
Chapter 1
Cluster Analysis and K-means Clustering: An
Introduction

1.1 The Emergence of Data Mining

The phrase “data mining” was termed in the late eighties of the last century, which
describes the activity that attempts to extract interesting patterns from data. Since
then, data mining and knowledge discovery has become one of the hottest topics in
both academia and industry. It provides valuable business and scientific intelligence
hidden in a large amount of historical data.

From a research perspective, the scope of data mining has gone far beyond
the database area. A great many of researchers from various fields, e.g. computer
science, management science, statistics, biology, and geography, have made great
contributions to the prosperity of data mining research. Some top annual academic
conferences held specifically for data mining, such as KDD (ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining),1 ICDM (IEEE
International Conference on Data Mining),2 and SDM (SIAM International Confer-
ence on Data Mining),3 have become the main forums and prestigious brands that
lead the trend of data mining research, and have a farreaching influence on big sharks
such as Google, Microsoft, and Facebook in industry. Many top conferences in dif-
ferent research fields are now open for the submission of data mining papers. Some
A+ journals in management field, such as Management Science, Information Sys-
tems Research, and MIS Quarterly, have also published business intelligence papers
based on data mining techniques. These facts clearly illustrate that data mining as a
young discipline is fast penetrating into other well-established disciplines. Indeed,
data mining is such a hot topic that it has even become an “obscured” buzzword
misused in many related fields to show the advanced characteristic of the research in
those fields.

1 http://www.kdd.org/.
2 http://www.cs.uvm.edu/~icdm/.
3 http://www.informatik.uni-trier.de/~ley/db/conf/sdm/.
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From an application perspective, data mining has become a powerful tool for
extracting useful information from tons of commercial and engineering data. The
driving force behind this trend is the explosive growth of data from various applica-
tion domains, plus the much more enhanced storing and computing capacities of IT
infrastructures at lower prices. As an obvious inter-discipline, data mining discrim-
inates itself from machine learning and statistics in placing ever more emphasis on
data characteristics and being more solution-oriented. For instance, data mining has
been widely used in business area for a number of applications, such as customer
segmentation and profiling, shelf layout arrangement, financial-asset price predic-
tion, and credit-card fraud detection, which greatly boost the concept of business
intelligence. In the Internet world, data mining enables a series of interesting innova-
tions, such as web document clustering, click-through data analysis, opinion mining,
social network analysis, online product/service/information recommendation, and
location-based mobile recommendation, some of which even show appealing com-
mercial prospects. There are still many applicative cases of data mining in diverse
domains, which will not be covered any more. An interesting phenomenon is, to
gain the first-mover advantage in the potentially huge business intelligence market,
many database and statistical software companies have integrated the data mining
module into their products, e.g. SAS Enterprise Miner, SPSS Modeler, Oracle Data
Mining, and SAP Business Object. This also helps to build complete product lines
for these companies, and makes the whole decision process based on these products
transparent to the high-end users.

1.2 Cluster Analysis: A Brief Overview

As a young but huge discipline, data mining cannot be fully covered by the limited
pages in a monograph. This book focuses on one of the core topics of data mining:
cluster analysis. Cluster analysis provides insight into the data by dividing the objects
into groups (clusters) of objects, such that objects in a cluster are more similar to each
other than to objects in other clusters [48]. As it does not use external information
such as class labels, cluster analysis is also called unsupervised learning in some
traditional fields such as machine learning [70] and pattern recognition [33].

In general, there are two purposes for using cluster analysis: understanding and
utility [87]. Clustering for understanding is to employ cluster analysis for auto-
matically finding conceptually meaningful groups of objects that share common
characteristics. It plays an important role in helping people to analyze, describe and
utilize the valuable information hidden in the groups. Clustering for utility attempts
to abstract the prototypes or the representative objects from individual objects in the
same clusters. These prototypes/objects then serve as the basis of a number of data
processing techniques such as summarization, compression, and nearest-neighbor
finding.

Cluster analysis has long played an important role in a wide variety of application
domains such as business intelligence, psychology and social science, information
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retrieval, pattern classification, and bioinformatics. Some interesting examples are
as follows:

• Market research. Cluster analysis has become the “killer application” in one of
the core business tasks: marketing. It has been widely used for large-scale customer
segmentation and profiling, which help to locate targeted customers, design the 4P
(product, price, place, promotion) strategies, and implement the effective customer
relationship management (CRM) [12, 13].

• Web browsing. As the world we live has entered the Web 2.0 era, information
overload has become a top challenge that prevents people from acquiring useful
information in a fast and accurate way. Cluster analysis can help to automatically
categorize web documents into a concept hierarchy, and therefore provide better
browsing experience to web users [43].

• Image indexing. In the online environment, images pose problems of access and
retrieval more complicated than those of text documents. As a promising method,
cluster analysis can help to group images featured by the bag-of-features (BOF)
model, and therefore becomes a choice for large-scale image indexing [97].

• Recommender systems. Recent year have witnessed an increasing interest in
developing recommender systems for online product recommendation or location-
based services. As one of the most successful approaches to build recommender
systems, collaborative filtering (CF) technique uses the known preferences of a
group of users to make recommendations or predictions of the unknown prefer-
ences for other users [86]. One of the fundamental tools of CF, is right the clustering
technique.

• Community Detection. Detecting clusters or communities in real-world graphs
such as large social networks, web graphs, and biological networks, is a problem
of considerable interests that has received a great deal of attention [58]. A range
of detection methods have been proposed in the literature, most of which are
borrowed from the broader cluster analysis field.

The above applications clearly illustrate that clustering techniques are playing a
vital role in various exciting fields. Indeed, cluster analysis is always valuable for
the exploration of unknown data emerging from real-life applications. That is the
fundamental reason why cluster analysis is invariably so important.

1.2.1 Clustering Algorithms

The earliest research on cluster analysis can be traced back to 1894, when Karl
Pearson used the moment matching method to determine the mixture parameters of
two single-variable components [78]. Since then, tremendous research efforts have
been devoted to designing new clustering algorithms for cluster analysis. It has been
pointed out by Milligan [68] that the difficulties of cluster analysis lie in the following
three aspects: (1) Clustering is essentially an inexhaustible combinatorial problem;
(2) There exist no widely accepted theories for clustering; (3) The definition of a
cluster seems to be a bit “arbitrary”, which is determined by the data characteristics
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and the understandings of users. These three points well illustrate why there are
so many clustering algorithms proposed in the literature, and why it is valuable to
formulate the clustering problems as optimization problems which can be solved by
some heuristics.

In what follows, we categorize the clustering algorithms into various types, and
introduce some examples to illustrate the distinct properties of algorithms in different
categories. This part has been most heavily influenced by the books written by Tan et
al. [87] and Jain and Dubes [48]. Note that we have no intention of making this part
as a comprehensive overview of clustering algorithms. Readers with this interest can
refer to the review papers written by Jain et al. [49], Berkhin [11], and Xu and Wunsch
[96]. Some books that may also be of interest include those written by Anderberg [3],
Kaufman and Rousseeuw [53], Mirkin [69], etc. A paper by Kleinberg [55] provides
some in-depth discussions on the clustering theories.

Prototype-Based Algorithms. This kind of algorithms learns a prototype for each
cluster, and forms clusters by data objects around the prototypes. For some algorithms
such as the well-known K-means [63] and Fuzzy c-Means (FCM) [14], the proto-
type of a cluster is a centroid, and the clusters tend to be globular. Self-Organizing
Map (SOM) [56], a variant of artificial neural networks, is another representative
prototype-based algorithm. It uses a neighborhood function to preserve the topolog-
ical properties of data objects, and the weights of the whole network will then be
trained via a competitive process. Being different from the above algorithms, Mix-
ture Model (MM) [65] uses a probability distribution function to characterize the
prototype, the unknown parameters of which are usually estimated by the Maximum
Likelihood Estimation (MLE) method [15].

Density-Based Algorithms. This kind of algorithms takes a cluster as a dense
region of data objects that is surrounded by regions of low densities. They are often
employed when the clusters are irregular or intertwined, or when noise and outliers
are present. DBSCAN [34] and DENCLUE [46] are two representative density-
based algorithms. DBSCAN divides data objects into core points, border points and
noise, respectively, based on the Euclidean density [87], and then finds the clusters
naturally. DENCLUE defines a probability density function based on the kernel
function of each data object, and then finds the clusters by detecting the variance of
densities. When it comes to data in high dimensionality, the density notion is valid
only in subspaces of features, which motivates the subspace clustering. For instance,
CLIQUE [1], a grid-based algorithm, separates the feature space into grid units, and
finds dense regions in subspaces. A good review of subspace clustering can be found
in [77].

Graph-Based Algorithms. If we regard data objects as nodes, and the distance
between two objects as the weight of the edge connecting the two nodes, the data
can be represented as a graph, and a cluster can be defined as a connected subgraph.
The well-known agglomerative hierarchical clustering algorithms (AHC) [87], which
merge the nearest two nodes/groups in one round until all nodes are connected, can
be regarded as a graph-based algorithm to some extent. The Jarvis-Patrick algorithm
(JP) [50] is a typical graph-based algorithm that defines the shared nearest-neighbors
for each data object, and then sparsifies the graph to obtain the clusters. In recent
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years, spectral clustering becomes an important topic in this area, in which data can
be represented by various types of graphs, and linear algebra is then used to solve the
optimization problems defined on the graphs. Many spectral clustering algorithms
have been proposed in the literature, such as Normalized Cuts [82] and MinMaxCut
[31]. Readers with interests can refer to [74] and [62] for more details.

Hybrid Algorithms. Hybrid algorithms, which use two or more clustering algo-
rithms in combination, are proposed in order to overcome the shortcomings of single
clustering algorithms. Chameleon [51] is a typical hybrid algorithm, which firstly
uses a graph-based algorithm to separate data into many small components, and then
employs a special AHC to get the final clusters. In this way, bizarre clusters can
be discovered. FPHGP [16, 43] is another interesting hybrid algorithm, which uses
association analysis to find frequent patterns [2] and builds a data graph upon the
patterns, and then applies a hypergraph partitioning algorithm [52] to partition the
graph into clusters. Experimental results show that FPHGP performs excellently for
web document data.

Algorithm-Independent Methods. Consensus clustering [72, 84], also called
clustering aggregation or cluster ensemble, runs on the clustering results of basic
clustering algorithms rather than the original data. Given a set of basic partitionings of
data, consensus clustering aims to find a single partitioning that matches every basic
partitioning as closely as possible. It has been recognized that consensus clustering
has merits in generating better clusterings, finding bizarre clusters, handling noise
and outliers, and integrating partitionings of distributed or even inconsistent data [75].
Typical consensus clustering algorithms include the graph-based algorithms such as
CPSA, HGPA and MCLA[84], the co-association matrix-based methods [36], and
the prototype-based clustering methods [89, 90]. Some methods that employ meta-
heuristics also show competitive results but at much higher computational costs [60].

1.2.2 Cluster Validity

Cluster validity, or clustering evaluation, is a necessary but challenging task in cluster
analysis. It is formally defined as giving objective evaluations to clustering results
in a quantitative way [48]. A key motivation of cluster validity is that almost every
clustering algorithm will find clusters in a data set that even has no natural cluster
structure. In this situation, a validation measure is in great need to tell us how well
the clustering is. Indeed, cluster validity has become the core task of cluster analysis,
for which a great number of validation measures have been proposed and carefully
studied in the literature.

These validation measures are traditionally classified into the following two types:
external indices and internal indices (including the relative indices) [41]. External
indices measure the extent to which the clustering structure discovered by a cluster-
ing algorithm matches some given external structure, e.g. the structure defined by the
class labels. In contrast, internal indices measure the goodness of a clustering struc-
ture without respect to external information. As internal measures often make latent
assumptions on the formation of cluster structures, and usually have much higher
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computational complexity, more research in recent years prefers to use external
measures for cluster validity, when the purpose is only to assess clustering algo-
rithms and the class labels are available.

Considering that we have no intention of making this part as an extensive review
of all validation measures, and only some external measures have been employed for
cluster validity in the following chapters, we will focus on introducing some popular
external measures here. Readers with a broader interest can refer to the review papers
written by Halkidi et al. [41, 42], although discussions on how to properly use the
measures are not presented adequately. The classic book written by Jain and Dubes
[48] covers fewer measures, but some discussions are very interesting.

According to the different sources, we can further divide the external measures
into three categories as follows:

Statistics-Based Measures. This type of measures, such as Rand index (R),
Jaccard coefficient (J ), Folks and Mallows index (F M), and Γ statistic (Γ ) [48],
originated from the statistical area quite a long time ago. They focus on examining
the group membership of each object pair, which can be quantified by comparing two
matrices: the Ideal Cluster Similarity Matrix (ICuSM) and the Ideal Class Similarity
Matrix (ICaSM) [87]. ICuSM has a 1 in the i j-th entry if two objects i and j are
clustered into a same cluster and a 0, otherwise. ICaSM is defined with respect to class
labels, which has a 1 in the i j-th entry if objects i and j belong to a same class, and a
0 otherwise. Consider the entries in the upper triangular matrices (UTM) of ICuSM
and ICaSM. Let f00 ( f11) denote the number of entry pairs that have 0 (1) in the
corresponding positions of the two UTMs, and let f01 and f10 denote the numbers of
entry pairs that have different values in the corresponding positions of the two UTMs.
R, J , and F M can then be defined as: R = f00+ f11

f00+ f10+ f01+ f11
, J = f11

f10+ f01+ f11
, and

F M = f11√
( f11+ f10)( f11+ f01)

. The definition ofΓ is more straightforward by computing
the correlation coefficient of the two UTMs. More details about these measures can
be found in [48].

Information-Theoretic Measures. This type of measures is typically designed
based on the concepts of information theory. For instance, the widely used Entropy
measure (E) [98] assumes that the clustering quality is higher if the entropy of
data objects in each cluster is smaller. Let E j = ∑

i pi j log pi j , where pi j is the
proportion of objects in cluster j that are from class i , n j is the number of objects
in cluster j , and n = ∑

j n j . We then have E = ∑
j

n j
n E j . The Mutual Information

measure (M I ) [85] and the Variation of Information measure (V I ) [66, 67] are
another two representative measures that evaluate the clustering results by comparing
the information contained in class labels and cluster labels, respectively. As these
measures have special advantages including clear concepts and simple computations,
they become very popular in recent studies, even more popular than the long-standing
statistics-based measures.

Classification-Based Measures. This type of measures evaluates clustering
results from a classification perspective. The F-measure (F) is such an example,
which was originally designed for validating the results of hierarchical clustering
[57], but also used for partitional clustering in recent studies [83, 95]. Let pi j denote
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the proportion of data objects in cluster j that are from class i (namely the precision
of cluster j for objects of class i), and qi j the proportion of data objects from class i
that are assigned to cluster j (namely the recall of class i in cluster j) [79]. We then
have the F-measure of class i as: Fi = max j

2pi j qi j
pi j +qi j

, and the overall F-measure of

clustering results as: F = ∑
i

ni
n Fi , where ni is the number of objects of class i , and

n = ∑
i ni . Another representative measure is the Classification Error (ε), which tries

to map each class to a different cluster so as to minimize the total misclassification
rate. Details of ε can be found in [21].

Sometimes we may want to compare the clustering results of different data sets.
In this case, we should normalize the validation measures into a value range of about
[0,1] or [-1,+1] before using them. However, it is surprising that only a few research
has addressed the issue of measure normalization in the literature, including [48]
for Rand index, [66] for Variation of Information, and [30] for Mutual Information.
Among these studies, two methods are often used for measure normalization, i.e.
the expected-value method [48] and the extreme-value method [61], which are both
based on the assumption of the multivariate hypergeometric distribution (MHD) [22]
of clustering results. The difficulty lies in the computation of the expected values
or the min/max values of the measures, subjecting to MHD. A thorough study of
measure normalization has been provided in Chap. 5, and we therefore will not go
into the details here.

1.3 K-means Clustering: An Ageless Algorithm

In this book, we focus on K-means clustering, one of the oldest and most widely used
clustering algorithms. The research on K-means can be traced back to the middle of
the last century, conducted by numerous researchers across different disciplines, most
notably Lloyd (1957, 1982) [59], Forgey (1965) [35], Friedman and Rubin (1967)
[37], and MacQueen (1967) [63]. Jain and Dubes (1988) provides a detailed history
of K-means along with descriptions of several variations [48]. Gray and Neuhoff
(1998) put K-means in the larger context of hill-climbing algorithms [40].

In a nutshell, K-means is a prototype-based, simple partitional clustering algo-
rithm that attempts to find K non-overlapping clusters. These clusters are represented
by their centroids (a cluster centroid is typically the mean of the points in that cluster).
The clustering process of K-means is as follows. First, K initial centroids are selected,
where K is specified by the user and indicates the desired number of clusters. Every
point in the data is then assigned to the closest centroid, and each collection of points
assigned to a centroid forms a cluster. The centroid of each cluster is then updated
based on the points assigned to that cluster. This process is repeated until no point
changes clusters.

It is beneficial to delve into the mathematics behind K-means. Suppose D =
{x1, · · · , xn} is the data set to be clustered. K-means can be expressed by an objective
function that depends on the proximities of the data points to the cluster centroids as
follows:

http://dx.doi.org/10.1007/978-3-642-29807-3_5
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min{mk },1≤k≤K

K∑

k=1

∑

x∈Ck

πxdist(x, mk), (1.1)

where πx is the weight of x, nk is the number of data objects assigned to cluster
Ck , mk = ∑

x∈Ck

πx x
nk

is the centroid of cluster Ck , K is the number of clusters
set by the user, and the function “dist” computes the distance between object x and
centroid mk , 1 ≤ k ≤ K . While the selection of the distance function is optional,
the squared Euclidean distance, i.e. ‖ x − m ‖2, has been most widely used in both
research and practice. The iteration process introduced in the previous paragraph
is indeed a gradient-descent alternating optimization method that helps to solve
Eq. (1.1), although often converges to a local minima or a saddle point.

Considering that there are numerous clustering algorithms proposed in the litera-
ture, it may be argued that why this book is focused on the “old” K-means clustering.
Let us understand this from the following two perspectives. First, K-means has some
distinct advantages compared with other clustering algorithms. That is, K-means is
very simple and robust, highly efficient, and can be used for a wide variety of data
types. Indeed, it has been ranked the second among the top-10 data mining algo-
rithms in [93], and has become the defacto benchmark method for newly proposed
methods. Moreover, K-means as an optimization problem still has some theoretical
challenges, e.g. the distance generalization problem studied in Chap. 3. The emerging
data with complicated properties, such as large-scale, high-dimensionality, and class
imbalance, also require to adapt the classic K-means to different challenging scenar-
ios, which in turn rejuvenates K-means. Some disadvantages of K-means, such as
performing poorly for non-globular clusters, and being sensitive to outliers, are often
dominated by the advantages, and partially corrected by the proposed new variants.

In what follows, we review some recent research on K-means from both the
theoretical perspective and the data-driven perspective. Note that we here do not
expect to coverage all the works of K-means, but would rather introduce some works
that relate to the main themes of this book.

1.3.1 Theoretical Research on K-means

In general, the theoretical progress on K-means clustering lies in the following three
aspects:

Model Generalization. The Expectation-Maximization (EM) [26] algorithm-
based Mixture Model (MM) has long been regarded as the generalized form of
K-means for taking the similar alternating optimization heuristic [65]. Mitchell
(1997) gave the details of how to derive squared Euclidean distance-based K-means
from the Gaussian distribution-based MM, which unveil the relationship between K-
means and MM [70]. Banerjee et al. (2005) studied the von Mises-Fisher distribution-
based MM, and demonstrated that under some assumptions this model could reduce
to K-means with cosine similarity, i.e. the spherical K-means [4]. Zhong and Ghosh
(2004) proposed the Model-Based Clustering (MBC) algorithm [99], which unifies

http://dx.doi.org/10.1007/978-3-642-29807-3_3
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MM and K-means via the introduction of the deterministic annealing technique. That
is, MBC reduces to MM when the temperature T = 1, and to K-means when T = 0;
As T decreases from 1 to 0, MBC gradually changes from allowing soft assignment
to only allowing hard assignment of data objects.

Search Optimization. One weakness of K-means is that the iteration process
may probably converge to a local minimum or even a saddle point. The traditional
search strategies, i.e. the batch mode and the local mode, cannot avoid this prob-
lem, although some research has pointed out that using the local search immediately
after the batch search may improve the clustering quality of K-means. The “kmeans”
function included in MATLAB v7.1 [64] implemented this hybrid strategy. Dhillon
et al. (2002) proposed a “first variation” search strategy for spherical K-means,
which shares some common grounds with the hybrid strategy [27]. Steinbach et al.
(2000) proposed a simple bisecting scheme for K-means clustering, which selects
and divides a cluster into two sub-clusters in each iteration [83]. Empirical results
demonstrate the effectiveness of bisecting K-means in improving the clustering qual-
ity of spherical K-means, and solving the random initialization problem. Some meta-
heuristics, such as deterministic annealing [80, 81] and variable neighborhood search
[45, 71], can also help to find better local minima for K-means.

Distance Design. The distance function is one of the key factors that influence the
performance of K-means. Dhillon el al. (2003) proposed an information-theoretic
co-clustering algorithm based on the distance of Kullback-Leibler divergence (or
KL-divergence for short) [30] originated from the information theory [23]. Empiri-
cal results demonstrate that the co-clustering algorithm improves the clustering effi-
ciency of K-means using KL-divergence (or Info-Kmeans for short), and has higher
clustering quality than traditional Info-Kmeans on some text data. Banerjee et al.
(2005) studied the generalization issue of K-means clustering by using the Bregman
divergence [19], which is actually a family of distances including the well-known
squared Euclidean distance, KL-divergence, Itakura-Saito distance [5], and so on.
To find clearer boundaries between different clusters, kernel methods have also been
introduced to K-means clustering [28], and the concept of distance has therefore
been greatly expanded by the kernel functions.

1.3.2 Data-Driven Research on K-means

As the emergence of big data in various research and industrial domains in recent
years, the traditional K-means algorithm faces great challenges stemming from the
diverse and complicated data factors, such as the high dimensionality, the data stream-
ing, the existence of noise and outliers, and so on. In what follows, we focus on some
data-driven advances in K-means clustering.

K-means Clustering for High-Dimensional Data. With the prosperity of infor-
mation retrieval and bioinformatics, high-dimensional text data and micro-array data
have become the challenges to clustering. Numerous studies have pointed out that
K-means with the squared Euclidean distance is not suitable for high-dimensional
data clustering because of the “curse of dimensionality” [8].
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One way to solve this problem is to use alternative distance functions. Steinbach
et al. (2000) used the cosine similarity as the distance function to compare the perfor-
mance of K-means, bisecting K-means, and UPGMA on high-dimensional text data
[83]. Experimental results evaluated by the entropy measure demonstrate that while
K-means is superior to UPGMA, bisecting K-means has the best performance. Zhao
and Karypis (2004) compared the performance of K-means using different types of
objective functions on text data, where the cosine similarity was again employed for
the distance computation [98]. Zhong and Ghosh (2005) compared the performance
of the mixture model using different probability distributions [100]. Experimental
results demonstrate the advantage of the von Mises-Fisher distribution. As this distri-
bution corresponds to the cosine similarity in K-means [4], these results further justify
the superiority of the cosine similarity for K-means clustering of high-dimensional
data.

Another way to tackle this problem is to employ dimension reduction for high-
dimensional data. Apart from the traditional methods such as the Principal Compo-
nent Analysis, Multidimensional Scaling, and Singular Value Decomposition [54],
some new methods particularly suitable for text data have been proposed in the litera-
ture, e.g. Term-Frequency-Inverse-Document-Frequency (TFIDF), Latent Semantic
Indexing (LSI), Random Projection (RP), and Independent Component Analysis
(ICA). A comparative study of these methods was given in [88], which revealed the
following ranking: ICA � LSI � TFIDF � RP. In particular, ICA and LSI show sig-
nificant advantages on improving the performance of K-means clustering. Dhillon et
al. (2003) used Info-Kmeans to cluster term features for dimension reduction [29].
Experimental results show that their method can improve the classification accuracy
of the Naïve Bayes (NB) classifier [44] and the Support Vector Machines (SVMs) [24,
91].

K-means Clustering on Data Stream. Data stream clustering is a very chal-
lenging task because of the distinct properties of stream data: rapid and continuous
arrival online, need for rapid response, potential boundless volume, etc. [38]. Being
very simple and highly efficient, K-means naturally becomes the first choice for
data stream clustering. We here highlight some representative works. Domingos and
Hulten (2001) employed the Hoeffding inequality [9] for the modification of K-
means clustering, and obtained approximate cluster centroids in data streams, with
a probability-guaranteed error bound [32]. Ordonez (2003) proposed three algo-
rithms: online K-means, scalable K-means, and incremental K-means, for binary
data stream clustering [76]. These algorithms use several sufficient statistics and
carefully manipulate the computation of the sparse matrix to improve the clustering
quality. Experimental results indicate that the incremental K-means algorithm per-
forms the best. Beringer and Hullermeier (2005) studied the clustering of multiple
data streams [10]. The sliding-window technique and the discrete Fourier transfor-
mation technique were employed to extract the signals in data streams, which were
then clustered by K-means algorithm using the squared Euclidean distance.

Semi-Supervised K-means Clustering. In recent years, more and more
researchers recognize that clustering quality can be effectively improved by using
partially available external information, e.g. the class labels or the pair-wise con-
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straints of data. Semi-supervised K-means clustering has therefore become the focus
of a great deal of research. For instance, Wagstaff et al. (2001) proposed the COP-
KMeans algorithm for semi-supervised clustering of data with two types of pair-
wise constraints: must-link and cannot-link [92]. The problem of COP-KMeans is
that it cannot handle inconsistent constraints. Basu et al. (2002) proposed two algo-
rithms, i.e. SEEDED-KMeans and CONSTRAINED-KMeans, for semi-supervised
clustering using partial label information [6]. Both the two algorithms employ seed
clustering for initial centroids, but only CONSTRAINED-KMeans reassigns the data
objects outside the seed set during the iteration process. Experimental results demon-
strate the superiority of the two methods to COP-KMeans, and SEEDED-KMeans
shows good robustness to noise. Basu et al. (2004) further proposed the HMRF-
KMeans algorithm that based on the hidden Markov random fields for pair-wise
constraints [7], and the experimental results show that HMRF-Kmeans is signifi-
cantly better than K-means. Davidson and Ravi (2005) proved that to satisfy all the
pair-wise constraints in K-means is NP-complete, and thus only satisfied partial con-
straints to speed up the constrained K-means clustering [25]. They also proposed δ-
and ε-constraints in the cluster level to improve the clustering quality.

K-means Clustering on Data with Other Characteristics. Other data factors
that may impact the performance of K-means including the scale of data, the existence
of noise and outliers, and so on. For instance, Bradley et al. (1998) considered how
to adapt K-means to the situation that the data could not be entirely loaded into
the memory [17]. They also studied how to improve the scalability of the EM-based
mixture model [18]. Some good reviews about the scalability of clustering algorithms
can be found in [73] and [39]. Noise removal, often conducted before clustering, is
very important for the success of K-means. Some new methods for noise removal
include the well-known LOF [20] and the pattern-based HCleaner [94], and a good
review of the traditional methods can be found in [47].

1.3.3 Discussions

In general, K-means has been widely studied in a great deal of research from both the
optimization and the data perspectives. However, there still some important problems
remain unsolve as follows.

First, few research has realized the impact of skewed data distribution (i.e. the
imbalance of true cluster sizes) on K-means clustering. This is considered dangerous,
because data imbalance is a universal situation in practice, and cluster validation
measures may not have the ability to capture its impact to K-means. So we have the
following problems:

Problem 1.1 How can skewed data distributions make impact on the performance
of K-means clustering? What are the cluster validation measures that can identify
this impact?
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The answer to the above questions can provide a guidance for the proper use of
K-means. This indeed motivates our studies on the uniform effect of K-means in
Chap. 2, and the selection of validation measures for K-means in Chap. 5.

Second, although there have been some distance functions widely used for
K-means clustering, their common grounds remain unclear. Therefore, it will be
a theoretical contribution to provide a general framework for distance functions that
are suitable for K-means clustering. So we have the following problems:

Problem 1.2 Is there a unified expression for all the distance functions that fit
K-means clustering? What are the common grounds of these distance functions?

The answer to the above questions can establish a general framework for K-means
clustering, and help to understand the essence of K-means. Indeed, these questions
motivate our study on the generalization of distance functions in Chap. 3, and the
answers help to derive a new variant of K-means in Chap. 4.

Finally, it is interesting to know the potential of K-means as a utility to improve
the performance of other learning schemes. Recall that K-means has some distinct
merits such as simplicity and high efficiency, which make it a good booster for this
task. So we have the following problem:

Problem 1.3 Can we use K-means clustering to improve other learning tasks such
as the supervised classification and the unsupervised ensemble clustering?

The answer to the above question can help to extend the applicability of K-means,
and drive this ageless algorithm to new research frontiers. This indeed motivates our
studies on rare class analysis in Chap. 6 and consensus clustering in Chap. 7.

1.4 Concluding Remarks

In this chapter, we present the motivations of this book. Specifically, we first highlight
the exciting development of data mining and knowledge discovery in both academia
and industry in recent years. We then focus on introducing the basic preliminaries
and some interesting applications of cluster analysis, a core topic in data mining.
Recent advances in K-means clustering, a most widely used clustering algorithm,
are also introduced from a theoretical and a data-driven perspectives, respectively.
Finally, we put forward three important problems remained unsolved in the research
of K-means clustering, which indeed motivate the main themes of this book.
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