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Abstract We construct finitely supported symmetric probability measures on
SL2.R/ for which the Furstenberg measure on P1.R/ has a smooth density.

1 Introduction

In this note, we give explicit examples of finitely supported symmetric probability
measures � on SL2.R/ for which the corresponding Furstenberg measure � on
P1.R/ is absolutely continuous wrt to Haar measure d� , and moreover d�

d�
is of

class C r , with r any given positive integer. Probabilistic constructions of finitely
supported (non-symmetric measures � on SL2.R/ with absolutely continuous
Furstenberg measure appear in the paper [1], setting (in the negative) a conjecture
from [4]. The construction in [1] may be viewed as a non-commutative analogue of
the theory of random Bernoulli convolutions and uses methods from [5, 6].

It is not clear if this technique may produce Furstenberg measures with say C1-
density. Our method also addresses the issue of obtaining a symmetric � (raised in
[4]), which seems problematic with the [1] technique.

Our starting point is a construction from [2] of certain Hecke operators on
SL2.R/ whose projective action exhibits a spectral gap. The mathematics under-
lying [2] is closely related to the paper [3] and makes essential use of results and
techniques from arithmetic combinatorics. In particular, it should be pointed out that
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134 J. Bourgain

the spectral gap is not achieved by exploiting hyperbolicity, at least not in the usual
way. Our measure � has in fact a Lyapounov exponent that can be made arbitrary
small, while the spectral gap (in an appropriate restricted sense) remains uniformly
controlled (the size of supp � becomes larger of course).

We believe that similar constructions are possible also in the SLd.R/-setting,
for d > 2 (cf. [4]). In fact, such Hecke operators can be produced using the
construction from Lemmas 1 and 2 below in SL2.R/ and considering a suitable
family of SL2.R/-embeddings in SLd . We do not present the details here.

Acknowledgements The author is grateful to C. McMullen and P. Varju for several related
discussions. Research was partially supported by NSF grants DMS-0808042 and DMS-0835373

2 Preliminaries

We recall Lemmas 2.1 and 2.2 from [2].

Lemma 1. Given " > 0, there is Q 2 ZC and G � SL2.R/ \ �
1
Q
Mat2.Z/

�
with

the following properties
1

"
< Q <

�1
"

�c1
(1)

jGj > Qc2 (2)

The elements of G are free generators of a free group (3)

kg � 1k < " for g 2 G (4)

Here c1; c2 are constants independent of ".
Define the probability measure � on SL2.R/ as

� D 1

2jGj
X

g2G
.ıg C ıg�1 /: (5)

Denote also Pı; ı > 0, an approximate identity on SL2.R/. For instance, one may

take Pı D 1Bı .1/jBı.1/j where Bı.1/ is the ball of radius ı around 1 in SL2.R/.

Lemma 2. Fix � > 0. Then we have

k�.`/ � Pık1 < ı�� (6)

provided

` > c3.�/
log 1=ı

log 1="
(7)

and assuming ı small enough (depending on Q and �).
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3 Furstenberg Measure

Denote for g 2 SL2.R/ by �g the action on P1.R/ that we identify with the circle

R=Z D T. Thus if g D
�
a b

c d

�
; ad � bc D 1, then

ei�g.�/ D .a cos � C b sin �/C i.c cos � C d sin �/

Œ.a cos � C b sin �/2 C .c cos � C d sin �/2�
1
2

: (8)

Assume � on P1.R/ is �-stationary, i.e.

� D
X

�.g/g�Œ��: (9)

4 A Restricted Spectral Gap

Take G as in Lemma 1 and � D 1
2r

P
g2G.ıg C ıg�1/ with r D jGj.

Lemma 3. There is some constantK > 0 (depending on �), such that if f 2 L2.T/
satisfies

kf k2 � 1 and Of .n/ D 0 for jnj < K (10)

then �
�
��

Z
.f ı �g/d�

�
�
��
2

<
1

2
: (11)

Proof. Define �gf D .� 0
g/
1=2.f ı�g/, hence � is the projective representation. Since

k1 � gk < ", j� 0
g � 1j . " and (11) will follow from

�
��
�

Z
.�gf /�.dg/

�
��
�
2

<
1

3
: (12)

Assume (12) fails. By almost orthogonality, there is f 2 L2.T/ such that

supp Of � Œ2k; 2kC1� (13)

kf k2 D 1 (14)
�
�
�
�

Z
.�gf /�.dg/

�
�
�
�
2

> c(for some c > 0): (15)

Let ` < k to be specified. From (15), since � is symmetric,

�
��
�

Z
.�gf /�

.`/.dg/

�
��
�
2

> c` (16)
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and hence

Z
jh�gf; f ij�.2`/.dg/ D

“
jh�gf; �hf ij�.`/.dg/�.`/.dh/ > c2`: (17)

Take ı D 10�k . Recalling (13), straightforward approximation permits us to
replace in (16) the discrete measure �.`/ by �.`/ � Pı , where Pı.ı > 0/ denotes the
approximate identity on SL2.R/. Hence (17) becomes

Z

SL2.R/

jh�gf; f ij.�2` � Pı/.g/dg C 2�k > c2`: (18)

Fix a small constant � > 0 and apply Lemma 2. This gives

` � C.�/
log 1

ı

log 1
"

(19)

such that
k�.`/ � Pık1 < ı�� : (20)

Note that supp �.`/ is contained in a ball of radius at most .1C "/`, by (4).

Introduce a smooth function 0 � ! � 1 on R; ! D 1 on Œ�.1C "/4`; .1C "/4`�

and ! D 0 outside Œ�2.1C "/4`; 2.1C "/4`�.

Let !1.g/ D !.a2 C b2 C c2 C d2/ for g D
�
a b

c d

�
.

From (20), the first term of (18) is bounded by

ı��
Z

SL2.R/

jh�gf; f ij!1.g/dg: (21)

Note also that by assuming " a sufficiently small constant, we can ensure that ` � k

and 2�k < c2`. Thus
Z

SL2.R/

jh�gf; f ij!1.g/dg > 1

2
ı�c2` (22)

and applying Cauchy-Schwarz

c4`ı2� .1C "/�6` �
Z

SL2.R/

jh�gf; f ij2!1.g/dg

D
ˇ̌
ˇ
ˇ

Z

SL2.R/

Z

T

Z

T

f .x/f .y/ f .�gx/f .�gy/.�
0
g.x//

1=2.� 0
g.y//

1=2!1.g/dgdxdy

ˇ̌
ˇ
ˇ

�
Z

T

Z

T

jf .x/j jf .y/j
ˇ
ˇ
ˇ̌
Z

SL2.R/

f .�gx/f .�gy/.�
0
g.x//

1=2
�
� 0
g.y/

� 1
2 !1.g/dg

ˇ
ˇ
ˇ̌dxdy:

(23)
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Fix x 6D y and consider the inner integral. If we restrict g 2 SL2.R/ s.t. �gx D �

(fixed), there is still an averaging in  D �gy that can be exploited together with

(13). By rotations, we may assume x D � D 0. Write g D
�
a b

c d

�
2 SL2.R/,

dg D dadbdc
a

on the chart a 6D 0. Since

ei�gx D .a cos x C b sin x/C i.c cos x C d sin x/

Œ.a cos x C b sin x/2 C .c cosx C d sin x/2�1=2

the condition �g0 D 0 means c D 0 and thus

ei D ei�gy D .a cosy C b siny/C i
a

sin y

Œ.a cosy C b sin y/2 C 1
a2

sin2 y�
1
2

:

Hence, fixing a

@ 

@b
D �a sin2  : (24)

Also

� 0
g.z/ D cos2 �g.z/

.a cos z C b sin z/2
D a2

sin2 �g.z/

sin2 z
(25)

implying

� 0
g.0/ D 1

a2
and � 0

g.y/ D a2 sin2  

sin2 y
: (26)

Substituting (24), (26) in (23) gives for the inner integral the bound

1

j sin.x � y/j
“

d�
da

a2
jf .�/j

�
ˇ
ˇ
ˇ̌
Z
f . /

1

j sin.� �  /j!
�
a2C 1

a2
C

�
1

a
cotg. � �/ � a cotg.y � x/

�2�
d 

ˇ
ˇ
ˇ̌:

(27)

The weight function restricts a to .1C "/�2` . jaj . .1C "/2` and clearly

j sin.� �  /j & .1C "/�4`j sin.x � y/j: (28)

If we restrict j sin.x � y/j > 2� k
10 , Assumption (13) gives a bound at most

2�kkf k1 for the  -integral in (27). Indeed, if ˇ is a smooth function vanishing
on a neighborhood of 0 and jnj � 2k, partial integration implies that for any given
A > 0 Z

e�in 1

sin.� �  /
ˇ

�
2
k
10 .� �  /

�
d . 2�Ak:
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Thus
(27) < 2k=10.1C "/2` 2�kkf k21: (29)

The contribution to (23) is at most

2�k=2.1C "/2`kf k41: (30)

Next we consider, the contribution of j sin.x � y/j � 2� k
10 to (23).

First, from (25), we have that

j� 0
gj . a2 C 1

a2
C b2 . kgk2 < .1C "/4`:

By Cauchy-Schwarz, the inner integral in (23) is at most

.1C "/4`
�Z

jf .�gx/j2!1.g/dg
�
< .1C "/10`kf k22:

Hence, we obtain

	Z

jx�yj<2�k=10

jf .x/j jf .y/jdxdy


.1C "/10`kf k22

< 2�k=20.1C "/10`kf k42: (31)

From (30), (31),
(23) � 2�k=20.1C "/10`

and hence, by (19)
2k=10 < 100k�:C C.�/.log 1

" /
�1k: (32)

Taking (in order) � and " small enough, a contradiction follows.

This proves Lemma 3.

5 Absolute Continuity of the Furstenberg Measure
and Smoothness of the Density

Our aim is to establish the following.

Theorem. Let � be the stationary measure introduced in (9). Given r 2 ZC and
taking " in Lemma 1 small enough will ensure that d�

d�
2 C r .

This will be an immediate consequence of

Lemma 4. Let k > k."/ be sufficiently large and f 2 L1.T/; jf j � 1 such that
supp Of � Œ2k�1; 2k�. Then



Measures on SL2.R/ Absolutely Continuous at Infinity 139

jhf;�ij < C�k
" (33)

where C"
"!0�! 1.

Proof. Clearly, for any ` 2 ZC

jhf;�ij �
�
�
�

X

g

�.`/.g/.f ı �g/
�
�
�1: (34)

We will iterate Lemma 3 and let K D K."/ satisfy (10), (11).
We assume 2k > 10K10. Form < ` and jnj < K , we evaluate jcFm.n/j, denoting

Fm D
X

g

�.m/.g/.f ı �g/: (35)

Clearly jcFm.n/j � maxg2supp�.m/ j.f ı �g/^.n/j and by assumption on supp Of

j.f ı �g/^.n/j D
ˇ̌
ˇ
ˇ

Z
f

�
�g.x/

�
e�2�inxdx

ˇ̌
ˇ
ˇ

� 2k=2kf k2 max
n02Œ2k�1;2k �

ˇ
ˇ
ˇ̌
Z
e2�i.n

0�g.x/�nx/dx
ˇ
ˇ
ˇ̌:

Performing a change of variables gives

ˇ
ˇ
ˇ
ˇ

Z
e2�i.n

0�g.x/�nx/dx
ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z
e
2�i.n0y�n�g�1 .y//� 0

g
�1 .y/dy

ˇ
ˇ
ˇ
ˇ

�r ke�2�in�g�1� 0
g�1kCr jn0j�r

�r

Kr

jn0jr .1C "/2m.rC1/ �r 2
� 3
4 kr .1C "/2`.rC1/ (36)

by partial integration and our assumptions. It follows from (36) that if ` satisfies

` <
k

100"
(37)

then form < ` and k > k.r/

max
jnj<K

jcFm.n/j < 2� kr
2 (38)

(with r a fixed large integer).
Next, decompose

Fm D F .1/
m C F .2/

m where F .1/
m .x/ D

X

jnj<K
cFm.n/e2�inx:
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Hence, by (38)

kF .1/
m k1 < 2K2� kr

2 : (39)

Estimate using (39) and Lemma 3

kFmC1k2 �
��
�
�

Z
.F .1/

m ı �g/d�
��
�
�1

C
��
�
�

Z
.F .2/

m ı �g/d�
��
�
�
2

� kF .1/
m k1 C 1

2
kF .2/

m k2

� 3K2� kr
2 C 1

2
kFmk2: (40)

Iteration of (40) implies by (37)

kF`k2 � 4K2� kr
2 C 2�` . 2� kr

2 C 2� k
100" : (41)

Also
jF 0̀j � max

g2supp �.`/
k.f ı �g/0k1 � kf 0k1.1C "/2` . 5k (42)

and interpolation between (41), (42) implies for r (resp. ") large (resp. small) enough

kF`k1 . (41)1=2:(42)1=2 < 2� kr
5 C 2� k

300" (43)

provided k > k."; r/.
In view of (34), this proves (33).

Remark. For � finitely supported (with positive Lyapounov exponent), one cannot
obtain a Furstenberg measure � that equals Haar measure on P1.R/ ' T. Indeed,
otherwise for any f on T, we would have

Of .0/ D
Z

T

fd� D
Z
�.dg/

	Z
.f ı �g/d�




D
Z
�.dg/

	Z
f .x/.�

g
�1 /0.x/dx



: (44)

For g 2 SL2.R/,
Z
f .x/.�

g
�1 /0.x/dx D

Z
f .�/Pz.2�/d�

D Of .0/C
X

n 6D0
jzjjnje2�in.Argz/ Of .�2n/ (45)

for some z 2 D D fz 2 CI jzj < 1g, with Pz.�/ D 1�jzj2
j1�Nzei� j2 the Poisson kernel.
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From (44), (45), taking � D Pr
jD1 cj ıgj ; cj > 0 and

P
cj D 1 and fzj g the

corresponding points in D, we get

rX

1

cj jzj jne2�in.Argzj / D 0 for all n 6D 0: (46)

This easily implies that z1 D � � � D zr D 0. But then each gj has unimodular
spectrum and � vanishing Lyapounov exponent.
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