) .

In other words, the possible values of ak, bk lie inside a circle of radius G(kf0)
centered at (0, 0).

3. The D.C component is bounded by G(0), i.e, −G(0) ≤ a0 ≤ G(0).

In many situations, we are interested in signals being approximated within some tol-
erance limit by a signal that belongs to a given power spectral envelope 〈fmax, G〉.
Therefore, we define membership with ε-tolerance for some ε ≥ 0.

Definition 5 (Membership with ε-tolerance). A signal s(t) satisfies 〈fmax, G〉 with
a tolerance ε ≥ 0 iff s has a time period T and there exists a signal g that satisfies
the frequency domain specification 〈fmax, G〉 such that the distance between s and g is
bounded by ε, i.e, (∀ t ∈ [0, T ]), |s(t)− g(t)| ≤ ε.

Let δs be a sampling time period. We say that s(t) satisfies to a specification with a

sample tolerance of ε iff |s(kδs)− g(kδs)| ≤ ε, ∀ k ∈ [0,
⌊

T
δs

⌋
].

It is possible to relate continuous time tolerance to sample tolerance, provided absolute
bounds may be placed on the derivatives of the signals s and g.

Theorem 4. Let s, g be two signals with sample distance of ε and sample time δs. Let
|dsdt | ≤ Ds and |dgdt | ≤ Dg. For all t ≥ 0, |g(t)− s(t)| ≤ ε + δs

2 (Ds +Dg).

A proof is provided in the extended version. Likewise, we prove that any signal belong-
ing to a frequency domain specification 〈fmax, G〉 has absolute bounds on its derivative.
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ak

bk

r

Fig. 7. Relaxations and restrictions of amplitude constraint by polyhedral constraints

Theorem 5. The derivative of a signal s with time period T > 0, whose Fourier series
representation belongs to 〈fmax, G〉, is bounded:∣∣∣∣dsdt

∣∣∣∣ ≤ πGmaxfmax(1 + Tfmax) , where Gmax = sup0≤f≤fmax
G(f) .

Example 3. Consider the function G(f) =

⎧⎨⎩
1 + 8f f ∈ [0, 0.5]
7− 4f f ∈ [0.5, 1]
0 f > 1

. We specify the set

of all periodic signals whose time periods are in the range T ∈ [5, 100] seconds, be-
longing to the envelope 〈1Hz,G〉 with a tolerance of 0.01.

4.1 Encoding Membership

Let g be some periodic signal with time period T > 0, sampled with time period δ > 0.
We represent s in terms of its N = T

δ samples g0, g1, . . . , gN−1 wherein gk = g(kδ).
The sampling frequency 1

δ is assumed to be at least 2fmax, the Nyquist limit to enable
reconstruction of the original signal from its samples [20]. We wish to ascertain whether
g belongs to a given power spectral envelope 〈fmax, G〉, with a given sample tolerance
of ε ≥ 0. Membership is encoded in terms of linear inequality constraints over the
unknown coefficients of the Fourier series representation of the signal g(t).

Let f0 = 1
T be the fundamental frequency. We will assume that f0 < fmax (other-

wise, membership is trivial). Let m =
⌊
fmax

f0

⌋
represent the total number of potentially

non-zero frequency components. We introduce the variables a0, a1, . . . , bm. The encod-
ing consists of the following constraints:

Sample Tolerance: We encode that at each time instant t = jδ, where 0 ≤ j < N , sj
is approximated by the Fourier series:

N−1∧
j=0

−ε ≤
(
gj −

m∑
k=1

[ak sin(2πkf0jδ) + bk cos(2πkf0jδ)]− a0

)
≤ ε .

Note that since j and δ are known, the values of the trigonometric terms can be com-
puted to arbitrary precision. As a result, the constraints above are linear inequalities
over the unknowns a0, a1, b1, . . . , bm.
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Table 1. Running times for signal generation benchmarks with various sets of time periods and
sampling times. Legend: #M: # discrete modes, #Tr: # transitions, #Samp: # samples per period,
TP: Time Period, #FC: Fourier Coefficients, Time: Signal generation time (Seconds), #Path:
Paths explored, #Sat: satisfiable paths.

Name Time Freq. Time Domain Only Time + Freq Domain
#M #Tr #Samp TP #FC Time #Path #Sat Time #Path #Sat

SquareWave 4 4 10 10 7 0 5 1 0.2 5 1
15 15 13 .2 7 2 30 7 0
20 20 13 .5 10 3 1300 10 0

PulseWidth 6 8 10 10 7 .7 10 8 6.9 10 8
15 15 11 8.7 15 13 391 15 7
20 20 13 71.5 20 15 - T/O -

Sq+SawtoothWave 8 12 10 10 21 2.7 255 127 4.9 255 40
15 15 31 149 8191 4095 1097 8191 32
20 20 41 6349 262143 131071 - T/O -

RoomHeater 5 6 40 76 - 136 38 4 - n/a -

D.C. Component: We encode requirements on a0, −G(0) ≤ a0 ≤ G(0)

Amplitude Constraint: For each k ∈ [1,m], we wish to encode
√
a2k + b2k ≤ G(kf0).

However, such a constraint is clearly non-linear. We present linear approximations of
this constraints such that if any solution can be found for the linear restriction, then the
solution satisfies the amplitude constraint above.

Geometrically, the constraint
√
a2k + b2k ≤ G(kf0) encodes that the feasible values

of (ak, bk) belong to the circle centered at origin of radius G(kf0) (see Figure 7). Let
P (r) be a polygon that under-approximates the circle of radius r centered at the ori-
gin, and Q(r) be a polygon that over-approximates the unit circle. It is well-known 2

that such polygons can approximate the circle to any desired accuracy. Therefore, we
may restrict the constraint above by linear constraints (ak, bk) ∈ P (G(kf0)), or re-
lax it by linear constraints (ak, bk) ∈ Q(G(kf0)). The overall encoding yields a linear
program by conjoining the constraints above. The under approximate encoding is given
by choosing (ak, bk) ∈ P (rk), wherein rk = G(kf0), whereas the over approximate
encoding is given by choosing the constraints (ak, bk) ∈ Q(rk).

Signal Recognition: Given a power spectral envelope 〈fmax, G〉, a time period T and
signal samples g0, . . . , gN−1 with timestep δ, let Uε(fmax, G, T, g, δ) be the restricted
system and Oε(fmax, G, T, g, δ) represent the relaxed constraints.

Theorem 6. If Uε is satisfiable then the signal g(t) belongs to 〈fmax, G〉 with sample
tolerance ε. If Oε is unsatisfiable, then the signal g(t) does not belong to 〈fmax, G〉 with
sample tolerance ε.

2 Going back to the Greek mathematician Archimedes and the ancient Egyptians before him!
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Signal Generation: Signal generation uses the same encoding (Oε, Uε) with
g0, . . . , gN−1 as unknown variables as opposed to known samples of a signal. Once
again, the hit-and-run sampling scheme used for choosing solutions at random can be
employed to generate multiple samples.

Mixed Domain Specifications The problem of signal recognition can be solved by con-
sidering signal membership individually, in the time and frequency domains.

The encodings presented can be combined to generate signals. Let us assume that
we are interested in generating a signal g(t) with a fixed time period T . We choose
some fixed sampling interface δs, satisfying the Nyquist sampling criteria such that
δs < 1

2fmax
. Let gi, i ∈ [0, N − 1] denote the unknown signal sample to be generated

at time iδs. Once again, we generate the encodings ΨT,π along paths π to generate
switching times and states before/after switching (Cf. Section 3.1). Next we generate
LP Γg,π that encodes the time domain correspondence of the signal samples w.r.t the run
along path π (Cf. Section 3.2). The sampled values from ΨT,π are used to simplify Γg,π.
The overall signal samples are generated by picking solutions from the LP Γg,π ∧ Uε

using a hit-and-run sampler.

5 Experiments

We will now report on our implementation, as a preliminary proof-of-concept for the
ideas in this paper and some initial experimental results using these ideas.

Implementation: Our implementation reads in a hybrid automaton specification along
with a frequency domain specification. The envelope function G is specified by pairs
fj, G(fj) for a finite set of frequencies fj . The value of G(f) for f ∈ (fj , fj+1) is
computed by linear interpolation. Our implementation first searches over paths in the
hybrid automaton from the initial to the final states, constructing the LP ΨT,π for each
path. If this is found to be feasible, our approach constructs a SMT formula Γ that
encodes the existence of a signal sample corresponding to π. Currently, our approach
uses Yices to obtain a single solution. Once such a solution is obtained, we may use the
hit-and-run sampler to obtain other solutions. In fact, this process does not need further
calls to the solver. The alternative and potentially less expensive strategy of fixing a set
of switching times by sampling from ΨT,π and checking the conjunction of the time
and frequency domain constraints remains to be implemented. The resulting samples
are printed out in a suitable format that can be loaded into an environment such as
Matlab. The encoding used in our implementation supports signal recognition as well.

We collected a set of benchmarks for commonly used specifications of various wave-
forms that are used in circuits including square waves that are commonly used to clock
digital circuits (Cf. Example 1), sawtooth waves that are used in video monitors, the
specification of a pulse-width modulator (PWM) waveform and a specification of an
external disturbance temperature signal for testing the room heating benchmark avail-
able in Simulink/Stateflow(tm).

Pulse-Width Modulator Waveform: Figure 8 shows time domain and frequency domain
specifications for signals generated by a PWM waveform. The waveform consists of a
square pulse represented by v that alternates between on and off. An associated signal x
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START

v̇ = ẋ = 0
ṫ = ˙td = 0

ON

td ∈ [0, 8],
v ∈ [4, 5]
v̇ ∈ [−.1, .1]
ṫ = ˙td = 1
ẋ = 1

ON-TO-OFF

t ∈ [0, .5],
v ∈ [.5, 4]
v̇ ∈ [−10, −7]
ṫ = 1, ˙td = 0
ẋ = 0

FINISH

td ∈ [5, 8]
v̇ = ẋ = 0
ṫ = ˙td = 0

OFF

td ∈ [0, 8],
v ∈ [.5, 4]
v̇ ∈ [−.1, .1]
ṫ = 1, ˙td = 0
ẋ = −1

OFF-TO-ON

v ∈ [0.5, 4],
t ∈ [0, .5]
v̇ ∈ [7, 10]
ṫ = 1, ˙td = 0
ẋ = 0

t := 0

td := 0

td := 0

t := 0

t := 0

t := 0
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Fig. 8. PWM signal time + frequency domain specification along with generated signals
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Fig. 9. Some signals generated for the PWM specification in Figure 8. The time domain samples
(blue) and the frequency domain samples (red) are overlaid on each other.

rises whenever the v is high and falls when v is low. In effect, x represents the waveform
v by a sequence of 1s and 0s represented by v. We add two requirements (a) the % of
time period v must be high (also known as the duty cycle) must be between 50%−80%,
and (b) the waveform v must belong to one of the two power-spectral envelopes shown
in Fig. 8(right). Note that while the former is a time domain constraint on v, the latter is
a frequency domain constraint on x. Fig 9 shows some of the waveforms output by our
implementation. The sample tolerance between time and frequency domain signals was
specified to be 0.1 and the sampling rate was chosen to be roughly 2.5fmax (slightly
larger than the Nyquist rate).

Table 1 shows some of the results obtained by running the benchmark examples.
Three of the examples have frequency domain specifications while the room heating
benchmark had no frequency domain part. Overall, the benchmarks show that it is
possible to exhaustively explore relatively small time domain specifications to obtain
sample signals. Nevertheless, the complexity of exploration using SMT solvers is quite
sensitive to the sampling rate. The addition of frequency domain constraints increases
the complexity of these specifications many-fold. We believe that the handling of large
floating point coefficients using exact arithmetic in tools such as Yices and Z3 is a bot-
tleneck for frequency domain constraints and also to a limited extent for time domain
constraints. A new generation of SMT solvers that combine the efficiency of floating
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point solvers with exact arithmetic solvers to guarantee the results may hold promise
for tackling these constraints [17]. We are currently implementing strategies that avoid
the use of SMT solvers by first fixing the transition timings by sampling from ΨT,π and
then finding if signal samples exist.

6 Conclusion

The overall goal of this paper was to explore the very first steps towards combining
time domain and frequency domain specifications for mixed signal and DSP systems.
In the future, we wish to consider restrictions of the time domain specifications for
efficient monitoring. The generation of non-periodic signals by specifying the shape of
their Fourier transforms is a natural next step. The results in this paper will be integrated
into our ongoing work on Monte Carlo Methods for falsification of safety properties for
hybrid systems [18].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126(2), 183–235 (1994)
2. Alur, R., Kurshan, R.P., Viswanathan, M.: Membership questions for timed and hybrid au-

tomata. In: RTSS 1998, pp. 254–264. IEEE (1998)
3. Åstrom, K., Murray, R.M.: Feedback Systems: An Introduction for Engineers and Scientists.

Princeton University Press (2005)
4. Boyd, S., Vandenberghe, S.: Convex Optimization. Cambridge University Press (2004),

http://www.stanford.edu/˜boyd/cvxbook.html
5. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.

(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
6. Fainekos, G.E., Pappas, G.J.: Robustness of temporal logic specifications for continuous-time

signals. Theoretical Computer Science 410(42), 4262–4291 (2009)
7. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata. Form. Methods

Syst. Des. 24, 101–127 (2004)
8. Frehse, G., Krogh, B.H., Rutenbar, R.A., Maler, O.: Time domain verification of oscillator

circuit properties. Electron. Notes Theor. Comput. Sci. 153, 9–22 (2006)
9. Geilen, M.: On the construction of monitors for temporal logic properties. In: Proceedings

of the 1st Workshop on Runtime Verification. ENTCS, vol. 55, pp. 181–199 (2001)
10. Havelund, K., Rosu, G.: Monitoring programs using rewriting. In: Proceedings of the 16th

IEEE International Conference on Automated Software Engineering (2001)
11. Hedrich, L., Barke, E.: A formal approach to verification of linear analog circuits with pa-

rameter tolerances. In: Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), pp. 649–655. IEEE Computer Society, Washington, DC (1998)

12. Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE (1996)
13. Kristoffersen, K.J., Pedersen, C., Andersen, H.R.: Runtime verification of timed LTL using

disjunctive normalized equation systems. In: Proceedings of the 3rd Workshop on Run-time
Verification. ENTCS, vol. 89, pp. 1–16 (2003)

14. Lovasz, L.: Hit-and-run is fast and run. Mathematical Programming 86, 443–461 (1999)
15. Maler, O., Nickovic, D.: Monitoring Temporal Properties of Continuous Signals. In:

Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp.
152–166. Springer, Heidelberg (2004)

http://www.stanford.edu/~boyd/cvxbook.html


Combining Time and Frequency Domain Specifications for Periodic Signals 309

16. Millman, J., Halkias, C.C.: Electronic Devices and Circuits. McGraw-Hill Inc. (1967)
17. Monniaux, D.: On Using Floating-Point Computations to Help an Exact Linear Arithmetic

Decision Procedure. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp.
570–583. Springer, Heidelberg (2009)

18. Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., Pappas, G.J.:
Monte-carlo techniques for falsification of temporal properties of non-linear hybrid systems.
In: Proceedings of the 13th ACM International Conference on Hybrid Systems: Computation
and Control, pp. 211–220 (2010)

19. Nickovic, D., Maler, O.: AMT: A Property-Based Monitoring Tool for Analog Systems.
In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 304–319.
Springer, Heidelberg (2007)

20. Oppenheim, A.V., Schafer, R.W.: Digital Signal Processing. Prentice Hall (1975)
21. Rubinstein, R.Y., Kroese, D.P.: Simulation and the Monte Carlo Method. Wiley Series in

Probability and Mathematical Statistics (2008)
22. Smith, R.L.: The hit-and-run sampler: a globally reaching markov chain sampler for gener-

ating arbitrary multivariate distributions. In: Proceedings of the 28th Conference on Winter
Simulation, pp. 260–264. IEEE Computer Society (1996)

23. Steinhorst, S., Hedrich, L.: Model checking of analog systems using an analog specification
language. In: Proceedings of the Conference on Design, Automation and Test in Europe,
DATE 2008, pp. 324–329. ACM, New York (2008)

24. Tan, L., Kim, J., Lee, I.: Testing and monitoring model-based generated program. In: Pro-
ceedings of the 3rd Workshop on Run-time Verification. ENTCS, vol. 89, pp. 1–21 (2003)

25. Tan, L., Kim, J., Sokolsky, O., Lee, I.: Model-based testing and monitoring for hybrid em-
bedded systems. In: Proceedings of the 2004 IEEE International Conference on Information
Reuse and Integration, pp. 487–492 (2004)

26. Thati, P., Rosu, G.: Monitoring algorithms for metric temporal logic specifications. In: Run-
time Verification. ENTCS, vol. 113, pp. 145–162. Elsevier (2005)



Runtime Verification for Ultra-Critical Systems

Lee Pike1, Sebastian Niller2, and Nis Wegmann3

1 Galois, Inc.
leepike@galois.com

2 National Institute of Aerospace
sebastian.niller@nianet.org

3 University of Copenhagen
wegmann@diku.dk

Abstract. Runtime verification (RV) is a natural fit for ultra-critical
systems, where correctness is imperative. In ultra-critical systems, even
if the software is fault-free, because of the inherent unreliability of com-
modity hardware and the adversity of operational environments, process-
ing units (and their hosted software) are replicated, and fault-tolerant
algorithms are used to compare the outputs. We investigate both software
monitoring in distributed fault-tolerant systems, as well as implementing
fault-tolerance mechanisms using RV techniques. We describe the Copi-
lot language and compiler, specifically designed for generating monitors
for distributed, hard real-time systems, and we describe a case study in
a Byzantine fault-tolerant airspeed sensor system.

1 Introduction

One in a billion, or 10−9, is the prescribed safety margin of a catastrophic fault
occurring in the avionics of a civil aircraft [1]. The justification for the require-
ment is essentially that for reasonable estimates for the size of an aircraft fleet,
the number of hours of operation per aircraft in its lifetime, and the number of
critical aircraft subsystems, a 10−9 probability of failure per hour ensures that
the overall probability of failure for the aircraft fleet is “sufficiently small.” Let us
call systems with reliability requirements on this order ultra-critical and those
that meet the requirements ultra-reliable. Similar reliability metrics might be
claimed for other safety-critical systems, like nuclear reactor shutdown systems
or railway switching systems.

Neither formal verification nor testing can ensure system reliability. Contem-
porary ultra-critical systems may contain millions of lines of code; the functional
correctness of approximately ten thousand lines of code represents the state-of-
the-art [2]. Nearly 20 years ago, Butler and Finelli showed that testing alone
cannot verify the reliability of ultra-critical software [3].

Runtime verification (RV), where monitors detect and respond to property
violations at runtime, holds particular potential for ensuring that ultra-critical
systems are in fact ultra-reliable, but there are challenges. In ultra-critical sys-
tems, RV must account for both software and hardware faults. Whereas software
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faults are design errors, hardware faults can be the result of random failure. Fur-
thermore, assume that characterizing a system as being ultra-critical implies it
is a distributed system with replicated hardware (so that the failure of an indi-
vidual component does not cause system-wide failure); also assume ultra-critical
systems are embedded systems sensing and/or controlling some physical plant
and that they are hard real-time, meaning that deadlines are fixed and time-
critical.

Contributions. Despite the relevance of RV to ultra-critical systems, there has
been relatively little research on RV in that context. One of the primary con-
tributions of this paper is to place RV within that context, particularly describ-
ing the constraints any RV solution must satisfy. A second contribution is the
introduction of the notion of “easy fault-tolerance”, where the machinery for
implementing fault-tolerance resides in the monitor rather than the system un-
der observation. Our third contribution is Copilot: a Haskell-based open-source
language, compiler, and associated verification tools for generating RV monitors.
Copilot answers two questions: (1) “Is RV possible for ultra-critical systems?”
and (1) “Can functional programming be leveraged for embedded system RV?”
We attempt to answer these questions by presenting the use of Copilot in a
case-study replicating airspeed sensor failures in commercial aircraft.

Outline. We describe three recent software-related aircraft and Space Shuttle
incidents motivating the need for RV in Section 2. In Section 3, we describe the
constraints of RV implementations in the context of ultra-reliable systems.We
describe the language Copilot in section 4; specifically, we describe how Copi-
lot provides “easy” fault-tolerance, and we describe our approach to generating
highly-reliable monitors. We present our use of Copilot in a case study simulat-
ing an ultra-reliable air speed system in Section 5. The remaining two sections
present related work and conclusions, respectively.

2 When Ultra-Critical Is Not Ultra-Reliable

Well-known, albeit dated, examples of the failure of critical systems include
the Therac-25 medical radiation therapy machine [4] and the Ariane 5 Flight
501 disaster [5]. However, more recent events show that critical-system software
safety, despite certification and extensive testing, is still an unmet goal. Below,
we briefly overview three examples drawing from faults in the Space Shuttle, a
Boeing 777, and an Airbus A330, all occurring between 2005 and 2008.

Space Shuttle. During the launch of shuttle flight Space Transportation Sys-
tem 124 (STS-124) on May 31, 2008, there was a pre-launch failure of the fault
diagnosis software due to a “non-universal I/O error” in the Flight Aft (FA)
multiplexer de-multiplexer (MDM) located in the orbiter’s aft avionics bay [6].
The Space Shuttle’s data processing system has four general purpose computers
(GPC) that operate in a redundant set. There are also twenty-three MDM units
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aboard the orbiter, sixteen of which are directly connected to the GPCs via
shared buses. The GPCs execute redundancy management algorithms that in-
clude a fault detection, isolation, and recovery function. In short, a diode failed
on the serial multiplexer interface adapter of the FA MDM. This failure was
manifested as a Byzantine fault (i.e., a fault in which different nodes interpret a
single broadcast message differently [7]), which was not tolerated and forced an
emergency launch abortion.

Boeing 777. On August 1, 2005, a Boeing 777-120 operated as Malaysia Airlines
Flight 124 departed Perth, Australia for Kuala Lumpur, Malaysia. Shortly af-
ter takeoff, the aircraft experienced an in-flight upset, causing the autopilot to
dramatically manipulate the aircraft’s pitch and airspeed. A subsequent anal-
ysis reported that the problem stemmed from a bug in the Air Data Inertial
Reference Unit (ADIRU) software [8]. Previously, an accelerometer (call it A)
had failed, causing the fault-tolerance computer to take data from a backup
accelerometer (call it B). However, when the backup accelerometer failed, the
system reverted to taking data from A. The problem was that the fault-tolerance
software assumed there would not be a simultaneous failure of both accelerom-
eters. Due to bugs in the software, accelerometer A’s failure was never reported
so maintenance could be performed.

Airbus A330. On October 7, 2008, an Airbus A330 operated as Qantas Flight
QF72 from Singapore to Perth, Australia was cruising when the autopilot caused
a pitch-down followed by a loss of altitude of about 200 meters in 20 seconds (a
subsequent less severe pitch was alsomade) [9]. The accident required the hospital-
ization of fourteen people. Like in the Boeing 777 upset, the source of this accident
was an ADIRU. The ADIRU appears to have suffered a transient fault that was
not detected by the fault-management software of the autopilot system.

3 RV Constraints

Ideally, the RV approaches that have been developed in the literature could be
applied straightforwardly to ultra-critical systems. Unfortunately, these systems
have constraints violated by typical RV approaches. We summarize these con-
straints using the acronym “FaCTS”:

– Functionality: the RV system cannot change the target’s behavior (unless
the target has violated a specification).

– Certifiability: the RV system must not make re-certification (e.g., DO-178B
[10]) of the target onerous.

– Timing: the RV system must not interfere with the target’s timing.
– SWaP: The RV system must not exhaust size, weight, and power (SWaP)

tolerances.

The functionality constraint is common to all RV systems, and we will not dis-
cuss it further. The certifiability constraint is at odds with aspect-oriented pro-
gramming techniques, in which source code instrumentation occurs across the
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code base—an approach classically taken in RV (e.g., the Monitor and Checking
(MaC) [11] and Monitor Oriented Programming (MOP) [12] frameworks). For
codes that are certified, instrumentation is not a feasible approach, since it re-
quires costly reevaluation of the code. Source code instrumentation can modify
both the control flow of the instrumented program as well as its timing proper-
ties. Rather, an RV approach must isolate monitors in the sense of minimizing
or eliminating the effects of monitoring on the observed program’s control flow.

Timing isolation is also necessary for real-time systems to ensure that timing
constraints are not violated by the introduction of RV. Assuming a fixed upper
bound on the execution time of RV, a worst-case execution-time analysis is used
to determine the exact timing effects of RV on the system—doing so is imperative
for hard real-time systems.

Code and timing isolation require the most significant deviations from tradi-
tional RV approaches.We have previously argued that these requirements dictate
a time-triggered RV approach, in which a program’s state is periodically sampled
based on the passage of time rather than occurrence of events [13]. Other work
at the University of Waterloo also investigates time-triggered RV [14,15].

The final constraint, SWaP, applies both to memory (embedded processors
may have just a few kilobytes of available memory) as well as additional hardware
(e.g., processors or interconnects).

4 Copilot: A Language for Ultra-Critical RV

To answer the challenge of RV in the context of fault-tolerant systems, we have
developed a stream language called Copilot.1 Copilot is designed to achieve the
“FaCTS” constraints described in Section 3.

While a preliminary description of the language has been presented [13], sig-
nificant improvements to the language have been made and the compiler has
been fully reimplemented. In any event, the focus of this paper is the unique
properties of Copilot for implementing hardware fault-tolerance and software
monitoring in the context of an ultra-critical system. Copilot is a language with
stream semantics, similar to languages like Lustre [16]; we mention advantages
of Copilot over Lustre in Section 6.

To briefly introduce Copilot, we provide an example Copilot specification in
Figure 1. A Copilot monitor program is a sequence of triggers. A trigger is
comprised of a name (shutoff), a Boolean guard (not overHeat), and a list
of arguments (in this case, one argument, maj, is provided). If and only if the
condition holds is the function shutoff called with the arguments. What a
trigger does is implementation-dependent; if Copilot’s C code generator is used,
then a raw C function with the prototype

void shutoff(uint8_t maj);

1 Copilot is released under the BSD3 license and pointers to the compiler and libraries
can be found at http://leepike.github.com/Copilot/.

http://leepike.github.com/Copilot/
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If the majority of the three engine temperature probes has exceeded 250 degrees,
then the cooler is engaged and remains engaged until the temperature of the
majority of the probes drop to 250 degrees or less. Otherwise, trigger an immediate
shutdown of the engine.

engineMonitor = do

trigger "shutoff" (not overHeat) [arg maj]

where

vals = map externW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]

exceed = map (< 250) vals

maj = majority exceed

checkMaj = aMajority exceed maj

overHeat = (extern "cooler" || (maj && checkMaj)) ‘since’ not maj

Fig. 1. A safety property and its corresponding Copilot monitor specification

should be defined. Within a single Copilot program, triggers are scheduled to fire
synchronously, if they fire at all. Outside of triggers, a Copilot monitor is side-
effect free with respect to non-Copilot state. Thus, triggers are used for other
events, such as communication between monitors, as described in Section 4.2.

A trigger’s guard and arguments are stream expressions. Streams are infinite
lists of values. The syntax for defining streams is nearly identical to that of
Haskell list expressions; for example, the following is a Copilot program defining
the Fibonacci sequence.

fib = [0, 1] ++ fib + drop 1 fib

In Copilot streams, operators are automatically applied point-wise; for example,
negation in the expression not overHeat is applied point-wise over the elements
of the stream overHeat. In Figure 1, the streams are defined using library func-
tions. The functions majority, aMajority, and ‘since’ are all Copilot library
functions. The functions majority (which determines the majority element from
a list, if one exists—e.g., majority [1, 2, 1, 2, 1] == 1) and aMajority

(which determines if any majority element exists) come from a majority-vote
library, described in more detail in Section 4.1. The function ‘since’ comes
from a a past-time linear temporal logic library. Libraries also exist for defining
clocks, linear temporal logic expressions, regular expressions, and simple statis-
tical characterizations of streams.

Copilot is a typed language, where types are enforced by the Haskell type
system to ensure generated C programs are well-typed. Copilot is strongly typed
(i.e., type-incorrect function application is not possible) and statically typed (i.e.,
type-checking is done at compile-time). We rely on the type system to ensure
the Copilot compiler is type-correct. The base types are Booleans, unsigned and
signed words of width 8, 16, 32, and 64, floats, and doubles. All elements of a
stream must belong to the same base type.
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To sample values from the “external world”, Copilot has a notion of exter-
nal variables. External variables include any value that can be referenced by
a C variable (as well as C functions with a non-void return type and arrays
of values). In the example, three external variables are sampled: tmp probe 0,
tmp probe 1, tmp probe 2. External variables are lifted into Copilot streams
by applying a typed “extern” function. For example, An expression externW8

"var" is a stream of values sampled from the variable var, which is assumed to
be an unsigned 8-bit word.

Copilot is implemented as an embedded domain-specific language (eDSL). An
eDSL is a domain-specific language in which the language is defined as a sub-
language of a more expressive host language. Because the eDSL is embedded,
there is no need to build custom compiler infrastructure for Copilot—the host
language’s parser, lexer, type system, etc. can all be reused. Indeed, Copilot
is deeply embedded, i.e., implemented as data in the host language that can
be manipulated by “observer programs” (in the host language) over the data,
implementing interpreters, analyzers, pretty-printers, compilers, etc. Copilot’s
host language is the pure functional language Haskell [17]. In one sense, Copilot is
an experiment to answer the question, “To what extent can functional languages
be used for ultra-critical system monitoring?”

One advantage of the eDSL approach is that Haskell acts as a powerful macro
language for Copilot. For example, in Figure 1, the expression

map externW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]

is a Haskell expression that maps the external stream operator externW8 over a
list of strings (variable names). We discuss macros in more detail in Section 4.1.

Additionally, by reusing Haskell’s compiler infrastructure and type system,
not only do we have stronger guarantees of correctness than we would by writing
a new compiler from scratch, but we can keep the size of the compiler infras-
tructure that is unique to Copilot small and easily analyzable; the combined
front-end and core of the Copilot compiler is just over two thousand lines of
code. Our primary back-end generating C code is around three thousand lines
of code.

Copilot is designed to integrate easily with multiple back-ends. Currently,
two back-ends generate C code. The primary back-end uses the Atom eDSL [18]
for code generation and scheduling. Using this back-end, Copilot compiles into
constant-time and constant-space programs that are a small subset of C99. By
constant-time, we mean C programs such that the number of statements executed
is not dependent on control-flow2 and by constant-space, we mean C programs
with no dynamic memory allocation.

The generated C is suitable for compiling to embedded microprocessors: we
have tested Copilot-generated specifications on the AVR (ATmega328 processor)
and STM32 (ARM Cortex M3 processor) micro-controllers. Additionally, the

2 We do not presume that a constant-time C program implies constant execution time
(e.g., due to hardware-level effects like cache misses), but it simplifies execution-time
analysis.
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compiler generates its own static periodic schedule, allowing it to run on bare
hardware (e.g., no operating system is needed). The language follows a sampling-
based monitoring strategy in which variables or the return values of functions
of an observed program are periodically sampled according to its schedule, and
properties about the observations are computed.

4.1 Easy Fault-Tolerance

Fault-tolerance is hard to get right. The examples given in Section 2 can be
viewed as fault-tolerance algorithms that failed; indeed, as noted by Rushby,
fault-tolerance algorithms, ostensibly designed to prevent faults, are often the
source of systematic faults themselves [19]! One goal of Copilot is to make fault-
tolerance easy—easy for experts to specify algorithms without having to worry
about low-level programming errors and easy for users of the functions to in-
tegrate the algorithms into their overall system. While Copilot cannot protect
against a designer using a fault-tolerant algorithm with a weak fault-model, it
increases the chances of getting fault-tolerance right as well as decoupling the
design of fault-tolerance from the primary control system. Finally, it separates
the concerns of implementing a fault-tolerance algorithm from implementing the
algorithm as a functionally correct, memory-safe, real-time C program.

As noted, because Copilot is deeply embedded in Haskell, Haskell acts as a
meta-language for manipulating Copilot programs. For example, the streams
maj, check, and overHeat in Figure 1 are implemented by Haskell functions
that generate Copilot programs.

To see this in more detail, consider the Boyer-MooreMajority-Vote Algorithm,
the most efficient algorithm for computing a majority element from a set3 [20].
The majority library function implements this algorithm as a Copilot macro as
follows:

majority (x:xs) = majority’ xs x (1 :: Stream Word32)

where

majority’ [] candidate _ = candidate

majority’ (x:xs) candidate cnt =

majority’ xs (if cnt == 0 then x else candidate)

(if cnt == 0 || x == candidate then cnt+1 else cnt-1)

The macro specializes the algorithm for a fixed-size set of streams at compile-time
to ensure a constant-time implementation, even though the algorithm’s time-
complexity is data-dependent. (Our library function ensures sharing is preserved
to reduce the size of the generated expression.)

As an informal performance benchmark, for the majority algorithm vot-
ing over five streams of unsigned 64-bit words, we compare C code generated
from Copilot and constant-time handwritten C. Each program is compiled using

3 Due to space limitations, we will not describe the algorithm here, but an illustration
of the algorithm can be found at
http://www.cs.utexas.edu/~moore/best-ideas/mjrty/example.html.

http://www.cs.utexas.edu/~moore/best-ideas/mjrty/example.html
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gcc -O3, with a printf statement piped to /dev/null (to ensure the function
is not optimized away). The hand-written C code is approximately nine percent
faster.

While the Boyer-Moore algorithm is not complicated, the advantages of the
Copilot approach over C are (1) majority is a polymorphic library function
that can be applied to arbitrary (Copilot-supported) data-types and sizes of
voting sets; with (2) constant-time code, which is tedious to write, is generate
automatically; (3) the Copilot verification and validation tools (described in
Section 4.3) can be used.

4.2 Distributed Monitoring

Our case study presented in Section 5 implements distributed monitors. In a
distributed monitor architecture, monitors are replicated, with specific param-
eters per process (e.g., process identifiers). The meta-programming techniques
described in Section 4.1 can be used to generate distributed monitors by pa-
rameterizing programs over node-specific data, reducing a tedious task that is
traditionally solved with makefiles and C macros to a few lines of Haskell.

Copilot remains agnostic as to how the communication between distinct pro-
cesses occurs; the communication can be operating system supported (e.g., IPC)
if the monitors are processes hosted by the same operating system, or they can
be raw hardware communication mechanisms (e.g., a custom serial protocol and
processor interrupts). If the monitors are on separate processors, the program-
mer needs to ensure either that the hardware is synchronized (e.g., by using a
shared clock or by executing a clock synchronization protocol). Regardless of the
method, triggers, described above, are also used to call C functions that imple-
ment the platform-specific protocol. Incoming values are obtained by sampling
external variables (or functions or arrays).

4.3 Monitor Assurance

“Who watches the watchmen?” Nobody. For this reason, monitors in ultra-
critical systems are the last line of defense and cannot fail. Here, we outline our
approach to generate high-assurance monitors. First, as mentioned, the com-
piler is statically and strongly typed, and by implementing an eDSL, much of
the infrastructure of a well-tested Haskell implementation is reused. Copilot con-
tains a custom QuickCheck [21]-like test harness that generates random Copilot
programs and tests the interpreted output against the compiler to ensure cor-
respondence between the two. We have tested millions of randomly-generated
programs between the compiler and interpreter.

We use the CBMC model checker [22] to verify C code generated by Copilot
specifications. CBMC provides an independent check on the compiler. CBMC
can prove that the C code is memory-safe, including proving there are no arith-
metic underflows or overflows, no division by zero, no not-a-number floating-
point values, no null-pointer dereferences, and no uninitialized local variables.
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Some of these potential violations are impossible for the Copilot compiler to gen-
erate (e.g., null-pointer dereferences), provided it is bug-free. Sometimes CBMC
cannot prove that a C program is memory-safe, since it requires the program to
be loop-free. The C code generated by Copilot implements a state machine that
generates the next values of the stream equations (see [13] for details). CBMC
can symbolically unroll the state machine a small fixed number of steps. A sep-
arate (so far informal) proof must be given that the program has been unrolled
sufficiently to prove memory-safety.

5 Case Study

In commercial aircraft, airspeed is commonly determined using pitot tubes that
measure air pressure. The difference between total and static air pressure is used
to calculate airspeed. Pitot tube subsystems have been implicated in numerous
commercial aircraft incidents and accidents, including the 2009 Air France crash
of an A330 [23], motivating our case study.

We have developed a platform resembling a real-time air speed measuring
system with replicated processing nodes, pitot tubes, and pressure sensors to
test distributed Copilot monitors with the objective of detecting and tolerating
software and hardware faults, both of which are purposefully injected.

The high-level procedure of our experiment is as follows: (1) we sense and
sample air pressure from the aircraft’s pitot tubes; (2) apply a conversion and
calibration function to accommodate different sensor and analog-to-digital con-
verter (ADC) characteristics; (3) sample the C variables that contain the pressure
values on a hard real-time basis by Copilot-generated monitors; and (4) execute
Byzantine fault-tolerant voting and fault-tolerant averaging on the sensor val-
ues to detect arbitrary hardware component failures and keep consistent values
among good nodes.

We sample five pitot tubes, attached to the wings of an Edge 540 subscale
aircraft. The pitot tubes provide total and static pressure that feed into one
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MPXV5004DP and four MPXV7002DP differential pressure sensors (Figure 2).
The processing nodes are four STM 32 microcontrollers featuring ARM Cor-
tex M3 cores which are clocked at 72 Mhz (the number of processors was selected
with the intention of creating applications that can tolerate one Byzantine pro-
cessing node fault [7]). The MPXV5004DP serves as a shared sensor that is read
by each of the four processing nodes; each of the four MPXV7002DP pressure
sensors is a local sensor that is only read by one processing node.

Monitors communicate over dedicated point-to-point bidirectional serial con-
nections. With one bidirectional serial connection between each pair of nodes,
the monitor bus and the processing nodes form a complete graph. All monitors
on the nodes run in synchronous steps; the clock distribution is ensured by a
master hardware clock. (The clock is a single point of failure in our prototype
hardware implementation; a fully fault-tolerant system would execute a clock-
synchronization algorithm.)

Each node samples its two sensors (the shared and a local one) at a rate of
16Hz. The microcontroller’s timer interrupt that updates the global time also pe-
riodically calls a Copilot-generated monitor which samples the ADC C-variables
of the monitored program, conducts Byzantine agreements, and performs fault-
tolerant votes on the values. After a complete round of sampling, agreements,
and averaging, an arbitrary node collects and logs intermediate values of the
process to an SD-card.

We tested the monitors in five flights. In each flight we simulated one node hav-
ing a permanent Byzantine fault by having one monitor send out pseudo-random
differing values to the other monitors instead of the real sampled pressure. We
varied the number of injected benign faults by physically blocking the dynamic
pressure ports on the pitot tubes. In addition, there were two “control flights”,
leaving all tubes unmodified.

The executed sampling, agreement, and averaging is described as follows:

1. Each node samples sensor data from both the shared and local sensors.
2. Each monitor samples the C variables that contain the pressure values and

broadcasts the values to every other monitor, then relays each received value
to monitors the value did not originate from.

3. Each monitor performs a majority vote (as described in Section 4.1) over
the three values it has for every other monitor of the shared sensor (call this
maji(S) for node i) and the local sensor (call this maji(L) for node i).

4. Copilot-generated monitors then compute a fault-tolerant average. In our
implementation, we remove the least and greatest elements from a set, and
average the remaining elements. For each node i and nodes j �= i, fault-
tolerant averages are taken over four-element sets: (1) ftAvg(S) = {Si} ∪
{majj(S)} where Si is i’s value for the shared sensor.

5. Another fault-tolerant average is taken over a five-element set, where the
two least and two greatest elements are removed (thus returning the median
value). The set contains the fault-tolerant average over the shared sensor
described in the previous step ( ftAvg(S) ), the node’s local sensor value
Li, and {majj(L)}, for j �= i. Call this final fault-tolerant average ftAvg.
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(a) (b)

(c) (d)

Fig. 3. Logged pressure sensor, voted and averaged data

6. Finally, time-stamps, sensor values, majorities and their existences are col-
lected by one node and recorded to an SD card for off-line analysis.

The graphs in Figure 3 depict four scenarios in which different faults are injected.
In each scenario, there is a software-injected Byzantine faulty node present. What
varies between the scenarios are the number of physical faults. In Figure 3(a), no
physical faults are introduced; in Figure 3(b), one benign fault has been injected
by putting a cap over the total pressure probe of one local tube.4 In Figure 3(c),
in addition to the capped tube, sticky tape is placed over another tube, and in
Figure 3(d), sticky tape is placed over two tubes in addition to the capped tube.

The graphs depict the air pressure difference data logged at each node and
the voted and averaged outcome of the 3 non-faulty processing nodes. The gray
traces show the recorded sensor data S1, . . . , S4, and the calibrated data of the
local sensors L1, . . . , L4. The black traces show the final agreed and voted values
ftAvg of the three good nodes.

In every figure except for Figure 3(d), the black graphs approximate each
other, since the fault-tolerant voting allows the nodes to mask the faults. This
is despite wild faults; for example, in Figure 3(b), the cap on the capped tube
creates a positive offset on the dynamic pressure as well as turbulences and low

4 Tape left on the static pitot tube of Aeroperú Flight 603 in 1996 resulted in the
death of 70 passengers and crew [24].
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pressure on the static probes. At 1.2E7 clock ticks, the conversion and calibration
function of the stuck tube results in an underflowing value. In Figure 3(d), with
only two non-faulty tubes out of five left, ftAvg is not able to choose a non-faulty
value reliably anymore. All nodes still agree on a consistent—but wrong—value.

Discussion. The purpose of the case-study is to test the feasibility of using
Copilot-generated monitors in a realistic setting to “bolt on” fault-tolerance to
a system that would otherwise be lacking that capability. The Copilot agreement
monitor is around 200 lines. The generated real-time C code is nearly 4,000 lines.

Copilot reduced the effort to implement a non-trivial real-time distributed
fault-tolerant voting scheme as compared to implementing it directly in C. While
a sampling-based RV approach works for real-time systems, one major challenge
encountered is ensuring the monitor’s schedule corresponds with that of the
rest of the system. Higher-level constructs facilitating timing analysis would be
beneficial. Furthermore, it may be possible to reduce the size of the monitor’s C
code using more aggressive optimizations in the Copilot compiler.

6 Related Work

Using RV to implement fault-tolerance can be considered to be a “one-out-
of-two” (1oo2) architecture [25], similar in spirit to the idea of the Simplex
architecture [26]. In a 1oo2 architecture, one component may be an arbitrarily
complex control system, and the other component is a monitor.

Copilot shares similarities with other RV systems that emphasize real-time or
distributed systems. Krüger, Meisinger, and Menarini describe their work in syn-
thesizing monitors for a automobile door-locking system [27]. While the system is
distributed, it is not ultra-reliable and is not hard real-time or fault-tolerant via
hardware replication. The implementation is in Java and focuses on the aspect-
oriented monitor synthesis, similar in spirit to JavaMOP [28]. Syncraft is a tool
that takes a distributed program (specified in a high-level modeling language)
that is fault-intolerant and given some invariant and fault model, transforms the
program into one that is fault-tolerant (in the same modeling language). [29].

There are few instances of RV focused on C code. One exception is Rmor,
which generates constant-memory C monitors [30]. Rmor does not address real-
time behavior or distributed system RV, though.

Research at the University of Waterloo also investigates the use of time-
triggered RV (i.e., periodic sampling). Unlike with Copilot, the authors do not
make the assumptions that the target programs are hard real-time themselves, so
a significant portion of the work is devoted to developing the theory of efficiently
monitoring for state changes using time-triggered RV for arbitrary programs,
particularly for testing [14,15]. On the other hand, the work does not address
issues such as distributed systems, fault-tolerance, or monitor integration.

With respect to work outside of RV, other research also addresses the use of
eDSLs for generating embedded code. Besides Atom [18], which we use as a back-
end, Feldspar is an eDSL for digitial signal processing [31]. Copilot is similar in
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spirit to other languages with stream-based semantics, notably represented by
the Lustre family of languages [16]. Copilot is a simpler language, particularly
with respect to Lustre’s clock calculus, focused on monitoring (as opposed to
developing control systems). Copilot can be seen as an generalization of the idea
of Lustre’s “synchronous observers” [32], which are Boolean-valued streams used
to track properties about Lustre programs. Whereas Lustre uses synchronous
observers to monitor Lustre programs, we apply the idea to monitoring arbitrary
periodically-scheduled real-time systems. The main advantages of Copilot over
Lustre is that Copilot is implemented as an eDSL, with the associated benefits;
namely Haskell compiler and library reuse the ability to define polymorphic
functions, like the majority macro in Section 4.1, that get monomorphised at
compile-time.

7 Conclusions

Ultra-critical systems need RV. Our primary goals in this paper are to (1) mo-
tivate this need, (2) describe one approach for RV in the ultra-critical domain,
(3) and present evidence for its feasibility.

Some research directions that remain include the following. Stochastic meth-
ods might be used to distinguish random hardware faults from systematic faults,
as the strategy for responding to each differs [33]. We have not addressed the
steering problem of how to address faults once they are detected. Steering is
critical at the application level, for example, if an RV monitor detects that a
control system has violated its permissible operational envelop. Because we have
a sampling-based monitoring strategy, we would also like to be able to infer the
periodic sampling rate required to monitor some property.

Research developments in RV have potential to improve the reliability of ultra-
critical systems, and we hope a growing number of RV researchers address this
application domain.
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28. Chen, F., d’Amorim, M., Roşu, G.: Checking and correcting behaviors of java
programs at runtime with Java-MOP. Electronic Notes in Theoretical Computer
Science 144, 3–20 (2006)

29. Bonakdarpour, B., Kulkarni, S.S.: SYCRAFT: A Tool for Synthesizing Dis-
tributed Fault-Tolerant Programs. In: van Breugel, F., Chechik, M. (eds.) CON-
CUR 2008. LNCS, vol. 5201, pp. 167–171. Springer, Heidelberg (2008)

30. Havelund, K.: Runtime Verification of C Programs. In: Suzuki, K., Higashino,
T., Ulrich, A., Hasegawa, T. (eds.) TestCom/FATES 2008. LNCS, vol. 5047, pp.
7–22. Springer, Heidelberg (2008)

31. Axelsson, E., Claessen, K., Dvai, G., Horvth, Z., Keijzer, K., Lyckegrd, B., Pers-
son, A., Sheeran, M., Svenningsson, J., Vajda, A.: Feldspar: a domain specific
language for digital signal processing algorithms. In: 8th ACM/IEEE Int. Conf.
on Formal Methods and Models for Codesign (2010)

32. Halbwachs, N., Raymond, P.: Validation of Synchronous Reactive Systems: From
Formal Verification to Automatic Testing. In: Thiagarajan, P.S., Yap, R.H.C.
(eds.) ASIAN 1999. LNCS, vol. 1742, pp. 1–12. Springer, Heidelberg (1999)

33. Sammapun, U., Lee, I., Sokolsky, O.: RT-MaC: runtime monitoring and checking
of quantitative and probabilistic properties. In: 11th IEEE Intl. Conf. on Embed-
ded and Real-Time Computing Systems and Applications, pp. 147–153 (2005)

http://www.aviationtoday.com/regions/usa/More-Pitot-Tube-Incidents-Revealed_72414.html
http://www.aviationtoday.com/regions/usa/More-Pitot-Tube-Incidents-Revealed_72414.html
http://www.rvs.uni-bielefeld.de/publications/Reports/aeroperu-news.html
http://www.rvs.uni-bielefeld.de/publications/Reports/aeroperu-news.html


S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 325–341, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Runtime Verification of Data-Centric Properties  
in Service Based Systems 

Guoquan Wu1, Jun Wei1, Chunyang Ye1,2, Xiaozhe Shao1,  
Hua Zhong1, and Tao Huang1 

1 Institute of Software, Chinese Academy of Sciences 
2 University of Toronto, Canada 

{gqwu,wj,cyye,xiaozheshao09,zhongh,tao}@otcaix.iscas.ac.cn  

Abstract. For service-based systems which are composed of multiple 
independent stakeholders, correctness cannot be ascertained statically. 
Continuous monitoring is required to assure that runtime behavior of the 
systems complies with specified properties. However, most existing work 
considers only the temporal constraints of messages exchanged between 
services, ignoring the actual data contents inside the messages. As a result, it is 
difficult to validate some dynamic properties such as how message data of 
interest is processed between different participants. To address this issue, this 
paper proposes an efficient, online monitoring approach to dynamically analyze 
data-centric properties in service-based systems. By introducing Par-BCL - a 
Parametric Behavior Constraint Language for Web services - various data-
centric properties can be specified and monitored. To keep runtime overhead 
low, we statically analyze the monitored properties to generate parameter state 
machine, and combine two different indexing mechanisms to optimize the 
monitoring. The experiments show that the proposed approach is efficient. 

1 Introduction 

Service oriented architecture (SOA) is an emerging software paradigm which 
provides support to dynamically evolving software systems (e.g., context-aware 
applications, pervasive computing, ambient intelligence), where both components and 
their bindings may change at runtime. In this paradigm, individual service providers 
develop their Web services, and publish them at service registries. Service consumers 
can then discover the required services from the service registries and compose them 
to create new services. WS-BPEL [1] now represents the de-facto standard for the 
Web services composition, in which a central node called the composition process 
usually coordinates the interactions of distributed, autonomous Web services. An 
instance of the process is the actual running process that follows the logic described in 
the process specification. 

For service-based systems which are composed of multiple independent 
stakeholders, correctness cannot be ascertained statically [5]. Instead, it requires 
continuous monitoring to assure that the runtime behavior of the systems complies 
with the specified properties, because both the agents interacting with the system or 
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the involved third-party service that constitute it may change or behave unpredictably. 
Runtime monitoring also provides a chance of recovery once serious problems are 
discovered, e.g., by terminating execution or trying to return to a stable state. 

The need to runtime monitoring of service-based system has inspired a lot of 
research projects in recent years [2][3][4][5][6][7]. However, most existing work 
concentrates on properties related to the control flow of systems. These constraints 
consider the orders of messages only. As a result, some dynamic properties such as 
how data contents inside the message are processed between different participants are 
not supported. For example, in an online shopping system, to constrain the behavior 
of a customer who has made a commitment to one transaction, a property specifying 
that the purchased items should eventually appear in the final payment bill is needed. 
In this paper, we refer to this class of properties as data-centric properties. In section 
2 we will provide a representative example where data-centric properties arise for a 
variety of reasons. 

To validate data-centric properties at runtime, previous approaches [2][3][4][6][7] 
which rely only on one unique identifier (e.g., process instance id or session id) to 
dispatch system events to right monitor instance, are not adequate when multiple data 
inside a message need to be monitored. These data may flow through different 
activities that are within or across different process instances. 

To overcome these limitations, this paper developed an efficient, online monitoring 
approach that allows for dynamic analysis of data-centric properties in service-based 
system, from the point of the view of composition process. We introduce Par-BCL - a 
Parametric Behavior Constraint Language for Web service - to specify various data-
centric properties. Specifically, in Par-BCL, parameters are introduced to specify a 
set of message data that needs to be monitored during the system execution. 
Moreover, Par-BCL extends Specification Pattern System (SPS) [8] proposed by 
Dwyer et al. with first-order quantification over message contents and introduces 
parameterized event to support the expression of properties that are related to a set of 
message data. 

To verify data-centric properties, this paper broadens the monitored patterns to 
include not only message exchange orders, but also data contents bound to the 
parameters. In this way, dataflow information between different participants can be 
tracked timely. The main challenge of this approach is how to reduce monitoring 
overhead: since a large number of monitor instances are generated at runtime, each 
observing a set of related data, it’s difficult to locate the relevant monitor instances 
that need to be updated quickly. To keep runtime overhead of monitoring and event 
observation low, we devise an efficient implementation of Par-BCL. Particularly, the 
implementation generates parameter state machine resulted from a static analysis of 
the desired property, and combines two different indexing mechanisms (static and 
dynamic) to optimize monitoring. To evaluate the effectiveness of our proposal, we 
conducted several empirical experiments. The results show that our approach is 
promising: in most cases, the runtime overhead of monitoring is very low and can be 
negligible. 

The major contributions of this paper are: (1) we propose a parametric behavior 
constraint language for Web services, which provides an easy and intuitive way to 
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express various data-centric properties; (2) we propose an online parametric 
monitoring approach to validate data-centric properties, which overcomes the 
limitation of existing work and can track dataflow within or across process instances; 
(3) we develop an efficient monitoring algorithm, which generates parameter state 
machine by making use of the static knowledge about properties, and combines two 
indexing mechanisms to facilitate the optimization of monitoring process. 

The rest of this paper is organized as follows: Section 2 motivates the research 
problem using a real-life example. Section 3 elaborates the proposed Par-BCL 
language. Section 4 introduces the monitoring model adopted by Par-BCL. Section 5 
introduces an efficient monitoring process. Section 6 presents an implementation of 
runtime framework through an aspect-oriented extension to WS-BPEL engine. 
Section 7 evaluates the feasibility and effectiveness of our approach. Section 8 
reviews related work. Section 9 concludes this paper. 

2 Motivation Example 

To investigate the necessity of runtime verification of data-centric properties in 
service-based systems, we introduce a representative scenario. Similar properties can 
be found in the literature [9][10]. 
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Fig. 1. CarRental System 
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This example is taken and adapted from [5]. As depicted in Fig.1, two processes 
are deployed in the CarRental system to provide car rental services for customers. 
CarRequest process is responsible for renting cars to customers and CarReturn 
process collects cars returned from customers. Both processes interact with the 
following partner services to provide the required functionalities: 

Car Information Service (CIS). It maintains the registry of cars and allocates them to 
customers. It also provides operations to check and update the stock of cars. 

Sensor Service (SS). It tracks cars in the parking lot automatically. There are several 
parking lots in CarRental system. When a car enters or leaves the parking lot, the 
sensor service will report this information to CarRequest and CarReturn processes. 

User Interaction Service (UIS). It is responsible for interacting with customers. 

Payment Service (PS). It transfers money between the car rental company and the 
customer. 

In a typical car rental scenario, a new CarRequest process is launched when a car 
rental request is received from UIS. Then the process checks whether the requested 
cars are available by invoking CIS. If all cars are available, it will ask for a 
confirmation by producing a bill. At this step, the customer can make a commitment 
to rent at least one car in advance, and the system will offer a corresponding discount. 
Also, the customer has the opportunity to cancel the order. When receiving a positive 
confirmation message, the process proceeds to cash transfer. This is achieved by 
providing an account number. Alternatively, a cancellation message listing some cars 
removed from the bill can be sent before the final payment. The process releases keys 
to the customer after the payment is conducted successfully. When the sensors report 
that a car leaves the park, the sensor service will inform CarRequest process to invoke 
CIS to update the status of these cars. 

A new CarReturn process is started when it receives a car return message from the 
customer. The process then inquires the customer whether he/she needs to re-rent  
the car. If so, it only needs to update the status of rented cars. Otherwise, on receiving 
the message from the sensor service which indicates that the returned cars have been 
parked in place, the process invokes CIS to update the status for the car. 

In this paper, we assume the local workflow of each process is correct, but their 
interaction with external partners may cause application inconsistency [11]. For 
example, due to malfunctioning of a sensor service, it may miss the departure of a 
specific car from the park and fails to report this event to CarRequest process. As a 
result, the status of this car is not updated timely. Before this car is returned (by 
starting a new CarReturn instance), another CarRequest instance may wrongly accept 
a rental request and allocate this car to a new customer, because the status of the car is 
still marked as available. Consequently, this leads to an application inconsistency. 
This failure is caused by the implicit interaction [12] among concurrent process 
instances due to resource sharing. To avoid this situation, the following data-centric 
property can be specified and monitored at runtime: 
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Data-centric property 1. for each rented car, there must be a departure event 
between two consecutive entrances to the park. 

This constraint is defined across the processes, involving CarRequest and CarReturn. 
It considers the universal temporal constraint of each rented car moving in and out of 
the park. Fig.2 shows the message definition of senseCar (see Fig.2(a)) and typical 
message content (see Fig.2(b)) transmitted at runtime. 

<message  name=“senseCar”>
<part  name=“sensor” type=“tns:departure” />
<part  name=“session” type=“xsd:integer” />

</message>
<complextType name= “departure”>

<sequence>
<element  name=“parkInfo” maxOccurs=“unbounded” />

<complexType>
<sequence>

<element  name=“carID”  type=“xsd:string” 
maxOccurs=“unbounded” />

<element name =“parkID”  type=“xsd:string” />
</sequence>

</complexType>
</element>

</sequence>
</complexType>

<senseCar>
<sensor>

<parkInfo>
<carID> c1</carID>
<parkID>p1</parkID>

</parkInfo>
<parkInfo>

<carID>c2</carID>
<carID>c3</carID>
<parkID>p2</parkID>   

</parkInfo>  
</sensor>
<session>10001</session>

</ senseCar >

(a) (b)  

Fig. 2. senseCar Message 

Besides the properties related to system correctness, some business related policies 
are also data-centric. For example, to constrain the running behavior of a customer 
who has made the commitment, one can specify that at the end of the transaction, the 
customer will be charged for at least one car in the final payment, shown as follows: 

Data-centric property 2. For the cars rented from the customer who has made the 
commitment, there must exist a car, which eventually appears in the final payment. 

This property has only relation with CarRequest process. It involves the data user 
account, rented cars and bill, and specifies the existential temporal constraints for the 
rented cars. 

To check behavior correctness properties at runtime, there is already a lot of work 
in the area of dynamic analysis of service-based system [2][3][4][5][6][7]. However, 
most existing property specifications abstract away the actual data contents inside the 
messages and define the properties considering only the constraints on sequences of 
messages. They are propositional and not appropriate to express data-centric 
properties mentioned above. Although Hallé and Villemaire proposed LTL-FO+ [22], 
an extension to LTL with first order quantification over the message data, and an 
online monitoring algorithm to validate data-aware Web services properties, their 
approach does not support the checking of inter-process properties, nor does the 
approach consider the optimization of the monitoring process. 
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3 A Language for Specifying Data-Centric Properties 

3.1 Syntax of Par-BCL 

To address the problem of existing works, this paper proposes Par-BCL, a Parametric 
Behavior Constraint Language for Web service to specify data-centric behavior 
properties. Our approach to defining data-centric properties builds upon the property 
Specification Pattern System (SPS) [8], which is a pattern-based approach to 
representing, codifying, and reusing property specification. We choose SPS to specify 
the temporal relation of the events due to the following two reasons: it is easier to 
understand and write, compared to some formal logic (e.g. LTL, QRE), and has been 
shown to capture a majority of system properties. 

Monitor Car_Behavior ($car, $park) {
scope = inter-proc;
event rent: ? CIS. book  binding <$car> with ($msg.sensor//carID);
event initial_enter : ? Sensor. enter 

binding <$car, $park> with ($msg.sensor//carID, $msg.sensor//parkID);
event depart : ? Sensor. depart

binding <$car, $park> with ($msg.sensor//carID, $msg.sensor//parkID);
event again_enter : ? Sensor. enter

binding <$car> with ($msg.sensor//carID);

forall ($car,$park)
between_and (seq(rent<$car>,initial_enter<$car,$park>),

again_enter<$car>) 
exist (depart<$car, $park>); 

}  

Fig. 3. Data-centric property 1 

Based on SPS, Par-BCL further allows first-order quantification over message 
contents. In addition, it introduces the concept of parameterized event, and can define 
constraints of the pattern “for a set of message data, parameterized properties cannot 
be violated at runtime” in a declarative way. 

Fig.3 shows the example of data-centric property 1 using Par-BCL. Rent, 
initial_enter, depart and again_enter are the symbols representing the message of 
interest. $car and $park store the message data that need to be monitored. “scope = 
inter-proc” means the monitored data may flow across different process instances at 
runtime. The last part of this example specifies that for each rented car $car, there 
must be a departure event between two consecutive entrance records. 

Fig.4 presents, in a semi-formal way, the syntax for the proposed Par-BCL 
language. In the following, we will explain the main elements of Par-BCL. 

Event. As service providers may not release the details of their services, runtime 
monitoring of service-based systems is usually based on the messages exchanged 
between involved services. The event in Par-BCL is thus defined based on the 
WSDLs of all involved services. To ease the presentation, we use the following 
notation “? Partner. operation” to represent that process receives an invocation 
request (denoted by operation) from Partner, and “! Partner. operation” to represent 
that process sends an invocation request (denoted by operation) to Partner.  
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<Specification>  → Monitor <Head> <Body>

<Head>  → <Name > (<Parameters>) 

<Body>  → <Scope> <EventDecl>*

<Quant> <<Parameters>>

<Range > <Pattern>

<Scope>   →  scope = [inter-proc| intra-proc];

<Parameters>   →  <Var> [,<Var>]*

<EventDecl >  →   event <Symbol>: <Event > [<Binding>]

<Binding>→ binding <<Var> [,<Var>]*> with (<XPath>, [,<XPath>]*);

<Symbol> →  <Identifier>

<EventRef>   →  <Symbol>|< Symbol> (<Var>[,<Var>]*)

<Event>   →  [ ! |?] <Partner>.<Operation>[&&<FilterCondtion>]*

<Quant>   →  forall | exist

<Pattern>   → absent (<Tracecut>)| occurs (<Tracecut> [, at least |at most, <n>] )

|precedes (<Tracecut>, <Tracecut>) | leadsto (<Tracecut>,<Tracecut>)

<Tracecut>   →  <EventRef> | seq (<Tracecut> [, <Tracecut>]*)

|all (<Tracecut> [, <Tracecut>]*) | any (<Tracecut> [, <Tracecut>]*)

<Range>   → global | after (<Tracecut>) | after_until (<Tracecut>, <Tracecut>)

|between_and (<Tracecut>, <Tracecut>) | before (<Tracecut>)
 

Fig. 4. Semi-formal syntax of Par-BCL 

Parameter&Binding. Parameter keeps message data that needs to be monitored. 
Since the same data can be expressed differently in different messages, to track the 
flow of a set of message data across different participants, Par-BCL uses parameter 
binding “binding <<Var>[,<Var>]*> with (<XPath>[,<XPath>*])” to bind concrete 
message data to the parameters. $msg denotes the exchanged xml message content 
between composition process and its partners. At runtime, these parameters will be 
instantiated and the “behavior” of each group of the data values will be monitored. 

Scope. The scope defines how specified properties will be monitored. It can be two 
values: intra-proc and inter-proc. Intra-proc means the monitoring only needs to 
track the dataflow within individual process instance, while inter-proc needs to track 
dataflow across different process instances. 

Body. The body part of Par-BCL is based on SPS, which allows expression of 
properties in the form “the pattern of interest can’t be violated within a range”. An 
example property expressed in SPS is like “event P is absent between Q and S”. This 
is an absence pattern with between range. More details about SPS can be found in [8]. 

Although there already exists some SPS based property specifications in the area of 
service based systems [13][14], they are all propositional. This paper concentrates on 
the specification of data-centric properties. We extend SPS with first-order 
quantification over the parameters. To describe the “behavior” of a group of data 
values across different partner services, we introduce the concept of parameterized 
event to express the operation of each partner service on the message data of interest. 

For example, consider the property “forall ($car, $park) ϕ” in Fig.3 (ϕ here 
represents the expression “between_end(…) exist(…)”). This property is true iff for  
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all the groups of $car and $park value, ϕ is not violated. The event in ϕ can be a non-
parametric symbol, called base event or a symbol with parameters, called 
parameterized event. Event initial_enter <$car, $park> is parametric in both $car and 
$park. This parameterized event is generated when $car enters $park from the 
received entering message. 

Tracecut. Based on primitive event, we define three composite event operators: any, 
seq and all to capture the complex event during the system execution. Tracecut 
addresses the SPS limitation by supporting the specification of concurrent and 
sequential behavior that can be applied to the behavior patterns. Also, more complex 
events can be defined based on the combination of these operators. 

 any operator. This operator takes a set of tracecuts as input. The complex 
event is captured when any event of them occurs. 

 seq operator. seq takes a list of n (n>1) tracecuts as its parameter, such as seq 
(<E1>, <E2>, . . . , <En>). It specifies an order in which the events of interest 
should occur sequentially.  

 all operator. This operator takes a list of tracecuts as input. If all specified 
events occur, the complex event is captured. This operator doesn’t specify the 
order of events occurrence. 

4 Monitoring Model of Par-BCL 

Par-BCL supports to monitor the behavior of each group of related message data at 
the same time. We propose a parametric monitoring model to verify data-centric 
properties. It performs three orthogonal mechanisms: filtering, parameter binding and 
verification. Fig.5 illustrates the monitoring model of Par-BCL. 

4.1 Filtering 

First, filtering mechanism observes the current trace and extracts property-relevant 
messages. Note that, as we use XPath to extract data elements inside a message, 
multiple data values can be returned each btime. To extract the monitored data 
elements efficiently, we adopt the path sharing approach proposed by Diao et al. [15], 
which encodes multiple path expressions using a single NFA and can provide 
tremendous performance improvements. After filtering, an event containing a set of k-
tuple data (k is the number of parameters that need to be bound for a message of 
interest) will be returned. 

We do not use the XPath engine (which is adopted by work [22]) to extract 
message contents for the following reasons: First, as stated by Charfi [16], using 
XPath engine to navigate xml document is time-consuming. Second, if a message has 
multiple parameters to bind, it will be evaluated more than once, making the 
extraction more time-consuming. Finally, the extracted data elements may not 
preserve the same relation as in the original message after filtering. 
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Fig. 5. Monitoring Model of Par-BCL 

For instance, to evaluate senseCar message (see Fig.2) with binding clause 
“binding <$car, $park> with ($msg//carID, $msg//parkID)”, if data values inside 
$msg are extracted respectively, {c1,c2,c3} will be returned for XPath expression 
“$msg//carID”, and {p1, p2} will be returned for “$msg//parkID”. Based on {c1,c2,c3} 
and {p1,p2}, it is difficult to maintain the same relation of ci and pi as in the original 
message. While using the path sharing approach proposed in [15], we can easily 
preserve the relation of different elements. After filtering, the set of k-tuple data {<c1, 
p1>, <c2, p2>, <c3, p2>} can be correctly returned. Note that, here we simplify the 
representation of k-tuple data by hiding its parameter name, e.g., <c1, p1> means < 
(car, c1), (park, p1)>. 

4.2 Parameter Binding 

After filtering, the events will construct a parametric trace. Our approach to 
monitoring parametric trace against data-centric properties is inspired by the 
observation of Chen and Rosu that “each parametric trace actually contains multiple 
non-parametric trace slices, each for a particular parameter binding instance” [18]. 
Whenever a parameter is bound more than once in a trace (by the same or different 
events), the parameter is not rebound to a new set of data. Rather, this step checks, for 
each group of old data that the parameter bound before, whether there is data in the 
new binding which is equal to the old one. If this is not the case, the new event 
symbol is ignored for this particular trace. 

Note that, different from [18][19], as we concentrate on the dataflow across 
different partner services, the parameter binding instance of a sub-trace can be 
changed to include more binding values. More details about this will be introduced in 
Section 5. 

4.3 Verification 

The verification mechanism checks whether each sub-trace obtained after parameter 
binding violates the specified property. As sub-trace has already no parameter 
information, this step is the same as the ordinary propositional event pattern 
matching. To enable automated online monitoring, we formally define the semantics 
of tracecut, pattern and range operators using automata. Details about how to validate 
SPS based Web services properties can be found in [7].  
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5 Efficient Monitoring Process 

As mentioned above, matches with different parameter bindings should be 
independent of each other. This means that a separate monitor instance is required for 
each possible parameter bindings. At runtime, hundreds of thousands of monitor 
instances will be generated. Monitoring such properties efficiently is a non-trivial 
issue. We proposed an efficient monitoring process. The basic idea is to divide the 
parameter binding instances of step 2 according to different parameter combinations. 
We build a parameter state machine to compute all parameter combinations and 
maintain their association. Then each state in the parameter state machine will contain 
lots of monitor instances that share the same parameters but with different binding 
values. When receiving an event, our monitoring process first locates the states that 
need to be updated in the parameter state machine. Then for each state, indexing 
mechanism is adopted to locate monitor instances that need to be updated quickly. 
Note that, to enable online monitoring, besides the parameter binding value, each 
monitor instance also records the active state in the behavior automata. In the 
following, we detail our efficient monitoring approach to reduce runtime overhead. 

  

Algorithm 1 – Compute parameter set

Initialization: paraSet (s)          for any state s S

Function main ()
begin

1:    compute_parameter_combination (s0);
end
Function compute _parameter_combination (s)
begin

2:    foreach defined transition s’ = (s, e) do
3:         if paraSet (s) =      then
4: temp     {parameter(e)}
5:         else
6: temp {q    {parameter(e)}| q in paraSet (s)}
7:         end if
8:         if paraSet (s’) paraSet (s’)    temp then
9:             paraSet (s’)    paraSet (s’)     temp;
10:            compute_parameter_combination (s’);
11:        end if
12:   end for
end

← Φ ∈

δ

∪

⊂ ∪
← ∪
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←

←
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(b)

key parameter state list

 

       Fig. 6. Compute Parameter Set          Fig. 7. Example of PSM and Index table 

5.1 Parameter State Machine 

To find all possible parameter combinations, our approach fully utilizes the specified 
properties through static analysis of the monitored property. By traversing the 
constructed behavior automata, we build a Parameter State Machine (PSM), in 
which each parameter state stores one possible parameter combination, except the 
initial state with null value. The transition between parameter states is triggered by 
event symbol. Thus PSM describes the possible dataflow for a specified property. 

To build a corresponding PSM, we maintain a parameter set for each state in the 
constructed behavior automata [7]. Parameter set stores the possible parameter 
combinations that can appear at specified state. Fig.6 shows the algorithm of 
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computing parameter set for each state. The condition “if enable(s’)  enable (s’)  
temp” ensures that we only call the recursive step on line 8, if new possible parameter 
combination can be added. After that, we construct a PSM by traversing each state 
again and merging the same parameter combination into a separate parameter state. 
Fig.7 (a) gives an example of parameter state machine of property 1. 

To locate parameter states that need to be updated quickly, based on constructed 
PSM, we further build an index table which uses event symbol as key, and returns a 
parameter state list. Fig.7 (b) gives the indexing according to constructed PSM. 

5.2 Monitor Instance 

At runtime, each parameter state may contain a large number of monitor instances, 
making it time-consuming to locate monitor instances that needs to be updated. To 
locate monitor instances efficiently, we use the partition technique proposed by 
Avgustinov et al. [20] for indexing monitor instances. Generally, for each parameter 
state, the strategy for choosing index parameters is found by intersecting the 
corresponding parameter set with the parameters that event binds to benefit as many 
outgoing transition as possible. For example, to parameter state {car,park} in Fig.7(a), 
the set of parameters that can be used as index is found by intersecting {car, park} 
with {car} and {car,park} (for event againt_enter and depart respectively). Therefore, 
monitor instances at this state would be indexed by their binding for car. If the result of 
intersection is null, we can mark some event as “frequent”, and repeat above process 
by just use of the “frequent” event to find parameters that can be indexed. 

5.3 Monitoring Algorithm 

Using proposed static parameter state indexing and dynamic monitor instance 
indexing mechanism, we present an efficient monitoring algorithm (see Fig. 8).  

For a received event <e,d>, firstly, function query_ parameter_state (line 1) will 
query the index table of parameter state using e as a key, which returns a list of 
parameter states that needs to be updated. For each data element u in d, the algorithm 
traverses all possible parameter state s and computes next state s’ when e occurs (line 
2-4). If s is initial state and e is a start event, it will create a new monitor instance and 
the active state is updated according to behavior automata (line 5-8). When a violation 
state is entered, an ERROR_EVENT_BINDING exception will be thrown (line 10). 

If s is not the initial state, function look_up uses internal index tree to locate all 
monitor instances that are associated with data element u (line 15). If s is not 
transferred to a new state s’(s=s’), then for each monitor instance β, its active state 
will be updated according to the behavior automata (line 17). If a new parameter state 
s’ is entered, the binding value and active state of β will be updated (line 19-20). After 
that, the instance will be appended to the monitor instance list that the monitor of state 
s’ manages and removed from state s at the same time (line 21-22). Then the 
algorithm will check the active state of β. If a violation state is entered, an 
ERROR_EVENT_ BINDING exception will be thrown (line 25).  
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Algorithm 2 – Locate and update monitor instances

Input:  e: event symbol, d: set of k-tuple data
begin:

1:    List states      query_ parameter_state (e);
2:    foreach data u in d do
3:        foreach parameter state s in states do
4:             s’ s. transition (e);
5: if (s is initial state and e is a start event) then
6:                 create monitor instance m;
7:                 m.binding_value u;
8:                 update active state of m according to behavior automata;
9:                 if active state is violation state then
10:                     throw ERROR_EVENT_BINDING;
11:                else
12:                     add m to the monitor instance list of s’;
13:                end if
14:           else
15:                foreach monitor instance β in s.lookup (u) do
16:                     if (s’ = s)  then
17:                          update active state of β according to behavior automata;
18:                     else          
19:                          β.binding_value β.binding_value u ;
20:                          update active state of β according to behavior automata;
21:                          remove β to the monitor instance list of s; 
22:                          add β to the monitor instance list of s’;
23:                     end if
24: if active state is violated then
25:                          throw ERROR_EVENT_BINDING;
26:                     end if
27:                end for
28: end if
29: end for 
30:   end for

end

←

←

← ∪

←

 

Fig. 8. Locate and update monitor instance 

However, the monitor needs to further decide whether the specified property is 
violated. For the universal quantifier, if any monitor instance enters into a violation 
state, the property is violated. For the existential quantifier, our approach maintains a 
bit vector to record whether the monitor instance created by a start event is violated. 
Each monitor instance makes a reference to the corresponding entry in the bit vector. 
When a monitor instance needs to bind more parameters (i.e., a new monitor instance 
is generated and the old monitor instance is deleted), the reference will also be 
modified. At runtime, if all monitor instances that the bit vector represents enter into 
the violation states, the specified property is violated. 

Note that, during the phase of building index for parameter state, when a new state 
is needed to add, it should be inserted into the head of list. Thus we ensure the 
monitor instances are updated correctly. For example, consider the following 
situation: when an event <e, {(v=1, i=2)}> is received, according to the parameter 
state list of event e (see Fig.9), monitors of state {u, v} and {u, v, i} are both needed 
to update. However, if the monitor of {u, v} is updated first, according to the 
algorithm, it can cause the creation of new monitor instance <u=3, v=1, i=2>. When 
the monitor of {u, v, i} is updated, the new monitor instance <u=3, v=1, i=2> created 
by the monitor of {u, v} will be updated again, which can incur wrong result. 
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5.4 Management of Monitor Instances 

Another performance-related concern in our proposal is the memory overhead. As 
stated above, a large number of monitor instances will co-exist at runtime and become 
very large in the end. However, monitor instances can be no longer used when it is 
transferred to the new parameter state. To avoid memory leak, the data structure of 
monitor instance list should be carefully designed further. 

We use an array structure to store monitor instances, as shown in Table 1. To 
manage these monitor instances, a new column pointer is introduced for each monitor 
instance. Using this index, a free list is maintained, as shown in Table 1. Initially, the list is 
traversed sequentially and the index of each element is assigned with the subscript value of 
next element. The head of free list is assigned with 0, the subscript of first element. With 
free list, new monitor instance can be created by visiting the head of this list and allocating 
corresponding entry to it. When the monitor instance is no longer used, it is inserted into 
the head of free list. 

{u,v} {u,v,i}
e e

id1 u= 3, v =1 3 …

… … … …

id1 u=5, v=2, i =3 4 …

… … … …

 

Fig. 9. Segment of a PSM 

Table 1. Monitor instances llist 

parameter binding active state

u = 1, v = 2

u = 2, v = 3

3

4

… …

pointer

1

2

…

free

0

 

6 Architecture and Implementation 

In the previous section, we elaborate the design of proposed Par-BCL language. To 
monitor data-centric properties, we present an implementation of runtime framework 
through an aspect oriented extension to WS-BPEL engine. In this solution, business 
process logic and properties are defined and treated separately, since we advocate 
separation of concerns, which facilitates both the process design and later 
management. Fig.10 shows its overall architecture based on our developed 
OnceBPEL engine [21]. Similar extensions can be considered for other engines. In 
what follows, we describe the core components: 

Aspect Manager. It represents the main advice that is weaved into the execution 
environment. As the implementation of WS-BPEL engine revolves around the 
runtime visitor design pattern and it also maintains an internal AST (abstract syntax 
tree), after a thorough study, we define our pointcuts (using AspectJ) as (1) after the 
engine visits a Receive node; (2) before and after it visits an Invoke node; (3) after it 
visits a Pick node and (4) before it visits a Reply node, to capture the message 
interaction between the process and partner services. After weaving, this component 
has direct access to the context information of current activity. 
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Configuration Manager. It’s a persistent component in which we store the basic 
description information about the property, such as the events of interest, the binding 
clause, and optional filtering condition. At runtime, the aspect manager will query this 
component to extract the property-relevant events and send it to monitor manager. 

Interpreter

Parser

Monitor Manager

BPEL Engine

AST

AOP

Configuration Manager

event

Runtime Aspect
Extension 

Pattern & Range
FSA library

monitor 
instances

parameter 
state machine

Aspect 
Manager
(AspectJ)

Filtering

 

Fig. 10. Overall Architecture 

Monitor Manager. This module constructs corresponding behavior automata when a 
property is deployed. As a side-effect, PSM will be constructed. Based on PSM, 
parameter state index is further built. After message filtering, an event containing the 
identifier ($processid) of process instance that produces it will be sent to the monitor 
manager, which then executes the algorithm provided in section 4 to locate all relevant 
monitor instances efficiently. 

Note that, for inter-proc properties, one PSM is maintained to track dataflow across 
different process instances. For intra-proc properties, as it only checks dataflow 
within individual process instance, one PSM is generated for each monitored process 
instance. However, in order to unify the monitoring approach, for intra-proc 
properties, we choose $processid as an additive index for each parameter state. As a 
result, only one PSM is enough to monitor intra-proc properties.  

7 Experiments 

To evaluate the feasibility and effectiveness of the proposed parametric monitoring 
approach, we conducted several initial experiments. 

In [22], Hallé and Villemaire proposed an online monitoring algorithm to check 
temporal properties with data parameterization. To compare with their work, in the 
first experiment, the processing time per message required by Par-BCL and LTL-
FO+ is measured. We implemented the monitoring algorithm in [22]. By traversing 
possible execution paths of property 1, we used a simulator to generate 50 traces of 
length ranging from 10 to 1000 events, respectively. Each event manipulates 20 cars 
from a pool of 5000 possible car IDs and 1 park from 250 park IDs. The experiments 
were run on Windows XP with P4 2.53 GHZ and 1GB RAM. 

Fig.11 shows the processing time per message of two algorithms for various trace 
lengths. It indicates that our algorithm to process each message has lower overhead. 
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The processing time is under 0.3 ms using our algorithm, while the time is about 3ms 
using the algorithm in [22]. The main reason is that in our work, the behavior 
automata is constructed completely when the property is deployed, while in [22], the 
automata is computed and generated at runtime. Also, using our monitoring 
algorithm, the length of event trace has no impact on the performance as the adoption 
of index. However, using non-optimized algorithm in [22], processing time per 
message grows with the increase of trace length, as a large number of “monitor 
instances” will be generated, making it time-consuming to locate monitor instances. 

The first experiment mainly evaluated the performance of proposed monitoring 
algorithm. To evaluate the overall overhead incurred by monitoring during the 
process execution, in second experiment, we use CarRental system as a case study, in 
which properties 1-2 were deployed. CarRequest and CarReturn processes were 
deployed at a Windows server 2003 with P4 2.8 GHZ and 2GB RAM. Three Web 
services were implemented to simulate the functionality of partner services. They 
were deployed at Windows XP with P4 2.8 GHZ and 500MB RAM. 

      

               Fig. 11. Property 1                             Fig. 12. Execution time 

We measured the average execution time for different concurrent process instances 
within two configurations. Fig.12 shows the average execution time of process 
CarRequest. The first column in each set shows the process execution time without 
plug-in the runtime aspect extension module. The second column shows the process 
execution time when the properties were deployed. Clearly, the overhead due to 
monitoring is very low. The average execution time of CarRequest process under 
being monitored is only around 3% higher. Obviously, the results are affected by the 
scalability of the WS-BPEL engine itself. We can see that the execution time grows 
linearly with the number of concurrent process instances. 

8 Related Work 

As far as we know, the work done by Hallé and Villemaire [9][22] is most similar to 
ours. Hallé and Villemaire presented LTL-FO+, an extension to LTL that includes 
first order quantification over the message data. Although LTL-FO+ allows 
unrestricted use of universal and existential quantifier with message contents and Par-
BCL only allows quantification outside the property operator for consideration of 
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efficient monitoring, we find that all properties listed in the work [9][22] can be 
expressed in Par-BCL. We intend to investigate and compare the expressive power of 
LTL-FO+ and Par-BCL, our hypothesis is that two languages has the equal power. In 
addition, Par-BCL can preserve the relationship of multiple data elements after 
filtering and track dataflow across different process instances. Both these are not 
considered by LTL-FO+. Besides above mentioned differences, the approach 
proposed by Hallé and Villemaire is mainly used for client-side monitoring [9], and 
they do not consider the optimization of the monitoring process.  

In [23], we propose an approach to monitor data-centric properties. This paper 
proposes new index mechanism and monitoring algorithm to locate monitor instances 
more efficiently. In addition, we modify Par-BCL notation (especially binding 
clause) to make it intuitive to express data-centric properties. Also, a new filtering 
mechanism based on path sharing approach [15] is adopted.  

There is some work which aims to generate feasible trace monitor used with 
object-oriented languages [17][20]. To deal with parameter bindings, Tracematch [20] 
and JavaMOP [17] both use multi-level trees for indexing, but they differ in structure 
of the trees. Tracematch system has a tree for each automaton state, and the leaves of 
each tree are variable bindings associated with that state. In contrast, JavaMOP has a 
tree structure for each symbol, and the leaves of the tree hold sets of monitor instance.  

Inspired by JavaMOP, we propose an efficient monitoring approach for data-
centric Web services properties. Our optimization mechanism also makes use of the 
knowledge about properties. However, different from using enable set for each event 
in [19], we construct a parameterized state machine from the behavior automaton and 
combined two indexing mechanisms to locate monitor instances efficiently. 

9 Conclusion 

In this paper, we have proposed an efficient online monitoring approach to 
dynamically analyze service-based system involving multiple participants. We plan to 
conduct more experiments to further check the feasibility of our approach in the 
future work. 
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Developing reliable multithreaded software is notoriously difficult, due to the
potential for unexpected interference between concurrent threads. Even a famil-
iar construct such as “x++” has unfamiliar semantics in a multithreaded setting,
where it must in general be considered a non-atomic read-modify-write sequence,
rather than a simple atomic increment. Understanding where thread interference
may occur is a critical first step in understanding or validating a multithreaded
software system.

Much prior work has addressed this problem, mostly focused on verifying the
correctness properties of race-freedom and atomicity (see, for example,
[6,13,10,3,4,1,9,11,7,14,15,8,5]). Race-freedom guarantees that software running
on relaxed memory hardware behaves as if running on sequentially consistent
hardware [2]. Atomicity guarantees that a program behaves as if each atomic
block executes serially, without interleaved steps of concurrent threads. Unfor-
tunately, neither approach is entirely sufficient for ensuring the absence of unin-
tended thread interference.

We propose an alternative approach whereby all thread interference must
be specified with explicit yield annotations. For example, if multiple threads
intentionally access a shared variable x concurrently, then the above increment
operation would need to rewritten as “int t=x; yield; x=t+1” to explicate
the potential interference.

These yield annotations enable us to decompose the hard problem of reasoning
about multithreaded program correctness into two simpler subproblems:

– Cooperative correctness: Is the program correct when run under a coop-
erative scheduler that context switches only at yield annotations?

– Cooperative-preemptive equivalence: Does the program exhibit the
same behavior under a cooperative scheduler as it would under a traditional
preemptive scheduler that can context switch at any program point?

A key benefit of this decomposition is that cooperative-preemptive equivalence
can be mechanically verified, for example, via a static type and effect system
that reasons about synchronization, locking, and commuting operations [17,16].
Alternatively, cooperative-preemptive equivalence can be verified dynamically
by showing that the transactional happens-before relation for each observed
trace is acyclic (where a transaction is the code between two successive yield
annotations) [18].

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 342–344, 2012.
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The remaining subproblem of cooperative correctness is significantly more
tractable than the original problem of preemptive correctness. In particular,
cooperative scheduling provides an appealing concurrency semantics with the
following desirable properties:

– Sequential reasoning is correct by default (in the absence of yield annota-
tions), and so for example “x++” is always an atomic increment operation.

– Thread interference is always highlighted with yields, which remind the pro-
grammer to allow for the effects of interleaved concurrent threads.

Experimental results on a standard benchmark suite show that surprisingly few
yield annotations are required—only 13 yields per thousand lines of code [16].
In addition, a preliminary user study showed that the presence of these yield
annotations produced a statistically significant improvement in the ability of
programmers to identify concurrent defects during code reviews [12]. These ex-
perimental results suggest that cooperative concurrency is a promising founda-
tion for the development of reliable multithreaded software.
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Abstract. The robustness of software systems is adversely affected by program-
ming errors and security exploits that corrupt heap data structures. In this paper,
we present the design and implementation of TxMon, a system to detect such data
structure corruptions. TxMon leverages the concurrency control machinery im-
plemented by hardware transactional memory (HTM) systems to additionally en-
force programmer-specified consistency properties on data structures at runtime.
We implemented a prototype version of TxMon using an HTM system (LogTM-
SE) and studied the feasibility of applying TxMon to enforce data structure con-
sistency properties on several benchmarks. Our experiments show that TxMon is
effective at monitoring data structure properties, imposing tolerable runtime per-
formance overheads.

Keywords: Data structure properties, Hardware transactional memory.

1 Introduction

Modern software systems manage a vast amount of data on the heap. Programming
errors in such software systems can lead to data structure corruptions that adversely
affect their robustness. These errors may result in data structures that violate well-
accepted correctness criteria (e.g., dangling pointer errors and heap metadata corrup-
tions) or application-specific data structure consistency properties. Such programming
errors are often hard to debug because their effect is delayed, e.g., a dangling pointer
error does not result in a crash until the pointer in question is dereferenced.

In this paper, we present the design and evaluation of TxMon, a system that uses
hardware transactional memory (HTM) [18,20] to detect data structure corruptions.
HTM systems (e.g., [26,23,16,9,10,14]) provide a set of mechanisms in hardware and
software to support memory transactions, and have been proposed as a mechanism to
ease the development of parallel programs. To use transactional memory for concur-
rency control, programmers use instructions provided by the hardware to demarcate
critical sections in a program. The HTM system speculatively executes transactions,
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and ensures that the memory operations performed within these transactions are atomic,
i.e., they appear to execute in their entirety or not at all, and isolated, i.e., their effects are
not visible to other concurrently-executing threads until the transaction completes. By
ensuring these properties, the HTM system allows transactions to synchronize access to
shared data structures.

TxMon is based upon the insight that the mechanisms in HTM systems to imple-
ment transactions can also be used to detect data structure corruptions. HTM systems
maintain bookkeeping information to track the set of memory locations accessed by
each transaction. For example, in the LogTM-SE HTM system [26], speculative val-
ues computed by the transaction are written to memory, and the original values at these
memory locations are stored in a per-thread transaction log, which is used to restore the
contents of memory if the transaction aborts as the result of a race condition. Similar
bookkeeping information is also available in other HTM systems [23,16,9,14,10].

TxMon interposes on the standard workflow of an HTM system to monitor data
structure properties. It inspects the HTM system’s bookkeeping information to iden-
tify data structures that were modified during a transaction and automatically triggers
callbacks that check properties of these data structures, which can include both well-
accepted correctness conditions as well as application-specific assertions. We show that
in HTM systems that expose their bookkeeping information to software, e.g., LogTM-
SE and Rock [10]1, TxMon can be implemented with no hardware modifications. This
ensures that applications on these platforms can readily benefit from TxMon.

Contributions. To sum up, this paper makes the following contributions:

(1) Design of TxMon. We present the design of TxMon, which uses the concurrency
control machinery implemented in HTM systems to monitor data structure properties.
Among the key features in the design of TxMon are address maps, which are a rep-
resentation of complex data structures. We also present a novel technique to update
address maps as the data structures that they represent are modified.

(2) Implementation in LogTM-SE. We implemented a prototype of TxMon by lever-
aging the LogTM-SE HTM system. Because LogTM-SE exposes transaction logs to
software, our implementation required no modifications to the HTM system.

(3) Evaluation of TxMon. We used TxMon to monitor data structure properties on
multi-threaded benchmarks from the Splash-2 suite [25], and two real-world applica-
tions, namely ClamAV and Memcached. Our evaluation shows that TxMon is effective
at monitoring complex properties and that it imposes an acceptable runtime overhead.

More broadly, TxMon demonstrates that transactional memory hardware can provide
additional benefits beyond providing concurrency control. There is still a debate in the
community about the correct abstraction to ease parallel programming. In the long term,
additional benefits of HTM systems as demonstrated by TxMon and similar recent and
ongoing efforts [11,12,7,17,19] can serve as the catalyst that will lead to more research
on transactions and their adoption by hardware and software vendors.

1 We reference Rock although it is abandoned now (for economic reasons) because its design
substantially resembles LogTM-SE, which we used for our prototype implementation.
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(1) struct item { ...
(2) rel time t time; //last access time
(3) unsigned refcount; //reference count
(4) struct item *next, *prev; ...
(5) };
(6) struct item *heads[255], *tails[255];
(7) process get command (key) { ...
(8) struct item *it = search(key);
(9) if (it) {
(10) it->refcount++;
(11) it->time = curr time;
(12) move to head(it);
(13) } ...
(14) return it;
(15) }
(16) process add command (key, value) { ...
(17) struct item *it = alloc item(key, value);
(18) ...
(19) }

Fig. 1. Motivating example. This figure shows a simplified code snippet from Memcached.

2 Motivation and Overview

We use the example in Figure 1 to motivate the key requirements that a data struc-
ture monitor must satisfy, and then illustrate how TxMon satisfies these requirements.
The snippet in Figure 1 is a simplified version of code drawn from Memcached [2], a
distributed object caching server that has been adapted by Web services such as Live-
journal, Slashdot and Wikipedia.

Memcached is a multi-threaded server that stores key/value pairs. Clients can invoke
commands on the server to perform a variety of functionalities, such as fetching the
value corresponding to a key, adding a new key/value pair, deleting an existing pair,
and so on. Figure 1 shows snippets from the implementation of two such commands
that fetch and add key/value pairs. Each key/value pair is stored in exactly one of 255
doubly-linked lists depending upon the size of the value. The arrays heads and tails
store pointers to the heads and tails of these lists. Each element of these lists includes a
timestamp field, which denotes the last access time (get or set) of an item, and a refer-
ence count field, which stores the number of active clients that are currently accessing
that item.

As an object caching system, Memcached employs several complex policies to de-
cide which key/value pairs to cache on the server, and how to organize these pairs in
its linked lists. The code of process get command in Figure 1 depicts one such
policy, which ensures that the most recently accessed object is placed at the head of the
corresponding list. This property allows Memcached to employ a variant of the LRU
algorithm2 to evict items from the cache.

Even for this simple eviction policy to work correctly, several data structure proper-
ties must hold. First, all modifications to the linked lists must ensure that the items of
each list are sorted in order of their access times. Second, it must ensure that the heads

2 The actual eviction policy considers reference counts, access times, and other fields of item
objects to decide upon a victim.
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of linked lists are reachable from tails, and vice versa. Failure to ensure these data struc-
ture properties can result in incorrect operation. In particular, Memcached searches for
victims from the tails of linked lists. If the first property fails to hold, the choice of the
resulting victim will violate the LRU policy. Similarly, if the second property fails to
hold, the eviction algorithm may not explore all elements in a linked list.

However, Memcached has a large code base and could contain programming errors;
indeed the defect history of Memcached [1] shows over a hundred reports since October
2008. These programming errors could corrupt Memcached’s data structures, which in
turn may cause the server to malfunction. These errors may not manifest during testing,
and deployed code can malfunction when these errors are encountered in the field. In
fact, a recent version of Memcached contained an error that failed to decrement refer-
ence counts of items properly, thereby leading to memory leaks under rare conditions
(because objects with non-zero reference counts are not reclaimed). Such errors can be
detected using a framework to monitor data structures. For example, this framework
could ensure that linked lists that are modified by a client continue to satisfy the sort-
edness property. It could also track “old” items with non-zero reference counts, thereby
identifying items that leak.

This example motivates four design requirements for a data structure monitor:

(1) Ability to monitor complex data structures. Verifying properties of a complex data
structure may require traversing the data structure. For instance, in the example above,
ensuring that the list at heads[i] is sorted involves traversing it fully.

(2) Extensibility. In Memcached, a programmer may wish to verify that the list
heads[i] is doubly-linked, in addition to verifying sortedness of the list. The mon-
itor must be extensible, and allow the programmer to supply a checker for additional
properties.

(3) Applicability to low-level code. Data structure corruptions are common in applica-
tions written in low-level memory-unsafe languages, such as C and C++. The monitor
must therefore be applicable to programs written in such languages as well.

(4) Low runtime overhead. To monitor data structure properties in deployed software,
the monitor must ideally be an “always-on” tool, and must impose an acceptable run-
time performance overhead.

As we show in Section 4, TxMon satisfies all four requirements. To motivate how Tx-
Mon monitors data structure properties, consider an approach in which a program-
mer inlines checks at key locations in the program. For example, to ensure that the
linked lists in Memcached are sorted by access time, the code snippet in Figure 1
can include inline checks to ensure this property as a post-condition of the functions
move to head and alloc item (which also adds elements to linked lists). Al-
though apparently simple, an approach that inlines checks must overcome two chal-
lenges. First, appropriate data structure checks must be placed at locations where key
data structures (e.g., the linked lists in Memcached) are accessed. This requires the
programmer to identify all such locations in the program and to identify the set of data
structure checks that must be triggered at each of those locations. Identifying data struc-
tures accessed can be challenging, especially in the presence of pointer aliasing. This
problem is exacerbated as software evolves, because data structure checks must also
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(1) struct item { ... Implementation of TxMon’s monitor
(2) rel time t time;//last access time (m1) txmon entry (void) {
(3) unsigned refcount;//reference count (m2) retval = true;

(4) struct item *next, *prev; ... (m3) accset = Get accessed memory locations from HTM;

(5) }; (m4) for (each addr ∈ accset)

(6) struct item *heads[255], *tails[255]; (m5) for (each ds ∈ registered data structures)

(7) process get command (key) { (m6) if (addr ∈ address map(ds))

(8) transaction (txmon entry) { ... (m7) retval &= value returned by callback for ds;

(9) struct item *it = search(key); (m8) if (!retval) invoke transaction abort;

(10) if (it) { (m9) }
(11) it->refcount++; (m10) void register ds (void *dsptr, void *cback, ...) {
(12) it->time = curr time; (m11) // register cback as checking callback for dsptr

(13) move to head(it); (m12) // optionally register arguments for the callback

(14) } ... (m13) }
(15) } (m14) bool check sort (struct item *hd) {
(16) return it; (m15) if (list not sorted by item->time) return false;

(17) } (m16) /* update address map(hd) */

(18) process add command (key, value) { (m17) for (it = hd; it �= NULL; it = it->next) {
(19) transaction (txmon entry) { ... (m18) add &(it->next), &(it->prev) and &(it->time)

(20) struct item *it = to address map(&hd);

(21) alloc item(key, value); ... (m19) return true;

(22) } (m20) }
(23) }
(24) //Server initialization code

(25) for (i = 0; i < 255; i++) {
(26) register ds(&heads[i],

check sort, &heads[i]);;
(27) initialize address map(&heads[i])
(28) }

Fig. 2. Using TxMon. Code snippet from Figure 1 modified to use TxMon to monitor the lists
headed at heads[0], ..., heads[254]. Lines m1-m13 are part of the TxMon monitor. The
lines in bold-faced font show the code that a programmer must add.

be modified to reflect changes in the program. Second, in multi-threaded software, the
placement of checks must avoid time-of-check to time-of-use errors (race conditions),
in which a concurrently-executing thread may modify a data structure in the interval
between property verification and use of the data structure.

The TxMon system developed in this paper eases the task of placing such data struc-
ture checks in the program. Rather than requiring a programmer to manually inline
checks, TxMon instead requires code that manipulates key data structures to be embed-
ded in transactions. In Figure 2 for instance, all operations on the linked lists with heads
in the array heads[] happen within transactions. In multi-threaded code that uses
transactional memory for synchronization, such transactions will naturally be placed
around code that manipulates shared data structures. However, TxMon also applies to
single-threaded programs. In such cases, transactions must be placed around the code
where data structures are updated. In both cases, TxMon triggers property checks on
data structures that were modified when the transaction completes execution.

In addition to placing transactions, the programmer has three key responsibilities:

(1) Register data structures to be monitored. The programmer must use an API sup-
plied by TxMon to register data structures that must be monitored. In Figure 2, the
register ds calls placed in the initialization code of Memcached notify TxMon
that the lists headed by heads[] are data structures that must be monitored.
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(2) Supply address maps. The programmer must supply an address map for each regis-
tered data structure. The address map is an abstraction that stores the set of all memory
addresses associated with that data structure. We defer an overview of how address
maps are computed and maintained to Section 4.3.

(3) Supply checker callbacks. The programmer specifies the properties to be verified
in checker callbacks associated with each data structure. TxMon ensures that if a data
structure is modified in a transaction, then the corresponding callback executes at the
end of the transaction and verifies that the data structure’s properties hold. In Figure 2,
the same checker callback (check sort) is associated with each of the 255 linked
lists. This function checks the property that these lists are sorted by last access time.

Upon completion of a transaction, control transfers to the entrypoint of TxMon’s data
structure monitor. As shown in Figure 2, the entrypoint (txmon entry) is a func-
tion pointer that is registered using an argument to the transaction{. . .} keyword.
TxMon obtains the set of memory locations accessed by the transactions from the
bookkeeping information maintained by the HTM system—in our implementation, we
obtain these locations from the transaction’s undo log (see Section 3). TxMon’s data
structure monitor determines whether the memory addresses accessed during the trans-
action are also contained in the address maps of any of the data structures registered
with it. If so, it triggers the checker callback associated with the corresponding data
structure, which verifies the properties of that data structure.

The key point to note is that unlike the approach that inlines data structure checks, the
programmer need not specify which checker callbacks must be invoked at the end of a
transaction. Rather, TxMon uses the HTM system’s bookkeeping information (i.e., the
undo log) to infer which callbacks must be invoked.

3 HTM Systems

In this section, we provide background on hardware transactional memory, focusing on
the features relevant to the design of TxMon. HTM systems typically extend hardware
instruction sets with new primitives that define the start (begin tx) and end of trans-
actions (end tx). They ensure atomicity and isolation for all executing transactions,
but vary widely in how they do so [20]. Nevertheless, all HTM systems implement
mechanisms for conflict detection and version management.

Conflict detection mechanisms allow the HTM system to detect race conditions be-
tween concurrently executing transactions. An HTM system detect conflicts by inter-
secting the memory locations read/written by a transaction with those of other in-flight
transactions. If a conflict is detected, the HTM must abort at least one conflicting trans-
action. Version management mechanisms allow the HTM system to record the set of
data modifications made by a transaction. When a transaction is committed (or aborted),
the HTM system consults the version manager to commit (or discard) the changes made
by the transaction. For instance, LogTM-SE logs the old values of the memory locations
modified by a transaction (in a per-transaction log), and uses the log to restore memory
if the transaction aborts.

Both the conflict detection and version management mechanisms of an HTM system
thus maintain a record of the memory locations modified by a transaction. TxMon can
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use the information from either mechanism to trigger data structure checks. However,
in this paper, we focus on a system design that obtains memory access information from
the version management mechanism of an HTM system. Our choice was motivated by
the observation that HTM systems often store more precise version management infor-
mation than they do conflict detection information. This is because conflict detection
mechanisms need only conservatively determine if two transactions are in conflict. A
false conflict wrongly aborts a transaction, but does not affect the correctness of the
system. In turn, this allows HTM systems to maintain read/write sets using fixed-size
hardware structures, such as Bloom filters, which over-approximate the set of memory
locations accessed by a transaction.

In contrast, version management information is used to determine the values of mem-
ory locations at the end of a transaction (either upon a commit or an abort), and must
therefore be precise. Precision is important because it affects the performance of Tx-
Mon. If TxMon leverages imprecise read/write sets to identify the set of memory lo-
cations accessed by a transaction, it may trigger checks on data structures that were
not otherwise accessed within the transaction. In turn, the execution of these additional
checks may result in poor performance and spurious reports of failed data structure
checks. Indeed, a preliminary design of TxMon that relied on a Bloom filter implemen-
tation of read/write sets had overheads in excess of 800% on the benchmarks reported
in Section 5.

Our prototype implementation of TxMon, described in the following section, uses
LogTM-SE [26]. This HTM system implements read/write sets as Bloom filters, uses
a software-accessible undo log for version management, and allows transactions of un-
bounded length. Because version management information is accessible from software,
LogTM-SE offers the additional benefit of allowing TxMon to be implemented without
any hardware modifications.

4 Design and Implementation

TxMon enforces data structure properties by interposing on the standard workflow of
an HTM system, as shown in Figure 3. In a standard HTM system, a transaction that
has completed execution is passed to the conflict detection module, which determines
whether to commit or abort the transaction. Our modifications to the HTM system’s
workflow ensure that TxMon’s data structure monitor is first invoked upon the comple-
tion of the transaction.

The data structure monitor, which is implemented in software, verifies properties of
the data structures that were accessed in the transaction. To identify the data structures
accessed in the transaction, the monitor consults the transaction’s undo log, which is
stored in software. If the monitor returns successfully, it passes control to the conflict
detection module, which then proceeds as before. If the monitor detects a data struc-
ture that violates a programmer-specified property, it invokes the HTM’s mechanisms
to abort the transaction. Thus, a transaction is committed only if it does not conflict
with other transactions and the data structures that it modifies satisfy all programmer-
specified properties. While TxMon’s data structure monitor is invoked at the end of
transactions by default, it can optionally be triggered at any point during the execution
of a transaction using a function call, e.g., a call to txmon entry. We modified the
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Fig. 3. Workflow of a TxMon-enhanced HTM

transaction{. . .} construct to additionally accept a parameter, which specifies the
entrypoint of TxMon’s data structure monitor, e.g., as shown in Figure 2.

4.1 Implementation in LogTM-SE

We implemented TxMon using the LogTM-SE HTM system. This system is built for
the SPARC architecture, and the HTM hardware has been simulated using the Virtutech
Simics full system simulator. LogTM-SE employs eager conflict detection, i.e., conflicts
between transactions are detected as soon as they happen, and supports nested transac-
tions. LogTM-SE also supports strong atomicity [20], i.e., it can detect conflicting data
accesses even if one of them was generated by non-transactional code.

Our choice of LogTM-SE as the implementation platform was motivated by three
reasons. First, as a practical matter, LogTM-SE is a mature, freely-available, state of
the art HTM system. Rather than building a new HTM system from scratch, using
LogTM-SE allowed us to evaluate what changes would be necessary to an existing
HTM system to monitor data structure properties. Second, LogTM-SE supports trans-
actions of unbounded length. This feature is important for real-world applications, such
as ClamAV and Memcached, in which data structures are modified by complex func-
tions. Third, and most significant, LogTM-SE implements version management using
a software-accessible undo log. Applications that use LogTM-SE transactions allocate
memory for the log in their address space during startup. During execution, LogTM-SE
eagerly updates memory locations modified within each transaction with speculative
values, and checkpoints the original values at these locations within a per-transaction
undo log. The log itself is stored in software, but is updated by the HTM hardware. Tx-
Mon’s data structure monitor, which is implemented in software and is loaded into the
application’s address space, can also access the undo log to obtain the set of memory
locations accessed by the transaction. As a result, we were able to implement TxMon
with no modifications to the proposed LogTM-SE hardware.
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While the design of LogTM-SE eased the implementation of TxMon, it may also be
possible to design TxMon-like monitors for HTM systems that use alternative designs.
For instance, some HTM systems (e.g., [3]) buffer speculative updates and commit them
at the end of the transaction (if there are no conflicts). In such systems, it suffices to ex-
pose the buffer that stores these updates to the data structure monitor. In some cases,
hardware changes may be necessary to expose such state to the monitor (e.g., the addi-
tion of new instructions to the ISA), but we expect that such changes will be relatively
minor.

4.2 TxMon’s Data Structure Monitor

The main responsibility of TxMon’s data structure monitor is to trigger checks to verify
the properties of all data structures accessed by a transaction. At the heart of the monitor
is a table that stores address maps of data structures to be monitored, and the check-
ing callback associated with each data structure. Programmers can register/unregister
data structures to be monitored using an API exported by the monitor (e.g., the func-
tion register ds shown in Figure 2). The address map of a data structure contains
the set of all memory locations of the data structure that are relevant to the property to
be checked. The programmer must also supply the address map of each data structure
(or specify how the address map must be computed) when he registers the data struc-
ture. For the example considered in Section 2 (i.e., verifying the sortedness of the lists
heads[0], . . ., heads[254]) the address map of each of these lists should at least
contain the memory locations of all next, prev and time fields of each struct
item node in the list. This is because any code that mistakenly violates the sortedness
property must modify at least one of these fields of a struct item node.

In our implementation, address maps are implemented using hash tables that store the
set of memory locations in a data structure. When the application invokes the TxMon
monitor, the monitor fetches the set of memory locations accessed by the transaction
from its undo log. It then queries address maps to determine data structures that were
accessed by the application and triggers the callbacks associated with those data struc-
tures. The address map table also stores the arguments to be passed to the callback,
e.g., the argument head[0] is passed to the check sort callback when triggered on
the first linked list in Memcached.

Recall that TxMon’s data structure monitor is triggered via a function call at the end
of a transaction. As a result, the monitor and all the data structure checks that it triggers
execute in the context of the transaction. This feature is useful for:

(1) Detecting concurrent data structure modifications. The property checks triggered
by the monitor may need to traverse the data structures being monitored. In multi-
threaded software, the monitored data structures may be shared, and may be modified
by concurrently executing threads as the property checker traverses them. If the checker
traverses a data structure when it is temporarily in an inconsistent state, it will report
spurious property violations. By executing the property checks in the context of the
transaction itself, TxMon ensures that any concurrent modifications of monitored data
structures by other transactions will conflict with the current transaction. These conflicts
are detected automatically by the HTM system’s machinery, which will then abort one
of the conflicting transactions. The LogTM-SE HTM system can also detect conflicting
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accesses to monitored data structures from non-transactional code because it offers
strong atomicity.

(2) Protecting monitor state. The monitor itself stores address maps, which are shared
data structures. As explained below, address maps may be updated as data structures
evolve. Executing TxMon’s monitor in the context of the transaction ensures that con-
current modifications of monitor state will be identified by the HTM system’s conflict
detection machinery.

4.3 Computing and Maintaining Address Maps

Because the monitor detects accesses to a data structure by comparing the entries in the
undo log to its address map, this map must be updated periodically to reflect changes to
the data structure. For example, the addition of a new node or the deletion of an existing
node in heads[0] must appropriately modify its address map in the TxMon monitor.
One way to achieve this goal is to register/unregister elements of a data structure as they
are allocated/destroyed. In the example shown in Figure 1, this would require the pro-
grammer to register each new item it when it is created in process add command.
However, this approach is impractical for large code bases, because it requires the pro-
grammer to update address maps at several locations in the code.

We alleviate this problem by automating the creation of address maps. During pro-
gram startup, we only require that the heads of data structures be registered with the
TxMon monitor, to indicate which data structures must be monitored. For example, in
Figure 1, the programmer only registers pointers to the heads of each of the 255 linked
lists heads[0], . . ., heads[254].

To create address maps, we leverage the insight that the callback associated with
each data structure must access all its memory addresses that are relevant for the ver-
ification of that property. We can therefore piggyback address map creation with data
structure property verification. To do so, we require the programmer to specify how the
address map of a data structure must be updated within the callback of that data struc-
ture. In Figure 2, code that updates the address maps of the list passed as an argument
to check sort is supplied in lines m16-m18. As this callback executes, TxMon can
update its address map for the data structures visited. The size of the address map is
proportional to the size of the data structure.

The architecture of TxMon allows arbitrary C functions to be registered as call-
backs for a data structure. The programmer can check the data structure specific prop-
erties in these functions e.g. the sortedness property of the linked lists heads[0],. . .,
heads[254]. We have also implemented a library that allows programmers to easily
create checker callbacks for properties inferred by Daikon [13].

5 Evaluation

We evaluated TxMon using two macrobenchmarks, namely Memcached and ClamAV,
and three microbenchmarks from the Splash-2 suite. Figure 4 summarizes the bench-
marks and workloads, and the corresponding data structures and properties monitored.
Our experiments used the default configuration of Simics, which simulates an n-core
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Benchmark Workload #Tx-S #DS #Prop #Tx-D
(1) Memcached-1.4.0 Insert/query 100 pairs 7 255 linked lists 3 500
(2) Clamscan-0.95.2 Scan 356 files 23 engine 22 374
(3) Barnes 16K particles 3 Octree 1 68,819
(4) Radiosity batch 44 Task queues 1 239,949
(5) Raytrace teapot (small image) 10 Task queues 1 47,751

Fig. 4. Summary of benchmarks, workloads, data structures and number of properties monitored.
The “#Tx-S” column shows the number of transactions added to the code of the benchmark,
“#DS” shows the number of data structures monitored, “#Prop” shows the number of properties
enforced, while “#Tx-D” shows the number of transactions executed at runtime.

Version Ops/sec
(1) Unmodified (baseline) 7052
(2) Ported to LogTM-SE (no TxMon) 7066 (1×)
(3) With TxMon enabled 5937 (1.18×)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(4) TxMon/Walking log only 6,615 (1.06×)

Fig. 5. Performance of Memcached

UltraSPARC-III-plus processor running at 75MHz (we varied n for different bench-
marks, as described in the subsections that follow), with n×256MB RAM (i.e., we
scaled memory proportional to the number of available cores), a 32KB instruction
cache, 64KB data cache, and an 8MB L2 cache, running a Solaris 10 operating sys-
tem. We extended Simics with the Wisconsin GEMS suite (version 2.1) to simulate a
LogTM-SE HTM system. Our implementation of TxMon used 1024-bit Bloom filters
to store read/write sets for conflict detection.

5.1 Memcached

This section presents a detailed performance evaluation of TxMon on Memcached. As
discussed earlier, Memcached stores key/value pairs and supports operations such as
inserting new key/value pairs and querying the value associated with a key. We con-
verted Memcached to use transactional memory for synchronization by replacing each
use of lock-based synchronization to use transactions instead. We registered each of the
255 linked lists that it uses to store key/value pairs with the TxMon monitor. We wrote
checkers to enforce the following properties: (a) the tail of each list is reachable from
the head by following next fields; (b) the head of each list is reachable from the tail
by following prev fields; (c) items in each list are stored sorted in decreasing order of
the last access time.

We used Memcached version 1.4.0 for our experiments and ran a workload that in-
serted 100 key/value pairs, and then queried Memcached for the values corresponding
to each of the 100 keys that were just inserted. We measured average performance of
Memcached as it performed these 200 operations. For this benchmark, we used an 8-
core configuration of our Simics testbed, with 4 Memcached server threads processing
requests received from a client thread.



356 S. Butt et al.

As Figure 5 shows, TxMon imposed a moderate (1.18×) overhead as it enforced data
structure properties. We conducted another experiment to better understand the source
of this overhead. We modified TxMon’s data structure monitor to walk the undo log and
fetch the set of memory locations accessed, but did not trigger any data structure checks
using this information. That is, using the monitor shown in Figure 2 as an example, lines
m5-m7 did not execute. Entry (4) of Figure 5 show the performance of Memcached of
this experiment. As this figure shows, the operation of walking the undo log to fetch
addresses imposed an overhead of 1.06×. TxMon cannot avoid this overhead, because
it must read the undo log to decide which data structure checks to trigger.

The cost of performing checks depends on a number of factors, such as the type of
workload, the number and size of the data structures being monitored, and the time-
complexity of performing checks. For instance, the overheads of performing data struc-
ture checks in Memcached increased to 1.37× when the workload was modified to
insert and query 200 key/value pairs and to 1.73× for 500 key/value pairs. As another
example, it may well be that a workload consists of a number of O(1) operations on
Memcached’s linked lists (e.g., modifications to the heads of the lists), but that each
of these operations triggers data structure checks that cost O(n) (e.g., traversal of the
entire list). In such cases, the overhead of TxMon will be significantly higher if data
structure checks are triggered naı̈vely. One way to reduce the overhead is to trigger
checks with a probability 1/p at the end of trasaction, thus data structure checks will
only be triggered once every p modifications to the data structure.

5.2 ClamAV

We evaluated TxMon’s ability to monitor complex data structure properties on Clam-
scan, a command line version of ClamAV. Clamscan uses a virus definition database
to scan a set of input files, and determines if any of these files contain patterns in the
database. Clamscan maintains several data structures to represent the virus definition
database. Clamscan may potentially contain vulnerabilities that can be exploited by
malware to hijack its execution and evade detection (e.g., [4]). It is therefore critical to
protect the integrity of Clamscan’s data structures, such as those that represent the virus
definition database.

We used Clamscan version-0.95.2 with its default virus definition database. We ran
Clamscan on a uniprocessor configuration of our Simics testbed, and used it to scan
the contents of a directory containing 356 files. We modified Clamscan so that code
that accesses critical data structures is embedded in transactions. In all, we modified the
code to place 23 transactions. We identified one critical data structure, called engine
(of type struct cl engine). This data structure has several fields, which store scan
settings, file types to be scanned, and a pointer to an internal representation of the virus
database, stored as a trie, as specified by the Aho-Corasick algorithm [6]. We wrote
checkers for a total of 22 properties for this data structure.

As the Figure 6 shows, TxMon imposes an overhead of 1.03× on Clamscan. Al-
though Clamscan manages several complex data structures that can be expensive to
traverse, the low runtime overhead observed is because most of these data structures
are not modified during normal execution of Clamscan. However, a memory corruption
bug or a security exploit that modifies monitored data structures will trigger TxMon to
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Version Time
(1) Unmodified (baseline) 10.95s
(2) Ported to LogTM-SE (no TxMon) 10.99s (1×)
(3) With TxMon enabled 11.30s (1.03×)

Fig. 6. Performance of Clamscan

Fig. 7. Performance of Splash-2 benchmarks. This figure shows the overhead of a transactional-
ized TxMon-enhanced benchmark relative to one that does not employ data structure checks.

traverse those data structures. This experiment shows that TxMon can be adopted as an
“always on” tool to monitor the integrity of Clamscan’s data structures.

5.3 Splash-2 Benchmarks

The Splash-2 suite [25] contains several multi-threaded benchmarks that have previ-
ously been used in transactional memory research. We used three benchmarks from
this suite, namely Barnes, Radiosity and Raytrace, which were converted in prior work
[26,23] to use transactions for synchronization. For each benchmark, we identified a
complex data structure used by the benchmark (see Figure 4). The checking callback
for each data structure simply traversed the data structure and updated its address map.

Figure 7 shows the overheads that TxMon imposed on the execution of each of these
benchmarks on various testbed configurations (in which we varied the number of cores).
For each benchmark, we calculated overheads relative to a version that employed trans-
actions only for concurrency control, i.e., TxMon was disabled, so no data structure
checks were performed. The overheads ranged from about 1.05× for Raytrace to about
1.20× for Radiosity. These experiments again show that the overheads imposed by Tx-
Mon are tolerable even if it is configured to be an “always-on” monitoring tool.
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6 Related Work

The use of transactions to monitor data integrity was first suggested by the relational
database community [24,15]. The idea was to use the transaction machinery imple-
mented by database systems to additionally check data consistency when the database
is modified. Recent work has adapted these ideas to isolate and recover from faults in
software by creating custom implementations of transactions and speculative execution
mechanisms [21,22].

With advances in transactional memory, researchers have begun to explore similar
applications using hardware and software support for transactional memory [17,19,11,7].
Harris and Peyton Jones [17] first explored the use of STM systems to monitor data
structure accesses. Their work used an STM system for Haskell to monitor programmer-
specified data invariants. Because it relies on STM extensions for a specific language, it
is not applicable to the general case of monitoring applications written in low-level lan-
guages. Although compiler support for STMs may make their technique applicable to
low-level languages (e.g., [5]), prior work suggests that STMs impose significant run-
time overheads, suggesting that an STM-based approach may not be a practical option
to build an “always-on” data structure monitor [8]. TxMon addresses this problem by
migrating to HTM systems, which mitigate the overhead of maintaining and updating
transactional bookkeeping information in software.

Researchers have made the case for deconstructing HTM systems, and reusing HTM
hardware for applications beyond concurrency control [19,11]. In particular, the po-
sition paper by Hill et al. [19] describes the use of HTM machinery to implement a
data watchpoint framework. Although the ideas outlined in that paper are similar to
those adopted by TxMon, our work explores the challenges of building a data structure
integrity monitor using the basic watchpoint framework outlined in that paper.

7 Summary

This paper presented TxMon, a system that uses hardware transactional memory to
monitor data structure properties. TxMon applies to software written in low-level lan-
guages, and can ensure that complex data structures satisfy a rich set of correctness
properties. Experiments with both microbenchmarks and application benchmarks show
that TxMon imposes tolerable runtime overheads.
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1 Introduction

Determining whether the usage of sensitive, digitally stored data complies with
regulations and policies is a growing concern for companies, administrations, and
end users alike. Classical examples of policies used for protecting and preventing
the misuse of data are history-based access-control policies like the Chinese-wall
policy and separation-of-duty constraints. Other policies from more specialized
areas like banking involve retention, reporting, and transaction requirements.
Simplified examples from this domain are that financial reports must be approved
at most a week before they are published and that transactions over $10,000 must
be reported within two days.

In the context of IT systems, compliance checking amounts to implementing
a process that monitors, either online or offline, other processes. Such a monitor
needs to temporally relate actions performed by the other processes and the
data involved in these actions. Since the number of data items processed in IT
systems is usually huge at each point in time and cannot be bounded over time,
prior monitoring algorithms, in particular for propositional temporal logics, are
of limited use for compliance checking.

In this paper, we present our monitoring tool MONPOLY for compliance
checking. Policies are given as formulas of an expressive safety fragment of metric
first-order temporal logic (MFOTL). The first-order fragment is well suited for
formalizing relations on data, while the metric temporal operators can be used
to specify properties depending on the times associated with past, present, and
even future system events. MONPOLY processes a stream of system events with
identifiers representing the data involved and reports policy violations. In the
following, we describe MONPOLY and its features in more detail. We also briefly
report on case studies and discuss related tools.

2 Tool Description

We describe MONPOLY’s input and output and its theoretical underpinnings.
Afterwards we give an overview of its implementation.

Input and Output. MONPOLY takes as command-line input a signature file,
a policy file, and a log file. It outputs violations of the specified policy. We
illustrate MONPOLY’s input and output with an example.

� This work was funded by the Nokia Research Center, Switzerland. The authors thank
the Nokia team in Lausanne for their support.
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An MFOTL formalization of the policy that financial reports must be ap-
proved at most a week before they are published is

� ∀r. publish(r)→ �≤7 days approve(r) . (1)

We use � for the temporal operator “always in the future” and � for “some-
times in the past.” Moreover, to express timing constraints, we attach metric
constraints to these operators like ≤ 7 days for “within 7 days.” The concrete
textual input to MONPOLY for the policy (1) is

publish(?r) IMPLIES ONCE[0,7d] approve(?r) ,

where the arities of the predicates and the types of the arguments are specified
in a signature file. The outermost temporal operator � is implicit in the input
to MONPOLY, since policies should hold at every point in time. Moreover, in
our example the variable ?r is free. This is because MONPOLY should output
the reports that were published but either not approved at all or the approval
was too early. That is, MONPOLY outputs for every time-point the satisfying
valuations of the negated formula

publish(?r) AND HISTORICALLY[0,7d] NOT approve(?r) .

A log file consists of a sequence of time-stamped system events, which are or-
dered by their time-stamps. Events assumed to have happened simultaneously
are grouped together. For example, according to the log file

@1307532861 approve (52)

@1307955600 approve (63)

publish (60)

@1308477599 approve (87)

publish (63) (52)

the report with the number 52 was approved at time-point 0 with the time-
stamp 1307532861 (2011-06-08, 11:34:21 in UNIX time) and it was published at
time-point 2 with the time-stamp 1308477599 (i.e., on 2011-06-19) together with
the report 63, which was approved on 2011-06-13.

MONPOLY processes the log file incrementally and outputs for each time-
point all policy violations. For the above input, MONPOLY reports the following
violations:

@1307955600 (time-point 1): (60)

@1308477599 (time-point 2): (52)

Publishing the reports 60 and 52 each violates the policy (1). Report 60 was never
approved and report 52 was approved too early. MONPOLY does not produce
an output for time-point 0, since there is no policy violation at this time-point.

Foundations. MONPOLY implements our monitoring algorithm [7] for time-
stamped temporal structures with finite relations. To effectively monitor prop-
erties specified in MFOTL, this algorithm only handles a safety fragment of
MFOTL. Namely, the formulas must be of the form �Φ, where the temporal
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future operators occurring in Φ are bounded, i.e., the attached metric constraints
restrict these operators so that they range only over finitely many time-points.
Roughly speaking, the monitoring algorithm iteratively processes the log file and
determines for each given time-point the satisfying valuations of the formula ¬Φ.
Since Φ is bounded, only finitely many time-points need to be taken into account.
However, the evaluation at a time-point is delayed by the monitoring algorithm
until it reads the data of the relevant future time-points.

To efficiently determine at each time-point the violating elements of Φ, we
evaluate the formula ¬Φ bottom-up and store intermediate results in finite re-
lations. These are updated in each iteration and reused in later iterations. We
require that ¬Φ can be rewritten to a formula so that the intermediate results
are always finite relations. In particular, the use of negation and quantification is
syntactically restricted. These restrictions are adapted from database query eval-
uation [1]. Before starting the monitoring process, MONPOLY checks whether
the given formula has these properties.

Implementation. MONPOLY is written in the OCaml programming language.
The code is mainly functional, making only sparse use of OCaml’s imperative
programming-language features and not using OCaml’s object layer.

The code is structured in modules. For instance, there are modules for oper-
ations on MFOTL formulas, relations, and first-order structures. There are also
modules for parsing formulas and log files. Finally, there is a module that imple-
ments the monitoring algorithm [7]. Since the algorithm manipulates relations
extensively, the data structure used to represent relations has a huge impact on
the monitor’s efficiency. Currently, MONPOLY uses the data type for sets from
OCaml’s standard library, which is implemented using balanced binary trees.

Since the implementation is modular, MONPOLY can easily be modified and
extended. For example, modifying MONPOLY so that it processes log files in an-
other format is straightforward, as is using other data structures for representing
and manipulating relations. The source code of MONPOLY is publicly available
from the web page http://projects.developer.nokia.com/MonPoly.

3 Experimental Evaluation

We have evaluated MONPOLY’s performance on several policies on synthetically
generated data. For example, for the simple publishing policy (1), MONPOLY
processes a log file with 25,000 entries in 0.4 seconds on a standard desktop
computer. It uses 30 MBytes of memory. Monitoring the more complex policy
where approvals must be signed by managers1 takes MONPOLY 2.25 seconds,
where 60 MBytes of memory are used. Other examples of our evaluation in-
clude MFOTL formalizations of transaction policies, the Chinese-wall policy, and

1 The MFOTL formalization of this policy is �∀r.∀a.publish(r, a) →
�≤7 days ∃m.manager(m,a) ∧ approve(r,m). Here, manager(m,a) encodes that m
is a manager of the accountant a, which might change over time. It abbreviates
the formula ¬managerf (m,a) Smanagers (m,a), where S denotes the temporal past
operator since and the predicates managers and managerf represent system events
that mark the start and the finish of the relation of m being a’s manager.

http://projects.developer.nokia.com/MonPoly
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separation-of-duty constraints, and are given in [6]. MONPOLY performs signifi-
cantly better than our previous prototype implementation in Java, used in [6]. A
reason for this improvement is that the fragment MONPOLY handles is slightly
more restrictive but formulas in this fragment are evaluated more efficiently.

We have also used MONPOLY in a case study with industry: monitoring
the usage of data within Nokia’s data-collection campaign.2 The campaign col-
lects contextual information from cell phones of about 180 participants, includ-
ing phone locations, call and SMS information, and the like. Given the data’s
high sensitivity, usage-control policies govern what actions may and must not
be performed on the data. We formalized these policies in MFOTL, obtaining
14 formulas. We used MONPOLY to check them on different log files, each cor-
responding to roughly 24 hours of logged data. The largest logs contain around
85,000 time-points and one million system events. On such log files, the running
times for the different policies on a standard desktop computer range from 10 sec-
onds for simple access-control policies to 7 hours for complex policies employing
nested temporal operators. The memory requirements are also modest: even for
the complex policies, MONPOLY never used more than 500 MBytes of memory
and these peaks occurred infrequently. Further details on the policies, the setup,
MONPOLY’s performance, and our findings in this case study are given in [5].

4 Related Tools

MONPOLY targets automated compliance checking in IT systems where actions
are performed by distributed and heterogeneous system components. Monitoring
tools for related applications are BeepBeep [10], Orchids [13], Monid [12], and
LogScope [3]. BeepBeep monitors a web-client application for the conformance
of its communication with the web service’s interface specifications expressed in
LTL-FO+, a first-order extension of the linear-time temporal logic LTL. Orchids
is a monitor for intrusion detection. It searches in an event stream for attack pat-
terns, which are specified in a variant of future-time temporal logic and compiled
into non-deterministic automata for fast pattern matching. Monid, similar to Or-
chids, is a tool for intrusion detection. It is based on the monitoring framework
Eagle [2], where properties are specified by systems of parametrized equations
with Boolean and temporal operators and a fixpoint semantics. LogScope can
be seen as a restriction of RuleR [4]—a conditional rule-based system with an
algorithm for runtime verification—tailored for log-file analysis. Properties in
LogScope are given as conjunctions of data-parametrized temporal patterns and
finite-state machines. These tools differ from MONPOLY in their specification
languages and their underlying monitoring algorithms. For instance, LTL-FO+

does not support temporal past operators but supports unbounded temporal
future operators. Quantification in LTL-FO+ is more restrictive than in the
monitorable MFOTL fragment of MONPOLY, since quantified variables only
range over data elements that appear in the system event that is currently pro-
cessed. BeepBeep’s monitoring algorithm for LTL-FO+ is based on an extension
of a tableaux construction for LTL.
2 See http://research.nokia.com/page/11367 for details on the campaign.

http://research.nokia.com/page/11367
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Other runtime-verification approaches, implemented in tools like Temporal
Rover [9], Lola [8], J-LO [14], and MOP [11], have primarily been developed and
used for monitoring the execution of programs. Programs are instrumented so
that relevant actions, like procedure calls and variable assignments, either di-
rectly trigger the inlined monitors or are forwarded to external monitors. Eval-
uating and comparing the performance of the different underlying monitoring
algorithms experimentally remains as future work.
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Abstract. In this work we propose MOPBox, a library-based approach
to runtime verification. MOPBox is a Java library for defining and eval-
uating parametric runtime monitors. A user can define monitors through
a simple set of API calls. Once a monitor is defined, it is ready to accept
events. Events can originate from AspectJ aspects or from other sources,
and they can be parametric, i.e., can contain variable bindings that bind
abstract specification variables to concrete program values. When a mon-
itor reaches an error state for a binding �v = �o, MOPBox notifies clients
of a match for �v = �o through a call-back interface. To map variable bind-
ings to monitors, MOPBox uses re-implementations of efficient indexing
algorithms that Chen et al. developed for JavaMOP.

We took care to keep MOPBox as generic as possible. States, transi-
tions and variable bindings can be labeled not just with strings but with
general Java Objects whose types are checked through Java Generics.
This allows for simple integration into existing tools. For instance, we
present ongoing work on integrating MOPBox with a Java debugger. In
this work, transitions are labeled with breakpoints.

MOPBox is also a great tool for teaching: its implementations of moni-
tor indexing algorithms are much easier to understand than the code gen-
erated by tools such as JavaMOP. Indexing algorithms use the Strategy
Design Pattern, which makes them easily exchangeable. Hence,MOPBox
is also the perfect tool to explore and test new algorithms for monitor
indexing without bothering about the complex intricacies of code genera-
tion. In the future, we further plan to integrate MOPBox with the Clara
framework for statically evaluating runtime monitors ahead of time.

1 Motivation and Description of MOPBox

In the past decade, researchers in Runtime Verification have developed a range of
specialized tools for generating runtime monitors from formal specifications [1–
5]. Typically, those tools support parametric monitor specifications, i.e, speci-
fications that allow the monitoring of individual objects or even combinations
of objects. Figure 1, for example shows a finite-state machine representing the

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 365–369, 2012.
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initialstart iterating updated error
create(c,i) update(c)
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next(i)
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Fig. 1. Runtime monitor for FailSafeIter property [1]: Do not modify a collection while
iterating over it

“FailSafeIter” property [1]: one should not use an iterator i for a collection any
longer if c was updated after i had been created. In this case, there exists a single
monitor instance (holding the state machine’s internal state) for any combination
of c and i occurring on the monitored program execution.

Research in Runtime Verification has made big leaps to making runtime mon-
itoring of such parameterized properties efficient [3, 6–8] through the generation
of property-specific monitoring code. However, efficiency should not be the only
goal to pursue in runtime monitoring. While auto-generated monitoring code
may be maximally efficient, it is generally hard to understand and debug. In
addition, approaches based on code-generation often involve multiple, loosely
integrated tools, hindering integration of those tools into other applications.

Another problem with those loosely integrated tool chains is that they hinder
comparison of montoring approaches. In recent work, Purandare et al. perform
an in-depth comparison with respect to the relative performance of several mon-
itoring algorithms [9]. As the authors show, this performance can depend on the
property to be monitored: different algorithms are ideal for different properties.
Current tool chains cannot easily support multiple algorithms as they are not
integrated.

2 Defining Monitor Templates

In this work we hence propose MOPBox, a library-based approach to runtime
verification. MOPBox is a Java library for defining and evaluating parametric
runtime monitors such as the one shown in Figure 1. With MOPBox, a user
can define templates for runtime monitors through a simple set of API calls.1

Figure 2 shows how a user would define a monitor template for the FailSafeIter
property mentioned earlier.

First, in line 2, the user defines that she wishes to implement a template based
on finite-state machines, with String labels on transitions and variable bindings
that map from Var instances to any kinds of Objects. The range of template
variables Var is defined as an enum in line 4.

1 We use the phrase “monitor template” to denote a property that MOPBox should
monitor. During the execution of the program under test, each template will generate
a set of monitors, one monitor for each variable binding.
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1 public class Fai lSa f e I te rMoni torTemplate
2 extends AbstractFSMMonitorTemplate<Str ing , Var , Object> {
3

4 public enum Var{ C, I }
5

6 protected void f i l l A l p h ab e t ( IAlphabet<Str ing , Var> a ) {
7 a . makeNewSymbol( ” c r e a t e ” , C, I ) ;
8 a . makeNewSymbol( ”update” , C) ;
9 a . makeNewSymbol( ” i t e r ” , I ) ;

10 }
11

12 protected State<Str ing> se tupState sAndTrans i t i ons ( ) {
13 State<Str ing> i n i t i a l = makeState ( fa l se ) ;
14 State<Str ing> i t e r a t i n g = makeState ( fa l se ) ;
15 State<Str ing> updated = makeState ( fa l se ) ;
16 State<Str ing> e r r o r = makeState ( true ) ;
17

18 i n i t i a l . addTrans i t ion ( getSymbolByLabel ( ” c r e a t e ” ) , i t e r a t i n g ) ;
19 i n i t i a l . addTrans i t ion ( getSymbolByLabel ( ”update” ) , i n i t i a l ) ;
20 i n i t i a l . addTrans i t ion ( getSymbolByLabel ( ” i t e r ” ) , i n i t i a l ) ;
21 i t e r a t i n g . addTrans i t ion ( getSymbolByLabel ( ” i t e r ” ) , i t e r a t i n g ) ;
22 i t e r a t i n g . addTrans i t ion ( getSymbolByLabel ( ”update” ) , updated ) ;
23 updated . addTrans i t ion ( getSymbolByLabel ( ”update” ) , updated ) ;
24 updated . addTrans i t ion ( getSymbolByLabel ( ” i t e r ” ) , e r r o r ) ;
25 return i n i t i a l ;
26 }
27

28 protected I Index ingStrategy<Str ing , Var , Object> c r e a t e Index ingS t ra t e gy ( ) {
29 return new StrategyB ( ) ;
30 }
31

32

33 protected void matchCompleted ( IVar iab l eBind ing<Var , Object> b ind ing ) {
34 System . e r r . p r i n t l n ( ”MATCH fo r b ind ing : ”+bind ing ) ;
35 }
36

37 }

Fig. 2. Monitor template for FailSafeIter property in MOPBox

In lines 6–9, the user then lists the alphabet to be used, i.e., the different
kinds of events that the monitors of this template should prepare to process. At
this point the user also binds event names such as create to template variables
C and I. In the example, event labels are Strings because the user chose type
String as type parameter in line 2. One could have chosen other types of labels.
In a current piece of work we are integrating MOPBox with the Java debugger
of the Eclipse IDE [10]. In this setting, events are labeled with breakpoints that
are triggered at debug time [11].

In lines 13–16, the user calls the factory method makeState to create the
states that will make up the monitor template’s state machine. An error state
is created using makeState(true). In lines 18–24, finally, the user defines the
state machine’s transition relation. At the end of the method, by convention, the
user returns the machine’s initial state.
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1 after ( Co l l e c t i on c ) returning ( I t e r a t o r i ) :
2 ca l l (∗ I t e r a b l e +. i t e r a t o r ( ) ) && target ( c ) {
3 IVar iab leBind ing<Var , Object> bind ing
4 = new VariableBinding<Var , Object > ( ) ;
5 bind ing . put (Var .C, c ) ;
6 bind ing . put (Var . I , i ) ;
7 template . processEvent (
8 ” c r e a t e ” ,
9 bind ing

10 ) ;
11 }

Fig. 3. AspectJ advice dispatching “create” events to the monitor template

In lines 28–30, the user selects an indexing strategy. An indexing strategy im-
plements an indexing algorithm that dispatches parameterized events to moni-
tors for the appropriate parameter instances. In this example, the user opted for
our implementation of Chen et al.’s Algorithm B [7]. MOPBox uses the Strategy
Pattern [12] to make indexing strategies easily exchangeable. This also facilitates
rapid prototyping and testing of new indexing algorithms. For instance, users
can instantiate multiple monitor templates that use different indexing strategies
but are otherwise identical. If for the same events one template finds a match
and the other one does not, this indicates a bug in one of the indexing strategies.
MOPBox holds no static state. To reset a monitor, one hence simply needs to
re-instantiate a template’s indexing strategy.

Last but not least, in lines 33–35, the user defines the call-back method
matchCompleted. MOPBox will call this method automatically whenever one
of the monitors of this template completes a match. MOPBox passes the match-
ing variable binding into the method as a parameter.

3 Sending Events to Monitor Templates

In Figure 3 we show how users can use AspectJ [13] to send concrete pro-
gram events to a monitor template. The AspectJ advice intercepts calls to
Collection.iterator() and notifies the monitor template, passing in a vari-
able binding mapping the template variables C and I to concrete program val-
ues. Users do not necessarily have to use aspects to generate events. In a current
piece of work we are integrating MOPBox with the Java debugger of the Eclipse
IDE [10]. In that case, events are triggered directly by the debugger’s application
interface.
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Abstract. The Larva monitoring tool has been successfully applied to a number
of industrial Java systems, providing extra assurance of behaviour correctness.
Given the increased interest in concurrent programming, we propose Elarva,
an adaptation of Larva for monitoring programs written in Erlang, an estab-
lished industry-strength concurrent language. Object-oriented Larva constructs
have been translated to process-oriented setting, and the synchronous Larvamon-
itoring semantics was altered to an asynchronous interpretation. We argue how
this loosely-coupled runtime verification architecture still permits monitors to ac-
tuate recovery actions.

1 Introduction

Ensuring correctness in highly concurrent systems, through either testing or model
checking, is problematic because it is difficult to test for all possible behaviour inter-
leavings. A case in point is code written in Erlang [1], an established industry-strength
functional concurrent language used mainly in the Telecoms industry. Ensuring cor-
rectness in this language is made even harder by the fact that: (i) Erlang is not statically
type-checked, preventing developers from filtering out certain errors at compile time;
and (ii) Erlang supports hot-code swapping i.e., modules can be replaced on-the-fly,
increasing the set of possible outcomes of a system execution.

Runtime Verification (RV) is a promising approach towards ensuring Erlang soft-
ware correctness as it provides a disciplined methodology for conducting the runtime
checks necessary in the absence of static guarantees. Importantly, the approach does
not suffer from coverage and state explosion issues associated with standard verifica-
tion techniques for concurrency.

Larva is a runtime monitoring tool targeting the correctness of Java code [2] enabling
one to: (i) specify system properties with recovery actions (in case of violation) in terms
of automata-based specifications, (ii) compile the properties into Java monitors, and (iii)
instrument the monitors at byte-code level using techniques from Aspect-Oriented Pro-
gramming (AOP) [5]. Through aspects, synthesised monitors are then automatically
updated with events from the execution of the monitored system, triggering corrective
actions where necessary, providing extra reassurance as to the correctness of the moni-
tored software behaviour.

Larva supports modular property specification in a number of ways. For instance
(i) each object can be verified by a separate monitor through a mechanism of mon-
itor parametrisation, and (ii) properties can be decomposed into sub-properties that
can communicate with one another through channels. Erlang’s actor-based concurrency
model [4], which circumvents any shared memory through the use of message passing,
is consistent with such a modular approach, making Larva a sensible starting point for
a monitoring framework for Erlang.

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 370–374, 2012.
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Porting Larva to Erlang is however non-trivial, because: (i) Erlang does not have
AOP support, the mechanism used by Larva for monitor instrumentation; and (ii) Er-
lang is process-oriented whereas Java is object-oriented. In the rest of this proposal, we
present Elarva, an adaptation of Larva to Erlang, giving an overview of how we tackled
these issues and outline how we have evaluated our tool.

2 Solution Overview

In the absence of any AOP support, Elarva employs Erlang’s tracing facility for instru-
mentation; this makes monitoring asynchronous, which alters the nature of recovery
actions. Moreover, adapting monitor parameterising constructs such as foreach to pro-
cesses accentuated a shortcoming in Larva’s broadcast interpretation of channel com-
munication, the extensive use of which made inter-monitor communication unwieldy;
in Elarva, channel communication was thus given a point-to-point interpretation.

2.1 Eliciting Events Asynchronously

Erlang’s tracing mechanism enables us to hook on to Erlang’s VM and receive the
relevant events as messages to a singleton tracer process [1]. Monitors are set up as
processes executing in parallel with the monitored system, where the tracer acts as a
demultiplexer, reading the trace received and sending parts of it to the relevant mon-
itors in non-blocking fashion, as shown in Fig. 1 (left). This setup has a number of
advantages: (i) the system and the monitor can be running on separate machines, reduc-
ing the monitoring cost to that of tracing (ii) as opposed to Larva, we can monitor a live
system via Elarva without having to stop the system and trace-compile it (iii) no errors
are introduced in the monitored system as a result of instrumentation.

However, the non-blocking nature of Erlang message passing makes Elarva’s trace-
based monitoring asynchronous, possibly detecting violations late. In general, this com-
plicates a monitor’s assessment of which sub-systems where effected by the violation.
However, in the case of Erlang, adverse effects emanating from a violation can be con-
fined since (i) processes do not share memories (ii) code is typically written in fail-fast
fashion i.e., processes fail as soon as anything abnormal is encountered and (iii) process
dependencies can be explicitly delineated through mechanisms such as process linking
[1], which propagates the failure to linked processes. Erlang process failure detection
then allows the monitor localise the affected sub-system and take appropriate action.
In fact, Erlang programs successfully achieve fault tolerance using these same mecha-
nisms, through code patterns such as the Supervisor behaviour [1].

2.2 Parametrised Properties and Channel Communication

In Elarva, the foreach construct was adapted to be parameterised by processes (as
opposed to objects), so that a separate monitor could be replicated for every process
spawned. Modularly decomposing and replicating monitors in this way simplifies spec-
ifications since each monitor can focus on one process instance only, communicating
with other monitors whenever necessary, as opposed to having one monolithic monitor
monitoring multiple processes.
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This specification approach is also in line with Erlang code practices, which advo-
cate for the structuring of programs into as many small shortlived processes as pos-
sible.1 However, it quickly became apparent that the existing Larva communication
mechanism, based on broadcasts, created bottlenecks in settings with extensive use of
monitor decomposition i.e., smaller communicating sub-monitors that are replicated on
a per-process basis. As depicted in Fig. 1 (right), this was rectified in Elarva by allow-
ing monitors to select the destination of their communication from the following: (i)
across monitors of the same instance, (ii) across monitors of different instances, (iii)
from global to foreach context, and (iv) across foreach contexts.

3 Case Study

We consider a hospital management system where patients can place requests for med-
ical reports and medical reports are issued once all the doctors concerned give their
approval; note that patient requests are handled concurrently. Each patient and each
doctor are modelled as a process and interact with a “main office” central process we
refer to as the “hub” for short, see Fig. 2 (left).

Despite its simplicity, a number of correctness properties can be identified over this
system such as: (i) A patient receives a report only if a request has been placed earlier,
(ii) A patient never receives the medical report of another patient, (iii) A report received
by a patient must be approved by at least two doctors overseeing that patient.

In what follows we give an intuition of how we monitor the third property outlined
for this hospital system. A monitor is defined foreach patient process and foreach doctor
process, depicted by dotted boxes in Fig. 2 (right). The following are the steps involved
in a medical report request/response, lead by the labelled solid edges in Fig. 2 (right):
(i) the patient, Pat1, requests a report, and the patient monitor, MP1 detects it (through
tracing, denoted by a dashed edge), (ii/iii) the hub forwards the report request to the
doctors, Doc1 and Doc2 (no monitor activity), (iv/v) the doctors reply to the request
by either approving or rejecting the report and the respective doctor monitors, MD1
and MD2, detect this (denoted by the respective dashed edge), (vi) the patient receives

1 Often referred to as concurrency-oriented programming, this allows the virtual machine to bet-
ter apportion computation amongst the multiple processing units on a multicore machine [1].
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the report and the patient monitor detects it (see respective dashed edge). At this point,
the patient monitor communicates with the doctor monitors (denoted by the respective
dotted edges) to ensure that the report received was indeed authorised by the respective
doctors.2 If no two approving doctors are found then the monitor can conclude that the
property was violated and an action is taken, possibly restarting the patient with the
unauthorised report.

The monitors depicted in Fig. 2 can be setup through the following larva scripts spec-
ifying monitor automata, where transitions (backslash-separated triples consisting of an
event detection, a condition, and an action to be executed if the condition is satisfied)
take the property from one state to the next. Using the following event definitions:

EVENTS { RecRep = RECEIVE {backend_response,{Pat,Id,Diagnosis}}
Ack = CHANNEL {doc_response,{Pat,Id,Res}}
AskAck = CHANNEL {mon_commm,{Doc,Id,Time}}
RepRes = SEND {doc_response,{Doc,Res,Pat,Id}} }

For each patient process we need to detect report receipt, communicate with doctor
monitors to confirm the approval of the report, receive an acknowledgement from the
doctor monitors (indicating approval (yes), rejection (no) or indifference (ok)), and
checks whether a violation has occurred. The FOREACH construct below automati-
cally applies the monitoring logic to each patient joining the hospital system: upon the
receipt of a report (RecRep event), the patient monitor sends a channel communication
to all doctors, indicating the identifier and the timestamp of the report involved; the pa-
tient monitor then listens for Ack events and decides whether a violation has occurred.

FOREACH {patient,newPatient,[_]} { TRANSITIONS {
start-> wait [RecRep\\cnt=numDocs,cntYes=0,{channel,{foreach,doctor,{’AskAck’,{_,Id,Time}}}}]
wait -> wait [Ack\Res=="ok" and cnt>1\cnt--]
wait -> wait [Ack\Res=="yes" and cntYes<1\cntYes++]
wait -> ok [Ack\Res=="yes" and cntYes>0\] } }
wait -> violation [Ack\Res=="no" or (Res=="ok" and cnt==1)\] } }

2 Since monitoring is asynchronous, detection for either (iv/v) may not have happened by the
time the doctor monitors receive the patient monitor communications i.e., a race condition.
Hence when a patient monitor detects the received patient report, it communicates with the
relevant doctor monitors to ensure that the report has been approved by at least two of the
doctors. Before the doctor monitors reply to the patient monitors, they are forced to make the
necessary trace detections, thus reaching a synchronisation point with the patient monitor.
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Below, the FOREACH construct allows us to dynamically launch a doctor monitor
for every doctor joining the system, so as to detect report response events and commu-
nicate them to the corresponding patient monitors. The doctor monitor goes through all
events which occurred before the report timestamp. Upon detecting a response (RepRes
event) or the lack of it, the doctor monitor replies to the specific patient monitor (Pat)
that requested the information.

FOREACH {doctor,newDoctor,[_]} { TRANSITIONS {
idle -> detect [AskAck\\]
detect -> detect [Event\eventTime<Time\]
detect -> idle [Event\eventTime>Time\{channel,{foreach,patient,{’Ack’,{Pat,Id,"ok"}}}}]
detect -> idle [RepRes\\{channel,{foreach,patient,{’Ack’,{Pat,Id,Res}}}}] } }

4 Evaluation

Elarva was compared to Exago [3], an offline property-based Erlang monitoring tool.
Both were successfully used to specify correctness properties of the hospital manage-
ment system (introduced in the previous section). However, Exago necessitated the in-
clusion of substantial Erlang code-chunks; this blurred the distinction between code
and specification logic and introduced the possibility of inserting further errors through
the code chunks. By contrast, Elarva was able to specify the properties using the tool
logic (called Dates), the translation of which was automated by the monitor compiler.
Another disadvantage of Exago was that it is an offline tool, which exclude the possi-
bilities of applying reparatory actions in case of violations.

5 Conclusion

Through Elarva, we have extended the Larva tool and provided a minimally intru-
sive runtime monitoring framework to monitor expressive properties on Erlang code,
whereby the limited intrusiveness makes it more palatable to potential adopters from
the Erlang community. We aim to improve Elarva by (i) investigating means of elic-
iting system events in a decentralised fashion, unlike the present centralised tracing
mechanism relying on the Erlang VM and (ii) supporting distribution, so as to enable
monitoring across machines.
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Abstract. This paper presents the DA-BMC tool chain that allows one to com-
bine dynamic analysis and bounded model checking for finding synchronisation
errors in concurrent Java programs. The idea is to use suitable dynamic analyses
to identify executions of a program being analysed that are suspected to contain
synchronisation errors. Some points in such executions are recorded, and then the
executions are reproduced in a model checker, using its capabilities to navigate
among the recorded points. Subsequently, bounded model checking in a vicinity
of the replayed execution is used to confirm whether there are some real errors in
the program and/or to debug the problematic execution of the program.

1 Introduction

Despite the constantly growing pressure on quality of software applications, many soft-
ware errors still appear in the field. One class of errors which can be found in software
applications more and more frequently are concurrency-related errors, which is a con-
sequence of the growing use of multi-core processors. Such errors are hard to find by
testing since they may be very unlikely to appear. One way to increase chances to de-
tect such an error is to use various dynamic analyses (such as Eraser [6] for detection
of data races) that try to extrapolate the witnessed behaviour and give a warning about
a possible error even if such an error is not really witnessed in any testing run. A disad-
vantage of such analyses is that they often produce false alarms. To avoid false alarms,
one can use model checking based on a systematic search of the state space of the given
program [1], but this approach is very expensive. In this paper, we describe a tool chain
denoted as DA-BMC1 that tries to combine advantages of both dynamic analysis and
(bounded) model checking.

In our tool chain, implementing the approach proposed in [3], we use the infrastruc-
ture offered by the Contest tool [2] to implement suitable dynamic analyses over Java
programs and to record selected points of the executions of the programs that are sus-
pected to contain errors. We then use the Java PathFinder (JPF) model checker [5] to
replay the partially recorded executions, using JPF’s capabilities of state space genera-
tion to heuristically navigate among the recorded points. In order to allow the naviga-
tion, the JPF’s state space search strategy, including its use of partial order reduction
to reduce the searched state space, is suitably modified. Bounded model checking is

� This work was supported by the Czech Science Foundation (project P103/10/0306), the Czech
Ministry of Education (projects COST OC10009 and MSM 0021630528), and the BUT FIT
project FIT-S-11-1.

1 http://www.fit.vutbr.cz/research/groups/verifit/tools/da-bmc
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then performed in the vicinity of the replayed executions, trying to confirm that there is
really some error in the program and/or to debug the recorded suspicious behaviour.

We illustrate capabilities of DA-BMC on several case studies, showing that it really
allows one to benefit from advantages of both dynamic analysis and model checking.

2 Recording Suspicious Executions

The first step when using DA-BMC is to use a suitable dynamic analysis to identify
executions suspected to contain an error and to record some information about them—
recording the entire executions would typically be too costly. In DA-BMC, this phase is
implemented on top of the Contest tool [2]. Contest provides a listener architecture (im-
plemented via Java byte-code instrumentation) on top of which it is easy to implement
various dynamic analyses. We further refer to two such analyses, namely, Eraser+ and
AtomRace intended for detection of data races (and, in the second case, also atomicity
violations), which have been implemented as Contest plugins in [4]. Further analyses
can, of course, be added. Contest also provides a noise injection mechanism which
increases the probability of manifestation of concurrency-related errors.

In order to record executions, we have implemented another specialised listener on
top of Contest. We record information about an execution in the form of a trace which
is a sequence of monitored events that contains partial information about some of the
events that happen during the execution. In particular, Contest allows us to monitor the
following events: thread-related events (thread creation, thread termination), memory-
access-related events (before integer read, after integer read, before float write, after
float write, etc.), synchronisation-related events (after monitor enter, before monitor
exit, join, wait, notify, etc.), and some control-related events (basic block entry, method
enter, and method exit). The user can choose only some of such events to be monitored.
As shown in our case studies, one should mainly consider synchronisation-related and
memory-access-related events, which help the most when dealing with the inherent
non-determinism of concurrent executions.

Each monitored event contains information about the source-code location from
which it was generated (class and method name, line and instruction number) and the
thread which generated it. The recorded trace also contains information produced by
the applied dynamic analysis which labels some of the monitored events as suspicious
from the point of view of causing an error.

3 Replaying Recorded Traces

The second step when using DA-BMC is to reproduce suspicious executions recorded
as traces of monitored events in a model checker. More precisely, there is no guarantee
that the same execution as the one from which the given trace was recorded will be
reproduced. The tool will simply try to generate some execution whose underlying trace
corresponds with the recorded trace. It is also possible to let the model checker generate
more executions with the same trace.

In DA-BMC, we, in particular, use the Java PathFinder (JPF) model checker [5].
JPF provides several state space search strategies, but also allows one to add new user-
specific search strategies. Moreover, it provides a listener mechanism which is useful for
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performing various analyses of the searched state space and/or for guiding the search
strategies to a specific part of the state space. JPF uses several state space reduction
techniques, including partial order reduction (POR), which out of several transitions
that lead from a certain state may explore only some [1].

A recorded trace is replayed by navigating JPF through the state space of a program
such that the monitored events encountered on the search path correspond with the ones
in the recorded trace. The states being explored during the search are stored in a priority
queue. The priority of the inserted states depends on the chosen search strategy (DFS
and BFS are supported). In each step, the next parent state to be processed is obtained
from the queue. After that, all relevant children of the parent state are generated. Here,
we should note that, in JPF, a transition between a parent and child states represents,
in fact, a sequence of events happening in a running program. This sequence is chosen
by the POR to represent all equivalent paths between the two states. Into the priority
queue, we only save the child states that may appear on a path corresponding to the
recorded trace. In other words, each program event encountered within the JPF’s transi-
tion between the parent and child states must either be an event which is not monitored
(and hence ignored), or an event which corresponds with the one stored in the recorded
trace at an appropriate position. This correspondence is checked during the generation
of a transition in JPF.

Sometimes, it is also necessary to influence the POR used by JPF. That happens
when the POR decides to consider another permutation of the events than the one ac-
tually present in the trace. Then, the POR is forced to use the needed permutation as
follows. If the generation of the sequence of events that the POR wants to compose
into a single transition encounters some monitored event, and this event differs from
the one expected in the recorded trace, then we force JPF to finish the generation of
the sequence of events to be put under a single transition and to create a new state. The
navigation algorithm then searches the transitions enabled in this state that correspond
with the recorded trace (if there is none, the search backtracks).

Since the replaying is driven by a sequence of monitored events generated from the
Contest’s instrumentation of the given program, we run the instrumented byte-code in
JPF. We, however, make JPF skip all the code that is a part of Contest in order not to in-
crease the size of the state space being searched. Moreover, Contest not only adds some
instructions into the code, but also replaces some original byte-code instructions. This
applies, e.g., for the instructions wait, notify, join, etc. In this case, when such an
instruction is detected in JPF, we dynamically replace it with the original instruction.

As the JPF’s implementation of sleep() ignores interruption of sleeping threads,
we provide a modified implementation of the interrupt() and sleep() methods
which correctly generate an exception if a thread is interrupted by another thread when
sleeping. For that to work correctly, the possibility of branching of the execution after
sleep() must be enabled in JPF.

Still, it might not be possible to replay a trace if the program depends on input or
random data or if it uses some specific dynamic data structures like hash tables where,
e.g., objects might be iterated in a different order in each run of the program. In these
cases, it is necessary to modify the source code of the analysed program, e.g., by adding
JPF data choice generators to eliminate these problems.



378 J. Fiedor et al.

4 Bounded Model Checking

As we have already said above, the trace recorded from a suspicious execution does
not identify the execution from which it was generated in a unique way. Moreover,
even the original suspicious execution based on which the applied dynamic analysis
generated a warning about the possibility of some error needs not contain an actual
occurrence of the error (even if the error is real). To cope with such situations, apart
from possibly exploring several paths through the state space corresponding with the
recorded trace, we use bounded model checking that starts from the states from which
an event that is marked as suspicious is enabled, or from some of its predecessors. The
latter is motivated by the fact that once a suspicious event is reached, it may already be
too late for a real error to manifest.

To be able to use bounded model checking to see whether an error really appears
in the program, it is expected that the user supplies a JPF listener capable of identify-
ing occurrences of the error (in our experiments, which concentrate on data races, we,
e.g., use a slight modification of the PreciseRaceDetector listener available in
JPF). The listeners looking for occurrences of errors may be activated either at the very
beginning of replaying of a trace, or they may be activated at the beginning of each
application of bounded model checking. The user is allowed to control both the depth
of the bounded model checking as well as the number of backward steps to be taken
from a suspicious event before starting bounded model checking.

5 Experiments

To demonstrate capabilities of DA-BMC, we consider four case studies. The first two,
BankAccount and Airlines, are simple programs (with 2 or 3 classes, respectively) in
which a data race over a single shared variable can happen. The DiningPhilosophers
case study is a simple program (3 classes) implementing the problem of dining philoso-
phers with a possibility of a deadlock. Finally, our last case study, Crawler, is a part of
an older version of an IBM production software (containing 19 classes) with a data race
manifesting more rarely and further in the execution. All the tests were performed on
a machine with 2 Dual-Core AMD Opteron processors at 2.8GHz.

First, we measured the slowdown of program executions when recording various
types of events. When recording all the possible types of events mentioned above, the
slowdown was about 30-40 %. When recording only thread and memory-access-related
events, the slowdown was just about 20-30 % but the number of corresponding paths
found by JPF increased by about 50 %. Note, however, that the slowdown depends a lot
on the structure of a program.

Next, we performed a series of tests in which we measured how often a real error is
identified when replaying a trace and performing bounded model checking (BMC) in
its vicinity. We let JPF to always backtrack 3 states from the state before a suspicious
event and to use the maximum BMC depth of 10. The results are shown in Table 1.
We distinguish whether 1 or up to 5 paths corresponding to the recorded trace were
explored, using either DFS or BFS. For each of these settings and each case study, the
left part of Table 1 gives the percentage of recorded traces based on which a real error
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Table 1. Finding real errors in traces produced by Eraser

Error discovery ratio (traces found / BMC runs) Time/memory consumption (sec/MB)
No. of DFS BFS DFS BFS
traces 1 5 1 5 1 5 1 5
Bank 46%(1/1) 49%(2/2) 46%(1/1) 46%(2/2) 2/517 4/633 3/522 5/659

Airlines 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 1/482 1/482 1/482 1/482
DinPhil 100%(1/1) 100%(1/1) 100%(1/1) 100%(1/1) 11/417 20/411 20/414 22/413
Crawler 7%(0.8/15) 7%(1.8/34) 2%(0.5/49) 2%(1.2/50) 122/1312 268/1479 311/2857 321/3020

Table 2. Efficiency of finding errors using DFS in traces of Crawler produced by AtomRace

T
ra

ce
s

se
ar

ch
ed

St
at

es
Max depth of bounded model checking

No. of backtracked states / 30 40 50 60 70 80
Max depth of BMC 10 78%(0) 78%(1) 78%(3) - - -

3/10 5/15 10/30 15/45 20/60 20 - 90%(0) - 90%(2) 90%(2) 90%(2)
1 66% 71% 78% 84% 90% 30 - - 92%(2) - 94%(0) -
5 71% 73% 80% 85% 90% 40 - - - - - 89%(5)

was found. Further, in brackets, it is shown how many corresponding paths were on
average found by JPF for a single trace, and how many times BMC was on average
applied when analysing a single trace. The right part of Table 1 then gives the corre-
sponding time and memory consumption. Clearly, BFS has higher time and memory
requirements than DFS (mainly because it performs significantly more runs of BMC).
It is also less successful in finding an error if the error manifests later in the execution
(like in Crawler). It can also be seen that the number of corresponding paths searched
has a little contribution to the overall success of finding a real error.

The low percentage of real errors found in traces of Crawler is mostly due to the
number of false alarms produced by Eraser that were eliminated by DA-BMC, which
nicely illustrates one of the main advantages of using DA-BMC. Further, note that clas-
sical model checking as offered by JPF did not find any error in this case since it ran
of our deadline of 8 hours (DFS) or ran out of the 24GB of memory available to JPF
(BFS). To analyse how successful DA-BMC is in finding real errors in traces recorded
in Crawler and how the success ratio depends on the various settings of DA-BMC, we
have then done experiments with traces recorded using the AtomRace analysis, which
does not produce any false alarms. The results can be seen in Table 2. Its left part shows
how the percentage of real errors found depends on the number of explored paths corre-
sponding to the recorded trace, the number of states backtracked from the state before
a suspicious event, and the maximum BMC depth. The right part analyses in more de-
tail how the percentage depends on the number of backtracked states and the maximum
BMC depth (a single path corresponding to a recorded trace is analysed). The numbers
in brackets express the percentage of replays which reached a 10 minute timeout. We
can see that while increasing the number of searched corresponding paths has some
influence on the error detection, it is evident that the BMC settings have a much greater
impact. Moreover, the number of backtracked states increases the chances to find an
error much more than the increased maximum depth of BMC.
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6 Conclusion

We have presented DA-BMC—a tool chain combining dynamic analysis and bounded
model checking for finding errors in concurrent Java programs (and also for debugging
them). We have demonstrated on several case studies that DA-BMC allows one to com-
bine the lower price of dynamic analysis with the higher precision of model checking.
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Abstract. Monitoring complex applications to detect violations from
specified properties is a promising field that has seen the development of
many novel techniques and tools in the last decade. In spite of this effort,
limiting, understanding, and predicting the cost of monitoring has been
a challenge. Existing techniques primarily target the overhead caused by
the large number of monitor instances to be maintained and the large
number of events generated by the program that are related to the prop-
erty. However, other factors, in particular, the algorithm used to process
the sequence of events can significantly influence runtime overhead. In
this work, we describe three basic algorithmic approaches to finite state
monitoring and distill some of their relative strengths by conducting pre-
liminary studies. The results of the studies reveal non-trivial differences
in runtime overhead when using different monitoring algorithms that can
inform future work.

1 Introduction

Over the past decade, researchers have developed a number of finite state mon-
itoring techniques and implemented those techniques in tools that can be used
to analyze large complex applications [2, 3, 5, 7–9, 12, 13]. These tools typically
model sequencing properties as finite state automata (FSA) and check whether
a program satisfies them during runtime. When monitoring programs, the prop-
erty FSA must be bound to data values. For example, monitoring a property that
expresses the legal sequencing of calls on a Java class requires that the value of
the receiver object be used to correlate calls – a call on one instance of the class is
generally independent of calls on other instances of the class. For each collection
of objects that is related to a property an instance of a monitor is created and
all subsequent calls on those objects generate events that are routed to track the
state of the monitor, based on the FSA, and detect property violations.

In spite of the progress made in the field of runtime monitoring, there exist
programs for which monitoring with respect to certain properties incurs signif-
icant runtime overhead which hinders the application of monitoring in practice
[14]. The overhead of monitoring is strongly dependent on both the number of
monitors that are created and the number of events generated by the program
execution. These quantities can vary significantly with the program and property
that are monitored [14, 16].

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 381–395, 2012.
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Holding program and property constant reveals that the choice of monitoring
algorithm can influence monitoring overhead. Monitoring pmd for the property
FailSafeIter using the algorithm in Tracematches [1] yields an overhead of
175%, which is essentially equivalent to the overhead incurred when using Java-
MOP [8]. Switching the property to hasNext, for the same program, results in
a significant reduction in overhead using the Tracematches algorithm, to 52%,
whereas the overhead using JavaMOP rises to 191% [14]. If we now switch the
program to bloat, while keeping the property hasNext, the story changes. Trace-
matches incurs an overhead of 2452% compared to an overhead of 1112% for
JavaMOP [14]. The relative advantage of monitoring algorithms, with respect
to overhead, can vary significantly with the program execution and property.

Generating a complete characterization of the cost of runtime monitoring algo-
rithms is extremely difficult since the details of programs, properties, algorithm
implementation decisions, and platform details can interact in subtle but impor-
tant ways. In this paper, we take a more modest approach. Inspired by the recent
work in data race detection [11], we seek to hold platform and implementation
details constant while exploring the relative strengths of the basic algorithmic
approaches to monitoring finite-state properties.

We explore two well-studied algorithmic approaches and one new approach.
Object-based monitoring, as implemented by JavaMOP, maintains sets of mon-
itors associated with class instances related to the property in question. State-
based monitoring, as implemented by Tracematches, maintains sets of monitors
associated with each state of the property FSA. Symbol-based monitoring, which
is an extension of our adaptive online monitoring [10], maintains a set of monitors
relevant to each symbol of the property FSA.

The main contributions of this paper are four-fold. First, we introduce a new
algorithmic approach to monitoring finite-state properties (Section 2.3). Sec-
ond, we provide a simplified presentation of algorithms that have been used
to implement state-of-art monitoring tools, which allows comparison of the es-
sential attributes that govern their performance. Third, we present the results
of a preliminary study performed that highlights the comparative strengths of
finite-state monitoring algorithms (Section 3). This study uses custom-built im-
plementations of the algorithms that minimize differences in implementation
details, such as indexing data structures, to promote comparability across algo-
rithms (Section 3.1). Fourth, we analyze factors related to the monitored pro-
gram and property and the algorithms themselves that appear to explain the
relative effectiveness of monitoring algorithms (Section 3.3). We begin with a
detailed presentation of algorithms for monitoring finite-state properties.

2 Monitoring Approaches

A finite-state property can be encoded as an FSA, φ = (S,Σ, δ, s0, A) where: S
is a set of states, Σ is the alphabet of symbols, s0 ∈ S is the initial state, A ⊆ S
are the accepting states and δ : (S×Σ)→ S is the state transition function. Let
O denote the set of objects created in the program that are related to property φ
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 void makeEquiv(Set s1, Set s2) { 
     if (s1 != s2) {       
        Iterator i = s2.iterator();  
        while (i.hasNext()) { 
            OBSERVE.hasNext(i); 
            Node n = (Node) i.next(); 
            OBSERVE.next(i); 
            equiv.put(n, s1); 
        } 
    } 
 } 

(b)

Fig. 1. (a) Property HasNext and (b) a fragment of code showing usage of the property

and 2O the powerset of those objects. To simplify the following explanation, let
us assume that the order of objects involved in an event does not matter. Thus,
all approaches to runtime monitoring record a monitoring relation M : 2O × S.

Program statements that are related to φ are mapped, through instrumen-
tation, to an event whose type is 2O × Σ. For example, Figure 1(a) represents
the iterator property HasNext, that specifies that a call to next() must be pre-
ceded by a call to hasNext(). When the instrumentation OBSERVE.hasNext(i)

executes it generates an event ({i}, hasNext) reflecting the fact that iterator i
has had a hasNext() call performed on it.

The key functionality of runtime monitoring of finite-state properties involves
processing the event to update the appropriate state components of the moni-
toring relation. In essence, monitoring implements a variant of δ that is enriched
to include the relevant objects as a parameter, i.e., Δ : (2O × S × Σ) → S. Al-
gorithms for monitoring can be viewed as different strategies for implementing
Δ — more specifically how computation over the domain of Δ is organized.

JavaMOP uses an object-based monitoring approach which defines a monitor
as a set of related objects and a state of the FSA. The ovals on the right side
of each subfigure in Figure 2 illustrate a set of monitors with a set of associated
objects on the top, e.g., {i1}, and the state on the bottom, e.g., 0. Note that
there may be more than one object associated with a monitor. Object-based
monitoring can be understood as realizing a ΔO : 2O → ((S × Σ) → S) which
curries the 2O parameter of Δ to reflect the fact that objects are the primary
key to organizing the domain of Δ.

Tracematches uses a state-based monitoring approach which defines for each
state of the property FSA a set of monitors each of which records a set of
related objects. The rectangles on the lower parts of Figure 4 illustrate a set of
monitors, depicted as ovals, each consisting of a set of objects, e.g., {i1}. State-
based monitoring can be understood as realizing a ΔS : S → ((2O × Σ) → S)
since the state is the primary key to organizing the domain of Δ.
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In essence, these existing approaches differ only in choosing different com-
ponents of the domain of Δ to use as a means of structuring the monitoring
data and computation. We observe that a third choice is possible, symbol-based
monitoring that keeps a set of monitors associated with symbols. Similar to
the object-based monitoring approach, the ovals on the right side of Figure 5
illustrate a set of monitors with a set of associated objects and the state. Symbol-
based monitoring can be understood as realizing a ΔΣ : Σ → ((2O × S) → S)
since the symbol is the primary key to organizing the domain of Δ.

We illustrate and sketch each of these algorithms in the remainder of this
section using the property HasNext. The presentation for all of these algorithms
is without optimizations, as the goal is to clearly show only their prominent fea-
tures. The efficiency of these algorithms can be increased by using optimization
techniques and efficient data structures such as maps used for indexing.

Monitor Indexing. The state-of-art monitoring tools [3, 8] support monitor in-
dexing for efficiently locating the set of monitors that need to be updated when
a program event is generated; events include information on a set of related pro-
gram objects and they are used to “lookup” the set of monitors. An indexing
scheme groups objects that are related to a common symbol. A map that holds
the related objects as keys, is then used to locate associated monitors. Current
tools typically use multi-level maps where each map provides access to the next
level by using exactly one object as a key. Monitors associated with the objects
used to access them are located at the leaf nodes of such an index-tree. Alterna-
tively, multi-key maps may be used where all the related objects together form a
single key. An object-based monitoring tool such as JavaMOP includes support
for all symbols for indexing. A state-based tool like Tracematches may permit
at most a single index tree at every state that is formed by the intersection of
the sets of objects associated with outgoing symbols with the variables that are
guaranteed to be bound in that state. The reason for this difference is that a
state-based tool may need to move monitors from one indexing structure to an-
other depending on state transitions, and this monitor movement is expensive.
The indexing options can be enabled or disabled in the tools. Since indexing is
standard in object-based monitoring we include it in our presentation, but for the
remaining algorithms we elide the details of indexing for clarity. In the study
in Section 3, all of our algorithm implementations use an equivalent indexing
scheme and implementation.

Matching Approach. The trace of events generated by a program can be matched
against the FSA specification using two different approaches. In complete match-
ing the trace is tested for membership in the language of the FSA. If the property
FSA represents a legal behavior, then a violation can be detected before the pro-
gram terminates, if a trace prefix cannot be extended to an accepting trace. On
the other hand, if the property FSA represents an illegal behavior, then a vio-
lation can be detected, if a trace prefix can be extended to a matching trace.
Alternatively, FSA properties can also be specified using suffix matching. These
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Fig. 2. Example of Object-based Monitoring: (a) Before the generation of a creation
event ({i}, hasNext); (b) After the generation of a creation event ({i}, hasNext);
(c) After the generation of event ({i}, next);

properties are supposed to hold beginning at any point in the program trace.
The algorithms presented in this section focus on complete matching, but can
support suffix matching with minor modifications [15].

2.1 Object-Based Monitoring

Figure 2 illustrates a generic object-basedmonitoring scheme for complete match-
ing that is tool-independent. Figure 2(a) shows an example of the monitoring data
structures before the execution of a hasNext() call. The call generates a monitor-
ing event e = (l, b), where l in this case is {i}, and b is the FSA symbol hasNext.
The scheme provides a map, keyed by sets of related objects that have been in-
volved in previous events. Property HasNext has only one type of object associ-
ated. In practice, there may be properties that have multiple objects associated
and for efficiency reasons, multiple maps may be provided. The values correspond-
ing to the keys are sets of monitors that are associatedwith the objects. In this case
these sets will be singleton, because there can only be one monitor associated with
any iterator object. The value sets have been shown by dots and the corresponding
set members have been shown by the arrows originating from the dots.

Figure 2(b) shows the situation after the scheme handles the first hasNext

event. Since no monitors are associated with the newly created object referenced
by the iterator variable i, a new monitor is created and references to it are
associated with the new key {i}.

Figure 2(c) shows how a subsequent next event, which is triggered by a call
to i.next(), is handled. The monitor associated with i in the map is retrieved.
For each such monitor, an FSA transition is simulated to update the state. In
this example, the monitor associated with i was previously in state 1 so it is
updated to δ(1, next) = 0 based on the FSA in Figure 1(a).

An algorithm for object-based monitoring is sketched in the left part of Fig-
ure 3. Lines 5–7 handle the creation of new monitors which are initialized to the
FSA start state. This is only performed if no map entries exist for the associ-
ated objects. Lines 8–10 add the new monitor to the sets of monitors that are
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ObjectBasedMonitoring(
φ = (S,Σ, δ, s0, A), e = (l, b))

1 let L be the set of sets of objects
that receive events.

2 let MS be the set of sets of monitors.
3 let ObjsMons : L → MS be a map.
4 let ObjsSym be a binary relation

over L and Σ.
5 if ObjsMons(l) = null then
6 m ← new monitor(l)
7 m.cur ← s0
8 for l′ ⊆ l do
9 if ∃σ ∈ Σ : (l′, σ) ∈ ObjsSym

then
10 ObjsMons(l′) ←

ObjsMons(l′) ∪ {m}
11 ms ← ObjsMons(l)
12 for m ∈ ms do
13 m.cur ← δ(m.cur, b)
14 if m.cur = err then
15 report error

StateBasedMonitoring(
φ = (S,Σ, δ, s0, A), e = (l, b))

1 let MS be the set of sets of monitors
2 let StMons : S → MS be a map
3 if ∀s ∈ S : ∀m ∈ StMons(s) : l �⊆ m.l

then
4 m ← new monitor(l)
5 StMons(so) ← StMons(so) ∪ {m}
6 for s ∈ S do
7 if s �= δ(s) then
8 for m ∈ StMons(s) do
9 if l ⊆ m.l then
10 StMons(s) ←

StMons(s)− {m}
11 StMons(δ(s)) ←

StMons(δ(s)) ∪ {m}
12 if δ(s) = err then
13 report error

Fig. 3. Object-based Monitoring (left) and State-based Monitoring (right)

associated with each subset of l that may witness a future event. Finally, lines
11–13 simulate FSA transitions for the states in every monitor associated with
the objects involved in the event. If any of the monitors goes to the error state
an error is reported as shown by lines 14–15.

2.2 State-Based Monitoring

Figure 4 illustrates a generic and tool-independent state-basedmonitoring scheme
for complete matching for the same property and program fragment that was
shown in the earlier example. Monitoring is performed over a single copy of
the property FSA. A set of monitors are associated with each state and those
monitors are moved between states based on the events encountered and δ.

Figure 4(a) shows the situation just before the execution of a call to hasNext().
The monitoring system searches for monitors associated with i by querying the
sets associated with each FSA state. It fails to find any monitor, so it creates
a new monitor, which consists of just the objects (in this case only the object
referenced by i), and adds it to the set associated with state δ(0, hasNext) = 1,
where state 0 is the FSA start state. The result is shown in Figure 4(b). Lines
3–5 in the right part of Figure 3, which sketches a basic state-based monitoring
algorithm, describe the monitor creation steps in detail.

Figure 4(c) shows how the subsequent next event is handled. The monitor
sets for each state are searched, lines 6–9 in the algorithm, to find monitors
involving i. This results in an instance {i} at state 1 being found. The monitor
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Fig. 4. Example of State-based Monitoring without Monitor Indexing: (a) Before the
generation of a creation event ({i}, hasNext); (b) After the generation of a creation
event ({i}, hasNext); (c) After the generation of event ({i}, next);

is then moved to the appropriate state depending on the encountered symbol as
shown in lines 10–11. In the example, this causes the monitors to be removed
from state 1’s set and added to the set for δ(0, next) = 0. Line 7 skips the move
for self-loop1 transitions. Lines 12–13 show that if the target state is the error
state an error is reported.

2.3 Symbol-Based Monitoring

Monitors need to be tracked, that is, their states need to be updated, only for the
symbols that change their states. In other words, a monitoring tool can exploit
the property structure by skipping the symbols that result in self-loops. In this
section, we present a symbol-based monitoring approach that would use symbol-
specific monitor pools to organize monitors based on their states. We illustrate
our approach with an example.

Figure 5 illustrates a symbol-based monitoring scheme that maintains a pool
of monitors for every symbol, in this case hasNext and next. Figure 5(a) shows
a snapshot of the monitoring data structures just before the execution of a
hasNext() call. The monitor corresponding to object reference i1 is already
present and since it is in state 0, both of the monitor pools are holding references
to it. This is because neither of the symbols self-loop in this state. After observing
symbol hasNext(), the monitor tool realizes that no monitor exists for this
reference and the object reference has not been seen previously as indicated by
the set TrackedObjs. Hence, as shown in Figure 5(b), a new monitor is created
and is pushed to state δ(0, hasNext) = 1. Since only the next symbol is active in
this state, the new monitor is added only in the pool associated with the symbol
next. Finally, after receiving the next call, the new monitor is pushed back to

1 In this paper, we use the term self-loop to refer to the cycles of length 1 and the
term loop to refer to the cycles of length greater than 1.



388 R. Purandare, M.B. Dwyer, and S. Elbaum

0 

err 

1 0

err

1
hasNext hasNext 

next 

next 

0 

i1 

TrackedObjs 
{{i1}} 

(a)

0 

err 

1 0

err

1
hasNext hasNext 

next 

next 

0 

i1 

1 

i 

TrackedObjs 
{{i1}, {i}} 

(b)

0 

err 

1 0

err

1
hasNext hasNext 

next 

next 

0 

i1 

0 

i 

TrackedObjs 
{{i1}, {i}} 

(c)

Fig. 5. Example of Symbol-based Monitoring without Monitor Indexing: (a) Before the
generation of a creation event ({i}, hasNext); (b) After the generation of a creation
event ({i}, hasNext); (c) After the generation of event ({i}, next);

state δ(1, next) = 0 and as shown in Figure 5(c), it is added to back to both of
the monitor pools as both of the symbols are active in state 0.

Lines 7–9 in Figure 6, which sketches a symbol-based monitoring algorithm,
describe the monitor creation steps. The newly created monitor is then added
to the pools associated with all non-self-looping symbols as described by lines
10–11. A set TrackedObjs is maintained to keep track of objects that have been
monitored so far. This set is maintained because a monitor moved to a trap
state, that is a state in which all symbols self-loop, may be removed from all the
maps, in which case the monitoring tool may fail to infer whether the monitor
was moved to a trap state or the objects involved in the event never had any
associated monitor. The tool needs to create a new monitor for the latter case,
but not for the former. Lines 12–14 describe updating this set for all relevant
sets of objects related to the event. In the example, it is the singleton set {i}
as shown in Figure 5(b). Alternatively, the set may only keep track of objects
that were moved to a trap state. A map OutTrans keeps a set of non-self-looping
symbols for every state.

Lines 17–25 describe the steps in performing a transition on associated moni-
tors corresponding to an observed symbol. As described by lines 19–20, an error
is reported if any of the monitors moves to the error state. Lines 21–25 describe
a loop that ensures that the monitor is added only to the pools corresponding
to non-self-looping transitions and deleted from all other pools.

The adaptive online analysis [10] can be seen as a variant of symbol-based
monitoring approach, that drops the symbol instrumentation dynamically when
there are no monitors interested in the symbol. Compared to that approach,
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SymbolBasedMonitoring(φ = (S,Σ, δ, s0, A), e = (l, b))
1 let L be the set of sets of objects that receive events.
2 let TrackedObjs be the set of related sets of tracked objects.
3 let MS be the set of sets of monitors.
4 let OutTrans : S → 2Σ be a map.
5 let AssocObjs : Σ × L → L be a map.
6 let SymMons : Σ → MS be a map.
7 if (∀m ∈ SymMons(b) : l �⊆ m.l) ∧ (l �∈ TrackedObjs) then
8 m ← new monitor(l)
9 m.cur ← s0
10 if b ∈ OutTrans(s0) then
11 SymMons(b) ← SymMons(b) ∪ {m}
12 for l′ ⊆ l do
13 if ∃σ ∈ Σ : AssocObjs(σ, l) �= ∅
14 TrackedObjs ← TrackedObjs ∪ l′

15 ms ← SymMons(b)
16 for m ∈ ms do
17 if l ⊆ m.l then
18 m.cur ← δ(m.cur, b)
19 if m.cur = err then
20 report error
21 for σ ∈ Σ do
22 if σ ∈ OutTrans(m.cur) then
23 SymMons(σ) ← SymMons(σ) ∪ {m}
24 else
25 SymMons(σ) ← SymMons(σ)− {m}

Fig. 6. Algorithm for Symbol-based Monitoring

the approach presented in this section is more light-weight in that it does not
need any additional infrastructure or dynamic instrumentation. Unlike stutter-
equivalent loop transformation technique [16], this optimization comes with a
non-zero but small cost for referencing. However, an update corresponding to
non-self-looping transitions could be expensive depending on the number of as-
sociated monitors and symbols. Moreover, it may only optimize self-loops and
not any arbitrary loops of length greater than one. However, it can optimize re-
peating symbols irrespective of their source in the program. In addition, it does
not incur an extra cost of expensive static program analysis as it only needs to
analyze the property structure.

3 Relative Strengths of Monitoring Algorithms

The approaches presented in Section 2 differ mainly in the way the monitors are
organized, accessed and manipulated. Those differences provide the approaches
their inherent strengths and weaknesses. In this section, we first present a pre-
liminary study performed to understand those strengths and weaknesses. We
then interpret the results with the help of the algorithms presented in Section 2.
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Table 1. Finite-state properties. Self-loops over the trap state are not considered.

No. Name Regular Expression #Obj #St #Sym Loop Self

1 FailSafeIter create next∗update+next 2 5 3 ✗ �
2 HasNext (hasNext+next)∗hasNext 1 3 2 � �
3 Writer create(writeW |writeO)∗ 2 5 3 ✗ �

(closeW |closeO)+(writeW |writeO)

4 SafeSyncCol (sync asyncCreateIter)| 2 5 3 ✗ ✗

(sync syncCreateIter accessIter)

3.1 Evaluation

Artifacts. We selected 4 properties for monitoring, namely, FailSafeIter, Has-
Next, Writer and SafeSyncCol as described in Table 1. The FailSafeIter property
ensures that a collection is not updated while it is iterated. The Writer prop-
erty checks that a Writer is not used after it or its OutputStream is closed. The
SafeSyncCol property specifies that a non-synchronized iterator should not be
created for a synchronized collection and if a synchronized iterator is created, it
should not be accessed in an unsynchronized way. These properties have been
used and described in previous work [6, 14, 16]. All of the selected properties
except HasNext are multi-object properties that involve 2 types of objects. None
of the properties except HasNext have loops of length greater than 1. All of the
properties except SafeSyncCol have self-loops, however, even SafeSyncCol has a
self-loop if we consider the trap state.

Also following the same previous work, we selected the bloat and pmd bench-
marks from DaCapo version 2006-10 [4] since they were found to incur overhead
of at least 5% for at least one of the selected properties2. In addition, we used
JGraphT version 0.8.1, a Java open source graph manipulation library consist-
ing of 172 classes, and monitored the load test supplied with the release for the
selected properties, repeating a previous experimental setup [16].

Monitor Implementation. We used JavaMOP 2.1 to build an object-based mon-
itor for each of the 4 properties. We developed the state-based and the symbol-
based monitors for the properties by using the aspect generated by JavaMOP
2.1 as a baseline and then making minimal changes that were essential to encode
the algorithmic differences. This allowed us to use the same pointcuts and sup-
porting data structures. JavaMOP implements an efficient indexing scheme to
provide faster access to monitors. Using the same map data structures used by
JavaMOP, we provided indexing support to the state-based and symbol-based
monitors, which ensured that no approach gets an undue advantage in monitor
retrieval due to differences in the indexing data structures. To limit the num-
ber of monitors that are moved during state updates, Tracematches provides only

2 Executions times recorded when overheads were smaller than 5% were highly incon-
sistent so we did not consider such artifacts.
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Table 2. Variation in the percentage runtime overheads caused by different combi-
nations of programs, properties and approaches. The figures shown in the bold are
minimum overheads for that combination.

No. Property Benchmark Object-based State-based Symbol-based

1 FailSafeIter bloat 764.6 695.8 508.3
2 FailSafeIter pmd 39.1 32.6 30.4
3 FailSafeIter jgrapht 106.5 117.8 80.4
4 HasNext bloat 283.3 922.9 708.3
5 HasNext pmd 10.9 28.3 21.7
6 HasNext jgrapht 21.7 100.0 100.0
7 Writer bloat 6.3 6.3 4.2
8 Writer pmd 6.5 0 0
9 Writer jgrapht - - -
10 SafeSyncCol bloat 939.6 1179.4 981.3
11 SafeSyncCol pmd 39.1 41.3 41.3
12 SafeSyncCol jgrapht 108.7 110.9 110.9

partial indexing support. While efficient for uni-object properties, this leads
to significant inefficiencies for multi-object properties. In our implementation
of state-based and symbol-based monitoring, we provide full indexing support
which makes them comparable to object-based monitoring. These decisions allow
us to eliminate differences due to implementation decisions and focus our study
on the core algorithmic differences between approaches.

Measurements. DaCapo provides a standard means of recording runtimes —
the converge option which repeatedly runs the program until the variation in
execution time is within ±3%. We ran each benchmarks at least 6 times for
every property and algorithm, and report the mean of the execution times after
convergence. When the runs did not converge, we report the mean of the times
taken by the warmup runs. JGraphT does not use the DaCapo infrastructure
so, we ran the program 6 times for every property and approach and report
the mean of the execution times. We used used ajc 1.6.8 to weave all of the
monitors into the programs and compiled using JVM 1.6.0. All programs were
run on an Opteron 250 running CentOS 5.2 using the JVM 1.6.0 with 14 GB of
heap available. All the data report is in terms of percentage overhead relative to
execution of the program without monitoring.

3.2 Results

Table 2 shows the percentage overheads incurred by various benchmark and
property combinations for all of the three monitoring approaches.

For the property FailSafeIter, the symbol-based monitoring approach incurs
the lowest overhead independently of the program. We conjecture that this is
due to the presence of self-loops in the property that are frequently executed.
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Self-loops allow both symbol and state-based monitoring approaches very effi-
ciently process events, as we discus below. Moreover, this property has no loops
that transit multiple states. This ensures that every monitor performs only a
small number of state transitions — bounded by the total number of states —
which avoids significant degradation in performance of symbol and state-based
monitoring due to state changes. The difference between state and symbol-based
approaches is related to the fact that state-based must perform a lookup at ev-
ery property state per event, whereas symbol-based needs to perform only two
lookups per event, that include one in the associated symbol map and the other in
the TrackedObjs set. The pair FailSafeIter and jgrapht breaks the overall trend
in that state-based monitoring performs worse than object-based monitoring. A
more detailed analysis reveals that for this program there is a single monitor as-
sociated with each Collection object which reduces the advantage of state-based
due to self-loop processing to the point where object-based is cheaper.

For the property HasNext, we conjecture that state and symbol-based mon-
itoring suffer due to the frequent change of monitor states which is a costly
operation under these algorithms. Since object-based monitoring processes ev-
ery event the same way, state change or not, it performs better. We note that
HasNext does have a self-loop, yet it is only executed when the program performs
consecutive calls to hasNext(), which is quite rare. This shows that property
structure alone, e.g., whether it has a self-loop, is not sufficient for predicting
an algorithm’s performance. The pattern of program generated event traces and
how they drive FSA transitions must be considered as well.

The property Writer is similar in structure to FailSafeIter but its events are
less common so it incurs in much smaller overhead. Here again, symbol-based
monitoring incurs the lowest overhead. One interesting aspect of this property
are the disjunctions of symbols, e.g., writeW |writeO at a state lead to the same
state. Generally more symbols will lead to worse performance for a symbol-
based algorithm. While our implementation forgoes any optimizations, it is easy
to calculate equivalence classes of symbols with respect to δ and modify event
generating instrumentation to use a single representative symbol for each class
to further reduce overhead.

The property SafeSyncCol has neither loops nor self-loops. This means that
the symbol-based and state-based approaches do not have an advantage over the
object-based approach. The data shows that, as expected, object-based monitor-
ing performs well since it is insensitive to the number of states and the number
of symbols — factors that impact the cost of the other approaches.

3.3 Factors Impacting Overhead

For a given program and property, clearly the number of events and monitors
will strongly influence overhead. Based on the results of our study, however, we
hypothesize that additional factors can influence the relative advantages of differ-
ent monitoring algorithms. Specifically we believe these factors to be important:
i) the presence of property loops of length greater than 1, ii) the presence of
property self-loops, iii) the number of monitors associated with related objects



Algorithmic Approaches to Monitoring 393

Table 3. Factors impacting performance

Approach Loops Self-loops #Mon #St #Sym

Object-based Monitoring - - ✗ - -

State-based Monitoring ✗ � ? ✗ -

Symbol-based Monitoring ✗ � ? - ✗

for multi-object properties, iv) the number of property automaton states, and
v) the number of property symbols. The first three factors are related to the
interaction of program execution and property structure, whereas the last two
are purely related to property structure.

Table 3 summarizes how the factors may impact the monitoring performance
for various approaches. In the table, - indicates that the factor has limited im-
pact, � indicates that the impact may be significant and favorable and ✗ indi-
cates that the impact may be significant and unfavorable. ? indicates that the
impact of this factor depends on other factors, as explained below.

We conjecture that state and symbol-based monitoring will perform poorly
if the states are changed frequently which can only happen when loops exist
in the property. For both of these approaches, a state change is an expensive
operation which may either involve locating and moving monitors to another
state as shown by lines 7–11 in Figure 3 for the state-based monitoring and by
lines 16–25 in Figure 6 for the symbol-based monitoring. Both approaches can,
however, efficiently handle self-loops since no map operation except a lookup is
required. This is shown by the condition on line 7 in Figure 3 and line 15 in
Figure 6 that retrieves a set of only those monitors that change their state for
the observed symbol, when indexing is provided. In contrast, the object-based
monitoring is less sensitive to loops or self-loops as all the events are handled
uniformly irrespective of a state change.

Multi-object properties may associate more than one monitor with an object
involved in an event. Handling such an event requires accessing all of those
monitors and performing a transition on each one of them. This means that
the work performed in handling an event would be proportional to the number
of associated monitors for the object-based monitoring as shown by line 11 in
Figure 3 that retrieves all the associated monitors and then performs a transition
on each one of them as shown by lines 12–13. However, for the state-based
monitoring and the symbol-based monitoring, this cost could be either low or
high depending on whether the transitions are self-looping in which case all of
them would be skipped or they change monitor states respectively.

The cost of monitor lookup in the case of state-based monitoring is propor-
tional to the number of states as described in line 6 in Figure 3. Similarly, for
the symbol-based monitoring approach, the cost of state transition requires re-
moving monitors from current pools and adding to the pools depending on the
non-self-looping symbols as described in lines 21–25 in Figure 6. In the worst
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Table 4. Percentage runtime overheads when monitoring multiple properties

Properties bloat pmd jgrapht
Obj State Sym Obj State Sym Obj State Sym

All 2043.8 2795.8 2177.3 73.9 95.7 63.0 187 267.4 163
FSI,W,SSC 1710.4 1931.3 1306.3 65.2 69.6 47.8 169.6 182.6 104.3

FSI,W 768.8 664.6 491.7 39.1 32.6 23.9 106.5 113 82.7

case, this number may reach the total number of symbols to be manipulated.
Hence, the cost of handling an event may grow in proportion to the number of
symbols in the case of the symbol-based monitoring.

Multiple Properties. It is evident from these results that some properties would
be more favorable to some approaches if the properties possess certain attributes,
including the presence of loops and self-loops that can be exercised by a program.
To understand the overall impact of these factors on the performance of the
approaches, we combined the properties in different ways and monitored the
programs. The results are available in Table 4.

The first row corresponds to the case when we combined all four properties.
Since this combination includes properties that are favorable to symbol-based
and properties that are favorable to object-based monitoring, the lowest overhead
approach depends on the program. Dropping HasNext leaves just one property
on which object-based performed best. Row two reports the results on that
combination with symbol-based achieving the lowest overhead on both programs.
Row three result is no surprise, since it retains just the properties that were
favorable to symbol-based monitoring.

4 Conclusion and Future Work

We have provided a uniform presentation of three algorithmic approaches to fi-
nite state runtime monitoring, including the symbol-based monitoring which has
not been implemented yet by any state-of-art monitoring tools. Our analysis and
preliminary study of these approaches revealed some of their relatives strengths
and weaknesses in different program and properties contexts. Further studies
are needed to provide more evidence on whether the relationships between prop-
erties and program attributes, and the relative strength and weaknesses of the
approaches hold in general. Equipped with this information, we plan to explore
whether additional static or dynamic program analyses might be used to predict
when a specific monitoring approach or combination of approaches would yield
the best performance.
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Abstract. Symbolic execution with interpolation is emerging as an alternative to
CEGAR for software verification. The performance of both methods relies criti-
cally on interpolation in order to obtain the most general abstraction of the current
symbolic or abstract state which can be shown to remain error-free. CEGAR nat-
urally handles unbounded loops because it is based on abstract interpretation. In
contrast, symbolic execution requires a special extension for such loops.

In this paper, we present such an extension. Its main characteristic is that it
performs eager subsumption, that is, it always attempts to perform abstraction in
order to avoid exploring redundant symbolic states. It balances this primary de-
sire for more abstraction with the secondary desire to maintain the strongest loop
invariant, for earlier detection of infeasible paths, which entails less abstraction.
Occasionally certain abstractions are not permitted because of the reachability
of error states; this is the underlying mechanism which then causes selective un-
rolling, that is, the unrolling of a loop along relevant paths only.

1 Introduction

Symbolic execution [22] is a method for program reasoning that uses symbolic values
as inputs instead of actual data, and it represents the values of program variables as
symbolic expressions as functions of the input symbolic values. A symbolic execution
tree depicts all executed paths during the symbolic execution. A path condition is main-
tained for each path and it is a formula over the symbolic inputs built by accumulating
constraints which those inputs must satisfy in order for execution to follow that path. A
path is infeasible if its path condition is unsatisfiable. Otherwise, the path is feasible.

Symbolic execution was first developed for program testing [22], but it has been sub-
sequently used for bug finding [8] and verification condition generation [3,18], among
others. Recently, symbolic execution has been used for software verification [21,24,15]
as an alternative to existing model checking techniques based on CounterExample-
Guided Abstraction Refinement (CEGAR) [9,2]. Essentially, the general technique fol-
lowed by symbolic execution-like tools starts with the concrete model of the program
and then, the model is checked for the desired property via symbolic execution by prov-
ing that all paths to certain error nodes are infeasible (i.e., error nodes are unreachable).

The first challenge for symbolic execution is the exponential number of symbolic
paths. The approaches of [21,24,15] tackle successfully this fundamental problem by
eliminating from the concrete model those facts which are irrelevant or too-specific for

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 396–411, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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�0 x=0;
�1 while(x < n) {
�2 x++;
�3 }
�4 if(x<0)
�error error()
�5

�0 lock=0;new=old+1;
�1 while(new!=old) {
�2 lock=1;old=new;
�3 if(*){
�4 lock=0;new++;}
�5 }
�6 if(lock==0)
�error error()
�7

�0 x=0;y=0;z=1;
�1 while(*) {
�2 if(*)
�3 skip;
�4 else
�5 x++;,y++;
�6 foo();
�7 x=x-y;
�8 }
�9 if(z �= 1)
�error error()
�10

�0 assume(y>=0);
�1 x=0;
�2 while(x < 10000) {
�3 y++;x++;
�4 }
�5 if(y+x< 10000)
�error error()
�6

(a) (b) (c) (d)

Fig. 1. Programs with Loops

proving the unreachability of the error nodes. This learning phase consists of computing
interpolants in the same spirit of nogood learning in SAT solvers. Informally, an inter-
polant is a generalization of a set of states for splitting between “good” and “bad” states.
The use of symbolic execution with interpolants is thus similar to CEGAR [16,23], but
symbolic execution has some benefits [24]:

1. It does not explore infeasible paths avoiding the expensive refinement in CEGAR.
2. It avoids expensive predicate image computations of, for instance, the Cartesian [1,7]

and Boolean [5] abstract domains.
3. It can recover from too-specific abstractions in opposition to monotonic refinement

schemes often used in CEGAR.

The main remaining challenge for symbolic execution is due to unbounded loops which
make the symbolic execution tree not just large, but infinite. This means that some ab-
straction must be performed on the symbolic states in order to obtain finiteness. Our
previous work [21] assumed that loop invariants are inferred automatically by other
means (e.g., abstract interpretation). The main disadvantage is the existence of false
alarms. Another solution is proposed in [15] where abstraction refinement ‘a la‘ CE-
GAR is performed as a separate process for loops but lacking of the benefits of sym-
bolic execution mentioned above. Finally, [24] proposes a naive iterative deepening
method which unwinds loops iteratively performing finite symbolic execution until a
fixed depth, while inferring the interpolants needed to keep the error nodes unreach-
able. Amongst these interpolants, only those which are loop invariant are kept and it
is checked whether they still prove unreachability of error nodes. If yes, the program
is safe. Otherwise, the depth is increased and the process is repeated. Although simple,
this approach has the advantage of that it performs symbolic execution also within loops
as [21] and without reporting false alarms.

Example 1 (Iterative Deepening). Consider the program in Fig. 1(a). To force termina-
tion, the iterative deepening method executes the program considering one iteration of
the loop. Using interpolants, �4 is annotated with x≥ 0 by using weakest precondition.
This interpolant preserves the infeasibility of the error path. Then, the remaining step
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is to check whether the interpolant is invariant. Since x ≥ 0 is an inductive invariant
interpolant, we can prove that the program is safe.

This program illustrates the essence of the iterative deepening approach which obtains
generalization by interpolation and relies on the heuristics that a bounded proof may
highlight how to make the unbounded proof. However, this approach has one major
drawback: its naive iterative deepening cannot terminate in programs like the one in
Fig. 1(b) due to the impossibility of discovering disjunctive invariant interpolants. We
elaborate more on the reason below. Meanwhile, we mention that this example has
been often used to highlight the strength of CEGAR [17] for handling unbounded loops.
Further, its essential characteristic is present in real programs as we will show in Sec. 5.

In this paper, we propose a new method to enhance symbolic execution for handling
unbounded loops but yet without losing the intrinsic benefits of symbolic execution.
This method is based on three design principles: (1) abstract loops in order for symbolic
execution to attempt to terminate, (2) preserve as much as possible the inherent benefits
of symbolic execution (mainly, earlier detection of infeasible paths) by propagating the
strongest loop invariants1, whenever possible, and (3) refine progressively imprecise
abstractions in order to avoid reporting false alarms.

The central idea is to unwind loops iteratively while computing speculative loop in-
variants which make the symbolic execution of the loop converge quickly. The algo-
rithm attempts to minimize the loss of information (i.e., ability of detecting infeasible
paths) by computing the strongest possible invariants and it checks whether error nodes
are unreachable. If yes, the program is safe. Otherwise, a counterexample is produced
and analyzed to test if it corresponds to a concrete counterexample in the original pro-
gram. If yes, the program is reported as unsafe. Otherwise, these speculative invariants
are too coarse to ensure the safety conditions and the algorithm introduces a refinement
phase similar to CEGAR in which it computes those interpolants needed to ensure the
unreachability of the error nodes, resulting in selective unrolling only at points where
the invariant can no longer be produced due to the strengthening introduced by the in-
terpolants.

Example 2 (Selective Unrolling and Path Invariants). Consider our key example in
Fig. 1(b). We first explain why simple unrolling with iterative deepening does not work
here. Essentially, there are two paths in the loop body, and the required safety property
lock �= 0 is not invariant along both paths. In fact, we require the disjunctive loop invari-
ant new �= old∨ lock �= 0, and this entails far more than simple invariant discovery. Thus
loop unrolling does not terminate with successive deepenings. In more detail, we exe-
cute first one iteration of the loop. Using interpolants, �1 is annotated with new �= old.
We test if the interpolant new �= old is inductive invariant. Since it is not we cannot
keep it and we execute the program considering now two iterations of the loop. During
the second iteration of the loop, both paths π1 ≡ �1 →�2 →�3 →�5 →�1 and π2 ≡ �1

→�2 →�3 →�4 →�5 →�1 must be unrolled. From π1 the symbolic execution proves the
unreachability of �error adding the interpolant old = new∧ lock �= 0. From π2, simple
unrolling with iterative deepening will add the interpolant new �= old after executing

1 By strongest we mean assuming that only discovery methods based on enumeration and testing
are available.
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the second iteration of the loop. Since the interpolant is not inductive invariant yet after
this second iteration, we cannot keep it and the unrolling process runs forever.

In our algorithm, we proceed as follows. We also execute the symbolic path �1 →�2

→�3 →�5 →�1′
2. We then examine the constraints at the entry of the loop �1 (i.e., called

loop header) to discover which abstraction at �1 makes possible that the symbolic state
at �1′ can imply (be subsumed by) the state at �1. We use the notion of path-based loop
invariant. A path-based loop invariant3 is a formula whose truth value does not change
after the symbolic execution of the path. Clearly, the constraints lock = 0 and new =
old+1 at �1 are no longer path-invariants after the execution of the path. We then decide
to generalize at �1 the constraints lock = 0 and new = old+1 to true. As a consequence,
the constraints at �1′ can imply now the constraints at �1. The objective here is to achieve
the convergence of the loop by forcing subsumption between a node and its ancestor.

Next, we backtrack and we execute the path �3 →�4 →�5′ . The symbolic state at �5′

is subsumed by the interpolant computed at �5 since lock = 0∧old = new+ 1 trivially
implies true. After we have executed the loop, we execute the path �1 →�6 →�error

which is now feasible due to the abstraction we performed at �1. We then trigger a
counterexample-guided refinement phase ‘a la‘ CEGAR. First, we check that the path �0

→�1 →�6 →�error is indeed spurious due to the abstraction at �1. Next, we strengthen
the abstraction at �1 in order to make the error node unreachable. The interpolant new=
old + 1 will be sufficient here. Finally, we ensure that the interpolant new = old + 1
cannot be generalized again at �1, and we restart the process again.

After we restart we will reach the node �1′ again and we will try to weaken the
symbolic state at �1 s.t. the state at �1′ can be subsumed, as we did before. However,
the situation has now changed since we cannot abstract the interpolant new = old + 1
added by the refinement, and hence, we decide to unroll �1′ with the symbolic state
lock = 1∧old = new. We prove that the error node is not reachable from �1′ and during
backtracking annotate both �1′ and �5 with the interpolant Ψ ≡ (old = new)∧ (lock �=
0). This strengthening avoids now that the path �3 →�4 →�5′ can be subsumed since
lock = 0∧new = old+1 does not imply Ψ. We continue the path and encounter �1′′ . It
is easy to see that �1′′ cannot be subsumed by its sibling �1′ since the symbolic state at
�1′′ (lock = 0∧ new = old + 1) does not imply Ψ neither. However, we can still force
�1′′ to be subsumed by its ancestor �1 by abstracting the state at �1 using the notion of
path-invariant again. Note that the subsumption already holds and hence, we can halt
exploring the path without further abstraction.

Therefore, we have seen that selective unrolling only at points where we cannot force
subsumption (e.g., at �1′ ) with an ancestor can help termination. The main advantage of
selective unrolling is that it may achieve termination even if disjunctive invariants are
needed for the proof. However, it also introduces some new challenges.

Example 3 (Lazy Subsumption versus Strongest Invariants). Consider the program in
Fig. 1(c). Say we explore first the path �0→�1→�2→�3→�6→�7→�8→�1′ . Assuming
that foo() only changes its local variables, the symbolic state at �1′ is x = 0∧ y =

2 Note that �1′ and �1 correspond to the same location where primed versions refer to different
symbolic states in the symbolic execution tree.

3 Should not be confused with the term “path invariants” used in [6].
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0∧ z = 1 which already implies the symbolic state at �1. As usual, during backtracking
we annotate the symbolic states with their corresponding interpolants. The next path
explored is �2 →�4 →�5 →�6′ . In principle, the symbolic state at �6′ with constraints x=
1∧y = 1∧z = 1 entails true, the interpolant at �6. We therefore can stop the exploration
of the path at �6′ avoiding exploring foo() again.

However, a key observation is that the constraints x = 0 and y = 0 are not path-
invariant if we would only consider the path �1 →�2 →�4 →�5 →�6′ . We face then
here an important dilemma. On one hand, one of our design principles is to compute
the strongest possible loop invariants. However, note that the constraint x = 0 is in fact
invariant if subsumption would not take place at �6′ due to the execution of x = x− y
at �7. On the other hand, we may suffer the path explosion problem if we would not
subsume other paths.

We adopt the solution of lazily subsuming other paths whenever possible while ab-
stracting further the symbolic states of the loop headers even if we may lose the oppor-
tunity of computing the strongest loop invariants.

Coming back to the example, subsumption takes place at �6′ but we must also abstract
the symbolic state at �1 discarding the constraints x = 0 and y = 0 although we can still
keep z = 1. In spite of this abstraction the transition �9 →�error is infeasible. However,
as with the program in Fig. 1(b), we may have some interpolants that strengthen the
path-based loop invariants in order to make the error nodes unreachable. For the sake
of discussion, assume the condition at �9 is x �= 0. Then, the path �1 →�9 →�error would
be feasible since z = 1∧ x �= 0 is satisfiable. We then check that the path �0 →�1 →�9

→�error is indeed spurious due to the abstraction at �1 and discover that the interpolant
x = 0 suffices to make the error node unreachable. As a consequence of this refinement,
after restart the subsumption at �6′ now cannot take place since the constraint x = 0 is
not allowed to be abstracted at �1. We therefore continue exploring the path �6′ →�7

→�8 →�1′′ . The symbolic state at �1′′ (x = 0∧ y = 1∧ z = 1) entails the one at �1 if
we abstract the constraint y = 1 to true. As a result, the analysis of the loop can still
terminate and the error can be proved unreachable.

Example 4 (Other Benefits of Propagating Invariants). It is well-studied that the dis-
covery of loop invariants can speedup the convergence of loops [6]. The bounded pro-
gram in Fig. 1(d) illustrates the potential benefits of propagating invariants by our sym-
bolic execution-based approach wrt CEGAR.

CEGAR (e.g., [7,25]) discovers the predicates (x = 0),(x = 1), . . . ,(x = 10000− 1)
and also (y ≥ 0),(y ≥ 1), . . . ,(y ≥ 10000), and hence full unwinding of the loop is
needed. Say symbolic execution explores the path �0 →�1 →�2 →�3 →�4 →�2′ . It is
straightforward to see that y≥ 0 is invariant. The next symbolic path is �2 →�5 →�error

with the generalized constraint y ≥ 0 at �2. As a result, the symbolic path is infeasible
since the formula y≥ 0∧x≥ 10000∧y+ x< 10000 is unsatisfiable, and hence, we are
done without unwinding the loop.

2 Related Work

Similar to [16,23] our algorithm discovers invariant interpolants that prove the unreach-
ability of error nodes. However, we differ from them because we abstract only at loops
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discovering loop invariants as strong as possible and hence, we still explore a significant
smaller number of infeasible paths. Moreover, we avoid the expensive predicate image
computations with predicate abstraction [17,2]. A recent paper [5] mitigates partially
these problems by encoding large loop-free blocks into a Boolean formula relying on
the capabilities of an SMT solver, although for loops the same issues still remain. Syn-
ergy/DASH/SMASH [14,4,13] use test-generation features to enhance the process of ver-
ification. The main advantage comes from the use of symbolic execution provided by
DART [12] to make the refinement phase cheaper. The main disadvantage is that these
methods cannot recover from too-specific refinements (see program diamond in [24]).

To the best of our knowledge, the works of [20,21] are the first in using symbolic ex-
ecution with interpolation in pursuit of verifying a target property. However, [20] does
not consider loops and [21] relies on abstract interpretation in order to compute loop
invariants, and as a result, false alarms can be reported. Alternatively, the verification
problem can be seen as a translation to a Boolean formula that can then be subjected
to a SAT or SMT solver. It is a fact that symbolic execution with interpolation can be
considered analogous to conflict clause learning in DPLL style SAT solvers. [15] adopts
this approach by mapping the verification problem of loop-free programs into a solving
SMT instance, and adding conflict clauses into the SAT solver whenever infeasible paths
are detected. In presence of loops, [15] allows choosing between different methods.
One is the use of abstract interpretation for discovering loop invariants that allow ter-
mination similar to [21]. Another alternative is the use of CEGAR but losing the ability
of detecting eagerly infeasible paths within loops.

Our closest related work is McMillan [24]. This work can be dissected in two parts.
For loop-free fragments, this work is in fact covered by the earlier works [20,21] and
hence, equivalent to ours here. However, we differ in the way we handle unbounded
loops. [24] follows the iterative deepening method explained in Sec. 1 and hence, may
not converge for some realistic programs as we have shown. Finally, [24] computes
summaries for functions and support recursive functions. Our implementation currently
performs function inlining and does not cover recursive functions. We consider these
extensions however to be an orthogonal issue which we can address elsewhere.

3 Background

Syntax. We restrict our presentation to a simple imperative programming language,
where all basic operations are either assignments or assume operations, and the domain
of all variables are integers. The set of all program variables is denoted by Vars. An
assignment x := e corresponds to assign the evaluation of the expression e to the variable
x. In the assume operator, assume(c), if the boolean expression c evaluates to true, then
the program continues, otherwise it halts. The set of operations is denoted by Ops.

We model a program by a transition system. A transition system is a quadruple
〈Σ, I,−→,O〉 where Σ is the set of states and I ⊆ Σ is the set of initial states. −→⊆
Σ×Σ×Ops is the transition relation that relates a state to its (possible) successors exe-
cuting operations. This transition relation models the operations that are executed when
control flows from one program location to another. We shall use �

op−−→ �′ to denote a
transition relation from � ∈ Σ to �′ ∈ Σ executing the operation op∈Ops. Finally, O⊆ Σ
is the set of final states.
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Symbolic Execution. A symbolic state σ is a triple 〈�,s,Π〉. The symbol � ∈ Σ corre-
sponds to the next program counter (with special program counters �end ∈ O to denote
a final location and �error for an error location). The symbolic store s is a function from
program variables to terms over input symbolic variables. Each program variable is
initialized to a fresh input symbolic variable. The evaluation �e�s of an arithmetic ex-
pression e in a store s is defined as usual: �v�s = s(v), �n�s = n, �e+ e′�s = �e�s+�e′�s,
�e− e′�s = �e�s− �e′�s, etc. The evaluation of Boolean expression �b�s can be defined
analogously. Finally, Π is called path condition and it is a first-order formula over the
symbolic inputs and it accumulates constraints which the inputs must satisfy in order for
an execution to follow the particular corresponding path. The set of first-order formulas
and symbolic states are denoted by FO and SymState, respectively. Given a transition
system 〈Σ, I,−→,O〉 and a state σ ≡ 〈�,s,Π〉 ∈ SymState, the symbolic execution of

�
op−−→ �′ returns another symbolic state σ′ defined as:

σ′ �
{
〈�′,s,Π∧ �c�s〉 if op ≡ assume(c) and Π∧ �c�s is satisfiable
〈�′,s[x �→ �e�s],Π〉 if op ≡ x := e

(1)

Note that Eq. (1) queries a theorem prover for satisfiability checking on the path con-
dition. We assume the theorem prover is sound but not complete. That is, the theorem
prover must say a formula is unsatisfiable only if it is indeed so.

Overloading notation, given a symbolic state σ≡〈�,s,Π〉we define �·� : SymState→
FO as the projection of the formula (

∧
v ∈ Vars �v�s)∧ �Π�s onto the set of program

variables Vars. The projection is performed by elimination of existentially quantified
variables.

A symbolic path π≡ σ0 ·σ1 · ... ·σn is a sequence of symbolic states such that ∀i•1≤
i≤ n the state σi is a successor of σi−1. A symbolic state σ′ ≡ 〈�′, ·, ·〉 is a successor of

another σ≡〈�, ·, ·〉 if there exists a transition relation �
op−−→ �′. A path π≡σ1 ·σ2 · ... ·σn

is feasible if σn ≡ 〈�,s,Π〉 such that �Π�s is satisfiable. If � ∈ O and σn is feasible
then σn is called terminal state. Otherwise, if �Π�s is unsatisfiable the path is called
infeasible and σn is called infeasible state. A state σ ≡ 〈�, ·, ·〉 is called subsumed if
there exists another state σ′ ≡ 〈�, ·, ·〉 such that �σ� |= �σ′�. If there exists a feasible path
π ≡ σ0 ·σ1 · ... ·σn then we say σk (0≤ k ≤ n) is reachable from σ0 in k steps. We say
σ′′ is reachable from σ if it is reachable from σ in some number of steps. A symbolic
execution tree characterizes the execution paths followed during the symbolic execution
of a transition system by triggering Eq. (1). The nodes represent symbolic states and the
arcs represent transitions between states. We say a symbolic execution tree is complete
if it is finite and all its leaves are either terminal, infeasible or subsumed.

Bounded Program Verification via Symbolic Execution. We follow the approach
of [21]. We will assume a program is annotated with assertions of the form if (!c)
then error(), where c is the safety property. Then the verification process consists of
constructing a complete symbolic execution tree and proving that error is unreach-
able from all symbolic paths in the tree. Otherwise, the program is unsafe. One of the
challenges to build a complete tree is the exponential number of symbolic paths. An
interpolation-based solution to this problem was first proposed in [21] which we also
follow in this paper. Given an infeasible state σ≡ 〈�,s,Π〉 we can generate a formula Ψ
(called interpolant) which still preserves the infeasibility of the state but using a weaker
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(more general) formula than the original �σ�. The main purpose of using Ψ rather than
the original formula associated to the symbolic state σ is to increase the likelihood of
subsumption.

Definition 1 (Interpolant). Given two first-order logic formulas φ1 and φ2 such that
φ1 ∧φ2 is unsatisfiable a Craig interpolant [10] is another first-order logic formula Ψ
such that (a) φ1 |= Ψ, (b) Ψ∧φ2 is unsatisfiable, and (c) all variables in Ψ are common
variables to φ1 and φ2.

The symbolic execution of a program can be augmented by annotating each symbolic
state with its corresponding interpolant such that the interpolant represents the suffi-
cient conditions to preserve the unreachability of the error nodes. Then, the notion of
subsumption can be redefined as follows.

Definition 2 (Subsumption with Interpolants). Given two symbolic states σ and σ′
such that σ is annotated with the interpolant Ψ, we say that σ′ is subsumed by σ if �σ′�
implies Ψ (i.e., s.t. �σ′� |= Ψ).

4 Algorithm

A full description of our algorithm is given in Fig. 2 and Fig. 3. For clarity and making
the reader familiar with our algorithm, we start by explaining only the parts correspond-
ing to the bounded symbolic execution engine used in [21,24]. Having done this, we will
explain how this basic algorithm can be augmented for supporting unbounded programs
which is the main technical contribution of this paper.

The input of the algorithm is an initial symbolic state σk ∈ SymState, the transition
system P , an initial empty path π, and an empty subsumption table M . We use the
key k to refer unambiguously to the symbolic state σ in the symbolic execution tree.
In order to perform subsumption tests our algorithm maintains the table M that stores
entries of the form 〈�,k〉 : Ψ, where Ψ is the interpolant at program location � associated
with a symbolic state k in the symbolic execution tree. The interpolants are generated
by a procedure Interp : FO×FO→FO that takes two formulas and computes a Craig
interpolant following Def. 1, Sec. 3. The output of the algorithm is the subsumption
table if the program is safe. Otherwise, the algorithm aborts.

Bounded Verification via Symbolic Execution with Interpolation. The algorithm for
bounded verification using symbolic execution with interpolants consists of building a
complete symbolic execution tree while testing error nodes are not reachable.

The algorithm starts by testing if the path is infeasible at line 1. If yes, an interpolant
is generated to avoid exploring again paths which have the same infeasibility reason.
Next, if the error node is reachable (line 3) then the error must be real since for bounded
programs no abstraction is done and hence, the program is reported as unsafe at line 7.
The next case is when the end of a path (i.e, terminal node) has been encountered.
The algorithm simply adds an entry in the subsumption table whose interpolant is true
(line 9) since the symbolic path is feasible and hence, there is no false paths to preserve.
Otherwise, a subsumption test at line 10 is done in order for the symbolic execution
to attempt at halting the exploration of the path. For bounded programs, this test is
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UNBOUNDEDSYMEXEC(σk ≡ 〈�,s,Π〉,P ,π,M )

1: if �Π�s is unsat then /* infeasible path */
2: return M ∪{〈�,k〉 : INTERP(�σk�, false)}
3: else if (� = �error) then
4: if ∃ σh ≡ 〈�h, ·, ·〉 in π s.t. �h is a loop header and

�σh�∧ �Π�s is unsat then /* spurious error */
5: return REFINEANDRESTART(σh,σk,P ,π,M )
6: else
7: printf(“The program is unsafe”) and abort() /* real error */
8: else if (� = �end) then /* end of path */
9: return M ∪{〈�,k〉 : true}
10: else if Ψ := (SUBSUMED(σk,M ) �=⊥) then /* sibling-sibling subsumed */
11: return M ∪{〈�,k〉 : Ψ}
12: else if ∃ 〈�, ·, ·〉 in π then /* cyclic path */
13: foreach σh in π s.t. σh ≡ 〈�, ·, ·〉 do
14: if (NONPATHINV(σh,σk,M ) �=⊥) then /* child-ancestor subsumed */
15: return M ∪{〈�,k〉 : true}
16: endfor
17: goto 19
18: else
19: Ψ := true

20: foreach transition relation �
op−−→ �′ ∈ P do /* forward symbolic execution */

21: σ′k′ �
{
〈�′,s,Π∧ �c�s〉 if op ≡ assume(c) and fresh k′

〈�′,s[x �→ �e�s],Π〉 if op ≡ x := e and fresh k′

22: M := UNBOUNDEDSYMEXEC(σ′
k′
,P ,π ·σk,M )

23: Ψ := Ψ∧ (∧
〈·,k′〉:Ψ′

∈M ŵp(op,Ψ′)) /* backward symbolic execution */

24: endfor

25: return M \{〈�,k〉 : Ψ′′}∪{〈�,k〉 : Ψ∧Ψ′′}

Fig. 2. Algorithm for Unbounded Symbolic Execution with Interpolation

quite straightforward because it suffices to check whether the current symbolic state
implies any interpolant computed previously for the same program location following
Def. 2, Sec. 3. This is done at line 46, Fig. 3. If the test holds, it returns the interpolant
associated with the subsuming node (line 50). Otherwise, it returns⊥ at line 51 to point
out that the subsumption test failed.

In the remaining case, the symbolic execution moves forward one level in the sym-
bolic execution tree. The foreach loop (lines 20-24) executes one symbolic step for each
successor node 4 and it calls recursively to the main procedure UNBOUNDEDSYMEXEC

with each successor state (line 22). Once the recursive call returns the key remain-
ing step is to compute an interpolant that generalizes the symbolic execution tree at
the current node while preserving the unreachability of the error nodes. The procedure
ŵp : Ops×FO → FO computes ideally the weakest precondition (wp) [11] which is

4 Note that the rule described in line 21 is slightly different from the one described in Sec. 3
because no satisfiability check is performed. Instead, this check is postponed and done by
line 1.
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NONPATHINV(σh ≡ 〈�,s, ·〉,σk,M )

26: let Ψ be s.t. 〈�,h〉 : Ψ ∈M . Otherwise, let Ψ be true
27: let I ≡ c1 ∧ . . .∧ cn be �σh�
28: i := 1, NonInv := /0
29: repeat
30: if �σk� |= I |= Ψ then
31: foreach σ≡ 〈·,s, ·〉 s.t. σ is k-reachable (k > 0) from σh
32: replace s with HAVOC(s,MODIFIES(NonInv))
33: endfor
34: return
35: else
36: I = I −ci /* delete from I the constraint ci */
37: NonInv := NonInv∪{ci}
38: i := i+1
39: until (i > n)
40: return ⊥

REFINEANDRESTART(σh ≡ 〈�, ·, ·〉,σk,P ,π,M )

41: let π be σ0 · · ·σh−1 ·σh · · ·
42: Ψ := INTERP(�σh�,�σk�)

43: M := M \ {〈�′,k′〉 : Ψ′ | 〈�′,k′〉 : Ψ′, σk′ is k-reachable (k > 0) from σh}
44: M := M \{〈�,h〉 : Ψ′}∪{〈�,h〉 : Ψ∧Ψ′}
45: return UNBOUNDEDSYMEXEC(σh,P ,σ0 · · · ·σh−1,M )

SUBSUMED(σk ≡ 〈�, ·, ·〉,M )

46: if ∃ 〈�′,k′〉 : Ψ ∈M s.t. (�= �′) and (�σk� |= Ψ) then
47: if k and k′ have a common loop header ancestor σh in the tree then
48: if (NONPATHINV(σh,σk,M ) �=⊥) then return Ψ
49: else return ⊥
50: else return Ψ
51: return ⊥

Fig. 3. NONPATHINV, REFINEANDRESTART and SUBSUMED Procedures

the weakest formula on the initial state ensuring the execution of an operation in a final
state, assuming it terminates. In practice, we approximate wp by making a linear num-
ber of calls to a theorem prover following the techniques described in [21]. The final
interpolant Ψ added in the subsumption table is a first-order logic formula consisting of
the conjunction of the result of ŵp on each child’s interpolant (line 23).

Unbounded Verification via Symbolic Execution with Interpolation. For handling
unbounded loops we need to augment the basic algorithm described so far in several
ways.

Loop abstractions. The main abstraction is done whenever a cyclic path is detected by
forcing subsumption between the current node and any of its ancestors. The mechanism
to force subsumption takes the constraints from the symbolic state associated with the
loop header (i.e., entry point of the loop) and it abstracts any non-invariant constraint
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after the execution of that particular path. By doing this, we can ensure that the symbolic
state of the current node implies the abstracted symbolic state of its ancestor. Here, we
use the concept of path-based loop invariant. Using Floyd-Hoare notation, given a path
π and a constraint c, we say c is path-based invariant along π if {c} π {c}. That is,
whenever c holds of the symbolic state before the execution of path, then c will hold
afterward.

Let us come back to the algorithm in Fig. 2. In line 12 we have detected a cyclic
path. The foreach loop (lines 13-16) forces subsumption between the current symbolic
state and any of its ancestors. The procedure NONPATHINV in Fig. 3 attempts the current
state σk to imply some generalization of its ancestor state σh. This generalization is
basically to discover a loop invariant at the symbolic context of the loop header. Clearly,
this procedure has a huge impact in the symbolic execution since our ability of detecting
infeasible paths depends on the precision of this generalization. This task is, in general,
undecidable and even if the strongest invariants can be computed by enumeration of all
possible combinations of candidates and testing them it is, in general, exponential.

The greedy method followed in NONPATHINV is quite simple but it works well in
practice and it requires a linear number of calls to a theorem prover. The invariant is a
subset of the constraints at the symbolic state σh, called I . Initially, I contains all the
constraints in σh (line 27). At each iteration of the repeat loop (lines 29-39), we test if
the symbolic state at σk entails I (line 30). If yes, we are done. Otherwise, we delete
one constraint from I and repeat the process.

Notice that the invariance property is not closed under intersection since the inter-
section of two invariants may not be an invariant, in general. However, we construct
loop invariants by testing path-by-path and discarding non-invariant constraints from
the symbolic state of the loop header. This is equivalent to the computation of path-
based loop invariants for each path within a loop and then intersect them at the loop
header. This is correct because NONPATHINV keeps only invariants which are closed
under intersection. This limitation, in principle, preclude us to compute the strongest
invariants but based on our experience it is not a problem and it is vital for an efficient
implementation.

Finally, once we have discovered the generalization of the symbolic state of the loop
header in order for the test at line 30 to hold one remaining step is to propagate the ab-
straction to the rest of the symbolic execution tree. For clarity, we omit the full process
because although trivial it is quite tedious. The basic idea is to propagate the general-
ization to all current and future reachable states in the symbolic execution tree from the
header by abstracting their symbolic stores (lines 31-33). We define HAVOC(s,Vars) as
∀v ∈ Vars• s[v �→ z], where z is a fresh variable, and MODIFIES(c1 . . .cn) which takes a
sequence of constraints and it returns the set of variables that may be modified during
its execution. As a result, NONPATHINV has also side effects since it may change other
symbolic states in the tree.

Refine and Restart. Clearly, the use of abstractions can mitigate the termination prob-
lems of symbolic execution but it may introduce false alarms. We therefore add a new
case at line 4 in our algorithm to test whether abstract counterexamples correspond to
counterexamples in the concrete model of the program. Clearly, this case resembles the
refinement phase in CEGAR. Whenever a counterexample is found, we test whether the
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original symbolic constraints along the path are indeed satisfiable using the solver. If
yes, the error must be real. Otherwise, we inspect all loop headers in the counterexam-
ple and find out which one introduced an abstraction that cannot keep the error nodes
unreachable. Once we have found the loop header, the procedure REFINEANDRESTART,
described in Fig. 3, infers an interpolant that excludes that particular counterexample
(line 42) and restarts the symbolic execution from that loop header at line 45. It is
worth mentioning that although our algorithm can then perform expensive refinements
as CEGAR, the refinements are confined only to loop headers as in opposition to CE-
GAR where refinements may involve any program point. This is an important feature
for performing more efficient refinements in our implementation.

Interestingly now, the interpolants added by REFINEANDRESTART can affect the ab-
stractions done by procedure NONPATHINV explained so far. Let us come back to
NONPATHINV. In principle, we can always find a path invariant true by deleting all con-
straints. However, note that the test at line 30 is restrained by ensuring that the candidate
invariant must entail the interpolant associated with the loop header obtained possibly
from a previous refinement. If this entailment does not hold, the procedure NONPATHINV

fails. This is, in fact, our mechanism to unroll selectively those points where the invari-
ant can no longer be produced due to the strengthening introduced by the interpolants.

Subsumption. The program of Fig. 1(c) in Sec. 1 illustrated that in presence of loops the
subsumption test (SUBSUMED, Fig. 3) cannot be simply an entailment test. Whenever we
attempt at subsuming a symbolic state within a loop, we need additionally to be aware
of which constraints may not be path-invariant anymore and generalize the symbolic
state of the nearest loop header accordingly. That is the reason of SUBSUMED calling
NONPATHINV at line 48. If NONPATHINV fails (i.e., it could not generalize the state of
the loop header) then subsumption cannot take place.

Moreover, the correctness of SUBSUMED assumes that whenever a loop header h is
annotated with its interpolant Ψ, the subsumption table M is updated in such way that
all entries associated with program points within the loop with entry h must conjoin
their interpolants with Ψ. For clarity again, this update is omitted from the algorithm
description but considered in our implementation.

We conclude this section showing how our algorithm executes the program in Fig 1(b),
Sec. 1 and proves that it is safe.

Example 5 (Running example of Fig 1(b), Sec. 1.). The initial algorithm state is σ0 ≡
〈�0, [lock �→ Slock,old �→ Sold,new �→ Snew], true〉, π≡ nil, and M ≡ /0.

First iteration. We first execute the successor of σ0 obtaining σ1≡ 〈�1, [lock �→ 0,old �→
Sold,new �→ Sold + 1], true〉. Then, we continue augmenting the path by running the
foreach loop (lines 20-24) and calling recursively to UNBOUNDEDSYMEXEC (line 22)
until we find a cyclic path (line 12) �0 →�1 →�2 →�3 →�5 →�1 with π≡σ0 ·σ1 ·σ2 ·σ3 ·
σ5, M ≡ /0, and σ1′ ≡ 〈�1, [lock �→ 1,old �→ Sold + 1,new �→ Sold + 1],Sold + 1 �= Sold〉.
We call NONPATHINV(σ1,σ1′ ,M ). The formulas �σ1� ≡ lock = 0∧ new = old + 1 and
�σ1′� ≡ lock = 1∧ old = new are obtained by projecting the symbolic states of σ1

and σ1′ onto the variables lock, old and new. The test at line 30 holds after deleting
from I the constraints lock = 0 and new = old + 1, since these two constraints are not
path-invariant. We backtrack up to σ3 which after the loop abstraction has been prop-
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agated (lines 31-33) is 〈�3, [lock �→ 1,old �→ Snew,new �→ Snew], true〉. We then execute
�3 →�4 →�5, obtaining the state σ5′ ≡ 〈�5, [lock �→ 0,old �→ Sold ,new �→ Sold + 1],-
true〉 but M contains now two new entries {〈�1,1′〉 : true,〈�5,5〉 : true}. As a result,
SUBSUMED(σ5′ ,M ) (line 10) succeeds since the interpolant associated with �5 is true.
In addition, since the symbolic states σ5 and σ5′ are within a loop whose header is
denoted by σ1 we call NONPATHINV(σ1,σ5′ ,M ) which also succeeds without making
further generalization.

We continue backtracking up to σ1 with M ≡ {〈�2,2〉 : true,〈�3,3〉 : true,〈�4,4〉 :
true,〈�5,5〉 : true,〈�5,5′〉 : true,〈�1,1′〉 : true}. Recall that the symbolic state σ1 was
generalized, and hence, the state σ6 is 〈�6, [lock �→ Slock,new �→ Snew,old �→ Sold],-
Snew = Sold〉, by lines 31-33 (NONPATHINV) and symbolic execution of �1 →�6. Then, we
continue executing symbolically until we finally reach �error with σerror ≡ 〈�error, [lock �→
Sold,new �→ Snew,old �→ Sold ],Snew = Sold ∧ Slock = 0〉. We check �σ1� ≡ (lock =
0∧new = old+1)∧�σerror�≡ (old = new∧ lock = 0) is unsatisfiable (line 4). We then
call REFINEANDRESTART(σ1,σerror,σ0 ·σ1 ·σ6,M ) (line 5). We compute the interpolant
new = old + 1 that excludes the counterexample by calling INTERP(�σ1�,�σerror�)
(line 42), delete all elements from M which were added by any state reachable from
σ1 (line 43), add a new element with the new interpolant (i.e., M ≡ {〈�1,1〉 : new =
old+ 1}) (line 44), and finally, we restart by calling UNBOUNDEDSYMEXEC (line 45).

Second iteration. After restart, we detect again the cyclic path �0 →�1 →�2 →�3 →�5

→�1 with σ1 and σ1′ as before, and call NONPATHINV. The key difference is that M ≡
{〈�1,1〉 : new = old + 1}. Therefore, the test at line 30 (NONPATHINV) always fails and
the procedure returns⊥ (line 40) without performing any generalization.

We then unroll the state σ1′ by executing �1→�2 (second loop unroll) and obtain-
ing the infeasible symbolic state σ2′ ≡ 〈�2, [lock �→ 1,old �→ Sold + 1,new �→ Sold +
1],Sold + 1 �= Sold ∧ Sold + 1 �= Sold + 1〉. We then backtrack and execute the path �1

→�6 →�error. The state at �error is infeasible now. We backtrack again, adding in M ≡
{〈�1,1′〉 : old = new∧ lock �= 0,〈�5,5〉 : old = new∧ lock �= 0, . . .} (by weakest precon-
dition of the two infeasible paths), until we execute the path �3 →�4 →�5 again (from the
first loop unroll). We call SUBSUMED as we did in the first iteration but now the symbolic
state σ5′ cannot be subsumed because the formula �σ5′�≡ lock= 0∧new= old+1 does
not entail the interpolant 〈�5,5〉 ∈M . We execute another transition reaching �1 and de-
tect again a cyclic path with the state σ1′′ ≡ 〈�1, [lock �→ 0,old �→ Sold ,new �→ Sold +1],-
Sold +1 �= Sold〉. We call NONPATHINV(σ1,σ1′′ ,M ). The formulas associated with σ1 and
σ1′′ are �σ1�≡ lock = 0∧new = old+1 and �σ1′′�≡ lock = 0∧new = old+1. There-
fore, it is easy to see that NONPATHINV succeeds without any further abstraction and
hence, we can obtain a complete symbolic execution tree without error nodes.

5 Results
We report the results of the evaluation of our prototype implementation called TRACER 5

on several real-world C programs, commonly used in the verification community and

5 TRACER is built in CLP(R ) [19], a Constraint Logic Programming (CLP) system that provides
incremental constraint solving for real linear arithmetic and efficient projection based on the
Fourier-Motzkim algorithm. TRACER is available along with some tests and benchmarks, at
http://www.clip.dia.fi.upm.es/˜jorge/tracer.
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compared with the iterative deepening algorithm used in McMillan [24]. The first two
programs are Linux device drivers: qpmouse and tlan. The next four programs are Mi-
crosoft Windows device drivers: kbfiltr, diskperf, floppy, and cdaudio. The program tcas
is an implementation of a traffic collision avoidance system. The program is instru-
mented with ten safety conditions, of which five are violated. We omit the unsafe
cases since there is no differences between TRACER and iterative deepening. Finally,
ssh clnt.1 and ssh srvr.2 are a client and server implementation of the ssh protocol.

TRACER models the heap as an array. The CLP(R ) solver has been augmented to
decide linear arithmetic formulas over real variables with read/update arrays in order to
check the satisfiability and entailment of formulas. Functions are inlined and external
functions are modeled as having no side effects and returning an unknown value.

Table 1. Iterative Deepening vs TRACER

ITERDEEP TRACER

Program LOC S T(s) S T(s) R
qpmouse 400 1033 1.5 1033 1.99 1
tlan 8069 4892 12.3 4892 13.5 0

kbfiltr 5931 1396 1.56 1396 2.59 0
diskperf 6984 5465 16.8 5465 18.46 0
floppy 8570 4965 8.33 4995 13.26 2
cdaudio 8921 13512 27.98 13814 34.48 3

tcas-1a 394 5386 6.59 5386 7.08 0
tcas-1b 394 5405 6.42 5405 6.89 0
tcas-2a 394 5386 6.36 5386 6.84 0
tcas-3b 394 5375 6.33 5375 6.87 0
tcas-5a 394 5386 6.38 5386 6.88 0

ssh clnt.1 2521 ∞ ∞ 47825 593 77
ssh srvr.2 2516 ∞ ∞ 44213 462 63

The results on Intel 2.33Ghz
3.2GB are summarized in Ta-
ble 1. We present two sets of
numbers. For ITERDEEP (Itera-
tive Deepening) the number of
nodes of the symbolic execution
tree (S) and the total time in sec-
onds (T), and for TRACER these
two numbers and also the col-
umn R that shows the number of
restarts performed by TRACER.
A restart occurs when an ab-
straction for a loop discovered
by TRACER is too coarse to
prove the program is safe.

Based on the numbers shown
in Table 1 we can conclude that
the overhead of our approach
pays off. The main overhead
comes basically from the fre-

quent use of the procedure NONPATHINV since this procedure is used whenever the
algorithm attempts at subsuming a node. In spite of this, the overhead is quite reason-
able. More importantly, the key difference is that our approach can terminate with the
programs ssh clnt.1 and ssh srvr.2. However, an iterative deepening cannot terminate
the proof after 2 hours or 2.5Gb of memory consumption. The reason is similar to the
one present in the program of Fig. 1(b) in Sec. 1: disjunctive invariant interpolants are
needed for the proof.

Finally, it is worth mentioning that in the current version of TRACER we have not im-
plemented any heuristics in the refinement phase. It is well known that heuristics can have
a huge impact in the convergence of the algorithm reducing the number of refinements.

6 Conclusions

We extended symbolic execution with interpolation to address unbounded loops in the
context of program verification. The algorithm balances eager subsumption in order to
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prune symbolic paths with the desire of discovering the strongest loop invariants, in
order to detect earlier infeasible paths. Occasionally certain abstractions are not permit-
ted because of the reachability of error states; this is the underlying mechanism which
then causes selective unrolling, that is, the unrolling of a loop along relevant paths only.
Moreover, we implemented our algorithm in a prototype called TRACER and presented
some experimental evaluation.
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15. Harris, W.R., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Program Analysis via Satisfiabil-

ity Modulo Path Programs. In: POPL 2010, pp. 71–82 (2010)
16. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from Proofs. In:

POPL 2004, pp. 232–244 (2004)
17. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: POPL 2002 (2002)
18. Jacobs, B., Piessens, F.: The Verifast Program Verifier (2008)
19. Jaffar, J., Michaylov, S., Stuckey, P.J., Yap, R.H.C.: The CLP(R ) Language and System.

ACM TOPLAS 14(3), 339–395 (1992)



Unbounded Symbolic Execution for Program Verification 411

20. Jaffar, J., Santosa, A.E., Voicu, R.: Efficient Memoization for Dynamic Programming with
Ad-hoc Constraints. In: AAAI 2008, pp. 297–303 (2008)

21. Jaffar, J., Santosa, A.E., Voicu, R.: An Interpolation Method for CLP Traversal. In: Gent, I.P.
(ed.) CP 2009. LNCS, vol. 5732, pp. 454–469. Springer, Heidelberg (2009)

22. King, J.C.: Symbolic Execution and Program Testing. Com. ACM, 385–394 (1976)
23. McMillan, K.L.: Lazy Abstraction with Interpolants. In: Ball, T., Jones, R.B. (eds.) CAV

2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)
24. McMillan, K.L.: Lazy Annotation for Program Testing and Verification. In: Touili, T., Cook,

B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 104–118. Springer, Heidelberg (2010)
25. Podelski, A., Rybalchenko, A.: ARMC: The Logical Choice for Software Model Check-

ing with Abstraction Refinement. In: Hanus, M. (ed.) PADL 2007. LNCS, vol. 4354,
pp. 245–259. Springer, Heidelberg (2006)



Execution Trace Exploration
and Analysis Using Ontologies�

Newres Al Haider1, Benoit Gaudin2, and John Murphy1

1 University College Dublin
2 University of Limerick

Abstract. Dynamic analysis is the analysis of the properties of a running pro-
gram. In order to perform dynamic analysis, information about the running pro-
gram is often collected through execution traces. Exploring and analyzing these
traces can be an issue due to their size and that knowledge of a human expert
is often needed to derive the required conclusions. In this paper we provide a
framework in which the semantics of execution traces, as well as that of dy-
namic analyses, are formally represented through ontologies. In this framework
the exploration and analysis of the traces is enabled through semantic queries,
and enhanced further through automated reasoning on the ontologies. We will
also provide ontologies to represent traces and some basic dynamic analysis tech-
niques, along with semantic queries that enable these techniques. Finally we will
illustrate our approach through an example.

1 Introduction

This paper deals with program trace exploration and analysis and proposes an approach
to represent, explore and analyse traces at a conceptual level, hence facilitating the way
experts handle a raw set of traces. Program trace analysis, and more broadly Dynamic
Analysis (DA) [7], has proven to be useful for tasks such as program comprehension or
problem determination (see e.g. [13]). Although DA techniques aim to automate parts
of the analysis, human intervention is often required. As traces are complex objects, hu-
man involvement is generally supported through various trace exploration and visual-
ization tools [20]. These tools offer functionalities such as filtering and compaction, that
make it possible to render traces more readable for analysis. Experts are then required
in order to perform these trace simplifications and determine interesting properties, or
concepts, about the analyzed trace.

In this paper, we propose and implement an approach that uses a knowledge base
to store the various concepts related to traces and analyses, as well as their specific
instances. Within this framework experts can explore and analyse traces, through se-
mantic queries. Through the use of reasoners these interactions are further enhanced,
by (partially) automating the derivation of the trace properties, in which the user of the

� The research leading to these results has received funding from the European Community’s
Seventh Framework Programme (FP7/2007-2013) under the grant agreement FP7- 258109.
This work was also supported, in part, by Science Foundation Ireland grants 03/CE2/I303 1
and 10/CE/I1855 to Lero - the Irish Software Engineering Research Centre (www.lero.ie).

S. Khurshid and K. Sen (Eds.): RV 2011, LNCS 7186, pp. 412–426, 2012.
© Springer-Verlag Berlin Heidelberg 2012



Execution Trace Exploration and Analysis Using Ontologies 413

framework is interested in. In order to implement such a framework, we need to be able
to model the various concepts involved in the traces and analyses in a formal way. This
model need to be capable of not only representing existing automated techniques, but
automate and/or facilitate the manual reasoning of an expert. An ontology based model
for traces and analysis is capable of providing these features.

Ontologies provide a way to formally and explicitly represent knowledge in a do-
main, in the form of concepts and relationships between them [17]. They therefore
offer an adequate framework to define DA related concepts as well as their relation-
ships and instances related to these concepts, i.e. traces. Ontologies have various ben-
efits such as enabling the reuse of knowledge, and separating operational and domain
knowledge [12]. They can also possess a sound mathematical background based on
Description Logics (DL) [6]. These logic based formalisms that are decidable, which
allows for effective computation of certain properties of the knowledge defined in these
ontologies. They therefore offer automation for certain reasoning tasks [28, 18]. They
also provide querying facilities that can rely on this type of automatic reasoning, hence
providing an intelligent layer on top of basic ontology instances. To our knowledge,
they have never been considered for Dynamic Analysis, except in [4].

In order to achieve an ontology based framework for trace exploration and analysis,
several issues need to be solved and addressed in this paper. A common issue with
program traces, that they can get very large for non-trivial applications. The resulting
scalability issues effect not only the storage of traces in ontologies, but also the querying
and the reasoning capabilities used to perform and/or enable dynamic analysis. There
exist ways to mitigate the issues arising from the large amount of data, in the specific
case of an ontological framework, as we will explore in the paper as well as provide our
solutions for these problems.

The rest of this paper is structured as follows: Section 2 motivates our general ap-
proach of formally modelling trace and dynamic analysis knowledge through an ex-
ample. Section 3 presents an introduction on ontologies. In Section 4 we explain how
ontologies could be used to represent the (concepts) of traces and dynamic analysis as
well as provide support for trace exploration and dynamic analysis. The various prac-
tical issues of dealing with trace and dynamic analysis knowledge will be described in
Section 5, along with our proposed solutions to them. We will also provide ontologies
for traces and dynamic analysis. We show how these ontologies can be used in con-
junction with the querying system and reasoners on a non-trivial example in Section 6.
Finally in Section 7 we discuss the benefits and limitations of this approach, and outline
future works.

2 Motivating Example

The ultimate goal of this work is to provide an approach and a tool for automation of
dynamic analysis tasks. This approach relies on defining dynamic analysis concepts
that can be queried and reasoned about in order to automate a greater part of analyses.
Existing dynamic analysis techniques have been designed and implemented, such as
Frequency Spectrum Analysis [7], Semantic Views [21] and Trace Metrics [19]. These
techniques allow for automatic analyses of traces, and result in concepts such as views,
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view comparisons, metrics, frequencies, frequency clusters etc. Our approach consid-
ers designing dynamic analyses techniques from existing ones, through a combination
and variation of such concepts. These new techniques can be defined through some
languages that help combine dynamic analyses concepts and allow for automatic com-
putation of outputs for these techniques.This approach aims to ease the design and im-
plementation of such analyses. Moreover, automation makes it possible for the designer
to explore trace properties and interact with the trace set as it is currently possible with
visualization tools such, as those described in [20].

In order to illustrate and motivate our approach, we consider a calculator application
presented in Example 1.

Example 1. We consider a basic calculator with a graphical interface, presented in Fig-
ure 1.

Fig. 1. A basic calculator example

A trace corresponds to the set of all the methods associated to events triggered when
clicking the buttons represented in Figure 1, i.e. 0, . . . , 9,+,−, ∗, /,= and ’clear’. For
instance, event ’0’ represents the call of the method activated when button ’0’ is pressed.

In this example, we assume that the exception related to the division by zero has not
been handled by the programmer. In this case, a sequence such as

3,+, 5,=,−, 4 ∗ 2, /, 0,=, exception

can be observed. Event ’exception’ represents the occurrence of an exception corre-
sponding to a division by zero that is observable at runtime.

Considering the calculator application presented in Example 1, the following traces,
containing information about the buttons pressed by the user as well as the occurrence
of exceptions can be observed:

3,+, 5,=,−, 4 ∗ 2, /, 0,=, exception (1)

1,+, 23,+, 4,−13, /, 5, clear, 1,+, 23,+, 4,−, 13, /, 4,= (2)

42, ∗, 3,−, 4, ∗, 13,=, 43, /, 0,=, exception, clear, 43, /, 3,= (3)
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4567,−, 3,−, 334,−673,+, 5, /, 2,=,+, 4,=, ∗, 3,=,−, 234,= (4)

2,+,+,+,+,+,= (5)

We also consider concepts as presented in Figure 2. This figure actually represents two
types of concepts. First concepts related to program errors and issues and also con-
cepts related to trace analysis such as invariants, metrics, views, etc. It is also assumed
that these concepts are related to each other. For instance, runtime exception are pro-
gram faults and trace invariants are a type of invariants, but there can be many more.
Therefore, some concepts can be sub-concepts of others and this type of relationship is
represented by an edge between concepts of Figure 2.

Error

Invariant

Trace 
Invariant

System
Invariant

Set of Raw Traces

Runtime
Exception

Issue

Vulnerability

NullPointer
Exception

Crash

Fig. 2. Example

Our approach considers a system where such concepts are available and it is assumed
that algorithm are implemented that automatically match these concepts to traces pro-
vided as inputs of the system. These concepts can be used to describe different and even
more complex concepts, representing the output of some analysis. This description can
be expressed through some logic language and allows for automatic computation of
outputs for the described analyses.

Considering Example 1 again, one may have little knowledge about the system and
dynamic analysis techniques but may be interested in high level concepts such as:

Invariants related to traces related to system issues.

It would then be desired that this concept is automatically related to the following parts
of the known sequences:

/, 0,=, exception (6)
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It would then make it clear that the issues reported by the traces (1) to (5) are all related
to dividing by 0.

This paper describes our approach to achieve such an interactive system capable of
(semi-) automatically performing some analyses on traces. In Section 3, we will in-
troduce some background on ontologies. Due to their formal semantics and available
reasoners and query systems we will show that ontologies indeed represent a very ade-
quate framework for dealing with concepts and relationship between them.

3 Background

In this section we provide a reader with a brief introduction to representing knowledge
with ontologies, as well as the various methods we employ to query and reason with
such knowledge. We assume the reader already has some passing familiarity with dy-
namic analysis in general, otherwise we refer the reader to some excellent introduction
available on this topic [7].

Ontology is a concept that originated from the field of philosophy, denoting the study
of the kind of things that exist [5]. In computer and information science, ontologies are
used as a way to identify specific classes of objects and their relations between each
other in a domain. An often cited definition is that ”an ontology is a formal specifi-
cation of conceptualization” [16]. Here conceptualization not only represents objects,
concepts, and other entities that are presumed to exist in some area of interest, but also
the relationships that hold among them. In [17], the author defines ontologies as a way
to specify concepts, relationships, and instances of these concepts, relating to each other
through these relationships. Concepts, instances and relationships are also respectively
called classes, individuals and properties.

– Classes are sets containing individuals. For instance Person, Owner, Pet, Dog and
Cat represent classes/concepts of a domain.

– Individuals denoting the objects of a domain. These individuals represent instances
of the classes/concepts. For example John and Mary could represent instances of
the class Person, while Fido could represent an instance of both classes Pet and
Dog.

– Properties that are binary relationships between individuals. The fact that John has
a pet called Fido can be modelled with a property hasPet(John, Fido).

There exist various ways to extend this basic definition in order to more expressively
represent knowledge. Classes can be organised hierarchically. For example the class
Owner can be seen as a subclass of Person. Classes can also be further restricted through
properties: the Owner class can be defined as a Person for which at least one hasPet
property holds. Similarly extra meaning can be added to properties, by defining vari-
ous characteristics for them such as transitivity, cardinality restrictions, symmetry and
others.

The exact expressiveness of an ontology, as well as the ability to perform various rea-
soning task with it, depends on the specific semantics used. As explained in [9], there
is a tradeoff between the expressiveness of a knowledge representation system and the
ease of reasoning over the representation of that language. Ontologies often have for-
mal semantics based on Description Logic (DL) ([6]). DLs are logic based formalisms
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with different decidable fragments, corresponding to different expressiveness, used to
represent and to reason about knowledge.

The formal semantic of ontologies make it possible to reason about their contents.
These reasoners can deduce facts related to the concepts and relationships as well as
classify instances with respect to the concepts that characterize them. Ontologies can
also be equipped with a querying system that allows to retrieve information contained
in the ontology. More particularly, it is possible to formulate very expressive queries
using the semantics defined in the ontologies to retrieve the required knowledge. This
form of query is called a semantic query. A simple example of such query would be
“Who are the persons that own pets?” that returns a set of instances which fulfills this
query.

Ontology querying systems and reasoners are often combined in order to benefit
from the deductive ability of the reasoner when querying. For instance, consider the
case where the ontology has two classes where DogOwner is a subclass of PetOwner,
as well as an individual, Alfred for whom it is explicitly given that he is a member of the
class DogOwner. In this case a possible query would be to return the set of individuals
that are members of the PetOwner class. Without a reasoner, the previous query would
not include Alfred as a DogOwner as it not given explicitly. With a reasoner fact that he
is indeed member of the class DogOwner can be inferred, and the query would return
this information.

In practice, inference is performed by a reasoner before any query is submitted, in
order to make sure such information can be retrieved. With some querying systems it is
also possible to update the ontology directly after a query, giving the ability to perform
reasoning on the set of newly deduced information.

The Web Ontology Language (OWL) [24] is the ontology language used to describe
the various ontologies in this paper. This is a W3C standard [3] ontology language that
is one of the most commonly used [10]. It allows for various amounts of expressiv-
ity through its sub-languages, called profiles in the latest specification of the language
OWL2. OWL can also be seen as an extension of the information and graph specifica-
tion language RDF [23], In RDF the underlying structure of any knowledge is a set of
triples, in the form of a subject, predicate and object. This allows for any OWL ontol-
ogy represented as a set of RDF triples. For example the fact that , Alfred owns the dog
Fido can be represented as the triple (Alfred,owns,Fido), where Alfred is the subject,
ownsthe predicate and Fido the object. Indeed many ontology representation frame-
works, especially those we are interested in representing traces and dynamic analyses.
store ontologies as triples. As every fact in an ontological knowledge base is a triple,
we use it as a measure of the overall size of the ontology as well as a shorthand notation
for statements such as the above mentioned (Alfred,owns,Fido) that might be part of an
ontology.

4 Approach

This section gives an overview of our approach for combining ontologies and DA tech-
niques at a conceptual level. Figure 3 illustrates our approach. It relies on both a trace
and dynamic analyses ontology to represent concepts from both domains. First traces
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are collected from a software system and used as input to populate the trace ontology.
This corresponds to mapping the trace elements to basic trace related concepts. For in-
stance, the notion of the various event types, such as those created at method entry and
exit. The trace ontology contains concepts that are used in the raw traces. Most traces
contain concepts such as these events and various attributes to the events to denote the
trace information. These attributes can range from the timestamp of the events, to the
method that has been invoked, the object that has been used, and other such additional
descriptions. Note that in addition to the raw trace information, concepts regarding the
source code and the software, can also be considered. As it has been previously noted
in [29] such knowledge can also be relevant to dynamic analysis.

Raw Traces

Trace and DA Ontologies

Parsing in the trace instances

Semantic Query System

User Input and Pattern Matching

Reasoner

InferenceQuery Results Reasoning Results

Fig. 3. Approach Overview

Once the (trace) ontology is populated with instance information there are two pro-
cesses that can occur in conjunction with another:

Reasoners can be used to deduce facts through inference, given the knowledge al-
ready in the ontology. As it was explained in Section 3, it is possible to infer various
statements through the reasoner. To give a more specific example to DA, we can define
a trace as a bad trace concept, if one or more issue occurs it. In this case the concept
that a trace is a bad trace can be derived through reasoning if its condition is satisfied.
This is of course only one example, in practice many more complex concepts can be
inferred.

Semantic querying (querying as a shorthand) would allow the user intending to ex-
plore the traces, to define specific criteria based on the semantics represented in the
ontologies. This enables the user to create queries based concepts, properties and indi-
viduals that can be found in the trace. For example the user could retrieve the all the
traces where the frequency of an event involving method . Queries allows us to easily
combine various concepts as well. For example the concept of Frequency Clusters of
Frequency Spectrum Analysis [7] could be combined with that of semantic views [21]
in order to create a view based on such clusters.

Many results can often be derived through a combination of these approaches: a
concept that is used for reasoning could be derived through queries and vice versa. This
results in a robust framework for both trace exploration (where the queries would be
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supported through reasoning) as well as automated analysis (where the queries could
help derive facts that would drive the inference).

5 Methodology

In this section we give an overview of the various issues in representing traces and
dynamic analysis with ontologies, as well as performing such analysis. We will show
what these issues are, how they can be tackled and we give an ontological representation
of traces and some dynamic analyses.

A major issue with representing traces in general, but especially with ontologies, is
the size of the traces. Consider a simple relationship before, denoting that one event
is before the other. It seems quite natural to have this relationship in our ontology ex-
pressed. However if we are to represent the fact that each event is before another, this
would require a creation for a lot of these facts, once per each event pair, which would
lead to a very large representation of the trace as an ontology. An alternative way would
be to define the before relationship as a transitive property and link only the consecu-
tive elements of the trace explicitly. In this case however, the reasoner would deduce the
facts that were not given explicitly, and would quickly end up in the aforementioned sit-
uation.. For example, given the that the trace consists of three events, e1, e2 and e3, and
it is explicitly given that e1 is before e2 and e2 is before e3 it will also be deduced that
e1 is before e3. This is a correct conclusion. but it means that after inference we would
end up with a dataset that again contains the before relationship per pair of events. The
cause of these problems is that when representing the traces, we need to represent a
large number of individuals, and additional fact that grows in the size of the number
of individuals, or even more, is costly to represent. Therefore we need to take care of
the various elements represented per trace element or per pair of trace elements, and
minimize them whenever possible.

There are a number solutions possible for this issue. One could for example, ex-
ternalize certain aspects of the trace to a more compact storage format, or simply not
represent every possibly information in the raw traces. This later can be done, for exam-
ple, through the use of metrics to estimate the traces. The issue with these approaches is
that they either lose knowledge that might be relevant for further analyses and/or make
the semantics of the ontologies harder to overview and use. Indeed one of the strong
assets of ontologies is being able to query directly about the semantics, and that these
semantics can be defined in way that is in line with the experts view of the domain. By
adding an extra layer of semantics to deal with the large size of the traces, we run the
risk of weakening the usability of the ontologies by adding concepts and relationships
unrelated to the events themselves.

We propose the following Trace ontology as seen in Figure 4 in which we provide
an ontology with a reasonable balance between efficient representation of the traces
and clarity of the semantics. In this ontology there exist SingleEvent events denoting
atomic events and MultiEvent events, such as WholeTraces, that denote events that con-
tain other events. The various event types are similar to those mentioned with existing
analysis techniques [21] and the set of event categories can easily be extended to fit any
type of event in the trace. The structure of a trace is preserved fully through WholeTrace
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concept which can have a relationship contain to a list of event signatures represented
by a string. Those event signatures are unique for each unique event, and is one of the
many attributes with which an event can be described. These attributes are referred to
using properties, such as hasMethodName, hasPackageName, to denote the name of the
method and respectively package involved in that event.

Note that the presented ontology is very generic and small, with only a few event
types, and no concepts for multi-threading, but in practice such ontology is often al-
ready sufficient for many trace representations and can be expanded with more specific
concepts as needed. Because of its genericness and lack of complexity, we also call this
trace ontology the Low-level Trace ontology, or more simply the Low-level Ontology.

The ontology for the dynamic analysis techniques, part of which can be seen in
Figure 5, is actually an extension of the Low-level ontology. It uses concepts and re-
lationships defined from the Low-level trace ontology and adds to them concepts and
relationships for the analysis of the trace. Although they are not a complete transla-
tion, the concepts in this ontology were taken from various trace- and dynamic analysis
techniques such as Frequency Spectrum Analysis [7], Semantic Views [21] and Trace
Metrics [19], as well as some general concepts deemed useful to derive from traces.
There are five main categories of these analysis concepts in the ontology: comparison
analyses where two or more traces are compared. metrics analysis which derive metrics
such as frequencies about the traces, views which are selections of trace elements based
on some criteria and patterns that can be encountered, Under these main categories there
are many sub concepts that can be derived. It is also possible for a concept to belong
to multiple superclasses, for example an invariant could be seen as a pattern analysis
as well as a comparison. In addition there is also an extended set of properties as well:
for example refersMaximum and refersTotal to denote a maximum frequency or a total
value respectively.

Fig. 4. The Concepts of the Low-level Trace Ontology

Storage of the ontologies can be an issue as even with the above trace ontology, large
traces result in a large set of individuals. As mentioned in the Section 3 ontologies can
be stored as a set of triples (in the case of OWL ontologies as a set of RDF triples). There
exist frameworks that are capable of storing a large number of these types of triples
efficiently. These, so called, triple stores equipped with a scalable repository system,
allow for a storage solution to large RDF graphs, and as a consequence large OWL
ontologies, which we require for our ontological representation of traces and dynamic
analysis. An example of such a scalable triple store capable of storing ontologies would
be Jena framework [11]using one of its persistency options or the OWLIM framework.
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Fig. 5. Some Concepts of the Dynamic Analysis Ontology

Given that the ontologies are stored as triples, we can make use of the SPARQL
query language [25] to query the ontologies. This is a query language for RDF triples,
but as these triples can constitute an OWL ontology as well, we are able to query OWL
ontologies. It allows to perform querying by specifying a graph pattern, which can be
matched by using variables and other statements. Its latest version has features, such as
aggregates, that are essential to perform certain kind of analyses, and SPARQL-Update
language allows us to directly update the resulting dataset from the result of the queries.
We make use of the Joseki SPARQL server [2], to make use of these recent features.

Reasoning on this dataset can also be an issue.due to the resulting size of the traces.
Most description logic reasoners are in-memory reasoners that run into issues quickly
even with moderately small traces. A possible solution is to split the dataset into seg-
ments which are able to fii in memory and can be reasoned on. This however can inter-
fere with certain analyses. Some frameworks, such as OWLIM [22] that we use in our
example, have some recent implementations with a reasoner capable of handling large
datasets.

6 Example

In this section, we illustrate the approach presented in this work through an example.
We consider the traces of an open-source, Java, file synchronization application called
DirSyncPro [15]. Analysis on these traces was performed using an implementation of
the framework proposed in Section 5. In this section we show a few of these analyses.

DirSyncPro possesses a graphical interface that allows to create, save and open syn-
chronization profiles/configurations. In this example, we illustrate our approach with
the DirSyncPro functionality related to the opening of existing configuration files. In
version 1.4b1, this feature exhibits a program warning, corresponding to the occurrence
of a nullpointer exception.

The class files within the.jar file of the application were instrumented with the Javas-
sist tool[1]. The bytecode was modified in a way that whenever an object was created,
a method initialized, a method exited or an exception occurred a String was outputted
indicating the type of the event, and the method signature. Using this setup 8 separate
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traces were generated, some with exceptions resulting from the previously mentioned
bug and some without. The traces were preprocessed and parsed into a number of sep-
arate trace ontologies. Here each element that exist in the trace is matched with a cor-
responding concept and added as an instance of it, with related elements connected
through properties. The resulting ontologies are sequentially added to the OWLIM
framework, alongside the analysis ontology. The framework performs reasoning im-
mediately after the adding of the ontologies. which resulting in additional, so called
inferred triples. These are the triples that were not originally given through the traces,
but are additional information derived through the reasoner. The resulting dataset con-
tains 360060 triples given explicitly through the traces, and a total of 114540 additional
triples derived through the OWLIM reasoner.

The resulting dataset was made accessible to queries through the Joseki SPAR-
QLserver [2]. There were many different queries implemented, but due to space con-
straints we only show a select number of them to detail the possibilities of utilising
semantic queries in our framework. In the following queries, the lowlevel and danalysis
are shorthand for the URI of the trace and analysis ontologies. Similarly rdf and list
denote the URI of the ontology for the basic rdf elements (such as the type-of relation)
and the way to manipulate lists.

SELECT DISTINCT ?package
WHERE ?event lowlevel:refersPackageName ?package

The first, very simple, query retrieves the list of the packages that can be found in
all the traces. It also shows off the general feature of these queries where a pattern of
triples can be made, which may include variables, after which the matched data can
be manipulated. Here we search for all the events that refer to a package name, with
the package name as a variable, to get the list of all the packages as it can be seen in
Figure 6.

Fig. 6. The list of packages in all the traces
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SELECT DISTINCT (count(?eventsignature) AS ?totalmethodentryevents)
?event lowlevel:refersSignature ?eventsignature.
?event rdf:type lowlevel:MethodEntryEvent .

The second query counts the number of MethodEntryEvent types in the dataset. This
uses the aggregates feature of the query language to compute totals, which can be useful
for subsequent analyses. In this case the result was 448 of such events.

SELECT DISTINCT ?tracesignature ?eventsignature ?index
?trace lowlevel:refersSignature ?tracesignature.
?trace lowlevel:contains ?list .
?list list:index (?index ?eventsignature).
?event lowlevel:refersSignature ?eventsignature.
?event rdf:type lowlevel:IssueEvent .

Fig. 7. The list of issues in all the traces

The third query returns all the issues are found in the traces along with their trace-
name and location, as shown in Figure 7. Note that none of the raw traces contain any
concept of issue explicitly, these facts have been inferred through the reasoner, using
the subclass relationship between exception and issue. If the same query was asked on
a system without any reasoning, it would have returned zero results.

INSERT DATA
<http://example/frequencyanalysis1>rdf:type analysis:FrequencyCluster .
<http://example/frequencyanalysis1>analysis:refersMaximum 20 .
<http://example/frequencyanalysis1>analysis:refersMinimum 5 .

Finally the datasets themselves can also be directly updated through queries. The above
query would create a frequency cluster in which the maximum of the cluster is 20 and
the minimum is 5. Once this fact is inserted into an ontology it can be used in the same
way as trace information is. For example it is possible to write a query to populate the
cluster with only those events that have a total of occurrences within the range of this
cluster.

Note that this is just a small glance of the abilities of the query language in con-
junction with the reasoner. For a more complete overview of the used querying and
reasoning implementations capabilities we refer the reader to the Joseki[2] and respec-
tively the OWLIM specification [22].
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7 Conclusion and Future Work

In this paper we have presented a system in which ontologies are used to as a knowledge
model for traces as well as dynamic analysis, with which trace exploration and dynamic
analyses can be performed easier and more automatically. Although the traces used in
our test cases were reasonably modest, the storage, querying and reasoning frameworks
on which it is built, most notably OWLIM, is capable of storing and working with
millions of triples [8].

While the combination of dynamic analysis and ontologies is a relatively recent idea
[4], there exist similar works in the field of static analysis and ontologies [27, 30].
One of the main issues of combining DA and ontologies is due to the problems of
ontologies and reasoners when faced with large amounts of, ordered facts. Improving on
the reasoning capabilities of ontological frameworks on such knowledge bases, would
yield great improvements for our approach. There are some similar issues being dealt
within the field of stream reasoning in ontologies [14], where reasoning is done on
streams of ordered data. The main difference is that in our case, when dealing with
existing traces, the set of ordered facts is finite and fully known beforehand.

The proposed framework is capable of handling actual programs with reasonably
sized traces, but the amount of facts generated with this approach might not make it
suitable for very large applications and/or extremely large traces. As previously men-
tioned there exist many factors involved in making the system scalable, such as the type
of information represented, the reasoning used, etc. Although the current options suit
the type of traces and applications similar to the example, a more through exploration
of these is needed in the future.

There are various ways in which the presented framework could be improved. The
trace and analysis ontologies can both be expanded to include more concepts relating
to traces analyses. Furthermore the deriving of analyses through queries can be more
integrated with the framework. Ideally we would even be able to access external tools
from the query system as needed.

A strong feature of ontologies is that many different types of knowledge can be inte-
grated. In the realm of dynamic analyses, we could have ontologies represent use cases,
bugs reports, and test cases within this framework. There also exist substantial work in
the field of static analysis and ontologies in using source code and documentation as a
knowledge base [27, 30, 26]. By integrating these into the framework we could enable
a better integration of dynamic and static analysis using ontologies.

One goal for our approach, and indeed for many others in dynamic analysis, is to
limit, if not eliminate the need for costly and time consuming analysis by experts. In
this context, using ontologies to represent traces and analysis can be seen as a form of
program comprehension performed not only for and by human users but by some degree
for the analysis software itself. By creating a more robust framework with which this
can happen could will enable analyses currently done by an expert to partially or even
fully performed by the analysis software.
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C.A., McGuinness, D.L., Möller, R., Patel-Schneider, P.F. (eds.) Description Logics. CEUR
Workshop Proceedings, vol. 49 (2001)

[19] Hamou-Lhadj, A., Lethbridge, T.C.: Measuring various properties of execution traces to
help build better trace analysis tools. In: Proceedings of the 10th IEEE International Con-
ference on Engineering of Complex Computer Systems, ICECCS 2005, pp. 559–568 (June
2005)

[20] Hamou-Lhadj, A., Lethbridge, T.C.: A survey of trace exploration tools and techniques. In:
CASCON 2004: Proceedings of the 2004 Conference of the Centre for Advanced Studies
on Collaborative Research, pp. 42–55. IBM Press (2004)

[21] Hoffman, K.J., Eugster, P., Jagannathan, S.: Semantics-aware trace analysis. SIGPLAN
Not. 44(6), 453–464 (2009)

http://www.javassist.org
http://www.joseki.org
http://www.w3.org
http://www.dirsyncpro.org


426 N. Al Haider, B. Gaudin, and J. Murphy

[22] Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – A Pragmatic Semantic Repository for
OWL. In: Dean, M., Guo, Y., Jun, W., Kaschek, R., Krishnaswamy, S., Pan, Z., Sheng, Q.Z.
(eds.) WISE 2005 Workshops. LNCS, vol. 3807, pp. 182–192. Springer, Heidelberg (2005)

[23] Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): Concepts and
abstract syntax. Changes (2004)

[24] Motik, B., Patel-Schneider, P.F., Parsia, B., Bock, C., Fokoue, A., Haase, P., Hoekstra, R.,
Horrocks, I., Ruttenberg, A., Sattler, U., et al.: OWL 2 web ontology language: Structural
specification and functional-style syntax. W3C Working Draft, W3C (2008)
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Abstract. We present a new multi-valued monitoring approach for
linear-time temporal logic that classifies trace prefixes not only according
to the existence of correct and erroneous continuations, but also accord-
ing to the strategic power of the system and its environment to avoid or
enforce a violation of the specification. We classify the monitoring status
into four levels: (1) the worst case is a violation, where no continuation
satisfies the specification any more; (2) unrealizable means that the en-
vironment can force the system to violate the specification; (3) realizable
means that the system can enforce that the specification is satisfied; (4)
the best case, fulfilled, indicates that all possible continuations satisfy
the specification. Because our approach recognizes situations where the
system cannot avoid a violation even though there may still be continu-
ations in which the specification is satisfied, our approach detects errors
earlier, and it detects errors that are missed by less detailed classifica-
tions. We give an asymptotically optimal construction of multi-valued
monitoring automata based on parity games.

1 Introduction

One of the guiding principles of runtime monitoring is that violations of the spec-
ification should be reported as early as possible, giving the user (or controller)
time to act before the violation causes serious harm. The principle means that
the monitor must reason about the future: we issue a warning as soon as we
can predict that a violation is about to occur. The standard implementation of
this idea is to consider a finite trace as bad if all its infinite extensions violate
the specification. In other words, as long as there exists a future in which the
specification is satisfied, we assume that this future will actually occur and do
not issue a warning.

In this paper, we revisit this optimistic interpretation of the future. In reality,
not all future actions are under the system’s control. It is therefore possible
to reach situations where the system can no longer avoid the violation, even
though there exists some continuation in which the violation does not occur.
Such situations are important early indicators of failure: we know for sure that
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ignite � � � � � � � � � � � � � � � � � � � � � � � · · ·
charge � � � � � � � � � � � � � � � � � � � � � � � · · ·
spark � � � � � � � � � � � � � � � � � � � � � � � · · ·

Monitor � � � � � � � � � � � � � � � � � � � � � � � · · ·

Legend:
� false
� true
� fulfilled
� realizable
� unrealizable
� violation

Fig. 1. Example execution and monitoring trace of a faulty ignition controller. The
controller responds correctly to the first ignition request, by charging the coil and then
emitting a spark. The specification is realizable (�), but not fulfilled (�), because there
exists a continuation that violates the specfication. After the second ignition request,
the controller fails to charge the coil. The monitor therefore switches from realizable to
unrealizable (�). At the third ignition request, the monitor switches back to realizable
and stays, because the controller responds correctly, in realizable until the spontaneous
third spark occurs. At this point, the monitor recognizes a violation (�).

the system does not satisfy its specification, we just cannot guarantee that the
violation will be visible on the execution we are about to see.

Consider a car ignition controller that needs to charge a coil before emitting a
spark, and that is, to save energy, only allowed to start charging when an ignition
request is issued. The controller has an input signal ignite and two output signals
charge and spark, whose behavior could be specified in linear-time temporal logic
as follows (abstracting from implementation details like the charging time and
other activities of the ignition controller):

ψ = ¬spark ∧ ¬spark W charge ∧(spark →  (¬spark W charge))

∧ ¬charge ∧ ( charge → ignite) ∧ (ignite →  spark)

Under what circumstances should we raise an alarm? Clearly, it is appropriate to
issue a warning if charge is activated without an ignition request or if a spark is
emitted without previously charging the coil. In both situations, the specification
is definitely violated, because there is no possible continuation into the future
that would satisfy the specification. However, a smart observer would be able
to recognize problems earlier than that. Suppose an ignition request is given,
but the system does not immediately charge the coil in the next step. It is easy
to see that this is a mistake, because now the system can no longer prevent
the conjunct  (ignite → spark) from becoming false: if no more ignition
requests come in, then the coil will never be charged, and, hence, the spark can
never be emitted.

How can we recognize such mistakes? One way to characterize the situation
is to observe that there exists an extension that violates the specification. This
condition is easy to check, we simply monitor the negation of the specification
as well. However, issuing a warning whenever there exists a violating extension
would be overly pessimistic: Since, right from the start, there always exists a
path that violates the specification, we would continuously warn that things
“may” go wrong.

The exact right time for the warning is when there is an ignition request
but the coil is not charged in the very next step. At this point, we not only
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know that there exists a continuation that violates the specification, we can
actually identify the inputs a malicious environment would need to produce in
order to enforce that the violation will occur. We say that in this situation the
specification is unrealizable. While it is still too early to tell if the specification
will really become violated (if a second ignition comes in and the system charges
the coil at that time, things are fine), the system under observation must be
faulty because there is no system that satisfies the specification for all possible
future inputs.

In this paper, we give a precise analysis of the possible futures by distin-
guishing the different roles played by outputs, which are under the system’s
control, and inputs, which are chosen by the (potentially hostile) environment.
This results in a finer classification of the monitoring situation with four different
conditions, going from worst case to best case as follows:

1. violation: the specification is definitely violated, i.e., there is no more con-
tinuation that satisfies the specification;

2. unrealizable: the specification is not violated but unrealizable, i.e., the envi-
ronment can force the system to violate the specification;

3. realizable: the specification is not fulfilled but realizable, i.e., there is a con-
tinuation in which the specification is violated, but the system can enforce
that the specification is satisfied; and

4. fulfilled: the specification is definitely satisfied, i.e., there is no continuation
that violates the specification.

Figure 1 shows an execution trace of a faulty ignition controller, which occasion-
ally fails to charge the coil and at some point produces a spontaneous spark.
The monitor starts out in condition realizable, and switches to unrealizable when
there is an ignition request but the coil is not charged. This alert is serious: a
bug has been detected. However, the monitor does not report a violation yet,
and indeed, in the trace, the user reacts by requesting another ignition, and
when, this time, the coil is charged, the monitor switches back to realizable.
Only when, later, there is a spontaneous spark, the monitor raises the alarm:
the specification is definitely violated at that point.

Semantically, our approach is a departure from the classic linear-time ap-
proach to runtime monitoring. Distinguishing inputs and outputs naturally leads
to games, rather than sets of traces, as the underlying model of computation.
Figure 2 shows the game between the ignition controller and its environment.
The two players take turns. In the states owned by the system player the ig-
nition controller chooses the outputs, in the states owned by the environment
player, the environment chooses the inputs. The winning condition is expressed
as a parity condition: if the highest number that appears infinitely often during
a play of the game is even, then the system player wins, otherwise the envi-
ronment player wins. From the initial state, the system player has a winning
strategy: always stay in states A through F . If the system player deviates from
this strategy by moving from state C to state G, then the environment player
has a winning strategy: from state G, always move to state H , never back to C.
If, however, the environment player does at some point move back to C, then
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Fig. 2. Parity game between the ignition controller and its environment. Positions
owned by the system player are shown as circles, positions owned by the environment
as squares. The system player has a winning strategy from states A through F , the
environment player has a winning strategy in all other states. From states I and J ,
the environment player wins no matter how the strategy is chosen. A runtime monitor
tracing this game will report realizable in states A through F , unrealizable in states G
and H , and violation in states I and J .

the system player has again a winning strategy. The game is definitely lost for
the system player if the play reaches states I or J , indicating that the system
player has issued a spark or charge out of turn. From these states, the game is
won by the environment player, no matter which moves are chosen.

The runtime monitor traces the states in the game while processing the ob-
servations from the monitored system. In states A through F , the status is
realizable, because the system player has a winning strategy, in states G and H ,
the status is unrealizable, because the environment player has a winning strategy,
and in states I and J , the status is violation, because the environment player
wins independently of the strategy. In the paper, we explain the construction of
the game and the resulting monitor in more detail. We start by converting the
specification to an equivalent deterministic parity automaton and its correspond-
ing parity game. Solving the game partitions the automaton into sets of states
corresponding to the four monitoring conditions. Based on this classification, we
construct a finite-state machine that implements the monitor.

In the last technical section of the paper, Section 4, we add one more twist to
the game-based analysis: in addition to recognizing whether one of the players
has a winning strategy, we check if the violation or fulfillment of the specification
can be enforced in a finite number of steps. This allows the user to estimate the
urgency of the unrealizable monitoring status: if the number of steps is finite,
then the system is in imminent danger; if not, we know that, while the system
cannot avoid the violation without help from the environment, the system can
at least delay the violation for an unbounded number of steps.



Monitoring Realizability 431

Related work. There has been a long debate in runtime verification about
the best way to translate specifications, which refer to infinite computations,
into monitors, which are limited to observing finite prefixes. Kupferman and
Vardi coined the term informative prefix for prefixes that “tell the whole story”
why a specification is violated [11]. The advantage of informative prefixes is that
one can monitor the specification without analyzing the future. For example, one
can translate the specification into a small equivalent alternating automaton and
track the active states in disjunctive or conjunctive normal form [7]. However,
informative prefixes are usually longer than necessary. For example, an informa-
tive prefix of the specification false has length one, although one could deduce
the violation of the formula without seeing any trace at all. In order to recognize
violations earlier, one needs to quantify over the possible futures. A prefix is
bad [11] if there is no infinite extension that satisfies the specification. In order
to construct a monitor that recognizes the bad prefixes, one translates the for-
mula into an equivalent nondeterministic Büchi automaton, eliminates all states
with empty language, and then determinizes with a powerset construction into
an automaton on finite words that recognizes the bad prefixes. d’Amorim and
Roşu showed that the runtime overhead caused by monitoring can be reduced
significantly by recognizing when the observed prefix can no longer be extended
to a bad prefix and pruning such “Never-Violate” states from the monitor [3].

Our approach to check realizability in addition to satisfiability builds on al-
gorithms for reactive synthesis. In synthesis, we check whether the specification
is realizable, i.e., whether there exists an implementation for the given specifi-
cation. Similar to our monitoring approach, one analyzes the game between the
system and its environment and searches for a winning strategy for the system
player [2]. The key difference between checking and monitoring realizability is,
however, that in synthesis we only check for the existence of a strategy from the
initial state, whereas in monitoring we make this judgment again and again, as
we observe a growing prefix of a trace.

The monitoring work that is closest to our approach is interface monitoring
as proposed by Pnueli et al. [16]. In this work, an interface monitor is compiled
from a module implementation together with its interface specification. The
analysis considers a game, where the nondeterminism of the module is seen as
one player and the interface behavior as the other. It is assumed that the interface
is trying to satisfy both its own specification and the global specification, and
the module is trying to produce a violation. In contrast to this approach, we
monitor the behavior of the system rather than its interface, because we are
interested in execution faults where the behavior of the system deviates from
its specification. In order to obtain monitors of reasonable size, we also avoid
encoding the implementation of any part of the system into the monitor.

The approach of this paper can be seen as an extension of three-valued mon-
itoring of linear-time temporal logic [1]. Taking the input/output interface of a
system into account significantly increases the usefulness of multi-valued moni-
toring, because now even violations of liveness constraints that depend on input
to the system can be detected.
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2 Monitoring Reactive Systems
We are interested in monitoring reactive systems, which interact with their en-
vironment over a potentially infinite run. We start by recalling standard notions
and constructions from runtime monitoring.

2.1 Preliminaries

Interfaces. The interface of a reactive system is defined as a tuple I =
(API , APO), where API is a finite set of input signals to the system and APO is
a finite set of output signals. Together, the two sets form the atomic propositions
AP = API �APO of the system. During the execution of the system, it produces
a (potentially infinite) word w = w0w1 . . ., where, in every step, the valuation
of the input signals is read and the respective valuation of the output signals is
produced, i.e., for every i ∈ IN, wi ∈ 2API ×2APO . We call the words produced by
the execution of a system also the traces of the system. Depending on whether
it is assumed that in every step first the input or output is read, the system
model corresponds to the one of Mealy or Moore machines [13], respectively.
The techniques in this paper are equally applicable in both models, although we
assume a Moore machine model in the following.

Execution trees. The behavior of a (deterministic) reactive system with in-
terface I = (API , APO) can be represented as an infinite tree 〈T, τ〉, where
T ⊆ (2API )∗ is the set of nodes of the tree, and τ : T → 2APO is the labeling
function of the tree, i.e., it decorates every node of the tree with an output. The
meaning of an execution tree is as follows. If t = t0 . . . tn ∈ T is the input of the
system read since the system went into service, then τ(t) is the output of the sys-
tem in the n+1st clock cycle. We say that an infinite path p = p0p1 . . . ∈ (2API )ω

induces a word/trace w = (p0, τ(ε))(p1, τ(p0))(p2, τ(p0p1)) . . . ∈ (2API × 2APO )ω

in the execution tree. An execution tree is called full if T = (2API )∗.
The idea behind execution trees is that the decision of the next output is based

on the entire history of inputs received so far. A reactive system is assumed to
have a full execution tree: because it has no control over the input, any input
sequence can arise during its execution.

We say that an execution tree (or a reactive system represented by the tree)
satisfies some word language L ⊆ (2API × 2APO )ω if every word that is induced
by some path in the tree is contained in L.

Linear-time temporal logic (LTL). LTL [14] is a commonly used specifi-
cation logic for reactive systems. LTL describes linear-time properties, i.e., sets
of correct traces. Formulas in LTL are built from atomic propositions, Boolean
operators and the temporal operators  (globally),  (finally), U (until) and
W (weak until). Given an infinite trace w = w0w1 . . . ∈ (2AP)ω over some set of
atomic propositions AP, we define the satisfaction of an LTL formula inductively
over the structure of the LTL formula. Let φ1 and φ2 be LTL formulas and wi

denote the suffix of a word w = w0w1 . . . starting from the ith element, i.e.,
wi = wiwi+1 . . .. The semantics of LTL is defined as follows:
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– w |= p if and only if (iff) p ∈ w0 for p ∈ AP
– w |= ¬ψ iff not w |= ψ
– w |= (φ1 ∨ φ2) iff w |= φ1 or w |= φ2
– w |= (φ1 ∧ φ2) iff w |= φ1 and w |= φ2
– w |= φ1 iff w1 |= φ1
– w |= φ1 iff for all i ∈ IN, wi |= φ1
– w |=φ1 iff there exists some i ∈ IN such that wi |= φ1
– w |= (φ1Uφ2) iff there exists some i ∈ IN such that for all 0 ≤ j < i, wj |= φ1

and wi |= φ2
– w |= (φ1Wφ2) iff for every i ∈ IN such that w0 �|= φ2, w1 �|= φ2, . . ., wi−1 �|=

φ2 and wi �|= φ2, also for all 0 ≤ j < i, wj |= φ1.

The set of traces that satisfy an LTL formula is called its language. The length
of an LTL formula is defined as the number of occurrences of operators and
atomic propositions. We say that an execution tree (or a reactive system)
satisfies an LTL formula ψ if it satisfies the language of the formula.

Runtime monitoring. As discussed under related work, there are multiple
definitions of the LTL runtime monitoring problem. The “standard” problem
defined in the following is based on three-valued monitoring [1]. We wish to
observe the trace of the reactive system and raise an alarm whenever the trace
prefix cannot be completed into an infinite trace that satisfies the specification,
and to raise a success signal whenever the trace cannot be completed to one
that does not satisfy the specification. Given an LTL formula φ over a set of
atomic propositions AP, we can build a monitor automaton for φ, i.e., a finite
state machine that observes the input and output of a system and where every
state is labeled by safe, unknown or bad. During the run of the monitor, the
state labels represent whether the prefix trace observed witnesses the violation
or satisfaction of the formula by every continuation of the prefix trace. Formally,
such a monitor is represented as a tuple M = (S, Σ, δ, s0, L), where S is the
set of states, Σ = 2AP is the input alphabet, δ : S × Σ → S is the transition
function, s0 ∈ S the initial state and L : S → {safe, unknown, bad} is the labeling
function. We also say that (S, Σ, δ, s0) is the transition structure of M. Given
a finite word w = w0w1 . . . wn ∈ (2AP)n, we say that w induces a (prefix) run
π = π0 . . . πn+1 in M such that π0 = s0 and for every i ∈ {0, . . . , n}, we have
πi+1 = δ(πi, wi). By abuse of notation, we write πn+1 = δ(s0, w0 . . . wn).

A finite-state machine M = (S, Σ, δ, s0, L) with Σ = 2AP represents a monitor
for an LTL formula φ over AP if the following conditions are satisfied: (1) for
every w ∈ (2AP)∗, L(δ(s0, w)) = bad if and only if for all w′ ∈ (2AP)ω , ww′ �|=
φ (so the formula can no longer be satisfied); and (2) for every w ∈ (2AP)∗,
L(δ(s0, w)) = good if and only if for all w′ ∈ (2AP)ω , ww′ |= φ (so the formula
will be satisfied whatever happens in the future). We call the set of prefix traces
that lead to a good state in a monitor the good prefixes, and the prefix traces
that lead to a bad state in a monitor its bad prefixes.

Constructing runtime monitors for LTL. There are standard construc-
tions to translate LTL formulas to monitor automata. For reference, we quickly
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recall the construction described in [1]. We start by building nondeterminis-
tic automata for both the specification and its negation. In these automata,
we prune states with empty language and then determinize with a powerset
construction. The product of the resulting deterministic finite-word automaton
represents a monitor with a doubly-exponential number of states in the length
of the original specification. As shown by Kupferman and Vardi [11], there is
a doubly-exponential lower bound and the construction is therefore essentially
optimal1.

2.2 Constructing Monitors from Deterministic Parity Automata

In preparation for our main construction in Section 3, which is based on parity
games, we now present an alternative monitor construction via deterministic
parity automata.

A deterministic parity automaton is a tuple A = (Q, Σ, δ, q0, c) with the set of
states Q, the alphabet Σ, the transition function δ : Q×Σ → Q, the initial state
q0 and the coloring function c : Q → IN. Given an infinite word w = w0w1 . . .,
w induces a run π = π0π1 . . . over A, where π0 = q0 and for every i ∈ IN,
πi+1 = δ(πi, wi). Likewise, a finite word w = w0w1 . . . wn induces a finite run
π = π0π1 . . . πn+1 in A where π0 = q0 and for every i ∈ {0, . . . , n}, we have
πi+1 = δ(πi, wi). We say that an infinite word w is in the language of A, denoted
by L(A), if and only if for the run π = π0π1 . . ., the highest number occurring
infinitely often in the sequence c(π0), c(π1), c(π2), . . . is even. For the scope of
this paper we require, without loss of generality, the transition function to be a
complete function. We refer to (Q, Σ, δ, q0) as the transition structure of A.

Given an LTL formula φ over a set of atomic propositions AP, we can translate
φ to a deterministic parity automaton A over the alphabet 2AP such that for
every infinite word w ∈ (2AP)ω, we have w |= φ if and only if w ∈ L(A). The
automaton A has 2O(2nn log n) states and 3(n + 1)2n colors [18].

In order to build a monitor for an LTL formula from its equivalent determin-
istic parity automaton, we need to identify the states with universal or empty
language. Given an automaton A = (Q, Σ, δ, q0, c), for every q ∈ Q, we denote
by Aq the automaton (Q, Σ, δ, q, c), i.e., the same automaton but with a different
initial state. If for a q ∈ Q, L(Aq) = ∅, we say that q has an empty language, or
if L(Aq) = Σω, we say that q has universal language. To identify the states with
empty language, we check each of the automata Aq for q ∈ Q for emptiness (see
[5] for a suitable procedure). States with universal language are identified by
doing the same on a version of the automaton where 1 is added to every color,
which complements the language of each state. Based on the sets of states with
the empty and universal language, we identify bad and good prefixes:

1 Kupferman and Vardi prove a 22Ω(
√

n)
lower bound, while the construction from [1]

leads to an automaton of size 22n

, where n denotes the length of the LTL formula.
The difference is negligible, however, because we can carry out a precise finite-state
machine minimization [8] after the construction of the monitor.
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Lemma 1. Let A = (Q, 2AP, δ, q0, c) be a deterministic parity automaton that
is obtained by a translation from an LTL formula ψ over the set of atomic
propositions AP, E ⊆ Q be the set of the states of A that have an empty language,
and U ⊆ Q be the set of states of A that have a universal language.

For every finite word w ∈ (2AP)∗, w induces a run in A that ends in a state
in E iff w is a bad prefix for ψ. Likewise, w induces a run in A that ends in a
state in U iff w is a good prefix for ψ.

With this lemma, we can now transform the deterministic parity automaton into
a monitor: we take the same set of states, label every state with an empty parity
automaton language with bad and every state with a universal parity automaton
language with good.

The monitor based on the parity automaton is slightly larger than the one de-
scribed in the previous subsection (2O(2nn log n) states compared to 22n states)2.
The advantage of using the transition structure of the deterministic parity au-
tomaton is, however, that it allows us to recognize realizability, as we will see in
the following section.

3 Monitoring Realizability

As discussed in the introduction, a monitor that only detects bad and good
prefixes misses early indicators of failure, where the environment can enforce
a violation of the specification. Such a violation of realizability means that the
system under observation is incorrect, because there exists an input that will
cause a violation of the specification, but the situation is less severe than the
occurrence of a bad prefix, because the bad input might not actually occur during
the current run of the system.

3.1 Parity Games

In a parity game, two players play for an infinite duration of time. The game
consists of a set of states, which are connected by labeled edges. Every state is
assigned to one of the two players, Player 0 and Player 1. The game is played
by moving a pebble along the edges of the game. Whenever the pebble is on
a state that belongs to the some player, this player gets to choose the action.
The pebble then moves according to the edge function to a state of the opposing
player. Every state has a color. A play is won by Player 0 if the highest color
visited infinitely often along the play is even.

Formally, a parity game is a tuple G = (V0, V1, Σ0, Σ1, E0, E1, vin , c). V =
V0 � V1 are the states, where the states in V0 belong to Player 0 and the states
in V1 belong to Player 1. Σ0 and Σ1 are the action sets, E0 : V0 × Σ0 → V1
and E1 : V1 × Σ1 → V0 are the edge functions of the two players. Additionally,
vin ∈ V is the initial state and c : V → IN is the coloring function.
2 We can apply precise finite-state machine minimization [8] after the construction to

obtain a monitor of equal size.
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A decision sequence in G is a sequence ρ = ρ0
0ρ1

0ρ0
1ρ1

1 . . . such that for all
i ∈ IN, ρ0

i ∈ Σ0 and ρ1
i ∈ Σ1. A decision sequence ρ induces an infinite play

π = π0
0π1

0π0
1π1

1 . . . if π0
0 = v0 and for all i ∈ IN, p ∈ {0, 1}, Ep(πp

i , ρp
i ) = π1−p

i+p .
Given a play π = π0

0π1
0π0

1π1
1 . . ., we say that π is winning for Player 0 if

max{c(v) | v ∈ V0, v ∈ inf(π0
0π0

1 . . .)} is even, where the function inf maps a
sequence to the set of elements that appear infinitely often in the sequence. If a
play is not winning for Player 0, it is winning for Player 1.

Given some parity game G = (V0, V1, Σ0, Σ1, E0, E1, v0, F), a strategy for
Player 0 is a function f : (Σ0 × Σ1)∗ → Σ0. Likewise, a strategy for Player
1 is a function f : (Σ0 × Σ1)∗ × Σ0 → Σ1. In both cases, a strategy maps
prefix decision sequences to an action to be chosen next. A decision sequence
ρ = ρ0

0ρ1
0ρ0

1ρ1
1 . . . is said to be in correspondence with f if for every i ∈ IN, we

have ρp
n = f(ρ0

0ρ1
0 . . . ρ1−p

n+p−1). A strategy is winning for Player p if all plays in
the game that are induced by some decision sequence that is in correspondence
to f are winning for Player p.

Parity games are determined, which means that there exists a winning strategy
for precisely one of the players. We call a state v ∈ V winning for player p if the
player has a winning strategy in the modified game where the initial state has
been changed to v.

Parity games and reactive systems. Parity games are a common model for
the interaction of a system with its environment. Player 0 represents the system,
Player 1 the environment. Player 0’s actions thus consist of the outputs, Player
1’s actions of the inputs.

We can translate a given LTL formula into a parity game such that there
is an execution tree that satisfies the formula along all its words if and only
if there exists a winning strategy for Player 0 from the initial state. Given
a winning strategy f , we can build a suitable execution tree 〈T, τ〉 by tak-
ing the decisions of the system player as the tree labels: T = (2API )∗ and
τ(t0 . . . tn) = f((τ(ε), t0)(τ(t0), t0t1)(τ(t0t1), t0t1t2) . . . (τ(t0 . . . tn−1), t0 . . . tn))
for every t0 . . . tn ∈ T .

Definition 1. Given a deterministic parity automaton A = (Q, Σ, δ, q0, c) with
Σ = 2API × 2APO , we build its induced parity game G = (Q, Q × 2APO , 2APO ,
2API , E0, E1, q0, c′) with

∀v0 ∈ Q, x0 ∈ Σ0, E0(v0, x0) = (v0, x0);
∀v0 ∈ Q, x0 ∈ Σ0, x1 ∈ Σ1, E1((v0, x0), x1) = δ(v0, (x1, x0));

∀v0 ∈ Q, x0 ∈ Σ0, c′(v0) = c(v0) and c′((v0, x0)) = 0.

Lemma 2. Given a deterministic parity automaton A = (Q, Σ, δ, q0, c) with
Σ = 2API × 2APO , there exists a winning strategy for the system player from the
initial state of the game induced by A iff there exists an execution tree for the
interface (API , APO) for which all induced words are in L(A).
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Fig. 3. Example bobble tree over API = {i} and APO = {o}. The tree branches
according to 2API , where the left children correspond to i = 0 and the right children
correspond to i = 1. The tree nodes are labelled by the value of o. The tree has the split
word {i, o}{o}∅ and describes the past behaviour of a reactive system with interface
I = (API , APO) after having read {i}∅∅ from its initial state. The tree branches
according to all possible inputs from the split node onwards.

3.2 Recognizing Realizability

We now formalize the situations in which the monitor should report realizable
and unrealizable. We call prefixes that lead to a realizable situation winning
and prefixes that lead to an unrealizable situation losing, corresponding to the
intuition that, in a realizable situation, Player 0 has a winning strategy, and in
an unrealizable situation, all strategies of Player 0 lose. The formal definition is
based on the concept of bobble trees, which are a special case of execution trees:
Bobble trees combine the representation of the past of an execution, which is a
prefix trace, with the representation of the future, which is a full tree.

A bobble tree 〈T, τ〉 has a split node t = t0 . . . tn ∈ T such that for every
node t ∈ T either t is a prefix of t, or t is a prefix of t and furthermore tt′ ∈
T for every t′ ∈ 2API . Thus, the tree has a single unique path to the split
node t and is full only from that point onwards. We call the prefix word w =
(τ(ε), t0)(τ(t0), t1) . . . (τ(t0 . . . tn−1), tn) the split word of 〈T, τ〉. Figure 3 shows
an example of a bobble tree.

Definition 2. Let I = (API , APO) be an interface and L ⊆ (2API × 2APO )ω be
a language. We say that some prefix word w = w0 . . . wn ∈ (2API × 2APO )∗ is
a winning prefix (for L) if there exists some bobble tree with split word w that
satisfies L. Likewise, we say that some prefix word w = w0 . . . wn ∈ (2API ×
2APO )∗ is a losing prefix if all bobble trees with split word w do not satisfy L.

It is easy to see that bad prefixes are special cases of losing prefixes, and dually,
good prefixes are special cases of winning prefixes. The following theorem forms
the basis of our approach for monitoring for winning and losing prefixes:

Theorem 1. Let A = (Q, Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API × 2APO and G be the corresponding parity game. For every prefix
word w = w0 . . . wn ∈ Σ∗ with its associated path π = π0 . . . πn+1 in A, w is a
winning/losing prefix for L(A) iff πn+1 is a state in G that is winning/losing for
Player 0, respectively.
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Proof. Assume that w is a winning prefix. This is equivalent to the fact that
there exists a tree 〈T, τ〉 where there is no prefix word other than w of length |w|
and from the node w|I = (w0 ∩API)(w1 ∩API) . . . (wn ∩API) onwards, the tree
is full and all of its paths are in the language of A. This is the case if and only if,
from πn+1 onwards, all words in the the sub-tree from node w|I are accepted by
Aπn+1 . By the definition of G, this in turn is equivalent to πn+1 being winning
for Player 0. The argument for losing prefixes is dual. ��
We have thus connected the monitoring problem for reactive systems to parity
game solving. Since parity games are determined (i.e., every state is winning for
precisely one of the two players), we directly obtain as a corollary:

Corollary 1. Let A = (Q, Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API × 2APO . Every finite word w ∈ Σ∗ is either a winning or a losing
prefix.

A monitor can therefore only encounter the following four situations: fulfilled if
the prefix is good, realizable if the prefix is winning but not good, unrealizable
if the prefix is losing but not bad, and violation if the prefix is bad.

We construct the monitor by identifying which states in the deterministic
parity automaton are winning for Player 0 in the respective game, and combine
the information with the information about states in the automaton witnessing
good and bad prefixes. The monitor has the same transition structure as the
parity automaton. In terms of complexity, we obtain the following:

Theorem 2. Let I = (API , APO) be an interface and ψ be an LTL formula
over API � APO. Building a finite-state machine that distinguishes between bad
(and losing), losing, winning and good (and winning) prefixes is 2EXPTIME-
complete.

Proof. For the lower bound, we note that the 2EXPTIME-complete [15] problem
of checking the realizability of LTL formulas is a special case: If we synthesize
a monitor, we can easily check for the realizability of a specification by testing
whether the initial state of the monitor machine is labeled by good or winning.

For the upper bound, we start by building an automaton A with 2O(2nn log n)

states and 3(n + 1)2n colors [18] that is equivalent to ψ, where n is the length
of ψ. Dividing the set of states in the corresponding game into the winning ones
and the losing ones can be done in time 2|API |+|APO|mO(d) [9], where m is the
number of states in the game (i.e., m = (2|APO| + 1) · 2O(2nn log n)) and d is the
number of colors in the game (i.e., d = 3(n + 1)2n). Combined with the effort
to identify the monitor states that represent good and bad prefixes, we obtain a
doubly-exponential time bound for this procedure. ��

4 Finitary Winning and Losing Prefixes

We now add a further refinement to the classification of monitoring situations: we
distinguish situations in which the system or environment can enforce fulfillment
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or violation, respectively, in finite time. The extended classification provides
helpful information about the urgency of the problem behind the unrealizable
status. Suppose, for example, that the monitor of a flight control system informs
an airplane pilot that the environment of the control system can force a viola-
tion of the specification in finite time. Since a violation of the specification is
imminent, the pilot might take drastic action in such a case, such as perform an
emergency landing. If, on the other hand, the environment needs infinite time to
enforce a violation, there is much more time for diagnosis and decision. It may
well be a better idea to continue the flight and report the system malfunction
(or incorrect specification) after the regular landing.

In this section, we define finitary winning and finitary losing prefixes and
show how to adapt the monitor construction from the previous section to also
detect these. Using this addition, our monitors for reactive systems now have six
monitoring conditions, going from worst case to best case as follows:

1. violation: the prefix is bad;
2. unrealizable with finite time: the prefix is finitary losing but not bad;
3. unrealizable with infinite time: the prefix is losing but not finitary losing;
4. realizable with infinite time: the prefix is winning but not finitary winning;
5. realizable with finite time: the prefix is finitary winning but not good; and
6. fulfilled: the prefix is good.

We begin by formalizing the definition of finitary losing and winning prefixes.

Definition 3. Let A = (Q, Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API ×2APO . We say that some prefix word w = w0 . . . wn ∈ (2API ×2APO )∗

is a finitary winning prefix if there exists some bobble tree 〈T, τ〉 with split word
w such that every infinite word in 〈T, τ〉 has a good prefix word. Likewise, we
say that some prefix word w = w0 . . . wn ∈ (2API × 2APO )∗ is a finitary losing
prefix if for all bobble trees 〈T, τ〉 with split word w, there exists an infinite word
in 〈T, τ〉 that has a bad prefix word.

The following lemma characterizes the finitary winning and losing prefixes in
terms of the parity game, which allows us to base the monitors for such prefixes
on the framework described in the previous sections.

Lemma 3. Let A = (Q, Σ, δ, q0, c) be a deterministic parity automaton with
Σ = 2API × 2APO , E ⊆ Q be the states of A that have an empty language,
U ⊆ Q be the set of states of A that have a universal language and G be the
game corresponding to A.

– For every prefix word w = w0 . . . wn ∈ Σ∗, w is a finitary winning prefix
iff for the corresponding prefix run π = π0 . . . πn+1, Player 0 has a strategy
from state πn+1 to eventually visit U .

– For every prefix word w = w0 . . . wn ∈ Σ∗, w is a finitary losing prefix iff for
the corresponding prefix run π = π0 . . . πn+1, Player 1 has a strategy from
state πn+1 to eventually visit E.
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As a consequence, we can again use the transition structure of the deterministic
parity automaton for our monitor. The only addition to the previous monitor
construction is that we need to identify the states in the game which allow Player
0 and Player 1 to force the play into one of the states whose corresponding
state in the parity automaton has a universal or empty language, respectively.
For this purpose, we apply a standard attractor [12] construction on the game
graph. To compute the finitary winning states, we initialize the attractor with
the states U whose language is universal and then repeatedly add states owned
by Player 0 that have an outgoing edge into the attractor, and states owned by
Player 1 where all outgoing edges lead into the attractor. The fixpoint of this
construction contains exactly those states where Player 0 can force the game
into U in a finite number of states. Analogously, we compute the finitary losing
states with an attractor that is initialized with the states E whose language is
empty, and where we repeatedly add states owned by Player 1 with an edge to
the attractor and states owned by Player 0 where all edges lead to the attractor.
The computation of the attractor sets takes linear time in the size of the game
[12]. We obtain as a corollary:

Corollary 2. Let I = (API , APO) be an interface and ψ be an LTL for-
mula over API � APO. Building a finite-state machine that distinguishes be-
tween bad, finitary losing, losing, winning, finitary winning, and good prefixes is
2EXPTIME-complete.

5 Conclusion

We have presented a new multi-valued monitoring approach for linear-time tem-
poral logic that classifies trace prefixes not only according to the correctness
of the continuations, but also according to the strategic power available to the
system and its environment in order to avoid or enforce a violation. The game-
based approach has several advantages over the classic approaches: the game-
based analysis detects errors earlier, it detects errors that are missed by purely
trace-based approaches, and it can indicate the urgency with which a violation
is to be expected.

Our constructions are optimal in the complexity-theoretic sense. A potential
drawback of our approach is that we construct a deterministic automaton. Other
monitoring techniques construct nondeterministic or universal automata, which
are, in theory, exponentially more compact. The determinization is then often
done symbolically, for example in hardware using individual flip-flops for the
states of the nondeterministic or universal automaton (cf. [6]).

However, experiments with state-of-the-art LTL-to-automata translators have
shown that nondeterministic automata are not necessarily smaller than deter-
ministic automata. For many practical specifications, the deterministic automa-
ton is in fact smaller than the nondeterministic automaton originally produced
by the translator [10,4]. Constructing deterministic automata and applying an
efficient symbolic encoder [17] may thus even lead to smaller, faster and more
memory-efficient monitors.
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Abstract. We present an on-line algorithm for the runtime checking
of temporal properties, expressed as past-time Linear Temporal Logic
(LTL) over the traces of observations recorded by a “black box”-like
device. The recorder captures the observed values but not the precise
time of their occurrences, and precise truth evaluation of a temporal logic
formula cannot always be obtained. In order to handle this uncertainty,
the checking algorithm is based on a three-valued semantics for past-
time LTL defined in this paper. In addition to the algorithm, the paper
presents results of an evaluation that aimed to study the effects of the
recording uncertainty on different kinds of temporal logic properties.

1 Introduction

Data recorders are very important in the design of safety-critical systems. They
allow system manufacturers and government regulators to collect data that help
to diagnose the problem in case of a system failure. The best known example
of a data recorder is the flight data recorder (FDR), also known as the “black
box,” that most aircraft are equipped with.

There is much interest in incorporating similar technology into medical de-
vices. Adverse events—that is, cases where the patient was harmed during the
application of the device—have to be reported to regulators. However, without
data recording capability, analysis of adverse events becomes very difficult or
even impossible. Thus, we are seeing the same kinds of adverse events repeated
over and over again.

A preliminary design of a data recorder, called life data recorder (LDR) for
medical devices has been proposed by Bill Spees, safety researcher at the U.S.
Food and Drug Administration [18]. The LDR would collect updates of device
state variables and relevant event occurrences and periodically transfer recorded
snapshots to non-volatile storage. In doing so, the information about exact or-
dering of events within the recording period is lost. We can thus view a recorded
trace as an abstraction of a concrete execution trace, so that the same abstract
trace may arise from a number of concrete traces.
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In this paper, we are concerned with checking past-time LTL properties of
system executions, that is, concrete traces. We assume, however, that all obser-
vations become available only after a snapshot is recorded. Thus we have only
the abstract trace of the execution to work with. We therefore reinterpret LTL
formulas in a way that reflects uncertainty in abstract traces. We introduce a
three-valued semantics, under which a formula evaluates to true on an abstract
trace Tr only if the same formula would evaluate to true on every concrete trace
that is consistent with Tr. Dually, a formula is false on an abstract trace only if it
is false on every consistent concrete trace. Otherwise, the outcome is uncertain.

We extend the algorithm of [10] to handle our three-valued semantics. The
interesting aspect of the extension is that the algorithm operates on abstract
traces; however, the formulas express properties of concrete traces, and there may
be multiple concrete states between two abstract state. Thus, in each abstract
state we need to reason about the segments of possible concrete traces since
the previous abstract state, as well as refer to the truth values of subformulas
calculated in the previous abstract state.

The paper is organized as follows. Section 2 defines abstract and concrete
traces and describes the LDR recording scheme. Section 3 defines the three-
valued semantics of past-time LTL over abstract traces and presents our runtime
checking algorithm according to the semantics. Section 4 presents the evaluation
of our checking algorithm on randomly generated traces. We conclude with an
overview of related work in Section 5 and a discussion on possible future work
in Section 6.

2 The Trace Model

In temporal logic based runtime verification, the primary task is to check a
temporal logic formula on a given trace. A trace is usually regarded as a sequence
of states, while the contents of states vary in different settings or domains. In
this section, we describe the recording scheme of the LDR[18], and define two
notions of traces, namely concrete traces and abstract traces.

2.1 LDR Recording Scheme

An LDR collects updates to a set of variables generated by a medical device and
periodically records snapshots of their values in permanent memory. Three types
of variables are recorded by the LDR: (a) process variables, (b) synchronized
events, and (c) asynchronized events. The latter two together are called fast chang-
ers. At the time-out of every period, called a frame, a vector of 32-bit words is
recorded to some non-volatile external storage. Recorded values are put to the
vector slots according to a scheme specified by a dictionary, described as follows.

Process variables represent essential state information for the medical device,
and are assumed not to change more than once during every frame. Each process
variable is assigned one slot in the snapshot vector. It may be either empty, if the
value did not change during the frame, or contain the new value for the process
variable.
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Synchronized events are fast changers that may occur multiple times within
a frame. They are recorded according to the time of their occurrences relative
to the beginning of the current frame. One frame is divided into a fixed number
(S, throughout the paper) of subframes of equal intervals, for all synchronized
events. We have F = S × I, where F is the snapshot period (frame interval
length), and I is the subframe interval length. Each synchronized event consumes
S consecutive slots in the snapshot vector, starting from a designated base slot
b. Assuming the beginning of the current frame is at time t, then an occurrence
of a synchronized event at time t′ (t′ < t+ F ) is recorded to the slot numbered
b+ &(t′ − t)/I' . Similar to process variables, we assume that there are no more
than one occurrence per subframe for each synchronized event.

Asynchronized events are fast changers which exhibit bursty behavior: oc-
casionally, they may change more than once per subframe, but the number of
changes within a frame is bounded. Similar to synchronized events, a fixed num-
ber (A, throughout the paper) of consecutive slots are assigned to each asyn-
chronized event. In one frame, at most A occurrences of an asynchronized event
may happen. They are sequentially recorded one slot per occurrence, starting
from the designated base slot b. No timing constraints with regards to subframes
are imposed on asynchronized events. Only that they arrived in the order they
are recorded in a frame is known.

Additional specifications of the LDR recording scheme in [18], such as encryp-
tion of data, external storages, etc., are tangential to our focus and omitted.

An example LDR recording. Fig. 1(a) shows an example segment of an LDR
recording for a process variable x and a synchronized event y with at most four
occurrences per frame (S = 4). The shaded cells in Column 0 represent the
initial values for x and y. Each of the following columns is a snapshot vector for
one frame in the recording session from the LDR. Frame 1 (shaded) is depicted
in Fig. 1(b). The variable x (marked ‘x’) changes from 2 to 3, and y (marked
‘o’) changes from 4 to 3, to 2, and to 4, in the first, second, and third subframes,
respectively. A dash entry in the snapshot vector means no events recorded.

0 1 2 3

x 2 3 2 1

y1 3 2 –

y2 2 1 3

y3 4 3 –

y4 4 – 2 4

(a) A sample
recording

(b) Depicting
Frame 1 in (a)

(c) One event
interleaving

(d) Another event
interleaving

Fig. 1. Sample segment of an LDR recording
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Recorded traces may exhibit uncertainties in capturing system executions.
Fig. 1(c) shows one possible system event interleaving which produces the shaded
recording in Fig. 1(a). The smaller dots represent the actual events which alter
the values of the relative variables. In this case, the change of x occurs in between
the first and the second changes of y. Fig. 1(d) shows another, where the change
of x occurs in between the second and the third changes of y. It can be seen
that in this example there are four possible different system event interleavings
which produce the shaded recording in Column 1 in Fig. 1(a).

2.2 Concrete Traces and Abstract Traces

In this paper, we differentiate two notions of traces, the concrete and the ab-
stract. Informally, a concrete trace is a sequence of concrete states, where each
of them is a mapping of variables to their values. An abstract trace is a sequence
of abstract states, where each of them is, in our setting, an LDR recorded vector.
We assume that concrete and abstract traces are finite.

Definition 1 (Concrete State and Concrete Trace). Assuming a set V
of variables and a domain D for their values, a concrete state is a mapping
f : V → D of variables to their values. A concrete trace p = p0 . . . pm of length
m is a sequence of concrete states p0, . . . , pm.

Definition 2 (Abstract State and Abstract Trace). An abstract trace Tr
is the sequence of snapshot vectors recorded by an LDR. Each snapshot vector is
an abstract state.

Concrete traces are not observed directly, but are captured by recordings from
the LDR component, i.e., abstract traces. For example in Fig. 1, the snapshot
vector for Frame 1 represents four concrete traces for (x, y) below, with the
second and third depicted in Fig. 1(c) and Fig. 1(d), respectively:

(2, 4)
x−→ (3, 4)

y−→ (3, 3)
y−→ (3, 2)

y−→ (3, 4),

(2, 4)
y−→ (2, 3)

x−→ (3, 3)
y−→ (3, 2)

y−→ (3, 4),

(2, 4)
y−→ (2, 3)

y−→ (2, 2)
x−→ (3, 2)

y−→ (3, 4),

(2, 4)
y−→ (2, 3)

y−→ (2, 2)
y−→ (2, 4)

x−→ (3, 4).

We particularly note that an abstract state in our setting is essentially an acyclic
transition system and captures a set of concrete traces. We say that any concrete
trace that an abstract state captures is consistent with the abstract state.

As can be seen from the above example, the end states for each concrete trace
in a frame are the same. This is due to the fact that at the end of each frame,
all of the variables have been changed to their respective last values.

We use Tr(0 : n), or simply Tr, to represent the abstract trace of length n,
Tr(i) (a snapshot vector) to represent the ith abstract state of Tr, and Tr(i)e to
denote the concrete state at the end of the ith abstract state (1 ≤ i ≤ n). Tr(i)e is
computed fromTr(i) by simply scanning through the vectorTr(i) and establishing
the mapping from each variable to its last value in the vector Tr(i). If nothing is
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recorded in Tr(i) for a variable, its value from Tr(i − 1)e is used. Tr(0), which
gives an initial value to every monitored variable, is a special case: it is, in effect, a
concrete state, and fills exactly one slot in the vector for each variable.

We use Path(Tr(i)) to represent the set of concrete traces consistent with the
abstract state Tr(i), and the variable pi to range over elements in Path(Tr(i)).
When necessary, a concrete trace pi of length mi is written as pi = pi0 . . . p

i
mi

.
Note that for a given i, all concrete traces in Path(Tr(i)) are of the same length,
which is equal to the number of variable changing events recorded in Frame i,
so a single i is subscripted to m. The superscript i is often omitted when the
context is clear. The following notations refer to the same concrete state for a
given i: Tr(i)e, p

i
mi

, and pi+1
0 .

Without loss of generality, we assume that all concrete traces for a given frame
are not zero-length, since zero-length concrete traces result from abstract states
where no changes to variable values occur, in which case the abstract state can
be removed from our considerations.

For a span of n frames, the concrete traces are constructed by sequentially
concatenating one concrete trace from each of the n frames. The concatenations
at the boundaries of frames are consistent since the end values of variables in
one frame are the same as their initial values in the next. We generalize the
notation Path(Tr(n)) to Path(Tr(0 : n)) to denote the set of concatenated
concrete traces from abstract trace Tr(0 : n). We also generalize the concept of
consistency between a concrete trace and an abstract trace naturally.

3 Syntax and Semantics of Past-Time LTL

In real time systems, we often need to specify system properties with past-time
LTL formulas and monitor system variables to check if the formulas are satisfied.
The semantics for past-time LTL formulas on a concrete trace is standard [13,15].
Also, to facilitate efficient runtime checking, it is convenient to define the seman-
tics in a recursive fashion so that it is unnecessary to keep the history trace [10].

Checking past-time LTL properties on abstract traces, however, is different in
that uncertainty arises when events are gathered in batch mode—a snapshot of
a frame capturing a magnitude of events in the system—with their interleavings
only partially known.

It is our main concern in this paper to both continue using the past-time LTL
to describe system properties due to their succinctness and familiarity to the
verification community, and handle the uncertainty in checking properties on
the recorded abstract traces due to the unknown event interleavings.

Our approach is to keep the syntax for past-time LTL but introduce a new
three-valued semantics based on standard semantics for concrete traces. A for-
mula ϕ evaluates to true on an abstract trace Tr only if ϕ evaluates to true on
all concrete traces consistent with Tr; ϕ evaluates to false on Tr only if it is
false on every concrete trace consistent with Tr; otherwise it is undecided.

In this section, we first review the syntax of past-time LTL and its standard
semantics and runtime checking algorithm, and then define the new semantics
and extend the runtime checking algorithm to our three-valued semantics.
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3.1 Syntax and Standard Semantics for Past-Time LTL

We assume all predicates on a set V of variables are the atomic formulas. We use
the variable a to range over the set of atomic formulas, and a(pj) to represent
the truth value of predicate a evaluated on concrete state pj . The syntax rules
for building formulas from atomic ones are as follows.

Definition 3 (Syntax for Formulas)

ϕ := true | false | a | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | (ϕ | � ϕ | �ϕ | ϕS ϕ

For example, (x = 14)S (x ≥ y) is a well formed formula. Intuitively, (φ
reads “previously φ”, meaning φ was true at the immediately previous state;

� φ reads “once φ”, meaning there was some time in the past when φ was true;

�φ reads “always in the past φ”, meaning that φ was always true in the past;
and φS ψ reads “φ (weakly) since ψ”, meaning that either φ was always true
in the past, or ψ held somewhere in the past and since then φ has always been
true. The formal definition of the semantics is as follows.

Definition 4 (Standard Semantics for Past-Time LTL[10,13,15]). A con-
crete trace p = p0 . . . pm of length m satisfies a past-time LTL formula ϕ, written
p |= ϕ, is inductively defined on the structure of ϕ as follows.

p |= true is always true
p |= false is always false
p |= a iff a(pm) holds
p |= ¬ψ iff p �|= ψ
p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= (φ iff m > 0 and p0 . . . pm−1 |= φ, or m = 0 and p0 |= φ
p |= � φ iff p0 . . . pj |= φ for some 0 ≤ j ≤ m
p |= �φ iff p0 . . . pj |= φ for all 0 ≤ j ≤ m
p |= φS ψ iff either p |= �φ, or

(
p0 . . . pj |= ψ for some 0 ≤ j ≤ m

and p0 . . . pk |= φ for all j < k ≤ m
)

The Runtime Checking Algorithm. The verification of a formula ϕ on a
concrete trace p is based on the fact that the semantics in Definition 4 can be
stated in a recursive fashion. For example, the semantics for the “since” operator
S can be equivalently stated as

p |= φS ψ iff p |= ψ, or (p |= φ and (m > 0 implies p0 . . . pm−1 |= φS ψ)) . (1)

A runtime formula checker can cache the intermediate result of checking φS ψ
on trace p0 . . . pm−1 to use in the checking of φS ψ on trace p, according to the
recursive semantics. In general, the checker iterates through all concrete states
from p0 through pm. In each concrete state pi, the checker keeps the satisfaction
results of all subformulas of ϕ on the trace p0 . . . pi−1 (which we call the checker
state). The checker updates its state based on the values in pi, as defined in [10].

We illustrate the algorithm with an example before we provide an extension in
the next subsection, where we define three-valued semantics for past-time LTL.
To check the truth value of (x = 3)S (x ≥ y) in the trace for (x, y):
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p = p0 . . . p4 = (2, 5)→ (3, 5)→ (3, 3)→ (3, 4)→ (3, 6),
we follow the procedure of evaluating the subformulas φ ≡ (x = 3), ψ ≡ (x ≥ y),
and φS ψ.

Step |= φ ≡ (x = 3) ψ ≡ (x ≥ y) φS ψ

0. p0 F F F
1. p0p1 T F F
2. p0p1p2 T T T
3. p0p1p2p3 T F T
4. p0p1p2p3p4 T F T

Each line in the table is the checker state for use in its next line. In deciding that
p0p1p2p3 |= φS ψ is true, for example, the facts that p0p1p2p3 |= φ is true (from
the current state) and that p0p1p2 |= φS ψ is true (from the checker state) are
used against the alternative semantics for the “since” operator S defined in (1).

3.2 Three-Valued Semantics for Past-Time LTL

Inspired by [12], we define a new semantics for the past-time LTL formulas
against abstract traces. A formula ϕ is true on an abstract trace Tr only if ϕ
evaluates to true on all concrete traces consistent with Tr; ϕ evaluates to false
on Tr only if it is false on every concrete trace consistent with Tr; otherwise it
is undecided. We use the semantic notions �Tr |= ϕ� = �, �Tr |= ϕ� = ⊥, and
�Tr |= ϕ� =? to indicate the three cases, respectively, where �, ⊥, and ? are
truth values in three-valued logics to represent true, false, and unknown. The
truth table for a commonly accepted variant of three-valued logics, namely the
Kleene logic[11], is shown in Definition 5.

Definition 5 (Truth Table for Kleene Logic). The following is the truth
table for Kleene logic. (A and B are truth values.)

A � ⊥ ?
B � ⊥ ? � ⊥ ? � ⊥ ?

A ∨3 B � � � � ⊥ ? � ? ?
A ∧3 B � ⊥ ? ⊥ ⊥ ⊥ ? ⊥ ?
¬3A ⊥ � ?

We now consider the three-valued semantics for an abstract trace Tr of length
n and a past-time LTL formula ϕ. We assume Tr and ϕ is fixed in the sequel.

We define the semantics in a recursive fashion, assuming the checking for the
partial trace Tr(0 : i) is finished and the checking result of �Tr(0 : i) |= ψ� for
any (proper) subformula ψ of ϕ is available. We denote such information with a
so called subformula value mapping SVi : SubFormulas(ϕ) → {�,⊥, ?} which,
for a subformula ψ of ϕ, SVi(ψ) = �Tr(0 : i) |= ψ�.

To establish the recursive semantic definition from �Tr(0 : i) |= ϕ� to �Tr(0 :
i + 1) |= ϕ�, we use an auxiliary semantic function checkOne which takes a
subformula value mapping, a concrete trace, and a formula, and returns a result
from {�,⊥, ?}. The intended use of function checkOne is that, when called with
checkOne(SVi, p, ϕ), where SVi is the subformula value mapping for ϕ on trace
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Tr(0 : i), and p is one concrete trace from Path(Tr(i+1)), the function returns
whether ϕ is satisfied on all, none, or some (neither all nor none) concrete traces
formed by concatenating any concrete trace in Path(Tr(0 : i)) with p.

Definition 6. Given a subformula value mapping SV , a formula ϕ, and a con-
crete trace p = p0 . . . pm, the function checkOne(SV, p, ϕ) is defined inductively
on the structure of ϕ, as follows.

checkOne(SV, p, true) = �
checkOne(SV, p, false) = ⊥

checkOne(SV, p0, . . . pm, a) =

{
�, if a(pm) holds,

⊥, if a(pm) does not hold,

checkOne(SV, p,¬ψ) = ¬3checkOne(SV, p, ψ)

checkOne(SV, p, φ ∧ ψ) = checkOne(SV, p, φ) ∧3 checkOne(SV, p, ψ)

checkOne(SV, p, φ ∨ ψ) = checkOne(SV, p, φ) ∨3 checkOne(SV, p, ψ)

checkOne(SV, p0 . . . pm,� φ) =

⎧⎪⎨
⎪⎩

SV (� φ), if m = 0,

SV (φ), if m = 1,

checkOne(SV, p0 . . . pm−1, φ), if m > 1.

checkOne(SV, p0 . . . pm, � φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�, if SV ( � φ) = �, or
(
m > 0 and

(checkOne(SV, p0 . . . pm−1, � φ) = �
or checkOne(SV, p0 . . . pm, φ) = �)

)
,

⊥, if SV ( � φ) = ⊥, and
(
m > 0 implies

(checkOne(SV, p0 . . . pm−1, � φ) = ⊥
and checkOne(SV, p0 . . . pm, φ) = ⊥)

)
,

?, otherwise.

checkOne(SV, p0 . . . pm,� φ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�, if SV (�φ) = �, and
(
m > 0 implies

(checkOne(SV, p0 . . . pm−1,�φ) = �
and checkOne(SV, p0 . . . pm, φ) = �)

)
,

⊥, if SV (�φ) = ⊥, or
(
m > 0 and

(checkOne(SV, p0 . . . pm−1,�φ) = ⊥
or checkOne(SV, p0 . . . pm, φ) = ⊥)

)
,

?, otherwise.

checkOne(SV, p0 . . . pm, φS ψ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SV (φS ψ), if m = 0,

�, if m > 0 and
(
checkOne(SV, p0 . . . pm, ψ) = �

or (checkOne(SV, p0 . . . pm−1, φS ψ) = �
and checkOne(SV, p0 . . . pm, φ) = �)

)
,

⊥, if m > 0, checkOne(SV, p0 . . . pm, ψ) = ⊥
and

(
checkOne(SV, p0 . . . pm−1, φS ψ) = ⊥

or checkOne(SV, p0 . . . pm, φ) = ⊥)
,

?, otherwise.

It is worthwhile to note that the checkOne function is recursive in terms of the
length of the concrete trace p, and thus can be turned into an efficient algorithm
using the idea from the runtime checking algorithm illustrated in Subsection 3.1.

Definition 7 (Three-Valued Semantics for Past-Time LTL). An abstract
trace Tr of length n satisfying a past-time LTL property ϕ, written �Tr |= ϕ�,
is inductively defined on the structure of ϕ, as follows.

�Tr |= true� = �
�Tr |= false� = ⊥

[Tr(0 : n) |= a] =

{
�, if a(Tr(n)e) holds,

⊥, if a(Tr(n)e) does not hold,
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�Tr |= ¬ψ� = ¬3�Tr |= ψ�

�Tr |= φ ∧ ψ� = �Tr |= φ� ∧3 �Tr |= ψ�

�Tr |= φ ∨ ψ� = �Tr |= φ� ∨3 �Tr |= ψ�

if ϕ is �φ, � φ, or �φ,

�Tr(0 : n) |= ϕ� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�, if (n = 0 implies Tr(0) |= ϕ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, ϕ) = �)
,

⊥, if (n = 0 implies Tr(0) �|= ϕ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, ϕ) = ⊥)
,

?, otherwise.

�Tr(0 : n) |= φS ψ� =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�, if (n = 0 implies Tr(0) |= φ ∨ ψ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, φS ψ) = �)
,

⊥, if (n = 0 implies Tr(0) �|= φS ψ) and
(
n > 0 implies

∀p ∈ Path(Tr(n)) : checkOne(SVn−1, p, φS ψ) = ⊥)
,

?, otherwise.

The definition is also recursive in the length n of the abstract trace Tr(0 : n),
since the satisfaction results of subformulas of ϕ on trace Tr(0 : n − 1) are
encapsulated in the subformula value mapping SVn−1. Note that the recursion
stops at n = 0, where Tr(0) is a concrete state and SV0(ψ) for a subformula ψ
of ϕ is defined to be � if ψ(Tr(0)) holds, and ⊥ otherwise.

3.3 An Example

In this section we provide an example illustrating the runtime checking algorithm
which translates the recursive definitions of our three-valued semantics into an
iterative procedure, and in the next section we present the algorithm.

Consider the formula ϕ ≡ ( ( ( � (x = y) on the abstract trace Tr of length
3 shown in Fig. 2, where x and y are both process variables. The iterative steps
are shown in Fig. 2(c), explained below.

Starting from the initial (concrete) state (1, 2), all subformulas of ϕ are
checked and the subformula value mapping SV0 is updated. Then for Frame i
(i = 1, 2, 3), each box labeled #j (j = 1, 2) is checked with a call to the aux-
iliary function checkOne(SVi−1, p

#j, ϕ). Since checkOne is recursively defined
on the length of the concrete trace p#j, inside each box labeled #j, the entries
are computed column by column. For example, the (4, 2) column of box #1 in
Frame 2 is the result of checking the initial segment (4, 3) → (4, 2) of concrete
trace p#1 = (4, 3)→ (4, 2)→ (3, 2), which is an intermediate step in the call to
checkOne(SV1, p

#1, ϕ).
The values are computed according to Definition 6, except that recursive calls

to checkOne(SV, p0 . . . pm−1, ) from checkOne(SV, p0 . . . pm, ), and the calls to
checkOne(SV, p0 . . . pm, ψ) from checkOne(SV, p0 . . . pm, ϕ), where ψ is a sub-
formula of ϕ, are replaced with table lookups.

After each box #j in Frame i is computed, for any subformula ψ of ϕ, SVi(ψ)
is updated to � if all entries in the last columns of each box #j (shaded in
Fig. 2(c)) and row ψ is �; to ⊥ if they are all ⊥; and to ? otherwise. Checking
for Frame i + 1 begins after the update of SVi. When the algorithm finishes,
SV3(ϕ) is the result of checking ϕ ≡ ( ( ( � (x = y) on the abstract trace Tr.
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0 1 2 3

x 1 4 3 –

y 2 3 2 3

(a) Abstract Trace (b) Depicting the Abstract Trace

Initial State Frame 1 Frame 2 Frame 3

(1, 2) SV0
p#1: →(1,3)→(4,3)

SV1
p#1: →(4,2)→(3,2)

SV2 p#1: →(3,3) SV3
p#2: →(4,2)→(4,3) p#2: →(3,3)→(3,2)

#1 #2 #1 #2 #1
(1,3) (4,3) (4,2) (4,3) (4,2) (3,2) (3,3) (3,2) (3,3)

x = y F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
 ⊥ ⊥ 
 

� (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
 
 ? 
 

� � (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ 
 ? ? ?
� � � (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ? ?
� � � � (x = y) F ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

(c) Runtime Checking Algorithm Steps

Fig. 2. Example for Runtime Checking Algorithm

This example shows the “hybrid” nature of the checkOne calculation: some
subformulas of ϕ are evaluated on the concrete states of p, while others are
looked up in the checker state of the preceding abstract state.

3.4 Checking Past-Time LTL Formulas against Abstract Traces

In this subsection, we present the algorithm, shown in Algorithm 1, for checking
the truth value of a given past-time LTL formula ϕ and a given abstract trace Tr
of length n, based on our recursive semantics in Definition 7. It is an extended
version of the runtime checking algorithm based on the recursive definition for
past-time LTL formulas on concrete traces [10].

We use the notation SubFormulas(ϕ) for the list of subformulas of ϕ, and
assume the enumeration invariant in the algorithm: for any formula ψ at position
j in SubFormulas(ϕ), all subformulas of ψ are at positions smaller than j.

4 Experiments

We implemented, in Python, a prototype of the past-time LTL checker described
in the preceding sections. To evaluate our implementation and gain insights into
the utility of the three-valued semantics, we also built a test environment that
generates random abstract traces for a given LDR configuration file, and random
past-time LTL formulas from a set of formula templates. Having generated sets
of abstract traces and formulas, we evaluated each formula on every trace. This
section summarizes the obtained results.

The formula templates were taken from common LTL specifications from the
Spec Patterns project at Kansas State University [17]. For each of our five
chosen categories, five temporal templates are specified: globally, before, after,
between/and, and after/until. We altered the formulas for the twenty-five chosen
templates from future-time to past-time, by replacing the future-time operators
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Algorithm 1. Runtime Checking for Past-time LTL on Abstract Traces
input : abstract trace Tr(0 : n), past-time LTL formula ϕ
output: checking result for �Tr |= ϕ�

initialization: sf←−SubFormulas(ϕ); Pre←− {} (empty mapping); Now←− {};
for j = 1 to length(sf) do

if sf[j] is true then Pre[true ]←− �;
if sf[j] is false then Pre[false ]←− ⊥;
if sf[j] is atomic formula a then

if a(Tr(0)) holds then Pre[a] ←− � else Pre[a] ←− ⊥;

if sf[j] is ¬ψ then Pre[¬ψ] ←− ¬3Pre[ψ];
if sf[j] is φ ∨ ψ then Pre[φ ∨ ψ] ←−Pre[φ]∨3Pre[φ];
if sf[j] is φ ∧ ψ then Pre[φ ∧ ψ] ←−Pre[φ]∧3Pre[φ];
if sf[j] is � φ, � φ, or �φ then Pre[sf[j]] ←−Pre[φ];
if sf[j] is φS ψ then Pre[φS ψ] ←−Pre[ψ]∨3Pre[φ];

for i = 1 to n do
for j = 1 to length(sf) do

if sf[j] is true then Now[true ]←− �;
if sf[j] is false then Now[false ]←− ⊥;
if sf[j] is atomic formula a then

if a(Tr(i)e) holds then Now[a] ←− � else Now[a] ←− ⊥;

if sf[j] is ¬ψ then Now[¬ψ] ←− ¬3Now[ψ];
if sf[j] is φ ∨ ψ then Now[φ ∨ ψ] ←−Now[φ]∨3Now[φ];
if sf[j] is φ ∧ ψ then Now[φ ∧ ψ] ←−Now[φ]∧3Now[φ];
if sf[j] is �φ, � φ, �φ, or φS ψ then

forall p ∈ Path(Tr(i)) do
check[p] ← checkOne(Pre, p, ϕ);
result[p] ← check[p](sf[j]);

if each element of result is � then Now[sf[j]] ←− �;
else if each element of result is ⊥ then Now[sf[j]] ←− ⊥;
else Now[sf[j]] ←−?;

Pre←−Now;

return Now[ϕ];

� (globally), � (eventually), � (next state), andW (weak until) with their past-
time counterparts � , � , ( , and S, respectively. The strong until operator U
was replaced with the strong since operator Ss , and then transformed according
to the equivalence P Ss Q ≡ (P S Q) ∧ � Q.

Table 1 lists all the specification templates used in our experiments. Note
that the natural language description for each category has also been changed
accordingly. For instance, the category “S precedes P” in future-time logic refers
to traces where P cannot be true until an S happens ((¬P )W S). Its past-time
counterpart ((¬P )S S) states that “S concluded P”, i.e., if a P was observed,
there must have later been an observation of S after which P was always false.

Twenty-five instances for each of the twenty-five formula templates were gen-
erated, with atomic symbols (P , Q, R, etc.) in the templates replaced with ran-
domly generated atomic formulas, in our case predicates involving LDR recorded
variables, e.g., a + 42 ≤ b. Forty abstract traces all of length 20 were also ran-
domly generated, according to the dictionary for a process variable a and two
synchronous events b and c, with at most four recordings per frame (S = 4).

Therefore in our experiments, a total of 40(# traces) × 25(# templates) ×
25(# instances / template) = 25, 000 trace-formula combinations were tested.
For each given abstract trace Tr and given formula instance ϕ, we collected the
results for �Tr(0) |= ϕ�, �Tr(0 : 1) |= ϕ�, . . . , �Tr(0 : 20) |= ϕ� as a sequence
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Table 1. Past-time LTL Formula Templates

1. globally 2. after R 3. before Q

A.
absence

� ¬P � R → (¬P Ss R) � (Q → � ¬P )
(P was false)

B.
existence

� P (¬R) S (P ∧ ¬R) � (¬Q) ∨ � (Q ∧ � P)
(P became true)

C.
universality

� P � R → (P Ss R) � (Q → � P)
(P was true)

D.
conclusion

(¬P )S S � R → ((¬P ) Ss (S ∨ R)) � (¬Q) ∨ (Q ∧ ((¬P )S S))
(S concluded P)

E.
cause

� (P → � S) � R → ((P → ((¬R) Ss (S ∧ ¬R))) Ss R) � (Q → � (P → � S))
(S weakly caused P)

4. between R and Q 5. before Q since R

A.
absence

� ((Q ∧ ¬R ∧ � R) → ((¬P )Ss R)) � ((Q ∧ ¬R) → ((¬P ) S R))
(P was false)

B.
existence

� ((Q ∧ R) → ((¬R) S (P ∧ ¬R))) � ((Q ∧ R) → ((¬R) Ss (P ∧ ¬R)))
(P became true)

C.
universality

� ((Q ∧ ¬R ∧ � R) → (P Ss R)) � ((Q ∧ ¬R) → (P S R))
(P was true)

D.
conclusion

� ((Q ∧ ¬R ∧ � R) → ((¬P ) Ss (S ∨ R))) � ((Q ∧ ¬R) → ((¬P ) S (S ∨ R)))
(S concluded P)

E.
cause � ((Q ∧ ¬R ∧ � R) → � ((Q ∧ ¬R) →

(S weakly causesd P ) ((P → ((¬R) Ss (S ∧ ¬R))) Ss R)) ((P → ((¬R) Ss (S ∧ ¬R))) S R))

of 21 values from {�,⊥, ?}, which we call a result sequence for Tr and ϕ. So a
total of 25, 000× 21(length of a result sequence) = 525, 000 values of �, ⊥, or ?
were collected.

The experiments were run on a Windows XP desktop with 2.8GHz Intel Core
Duo CPU and 2Gb memory and finished within 7 hours. Profiling shows that
97.7% of the running time was spent on executing the checkOne function, due
to the exponential number of concrete traces corresponding to an abstract state.
A few of our observations are discussed below.

Frequency of uncertain outcomes. We first evaluated how often the uncer-
tain result (?) happens. Table 2 lists our two measurements: (a) how many of
the trace-formula combinations give uncertain checking results (the number of
result sequences whose the last value is ?), and (b) how many of all the 525,000
results are uncertain (the total number of ? in all result sequences).

We see from Table 2 that, the uncertain results do not occur as often as one
may expect. To explain this observation, we note that most of the temporal
operators are insensitive to the uncertainty, and also the scope of uncertainty is
bounded within one abstract state.

Propagation of uncertainties. We then consider that, given a trace Tr and a
formula ϕ, if an observation of an uncertain result happened at abstract state i,
i.e., �Tr(0 : i) |= ϕ� =?, whether it will be the case that all following outcomes
in the result sequence are uncertain, i.e, �Tr(0 : j) |= ϕ� =?, for all i ≤ j ≤ n.

We identified 7,129 out of all the 25,000 result sequences where ? occurred at
least once somewhere in the sequence, 3,660 of which (51.34%) exhibit outcomes
with trailing uncertain values (?) up to the end of the respective sequence. Above,
we saw that uncertain values do not occur often. However, once occurred, they
tend to persist. This is consistent with the intuition that an uncertain result in
one abstract state pollutes the checker state and affects all subsequent states.
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Table 2. Chance of Uncertainty in Three-Valued Logic

Measurement Uncertain Results Total Cases Percentage

(a) 3903 25,000 15.61%

(b) 63359 525,000 12.07%

Fig. 3. Uncertainty Propagation

Fig. 3 plots which formula templates these 3,660 result sequences belong to.
It is observed that templates in the “between/and” group are more likely to
propagate uncertainty. This is partly due to the complex formula templates in
the “between/and” group, which make the checker less likely to exit the uncertain
state, compared to simpler templates in the “globally” group.

Impact of formula patterns. Another observation from the collected results
is that, certain groups of formula templates exhibit patterned checking results.

The first group of formula templates includes {A.1, B.1, C.1} in Table 1. The
formula templates share the form that either � or � quantifies over an atomic
formula or its negation. The common patterns are either (a) all ⊥ or all �, or
(b) a consecutive number of � (or ⊥, respectively), followed by a consecutive
number of ?, and then all ⊥ (or �, respectively).

This observation shows that, once a property with the � operator has been
falsified, it continues to be false; before this, it underwent being (probably triv-
ially) true on all concrete traces, some concrete traces, and finally none. A dual
result can be stated for the � operator.

A second group of templates involve the formulas where S is the main op-
erator ({B.2, D.1}). The respective result sequences for formulas in this group
show no obvious pattern, where the values �, ⊥, and ? almost randomly appear.
This shows that randomly generated formulas with S as the main operator are
more often determined locally in one abstract state.

5 Related Works

There are many runtime verification systems that formalize correctness proper-
ties in LTL, as seen for example in [12,4,8]. Different LTL variants have been
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defined based on semantics for finite traces [2,3,9]. The three-valued logic LTL3

as an LTL logic with a semantics for finite traces has been used in [3]. The
LDR traces in this paper are special cases of Mazurkiewicz traces[14] where the
independence relation is defined by the LDR recording scheme. Alternative se-
mantics of LTL formulas on Mazurkiewicz traces were studied (e.g., [5,7]) but
were not based on a three-valued interpretation.

Compared to [3], this work used three-valued semantics for past-time LTL on
traces with the LDR recording scheme, where the uncertainty in our case comes
from unknown event interleavings; in [3], the uncertainty for LTL3 was due to all
possible unknown future suffixes of a finite trace. Although past-time LTL is not
more expressive than LTL, it is exponentially more succinct and more convenient
for specifying correctness properties for runtime verification over finite traces[9].

The technique of defining recursive semantics for checking temporal logic prop-
erties is standard to model checking [6] and runtime verification. [1,10], as well
as the algorithm presented in this paper, are based on this technique.

[16,19] provide different approaches to randomly generating LTL formulas.
We used templates from [17] in our experiments as the formula categorization
helps study the relationship between satisfaction of formulas and their patterns.

6 Conclusion and Future Work

We considered a problem of runtime verification of past-time LTL properties over
recorded traces, in which some information about the order of observations may
be lost. We showed that a three-valued interpretation of the formulas is needed
to reflect this uncertainty. We developed the appropriate semantics for past-
time LTL and implemented the checking algorithm. Finally, we conducted an
evaluation of checking several formula patterns over randomly generated traces
and discussed the effects on uncertainty on checking outcomes.

We intend to extend this work in several directions. Extending the new se-
mantics to the full LTL will require a non-trivial effort, and we also plan to tackle
the effect of uncertainty on real-time properties. In the recorded traces, abstract
states are timestamped when the state is recorded, but the time of actual obser-
vations is lost, resulting in additional uncertainty for the timed operators.

We believe that the implementation of the checker can be substantially im-
proved by treating the set of concrete trace segments symbolically. A naive idea
may be to simply run an LTL model checker on the transition system that repre-
sents the LDR trace model; however, we also need to construct the checker state
in the previous abstract state for the right subformulas. Thus a more elaborate
approach is needed.

Finally, we would like to consider a more precise semantic definition, so that
a formula evaluates to � if and only if it is true on every concrete trace. The
current semantics satisfies just the “only if” condition. Indeed, suppose we are
checking the formula φ ∨ ψ, and φ holds exactly on those traces where ψ does
not hold. Both φ and ψ evaluate to ?, but φ ∨ ψ should evaluate to �. One way
to achieve this is to forego the Kleene logic and define the semantics of a formula
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directly in terms of the set of concrete paths on which the formula holds. Then,
we can assign the truth value to each formula depending on whether this set is
empty, or is equal to the set of all traces.

Acknowledgement. We would like to thank Klaus Havelund and Grigore Roşu
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the anonymous reviewers for their comments to improve the paper.
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