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Abstract. We study a nonlinear model of a biological digestion process,
involving two microbial populations and two substrates and producing
biogas (methane). A feedback control law for asymptotic stabilization of
the closed-loop system is proposed. An extremum seeking algorithm is
applied to stabilize the system towards the maximum methane flow rate.

1 Introduction

We consider a model of a continuously stirred tank bioreactor presented by the
following nonlinear system of ordinary differential equations [4], [7], [8], [10], [11]:

ds1
dt

= u(si1 − s1)− k1μ1(s1)x1 (1)

dx1

dt
= (μ1(s1)− αu)x1 (2)

ds2
dt

= u(si2 − s2) + k2μ1(s1)x1 − k3μ2(s2)x2 (3)

dx2

dt
= (μ2(s2)− αu)x2 (4)

with output

Q = k4μ2(s2)x2. (5)

The state variables s1, s2 and x1, x2 denote substrate and biomass concen-
trations, respectively: s1 represents the organic substrate, characterized by its
chemical oxygen demand (COD), s2 denotes the volatile fatty acids (VFA), x1

and x2 are the acidogenic and methanogenic bacteria respectively. The parameter
α ∈ (0, 1] represents the proportion of bacteria that are affected by the dilution.
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The constants k1, k2 and k3 are yield coefficients related to COD degradation,
VFA production and VFA consumption respectively; k4 is a coefficient.

It is assumed that the input substrate concentrations si1 and si2 are constant
and the methane flow rate Q is a measurable output. The dilution rate u is
considered as a control input.

The functions μ1(s1) and μ2(s2) model the specific growth rates of the mic-
roorganisms. Following [11] we impose the following assumption on μ1 and μ2:

Assumption A1: μj(sj) is defined for sj ∈ [0,+∞), μ1(s
i
1) ≥ μ2(s

i
2), μj(0) = 0,

μj(sj) > 0 for sj > 0; μj(sj) is continuously differentiable and bounded for all
sj ∈ [0,+∞), j = 1, 2.

This model has been investigated in [10], [11], where a controller for regulating
the effluent COD is proposed and its robustness is illustrated by a simulation
study.

The main goal of the paper is to construct a feedback control law based on
online measurements for asymptotic stabilization of the system (1)–(4). Then,
by means of a numerical extremum seeking algorithm, the closed loop system
is steered to that equilibrium point where the maximum methane output is
achieved among all other equilibrium points.

2 Asymptotic Stabilization

Define si :=
k2
k1

si1 + si2 and let the following assumption be satisfied:

Assumption A2: Lower bounds si− and k−4 for the values of si and k4, as well
as an upper bound k+3 for the value of k3 are known.

Consider the control system (1)–(4) in the state space p = (s1, x1, s2, x2) and
define the following feedback control law:

k(p) := β k4 μ2(s2) x2 with β ∈
(

k+3
si− · k−4

, +∞
)
. (6)

The feedback k depends only on β and Q, i. e. k = k(β,Q) = β ·Q.

Obviously, the number s̄ := si − k3
βk4

belongs to the interval (0, si).

Denote by Σ the closed-loop system obtained from (1)–(4) by substituting
the control variable u by the feedback k(p).

Assumption A3. There exists a point s̄1 such that

μ1(s̄1) = μ2

(
s̄− k2

k1
s̄1

)
, s̄1 ∈ (

0, si1
)
.

The above Assumption A3 is called in [7] regulability of the system.
Define

s̄2 = s̄− k2
k1

s̄1, x̄1 =
si1 − s̄1
αk1

, x̄2 =
1

αβk4
. (7)
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It is straightforward to see that the point

p̄ := (s̄1, s̄2, x̄1, x̄2)

is an equilibrium point for the system (1)–(4). We shall prove below that the
feedback law (6) asymptotically stabilizes the closed-loop system Σ to p̄.

Denote

s :=
k2
k1

s1 + s2

and define the following sets

Ω0 = {(s1, x1, s2, x2)| s1 > 0, x1 > 0, s2 > 0, x2 > 0} ,
Ω1 =

{
(s1, x1, s2, x2)| s1 + k1x1 ≤ si1

α
, s+ k3x2 ≤ si

α

}
,

Ω2 =

{(
s1, x1, s̄− k2

k1
s1, x̄2

)
| 0 < s1 <

k1
k2

s̄, x1 > 0

}
,

Ω = Ω0 ∩Ω1.

Assumption A4. Let μ′
1(s1) +

k2
k1

μ′
2

(
s̄− k2

k1
s1

)
> 0 be satisfied on Ω ∩Ω2.

Assumption A4 is technical and is used in the proof of the main result. It will
be discussed in more details later in Section 4, where the growth rates μ1 and
μ2 are specified as the Monod and the Haldane laws and numerical values for
the model coefficient are introduced.

Theorem 1. Let Assumptions A1, A2, A3 and A4 be satisfied. Let us fix an

arbitrary number β ∈
(

k+3
si− · k−4

,+∞
)

and let p̄ = (s̄1, x̄1, s̄2, x̄2) be the cor-

responding equilibrium point. Then the feedback control law k(·) defined by (6)
stabilizes asymptotically the control system (1)–(4) to the point p̄ for each start-
ing point p0 from the set Ω0.

Proof. Let us fix an arbitrary point p0 ∈ Ω0 and a positive value u0 > 0 for the
control. According to Lemma 1 from [7] there exists T > 0 such that the value of
the corresponding trajectory of (1)–(4) for t = T belongs to the set Ω. Hence the
corresponding trajectory of (1)–(4) starting from the point p0 enters the set Ω
after a finite time. Moreover one can directly check that each trajectory staring
from a point from the set Ω remains in Ω. For that reason we shall consider the
control system (1)–(4) only on the set Ω.

Let us remind that by Σ we have denoted the closed-loop system obtained
from (1)–(4) by substituting the control variable u by the feedback k(p). Then
one can directly check that the following ordinary differential equations

ds

dt
= −βk4μ2(s2)x2(s− s̄)

dx2

dt
= −αβk4μ2(s2)x2(x2 − x̄2)

(8)
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are satisfied. Let us define the function

V (p) = (s− s̄)2 + (x2 − x̄2)
2.

Clearly, the values of this function are nonnegative. If we denote by V̇ (p) the
Lie derivative of V with respect to the right-hand side of (8) then for each point
p of Ω,

V̇ (p) = −βk4μ2(s2)x2(s− s̄)2 − αβk4μ2(s2)x2(x2 − x̄2)
2 ≤ 0.

Applying LaSalle’s invariance principle (cf. [9]), it follows that every solution of
Σ starting from a point of Ω is defined on the interval [0,+∞) and approaches
the largest invariant set with respect to Σ, which is contained in the set Ω∞,
where Ω∞ is the closure of the set Ω ∩ Ω2. It can be directly checked that the
dynamics of Σ on Ω∞ is described by the system

ds1
dt

=
1

α
χ(s1)(s

i
1 − s1)− k1μ1(s1)x1

dx1

dt
= (μ1(s1)− χ(s1))x1,

where χ(s1) := μ2

(
s̄− k2

k1
s1

)
(remind that s̄ := si − k3

βk4
). According to (7)

we have that s̄ =
k2
k1

s̄1 + s̄2 and si1 = s̄1 + αk1x̄1. Then the dynamics of Σ on

the set Ω∞ can be written as follows:

ds1
dt

= − 1

α
χ(s1) · (s1 − s̄1 + αk1(x1 − x̄1))− k1 (μ1(s1)− χ(s1)) · x1

dx1

dt
= (μ1(s1)− χ(s1)) · x1.

Consider the function

W (s1, x1) = (s1 − s̄1 + αk1(x1 − x̄1))
2 + α(1− α)k21(x1 − x̄1)

2. (9)

This function takes nonnegative values. It can be directly checked that for each

point
(
s1, x1, s̄− k2

k1
s1, x̄2

)
of the set Ω∞,

Ẇ (s1, x1) = − 2

α
χ(s1)(s1 − s̄1 + αk1(x1 − x̄1))

2

− 2(1− α)k1x1(s1 − s̄1)(μ1(s1)− χ(s1)).

Assumptions A3 and A4 imply

μ1(s1)−χ(s1) = μ1(s1)−μ2

(
s̄− k2

k1
s1

)
= μ1(s1)−μ2

(
s̄2 − (s1 − s̄1)

k2
k1

)

= μ1(s̄1) +

∫ s1

s̄1

μ′
1(θ) dθ − μ2 (s̄2) +

k2
k1

∫ s1

s̄1

μ′
2

(
s̄2 − (θ − s̄1)

k2
k1

)
dθ

=

∫ s1

s̄1

(
μ′
1(θ) +

k2
k1

μ′
2

(
s̄2 − (θ − s̄1)

k2
k1

))
dθ,
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and therefore
Ẇ (s1, x1) ≤ 0 (10)

for each point
(
s1, x1, s̄− k2

k1
s1, x̄2

)
from the set Ω∞.

To complete the proof we use a refinement of LaSalle’s invariance principle re-
cently obtained in [2] (cf. also [6] and [12], where similar stabilizability problems
are studied). Denote by φ(t, p) the value of the trajectory of the closed-loop sys-
tem Σ at time t starting from the point p ∈ Ω. The positive limit set (or ω-limit
set) of the solution φ(t, p) of the closed-loop system Σ is defined as

L+(p) = {p̃ : there exists a sequence {tn} → ∞ with p̃ = limtn→+∞ φ(tn, p)} .
Let us fix an arbitrary point p0 ∈ Ω. The invariance of the set Ω with respect to
the trajectories of Σ and the LaSalle invariance principle imply that the ω-limit
set L+(p0) is a nonempty connected invariant subset of Ω∞.

Now consider again the function W (·, ·) defined by (9). The restriction of the
Lie derivative W (·, ·) on Ω∞ is semidefinite, meaning Ẇ (s1, x1) ≤ 0 for each
point (s1, x1, s̄− k2

k1
s1, x̄2) ∈ Ω∞. The proof of Theorem 6 from [2] implies that

L+(p0) is contained in one connected component of the set L∞ := {(s1, x1, s̄−
k2

k1
s1, x̄2) ∈ Ω∞ : Ẇ (s1, x1) = 0}. Taking into account (10) and Assumption

A1, one can obtain that L∞ = {p̄}, and hence L+(p0) = {p̄}. Moreover, one can
verify that p̄ is a Lyapunov stable equilibrium point for the closed-loop system
Σ. This completes the proof.

3 Extremum Seeking

Let the assumptions A1, A2, A3 and A4 hold true. Denote by β ∈
(

k+3
si− · k−4

,+∞
)

some constant. Consider p̄β = (s̄1, x̄1, s̄2, x̄2) where s̄1, x̄1, s̄2 and x̄2 are com-
puted according to (7). Assume further that the static characteristic

Q(p̄β) = k4 μ2(s̄2) x̄2,

which is defined on the set of all steady states p̄β has a maximum at a unique
steady state point

pmax
β∗ = (s∗1, x

∗
1, s

∗
2, x

∗
2),

that is Qmax := Q(pmax
β∗ ).

Our goal now is to stabilize the dynamic system towards the (unknown) max-
imum methane flow rate Qmax. We apply the feedback control law

(Q, β) �−→ k(Q, β) = β ·Q. (11)

According to Theorem 1, this feedback will asymptotically stabilize the control
system (1)–(4) to the point p̄β.

To stabilize the dynamics (1)–(4) towardsQmax by means of the feedback (11),
we use an iterative extremum seeking algorithm. This algorithm is presented in
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details in [5] and applied to a two-dimensional bioreactor model with adaptive
feedback. The algorithm can easily be adapted for the model considered here.
The main idea of the algorithm is based on the fact that Theorem 1 is valid

for any value of β >
k+3

si− · k−4
. Thus we can construct a sequence of points

β1, β2, . . . , βn, . . ., converging to β∗, and generate in a proper way a sequence
of values Q1, Q2, . . . , Qn, . . . which converges to Qmax. The algorithm is carried
out in two stages: on Stage I, an interval [β] = [β−, β+] is found such that

[β] >
k+3

si− · k−4
and β∗ ∈ [β]; on Stage II, the interval [β] is refined using an

elimination procedure based on a Fibonacci search technique. Stage II produces
the final interval [β̄] = [β̄−, β̄+] such that β∗ ∈ [β̄] and β̄+ − β̄− ≤ ε, where the
tolerance ε > 0 is specified by the user.

4 Numerical Simulation

In the computer simulation, we consider for μ1(s1) and μ2(s2) the Monod and
the Haldane model functions for the specific growth rates, which are used in the
original model [1], [3], [4], [7], [8]:

μ1(s1) =
μms1

ks1 + s1
, μ2(s2) =

μ0s2

ks2 + s2 +

(
s2
kI

)2 . (12)

Here μm, ks1 , μ0, ks2 and kI are kinetic coefficients. Obviously, μ1(s1) and μ2(s2)
satisfy Assumption A1: μ1(s1) is monotone increasing and bounded by μm; there
is a point s̃2 such that μ2(s2) achieves its maximum at s̃2 = kI

√
ks2 . Simple

derivative calculations imply that if s̄ is chosen such that 0 < s̄ ≤ s̃2 then

μ′
2

(
s̄− k2

k1
s1

)
≥ 0 holds true thus Assumption A4 is satisfied. Moreover, if the

point s̄ is sufficiently small, then Assumptions A3 and A4 are simultaneously
satisfied.

Usually the formulation of the growth rates is based on experimental results,
and therefore it is not possible to have an exact analytic form of these functions,
but only some quantitative bounds. Assume that we know bounds for μ1(s1)
and μ2(s2), i. e.

μj(sj) ∈ [μj(sj)] = [μ−
j (sj), μ

+
j (sj)] for all sj ≥ 0, j = 1, 2.

This uncertainty can be simulated by assuming in (12) that instead of exact
values for the coefficients μm, ks1 , μ0, ks2 and kI we have compact intervals
for them: μm ∈ [μm], ks1 ∈ [ks1 ], μ0 ∈ [μ0], ks2 ∈ [ks2 ], kI ∈ [kI ]. Then any
μj(sj) ∈ [μj(sj)], j = 1, 2, satisfies Assumption 1; it follows also that there exist
intervals for the kinetic coefficients, such that Assumption 4 is satisfied for any
μj(sj) ∈ [μj(sj)], j = 1, 2. Such intervals are for example the following:

[μm] = [1.2, 1.4], [ks1 ] = [6.5, 7.2],
[μ0] = [0.64, 0.84], [ks2 ] = [9, 10.28], [kI ] = [15, 17].
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Fig. 1. Time evolution of Q(t) (left) and a trajectory in the (s1, s2)-phase plane (right)

To simulate Assumption A2 we assume intervals for the coefficients kj to be
given, i. e. kj ∈ [kj ] = [k−i , k

+
j ], j = 1, 2, 3, 4. Such numerical intervals are

[k1] = [9.5, 11.5], [k2] = [27.6, 29.6], [k3] = [1064, 1084], [k4] = [650, 700].

All above intervals are chosen to enclose the numerical coefficients values derived
by experimental measurements [1]; the values α = 0.5, si1 = 7.5, si2 = 75 are also
taken from [1]. In this case the inequality μ−

1 (s
i
1) > μ+

2 (s
i
2) is fulfilled, which

means that μ1(s
i
1) > μ2(s

i
2) for any μj ∈ [μj ], j = 1, 2, thus Assumption A1 is

satisfied.
In the simulation process we proceed in the following way. At the initial time

t0 = 0 we take random values for the coefficients from the corresponding inter-
vals. We apply the extremum seeking algorithm to stabilize the system towards
Qmax. Then, at some time t1 > t0, we choose another set of random coefficient
values and repeat the process; thereby the last computed values for the phase
variables (s1, x1, s2, x2) are taken as initial conditions.

The left plot in Figure 1 shows the time profile of Q(t); there the vertical dot-
line segment marks the time moment t1, when the new coefficients values are
taken in a random way from the corresponding intervals. The horizontal dash-line
segments go through Qmax. The “jumps” in the graph correspond to the different
choices of β by executing the algorithmic steps. The right plot in Figure 1 shows
a projection of the trajectory in the phase plane (s1, s2); the empty circle denotes
the initial point (s1(0), s2(0)). It is well seen how the trajectory consecutively
approaches the two steady states (solid circles), corresponding to the different
choice of the coefficient values.

5 Conclusion

The paper is devoted to the stabilization of a four-dimensional nonlinear
dynamic system, which models anaerobic degradation of organic wastes and
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produces methane. A nonlinear feedback law is proposed, which stabilizes asymp-
totically the dynamics towards the (unknown) maximum methane rate Qmax.
The feedback depends on a parameter β, which varies in known bounds. First it
is shown that for any chosen value of β, the system is asymptotically stabilized
to an equilibrium point p̄β = (s̄1, x̄1, s̄2, x̄2). Further, an iterative numerical ex-
tremum seeking algorithm is applied to deliver bounds [βm] and [Qmax] for the
parameter β and for the methane flow rate Q, such that for each β ∈ [βm], the
corresponding equilibrium point p̄β is such that Q(p̄β) ∈ [Qmax]. The interval
[Qmax] can be made as tight as desired depending on a user specified tolerance
ε > 0. The theoretical results are illustrated numerically.
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