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Supervisor’s Foreword

In recent years people have witnessed the fast growth of a young discipline: data
mining. It aims to find unusual and valuable patterns automatically from huge
volumes of data collected from various research and application domains. As a
typical inter-discipline, data mining draws work from many well-established fields
such as database, machine learning, and statistics, and is grounded in some fun-
damental techniques such as optimization and visualization. Nevertheless, data
mining has successfully found its own way by focusing on real-life data with very
challenging characteristics. Mining large-scale data, high-dimensional data, highly
imbalanced data, stream data, graph data, multimedia data, etc., have become one
exciting topic after another in data mining. A clear trend is, with increasing
popularity of Web 2.0 applications, data mining is being advanced to build the
next-generation recommender systems, and to explore the abundant knowledge
inside the huge online social networks. Indeed, it has become one of the leading
forces that direct the progress of business intelligence, a field and a market full of
imagination.

This book focuses on one of the core topics of data mining: cluster analysis.
In particular, it provides some recent advances in the theories, algorithms,
and applications of K-means clustering, one of the oldest yet most widely used
algorithms for clustering analysis. From the theoretical perspective, this book
highlights the negative uniform effect of K-means in clustering class-imbalanced
data, and generalizes the distance functions suitable for K-means clustering to the
notion of point-to-centroid distance. From the algorithmic perspective, this book
proposes the novel SAIL algorithm and its variants to address the zero-value
dilemma of information-theoretic K-means clustering on high-dimensional sparse
data. Finally, from the applicative perspective, this book discusses how to select
the suitable external measures for K-means clustering validation, and explores how
to make innovative use of K-means for other important learning tasks, such as rare
class analysis and consensus clustering. Most of the preliminary works of this book
have been published in the proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), and IEEE Inter-
national Conference on Data Mining (ICDM), which indicates a strong
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data-mining thinking of the research in the book. This book is also heavily based
on Dr. Wu’s Doctoral Thesis completed in Research Center for Contemporary
Management (RCCM), Key Research Institute of Humanities and Social Sciences
at Universities, Tsinghua University, which won the award of National Excellent
Doctoral Dissertation of China in 2010, but with a substantial expansion based on
his follow-up research. In general, this book brings together the recent research
efforts of Dr. Wu in the cluster analysis field.

I believe both the researchers and practitioners in the cluster analysis field and
the broader data mining area can benefit from reading this book. Moreover, this
book shows the research track of Dr. Wu from a Ph.D. student to a professor,
which may be of interest particularly to new Ph.D. students.

I want to compliment Dr. Wu for having written such an outstanding book for
the data mining community.

Tsinghua University,
China, March 2012

Jian Chen
Research Center for Contemporary Management

x Supervisor’s Foreword
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Chapter 1
Cluster Analysis and K-means Clustering: An
Introduction

1.1 The Emergence of Data Mining

The phrase “data mining” was termed in the late eighties of the last century, which
describes the activity that attempts to extract interesting patterns from data. Since
then, data mining and knowledge discovery has become one of the hottest topics in
both academia and industry. It provides valuable business and scientific intelligence
hidden in a large amount of historical data.

From a research perspective, the scope of data mining has gone far beyond
the database area. A great many of researchers from various fields, e.g. computer
science, management science, statistics, biology, and geography, have made great
contributions to the prosperity of data mining research. Some top annual academic
conferences held specifically for data mining, such as KDD (ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining),1 ICDM (IEEE
International Conference on Data Mining),2 and SDM (SIAM International Confer-
ence on Data Mining),3 have become the main forums and prestigious brands that
lead the trend of data mining research, and have a farreaching influence on big sharks
such as Google, Microsoft, and Facebook in industry. Many top conferences in dif-
ferent research fields are now open for the submission of data mining papers. Some
A+ journals in management field, such as Management Science, Information Sys-
tems Research, and MIS Quarterly, have also published business intelligence papers
based on data mining techniques. These facts clearly illustrate that data mining as a
young discipline is fast penetrating into other well-established disciplines. Indeed,
data mining is such a hot topic that it has even become an “obscured” buzzword
misused in many related fields to show the advanced characteristic of the research in
those fields.

1 http://www.kdd.org/.
2 http://www.cs.uvm.edu/~icdm/.
3 http://www.informatik.uni-trier.de/~ley/db/conf/sdm/.
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2 1 Cluster Analysis and K-means Clustering

From an application perspective, data mining has become a powerful tool for
extracting useful information from tons of commercial and engineering data. The
driving force behind this trend is the explosive growth of data from various applica-
tion domains, plus the much more enhanced storing and computing capacities of IT
infrastructures at lower prices. As an obvious inter-discipline, data mining discrim-
inates itself from machine learning and statistics in placing ever more emphasis on
data characteristics and being more solution-oriented. For instance, data mining has
been widely used in business area for a number of applications, such as customer
segmentation and profiling, shelf layout arrangement, financial-asset price predic-
tion, and credit-card fraud detection, which greatly boost the concept of business
intelligence. In the Internet world, data mining enables a series of interesting innova-
tions, such as web document clustering, click-through data analysis, opinion mining,
social network analysis, online product/service/information recommendation, and
location-based mobile recommendation, some of which even show appealing com-
mercial prospects. There are still many applicative cases of data mining in diverse
domains, which will not be covered any more. An interesting phenomenon is, to
gain the first-mover advantage in the potentially huge business intelligence market,
many database and statistical software companies have integrated the data mining
module into their products, e.g. SAS Enterprise Miner, SPSS Modeler, Oracle Data
Mining, and SAP Business Object. This also helps to build complete product lines
for these companies, and makes the whole decision process based on these products
transparent to the high-end users.

1.2 Cluster Analysis: A Brief Overview

As a young but huge discipline, data mining cannot be fully covered by the limited
pages in a monograph. This book focuses on one of the core topics of data mining:
cluster analysis. Cluster analysis provides insight into the data by dividing the objects
into groups (clusters) of objects, such that objects in a cluster are more similar to each
other than to objects in other clusters [48]. As it does not use external information
such as class labels, cluster analysis is also called unsupervised learning in some
traditional fields such as machine learning [70] and pattern recognition [33].

In general, there are two purposes for using cluster analysis: understanding and
utility [87]. Clustering for understanding is to employ cluster analysis for auto-
matically finding conceptually meaningful groups of objects that share common
characteristics. It plays an important role in helping people to analyze, describe and
utilize the valuable information hidden in the groups. Clustering for utility attempts
to abstract the prototypes or the representative objects from individual objects in the
same clusters. These prototypes/objects then serve as the basis of a number of data
processing techniques such as summarization, compression, and nearest-neighbor
finding.

Cluster analysis has long played an important role in a wide variety of application
domains such as business intelligence, psychology and social science, information
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retrieval, pattern classification, and bioinformatics. Some interesting examples are
as follows:

• Market research. Cluster analysis has become the “killer application” in one of
the core business tasks: marketing. It has been widely used for large-scale customer
segmentation and profiling, which help to locate targeted customers, design the 4P
(product, price, place, promotion) strategies, and implement the effective customer
relationship management (CRM) [12, 13].
• Web browsing. As the world we live has entered the Web 2.0 era, information

overload has become a top challenge that prevents people from acquiring useful
information in a fast and accurate way. Cluster analysis can help to automatically
categorize web documents into a concept hierarchy, and therefore provide better
browsing experience to web users [43].
• Image indexing. In the online environment, images pose problems of access and

retrieval more complicated than those of text documents. As a promising method,
cluster analysis can help to group images featured by the bag-of-features (BOF)
model, and therefore becomes a choice for large-scale image indexing [97].
• Recommender systems. Recent year have witnessed an increasing interest in

developing recommender systems for online product recommendation or location-
based services. As one of the most successful approaches to build recommender
systems, collaborative filtering (CF) technique uses the known preferences of a
group of users to make recommendations or predictions of the unknown prefer-
ences for other users [86]. One of the fundamental tools of CF, is right the clustering
technique.
• Community Detection. Detecting clusters or communities in real-world graphs

such as large social networks, web graphs, and biological networks, is a problem
of considerable interests that has received a great deal of attention [58]. A range
of detection methods have been proposed in the literature, most of which are
borrowed from the broader cluster analysis field.

The above applications clearly illustrate that clustering techniques are playing a
vital role in various exciting fields. Indeed, cluster analysis is always valuable for
the exploration of unknown data emerging from real-life applications. That is the
fundamental reason why cluster analysis is invariably so important.

1.2.1 Clustering Algorithms

The earliest research on cluster analysis can be traced back to 1894, when Karl
Pearson used the moment matching method to determine the mixture parameters of
two single-variable components [78]. Since then, tremendous research efforts have
been devoted to designing new clustering algorithms for cluster analysis. It has been
pointed out by Milligan [68] that the difficulties of cluster analysis lie in the following
three aspects: (1) Clustering is essentially an inexhaustible combinatorial problem;
(2) There exist no widely accepted theories for clustering; (3) The definition of a
cluster seems to be a bit “arbitrary”, which is determined by the data characteristics
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and the understandings of users. These three points well illustrate why there are
so many clustering algorithms proposed in the literature, and why it is valuable to
formulate the clustering problems as optimization problems which can be solved by
some heuristics.

In what follows, we categorize the clustering algorithms into various types, and
introduce some examples to illustrate the distinct properties of algorithms in different
categories. This part has been most heavily influenced by the books written by Tan et
al. [87] and Jain and Dubes [48]. Note that we have no intention of making this part
as a comprehensive overview of clustering algorithms. Readers with this interest can
refer to the review papers written by Jain et al. [49], Berkhin [11], and Xu and Wunsch
[96]. Some books that may also be of interest include those written by Anderberg [3],
Kaufman and Rousseeuw [53], Mirkin [69], etc. A paper by Kleinberg [55] provides
some in-depth discussions on the clustering theories.

Prototype-Based Algorithms. This kind of algorithms learns a prototype for each
cluster, and forms clusters by data objects around the prototypes. For some algorithms
such as the well-known K-means [63] and Fuzzy c-Means (FCM) [14], the proto-
type of a cluster is a centroid, and the clusters tend to be globular. Self-Organizing
Map (SOM) [56], a variant of artificial neural networks, is another representative
prototype-based algorithm. It uses a neighborhood function to preserve the topolog-
ical properties of data objects, and the weights of the whole network will then be
trained via a competitive process. Being different from the above algorithms, Mix-
ture Model (MM) [65] uses a probability distribution function to characterize the
prototype, the unknown parameters of which are usually estimated by the Maximum
Likelihood Estimation (MLE) method [15].

Density-Based Algorithms. This kind of algorithms takes a cluster as a dense
region of data objects that is surrounded by regions of low densities. They are often
employed when the clusters are irregular or intertwined, or when noise and outliers
are present. DBSCAN [34] and DENCLUE [46] are two representative density-
based algorithms. DBSCAN divides data objects into core points, border points and
noise, respectively, based on the Euclidean density [87], and then finds the clusters
naturally. DENCLUE defines a probability density function based on the kernel
function of each data object, and then finds the clusters by detecting the variance of
densities. When it comes to data in high dimensionality, the density notion is valid
only in subspaces of features, which motivates the subspace clustering. For instance,
CLIQUE [1], a grid-based algorithm, separates the feature space into grid units, and
finds dense regions in subspaces. A good review of subspace clustering can be found
in [77].

Graph-Based Algorithms. If we regard data objects as nodes, and the distance
between two objects as the weight of the edge connecting the two nodes, the data
can be represented as a graph, and a cluster can be defined as a connected subgraph.
The well-known agglomerative hierarchical clustering algorithms (AHC) [87], which
merge the nearest two nodes/groups in one round until all nodes are connected, can
be regarded as a graph-based algorithm to some extent. The Jarvis-Patrick algorithm
(JP) [50] is a typical graph-based algorithm that defines the shared nearest-neighbors
for each data object, and then sparsifies the graph to obtain the clusters. In recent
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years, spectral clustering becomes an important topic in this area, in which data can
be represented by various types of graphs, and linear algebra is then used to solve the
optimization problems defined on the graphs. Many spectral clustering algorithms
have been proposed in the literature, such as Normalized Cuts [82] and MinMaxCut
[31]. Readers with interests can refer to [74] and [62] for more details.

Hybrid Algorithms. Hybrid algorithms, which use two or more clustering algo-
rithms in combination, are proposed in order to overcome the shortcomings of single
clustering algorithms. Chameleon [51] is a typical hybrid algorithm, which firstly
uses a graph-based algorithm to separate data into many small components, and then
employs a special AHC to get the final clusters. In this way, bizarre clusters can
be discovered. FPHGP [16, 43] is another interesting hybrid algorithm, which uses
association analysis to find frequent patterns [2] and builds a data graph upon the
patterns, and then applies a hypergraph partitioning algorithm [52] to partition the
graph into clusters. Experimental results show that FPHGP performs excellently for
web document data.

Algorithm-Independent Methods. Consensus clustering [72, 84], also called
clustering aggregation or cluster ensemble, runs on the clustering results of basic
clustering algorithms rather than the original data. Given a set of basic partitionings of
data, consensus clustering aims to find a single partitioning that matches every basic
partitioning as closely as possible. It has been recognized that consensus clustering
has merits in generating better clusterings, finding bizarre clusters, handling noise
and outliers, and integrating partitionings of distributed or even inconsistent data [75].
Typical consensus clustering algorithms include the graph-based algorithms such as
CPSA, HGPA and MCLA[84], the co-association matrix-based methods [36], and
the prototype-based clustering methods [89, 90]. Some methods that employ meta-
heuristics also show competitive results but at much higher computational costs [60].

1.2.2 Cluster Validity

Cluster validity, or clustering evaluation, is a necessary but challenging task in cluster
analysis. It is formally defined as giving objective evaluations to clustering results
in a quantitative way [48]. A key motivation of cluster validity is that almost every
clustering algorithm will find clusters in a data set that even has no natural cluster
structure. In this situation, a validation measure is in great need to tell us how well
the clustering is. Indeed, cluster validity has become the core task of cluster analysis,
for which a great number of validation measures have been proposed and carefully
studied in the literature.

These validation measures are traditionally classified into the following two types:
external indices and internal indices (including the relative indices) [41]. External
indices measure the extent to which the clustering structure discovered by a cluster-
ing algorithm matches some given external structure, e.g. the structure defined by the
class labels. In contrast, internal indices measure the goodness of a clustering struc-
ture without respect to external information. As internal measures often make latent
assumptions on the formation of cluster structures, and usually have much higher
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computational complexity, more research in recent years prefers to use external
measures for cluster validity, when the purpose is only to assess clustering algo-
rithms and the class labels are available.

Considering that we have no intention of making this part as an extensive review
of all validation measures, and only some external measures have been employed for
cluster validity in the following chapters, we will focus on introducing some popular
external measures here. Readers with a broader interest can refer to the review papers
written by Halkidi et al. [41, 42], although discussions on how to properly use the
measures are not presented adequately. The classic book written by Jain and Dubes
[48] covers fewer measures, but some discussions are very interesting.

According to the different sources, we can further divide the external measures
into three categories as follows:

Statistics-Based Measures. This type of measures, such as Rand index (R),
Jaccard coefficient (J ), Folks and Mallows index (F M), and Γ statistic (Γ ) [48],
originated from the statistical area quite a long time ago. They focus on examining
the group membership of each object pair, which can be quantified by comparing two
matrices: the Ideal Cluster Similarity Matrix (ICuSM) and the Ideal Class Similarity
Matrix (ICaSM) [87]. ICuSM has a 1 in the i j-th entry if two objects i and j are
clustered into a same cluster and a 0, otherwise. ICaSM is defined with respect to class
labels, which has a 1 in the i j-th entry if objects i and j belong to a same class, and a
0 otherwise. Consider the entries in the upper triangular matrices (UTM) of ICuSM
and ICaSM. Let f00 ( f11) denote the number of entry pairs that have 0 (1) in the
corresponding positions of the two UTMs, and let f01 and f10 denote the numbers of
entry pairs that have different values in the corresponding positions of the two UTMs.
R, J , and F M can then be defined as: R = f00+ f11

f00+ f10+ f01+ f11
, J = f11

f10+ f01+ f11
, and

F M = f11√
( f11+ f10)( f11+ f01)

. The definition ofΓ is more straightforward by computing
the correlation coefficient of the two UTMs. More details about these measures can
be found in [48].

Information-Theoretic Measures. This type of measures is typically designed
based on the concepts of information theory. For instance, the widely used Entropy
measure (E) [98] assumes that the clustering quality is higher if the entropy of
data objects in each cluster is smaller. Let E j = ∑

i pi j log pi j , where pi j is the
proportion of objects in cluster j that are from class i , n j is the number of objects
in cluster j , and n =∑

j n j . We then have E =∑
j

n j
n E j . The Mutual Information

measure (M I ) [85] and the Variation of Information measure (V I ) [66, 67] are
another two representative measures that evaluate the clustering results by comparing
the information contained in class labels and cluster labels, respectively. As these
measures have special advantages including clear concepts and simple computations,
they become very popular in recent studies, even more popular than the long-standing
statistics-based measures.

Classification-Based Measures. This type of measures evaluates clustering
results from a classification perspective. The F-measure (F) is such an example,
which was originally designed for validating the results of hierarchical clustering
[57], but also used for partitional clustering in recent studies [83, 95]. Let pi j denote



1.2 Cluster Analysis: A Brief Overview 7

the proportion of data objects in cluster j that are from class i (namely the precision
of cluster j for objects of class i), and qi j the proportion of data objects from class i
that are assigned to cluster j (namely the recall of class i in cluster j) [79]. We then
have the F-measure of class i as: Fi = max j

2pi j qi j
pi j+qi j

, and the overall F-measure of

clustering results as: F =∑
i

ni
n Fi , where ni is the number of objects of class i , and

n =∑
i ni . Another representative measure is the Classification Error (ε), which tries

to map each class to a different cluster so as to minimize the total misclassification
rate. Details of ε can be found in [21].

Sometimes we may want to compare the clustering results of different data sets.
In this case, we should normalize the validation measures into a value range of about
[0,1] or [-1,+1] before using them. However, it is surprising that only a few research
has addressed the issue of measure normalization in the literature, including [48]
for Rand index, [66] for Variation of Information, and [30] for Mutual Information.
Among these studies, two methods are often used for measure normalization, i.e.
the expected-value method [48] and the extreme-value method [61], which are both
based on the assumption of the multivariate hypergeometric distribution (MHD) [22]
of clustering results. The difficulty lies in the computation of the expected values
or the min/max values of the measures, subjecting to MHD. A thorough study of
measure normalization has been provided in Chap. 5, and we therefore will not go
into the details here.

1.3 K-means Clustering: An Ageless Algorithm

In this book, we focus on K-means clustering, one of the oldest and most widely used
clustering algorithms. The research on K-means can be traced back to the middle of
the last century, conducted by numerous researchers across different disciplines, most
notably Lloyd (1957, 1982) [59], Forgey (1965) [35], Friedman and Rubin (1967)
[37], and MacQueen (1967) [63]. Jain and Dubes (1988) provides a detailed history
of K-means along with descriptions of several variations [48]. Gray and Neuhoff
(1998) put K-means in the larger context of hill-climbing algorithms [40].

In a nutshell, K-means is a prototype-based, simple partitional clustering algo-
rithm that attempts to find K non-overlapping clusters. These clusters are represented
by their centroids (a cluster centroid is typically the mean of the points in that cluster).
The clustering process of K-means is as follows. First, K initial centroids are selected,
where K is specified by the user and indicates the desired number of clusters. Every
point in the data is then assigned to the closest centroid, and each collection of points
assigned to a centroid forms a cluster. The centroid of each cluster is then updated
based on the points assigned to that cluster. This process is repeated until no point
changes clusters.

It is beneficial to delve into the mathematics behind K-means. Suppose D =
{x1, · · · , xn} is the data set to be clustered. K-means can be expressed by an objective
function that depends on the proximities of the data points to the cluster centroids as
follows:

http://dx.doi.org/10.1007/978-3-642-29807-3_5
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min{mk },1≤k≤K

K∑

k=1

∑

x∈Ck

πxdist(x, mk), (1.1)

where πx is the weight of x, nk is the number of data objects assigned to cluster
Ck , mk = ∑

x∈Ck

πx x
nk

is the centroid of cluster Ck , K is the number of clusters
set by the user, and the function “dist” computes the distance between object x and
centroid mk , 1 ≤ k ≤ K . While the selection of the distance function is optional,
the squared Euclidean distance, i.e. ‖ x − m ‖2, has been most widely used in both
research and practice. The iteration process introduced in the previous paragraph
is indeed a gradient-descent alternating optimization method that helps to solve
Eq. (1.1), although often converges to a local minima or a saddle point.

Considering that there are numerous clustering algorithms proposed in the litera-
ture, it may be argued that why this book is focused on the “old” K-means clustering.
Let us understand this from the following two perspectives. First, K-means has some
distinct advantages compared with other clustering algorithms. That is, K-means is
very simple and robust, highly efficient, and can be used for a wide variety of data
types. Indeed, it has been ranked the second among the top-10 data mining algo-
rithms in [93], and has become the defacto benchmark method for newly proposed
methods. Moreover, K-means as an optimization problem still has some theoretical
challenges, e.g. the distance generalization problem studied in Chap. 3. The emerging
data with complicated properties, such as large-scale, high-dimensionality, and class
imbalance, also require to adapt the classic K-means to different challenging scenar-
ios, which in turn rejuvenates K-means. Some disadvantages of K-means, such as
performing poorly for non-globular clusters, and being sensitive to outliers, are often
dominated by the advantages, and partially corrected by the proposed new variants.

In what follows, we review some recent research on K-means from both the
theoretical perspective and the data-driven perspective. Note that we here do not
expect to coverage all the works of K-means, but would rather introduce some works
that relate to the main themes of this book.

1.3.1 Theoretical Research on K-means

In general, the theoretical progress on K-means clustering lies in the following three
aspects:

Model Generalization. The Expectation-Maximization (EM) [26] algorithm-
based Mixture Model (MM) has long been regarded as the generalized form of
K-means for taking the similar alternating optimization heuristic [65]. Mitchell
(1997) gave the details of how to derive squared Euclidean distance-based K-means
from the Gaussian distribution-based MM, which unveil the relationship between K-
means and MM [70]. Banerjee et al. (2005) studied the von Mises-Fisher distribution-
based MM, and demonstrated that under some assumptions this model could reduce
to K-means with cosine similarity, i.e. the spherical K-means [4]. Zhong and Ghosh
(2004) proposed the Model-Based Clustering (MBC) algorithm [99], which unifies

http://dx.doi.org/10.1007/978-3-642-29807-3_3


1.3 K-means Clustering: An Ageless Algorithm 9

MM and K-means via the introduction of the deterministic annealing technique. That
is, MBC reduces to MM when the temperature T = 1, and to K-means when T = 0;
As T decreases from 1 to 0, MBC gradually changes from allowing soft assignment
to only allowing hard assignment of data objects.

Search Optimization. One weakness of K-means is that the iteration process
may probably converge to a local minimum or even a saddle point. The traditional
search strategies, i.e. the batch mode and the local mode, cannot avoid this prob-
lem, although some research has pointed out that using the local search immediately
after the batch search may improve the clustering quality of K-means. The “kmeans”
function included in MATLAB v7.1 [64] implemented this hybrid strategy. Dhillon
et al. (2002) proposed a “first variation” search strategy for spherical K-means,
which shares some common grounds with the hybrid strategy [27]. Steinbach et al.
(2000) proposed a simple bisecting scheme for K-means clustering, which selects
and divides a cluster into two sub-clusters in each iteration [83]. Empirical results
demonstrate the effectiveness of bisecting K-means in improving the clustering qual-
ity of spherical K-means, and solving the random initialization problem. Some meta-
heuristics, such as deterministic annealing [80, 81] and variable neighborhood search
[45, 71], can also help to find better local minima for K-means.

Distance Design. The distance function is one of the key factors that influence the
performance of K-means. Dhillon el al. (2003) proposed an information-theoretic
co-clustering algorithm based on the distance of Kullback-Leibler divergence (or
KL-divergence for short) [30] originated from the information theory [23]. Empiri-
cal results demonstrate that the co-clustering algorithm improves the clustering effi-
ciency of K-means using KL-divergence (or Info-Kmeans for short), and has higher
clustering quality than traditional Info-Kmeans on some text data. Banerjee et al.
(2005) studied the generalization issue of K-means clustering by using the Bregman
divergence [19], which is actually a family of distances including the well-known
squared Euclidean distance, KL-divergence, Itakura-Saito distance [5], and so on.
To find clearer boundaries between different clusters, kernel methods have also been
introduced to K-means clustering [28], and the concept of distance has therefore
been greatly expanded by the kernel functions.

1.3.2 Data-Driven Research on K-means

As the emergence of big data in various research and industrial domains in recent
years, the traditional K-means algorithm faces great challenges stemming from the
diverse and complicated data factors, such as the high dimensionality, the data stream-
ing, the existence of noise and outliers, and so on. In what follows, we focus on some
data-driven advances in K-means clustering.

K-means Clustering for High-Dimensional Data. With the prosperity of infor-
mation retrieval and bioinformatics, high-dimensional text data and micro-array data
have become the challenges to clustering. Numerous studies have pointed out that
K-means with the squared Euclidean distance is not suitable for high-dimensional
data clustering because of the “curse of dimensionality” [8].
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One way to solve this problem is to use alternative distance functions. Steinbach
et al. (2000) used the cosine similarity as the distance function to compare the perfor-
mance of K-means, bisecting K-means, and UPGMA on high-dimensional text data
[83]. Experimental results evaluated by the entropy measure demonstrate that while
K-means is superior to UPGMA, bisecting K-means has the best performance. Zhao
and Karypis (2004) compared the performance of K-means using different types of
objective functions on text data, where the cosine similarity was again employed for
the distance computation [98]. Zhong and Ghosh (2005) compared the performance
of the mixture model using different probability distributions [100]. Experimental
results demonstrate the advantage of the von Mises-Fisher distribution. As this distri-
bution corresponds to the cosine similarity in K-means [4], these results further justify
the superiority of the cosine similarity for K-means clustering of high-dimensional
data.

Another way to tackle this problem is to employ dimension reduction for high-
dimensional data. Apart from the traditional methods such as the Principal Compo-
nent Analysis, Multidimensional Scaling, and Singular Value Decomposition [54],
some new methods particularly suitable for text data have been proposed in the litera-
ture, e.g. Term-Frequency-Inverse-Document-Frequency (TFIDF), Latent Semantic
Indexing (LSI), Random Projection (RP), and Independent Component Analysis
(ICA). A comparative study of these methods was given in [88], which revealed the
following ranking: ICA� LSI� TFIDF� RP. In particular, ICA and LSI show sig-
nificant advantages on improving the performance of K-means clustering. Dhillon et
al. (2003) used Info-Kmeans to cluster term features for dimension reduction [29].
Experimental results show that their method can improve the classification accuracy
of the Naïve Bayes (NB) classifier [44] and the Support Vector Machines (SVMs) [24,
91].

K-means Clustering on Data Stream. Data stream clustering is a very chal-
lenging task because of the distinct properties of stream data: rapid and continuous
arrival online, need for rapid response, potential boundless volume, etc. [38]. Being
very simple and highly efficient, K-means naturally becomes the first choice for
data stream clustering. We here highlight some representative works. Domingos and
Hulten (2001) employed the Hoeffding inequality [9] for the modification of K-
means clustering, and obtained approximate cluster centroids in data streams, with
a probability-guaranteed error bound [32]. Ordonez (2003) proposed three algo-
rithms: online K-means, scalable K-means, and incremental K-means, for binary
data stream clustering [76]. These algorithms use several sufficient statistics and
carefully manipulate the computation of the sparse matrix to improve the clustering
quality. Experimental results indicate that the incremental K-means algorithm per-
forms the best. Beringer and Hullermeier (2005) studied the clustering of multiple
data streams [10]. The sliding-window technique and the discrete Fourier transfor-
mation technique were employed to extract the signals in data streams, which were
then clustered by K-means algorithm using the squared Euclidean distance.

Semi-Supervised K-means Clustering. In recent years, more and more
researchers recognize that clustering quality can be effectively improved by using
partially available external information, e.g. the class labels or the pair-wise con-
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straints of data. Semi-supervised K-means clustering has therefore become the focus
of a great deal of research. For instance, Wagstaff et al. (2001) proposed the COP-
KMeans algorithm for semi-supervised clustering of data with two types of pair-
wise constraints: must-link and cannot-link [92]. The problem of COP-KMeans is
that it cannot handle inconsistent constraints. Basu et al. (2002) proposed two algo-
rithms, i.e. SEEDED-KMeans and CONSTRAINED-KMeans, for semi-supervised
clustering using partial label information [6]. Both the two algorithms employ seed
clustering for initial centroids, but only CONSTRAINED-KMeans reassigns the data
objects outside the seed set during the iteration process. Experimental results demon-
strate the superiority of the two methods to COP-KMeans, and SEEDED-KMeans
shows good robustness to noise. Basu et al. (2004) further proposed the HMRF-
KMeans algorithm that based on the hidden Markov random fields for pair-wise
constraints [7], and the experimental results show that HMRF-Kmeans is signifi-
cantly better than K-means. Davidson and Ravi (2005) proved that to satisfy all the
pair-wise constraints in K-means is NP-complete, and thus only satisfied partial con-
straints to speed up the constrained K-means clustering [25]. They also proposed δ-
and ε-constraints in the cluster level to improve the clustering quality.

K-means Clustering on Data with Other Characteristics. Other data factors
that may impact the performance of K-means including the scale of data, the existence
of noise and outliers, and so on. For instance, Bradley et al. (1998) considered how
to adapt K-means to the situation that the data could not be entirely loaded into
the memory [17]. They also studied how to improve the scalability of the EM-based
mixture model [18]. Some good reviews about the scalability of clustering algorithms
can be found in [73] and [39]. Noise removal, often conducted before clustering, is
very important for the success of K-means. Some new methods for noise removal
include the well-known LOF [20] and the pattern-based HCleaner [94], and a good
review of the traditional methods can be found in [47].

1.3.3 Discussions

In general, K-means has been widely studied in a great deal of research from both the
optimization and the data perspectives. However, there still some important problems
remain unsolve as follows.

First, few research has realized the impact of skewed data distribution (i.e. the
imbalance of true cluster sizes) on K-means clustering. This is considered dangerous,
because data imbalance is a universal situation in practice, and cluster validation
measures may not have the ability to capture its impact to K-means. So we have the
following problems:

Problem 1.1 How can skewed data distributions make impact on the performance
of K-means clustering? What are the cluster validation measures that can identify
this impact?
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The answer to the above questions can provide a guidance for the proper use of
K-means. This indeed motivates our studies on the uniform effect of K-means in
Chap. 2, and the selection of validation measures for K-means in Chap. 5.

Second, although there have been some distance functions widely used for
K-means clustering, their common grounds remain unclear. Therefore, it will be
a theoretical contribution to provide a general framework for distance functions that
are suitable for K-means clustering. So we have the following problems:

Problem 1.2 Is there a unified expression for all the distance functions that fit
K-means clustering? What are the common grounds of these distance functions?

The answer to the above questions can establish a general framework for K-means
clustering, and help to understand the essence of K-means. Indeed, these questions
motivate our study on the generalization of distance functions in Chap. 3, and the
answers help to derive a new variant of K-means in Chap. 4.

Finally, it is interesting to know the potential of K-means as a utility to improve
the performance of other learning schemes. Recall that K-means has some distinct
merits such as simplicity and high efficiency, which make it a good booster for this
task. So we have the following problem:

Problem 1.3 Can we use K-means clustering to improve other learning tasks such
as the supervised classification and the unsupervised ensemble clustering?

The answer to the above question can help to extend the applicability of K-means,
and drive this ageless algorithm to new research frontiers. This indeed motivates our
studies on rare class analysis in Chap. 6 and consensus clustering in Chap. 7.

1.4 Concluding Remarks

In this chapter, we present the motivations of this book. Specifically, we first highlight
the exciting development of data mining and knowledge discovery in both academia
and industry in recent years. We then focus on introducing the basic preliminaries
and some interesting applications of cluster analysis, a core topic in data mining.
Recent advances in K-means clustering, a most widely used clustering algorithm,
are also introduced from a theoretical and a data-driven perspectives, respectively.
Finally, we put forward three important problems remained unsolved in the research
of K-means clustering, which indeed motivate the main themes of this book.
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Chapter 2
The Uniform Effect of K-means Clustering

2.1 Introduction

This chapter studies the uniform effect of K-means clustering. As a well-known
and widely used partitional clustering method, K-means has attracted great research
interests for a very long time. Researchers have identified some data characteristics
that may strongly impact the performance of K-means clustering, including the types
and scales of data and attributes, the sparseness of data, and the noise and outliers in
data [23]. However, further investigation is needed to unveil how data distributions
can make impact on the performance of K-means clustering. Along this line, we
provide an organized study of the effect of skewed data distributions on K-means
clustering. The results can guide us for the better use of K-means. This is considered
valuable, since K-means has been shown to perform as well as or better than a variety
of other clustering techniques in text clustering, and has an appealing computational
efficiency [17, 22, 29].

In this chapter, we first formally illustrate that K-means tends to produce clusters
in relatively uniform sizes, even if the input data have varying true cluster sizes. Also,
we show that some clustering validation measures, such as the entropy measure, may
not capture the uniform effect of K-means, and thus provide misleading evaluations
on the clustering results. To deal with this, the Coefficient of Variation (CV ) [5]
statistic is employed as a complement for cluster validation. That is, if the CV
value of the cluster sizes has a significant change before and after the clustering,
the clustering performance is considered questionable. However, the reverse is not
true; that is, a minor change of the CV value does not necessarily indicate a good
clustering result.

In addition, we have conducted extensive experiments on a number of real-world
data sets, including text data, gene expression data, and UCI data, obtained from
different application domains. Experimental results demonstrate that, for data with
highly varying true cluster sizes (e.g. CV > 1.0), K-means tends to generate clusters
in relatively uniform sizes (CV < 1.0). In contrast, for data sets with uniform true
cluster sizes (e.g. CV < 0.3), K-means tends to generate clusters in varying sizes

J. Wu, Advances in K-means Clustering, Springer Theses, 17
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(CV > 0.3). In other words, for these two cases, the clustering performance of
K-means is often poor.

The remainder of this chapter is organized as follows. Section 2.2 formally illus-
trates the uniform effect of K-means clustering. In Sect. 2.3, we illustrate the biased
effect of the entropy measure. Section 2.4 shows experimental results. The related
work is presented in Sect. 2.5, and we finally draw conclusions in Sect. 2.6.

2.2 The Uniform Effect of K-means Clustering

In this section, we mathematically formulate the fact that K-means clustering tends to
produce clusters in uniform sizes, which is also called the uniform effect of K-means.

K-means is typically expressed by an objective function that depends on the
proximities of the data points to the cluster centroids. Let X = {x1, . . . , xn} be
the data, and ml = ∑

x∈Cl
x
nl

be the centroid of cluster Cl , 1 ≤ l ≤ k, where nl is
the number of data objects in cluster Cl , and k is the number of clusters. The objective
function of K-means clustering is then formulated as the sum of squared errors as
follows:

Fk =
k∑

l=1

∑

x∈Cl

‖ x − ml ‖2. (2.1)

Let d(C p, Cq) =∑
xi∈C p

∑
x j∈Cq

‖ xi − x j ‖2. We have the sum of all pair-wise
distances of data objects within k clusters as follows:

Dk =
n∑

i=1

n∑

j=1

‖ xi − x j ‖2 =
k∑

l=1

d(Cl , Cl)+ 2
∑

1≤i< j≤k

d(Ci , C j ). (2.2)

Note that Dk is a constant for a given data set regardless of k. We use the subscript
k for the convenience of the mathematical induction. Also, n =∑k

l=1 nl is the total
number of objects in the data.

2.2.1 Case I: Two Clusters

Here, we first illustrate the uniform effect of K-means when the number of clusters
is only two. We have,

D2 =
n∑

i=1

n∑

j=1

‖ xi − x j ‖2 = d(C1, C1)+ d(C2, C2)+ 2d(C1, C2).
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In this case, D2 is also a constant, and n = n1 + n2 is the total number of data
objects. If we substitute ml in Eq. (2.1) by

∑
x∈Cl

x
nl

, we have

F2 = 1

2n1

∑

xi ,x j∈C1

‖ xi − x j ‖2 + 1

2n2

∑

xi ,x j∈C2

‖ xi − x j ‖2 = 1

2

2∑

l=1

d(Cl , Cl)

nl
.

(2.3)
If we let

F (2)
D = −n1n2

[
d(C1, C1)

n2
1

+ d(C2, C2)

n2
2

− 2
d(C1, C2)

n1n2

]

,

we thus have

F2 = − F (2)
D

2n
+ D2

2n
. (2.4)

Furthermore, we can show that

2d(C1, C2)

n1n2
= d(C1, C1)

n2
1

+ d(C2, C2)

n2
2

+ 2‖ m1 − m2 ‖2.

Therefore, we finally have

F (2)
D = 2n1n2‖ m1 − m2 ‖2.

Equation (2.4) indicates that the minimization of the K-means objective function
F2 is equivalent to the maximization of the distance function F (2)

D . As F (2)
D > 0 when

m1 is not equal to m2, if we isolate the effect of ‖ m1 − m2 ‖2, the maximization of
F (2)

D implies the maximization of n1n2, which leads to n1 = n2 = n/2.
Discussion. In the above analysis, we have isolated the effect of two components:

‖ m1 − m2 ‖2 and n1n2. For real-world data sets, the values of these two components
are related to each other. Indeed, under certain circumstances, the goal of maximizing
n1n2 may contradict the goal of maximizing‖ m1 − m2 ‖2. Figure 2.1 illustrates such
a scenario when n1n2 is dominated by ‖ m1 − m2 ‖2. In this example, we generate
two true clusters, i.e. one stick cluster and one circle cluster, each of which
contains 500 objects. If we apply K-means on these two data sets, we can have the
clustering results in which 106 objects of the stick cluster are assigned to the
circle cluster, as indicated by the green dots in the stick cluster. In this way,
while the value of n1n2 decreases a little bit, the value of ‖ m1 − m2 ‖2 increases
more significantly, which finally leads to the decrease of the overall objective function
value. This implies that, K-means will increase the variation of true cluster sizes
slightly in this scenario. However, it is hard to further clarify the relationship between
these two components in theory, as this relationship is affected by many factors, such
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Fig. 2.1 Illustration of the violation of the uniform effect. © 2009 IEEE. Reprinted, with permis-
sion, from Ref. [25]

as the shapes of clusters and the densities of data. As a complement, we present an
extensive experimental study in Sect. 2.4 to provide a better understanding to this.

2.2.2 Case II: Multiple Clusters

Here, we consider the case that the number of clusters is greater than two. If we
substitute ml , the centroid of cluster Cl , in Eq. (2.1) by

∑
x∈Cl

x
nl

, we have

Fk =
k∑

l=1

⎛

⎝ 1

2nl

∑

xi ,x j∈Cl

‖ xi − x j ‖2
⎞

⎠ = 1

2

k∑

l=1

d(Cl , Cl)

nl
. (2.5)

We then decompose Fk by using the two lemmas as follows:

Lemma 2.1

Dk =
k∑

l=1

n

nl
d(Cl , Cl)+ 2

∑

1≤i< j≤k

ni n j‖ mi − m j ‖2. (2.6)

Proof We use the mathematical induction.
When k = 1, by Eq. (2.2), the left hand side of Eq. (2.6) is d(C1, C1). The right

hand side of Eq. (2.6) is also equal to d(C1, C1), as there is no cross-cluster item. As
a result, Lemma 2.1 holds.

When k = 2, by Eq. (2.2), to prove Eq. (2.6) is equivalent to prove the following
equation:

2d(C1, C2) = n2

n1
d(C1, C1)+ n1

n2
d(C2, C2)+ 2n1n2‖ m1 − m2 ‖2. (2.7)

If we substitute m1 =
∑n1

i=1 xi
n1

, m2 =
∑n2

i=1 yi
n2

, and
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d(C1, C1) = 2
∑

1≤i< j≤n1

‖ xi − x j ‖2 = 2(n1 − 1)

n1∑

i=1

‖ xi ‖2 − 4
∑

1≤i< j≤n1

xi x j ,

d(C2, C2) = 2
∑

1≤i< j≤n2

‖ yi − y j ‖2 = 2(n2 − 1)

n2∑

i=1

‖ yi ‖2 − 4
∑

1≤i< j≤n2

yi y j ,

d(C1, C2) =
∑

1≤i≤n1

∑

1≤ j≤n2

‖ xi − y j ‖2 = 2n2

n1∑

i=1

‖ xi ‖2 + 2n1

n2∑

i=1

‖ yi ‖2

− 4
∑

1≤i≤n1

∑

1≤ j≤n2

xi y j

into Eq. (2.7), we can show that the left hand side will be equal to the right hand side.
Therefore, Lemma 2.1 also holds for k = 2.

Now we assume that Lemma 2.1 also holds when the cluster number is k − 1.
Then for the case that the cluster number is k, we first define D(i)

k−1 as the sum of
squared pair-wise distances between data objects within k−1 clusters selected from
the total k clusters excluding cluster i . It is trivial to note that D(i)

k−1 < Dk , and they
have relationship as follows:

Dk = D(p)
k−1 + d(C p, C p)+ 2

∑

1≤ j≤k, j �=p

d(C p, C j ). (2.8)

Note that Eq. (2.8) holds for any p = 1, 2, . . . , k. So actually we have k equations.
We sum up these k equations and get

k Dk =
k∑

p=1

D(p)
k−1 +

k∑

p=1

d(C p, C p)+ 4
∑

1≤i< j≤k

d(Ci , C j ). (2.9)

As Eq. (2.6) holds for the case that the cluster number is k − 1, we have

D(p)
k−1 =

∑

1≤l≤k,l �=p

[
n − n p

nl
d(Cl , Cl)

]

+ 2
i, j �=p∑

1≤i< j≤k

[ni n j‖ mi − m j ‖2].

So the first part of the right hand side of Eq. (2.9) is

k∑

p=1

D(p)
k−1 = (k − 2)

⎛

⎝
k∑

l=1

n

nl
d(Cl , Cl)+ 2

∑

1≤i< j≤k

ni n j‖ mi − m j ‖2
⎞

⎠

+
k∑

l=1

d(Cl , Cl). (2.10)
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Accordingly, we can further transform Eq. (2.9) into

k Dk = (k − 2)

⎛

⎝
k∑

l=1

[
n

nl
d(Cl , Cl)

]

+ 2
∑

1≤i< j≤k

[ni n j‖ mi − m j ‖2]
⎞

⎠

+ 2

⎡

⎣
k∑

l=1

d(Cl , Cl)+ 2
∑

1≤i< j≤k

d(Ci , C j )

⎤

⎦ . (2.11)

According to Eq. (2.2), we know that the second part of the right hand side of
Eq. (2.11) is exactly 2Dk . So we can finally have

Dk =
k∑

l=1

n

nl
d(Cl , Cl)+ 2

∑

1≤i< j≤k

ni n j‖ mi − m j ‖2,

which implies that Lemma 2.1 also holds for the case that the cluster number is k.
We complete the proof. �

Lemma 2.2 Let
F (k)

D = Dk − 2nFk . (2.12)

Then
F (k)

D = 2
∑

1≤i< j≤k

[ni n j‖ mi − m j ‖2]. (2.13)

Proof If we substitute Fk in Eq. (2.5) and Dk in Eq. (2.6) into Eq. (2.12), we can
know that Eq. (2.13) is true. �

Discussion. By Eq. (2.12), we know that the minimization of the K-means objec-
tive function Fk is equivalent to the maximization of the distance function F (k)

D , where

both Dk and n are constants for a given data set. For F (k)
D in Eq. (2.13), if we assume

for all 1 ≤ i < j ≤ k, ‖ mi − m j ‖2 are the same, i.e. all the pair-wise distances
between two centroids are the same, then it is easy to show that the maximization of
F (k)

D is equivalent to the uniform distribution of ni , i.e. n1 = n2 = · · · = nk = n/k.
Note that we have isolated the effect of two components: ‖ mi − m j ‖2 and ni n j here
to simplify the discussion. For real-world data sets, however, these two components
are interactive.
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2.3 The Relationship between K-means Clustering
and the Entropy Measure

In this section, we study the relationship between K-means clustering and a widely
used clustering validation measure: Entropy (E).

2.3.1 The Entropy Measure

Generally speaking, there are two types of clustering validation techniques [10, 13],
which are based on external and internal criteria, respectively. Entropy is an external
validation measure using the class labels of data as external information. It has been
widely used for a number of K-means clustering applications [22, 29].

Entropy measures the purity of the clusters with respect to the given class labels.
Thus, if each cluster consists of objects with a single class label, the entropy value
is 0. However, as the class labels of objects in a cluster become more diverse, the
entropy value increases.

To compute the entropy of a set of clusters, we first calculate the class distribu-
tion of the objects in each cluster. That is, for each cluster j , we compute pi j , the
probability of assigning an object of class i to cluster j . Given this class distribution,
the entropy of cluster j is calculated as

E j = −
∑

i

pi j log(pi j ),

where the sum is taken over all classes. The total entropy for a set of clusters is
computed as the weighted sum of the entropies of all clusters:

E =
m∑

j=1

n j

n
E j ,

where n j is the size of cluster j, m is the number of clusters, and n is the total number
of data objects.

2.3.2 The Coefficient of Variation Measure

Before we describe the relationship between the entropy measure and K-means clus-
tering, we first introduce the Coefficient of Variation (CV ) statistic [5], which is a
measure of the data dispersion. CV is defined as the ratio of the standard deviation
to the mean. Given a set of data objects X = {x1, x2, . . . , xn}, we have
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CV = s

x̄
, (2.14)

where

x̄ =
∑n

i=1 xi

n
, and s =

√∑n
i=1(xi − x̄)2

n − 1
.

CV is a dimensionless number that allows comparing the variations of populations
that have significantly different mean values. In general, the larger the CV value, the
greater the variation in the data.

Recall that K-means clustering has a uniform effect (Sect. 2.2). CV can serve as
a good indicator for the detection of the uniform effect. That is, if the CV value of
the cluster sizes has a significant change after K-means clustering, we know that the
uniform effect exists, and the clustering quality tends to be poor. However, it does
not necessarily indicate a good clustering performance if the CV value of the cluster
sizes only has a minor change after the clustering.

2.3.3 The Limitation of the Entropy Measure

In practice, we have observed that the entropy measure tends to favor clustering
algorithms, such as K-means, which produce clusters with relatively uniform sizes.
We call this the biased effect of the entropy measure. To illustrate this, we create a
sample data set shown in Table 2.1. This data set consists of 42 documents belonging
to five classes, i.e. five true clusters, whose CV value is 1.119.

For this data set, assume we have two clustering results generated by different
clustering algorithms, as shown in Table 2.2. In the table, we can observe that the first
clustering result has five clusters with relatively uniform sizes. This is also indicated
by the CV value of 0.421. In contrast, for the second clustering result, the CV value
of the cluster sizes is 1.201, which indicates a severe imbalance. According to the
entropy measure, clustering result I is better than clustering result I I . This is due to
the fact that the entropy measure penalizes a large impure cluster more just as the first
cluster in clustering I . However, if we look at the five true clusters carefully, we can
find that the second clustering result is much closer to the true cluster distribution,
and the first clustering result is actually far away from the true cluster distribution.
This is also reflected by the CV values; that is, the CV value (1.201) of five cluster
sizes in the second clustering result is much closer to the CV value (1.119) of five
true cluster sizes.

In summary, this example illustrates that the entropy measure tends to favor
K-means which produces clusters in relatively uniform sizes. This effect becomes
even more significant in the situation that the data have highly imbalanced true clus-
ters. In other words, if the entropy measure is used for validating K-means clustering,
the validation result can be misleading.
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Table 2.1 A document data set

1: Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports

24 objects

2: Entertainment, Entertainment 2 objects
3: Foreign, Foreign, Foreign, Foreign, Foreign 5 objects
4: Metro, Metro, Metro, Metro, Metro, Metro, Metro, Metro, Metro, Metro 10 objects
5: Politics 1 object
CV = 1.119

Table 2.2 Two clustering results

Clustering I 1: Sports Sports Sports Sports Sports Sports Sports Sports CV = 0.421
2: Sports Sports Sports Sports Sports Sports Sports Sports E = 0.247
3: Sports Sports Sports Sports Sports Sports Sports Sports
4: Metro Metro Metro Metro Metro Metro Metro Metro Metro
Metro
5: Entertainment Entertainment Foreign Foreign Foreign Foreign
Foreign Politics

Clustering I I 1: Sports Sports Sports Sports Sports Sports CV = 1.201
Sports Sports Sports Sports Sports Sports Sports Sports Sports E = 0.259
Sports Sports Sports Sports Sports Sports Sports Sports Sports
Foreign
2: Entertainment Entertainment
3: Foreign Foreign Foreign
4: Metro Metro Metro Metro Metro Metro Metro Metro Metro
Metro Foreign
5: Politics

2.4 Experimental Results

In this section, we conduct experiments on a number of real-world data sets to show
the uniform effect of K-means clustering and the bias effect of the entropy measure.

2.4.1 Experimental Setup

We first introduce the experimental setup, including the clustering tools and the data
information.

Clustering Tools. In our experiments, we used the CLUTO implementation of
K-means.1 As the Euclidean notion of proximity is not very effective for K-means

1 http://glaros.dtc.umn.edu/gkhome/views/cluto

http://glaros.dtc.umn.edu/gkhome/views/cluto
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Table 2.3 Some notations used in experiments

CV0: The CV value of the true cluster sizes
CV1: The CV value of the resulting cluster sizes
DCV : CV0 − CV1

S̄: The average cluster sizes
ST DO : The standard deviation of the true cluster sizes
ST D1: The standard deviation of the resulting cluster sizes
E : The entropy measure

Table 2.4 Some characteristics of experimental data sets

Data Source #object #feature #class MinClassSize MaxClassSize CV0

Document data
fbis TREC 2463 2000 17 38 506 0.961
hitech TREC 2301 126373 6 116 603 0.495
sports TREC 8580 126373 7 122 3412 1.022
tr23 TREC 204 5832 6 6 91 0.935
tr45 TREC 690 8261 10 14 160 0.669
la2 TREC 3075 31472 6 248 905 0.516
ohscal OHSUMED-233445 11162 11465 10 709 1621 0.266
re0 Reuters-21578 1504 2886 13 11 608 1.502
re1 Reuters-21578 1657 3758 25 10 371 1.385
k1a WebACE 2340 21839 20 9 494 1.004
k1b WebACE 2340 21839 6 60 1389 1.316
wap WebACE 1560 8460 20 5 341 1.040

Biomedical data
LungCancer KRBDSR 203 12600 5 6 139 1.363
Leukemia KRBDSR 325 12558 7 15 79 0.584

UCI data
ecoli UCI 336 7 8 2 143 1.160
page-blocks UCI 5473 10 5 28 4913 1.953
pendigits UCI 10992 16 10 1055 1144 0.042
letter UCI 20000 16 26 734 813 0.030

clustering on high-dimensional data, the cosine similarity is used in the objective
function of K-means. Some notations used in the experiments are shown in Table 2.3.

Experimental Data. We used a number of real-world data sets that were obtained
from different application domains. Some characteristics of these data sets are shown
in Table 2.4.

Document Data. The fbis data set was obtained from the Foreign Broadcast
Information Service data of the TREC-5 collection.2 The hitech and sports
data sets were derived from the San Jose Mercury newspaper articles that were
distributed as part of the TREC collection (TIPSTER Vol. 3). The hitech data

2 http://trec.nist.gov

http://trec.nist.gov
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set contains documents about computers, electronics, health, medical, research, and
technology, and the sports data set contains documents about baseball, basket-
ball, bicycling, boxing, football, golfing, and hockey. Data sets tr23 and tr45
were derived from the TREC-5, TREC-6, and TREC-7 collections. The la2 data
set is part of the TREC-5 collection and contains news articles from the Los Angeles
Times. The ohscal data set was obtained from the OHSUMED collection [12],
which contains documents from the antibodies, carcinoma, DNA, in-vitro, molec-
ular sequence data, pregnancy, prognosis, receptors, risk factors, and tomography
categories. The data sets re0 and re1were from Reuters-21578 text categorization
test collection Distribution 1.0.3 The data sets k1a and k1b contain exactly the
same set of documents but differ in how the documents were assigned to different
classes. In particular, k1a contains a finer-grain categorization than that contained
by k1b. The data set wapwas obtained from the WebACE project (WAP) [11]; each
document corresponds to a web page listed in the subject hierarchy of Yahoo!. For
all these data sets, we used a stop-list to remove common words, and the words were
stemmed using Porter’s suffix-stripping algorithm [20].

Biomedical Data.LungCancer [1] and Leukemia [26] data sets were obtained
from Kent Ridge Biomedical Data Set Repository (KRBDSR), which is an online
repository of high-dimensional biomedical data.4 The LungCancer data set con-
sists of samples of lung adenocarcinomas, squamous cell lung carcinomas, pul-
monary carcinoid, small-cell lung carcinomas, and normal lung described by 12600
genes. The Leukemia data set contains six subtypes of pediatric acute lymphoblas-
tic leukemia samples and one group samples that do not fit in any of the above six
subtypes, and each sample is described by 12558 genes.

UCI Data. In addition to the high-dimensional data above, we also used some
UCI data sets in lower dimensionality.5 The ecoli data set is about the information
of cellular localization sites of proteins. The page-blocks data set contains the
information of five type blocks of the page layout of a document that is detected by
a segmentation process. The pendigits and letter data sets contain the infor-
mation of handwritings. The pendigits data set includes the number information
of 0–9, while the letter data set contains the letter information of A–Z .

Note that for each data set in Table 2.4, the experiment was conducted ten times
to void the randomness, and the average value is presented.

2.4.2 The Evidence of the Uniform Effect of K-means

Here, we illustrate the uniform effect of K-means clustering. In the experiment,
we first used CLUTO with default settings to cluster the input data sets, and then

3 http://www.research.att.com/~lewis.
4 http://sdmc.i2r.a-star.edu.sg/rp/
5 http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.research.att.com/~lewis.
http://sdmc.i2r.a-star.edu.sg/rp/
http://www.ics.uci.edu/~mlearn/MLRepository.html
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Table 2.5 Experimental results on real-world data sets

Data S̄ ST D0 ST D1 CV0 CV1 DCV E

fbis 145 139 80 0.96 0.55 0.41 0.345
hitech 384 190 140 0.50 0.37 0.13 0.630
k1a 117 117 57 1.00 0.49 0.51 0.342
k1b 390 513 254 1.32 0.65 0.66 0.153
la2 513 264 193 0.52 0.38 0.14 0.401
ohscal 1116 297 489 0.27 0.44 −0.17 0.558
re0 116 174 45 1.50 0.39 1.11 0.374
re1 66 92 22 1.39 0.32 1.06 0.302
sports 1226 1253 516 1.02 0.42 0.60 0.190
tr23 34 32 14 0.93 0.42 0.51 0.418
tr45 69 46 30 0.67 0.44 0.23 0.329
wap 78 81 39 1.04 0.49 0.55 0.313
LungCancer 41 55 26 1.36 0.63 0.73 0.332
Leukemia 46 27 17 0.58 0.37 0.21 0.511
ecoli 42 49 21 1.16 0.50 0.66 0.326
page-blocks 1095 2138 1029 1.95 0.94 1.01 0.146
letter 769 23 440 0.03 0.57 −0.54 0.683
pendigits 1099 46 628 0.04 0.57 −0.53 0.394
Min 34 23 14 0.03 0.33 −0.54 0.146
Max 1226 2138 1029 1.95 0.94 1.11 0.683

computed the CV values of the cluster sizes. The number of clusters K was set to
the true cluster number for the purpose of comparison.

Table 2.5 shows the experimental results on real-world data sets. As can be seen,
for 15 data sets with relatively large CV0 values, K-means tends to reduce the vari-
ation of the cluster sizes in the clustering results, as indicated by the smaller CV1
values. This means that the uniform effect of K-means exists for data sets with
highly imbalanced true clusters. Indeed, if we look at Eq. (2.13) in Sect. 2.2, this
result implies that the factor ‖ mi − m j ‖2 is dominated by the factor ni n j .

For data sets ohscal, letter, and pendigits with very small CV0 values,
however, K-means increases the variation of the cluster sizes slightly, as indicated by
the corresponding CV1 values. This implies that the uniform effect of K-means is not
significant for data sets with true clusters in relatively uniform sizes. Indeed, accord-
ing to Eq. (2.13) in Sect. 2.2, this result indicates that the factor ni n j is dominated
by the factor ‖ mi − m j ‖2.

2.4.3 The Quantitative Analysis of the Uniform Effect

In this experiment, we attempt to get a quantitative understanding about the uniform
effect of K-means on the clustering results.
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Fig. 2.2 The linear relation-
ship between DCV and CV0.
© 2009 IEEE. Reprinted, with
permission, from Ref. [25]
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between CV1 and CV0. ©
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Figure 2.2 shows the relationship between DCV and CV0, in which all the points
(CV0, DCV ) are fitted into a linear line: y = 0.89x − 0.40. Apparently, the DCV
value increases with the increase of the CV0 value, and y = 0 when x = 0.45 in
the linear fitting line. This indicates that if CV0 > 0.45, K-means clustering tends
to have CV1 < CV0. Otherwise, CV1 > CV0. In other words, 0.45 is the empirical
threshold to invoke the uniform effect of K-means.

Figure 2.3 shows the relationship between CV0 and CV1 for all the experimental
data sets listed in Table 2.4. Note that there is a link between CV0 and CV1 for every
data set. An interesting observation is that, while the range of CV0 is between 0.03
and 1.95, the range of CV1 is restricted into a much narrower range from 0.33 to
0.94. So we have the empirical value range of CV1: [0.3, 1].
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Fig. 2.4 Illustration of the
biased effect of the entropy
measure. © 2009 IEEE.
Reprinted, with permission,
from Ref. [25]
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2.4.4 The Evidence of the Biased Effect of the Entropy Measure

In this subsection, we present the biased effect of the entropy measure on the cluster-
ing results of K-means. Figure 2.4 shows the entropy values of the clustering results
of all 18 data sets. A general trend is that while the difference of the cluster size dis-
tributions before and after clustering increases with the increase of CV0, the entropy
value tends to decrease. In other words, there is a disagreement between DCV and
the entropy measure on evaluating the clustering quality. Entropy indicates a higher
quality as CV0 increases, but DCV denies this by showing that the distribution of the
clustering result is getting farther away from the true distribution. This observation
well agrees with our analysis in Sect. 2.3 that entropy has a biased effect on K-means.

To further illustrate the biased effect of entropy, we also generated two groups of
synthetic data sets. These data sets have wide ranges of distributions of true clus-
ter sizes. The first group of synthetic data sets was derived from the pendigits
data set. We applied the following sampling strategy: (1) The original data set was first
sampled to get a sample of 10 classes, each of which contains 1000, 100, 100, . . . , 100
objects, respectively; (2) To get data sets with decreasing CV0 values, the size of the
largest class was gradually reduced from 1000 to 100; (3) To get data sets with increas-
ing CV0 values, the sizes of the remaining nine classes were gradually reduced from
100 to 30. A similar sampling strategy was also applied to the letter data set for
generating the second group of synthetic data sets. Note that we repeated sampling
a data set ten times, and output the average evaluation of the clustering results.

Figures 2.5 and 2.6 show the clustering results evaluated by the entropy measure
and DCV , respectively. A similar trend can be observed; that is, the entropy value
decreases as the CV0 value increases. This further justifies the existence of the biased
effect of the entropy measure on the clustering result of K-means.
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Fig. 2.5 The biased effect of entropy: synthetic data from pendigits. © 2009 IEEE. Reprinted,
with permission, from Ref. [25]

0

2

CV0

D
C

V

0 0.5 1 1.5 2 2.5
0.4

0.6

E
nt

ro
py

Entropy
DCV

Fig. 2.6 The biased effect of entropy: synthetic data from letter. © 2009 IEEE. Reprinted, with
permission, from Ref. [25]

2.4.5 The Hazard of the Biased Effect

Having the biased effect, it is very dangerous to use the entropy measure for the
validation of K-means. To illustrate this, we selected five data sets with high CV0
values, i.e. re0, re1, wap, ecoli, and k1a, for experiments. We did K-means
clustering on these data sets, and labeled each cluster by the label of the members in
majority. We found that many true clusters were disappeared in the clustering results.
Figure 2.7 shows the percentage of the disappeared true clusters in the clustering
results. As can be seen, every data set has a significant number of true clusters
disappeared. For the re0 data set (CV0 = 1.502), even more than 60 % true clusters
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Fig. 2.7 The percentage of
the disappeared true clusters
in highly imbalanced data. ©
2009 IEEE. Reprinted, with
permission, from Ref. [25]
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Fig. 2.8 The percentage of
the disappeared true clusters
in relatively balanced data. ©
2009 IEEE. Reprinted, with
permission, from Ref. [25]
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disappear after K-means clustering! In sharp contrast, as shown in Fig. 2.7, very
low entropy values were achieved for these five data sets, which imply that the
performance of K-means clustering is “excellent”. This experiment clearly illustrates
the hazard of the biased effect of entropy.

For the purpose of comparison, we also conducted a similar experiment on five
data sets with low CV0 values. Figure 2.8 shows the percentage of the disappeared
true clusters. An interesting observation is that, compared to the results of data sets
with high CV0 values, the percentages of the disappeared true clusters become much
smaller, and the entropy values increase. In other words, the entropy measure is more
reliable for data sets with relatively uniform true cluster sizes.
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2.5 Related Work

People have investigated K-means clustering from various perspectives. Many data
factors, which may strongly affect the performance of K-means clustering, have been
identified and addressed. In the following, we highlight some research results which
are most related to the main theme of this chapter.

First, people have studied the impact of high dimensionality on the performance
of K-means clustering, and found that the traditional Euclidean notion of proximity is
not very effective for K-means clustering on real-world high-dimensional data, such
as gene expression data and document data. To meet this challenge, one research
direction is to make use of dimension reduction techniques, such as Multidimen-
sional Scaling (MDS) [2], Principal Components Analysis (PCA) [15], and Singular
Value Decomposition (SVD) [6]. Also, several feature transformation techniques
have been proposed for high-dimensional document data, such as Latent Seman-
tic Indexing (LSI), Random Projection (RP), and Independent Component Analysis
(ICA). In addition, feature selection techniques have been widely used, and a detailed
discussion and comparison of these techniques have been provided by Tang et al.
[24]. Another direction for this problem is to redefine the notions of proximity, e.g.
by the Shared Nearest Neighbors (SNN) similarity introduced by Jarvis and Patrick
[14]. Finally, some other similarity measures, e.g. the cosine measure, have also
shown appealing effects on clustering document data [29].

Second, it has been recognized that K-means has difficulty in detecting the “nat-
ural” clusters with non-globular shapes [13, 23]. To address this, one research direc-
tion is to modify the K-means clustering algorithm. For instance, Guha et al. [9]
proposed the CURE method which makes use of multiple representative points to
get the shape information of the “natural” clusters. Another research direction is to
use some non-prototype-based clustering methods which usually perform better than
K-means on data in non-globular or irregular shapes [23].

Third, outliers and noise in the data can also degrade the performance of clus-
tering algorithms [16, 27, 30], especially for prototype-based algorithms such as
K-means. To deal with this, one research direction is to incorporate some outlier
removal techniques before conducting K-means clustering. For instance, a simple
method of detecting outliers is based on the distance measure [16]. Breunig et al.
[4] proposed a density based method using the Local Outlier Factor (LOF) for the
purpose of identifying outliers in data with varying densities. There are also some
other clustering based methods to detect outliers as small and remote clusters [21],
or objects that are farthest from their corresponding cluster centroids [18]. Another
research direction is to handle outliers during the clustering process. There have been
serval techniques designed for such purpose. For example, DBSCAN automatically
classifies low-density points as noise points and removes them from the clustering
process [8]. Also, SNN density-based clustering [7] and CURE [9] explicitly deal
with noise and outliers during the clustering process.

Fourth, many clustering algorithms that work well for small or medium-size
data are unable to handle large-scale data. Along this line, a discussion of scaling
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K-means clustering to large-scale data was provided by Bradley et al. [3]. A broader
discussion of specific clustering techniques can be found in [19]. Some representative
techniques include CURE [9], BIRCH [28], and so on.

Finally, some researchers have identified some other factors, such as the types
of attributes and data sets, that may impact the performance of K-means clustering.
However, in this chapter, we focused on understanding the uniform effect of K-means
and the biased effect of the entropy measure, which have not been systematically
studied in the literature.

2.6 Concluding Remarks

In this chapter, we present an organized study on K-means clustering and cluster
validation measures from a data distribution perspective. We first theoretically illus-
trate that K-means clustering tends to produce clusters with uniform sizes. We then
point out that the widely adopted validation measure entropy has a biased effect and
therefore cannot detect the uniform effect of K-means. Extensive experiments on a
number of real-world data sets clearly illustrate the uniform effect of K-means and
the biased effect of the entropy measure, via the help of the Coefficient of Variation
statistic. Most importantly, we unveil the danger induced by the combined use of
K-means and the entropy measure. That is, many true clusters will become unidenti-
fiable when applying K-means for highly imbalanced data, but this situation is often
disguised by the low values of the entropy measure.
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Chapter 3
Generalizing Distance Functions for Fuzzy
c-Means Clustering

3.1 Introduction

Fuzzy c-means (FCM) is a well-known partitional clustering method, which allows
an object to belong to two or more clusters with a membership grade between zero and
one [3, 10, 18, 38]. Recently, due to the rich information conveyed by the membership
grade matrix, FCM has been widely used in many real-world application domains
where well-separated clusters are typically not available. In addition, people also
recognize that the simple centroid-based iterative procedure of FCM is very appealing
when dealing with large volumes of data.

In the literature, considerable research efforts have been dedicated to fuzzy
c-means clustering, e.g., adapting FCM to specific domains by modifying the objec-
tive function or the constraints, exploiting new distance functions other than the
squared Euclidean distance for FCM, proving the convergence of the centroid-based
alternating optimization (AO) method of FCM, and improving the computational
efficiency of FCM. Nonetheless, the common characteristics of distance functions
suitable for FCM remain unclear. Further study is still needed to establish a general
understanding that can characterize the interrelationships between the distance func-
tions and the effectiveness of the AO method for FCM. Specifically, in this chapter,
we aim to answer the following two questions:

• Are there more distance functions that can be used for FCM while preserving the
applicability of the centroid-based AO method for FCM?
• What are the necessary and sufficient conditions for such distance functions?

The answers to the above questions are valuable since (1) diversified distance
functions can provide extra flexibility when clustering data with substantially distinct
features, and (2) the centroid-based AO method is very simple and often leads to a
quick convergence. Along this line, in this chapter, we provide an organized study
of the generalization issues of distance functions for FCM. The major contributions
of this research are summarized as follows:
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First, we propose a strict definition for distance functions that fit fuzzy c-means
directly. That is, a distance function fits FCM directly, if and only if the iteration
sequence generated by the centroid-based AO method can lead to the continuous
decrease of the objective function value, and result in a global convergence. This
definition distinguishes this study from the existing ones, which introduce distance
functions to FCM by using computationally more expensive optimization methods.
Finally, by definition, the directly-fit distance functions can preserve the simplicity
and high efficiency of FCM via using centroids of arithmetic means.

Second, we show that any distance function that fits FCM directly can be derived
from a continuously differentiable convex function. As they share a same mathe-
matical expression, we call them the point-to-centroid distance (P2C-D). In other
words, a distance function fits FCM directly only if it is a P2C-D (i.e., an instance
of P2C-D). We further divide P2C-D into two categories according to the convexity
of the derivation function. We show that Type-I P2C-D is the well-known Bregman
divergence derived by strictly convex functions. However, the widely used cosine
similarity belongs to Type-II P2C-D, which is derived by convex-but-not-strictly-
convex functions. To the best of our knowledge, this study is the first one to explore
how to use Type-II P2C-D for FCM.

Third, we strictly prove that if the membership grade matrix is nondegenerate,
the point-to-centroid distance indeed fits FCM directly. This is done by proving the
global convergence of the iteration sequence generated by the centroid-based AO
method. When there is degeneration for Type-II P2C-D, we also provide a feasible
solution which still guarantees the convergence of the FCM iterations. As a result,
we eventually establish the general theory that a distance function fits FCM directly
if and only if it is a point-to-centroid distance. As a “side product”, we also point
out that the point-to-centroid distance is also the generalized distance function of
K-means clustering, which is actually a special case of FCM when the fuzzy factor
m → 1.

Finally, we conduct experiments on both synthetic and real-world data sets. The
results demonstrate the global convergence of FCM using various point-to-centroid
distances. Also, there are strong evidences that adapting the right distance functions
for data sets in different application domains can improve the clustering quality
substantially.

The remainder of this chapter is organized as follows. Section 3.2 describes the
FCM method and defines the problem. In Sect. 3.3, we introduce the point-to-centroid
distance. Section 3.4 shows the global convergence of FCM using the point-to-
centroid distance. In Sect. 3.5, we give some examples of the point-to-centroid
distance. Section 3.6 presents experimental results. Finally, we describe the related
work in Sect. 3.7 and draw conclusions in Sect. 3.8.
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3.2 Preliminaries and Problem Definition

In this section, we first introduce the Zangwill’s global convergence theorem and the
fuzzy c-means method. Then, we define the problem to be studied in this chapter.

3.2.1 Math Notations

Vectors are presented by bold-faced and lower-case alphabets, e.g., x and v. Matrices
are represented by bold-faced and upper-case alphabets, e.g., U and V . Sets are
represented by calligraphic upper-case alphabets, e.g., S and I . Let R, R+, R++,
R

d , and R
cd denote the sets of reals, non-negative reals, positive reals, d-dimensional

real vectors, and c×d real matrix, respectively. Let Z denote the sets of integers, and
Z+, Z++, Z

d , and Z
cd are defined analogously. For real vector x, ‖x‖ denotes the

l2 norm, and xT denotes the transposition. For a multivariate function f , domi ( f )

denotes the domain of the i th variable. We use fx to denote the first-order partial
derivative of f w.r.t. variable x , and fxy to denote the second-order partial derivative
accordingly. The gradient of f w.r.t. x is represented by ∇x f . ln and log are used to
represent the natural logarithm and the logarithm of base 2, respectively.

3.2.2 Zangwill’s Global Convergence Theorem

Many clustering algorithms can be formulated as the optimization of some objective
functions, e.g., the fuzzy c-means algorithm, the mixture model, and the K-means
algorithm. To solve the optimization problems, an Alternating Optimization (AO)
method is often employed, which iteratively produces a sequence of solutions with
the hope of approaching the optimal solution(s). However, not all the sequences
generated by AO can converge to the solution set. To clarify this, the global conver-
gence theorem proposed by Zangwill [29, 52] is often used, which establishes some
technical conditions for which convergence is guaranteed. In what follows, we state
without proof the specific results of the global convergence theorem.

Theorem 3.1 ([52]) Let A be an algorithm on X , and suppose that, given x(0)

the sequence (x(l))∞l=0 is generated satisfying x(l+1) ∈ A(x(l)). Let a solution set
� ⊂X be given, and suppose

1. all points x(l), l = 0, 1, . . . are contained in a compact set S ⊂X ;
2. there is a continuous function f on X such that

– if x /∈ �, then f ( y) < f (x) for any y ∈ A(x),
– if x ∈ �, then f ( y) ≤ f (x) for any y ∈ A(x);

3. the mapping A is closed at points outside �.

Then the limit of any convergent subsequence of (x(l))∞l=0 is a solution.
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Remark The construction of a suitable solution set is often the key point when using
this theorem. Also note that “global” here means the starting point of the sequence
can be arbitrary, but is not the guarantee that the algorithm converges to the global
optimum.

To establish the closeness of a point-to-set mapping A for Theorem 3.1, we also need
the following corollary in [52]:

Corollary 3.1 ([52]) Let C : M 	→ S be a function and B : S 	→ P(S ) is a
point-to-set mapping. Assume that C is continuous at x and B is closed at C(x).
Then A = B ◦ C is closed at x.

3.2.3 Fuzzy c-Means

Fuzzy c-Means (FCM) is a method of clustering which allows one data point to belong
to two or more clusters. Given a data set X = {xk}nk=1 containing n > c distinct
points in d dimensions, FCM aims to minimize the following objective function:

min Jm(U, V ) =
n∑

k=1

c∑

i=1

(uik)
m‖xk − vi‖2, (3.1)

s.t.
c∑

i=1

uik = 1, 1 ≤ k ≤ n, (3.2a)

n∑

k=1

uik > 0, 1 ≤ i ≤ c, (3.2b)

0 ≤ uik ≤ 1, 1 ≤ i ≤ c, 1 ≤ k ≤ n, (3.2c)

where vi ∈ R
d is the centroid of cluster i , 1 ≤ i ≤ c, uik is the membership grade

of xk in cluster i , and m ∈ (1,+∞) is the fuzzy factor. The set of all matrices
in R

cn satisfying Eq. (3.2) is denoted as M f c. Therefore, from an optimization
perspective, the fuzzy c-means problem is to find good partitions U ∈ M f c and
centroids V = (v1, . . . , vc)

T ∈ R
cd such that Jm can be minimized. In [3], the

author gave the necessary conditions for a minimizer (U∗, V ∗) as follows.

Theorem 3.2 ([3]) Let X = {xk}nk=1 contain n > c distinct points and
m ∈ (1,+∞). Let dik = ‖xk − vi‖2, 1 ≤ k ≤ n, 1 ≤ i ≤ c. ∀ k, define the sets
Ik = {i |dik = 0, 1 ≤ i ≤ c} and Ĩk = {1, . . . , c} \ Ik . Then Jm may be globally
minimized only if
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Fig. 3.1 The basic fuzzy
c-means algorithm

v∗i =
n∑

k=1

(u∗ik)m xk/

n∑

k=1

(u∗ik)m, 1 ≤ i ≤ c, (3.3)

and

u∗ik =
(d∗ik)−1/(m−1)

∑c
l=1(d

∗
lk)
−1/(m−1)

, if Ik = ∅, and (3.4a)

u∗ik = 0 ∀ i ∈ Ĩk and
∑

i∈Ik

u∗ik = 1, if Ik �= ∅, (3.4b)

where d∗ik = ‖xk − v∗i ‖2, 1 ≤ k ≤ n, 1 ≤ i ≤ c.

The proof of Theorem 3.2 can be found in pages 67–69 of [3]. Note that the
computations of U∗ and V ∗ in Eqs. (3.3) and (3.4) are interdependent. Therefore, a
natural way to find the solution(s) is to employ an AO method, as shown in Fig. 3.1.

The FCM algorithm in Fig. 3.1 iterates through Steps 5 and 6. Note that in Step 6,
Eq. (3.4b) may not uniquely specify U in case that multiple singularities occur, i.e.,
∃ i �= j, d∗ik = d∗jk = 0 for some xk . However, a particular choice for U still must be
made when implementing FCM. We detail this in the experimental section below. To
further describe the iteration, some notation is given as follows. Let G : M f c 	→ R

cd

be the function defined by G(U) = V = (v1, . . . , vc)
T , where vi is calculated by

Eq. (3.3), ∀ 1 ≤ i ≤ c. Let F : Rcd 	→ P(M f c) denote the point-to-set mapping
defined by F(V ) = {U ∈ M f c|U satisfies Eq. (3.4)}. Then the FCM iteration can
be described by the point-to-set mapping Tm : M f c × R

cd 	→ P(M f c × R
cd) as

follows:
Tm(U, V ) = {(Û, V̂ )|V̂ = G(U), Û ∈ F(V̂ )}. (3.5)

We say that ((U (l), V (l)))∞l=0 is an FCM iteration sequence if U (0) ∈ M f c, V (0) =
G(U (0)), and (U (l), V (l)) ∈ Tm(U (l−1), V (l−1)) for l = 1, 2, . . .. Based on the
above notation, [16] gave an improved proof for the global convergence of the FCM
algorithm, which was originally established in [2].
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Let the solution set � = {(U∗, V ∗) ∈ M f c×R
cd |Jm(U∗, V ∗) ≤ Jm(U, V ∗) ∀U

∈ M f c, and Jm(U∗, V ∗) < Jm(U∗, V ) ∀ V �= V ∗}. Then we have the global
convergence theorem as follows:

Theorem 3.3 ([16]) Given the fuzzy c-means problem defined by Eqs. (3.1)–(3.2),
let (U (0), G(U (0))) be the starting point of iteration with Tm, where U (0) ∈ M f c.
Then the iteration sequence ((U (l), V (l)))∞l=0 either terminates at a point in �, or
there is a subsequence converging to a point in �.

The proof can be found in [16], which is based heavily on the Zangwill’s conver-
gence theorem [52] and the original proof of Bezdek [2]. Theorem 3.3 guarantees
that arbitrary iteration sequences generated by FCM converge, at least along a sub-
sequence, to either a local minimum or a saddle point of Jm .

3.2.4 Problem Definition

Theorems 3.2 and 3.3 show that the AO method represented by Tm can be used
to find a solution for min Jm . This is considered valuable, since (1) computing V
and U through Eqs. (3.3)–(3.4) are very simple, and (2) the global convergence of
the generated sequence is guaranteed. However, this result is based on an important
premise—the distance function used for FCM is the squared Euclidean distance
(i.e., the l2 norm) or its immediate extension to inner product (e.g., the Mahalanobis
distance) [3]. As a natural extension, one may raise questions as follows:

• Are there any more distance functions that can be used for FCM while keeping
the effectiveness of Tm in finding a solution?
• What are the necessary and sufficient conditions for such distance functions?

To answer these questions, we should first adapt the FCM problem to a more
general circumstance. We have the objective function of the Generalized-Distance-
Based Fuzzy c-Means (GD-FCM) as follows:

min Jm f (U, V ) =
c∑

i=1

n∑

k=1

(uik)
m f (xk, vi ), (3.6)

s.t. U ∈ M f c, vi ∈ dom2( f ), ∀1 ≤ i ≤ c,

where f is some distance function, m ∈ (1,+∞), 1 < c < n. Then we give the
definition of the direct fitness of f as follows.

Definition 3.1 ( f ’s Direct Fitness) A distance function f is said to fit GD-FCM
directly, if and only if the iteration sequence generated by Tm in Eq. (3.5) decreases
Jm f monotonically and has a global convergence.

Note that for Tm in Definition 3.1, d∗ik has a more general concept in Eq. (3.4), which
indeed represents f (xk, v∗i ), 1 ≤ k ≤ n, 1 ≤ i ≤ c. Now, we formulate the problem
to be studied as follows:
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Find all the distance functions that fit GD-FCM directly.

Remark Note that, in this study, the introduction of the distance functions that fit
GD-FCM directly does not require to modify the classic fuzzy c-means algorithm
as shown in Fig. 3.1. In other words, Algorithm 1 is also the GD-FCM clustering
algorithm if the directly-fit distances are used. In the literature, some researchers have
used some distance functions other than the squared Euclidean distance for the fuzzy
c-means clustering. However, these distance functions, such as l1 and l∞ norms [5],
l p norm [17], and the modified distances [26], require to modify the optimization
scheme of the classic fuzzy c-means algorithm, and thus are beyond the scope of our
study.

3.3 The Point-to-Centroid Distance

Here, we first derive the general point-to-centroid distance for GD-FCM. Then, we
show the categories of the point-to-centroid distance and some of its mathematical
properties.

3.3.1 Deriving the Point-to-Centroid Distance

Lemma 3.1 Let S ⊆ R
d be a nonempty open convex set, and let f : S ×S 	→

R+ be a differentiable function. If f fits GD-FCM directly, then for any subset
{x1, . . . , xn} ⊂ S , there exist λ1, . . . , λn ∈ [0, 1] with

∑n
k=1 λk > 0 satisfying

n∑

k=1

λk∇ y f (xk, y∗) = 0, (3.7)

where

y∗ =
n∑

k=1

λk xk/

n∑

k=1

λk . (3.8)

Proof As f fits GD-FCM directly, according to Definition 3.1, v∗i =
∑n

k=1(uik )
m xk∑n

k=1(uik )
m

is the minimizer of
∑n

k=1(uik)
m f (xk, vi ), given fixed uik , 1 ≤ k ≤ n, 1 ≤ i ≤ c.

This indicates that
∑n

k=1(uik)
m∇vi f (xk, v∗i ) = 0. Let λk ≡ (uik)

m , y ≡ vi , and the
lemma thus follows. ��
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Lemma 3.2 Let S ⊆ R
d be a nonempty open convex set, and let φ : S 	→ R

be a continuously differentiable function. Then φ is convex if and only if ∀ x, y ∈
S , φ(x)− φ( y)− (x − y)T∇φ( y) ≥ 0. Further, φ is strictly convex if and only if
∀ x �= y, φ(x)− φ( y)− (x − y)T∇φ( y) > 0.

Lemma 3.2 is well-known as the first-order convexity condition. The proof can be
found in pages 69–70 in [6], which we omit here. Now, based on the above two
lemmas, we can derive a necessary condition for f being a distance function that fits
GD-FCM directly. We have the following theorem.

Theorem 3.4 Let S ⊆ R be a nonempty open convex set. Assume f : S ×S 	→
R+ is a continuously differentiable function satisfying: (1) f (x, x) = 0, ∀ x ∈ S ;
(2) fy(x, y) is continuously differentiable on x. If f fits GD-FCM directly, there
exists some continuously differentiable convex function φ : S 	→ R such that

f (x, y) = φ(x)− φ(y)− (x − y)φ′(y). (3.9)

Proof According to Lemma 3.1, since f fits GD-FCM directly, ∃ λk ∈ [0, 1],∑n
k=1 λk > 0, we have

n∑

k=1

λk fy(xk, y∗) = 0, (3.10)

where y∗ =∑n
k=1 λk xk/

∑n
k=1 λk . Note that it is trivial to have only one λk > 0 for

Eq. (3.10), which will lead to ∇ y f (xk, y∗) = 0, where y∗ = xk . Therefore, without
loss of generality, we assume λ1, λ2 > 0. Let x ′1 = x1 + δ

λ1
, x ′2 = x2 − δ

λ2
, δ > 0.

Then we have

y∗ =
n∑

k=1

λk xk/

n∑

k=1

λk = (λ1x ′1 + λ2x ′2 +
n∑

k=3

λk xk)/

n∑

k=1

λk .

According to Eq. (3.10), we have

λ1 fy(x ′1, y∗)+ λ2 fy(x ′2, y∗)+
n∑

k=3

λk fy(xk, y∗) = 0. (3.11)

Subtracting Eq. (3.11) by (3.10), and dividing both sides by δ, we have

Δ+ .= fy(x1 + δ
λ1

, y∗)− fy(x1, y∗)
δ
λ1

= fy(x2 − δ
λ2

, y∗)− fy(x2, y∗)
− δ

λ2

.= Δ−. (3.12)
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Let δ → 0, we have f +yx (x1, y∗) = limδ→0 Δ+ = limδ→0 Δ− = f −yx (x2, y∗).
Since fy is continuously differentiable on x , we have fyx (x1, y∗) = fyx (x2, y∗).
Similarly, we have

fyx (xk, y∗) = fyx (xk′ , y∗), ∀ k �= k′. (3.13)

Note that Eq. (3.13) holds for any subset {x1, . . . , xn} ⊂ S with y∗ =∑n
k=1 λk xk/

∑n
k=1 λk , which implies that x is not the variable of fyx . Let fyx (x, y) =

−h(y). Integrating fyx w.r.t. x , we have

fy(x, y) = −h(y)x + I (y). (3.14)

Recall Eq. (3.10). If we substitute “ fy(xk, y∗)” in Eq. (3.10) by “−h(y∗)xk +
I (y∗)” according to Eq. (3.14), we have

−h(y∗)
n∑

k=1

λk xk + I (y∗)
n∑

k=1

λk = 0.

Since y∗ is the λ-weighted arithmetic mean of xk , 1 ≤ k ≤ n, i.e.,
∑n

k=1 λk xk =
y∗

∑n
k=1 λk , we have

(−h(y∗)y∗ + I (y∗))
n∑

k=1

λk = 0.

Since
∑n

k=1 λk > 0, we have I (y∗) = h(y∗)y∗. Due to the arbitrariness of y∗,
we finally have I (y) = h(y)y. Accordingly, we have

fy(x, y) = (y − x)h(y). (3.15)

Let φ be a continuously differentiable function such that φ′(y) = ∫
h(y)dy. Since

f (x, x) = 0, we have

f (x, y) =
y∫

x

(y − x)h(y)dy =
y∫

x

(y − x)dφ′(y)

= φ(x)− φ(y)− (x − y)φ′(y). (3.16)

Furthermore, since f (x, y) ≥ 0, according to Lemma 3.2, φ is convex. We com-
plete the proof. ��

Theorem 3.4 is only for data points of one dimension. It is valuable to extend it
to the multi-dimensional data case as follows.
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Theorem 3.5 Let S ⊆ R
d be a nonempty open convex set. Assume f : S ×S 	→

R+ is a continuously differentiable function satisfying: (1) f (x, x) = 0, ∀ x ∈ S ;
(2) fy j (x, y) is continuously differentiable on xl , 1 ≤ j, l ≤ d. If f fits GD-FCM
directly, there exists a continuously differentiable convex function φ : S 	→ R such
that

f (x, y) = φ(x)− φ( y)− (x − y)T∇φ( y). (3.17)

Proof According to Lemma 3.1, since f fits GD-FCM directly, ∃ λk ∈ [0, 1],∑n
k=1 λk > 0, we have

n∑

k=1

λk fy j (xk, y∗) = 0, 1 ≤ j ≤ d, (3.18)

where y∗ = ∑n
k=1 λk xk/

∑n
k=1 λk . Similar to the limit analysis in the proof of

Theorem 3.4, we have

fy j (x, y) = ( y − x)T h j ( y) =
d∑

p=1

(yp − x p)h pj ( y), 1 ≤ j ≤ d, (3.19)

where h j is the vector of some unknown functions for fy j , and h pj is the pth
dimension of h j . Accordingly, for all 1 ≤ j, l ≤ d, we have

fy j yl (x, y) =
d∑

p=1

(yp − x p)(h pj )yl ( y)+ hl j ( y), (3.20)

fyl y j (x, y) =
d∑

p=1

(yp − x p)(h pl)y j ( y)+ h jl( y). (3.21)

Since fy j yl = fyl y j , and x and y can take arbitrary values in S , we have

h jl( y) = hl j ( y), 1 ≤ j, l ≤ d, (3.22)

and
(h jp)yl = (h pj )yl = (h pl)y j = (hlp)y j , 1 ≤ j, l, p ≤ d. (3.23)

Equation (3.23) implies that (h1p, h2p, . . . , hdp)
T is an exact differential form

[11, 23], p = 1, . . . , d. Therefore, there exists a function φp such that

∇φp = hp, p = 1, . . . , d. (3.24)

Furthermore, according to Eq. (3.22),
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∂φ j

∂yl
= hl j = h jl = ∂φl

∂y j
. (3.25)

Therefore, (φ1, φ2, . . . , φd)T is also an exact differential form. Accordingly, there
also exists a function φ such that

∇φ = (φ1, φ2, . . . , φd)T . (3.26)

As a result, we have φy j yl = hl j , 1 ≤ j, l ≤ d. Then Eq. (3.19) can be rewritten
as

fy j (x, y) = ( y−x)T∇φy j ( y) = ∂

∂y j
(−φ( y)−(x− y)T∇φ( y)+I (x)), 1 ≤ j ≤ d.

Since f (x, x) = 0, we finally have

f (x, y) = φ(x)− φ( y)− (x − y)t∇φ( y).

Moreover, since f ≥ 0, φ is convex according to Lemma 3.2. We complete the
proof. ��
Definition 3.2 (Point-to-Centroid Distance) Let S ⊆ R

d be a nonempty open con-
vex set. A twice continuously differentiable function f : S ×S 	→ R+ is called a
point-to-centroid distance, if there exists some higher-order continuously differen-
tiable convex function φ : S 	→ R such that

f (x, y) = φ(x)− φ( y)− (x − y)T∇φ( y). (3.27)

Remark Actually, the “higher-order” in Definition 3.2 is not necessary, since we only
need to guarantee that fy j (x, y) is continuously differentiable on xl , 1 ≤ j, l ≤ d.
However, considering that it is not likely that we will use a “weird” φ for f , the
“higher-order” is indeed a comfortable request.

Corollary 3.2 Let S ⊆ R
d be a nonempty open convex set. Assume f : S ×S 	→

R+ is a twice continuously differentiable function. Then f fits GD-FCM directly only
if f is a point-to-centroid distance.

As the widely used K-means clustering [30] is a special case of FCM when the fuzzy
factor m → 1, Theorem 3.5 also holds for K-means clustering, which leads to the
following corollary:

Corollary 3.3 Let S ⊆ R
d be a nonempty open convex set. Assume f : S ×S 	→

R+ is a twice continuously differentiable function. Then f fits K-means directly only
if f is a point-to-centroid distance.
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3.3.2 Categorizing the Point-to-Centroid Distance

According to Definition 3.2, the point-to-centroid distance is indeed a family of
distance functions which are derived from different φ functions. Hereinafter, we use
f φ to denote the point-to-centroid distance for simplicity. We then categorize f φ in
terms of the convexity of φ as follows.

Definition 3.3 ( f φ’s Categories) The point-to-centroid distances can be divided
into two categories:

• f φ
I : Type-I point-to-centroid distances which are derived from strictly convex φ

functions.
• f φ

I I : Type-II point-to-centroid distances which are derived from convex-but-not-
strictly-convex φ functions.

It is interesting to note that f φ
I has the same expression as the well-known Bregman

divergence (although we have an extra “higher-order” request for φ in deriving f φ),
which was first introduced by Bregman [7], and recently well studied by Banerjee et
al. [1]. To further understand the differences between the two types of f φ , we have
a lemma as follows.

Lemma 3.3 Let S ⊆ R
d be a nonempty open convex set, and let f φ : S ×S 	→

R+ be a point-to-centroid distance. Then φ is strictly convex, if and only if for any
subset {x1, . . . , xn} ⊂ S , there exist λ1, . . . , λn ∈ [0, 1] with

∑n
k=1 λk > 0 such

that y∗ =∑n
k=1 λk xk/

∑n
k=1 λk is the unique minimizer of

∑n
k=1 λk f (xk, y).

Proof ∀ y ∈ S , it is easy to note that

Δ =
n∑

k=1

λk f (xk, y)−
n∑

k=1

λk f (xk, y∗) = f ( y, y∗)
n∑

k=1

λk ≥ 0. (3.28)

By Lemma 3.3, φ is strictly convex⇐⇒ ∀ y ∈ S , y �= y∗, f ( y, y∗) > 0⇐⇒
y∗ is the unique minimizer of

∑n
k=1 λk f (xk, y). We complete the proof. ��

Remark Lemma 3.3 reveals the interrelationship between the convexity of φ and the
uniqueness of centroids as the minimizer of Jm f . That is, given U fixed, the centroids
computed by Eq. (3.3) constitute the unique minimizer of Jm f , if φ is strictly convex.
However, if φ is convex-but-not-strictly-convex, Jm f will have multiple minimizers
other than the centroids.

3.3.3 Properties of the Point-to-Centroid Distance

Here we study some important properties of the point-to-centroid distance. In par-
ticular, we pay special attention to the differences between f φ

I and f φ
I I .
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1. Positive Definiteness. f φ
I is positively definite, since f φ

I (x, y) = 0⇔ x = y.

However, f φ
I I is merely non-negative rather than positively definite, for x = y

is only the sufficient condition for f φ
I I (x, y) = 0.

2. Symmetry. f φ is asymmetric in nature for measuring the distance from data
points to centroids. However, some members of f φ family do have the symmetric
property due to their special φ functions, e.g., the squared Euclidean distance.

3. Triangle Equality. f φ does not hold the triangle equality. Specifically, we have

f φ(x1, x2)+ f φ(x2, x3)− f φ(x1, x3)

= (x1 − x2)
t (∇φ(x3)−∇φ(x2))︸ ︷︷ ︸

(a)

.

It is easy to show, ∀ x1, x2, x3 ∈ dom(φ), (a) ≥ 0 ⇔ ∇φ(x) = c⇔ φ(x) =
cT x + c′ ⇔ f φ = 0, where c and c′ are constant vectors. Therefore, any non-
trivial member of f φ does not hold the triangle inequality, and thus is not a
metric.

4. Linearity. f φ is a linear operator. That is,

f φ1+φ2 = f φ1 + f φ2 , and f cφ = c f φ.

5. Convexity. Given a point-to-distance function f φ , we have

f φ
xi x j

(x, y) = φxi x j (x), ∀ i, j.

Since φ is convex, f φ is convex in x. Furthermore, we have

f φ
yi y j

(x, y) = φyi y j ( y)− (x − y)T∇φyi y j ( y).

Therefore, f φ is convex in y ⇔ ∇φyi y j ( y) = 0 ⇔ φyi y j = c, where c is a
constant. This implies that f φ is convex in y if and only if φ is a quadratic,
linear or constant function, e.g., φ( y) = ‖ y‖2.

3.4 The Global Convergence of GD-FCM

In Sect. 3.3.1, we derive f φ and show that if a function fits GD-FCM directly, it must
be a point-to-centroid distance. In this section, we continue to prove the sufficient
condition. That is, all the point-to-centroid distances indeed fit GD-FCM directly.
To that end, recall Definition 3.1, we need to prove that for GD-FCM using f φ ,
the iteration sequence (or one of its subsequences) generated by Tm has a global
convergence. Note that our proof below is influenced by [2, 16], which established
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the convergence theorem for FCM using the squared Euclidean distance. We begin
by the f φ

I case.

Let S ⊆ R
d be a nonempty open convex set, and f φ

I : S × S 	→ R+ be a
Type-I point-to-centroid distance used in GD-FCM. Let X = {xk}nk=1 ⊂ S contain
n > c distinct points. Fix the fuzzy factor m > 1. For V = (v1, . . . , vc)

T , we say
V ∈ S c if and only if vi ∈ S for all 1 ≤ i ≤ c. We first have the following lemmas.

Lemma 3.4 Fix V ∈ S c. Then the set of global minimizers of Jm f (U) is the subset
of M f c satisfying

u∗ik =
(dik)

−1/(m−1)

∑c
l=1(dlk)−1/(m−1)

, if Ik = ∅, and (3.29a)

u∗ik = 0 ∀ i ∈ Ĩk and
∑

i∈Ik

u∗ik = 1, if Ik �= ∅, (3.29b)

where dik = f φ
I (xk, vi ), ∀ i, k, and Ik = {i |dik = 0, 1 ≤ i ≤ c} and Ĩk =

{1, . . . , c} \ Ik, ∀ k.

Proof Since the proof has nothing to do with the specific form of dik , we only need
to prove that the lemma holds for the square Euclidean distance, which indeed has
been given by Proposition 1 of [16]. ��
Lemma 3.5 Fix U ∈ M f c, then V ∗ = (v∗1, . . . , v∗c)T satisfying

v∗i =
n∑

k=1

(uik)
m xk/

n∑

k=1

(uik)
m, 1 ≤ i ≤ c, (3.30)

is the unique global minimizer of Jm f (V ).

Proof Let Δ = Jm f (V ) − Jm f (V ∗). Given f φ
I (x, y) = φ(x) − φ( y) − (x −

y)T∇ yφ( y), according to Eq. (3.6), we have

Δ =
c∑

i=1

n∑

k=1

(μik)
m(φ(v∗i )− φ(vi ))− A + B, (3.31)

where A = ∑n
k=1(μik)

m(xk − vi )
T∇φ(vi ) and B = ∑n

k=1(μik)
m(xk − v∗i )T

∇φ(v∗i )). Since v∗i is the (μik)
m-weighted arithmetic mean of xk (1 ≤ k ≤ n)

in Eq. (3.30), we have A =∑n
k=1(μik)

m(v∗i − vi )
T∇φ(vi ) and B = 0. As a result,
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Δ =
c∑

i=1

n∑

k=1

(μik)
m(φ(v∗i )− φ(vi )− (v∗i − vi )

T∇φ(vi ))

=
c∑

i=1

f φ
I (v∗i , vi )

n∑

k=1

(μik)
m .

Since
∑n

k=1(uik)
m > 0 and f φ

I ≥ 0, we have Δ ≥ 0, which implies
that V ∗ is a global minimizer. Furthermore, since φ is strictly convex, we have
∀ V �= V ∗, f φ

I (vi , v∗i ) > 0 ⇒ Δ > 0, which indicates that V ∗ is the only global
minimizer. ��

Based on the above lemmas, we can formally define the Tm f mapping for GD-
FCM as follows:

Definition 3.4 (Tm f for GD-FCM) Let G be the function defined by G(U) = V =
(v1, . . . , vc)

T , where vi satisfies Eq. (3.30), 1 ≤ i ≤ c. Let F denote the point-
to-set mapping defined by F(V ) = {U |U satisfies Eq. (3.29)}. Then the GD-FCM
iteration can be described by the point-to-set mapping Tm f as follows:

Tm f (U, V ) = {(Û, V̂ )|V̂ = G(U), Û ∈ F(V̂ )}. (3.32)

For the range of Tm f , we have the following lemma:

Lemma 3.6 Let U (0) ∈ M f c, V (0) = G(U (0)), and (U (l), V (l)) ∈ Tm f (U (l−1),

V (l−1)), l = 1, 2, . . .. Then ∀ l, (U (l), V (l)) ∈ P(M f c ×S c).

Proof First assume U (l) ∈ P(M f c), l = 1, 2, . . .. According to Eq. (3.30),

v(l)
i =

n∑

k=1

wik xk, 1 ≤ i ≤ c, (3.33)

where wik = (u(l)
ik )m/

∑n
k=1(u

(l)
ik )m . Therefore, we have wik ∈ [0, 1] and

∑n
k=1

wik = 1, which implies that v(l)
i ∈ Conv(X ) ⊆ S ⇒ V (l) ∈ S c. So it remains to

show that U (l) ∈ P(M f c).
It is obvious that U (l) in Eq. (3.29) satisfies Constraints 3.2a, c of M f c. To meet

Constraint 3.2b, we should guarantee that U (l) will not degenerate. Suppose ∃ 1 ≤
r ≤ c such that (urk)

(l) = 0 ∀ k. As we know, given a specific k, if (dik)
(l) > 0 ∀ i ,

then (urk)
(l) > 0, which contradicts the degeneration assumption. So ∀ k, ∃ i such

that (dik)
(l) = f φ

I (xk, (vi )
(l)) = 0, which implies that (vi )

(l) = xk for φ is strictly
convex. Recall that X contains n > c distinct points, we should therefore have n
distinct centroids, which leads to the contradiction. We complete the proof. ��
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Remark Lemma 3.6 shows that for f φ
I , Tm f : M f c ×S c 	→ P(M f c ×S c), with

G : M f c 	→ S c and F : S c 	→ P(M f c). This is crucial for the proof of the
closeness of Tm f below.

Then we continue to prove that Tm f decreases Jm f monotonically. More importantly,
the decrease is strict for (U, V ) not in the solution set. We have the following descent
theorem.

Theorem 3.6 Let � = {(U∗, V ∗) ∈ M f c ×S c|

Jm f (U∗, V ∗) ≤ Jm f (U, V ∗), ∀ U ∈ M f c, and (3.34)

Jm f (U∗, V ∗) < Jm f (U∗, V ), ∀ V ∈ S c, V �= V ∗} (3.35)

be the solution set, and let (Ū, V̄ ) ∈ M f c × S c. Then ∀ (Û, V̂ ) ∈ Tm f (Ū, V̄ ),

Jm f (Û, V̂ ) ≤ Jm f (Ū, V̄ ), with the strictness in the inequality if (Ū, V̄ ) /∈ �.

Proof According to Lemmas 3.4 and 3.5, ∀ (Û, V̂ ) ∈ Tm f (Ū, V̄ ) we have

Jm f (Û, V̂ ) ≤ Jm f (Ū, V̂ ) ≤ Jm f (Ū, V̄ ). (3.36)

Suppose (Ū, V̄ ) /∈ �, which means that either Eq. (3.34) or Eq. (3.35) is violated.
Without loss of generality, assume Eq. (3.35) does not hold. It follows that ∃ V ′ ∈
S c and V ′ �= V̄ , Jm f (Ū, V̄ ) ≥ Jm f (Ū, V ′). According to Lemma 3.5, given
U = Ū fixed, V̂ is the unique global minimizer, which implies that Jm f (Ū, V̂ ) <

Jm f (Ū, V̄ ). We then have Jm f (Û, V̂ ) < Jm f (Ū, V̄ ) accordingly.
Now assume Eq. (3.35) holds but Eq. (3.34) does not hold. We have V̄ = V̂ . By

the similar reasoning, we have ∃U ′ ∈ M f c, Jm f (U ′, V̂ ) < Jm f (Ū, V̂ ). By Lemma
3.4, we further have Jm f (Û, V̂ ) ≤ Jm f (U ′, V̂ ), which implies that Jm f (Û, V̂ ) <

Jm f (Ū, V̂ ) = Jm f (Ū, V̄ ). ��
Theorem 3.7 The point-to-set mapping Tm f : M f c × S c 	→ P(M f c × S c) is
closed at every point in M f c ×S c.

Proof If there is no singularity, we have Tm f : M f c ×S c 	→ M f c ×S c, and F
is continuous on S c. Furthermore, since G is continuous on M f c, we have Tm f is
continuous on M f c × S c, which indicates that Tm f is closed on M f c × S c. For
the case that the singularity happens, the proof is more complicated. According to
Zangwill’s Corollary in Sect. 3.2, we should prove that F is closed onS c. In Theorem
2 of [16], Hathaway et al. provided a proof for the squared Euclidean distance case.
The proof can be adapted to our general case using f φ

I . So we omit it here. ��
Theorem 3.8 Let (U (0), V (0)), U (0) ∈ M f c and V (0) = G(U (0)), be the starting
point of iteration with Tm f . Then the iteration sequence {(U (l), V (l))}, l = 1, 2, . . .

is contained in a compact subset of M f c ×S c.
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Proof By Lemma 3.6, V (l) ∈ Conv(X )c ⊆ S c. So (U (l), V (l)) ∈ M f c ×
Conv(X )c, l = 1, 2, . . .. Since X has finite points, Conv(X ) is bounded and
closed, and thus Conv(X )c is compact. Moreover, since uik ∈ [0, 1] ∀ i, k, M f c is
bounded. So it remains to show M f c is closed. In T6.2 of [3], the author proved that
M f co = Conv(Mco), where M f co is the superset of M f c obtained by relaxing Con-
straint (3.2b), and Mco is the hard version of M f co obtained by letting uik ∈ {0, 1}
instead. As pointed out in Lemma 3.6, U is nondegenerate, so M f c = M f co, we
therefore have M f c = Conv(Mco). Then by an argument similar to V (l) above, we
can establish the compactness of M f c. ��

Now, assembling the descent property and the closeness of Tm f , and the compact-
ness of the domain, we can establish the global convergence theorem for GD-FCM.
Let � be the solution set defined in Theorem 3.6, we have:

Theorem 3.9 Let (U (0), V (0)), U (0) ∈ M f c and V (0) = G(U (0)), be the starting
point of iteration with Tm f . Then the iteration sequence ((U (l), V (l)))∞l=0, or one of
its subsequences converges to a point in �.

Proof According to Theorems 3.6, 3.7 and 3.8, and the Zangwill’s global conver-
gence theorem, we have the global convergence of GD-FCM. ��

Now we extend the above convergence results to the f φ
I I case. That is, for GD-

FCM using f φ
I I , if the degeneration of U does not happen, we state without proof

the following facts:

1. Lemma 3.4 holds no matter what the convexity of φ is, i.e., strictly convex or
convex but not strictly convex.

2. In Lemma 3.5, V ∗ is no longer “the unique minimizer” but only one of the global
minimizers. Accordingly, the solution set in the descent theorem (Theorem 3.6)
should be modified to accommodate this change. Details can be found in 4)
below.

3. Lemma 3.6 still holds for the nondegeneration assumption.
4. Since V ∗ is no longer the unique minimizer in (2), to keep the validity of the

descent theorem (Theorem 3.6), we should modify the solution set � to

�′ = {(U∗, V ∗) ∈ M f c ×S c|
Jm f (U∗, V ∗) ≤ Jm f (U, V ∗), ∀ U ∈ M f c, and

Jm f (U∗, V ∗) ≤ Jm f (U∗, V ), ∀ V ∈ S c}. (3.37)

The proof is similar to the proof of Theorem 3.6, so we omit it here.
5. The closeness of Tm f in Theorem 3.7 and the compactness of M f c ×Conv(X )

in Theorem 3.8 still hold.
6. By (4) and (5), using the Zangwill’s convergence theorem, we again have the

global convergence theorem for GD-FCM using f φ
I I .

Note that the above reasoning is based on the assumption that there is no degen-
eration. In fact, in Lemma 3.6, we cannot guarantee the nondegeneration of U in
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theory due to the non-strict convexity of φ. Nevertheless, the occurrence probability
of degeneration is yet very low for real-world data sets, since given n � c it is very
easy to find an xk ∈X such that f (xk, v

(l)
i ) > 0 ∀ i . As a result, in most cases, we

can safely have Tm f : M f c ×S c 	→ P(M f c ×S c) regardless of the convexity of
φ. At the very least, if the degeneration does happen, we still have a remedy for it,
which can also guarantee the descent theorem, the closeness of Tm f and the com-
pactness of the domain. As a result, the global convergence still holds. We detail this
in Appendix.

Finally, we have the necessary and sufficient conditions for a distance function
possessing the direct fitness to GD-FCM as follows:

Theorem 3.10 Let S be a nonempty open convex set. Assume any data set to be
clustered is a subset of S , i.e., X ⊂ S . Then a distance function f : S×S 	→ R+
fits GD-FCM directly if and only if f is a point-to-centroid distance.

Theorem 3.10 also holds for the K-means clustering. Actually, the global con-
vergence of K-means clustering using the point-to-centroid distance is much more
straightforward. Let us revisit the two-phase iteration process of K-means. In the
assignment phase, instances are assigned to the closest centroids, so the objective
function value of K-means will decrease. Then in the update phase, centroids are
updated using the assigned instances, which will continue to decrease the objective
function value according to Lemma 3.5. To sum up, the iteration process of K-means
will decrease the objective function value consistently. Considering that there are
limited combinations of the assignments of instances, K-means using the point-to-
centroid distance will finally converge to a local minimum or a saddle point in a
finite number of iterations. In case of the degeneration, the remedy method intro-
duced in the appendix of this chapter is also suitable for K-means clustering, which
still guarantees the global convergence of K-means. We therefore have the following
corollary:

Corollary 3.4 Let S be a nonempty open convex set. Assume any data set to be
clustered is a subset of S , i.e., X ⊂ S . Then a distance function f : S×S 	→ R+
fits K-means clustering directly if and only if f is a point-to-centroid distance.

3.5 Examples of the Point-to-Centroid Distance

Here, we show some examples of point-to-centroid distance using different φ func-
tions.

Example 3.1 Let S = R
d . Let φ(x) = ‖x‖2 with dom(φ) = S . We have the

well-known squared Euclidean distance d2 : S ×S 	→ R+ as follows:

d2(x, y) = ‖x − y‖2. (3.38)
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Example 3.2 Let S = {x|x ∈ R
d++,

∑d
j=1 x j = 1}. Let φ(x) = ∑d

j=1 x j log x j

with dom(φ) = S . We have the well-known KL-divergence or relative entropy
D : S ×S 	→ R+ as follows:

D(x‖ y) =
d∑

j=1

x j log
x j

y j
. (3.39)

It is easy to show that, d2 and D are the distance functions of f φ
I , for their φ

functions are strictly convex. In what follows, we introduce some examples of f φ
I I .

Example 3.3 Let S = R
d++. Let φ(x) = ‖x‖ with dom(φ) = S . We have a

distance fcos : S ×S 	→ R+ as follows:

fcos(x, y) = ‖x‖ − xT y
‖ y‖ = ‖x‖(1− cos(x, y)). (3.40)

In many applications, data points are first initialized to have unit length, i.e.,
x ← x/‖x‖, before clustering. In that case, fcos reduces to 1− cos(x, y), which is
equivalent to the well-known cosine similarity. Note that cosine similarity has long
been treated as an angle-based similarity rather than a distance function [42, 53]. In
this sense, the point-to-centroid distance provides a general framework for unifying
some well-known distance-based and similarity-based proximity functions.

Example 3.4 Let S = R
d++. Let φ(x) = (

∑d
l=1 wl x

p
l )1/p with dom(φ) = S ,

p > 1 and wl > 0, 1 ≤ l ≤ d. We have a general distance fl p derived from the
weighted l p norm as follows:

fl p (x, y) = φ(x)−
∑d

l=1 wl xl(yl)
p−1

(φ( y))p−1 . (3.41)

Since l p norm is a convex function on R
d for 1 ≤ p < +∞ [8, 49], fl p is a point-

to-centroid distance. Further, it is easy to show that fl p (x, y) = fl p (x, a y) ∀ a > 0,
which indicates that the centroids are not the unique minimizer of Jm f using fl p . So
by Lemma 3.3, φ is a convex-but-not-strictly-convex function, and fl p is a distance

function of f φ
I I . Also, it is interesting to note that, fl2 ≡ fcos when p = 2 and

wl = 1, 1 ≤ l ≤ d. In other words, fcos is a special case of fl p . To understand
this, assume x and y are linearly dependent, i.e., x = a y, a > 0. Then we have
fl p (x, y) = 0. This implies that like fcos , fl p also takes the angle into consideration
when measuring the distance between x and y.

Discussion. In theory, Type-I and Type-II point-to-centroid distances are derived
from φ with different convex properties. Also, employing different distances for
GD-FCM may result in substantially-different clustering results (see the experimental
results below). Nonetheless, from a user perspective, it has no difference in using a
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Table 3.1 Some characteristics of experimental data sets

Data Source #Objects #Atrributes #Classes MinClassSize MaxClassSize CV

Breast-w UCI 699 9 2 241 458 0.44
Ecoli UCI 336 7 8 2 143 1.16
Glass UCI 214 9 6 9 76 0.83
Housing UCI 506 13 229 1 16 0.76
Iris UCI 150 4 3 50 50 0.00
Pageblocks UCI 5473 10 5 28 4913 1.95
Pendigits UCI 10992 16 10 1055 1143 0.04
Wine UCI 178 13 3 48 71 0.19
Dermatology UCI 358 34 6 20 112 0.51
Libras UCI 360 90 15 24 24 0.00
Satimage UCI 4435 36 6 415 1072 0.43

Type-I or Type-II distance for fuzzy c-means clustering, since the clustering process
is the same for the two types of distances, and the computations of centroids are
exactly the same by Eq. (3.30).

3.6 Experimental Results

In this section, we present experimental results to show the clustering performance
of GD-FCM. Specifically, we demonstrate: (1) The global convergence of GD-FCM;
(2) The necessity of GD-FCM in providing diversified distance functions.

3.6.1 Experimental Setup

We first introduce the experimental setup, including the information of the data, the
clustering tools, the distance functions, and the evaluation measures.

Experimental data. In the experiments, we use a number of real-world and syn-
thetic data sets. The details of real-world data sets are listed in Table 3.1. Note that CV
here denotes the coefficient of variation of the class sizes, which reveals the degree of
class imbalance in data. The 1-dimensional synthetic data sets are generated by the
mixture models of four distributions, namely the normal distribution, the binomial
distribution, the Poisson distribution, and the Gamma distribution. Figure 3.2 shows
the probability density functions and the parameters of the four distributions, respec-
tively. For each distribution, we generate a mixture model of three classes, each of
which contains 500 objects sampled from one of the three models. The 2-dimensional
synthetic data sets are all generated by the mixture models of the Gaussian distribu-
tion but with different parameters, as shown in Fig. 3.3. Also, for each distribution,
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Fig. 3.2 The probability density distribution of 1-dimensional synthetic data. a Normal Distribution
b Binomial Distribution c Poisson Distribution d Gamma Distribution. © 2012 IEEE. Reprinted,
with permission, from Ref. [46]

we generate a mixture model of three classes, each of which contains 1000 objects
sampled from one of the three models.

Clustering tools. We coded GD-FCM using MATLAB. Some notable details are
as follows. First, in the implementation, we provided three initialization schemes,
namely the random membership grade scheme [3], the random centroid (selected
from data instances) scheme, and the user-specified centroid scheme. Unless oth-
erwise specified, the first scheme is the default one in the experiments. Second,
we adopted the stopping criterion suggested by Bezdek [3]. In other words, if
‖U (l+1) − U (l)‖ ≤ ε, the procedure suspends, where ‖U‖ is a Frobenius matrix
norm [12], and ε is a user defined threshold with a default value 10−6. Third, when
multiple singularities occur in updating the membership grade matrix, we evenly
assign the membership grades to all the data points coinciding at the centroid. That
is, for the case that Ik �= ∅ in Eq. (3.29b), we have uik = 1/|Ik |, ∀i ∈ Ik . Finally,
the GD-FCM implementation was run in the environment of MATLAB R2010a,
on a Microsoft Windows Server 2008R2 Standard platform with SP2 32bit edition.
The experimental PC is with an Intel Core i7-930 2.8GHz×4 CPU, 4GB DDRIII
1600MHz RAM, and a 7200 RPM 32MB cache 1TB SATAII hard disk.

Distance functions. Undoubtedly we cannot test all the point-to-centroid dis-
tances in the experiments. Table 3.2 lists the distance functions we use for the exper-
iments. Note that B D and P D are distance functions derived from the widely used
1-D binomial distribution and 1-D Poisson distribution, respectively. So they are for
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Fig. 3.3 The distribution of 2-dimensional synthetic data. a Gaussian Distribution I b Gaussian
Distribution II c Gaussian Distribution III. © 2012 IEEE. Reprinted, with permission, from Ref.
[46]

1-dimensional data (d = 1) only, and D (KL-divergence), fcos (cosine distance) and
fl p are distance functions for multi-dimensional data (d ≥ 2) only. As a widely used
distance function, d2 (squared Euclidean distance) works for data of any dimension-
ality.

Validation measures. As we have class labels for both the synthetic and real-
world data, we use the external measure for cluster validity [41]. In the literature, it
has been proved that the normalized Variation of Information (V In) measure shows
merits in evaluating the clustering performance of K-means [31, 45], which is also
carefully examined by our study in Chap. 5. Here we adapt it to the fuzzy c-means
case. Suppose we want to cluster the data set X of n objects and c′ classes into c clus-
ters using GD-FCM. For the membership grade matrix U∗, we have the summarized
matrix Z∗ as follows:

z∗i j =
∑

xk∈C ′j

u∗ik, 1 ≤ i ≤ c, 1 ≤ j ≤ c′, 1 ≤ k ≤ n, (3.42)

where C ′j denotes the class j . Let z∗i · =
∑c′

j=1 z∗i j , z∗· j =
∑c

i=1 z∗i j ,
pi · = z∗i ·/n, p· j = z∗· j/n, and pi j = z∗i j/n. Then we have

V In = H(C |C ′)+ H(C ′|C)

H(C)+ H(C ′)
= 1+ 2

∑c
i=1

∑c′
j=1 pi j log(pi j/pi · p· j )

∑c
i=1 pi · log pi · +∑c′

j=1 p· j log p· j
. (3.43)

Obviously, V In ∈ [0, 1], and a larger V In value indicates a poorer clustering per-
formance. Note that V In differentiates itself from the traditional fuzzy measures
such as Partition Coefficient (PC) and Classification Entropy (CE) by using the class
information in Eq. (3.42).

http://dx.doi.org/10.1007/978-3-642-29807-3_5
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Fig. 3.4 An illustration of the convergence of GD-FCM using d2, fcos, D. © 2012 IEEE. Reprinted,
with permission, from Ref. [46]
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Fig. 3.5 An illustration of the convergence of GD-FCM using fl p . © 2012 IEEE. Reprinted, with
permission, from Ref. [46]

3.6.2 The Global Convergence of GD-FCM

Here, we illustrate the global convergence of GD-FCM by observing the decreasing
trend of the objective function values using various point-to-centroid distances.

Specifically, we first use GD-FCM to perform fuzzy clustering on 11 real-world
data sets listed in Table 3.1. Since these data sets are all multi-dimensional, we
use four point-to-centroid distance functions, i.e., d2, D, fcos and fl p , for this
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experiment, with the former two are Type-I P2C-D and the latter ones are Type-II
P2C-D. To avoid the potential poor convergence introduced by randomizing the
membership grade matrix in the initialization, we repeat clustering 10 times for each
data set, and return the best one as the result. Other mentionable details are as fol-
lows: (1) Five data sets, namely glass, housing, pageblocks, pendigits
and wine, are normalized to have feature values in [0,1] before clustering; (2) For
each clustering, the maximum number of iterations is set to 40, the fuzzy factor is
set to 2, and the number of clusters is set equally to the number of classes.

Figures 3.4 and 3.5 show the movements of the objective function values along
the iteration process. Here the Y -axis represents the relative convergence rate of the
objective function, which is calculated by having J (l)

m f /J (1)
m f for the lth iteration. As

can be seen in Fig. 3.4, all the red lines have a very similar trend; that is, they drop
continuously regardless of the data set and the distance function used. Indeed, we
find this trend is ubiquitous for all the 11 ∗ 10 ∗ 3 = 330 runs of GD-FCM on 11
data sets. This indicates that GD-FCM has a global convergence using d2, D and
fcos—the three most widely used distance functions for real-world data clustering.

Figure 3.5 further demonstrates the convergence property of GD-FCM using the
fl p distance. A similar decreasing trend can be observed in the curves of Fig. 3.5. This
indicates the continuous decreases of the objective function values. As mentioned in
Sect. 3.4, fl p is derived by the convex-but-not-strictly-convex l p norm and thus may
lead GD-FCM to the dangerous degeneration case. However, this does not happen
for our 11×10×3 = 330 runs on 11 data sets using three fl p distances. This agrees
with our analysis that GD-FCM with fl p usually leads to a global convergence for
real-world data, although there is a very low degeneration risk in theory.

If we take a closer look at the convergence processes in Fig. 3.4, we can find that
the convergence speed of GD-FCM is quite satisfying for the distance functions d2,
D and fcos . That is, GD-FCM usually achieves the largest part of decrease of the
objective function value within 30 iterations. The convergence speed of GD-FCM
using fl p seems to be a bit lower in Fig. 3.5. For instance, when p = 6, the objective
function value experiences a much longer decreasing process for the pendigits
data set, which is finally stopped by the maximum iteration criterion. Nonetheless, it
does not necessarily mean that GD-FCM with fl p tends to produce poorer clustering
results. We will detail this in the following section.

3.6.3 The Merit of GD-FCM in Providing Diversified Distances

In this section, we demonstrate the importance of choosing the right distance func-
tions when using GD-FCM for different data sets.

Two types of data sets are used for this experiments. The first type is the artificial
data sets which we have introduced in Sect. 3.6.1. For the 1-dimensional data sets
illustrated in Fig. 3.2, we have clustering results evaluated by V In in Table 3.3. As
can be seen, although being most widely used, d2 is not an all-purpose distance for
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Table 3.3 Clustering results of synthetic data (measure: V In)

1-D distributions d2 B D P D

Normal 0.5522 0.5561 0.5562
Binomial 0.5167 0.5158 0.5159
Poisson 0.6089 0.6060 0.6059
Gamma 0.7285 0.6745 0.6734
2-D distributions d2 D fcos

Gaussian I 0.6844 0.7577 0.7572
Gaussian II 0.8147 0.6317 0.6306
Gaussian III 0.7647 0.5764 0.5731

Table 3.4 Clustering results of real-world data (measure: V In)

Data d2 D fcos fl p (p = 3) fl p (p = 6) fl p (p = 9)

Breast-w 0.5546 0.9754 0.9729 0.9570 0.9411 0.9248
Ecoli 0.8017 0.8531 0.8430 0.8240 0.7912 0.7521
Glass 0.8726 0.8875 0.8705 0.8429 0.8008 0.7752
Housing 0.8852 0.9062 0.8958 0.8061 0.7078 0.6818
Iris 0.4495 0.3595 0.3485 0.3495 0.3591 0.3955
Pageblocks 0.9422 0.9940 0.9553 0.9151 0.8861 0.9056
Pendigits 1.0000 1.0000 0.9735 0.8993 0.8828 0.9016
Wine 0.8126 0.8021 0.8072 0.8203 0.8667 0.8843
Dermatology 0.9996 0.8910 0.8970 0.9524 1.0000 0.9919
Libras 1.0000 1.0000 0.9995 0.9824 0.9029 0.8763
Satimage 0.7611 0.7973 0.8071 0.8219 0.8635 0.8941

different data distributions. Indeed, d2 only works best for the normal distribution
data, and works even significantly worst for the Gamma distribution data. The 2-
dimensional data sets illustrated in Fig. 3.3 further justify this observation. As can be
seen in Table 3.3, for the three Gaussian distributions, d2 only works best for the one
with models of globular shapes. For the other two with models of elliptical shapes or
even being rotated, d2 shows much worse clustering performance than D and fcos .
Note that for each data distribution, we generate 10 sample data sets, and the results
listed in Table 3.3 are the average V In values over the 10 samples.

We also evaluated GD-FCM on real-world data sets. Results are shown in
Table 3.4. One observation is that, although being Type-II point-to-centroid distances,
fl p and fcos have the best performances for 7 out of 11 data sets. This observation is
interesting, since (1) these distances have been proved to have flaws in theory, and
(2) to the best of our knowledge, our study is the first one to study the effectiveness
of fl p for clustering. In contrast, d2 only works best for two data sets, which implies
that d2 may not be a good choice for most real-world applications.
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In summary, GD-FCM has merits in providing diversified distance functions for
clustering. Specifically, as a Type-II P2C-D, fl p shows some appealing advantages
of clustering real-world data sets.

3.7 Related Work

Here, we present the work related to this research. First, people have recognized that
outliers in data can affect the performance of FCM [9, 36]. To address this challenge,
some researchers suggested to replace the squared Euclidean distance (l2) with the
city block distance (l1) in FCM [24, 33]. Also, there are earlier work that uses l1 and
l∞ norm in FCM [5, 22]. A more general study using l p norm distances can be found
in [17]. However, this work requires to change the way to compute the centroids (i.e.,
the weighted average of objects), and thus beyond the scope of our study. In a recent
work, Banerjee et al. [1] proposed a general framework for K-means clustering by
using the Bregman divergence [7] as the proximity function. In contrast, we focus
on fuzzy c-means and its global convergence. Also, the point-to-centroid distance
we propose is a more general concept than the Bregman divergence.

Second, the convergence is an important issue of FCM. Indeed, FCM has been
known to produce results very quickly compared to some other approaches such
as the maximum likelihood method [4]. In [2], based on the Zangwill’s theorem
[52], Bezdek first established the global convergence theorem for FCM, while this
theorem was shown to be incorrect by Tucker [44]. A corrected version was provided
in [16]. The recent work along this line can be found in [13, 20], which proved
the convergence of the complete sequence. In addition, the first local convergence
property for FCM can be found in [14]. This property can guarantee the linear
convergence of FCM to the local minima. The computation of the rate of local
convergence can be found in [16], and the testing of points for optimality is given
by [19, 21, 25, 40]. A good summary for the convergence results can be found in
[15]. The above work, however, mostly used the squared Euclidean distance or the
inner product as the distance function. In contrast, our work provides the global
convergence theorem for FCM using the general point-to-centroid distance as the
distance function.

Finally, many FCM variants have been proposed in the literature. For instance,
The Penalized FCM (PFCM) based on the fuzzy classification maximum likeli-
hood was proposed in [48]. The Alternative FCM (AFCM) using a new metric was
given by [47]. Also, Pedrycz proposed the Conditional FCM (CFCM) by considering
the conditional effect imposed by some auxiliary variables [37], which was further
generalized by [27]. Some Maximum Entropy-based Clustering (MEC) algorithms
were proposed in [28, 35, 39]. Menard et al. [32] then proposed a Fuzzy Gener-
alized c-Means (FGcM) algorithm that established a close relation between MEC
and FCM. More recently, [50, 51] proposed the Generalized FCM (GFCM) and
the Generalized Fuzzy Clustering Regularization (GFCR) to represent a wide vari-
ation of FCM algorithms. In addition, Teboulle established a unified continuous
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optimization framework for center-based clustering methods including FCM [43].
A comprehensive summarization of the FCM variants can be found in the excellent
book by Miyamoto et al. [34]. Unlike these work, the focus of this chapter is on the
distance functions that fit the classic FCM directly.

3.8 Concluding Remarks

In this chapter, we studied the generalization issues of distance functions for fuzzy
c-means (FCM). Specifically, we show that any distance function that fits FCM
directly can be derived by a continuously differentiable convex function. Such dis-
tance functions have the unified form which is defined as the point-to-centroid dis-
tance. Also, we prove that any point-to-centroid distance can fit FCM directly if the
membership grade matrix will not degenerate. Finally, experimental results validate
the effectiveness of the point-to-centroid distance for FCM. As a special case of
FCM, the above results also apply for the widely used K-means clustering.

Appendix

As previously mentioned in Sect. 3.4, the degeneration of U may happen for
GD-FCM using f φ

I I , although the probability of occurrence is extremely low for
real-world data. Here, we provide a solution for this degeneration case and show
how the global convergence of GD-FCM can still be guaranteed.

During a GD-FCM iteration, assume that we get (Ude, vde) = Tm f (Ū, V̄), where
Ude is degenerate but Ū is nondegenerate. Without loss of generality, suppose there
is only one r such that ude

rk = 0 ∀ k. Then, we let v̂ = (v̂1, v̂2, . . . , v̂c)
T be

{
v̂i = vde

i , ∀ i �= r, and
v̂r = x ∈ Conv(X ), x �= vde

r .
(3.44)

Next, we try to resume the iteration by having Û = F(V̂ ). If Û is nondegenerate,
then we define (Û, V̂ )

.= Tm f (Ū, V̄ ), and resume the iteration based on (Û, V̂ ).
Otherwise, we repeat choosing a new x ∈ Conv(X ) for v̂r until we have a nonde-
generate Û = F(V̂ ). Typically, we choose x from X to ensure that ∃ k such that
ude

rk �= 0.
Now, we establish the descent theorem when there is degeneration. Assume that

(Ū, V̄ ) is not in �′ of Eq. (3.37). Since ude
rk = 0 ∀ k, we have Jm f (Ude, V de) =

Jm f (Ude, V̂ ) ≥ Jm f (Û, V̂ ). Furthermore, by Theorem 3.6, we have Jm f (Ū, V̄ ) >

Jm f (Ude, V de), which implies that Jm f (Ū, V̄ ) > Jm f (Û, V̂ ). The descent theorem
therefore holds. In addition, since we can “skip” the degenerate solution by jumping
from (Ū, V̄ ) to (Û, V̂ ), we still have Tm f : M f c × S c 	→ M f c × S c, and the
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closeness of Tm f and the compactness of M f c×Conv(X )c still hold. By assembling
the above results, we again get the global convergence by Zangwill’s convergence
theorem.

Finally, in case that we cannot find any x ∈ Conv(X ) for v̂r such that Û = F(V̂)

is nondegenerate, we simply return (Ū, V̄) as the solution.
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Chapter 4
Information-Theoretic K-means for Text
Clustering

4.1 Introduction

Cluster analysis is a fundamental task in various domains such as data mining [18],
information retrieval [7], image processing, etc. Recent years have witnessed an
increasing interest in information-theoretic clustering [4–6, 16, 19, 22], since infor-
mation theory [3] can be naturally adapted as the guidance for the clustering process.
For instance, the clustering analysis can be treated as the iteration process of finding
a best partition on data in a way such that the loss of mutual information due to the
partitioning is the least [4].

This chapter is focused on K-means clustering with KL-divergence [11] as the
proximity function, which is called Info-Kmeans. To better understand the theoretic
foundation of Info-Kmeans, we present an organized study of two different views
on the objective functions of Info-Kmeans. First, we derive the objective function of
Info-Kmeans from a probabilistic view. In this regard, we know that the probabilistic
view takes several assumptions on data distributions, and the goal of Info-Kmeans
is to maximize the likelihood function on multinomial distributions. In contrast, the
information-theoretic view has no prior assumption on data distributions. In this case,
the objective function of Info-Kmeans is to find a best partition on data so that the
loss of mutual information is minimized. The above indicates that the information-
theoretic view on Info-Kmeans is more appealing, since we do not need to make any
assumption on data distributions. As a result, in this chapter, we take the information-
theoretic view on Info-Kmeans.

While Info-Kmeans has the sound theoretic foundation, there are some challeng-
ing issues with it from a practical viewpoint. For example, people have shown that,
for text clustering, the performance of Info-Kmeans is poorer than that of the spher-
ical K-means, which has the cosine similarity as the proximity function [22] and is
the benchmark of text clustering. Indeed, for high-dimensional sparse text vectors,
Info-Kmeans often has some difficult scenarios. For example, the centroids in sparse
data usually contain many zero-value features. This creates infinite KL-divergence
values, which lead to a challenge in assigning objects to the centroids during the
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iteration process of Info-Kmeans. A traditional way to handle this zero-value
dilemma is to smooth the sparse data by adding a very small value to every instance
in the data [16]. In this way, there is no instance having zero feature values. While
this smoothing method can avoid the zero-value dilemma for Info-Kmeans, it can
also degrade the clustering performance, since the true values and the sparseness of
data have been changed.

As an alternative to the smoothing technique, in this chapter, we propose a
Summation-based Incremental Learning (SAIL) algorithm for Info-Kmeans clus-
tering. Specifically, by using an equivalent objective function, SAIL replaces the
computation of KL-divergence for the instance-centroid distances, by the incre-
mental computation of Shannon entropy [3] for the centroids alone. This can avoid
the zero-value dilemma caused by the use of KL-divergence. Moreover, by trans-
forming the computation of KL-divergence, we can make use of the sparseness of
text vectors and further lower the computational costs of SAIL. Two variants, i.e.
V-SAIL using the Variable Neighborhood Search (VNS) meta-heuristic and PV-SAIL
using the multithreaded parallel computing, have also been proposed to improve the
clustering quality of SAIL while keeping the high computational efficiency.

Our experimental results on various real-world text corpora have shown that, with
SAIL as a booster, the clustering performance of Info-Kmeans can be significantly
improved. Indeed, for most of the text collections, SAIL produces clustering results
competitive to or even slightly better than the results of the state-of-the-art spheri-
cal K-means algorithm: CLUTO. Some settings such as feature weighting, instance
weighting and bisecting, have been shown to have varied effects on SAIL, but SAIL
without these settings shows more robust results. V-SAIL further improves the clus-
tering quality of SAIL by searching around the neighborhood of the solution using
the VNS scheme. As a natural extension of V-SAIL, PV-SAIL effectively lowers the
high computational cost of V-SAIL by using the multithreaded parallel computation.

The remainder of this chapter is organized as follows. Section 4.2 highlights the
information-theoretic view of Info-Kmeans. Section 4.3 introduces the zero-value
dilemma in Info-Kmeans clustering. Sections 4.4 and 4.5 introduce in details the
SAIL algorithm and the two variants: V-SAIL and PV-SAIL. Section 4.6 shows the
experimental results. Finally, we present related work in Sect. 4.7 and conclude this
chapter in Sect. 4.8.

4.2 Theoretical Overviews of Info-Kmeans

To better understand the theoretical foundation of Info-Kmeans, in this section, we
provide an organized study of two different views, i.e. the probabilistic view and the
information-theoretic view, on the objective function of Info-Kmeans.
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4.2.1 The Objective of Info-Kmeans

K-means [12] is a prototype-based, simple partitional clustering technique which
attempts to find the user-specified K clusters. These clusters are represented by their
centroids (a cluster centroid is typically the arithmetic mean of the data objects in that
cluster). As pointed out in Chap. 1, different distance functions can lead to different
types of K-means. Our focus in this chapter is on Info-Kmeans. Let D(x‖y) denote
the KL-divergence [11] between two discrete distributions x and y, we have

D(x‖y) =
∑

i

xi log
xi

yi
. (4.1)

It is easy to observe that, in most cases D(x‖y) �= D(y‖x), and that D(x‖y) +
D(y‖z) ≥ D(x‖z) cannot be guaranteed. So D is not a metric. If we let “dist” be D
in Eq. (1.1), we have the objective function of Info-Kmeans as follows:

obj : min
∑

k

∑

x∈ck

πx D(x‖mk), (4.2)

where each instance x has been normalized to a discrete distribution before clustering.
To further understand Info-Kmeans, we take two different views on Eq. (4.2) as
follows.

4.2.2 A Probabilistic View of Info-Kmeans

In this section, we first derive the objective function of Info-Kmeans from a prob-
abilistic view. Specifically, the objective function can be derived by maximizing
the “partitioned” likelihood function of the EM algorithm, i.e. the crisp version of
EM [22].

Assume that we have a text collection D, which consists of K crisp partitions
in multinomial distributions with different parameters, i.e. θ1, . . . , θK , respectively.
Let random variables X and Y denote the text and the term, respectively. Let n(x, y)

denote the number of occurrences of term y in document x , and n(x) =∑
y n(x, y).

Then we have

Theorem 4.1 Let L = P(D|Θ) = Πx p(x |Θ) be the likelihood function. Let
B = ∑

x n(x), and A = −∑
x n(x)H(p(Y |x)), where H is the Shannon entropy.

Then, we have

A − log L

B
=

∑

k

∑

x∈ck

p(x)D(p(Y |x)‖p(Y |θk)), (4.3)

http://dx.doi.org/10.1007/978-3-642-29807-3_1
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where p(x) = n(x)/
∑

x n(x) and p(y|x) = n(x, y)/n(x).

Proof By definition,

log L =
∑

x

log p(x |Θ)

a=
∑

k

∑

x∈ck

log p(x |θk)

b=
∑

k

∑

x∈ck

∑

y

n(x, y) log(p(y|θk))

=
∑

k

∑

x∈ck

n(x)
∑

y

p(y|x) log p(y|θk),

where “a” reflects the “crisp” property of the modified EM model, and “b” follows
the multinomial distribution, i.e. p(x |θ) = Πy p(y|θ)n(x,y).

Meanwhile, A can be transformed into

A =
∑

k

∑

x∈ck

n(x)
∑

y

p(y|x) log p(y|x).

If we substitute the transformed A and log L into the left-hand-side of Eq. (4.3),
we can easily get the right-hand-side. So we complete the proof. ��
Remark Let us compare Eq. (4.3) with Eq. (4.2). If we let πx ≡ p(x), x ≡ p(Y |x),
and mk ≡ p(Y |θk), we have obj ⇔ min(A − log L)/B ⇔ max log L . This implies
that, if we take the probabilistic view of the objective function, Info-Kmeans aims
to maximize the likelihood function based on multinomial distributions. This prob-
abilistic view of Info-Kmeans requires two assumptions: p(x) = n(x)/

∑
x n(x),

and the multinomial distribution of p(x |θk). However, in the experimental section,
we will show these assumptions may degrade the performance of Info-Kmeans.

4.2.3 An Information-Theoretic View of Info-Kmeans

Here, we derive the objective function in Eq. (4.2) from an information-theoretic
point of view. We begin our analysis by introducing an important lemma as follows.

Given a set of discrete probabilistic distributions {p1, p2, . . . , pn} and the corre-
sponding weights {π1, π2, . . . , πn}, we have

Lemma 4.1 [3]

n∑

i=1

πi D

(

pi ||
n∑

i=1

πi pi

)

= H

(
n∑

i=1

πi pi

)

−
n∑

i=1

πi H(pi ). (4.4)
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Now, given a text collection D, we want to partition D into K clusters with-
out overlapping. Let random variables X , Y and C denote the text, the term and
the cluster, respectively. Let x , y and c be the corresponding instances with p(x),
p(y) and p(c) being the probabilities of occurrences. Furthermore, we assume that
p(c) =∑

x∈c p(x). Then we have the following theorem:

Theorem 4.2 Let I (X, Y ) be the mutual information between two random variables
X and Y , then

I (X, Y )− I (C, Y ) =
∑

k

∑

x∈ck

p(x)D(p(Y |x)‖p(Y |ck)). (4.5)

Proof By definition,

I (X, Y )− I (C, Y )

=
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
−

∑

k

∑

y

p(ck, y) log
p(ck, y)

p(ck)p(y)

=
∑

x

∑

y

p(y|x)p(x) log p(y|x)

︸ ︷︷ ︸
(a)

−
∑

k

∑

y

p(y|ck)p(ck) log p(y|ck)

︸ ︷︷ ︸
(b)

−
∑

x

∑

y

p(y|x)p(x) log p(y)

︸ ︷︷ ︸
(c)

+
∑

k

∑

y

p(y|ck)p(ck) log p(y)

︸ ︷︷ ︸
(d)

.

If we substitute p(y|ck) = ∑
x∈ck

p(x)
p(ck)

p(y|x) into (d), we have (c) = (d).
Furthermore, it is easy to show

(a) = −
∑

k

p(ck)

(
∑

x∈ck

p(x)

p(ck)
H(p(Y |x))

)

,

(b) = −
∑

k

p(ck)H

(
∑

x∈ck

p(x)

p(ck)
p(Y |x)

)

.

By Lemma 4.1, we finally have Eq. (4.5). ��
Remark Theorem 4.2 formulates the information-theoretic view of Info-Kmeans;
that is, Info-Kmeans tries to find a best partition on data so that the loss of mutual
information due to the partitioning is minimized.
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4.2.4 Discussions

In summary, we have two different views on Info-Kmeans, as described by Eqs. (4.3)
and (4.5), respectively. Both views lay the theoretic foundations of Info-Kmeans.
Nonetheless, the information-theoretic view seems to be more appealing, since there
is no prior assumption for p(x) and p(x |c), which is however crucial for the proba-
bilistic view. In fact, we can regard the probabilistic framework as a special case of the
information-theoretic framework of Info-Kmeans. And we will show in experimen-
tal results that in most cases the assumption of p(x) and p(x |c) in the probabilistic
view is harmful to the clustering accuracy.

4.3 The Dilemma of Info-Kmeans

Though having sound theoretical foundations, Info-Kmeans has long been criticized
for having performances inferior to the spherical K-means [21] on text clustering [22].
However, in this section, we highlight an implementation challenge of Info-Kmeans.
We believe this challenge is one of the key factors that degrade the clustering per-
formance of Info-Kmeans.

Assume that we use Info-Kmeans to cluster a text corpus. To optimize the objective
in Eq. (4.2), we launch the two-phase iteration process of Info-Kmeans. To this end,
we must compute the KL-divergence between each text vector p(Y |x) and each
centroid p(Y |ck). In practice, we usually let

p(Y |x) = x

n(x)
, and p(Y |ck) =

∑
x∈ck

p(x)p(Y |x)
∑

x∈ck
p(x)

,

where n(x) is the sum of all the term frequencies of x , p(x) is the weight of x , as
in Eqs. (4.3) and (4.5). Therefore, by Eq. (4.1), to compute D(p(Y |x)‖p(Y |ck)), we
should expect that all the feature values of x are positive real numbers. Unfortunately,
however, this is not the case for high-dimensional text vectors, which are famous for
the sparseness in their high dimensionality.

To illustrate this, we observe the computation of KL-divergence in each dimen-
sion y. As we know, D(p(Y |x)‖p(Y |ck)) =∑

y p(y|x) log p(y|x)
p(y|ck )

. To simplify the
notations, hereinafter we denote p(y|x) log(p(y|x)/p(y|ck)) by Dy . Then, the dif-
ferent combinations of p(y|x) and p(y|ck) values can result in four scenarios as
follows:

1. Case 1: p(y|x) > 0 and p(y|ck) > 0. In this case, the computation of Dy is
straightforward, and the result can be any real number.

2. Case 2: p(y|x) = 0 and p(y|ck) = 0. In this case, we can simply omit this
feature, or equivalently let Dy = 0.

3. Case 3: p(y|x) = 0 and p(y|ck) > 0. In this case, log(p(y|x)/p(y|ck)) =
log 0 = −∞, which implies that the direct computation is infeasible. However,
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Table 4.1 Four cases in KL-divergence computations

Case i i i i i i iv

p(y|x) >0 = 0 = 0 > 0
p(y|ck) >0 = 0 >0 = 0
Dy ∈ R = 0 = 0 +∞

by the L’ Hospital’s rule [2], limx→0+ x log(x/a) = 0 (a > 0). So we can let
x

.= p(y|x) and a
.= p(y|ck), and thus have Dy = 0.

4. Case 4: p(y|x) > 0 and p(y|ck) = 0. In this case, Dy = +∞, which is hard to
handle in practice.

We summarize the above four cases in Table 4.1. As can be seen, for Cases 1 and
2, the computation of Dy is logically reasonable. However, the computation of Dy

in Case 3 is actually questionable; that is, it cannot reveal any difference between
p(Y |x) and p(Y |ck) in dimension y, although p(y|ck) may deviate heavily from
zero. Also, it implies that the differences of various centroids in dimension y will be
omitted.

Nevertheless, the most difficult case to handle is Case 4. On one hand, it is hard to
do computations with +∞ in practice. On the other hand, it is obvious that if there
is some dimension y of Case 4, the total KL-divergence of p(Y |x) and p(Y |ck) is
infinite. This does not work for high-dimensional sparse text vectors, because the
centroids of such data typically contain many zero-value features. Therefore, we will
have big challenges in assigning instances to the centroids. We call this problem the
“zero-value dilemma”.

One way to solve the above dilemma is to smooth the sparse data. For instance,
we can add a very small positive value to the entire data set so as to avoid having any
zero feature value. While this smoothing technique facilitates the computations of
KL-divergence, it indeed changes the sparseness property of the data. We will demon-
strate in the experimental section that this method actually degrades the clustering
performance of Info-Kmeans.

In summary, there is a need to develop a new implementation scheme for Info-
Kmeans which should be able to avoid the zero-value dilemma.

4.4 The SAIL Algorithm

In this section, we propose a new variant, named SAIL, for Info-Kmeans. We first
simplify the objective function of Info-Kmeans using the point-to-centroid distance
introduced in Chap. 3. Then we refine the computations in SAIL to further improve
the efficiency. Finally, we present the algorithmic details.

http://dx.doi.org/10.1007/978-3-642-29807-3_3
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4.4.1 SAIL: Theoretical Foundation

We begin by briefly reviewing the notion of Point-to-Centroid Distance proposed in
Chap. 3. As formulated in Definition 3.2, a point-to-centroid distance is derived by
a continuously-differentiable convex function φ. As different φ can lead to different
instances, the point-to-centroid distance is actually a family of multiple distance func-
tions. More importantly, as indicated by Corollary 3.4, the point-to-centroid distance
is the only choice of the distance function for K-means clustering, with centroids
being the arithmetic means of cluster members.

Table 3.2 lists some popular point-to-centroid distances widely used for K-means
clustering. In the table, the squared Euclidean distance (d2) is most widely used for
a variety of clustering applications [18]. The cosine distance ( fcos), derived from a
convex but not strictly convex φ, is equivalent to the cosine similarity used for the
so-called spherical K-means [21], which is usually considered as the state-of-the-art
method for text clustering. Our focus in this chapter, i.e. the KL-divergence (D) for
Info-Kmeans, also belongs to this family. Specifically, according to Definition 3.2,
KL-divergence can be rewritten as

D(x‖y) = −H(x)+ H(y)+ (x − y)t∇H(y), (4.6)

where H(x) =∑
i xi log xi is the Shannon entropy [3] of a discrete distribution x .

Based on D(x‖y) in Eq. (4.6), we now lay the theoretical foundation of the
Summation-bAsed Incremental Learning (SAIL) algorithm, a new variant of Info-
Kmeans. Specifically, we have the following theorem:

Theorem 4.3 Let p(ck) =∑
x∈ck

p(x). The objective function of Info-Kmeans:

O1 : min
∑

k

∑

x∈ck

p(x)D(p(Y |x)‖p(Y |ck))

is equivalent to
O2 : min

∑

k

p(ck)H(p(Y |ck)). (4.7)

Proof By Eq. (4.6), we have

D(p(Y |x)‖p(Y |ck)) =− H(p(Y |x))+ H(p(Y |ck))+ (p(Y |x)

− p(Y |ck))
t∇H(p(Y |ck)).

As a result,

http://dx.doi.org/10.1007/978-3-642-29807-3_3
http://dx.doi.org/10.1007/978-3-642-29807-3_3
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∑

k

∑

x∈ck

p(x)D(p(Y |x)‖p(Y |ck))

=
∑

k

p(ck)H(p(Y |ck))

︸ ︷︷ ︸
(a)

−
∑

x

p(x)H(p(Y |x))

︸ ︷︷ ︸
(b)

−
∑

k

∑

x∈ck

p(x)(p(Y |x)− p(Y |ck))
t∇H(p(Y |ck))

︸ ︷︷ ︸
(c)

.

Since p(Y |ck) =∑
x∈ck

p(x)p(Y |x)/p(ck), we have

∑

x∈ck

p(x)(p(Y |x)− p(Y |ck)) = 0.

Accordingly,

(c) =
∑

k

∇H(p(Y |ck))
t
∑

x∈ck

p(x)(p(Y |x)− p(Y |ck)) = 0.

Moreover, (b) is a constant given the data set and the weights for the instances.
Thus, the goal of O1 is equivalent to minimize (a), which completes the proof. ��

The equivalent O2 given in Eq. (4.7) is right the objective function of SAIL. That
is, by replacing the computations of KL-divergence between instances and centroids
by the computations of Shannon entropy of centroids only, SAIL can avoid the zero-
value dilemma in information-theoretic clustering of highly sparse texts.

4.4.2 SAIL: Computational Issues

Now, based on the objective function in Eq. (4.7), we establish the computational
scheme for SAIL. The major concern here is the efficiency issue.

Generally speaking, SAIL is a greedy scheme which updates the objective-
function value “instance by instance”. That is, SAIL first selects an instance from the
text collection and assigns it to the most suitable cluster. Then the objective-function
value and other related variables are updated immediately after the assignment. The
process will be repeated until some stopping criteria are met.

Apparently, to find the suitable cluster is the critical point of SAIL. To illustrate
this, suppose SAIL randomly selects p(Y |x ′) from a cluster ck′ . Then, if we assign
p(Y |x ′) to cluster ck , the change of the objective-function value will be
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Δk = O2(new)− O2(old) (4.8)

= (p(ck′)− p(x ′))H

(∑
x∈ck′ p(x)p(Y |x)− p(x ′)p(Y |x ′)

p(ck′)− p(x ′)

)

︸ ︷︷ ︸
(a)

− p(ck′)H

(∑
x∈ck′ p(x)p(Y |x)

p(ck′)

)

︸ ︷︷ ︸
(b)

+ (p(ck)+ p(x ′))H

(∑
x∈ck

p(x)p(Y |x)+ p(x ′)p(Y |x ′)
p(ck)+ p(x ′)

)

︸ ︷︷ ︸
(c)

− p(ck)H

(∑
x∈ck

p(x)p(Y |x)

p(ck)

)

︸ ︷︷ ︸
(d)

,

where (a)–(b) and (c)–(d) represent the two parts of changes on the objective-
function value due to the movement of p(Y |x ′) from cluster ck′ to cluster ck . Then
x ′ will be assigned to the cluster c with the smallest Δ, i.e. c = arg mink Δk .

The computation of Δk in Eq. (4.8) has two appealing properties. First, it only
relates to the changes occurred within the two involved clusters ck and ck′ . Other
clusters remain unchanged and thus have no contribution to Δk . Second, the computa-
tions of both

∑
x∈c p(x) and

∑
x∈c p(x)p(Y |x) have additivity, which can facilitate

the computation of Δk . Indeed, these two summations, incrementally updated during
the clustering, are the key elements of SAIL.

The computation of Δk in Eq. (4.8), however, still suffers from the high costs of
computing Shannon entropy in (a) or (c). Let us take the entropy computation in (a)
for example. Since the denominator changes from p(ck′) to p(ck′) − p(x ′), every
dimension in the numerator

∑
x∈ck′ p(x)p(Y |x) − p(x ′)p(Y |x ′) will have a new

value, which requires to recompute the logarithm for each dimension. These com-
putations are indeed a huge cost for text vectors in high dimensionality. Therefore,
here comes the question: can we make use of the high sparseness of text vectors to
further improve the computational efficiency of SAIL?

The answer is positive. To illustrate this, recall SAIL’s objective function O2 in

Eq. (4.7). Let S(k, y) denote
∑

x∈ck
p(x)p(y|x). As p(Y |ck) =

∑
x∈ck

p(x)p(Y |x)

p(ck )
, we

have
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∑

k

p(ck)H(p(Y |ck))

= −
∑

k

∑

y

∑

x∈ck

p(x)p(y|x)

(

log
∑

x∈ck

p(x)p(y|x)− log p(ck)

)

=
∑

k

(
∑

x∈ck

p(x)
∑

y

p(y|x)

)

log p(ck)−
∑

k

∑

y

S(k, y) log S(k, y)

=
∑

k

p(ck) log p(ck)−
∑

k

∑

y

S(k, y) log S(k, y). (4.9)

Accordingly, if we move x ′ from cluster ck′ to cluster ck , the change of the
objective-function value will be

Δk = (p(ck)+ p(x ′)) log(p(ck)+ p(x ′))− p(ck) log p(ck) (4.10)

+ (p(ck′)− p(x ′)) log(p(ck′)− p(x ′))− p(ck′) log p(ck′)

+
∑

{y|p(y|x ′) �=0}
S(k, y) log S(k, y)− S+(k, y) log S+(k, y)

︸ ︷︷ ︸
(a)

+
∑

{y|p(y|x ′) �=0}
S(k′, y) log S(k′, y)− S−(k′, y) log S−(k′, y)

︸ ︷︷ ︸
(b)

.

where S+(k, y) = S(k, y)+ p(x ′)p(y|x ′), and S−(k′, y) = S(k′, y)− p(x ′)p(y|x ′).
According to Eq. (4.10), only the non-empty features of p(Y |x ′) have contri-

butions to Δk in (a) or (b), and thus will trigger the expensive computations of
logarithm. Considering that a text vector p(Y |x ′) is often very sparse, i.e. has many
empty features, the computational saving due to Eq. (4.10) will be significant. As a
result, we adopt Eq. (4.10) rather than Eq. (4.8) for the computation of Δk in SAIL,
and give the comparative results in the experimental section.

Discussion. It is clear that SAIL differs from the traditional K-means. Indeed,
SAIL is an incremental algorithm while the traditional K-means usually employs the
batch-learning mode. Furthermore, SAIL also differs from the traditional incremental
K-means; that is, to decide the assignment of each selected instance, SAIL does
not compute the KL-divergence values between the instance and all the centroid
vectors. Instead, it computes and updates the Shannon entropies of the centroids.
This computation is supported by the two incrementally-maintained summations for
each cluster c: p(c) = ∑

x∈c p(x) and p(Y |c) = ∑
x∈c p(x)p(Y |x). That is why

we call this method the Summation-bAsed Incremental Learning (SAIL) algorithm.
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Fig. 4.1 The pseudocodes of
SAIL

Fig. 4.2 The LocalSearch
subroutine

4.4.3 SAIL: Algorithmic Details

In this section, we present the main process and the implementation details of SAIL.
Figures 4.1 and 4.2 show the pseudocodes of the SAIL algorithm.

Lines 1–3 in Fig. 4.1 are for data initialization. In line 1, text collection D is loaded
into the memory. There are two methods for assigning the weights of instances; that
is, πx = n(x)/

∑
x n(x), or simply, πx = 1. The second one is much simpler and is

the default setting in our experiments. The preprocessing of D in line 2 includes the
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row and column modeling, e.g. t f -id f , to smooth the instances and assign weights
to the features. Then, in line 3, we normalize the instance x to x = p(Y |x) where
p(y|x) = n(x, y)/n(x) for each feature y.

Lines 4–12 in Fig. 4.1 show the clustering process. Line 5 is for initialization,
where labeln×1 contains the cluster labels of all instances, and cluSumK×(d+1)

stores the summations of the weights and weighted instances in each cluster. That is,
for k = 1, . . . , K , cluSum(k, 1 : d) =∑

x∈ck
πx p(Y |x), and cluSum(k, d + 1) =∑

x∈ck
πx , where n, d and K are the numbers of instances, features and clusters,

respectively. Two initialization modes are employed in our implementation, i.e. “ran-
dom label” and “random center” (the default one), and the required variables are then
computed.

The LocalSearch subroutine in Line 7 performs clustering for each instance. As
shown in Fig. 4.2, it traverses all instances at random as a round. In each round, it
assigns each instance to the cluster with the heaviest drop of the objective-function
value, and then updates the values of the related variables. The computational details
have been given in Sect. 4.4.2. Lines 8–10 show the stopping criterion in addition to
maxIter; that is, if no instance changes its label after a round, we stop the clustering.
Finally, Lines 13–14 choose and return the best clustering result among the reps
clusterings.

Next, we briefly discuss the convergence issues of SAIL. Since the objective-
function value decreases continuously after reassigning each instance, and the
combinations of the labels assigned to all instances are limited, SAIL guarantees
to converge after limited iterations. However, due to the complexity of the feasible
region, SAIL often converges to a local minima or a saddle point. That is why we
usually do multiple clusterings in SAIL and choose the one with a lowest objective-
function value.

SAIL also preserves the most important advantage of Info-Kmeans—low com-
putational costs. Specially, the space and time requirements are O((n + K )d̄) and
O(I K nd̄), respectively, where I is the number of iterations required for conver-
gence, and d̄ is the average number of non-empty features of each instance. Since
K is often small and I is typically not beyond 20 (refer to the empirical results in
the experimental section), the complexity of SAIL is roughly linear to the size of
non-empty elements in a text collection. Also, by employing Eq. (4.10) rather than
Eq. (4.8) for SAIL, we can take advantage of the sparseness of text collections to
further improve the efficiency of SAIL.

4.5 Beyond SAIL: Enhancing SAIL via VNS and Parallel
Computing

SAIL is essentially a combinatorial optimization algorithm. Therefore, like most
iterative scheme, SAIL is apt to converge to some local minima or saddle points,
especially for text vectors in high dimensionality. To meet this challenge, further
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Fig. 4.3 Illustration of VNS

Fig. 4.4 The pseudocodes of
V-SAIL

study is still needed to help SAIL jump out of the inferior points. We here propose
to use the Variable Neighborhood Search (VNS) scheme [8, 14], and establish the
VNS-enabled SAIL algorithm: V-SAIL.
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VNS is a meta-heuristic for solving combinatorial and global optimization prob-
lems. The idea of VNS is to conduct a systematic change of neighborhood within the
search [8]. Figure 4.3 schematically illustrates the search process of VNS. That is,
VNS first finds an initial solution x , and then shakes in the kth neighborhood Nk to
obtain x ′. Then VNS centers the search around x ′ and finds the local minimum x ′′. If
x ′′ is better than x , x is replaced by x ′′, and VNS starts to shake in the first neighbor-
hood of x ′′. Otherwise, VNS continues to search in the (k+1)-th neighborhood of x .
The set of neighborhoods are often defined by metric function in the solution space,
e.g. Hamming distance, Eular distance, k-OPT operator, etc. The stopping condition
for VNS can be the size of the neighborhood set, the maximum CPU time, and/or
the maximum number of iterations. In what follows, we show how to enhance SAIL
via the VNS scheme.

4.5.1 The V-SAIL Algorithm

Figure 4.4 shows the pseudocodes of the V-SAIL algorithm. Generally speaking,
V-SAIL is a two-stage algorithm employing a clustering step and a refinement step.
In c-step, the SAIL algorithm is called to generate a clustering result. This result
serves as the starting point of the subsequent r-step, which employs the VNS scheme
to refine the clustering result to a more accurate one. It is interesting to note that the
“LocalSearch” subroutine of SAIL is also called in VNS as a heuristic method for
searching local minima. Some important details are as follows.

Lines 3–18 in Fig. 4.4 describe the r-step of V-SAIL. In Line 4, for the i th
neighborhood Ni , the “Shaking” function is called to generate a solution label ′ in
Ni that has a Hamming distance Hi = i × |D|/kmax to the current solution label.
More specifically, “Shaking” first randomly selects Hi instances, and then changes
their labels at random in label, which results in a new solution label ′. Apparently,
label ′ tends to deviate label more heavily as the increase of i . The idea is that
once the best solution in a large region has been found, it is necessary to explore an
improved one far from the incumbent solution.

In Lines 6–11, the “LocalSearch” subroutine of SAIL is called to search for a
local minimum solution initialized on label ′. This well demonstrates that SAIL is
not only a clustering algorithm, but also a combinatorial optimization method. Then
in Lines 12–14, if the minimum is smaller than the current obj V al, we update the
related variables, and set the solution as the new starting point of VNS. The stopping
condition in Line 15 is very simple; that is, we stop VNS either if a maximum
repeat-time of calling “Shaking” is met or when a given CPU time is due.

In summary, V-SAIL well combines the complemental advantages of SAIL and
VNS. That is, VNS can help SAIL avoid inferior solutions, while SAIL can help
VNS fast locate a good local minimum. We will show the empirical results in the
experimental section.
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Fig. 4.5 The pseudocodes of
PV-SAIL

4.5.2 The PV-SAIL Algorithm

V-SAIL may find a better clustering result by searching inside the neighborhoods via
the VNS scheme. The critical problem is, however, VNS usually has a high computa-
tional cost. As indicated by Fig. 4.4, V-SAIL searches inside the neighborhoods one
by one, and gets back to the first neighborhood after finding a better solution. This
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can make the computational time uncontrollable. That is why we introduce a “hard”
stopping criterion in Line 15. But the problem remains unsolved in another way—
given a time constraint, V-SAIL can only search a limited number of neighborhoods,
which prevents it from further enhancing the clustering accuracy.

To meet this challenge, we propose a multithreading scheme for V-SAIL:
PV-SAIL, which aims to parallel V-SAIL by fully exploiting the power of the multi-
core CPU. In general, PV-SAIL is based on the central memory to reduce the cost of
communications. The subthreads are invoked in multiple rounds. In each round, the
subthreads simultaneously search inside the neighborhoods in different Hamming
distances, and the best result will be adopted as the new solution for the search in
the next round. Figure 4.5 shows the pseudocodes of the PV-SAIL algorithm. Some
notable details are as follows.

Lines 1–15 show the process of the main thread. Note that to avoid unpredictable
errors, we let the main thread wait for the termination of all subthreads in Lines 7–9.
Lines 16–30 describe the process of each subthread, which is similar to the r-step in
V-SAIL. Note that to expand the search space for a better result, we let the subthreads
search within the neighborhoods in different Hamming distances simultaneously, as
indicated by t = j in Line 16. Also, we do not set a hard stopping criterion in the
subthreads, since the parameter kmax in Line 17 is often set to a small value, say not
beyond 5 in our experiments. Finally, the best way to set nSub is to keep consistency
with the number of CPU cores. For instance, for most computers having a 4-core
CPU and if kmax = 5, PV-SAIL can search within 20 neighborhoods at short notice.
This greatly increases the probability of finding a better clustering result.

In summary, PV-SAIL is a multithreaded version of V-SAIL, which aims to
improve the clustering quality of V-SAIL given limited computational time.

4.6 Experimental Results

In this section, we demonstrate the effectiveness of SAIL and its variants for text
clustering. Specifically, we will show: (1) the impact of the zero-value dilemma to
the traditional Info-Kmeans; (2) the superior performance of SAIL compared with
the smoothing technique as well as the spherical K-means; (3) the benefit of using
VNS in V-SAIL for the search of better clustering results; (4) the benefit of using
multithreading in PV-SAIL for the faster search of solutions.

4.6.1 Experimental Setup

We first introduce the experimental setup, including the information of the data, the
clustering tools, and the evaluation measures.

Experimental data. For our experiments, we use a number of real-world text
collections. Some characteristics of these data sets are shown in Table 4.2, where CV
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Table 4.2 Experimental text data sets

ID Data #Instance #Feature #Class CV Density

D1 classic 7094 41681 4 0.547 0.0008
D2 cranmed 2431 41681 2 0.212 0.0014
D3 fbis 2463 2000 17 0.961 0.0799
D4 k1a 2340 21839 20 1.004 0.0068
D5 k1b 2340 21839 6 1.316 0.0068
D6 la1 3204 21604 6 0.493 0.0048
D7 la2 3075 31472 6 0.516 0.0048
D8 la12 6279 31472 6 0.503 0.0047
D9 ohscal 11162 11465 10 0.266 0.0053
D10 re0 1504 2886 13 1.502 0.0179
D11 sports 8580 126373 7 1.022 0.0010
D12 reviews 4069 126373 5 0.640 0.0015
D13 tr11 414 6429 9 0.882 0.0438
D14 tr12 313 5804 8 0.638 0.0471
D15 tr23 204 5832 6 0.935 0.0661
D16 tr31 927 10128 7 0.936 0.0265
D17 tr41 878 7454 10 0.913 0.0262
D18 tr45 690 8261 10 0.669 0.0340
D19 wap 1560 8460 20 1.040 0.0167

is the coefficient of variation statistic [9] used to characterize the class imbalance
of the data sets, and “Density” is the ratio of nonzero feature-values in each text
collection. A large CV indicates a severe class imbalance, and a small Density
indicates a high sparseness.

The fbis data set was obtained from the Foreign Broadcast Information Service
data of the TREC-5 collection,1 and the classes correspond to the categorization used
in that collection. The sports and reviews data sets were derived from the San
Jose Mercury newspaper articles that were distributed as part of the TREC collection
(TIPSTER Vol. 3). The former contains documents about baseball, basketball, bicy-
cling, boxing, football, golfing and hockey, and the latter contains documents about
food, movies, music, radio and restaurants. Data sets tr11, tr12, tr23, tr31,
tr41 and tr45 were derived from TREC-5, TREC-6, and TREC-7 collections.
The classes of these data sets correspond to the documents that were judged relevant
to particular queries. Data sets la1, la2 and la12 were obtained from articles
of Los Angeles Times that was used in TREC-5. The categories include documents
from the entertainment, financial, foreign, metro, national, and sports desks. The
ohscal data set was obtained from the OHSUMED collection [10], which contains
documents from various biological sub-fields. Data sets k1a, k1b and wap were
from the WebACE project [7]; each document corresponds to a web page listed in
the subject hierarchy of Yahoo! In particular, k1a and k1b contain exactly the same

1 http://www.trec.nist.gov

http://www.trec.nist.gov
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set of documents but the former contains a finer-grain categorization. The classic
data set was obtained by combining the CACM, CISI, CRANFIELD, and MEDLINE
abstracts that were used in the past to evaluate various information retrieval systems.
Data set cranmedwas attained in a similar way. Finally, the data set re0was from
Reuters-21578 collection Distribution 1.0.2 For all data sets, we used a stop-list to
remove common words, and the words were stemmed using Porter’s suffix-stripping
algorithm [15].

Clustering tools. In the experiments, we employ four types of clustering tools.
The first one is SAIL and its variants V-SAIL and PV-SAIL, coded by ourselves
in C++. The other three are well-known software packages for K-means clustering,
including MATLAB v7.1,3 CO-CLUSTER v1.1,4 and CLUTO v2.1.1.5

The MATLAB implementation of K-means is a batch-learning version which
computes the distances between instances and centroids. We extend it to include
more distance functions such as KL-divergence. In our experiments, it works as an
implementation of Info-Kmeans which has to compute the KL-divergence directly.

CO-CLUSTER is a C++ program which implements the information-theoretic
co-clustering algorithm [5]. Although it still computes the “instance-centroid”
KL-divergences, it provides additional methods to improve the clustering perfor-
mances such as annealing, batch and local search, etc.

CLUTO is a software package for clustering high-dimensional data sets. Specif-
ically, its K-means implementation with cosine similarity as the proximity function
shows superior performances in text clustering [21]. In the experiments, we compare
CLUTO with SAIL on a number of real-world data sets.

Note that the parameters of the four K-means implementations are set to match
one another for the purpose of comparison, and the cluster number K is set to match
the number of true classes of each data set.

Validation measures. Many recent studies on clustering use the Normalized
Mutual Information (NMI) to evaluate the clustering performance [22]. For the pur-
pose of comparison, we also use NMI in our experiments, which can be computed as:

N M I = I (X, Y )/
√

H(X)H(Y ), (4.11)

where the random variables X and Y denote the cluster and class sizes, respectively.
The value of NMI is in the interval: [0, 1], and a larger value indicates a better
clustering result. Note that if we use the arithmetic mean (H(X)+ H(Y ))/2 rather
than the geometric mean

√
H(X)H(Y ) in Eq. (4.11), NMI is equivalent to V In

used in Chap. 3. Chapter 5 provides more details of external validation measures for
K-means clustering.

2 http://www.daviddlewis.com/resources/testcollections/reuters21578/
3 http://www.mathworks.cn/help/toolbox/stats/kmeans.html
4 http://www.cs.utexas.edu/users/dml/Software/cocluster.html
5 http://www.glaros.dtc.umn.edu/gkhome/views/cluto

http://dx.doi.org/10.1007/978-3-642-29807-3_3
http://dx.doi.org/10.1007/978-3-642-29807-3_5
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.mathworks.cn/help/toolbox/stats/kmeans.html
http://www.cs.utexas.edu/users/dml/Software/cocluster.html
http://www.glaros.dtc.umn.edu/gkhome/views/cluto
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Table 4.3 Clustering results of Info-Kmeans (MATLAB)

Data NMI CV0 CV1

tr23 0.035 0.935 2.435
tr45 0.022 0.669 3.157

Table 4.4 Clustering results of CO-CLUSTER

Data Search Annealing NMI CV0 CV1

tr12 Batch 1.0 0.058 0.638 0.295
0.5 0.040 0.638 0.374
None 0.031 0.638 0.376

Local 1.0 0.045 0.638 0.334
0.5 0.059 0.638 0.339
None 0.048 0.638 0.461

tr31 Batch 1.0 0.007 0.936 0.426
0.5 0.011 0.936 0.362
None 0.010 0.936 0.405

Local 1.0 0.014 0.936 0.448
0.5 0.009 0.936 0.354
None 0.011 0.936 0.365

4.6.2 The Impact of Zero-Value Dilemma

Here, we demonstrate the negative impact of the zero-value dilemma to Info-Kmeans.
Since the MATLAB implementation of Info-Kmeans can handle infinity (denoted
as INF), we select tr23 and tr45 as the test data sets and apply MATLAB Info-
Kmeans for testing without smoothing. The clustering results are shown in Table 4.3,
where CV0 and CV1 represent the distributions of the class and cluster sizes, respec-
tively.

As indicated by the close-to-zero NMI values, the clustering performance of MAT-
LAB Info-Kmeans without smoothing is extremely poor. Also, by comparing the
CV0 and CV1 values, we found that the distributions of the resulting cluster sizes
are much more skewed than the distributions of the class sizes. In fact, for both data
sets, nearly all the text vectors have been assigned to ONE cluster! This experimen-
tal result well confirms our analysis in Sect. 4.3; that is, Info-Kmeans will face the
serious zero-value dilemma when clustering highly sparse text data sets.

Furthermore, we test CO-CLUSTER on tr12 and tr31 data sets. As men-
tioned above, CO-CLUSTER also computes the KL-divergence values in the clus-
tering process, but it provides various search modes and the annealing technique to
avoid poor local minima. Table 4.4 shows the clustering results, where “Search” and
“Annealing” indicate the search modes and annealing parameters, respectively.

In Table 4.4, we can observe that the use of annealing technique and different
search modes does not improve the clustering performance. The near-to-zero NMI
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(a) (b)

Fig. 4.6 The effect of data smoothing. a Data set: tr11; b Data set: tr45

values indicate the poor clustering performance. This again confirms that the direct
computation of the KL-divergence values is infeasible for sparse data sets. Another
interesting observation is that, the clusters produced by CO-CLUSTER are much
more balanced than the clusters produced by MATLAB Info-Kmeans, as indicated
by the much smaller CV1 values.

4.6.3 The Comparison of SAIL and the Smoothing Technique

Here we illustrate the effect of the smoothing technique on sparse data sets. In
this experiment, we use MATLAB Info-Kmeans and take seven text collections for
illustration. Figure 4.6 shows the clustering results on data sets tr11 and tr45,
where the added small values increase gradually along the horizon axis.

One observation is that data smoothing indeed improves the clustering perfor-
mance of Info-Kmeans, from nearly zero to about 0.3 NMI. This result implies that
the smoothing technique does help Info-Kmeans get out of the zero-value dilemma,
although the performance is still far from satisfactory. Another interesting obser-
vation is that the optimal added-value (OAV) is varied for different data sets. For
instance, while O AV ≈ 0.1 for tr11, O AV ≈ 0.01 for tr45. This implies one
issue with data smoothing in practice; that is, it is difficult to have the optimal smooth-
ing effect. Nevertheless, a general rule is that we should avoid setting extreme values
for added values. A tiny value may not help walk out of the zero-value dilemma, but
a large value may damage the integrity of the data instances, and thus lead to poorer
clustering performance instead. Figure 4.6b well illustrates this point, in which an
added-value smaller or larger than 0.01 will do harm to the clustering quality.

For the purpose of comparison, we also test SAIL on these data sets. The para-
meters are set as follows: (1) πx = 1, for any x ∈ D; (2) no row or column modeling
in Line 2 of Fig. 4.1; (3) the initialization mode in Line 5 of Fig. 4.1 is “random
center”; (4) reps = 1, but we repeat SAIL 10 times for each data set and have the
averaged NMI value returned. Unless otherwise stated, these are the default settings
of SAIL in all of our experiments.
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Fig. 4.7 Smoothing versus SAIL
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Fig. 4.8 Spherical K-means versus SAIL

Figure 4.7 shows the comparison results. As can be seen, the clustering results
of SAIL are consistently superior to the results using the smoothing technique. For
some data sets such as tr11, tr12, tr41 and tr45, SAIL takes the lead with a
wide margin. Note that for the smoothing method, we tried a series of added values,
i.e. 10−5, 10−4, 10−3, 10−2, 10−1, 1, and selected the best one for comparison.

In summary, while the traditional data smoothing technique can improve the
performance of Info-Kmeans on sparse data sets, it changes the data integrity and
has difficulty in setting the optimal value added to the data. In contrast, SAIL has no
parameter setting issue and can lead to consistently better clustering performances
than the smoothing technique. This indicates that SAIL is a better solution for the
zero-value dilemma.
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4.6.4 The Comparison of SAIL and Spherical K-means

In this section, we compare the clustering performances between SAIL and the
spherical K-means. In the literature, people have shown that spherical K-means
usually produces better clustering results than traditional K-means [22]. And the
CLUTO version of the spherical K-means even shows superior performances on text
collections, which makes it the benchmark method for text clustering. However, we
would like to show in this experiment that the performance of SAIL is comparable
to or even slightly better than the spherical K-means in CLUTO.

In this experiment, the parameter settings in CLUTO are as follows: clmethod
= direct, crfun = i2, sim = cosine, colmodel = none, ntrials = 10. For SAIL, we
use the default settings for the previous experiment. Figure 4.8 shows the clustering
results, where “CLUTO without IDF” indicates the spherical clustering results. As
can be seen, SAIL shows consistently higher clustering quality on nearly all 19 data
sets except reviews. For some data sets, for example classic, la1, la2, la2,
sports and tr31, SAIL even shows dominant advantages. This result demon-
strates that SAIL is particularly suitable for text clustering, even compared with the
state-of-the-art methods.

Since it is reported that feature weighting often makes great impact to the spherical
K-means [21], we also compare the clustering performances of SAIL and CLUTO
with Inverse-Document-Frequency (IDF) weighting [20]. Figure 4.8 shows the com-
parison result. Two observations are notable as follows. First, although CLUTO with
IDF improves the clustering quality of CLUTO without IDF on 11 out of 19 data
sets, it still shows poorer performance than SAIL to 14 out of 19 data sets. Sec-
ond, for some data sets, such as la12, tr11, tr12, tr41 and tr45, the IDF
scheme actually seriously degrades the clustering performance of CLUTO. These
observations imply that feature weighting is an X-factor for the spherical K-means
without the guidance of extra information. In contrast, SAIL with default settings
shows consistent clustering performances and therefore is more robust in practice.

In summary, compared with the benchmark spherical K-means algorithm, SAIL
shows merits in providing competitive and robust clustering results on a number of
real-world text collections.

4.6.5 Inside SAIL

In this section, we take a further step to explore the properties of SAIL. Specifically,
we will first examine the computational efficiency of SAIL and its convergence, and
then study how feature weighting, instance weighting, and bisecting scheme can take
effect on SAIL.

First, we observe the impact of data sparseness on SAIL. To this end, we com-
pute the correlation between “Density” in Table 4.2 and the clustering results of
SAIL measured by NMI. The result is -0.245, which indicates a weak negative
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Fig. 4.9 SAIL versus
SAIL_old on computational
time

Fig. 4.10 The fast conver-
gence of SAIL
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correlation. In other words, SAIL seems to be more appealing in dealing with sparse
text collections, which used to be the source of the zero-value dilemma.

Next, we study the efficiency of SAIL. As mentioned in Sect. 4.4.2, we employ
Eq. (4.10) instead of Eq. (4.8) for the computation of SAIL. Here we illustrate the
empirical results using these two schemes in Fig. 4.9, where “SAIL_old” repre-
sents SAIL using Eq. (4.8). As can be seen, by using Eq. (4.10), SAIL improves
the clustering efficiency greatly. For instance, for the large-scale data sets such as
ohscal, reviews and sports, SAIL is faster than SAIL_old by roughly two
orders of magnitude. Note that the vertical axis of Fig. 4.9 represents the average
time consumed by running one iteration (refer to Line 7 of Fig. 4.1) of SAIL.

Figure 4.10 then shows the convergence situation of SAIL, which presents the
relationship between the number of instances (NOI) and the number of iterations for
convergence (NIC). In the figure, we can observe that NIC is typically smaller than
20, except for data sets la12, la2 and ohscal whose NIC values are larger than
20 but smaller than 30. Also, there is a significant linear correlation between NIC
and log2 NOI, which indicates that NOI can only lead to a logarithmic increase in
NIC. Note that NIC in Fig. 4.10 is the average value of 10 runs of SAIL, and we have
deleted the outliers cranmed (NIC = 3) and la12 (NIC = 29) for a better fit in
Fig. 4.10.
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Table 4.5 Impact of parameter settings on SAIL

ID Data Default Feat. Wgt. Text Wgt. Bisecting
(IDF) (Prob.) Size Obj Obj/Size

D1 classic 0.691 0.668 0.632 0.668 0.729 0.598
D2 cranmed 0.990 0.995 0.990 0.990 0.990 0.990
D3 fbis 0.606 0.608 0.554 0.569 0.569 0.579
D4 k1a 0.594 0.551 0.599 0.548 0.567 0.532
D5 k1b 0.648 0.568 0.607 0.538 0.554 0.416
D6 la1 0.595 0.571 0.559 0.578 0.574 0.471
D7 la12 0.594 0.578 0.329 0.559 0.554 0.484
D8 la2 0.530 0.501 0.498 0.549 0.535 0.492
D9 ohscal 0.430 0.402 0.291 0.408 0.407 0.384
D10 re0 0.434 0.360 0.408 0.401 0.407 0.252
D11 sports 0.685 0.650 0.533 0.641 0.002 0.001
D12 reviews 0.581 0.508 0.338 0.545 0.570 0.542
D13 tr11 0.640 0.584 0.578 0.642 0.658 0.498
D14 tr12 0.645 0.556 0.447 0.553 0.545 0.415
D15 tr23 0.385 0.403 0.147 0.364 0.327 0.229
D16 tr31 0.545 0.525 0.550 0.616 0.550 0.569
D17 tr41 0.645 0.623 0.684 0.585 0.589 0.592
D18 tr45 0.618 0.685 0.527 0.630 0.602 0.543
D19 wap 0.584 0.543 0.594 0.558 0.548 0.549

In what follows, we investigate other factors that may impact the performance of
SAIL. Specifically, we introduce the feature weighting, text weighting and bisecting
schemes for SAIL, and observe the change of clustering performance. Table 4.5
shows the results. Note that “Default” represents SAIL with defaulting settings,
“feature weighting” represents SAIL using the IDF scheme, and “text weighting”
represents SAIL for documents weighted by p(x) in Theorem 4.1. As to “Bisecting”,
it represents a top-down divisive variant of SAIL. That is, it first divides all instances
into two clusters using SAIL; and then repeatedly selects one cluster according to a
certain criterion, and divides that cluster into two sub-clusters using SAIL again; the
procedure will continue unless the desired K clusters are found. In our experiment,
we use three cluster-selection criteria for bisecting SAIL, where “Size” chooses the
largest cluster, “Obj” chooses the one with the largest objective-function value, and
“Obj/Size” chooses the one with the largest averaged objective-function value.

As can be seen in Table 4.5, one observation is that “Text Weighting”, “Bisecting
with Obj” and “Bisecting with Obj/Size” often produce very poor clustering results
(scores underlined), and therefore cannot be used for SAIL enhancement. In contrast,
“Feature Weighting” and “Bisecting with Size” produce relatively robust results,
and in some cases even improve SAIL slightly (scores in bold), thus can be consid-
ered as valuable supplements to SAIL. Moreover, the bisecting scheme has another
appealing merit; that is, the bisecting SAIL is often more efficient than SAIL, as illus-
trated by Fig. 4.11. Nonetheless, SAIL with default settings still produce competitive
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Fig. 4.11 SAIL versus Bisecting-SAIL on computational time

clustering results in most cases, and therefore is the most robust one among different
settings.

4.6.6 The Performance of V-SAIL and PV-SAIL

Here we illustrate the improvements of SAIL due to the introduction of the VNS and
multithreading schemes.

For the experiments of V-SAIL, we set kmax = 12, and return the average NMI
values of 10 repetitions. The stopping criterion for V-SAIL is the maximum times
for calling “LocalSearch”, which we set to 500. Figure 4.12 shows the comparison
results of V-SAIL and SAIL. As can be seen from the figure, V-SAIL generally
achieves higher NMI scores than SAIL. For some data sets, such as fbis, la2,
tr31, tr41, and tr45, the improvements are quite significant. Nonetheless, it
is worthy of noting that for many data sets, V-SAIL only achieves slightly better
clustering results than SAIL. This in turn implies that in many cases SAIL alone is
capable of finding good enough solutions.

Next, we demonstrate the benefits of using a multithreading scheme for SAIL. To
this end, we compare PV-SAIL with V-SAIL by observing their objective-function
values at each time point. Three large-scale data sets, i.e. ohscal, sports and
reviews, are selected for the comparison study. For V-SAIL, we set kmax = 12.
Since the PC used for experiments has a four-core CPU, we run PV-SAIL with 2, 3
and 4 subthreads, respectively. In each subthread, we let kmax = 3. The stopping
criteria of V-SAIL and PV-SAIL are removed for the comparison purpose. Figure 4.13
depicts the results. As can be seen, PV-SAIL typically obtains substantially lower
objective-function values at each time point after the first call of SAIL in the initial-
ization (highlighted by a vertical line named “SAIL finished”).



4.6 Experimental Results 95

Fig. 4.12 SAIL versus V-SAIL

(a) (b)

(c)

Fig. 4.13 PV-SAIL versus V-SAIL on computational time. a Data set: ohscal; b Data set:
sports; c Data set: reviews

In summary, V-SAIL indeed improves the clustering performance of SAIL by
using the VNS scheme. The higher time-cost of V-SAIL is then lowered by further
introducing the multithreading scheme, which gives birth to the PV-SAIL algorithm.
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4.7 Related Work

In the literature, great research efforts have been devoted to incorporating information-
theoretic measures into existing clustering algorithms, such as K-means [4–6, 16,
19, 22]. However, the zero-value dilemma remains a critical challenge.

For instance, Dhillon et al. proposed information-theoretic K-means, which used
the KL-divergence as the proximity function [4]. While the authors noticed the
“infinity” values when computing the KL-divergence, they did not provide spe-
cific solutions to this dilemma. In addition, Dhillon et al. [5] further extended
information-theoretic K-means to the so-called information-theoretic co-clustering.
This algorithm is the two-dimensional version of information-theoretic K-means
which monotonically increases the preserved mutual information by interwinding
both the row and column clusterings at all stages. Again, however, there is no solution
provided for handling the zero-value dilemma when computing the KL-divergence.
The information bottleneck (IB) is similar to Info-Kmeans in preserving mutual infor-
mation [19]. Slonim and Tishby [16] also found that the IB-based word clustering
can lead to the zero-value dilemma. They suggested to use the smoothing method by
adding 0.5 to each entry of the text data. Meila and Heckerman [13] compared hard
and soft assignment strategies for text clustering using multinomial models from
which Info-Kmeans can be derived. However, they also omitted the details of how
to handle the zero denominator in computations.

Since many proximity functions such as the squared Euclidean distance and the
cosine similarity can be used in K-means clustering [18], a natural idea is to compare
their performances in practice. [22] is one of such studies. The authors argued that the
spherical K-means produces better clustering results than Info-Kmeans. Steinbach
et al. [17], Zhao and Karypis [21] and Banerjee et al. [1] also showed the merits
of spherical K-means in text clustering. In many studies, the spherical K-means in
CLUTO has become the benchmark for text clustering. However, these studies did
not tell us why Info-Kmeans shows inferior performance to spherical K-means and
how to enhance Info-Kmeans.

Our study indeed fills this crucial void by proposing the SAIL algorithm and its
variants to handle the zero-value dilemma, and improving the clustering performance
of Info-Kmeans to a level competitive to the spherical K-means.

4.8 Concluding Remarks

This chapter studied the problem of exploiting KL-divergence for information-
theoretic K-means clustering (denoted as Info-Kmeans for short). In particular, we
revealed the dilemma of Info-Kmeans for handling high-dimensional sparse text
data; that is, the centroids in sparse data usually contain zero-value features, and thus
lead to infinite KL-divergence values. This makes it difficult to use KL-divergence
as a criterion for assigning objects to the centroids. To deal with this, we developed
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a Summation-bAsed Incremental Learning (SAIL) algorithm, which can avoid the
zero-value dilemma by computing the Shannon entropy instead of the KL-divergence.
The effectiveness of this replacement is guaranteed by an equivalent mathematical
transformation in the objective function of Info-Kmeans. Moreover, we proposed
two variants, i.e. V-SAIL and PV-SAIL, to further enhance the clustering ability of
SAIL. Finally, as demonstrated by extensive text corpora in our experiments, SAIL
can greatly improve the performance of Info-Kmeans on high-dimensional sparse
text data. V-SAIL and PV-SAIL further improve the clustering performance of SAIL
in terms of quality and efficiency, respectively.
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Chapter 5
Selecting External Validation Measures
for K-means Clustering

5.1 Introduction

Clustering validation has long been recognized as one of the critical issues essential
to the success of clustering applications [12]. Despite the vast amount of research
efforts devoted to this problem [9], there is yet no consistent and conclusive solution
to cluster validation, and the best suitable measures to use in practice remain unclear.
Some interesting problems, such as the effect of measure normalization, the similar
behaviors of some measures, and the mathematical properties of measures, are still
open for a systematic study. Given the fact that different validation measures may
be appropriate for different clustering algorithms, it is necessary to have a focused
study of cluster validation measures on a specified clustering algorithm at one time.

To that end, in this chapter, we limit our scope to provide an organized study of
external validation measures for K-means clustering [15]. The rationale of this pilot
study is as follows. On one hand, while K-means is a well-known, widely used, and
successful clustering method, the way to validate the clustering results of K-means
is far from normative and tends to be arbitrary in the literature. On the other hand,
as internal validation measures often make latent assumptions on the formation of
cluster structures, and usually have much higher computational complexity, more
research in recent years prefers to use external measures for cluster validity, when
the purpose is only to assess clustering algorithms and the class labels are available.

Along this line, we present a thorough study of 16 external measures for K-means
clustering validation. Specifically, we first establish a filtering criterion based on the
uniform effect of K-means to identify the defective measures that cannot detect the
uniform effect. We also show the interesting fact that some other existing measures
are right the enhanced versions of these defective measures. In addition, we study the
normalization issues of external measures and provide normalization solutions to the
measures in the pool. The key challenge here is to identify the lower and upper bounds
of validation measures based on the multivariate hypergeometric distribution [3].
The importance of measure normalization is also carefully examined from various
aspects. Finally, we reveal some key properties of these external measures, such as
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consistency, sensitivity, and symmetry. These properties can serve as the guidance
for the selection of validation measures in different application scenarios.

Most importantly, we provide a guide line to select the most suitable validation
measures for K-means clustering. After carefully profiling these validation measures,
we believe it is most suitable to use the normalized van Dongen criterion (V Dn),
the normalized Variation of Information measure (V In), and the normalized Rand
statistic (Rn) for K-means clustering validation. V Dn has a simple computation
form, and satisfies some mathematical properties. For the case that the clustering
performance is hard to distinguish, however, we may want to use V In instead for its
high sensitivity. Rn is more complicated in computation, but has a clear statistical
meaning and a wide range of value.

The remainder of this chapter is organized as follows. Section 5.2 presents the
external measures we aim to study. In Sect. 5.3, we identify and explore some
defective measures. Section 5.4 highlights the importance of and the way to measure
normalization. In Sect. 5.5, some interesting properties are presented to guide the
selection of measures. Finally, we conclude our work in Sect. 5.6.

5.2 External Validation Measures

In this section, we introduce a suite of 16 widely used external clustering validation
measures. To the best of our knowledge, these measures represent a good coverage of
the validation measures available in different fields, such as data mining, information
retrieval, machine learning, and statistics. A common ground of these measures is
that they can be computed by the contingency matrix as follows.

The contingency matrix. Given a data set D with n objects, assume that we have
a partition P = {P1, . . . , PK } of D, where

⋃K
i=1 Pi = D and Pi

⋂
Pj = φ for

1 ≤ i �= j ≤ K , and K is the number of clusters. If we have the class labels (i.e. true
cluster labels) of the data, we can have another partition on D: C = {C1, . . . , CK ′ },
where

⋃K ′
i=1 Ci = D and Ci

⋂
C j = φ for 1 ≤ i �= j ≤ K ′, where K ′ is the number

of classes. Let ni j denote the number of objects in cluster Pi from class C j , then the
overlapped information between the two partitions can be written in the form of a
contingency matrix, as shown in Table 5.1. Throughout this chapter, we will use the
notations in this contingency matrix.

The measures. Table 5.2 shows the list of measures to be studied. The “Compu-
tation” column gives the computational forms of the measures by using the notations
in the contingency matrix. Next, we briefly introduce these measures.

The Entropy and Purity are frequently used external measures for K-means [21,
24]. They measure the “purity” of the clusters with respect to the given class labels.

F-measure was originally designed for the evaluation of hierarchical clustering
[14, 20], but has also been employed for partitional clustering [21]. It combines the
precision and recall concepts stemming from the information retrieval community.
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Table 5.1 The contingency matrix
Partition C

C1 C2 · · · CK ′
∑

P1 n11 n12 · · · n1K ′ n1·
Partition P P2 n21 n22 · · · n2K ′ n2·

· · · · · · · ·
PK nK 1 nK 2 · · · nK K ′ nK ·∑

n·1 n·2 · · · n·K ′ n

The Mutual Information and Variation of Information were developed in the field
of information theory [4]. M I measures how much information one random variable
can tell about another one [22]. V I measures the amount of information that is lost
or gained in changing from the class set to the cluster set [17].

The Rand statistic [19], Jaccard coefficient, Fowlkes and Mallows Index [7], and
Hubert’s two statistics [10, 11] evaluate the clustering quality by the agreements
and/or disagreements of the pairs of data objects in different partitions.

The Minkowski score [1] measures the difference between the clustering results
and a reference clustering (true clusters). And the difference is computed by counting
the disagreements of the pairs of data objects in two partitions.

The Classification Error takes a classification view on clustering [2]. It tries to
map each class to a different cluster so as to minimize the total misclassification rate.
The “σ” in Table 5.2 is the mapping of class j to cluster σ( j).

The van Dongen criterion [6] was originally proposed for evaluating graph clus-
tering. It measures the representativeness of the majority objects in each class and
each cluster.

Finally, the Micro-Average Precision, Goodman and Kruskal coefficient [8], and
Mirkin metric [18] are also popular measures. However, the former two are equiva-
lent to the purity measure, and the Mirkin metric is equivalent to the Rand statistic
(M/2

(n
2

)+R = 1). As a result, we will not discuss these three measures in the follow
study.

In summary, we have 13 (out of 16) candidate measures in the pool. Among them,
P , F , M I , R, J , F M , Γ , and Γ ′ are positive measures—a higher value indicates a
better clustering performance. The remaining measures, however, are based on the
distance notion, and therefore are negative measures. Throughout this chapter, we
will use the acronyms of these measures.

5.3 Defective Validation Measures

In this section, we identify some defective validation measures that tend to gener-
ate misleading evaluations for K-means clustering. The uniform effect of K-means,
thoroughly studied in Chap. 2, is used here as a filtering criterion. That is,
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Table 5.3 Two clustering results

C1 C2 C3 C4 C5

Result I
P1 10 0 0 0 0
P2 10 0 0 0 0
P3 10 0 0 0 0
P4 0 0 0 10 0
P5 0 2 6 0 2
Result II
P1 27 0 0 2 0
P2 0 2 0 0 0
P3 0 0 6 0 0
P4 3 0 0 8 0
P5 0 0 0 0 2

If an external validation measure cannot capture the uniform effect of
K-means, this measure is not suitable for the cluster validity of K-means.

In what follows, we apply this criterion for the detection of defective measures
through a simulation study. The Coefficient of Variation statistic (CV ), first intro-
duced in Chap. 2, is also employed to measure the degree of class imbalance. In
particular, CV0 denotes the CV value of the true cluster sizes (i.e. the class sizes),
and CV1 denotes the CV value of the cluster sizes generated by K-means clustering.
The difference between CV1 and CV0, i.e. DCV = CV1 − CV0, then indicates the
degree of deviation.

5.3.1 The Simulation Setup

Assume we have a text data set containing 50 documents obtained from five classes.
The class sizes are 30, 2, 6, 10, and 2, respectively. Thus, we have CV0 = 1.166,
which implies a highly skewed class distribution.

For this data set, we assume there are two clustering results, as shown in Table 5.3.
In the table, the first result consists of five clusters with extremely balanced sizes,
i.e. CV1 = 0. It can be regarded as the clustering result due to the uniform effect
of K-means. In contrast, the second result contains five clusters with varying sizes,
which lead to CV1 = 1.125. Therefore, judged by the CV statistic, the second result
should be better than the first one.

Indeed, if we take a closer look at Result I in Table 5.3, we can find that the
first clustering partitions the objects of the largest class C1 into three balanced sub-
clusters. Meanwhile, the two small classes C2 and C5 are totally “disappeared” —

http://dx.doi.org/10.1007/978-3-642-29807-3_2
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Table 5.4 The cluster validation results

Result E P F M I V I R J F M Γ Γ ′ M S ε V D

I 0.274 0.920 0.617 1.371 1.225 0.732 0.375 0.589 0.454 0.464 0.812 0.480 0.240
II 0.396 0.900 0.902 1.249 0.822 0.857 0.696 0.821 0.702 0.714 0.593 0.100 0.100

they are overwhelmed in cluster P5 by the objects from class C3. In contrast, we
can easily identify all the classes in the second clustering result, as they have the
majority of objects in the corresponding clusters. Therefore, we can conclude that
the first clustering is indeed much worse than the second one.

Next, we proceed to see which external validation measures can rank the two
results properly, and thus can detect the uniform effect of K-means.

5.3.2 The Cluster Validation Results

Table 5.4 shows the evaluation results for the two clusterings in Table 5.3, using
all 13 external validation measures. The better evaluation given by each validation
measure is highlighted in bold.

As shown in Table 5.4, only three measures, E , P and M I , give a higher rank
to the first clustering. This implies that they cannot capture the uniform effect of
K-means, and therefore are not suitable for evaluating K-means clustering. In other
words, these three are defective validation measures.

5.3.3 Exploring the Defective Measures

Here, we explore the issues with the defective measures. First, the problem of the
entropy measure (E) lies in the fact that it cannot evaluate the integrity of the classes.

We know E = −∑
i pi

∑
j

pi j
pi

log
pi j
pi

. If we take a random variable view on
cluster P and class C , then pi j = ni j/n is the joint probability of the event: {P =
Pi

∧
C = C j }, and pi = ni ·/n is the marginal probability. Therefore,

E =
∑

i

pi

∑

j

−p(C j |Pi ) log p(C j |Pi ) =
∑

i

pi H(C |Pi ) = H(C |P),

where H(·) is the Shannon entropy [4]. The above implies that the entropy measure is
nothing but the entropy of C conditioned on P . In other words, if the objects in each
large partition are mostly from the same class, the entropy value tends to be small
and indicates an excellent clustering quality. This is usually the case for K-means
clustering on highly imbalanced data sets, for K-means tends to partition a large class
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into several pure sub-clusters, and thus damage the integrity of the objects from the
same class. The entropy measure cannot capture this information and penalize it.

The Mutual Information measure (M I ) is strongly related to the entropy measure.
We illustrate this by the following Lemma.

Lemma 5.1 M I ⇔ E.

Proof According to the information theory,

M I =
∑

i

∑

j

pi j log
pi j

pi p j
= H(C)− H(C |P) = H(C)− E .

Since H(C) is a constant for any given data set, M I is essentially equivalent to
E . ��

The purity measure (P) works in a similar way as the entropy measure. That is,
it measures the “purity” of each cluster by the ratio of objects from the major class
in that cluster. Thus, it has the same problem as the entropy measure for evaluating
K-means clustering.

In summary, entropy, purity, and Mutual Information are defective measures for
K-means clustering validation.

5.3.4 Improving the Defective Measures

Here, we give the improved versions of the above three defective measures: Entropy,
Mutual Information, and Purity. Interestingly, the enhanced measures, i.e. Variation
of Information (V I ) [17] and van Dongen criterion (V D), have been proposed in the
literature for a long time, but hardly any research realizes that they relate to the three
defective measures.

Lemma 5.2 V I is an improved version of E.

Proof If we view cluster P and class C as two random variables, it has been shown
that V I = H(C) + H(P) − 2M I = H(C |P) + H(P|C) [17]. The component
H(C |P) is nothing but the entropy measure, and the component H(P|C) is a valuable
supplement to H(C |P). That is, H(P|C) evaluates the integrity of each class along
different clusters. Thus, we complete the proof. ��

By Lemma 5.1, we know M I is equivalent to E . Therefore, V I is also an improved
version of M I .

Lemma 5.3 V D is an improved version of P.

Proof It is easy to show
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V D = 2n −∑
i max j ni j −∑

j maxi ni j

2n
= 1− 1

2
P −

∑
j maxi ni j

2n
.

Apparently,
∑

j maxi ni j/n reflects the integrity of the classes and is a supplement
to the purity measure. ��

5.4 Measure Normalization

In this section, we show the importance of measure normalization and provide nor-
malization solutions to some measures whose normalized forms are not available
yet.

5.4.1 Normalizing the Measures

Generally speaking, normalizing techniques can be divided into two categories. One
is based on a statistical view, which formulates a baseline distribution to correct
the measure for randomness. A clustering can then be termed “valid” if it has an
unusually high or low value, as measured with respect to the baseline distribution.
The normalization scheme takes the form as

Sn = S − E(S)

max(S)− E(S)
, (5.1)

where max(S) is the maximum value of measure S, and E(S) is the expected value
of S based on the baseline distribution. The difficulty of this scheme usually lies in
the computation of E(S).

The other technique uses the minimum and maximum values to normalize the
measure into the range of [0,1]. We can also take a statistical view on this technique
with the assumption that each measure takes a uniform distribution over the value
interval. The normalization scheme is formalized as

Sn = S −min(S)

max(S)−min(S)
, (5.2)

where max(S) and min(S) are the maximum and minimum values of measure S. To
obtain tighter extreme values is often the key factor that impacts the effect of this
normalization scheme.

The normalization of R, FM, �,�’, J, and MS. These measures were derived
from the statistical community, and usually take the first normalization scheme in
Eq. (5.1).
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Table 5.5 The normalized measures

ID Notation Computation

1 Rn , Γ ′n (m − m1m2/M)/(m1/2+ m2/2− m1m2/M)

2 J ′n , M S′n (m1 + m2 − 2m)/(m1 + m2 − 2m1m2/M)

3 F Mn (m − m1m2/M)/(
√

m1m2 − m1m2/M)

4 Γn (mM − m1m2)/
√

m1m2(M − m1)(M − m2)

5 V In 1+ 2
∑

i
∑

j pi j log(pi j /pi p j )/(
∑

i pi log pi +∑
j p j log p j )

6 V Dn (2n −∑
i max j ni j −∑

j maxi ni j )/(2n −maxi ni · −max j n· j )
7 Fn (F − F−)/(1− F−)

8 εn (1− 1
n maxσ

∑
j nσ( j), j )/(1− 1/ max(K , K ′))

Note (1) m = ∑
i, j

(ni j
2

)
, m1 = ∑

i

(ni ·
2

)
, m2 = ∑

j

(n· j
2

)
, M = (n

2

)
(2) pi = ni ·/n, p j = n· j /n,

pi j = ni j /n (3) Refer to Table 5.2 for F , and Procedure 1 for F−

Specifically, Hubert and Arabie [11] suggested to use the multivariate hypergeo-
metric distribution as the baseline distribution, in which the row and column sums
are fixed in Table 5.1, but the partitions are randomly selected. This determines the
expected value as follows:

E

⎛

⎝
∑

i

∑

j

(
ni j

2

)
⎞

⎠ =
∑

i

(ni ·
2

) ∑
j

(n· j
2

)

(n
2

) . (5.3)

Based on this value, we can easily compute the expected values of R, F M , Γ and
Γ ′, respectively, since they are the linear functions of

∑
i
∑

j

(ni j
2

)
under the multi-

variate hypergeometric distribution assumption. Furthermore, although to obtain the
exact maximum values of the measures are computationally prohibitive, we can still
reasonably approximate them by 1. Then, according to Eqs. (5.1) and (5.3), we can
finally have the normalized R, F M , Γ , and Γ ′ measures, as shown in Table 5.5.

The normalization of J and M S is a bit complex, since they are not linear to∑
i
∑

j

(ni j
2

)
. Nevertheless, we can still normalize the equivalent measures converted

from them. Let J ′ = 1−J
1+J = 2

1+J −1 and M S′ = M S2. It is easy to show J ′ ⇔ J and
M S′ ⇔ M S. Then based on the hypergeometric distribution assumption, we have the
normalized J ′ and M S′ as shown in Table 5.5. As J ′ and M S′ are negative measures—
a lower value implies a better clustering, we normalize them by modifying Eq. (5.1)
as Sn = (S − min(S))/(E(S) − min(S)), where min(S) indicates a best clustering
performance.

Finally, we would like to point out some interrelationships between these measures
as follows:

Proposition 5.1

(1) (Rn = Γ ′n)⇔ (J ′n = M S′n).

(2) Γn = Γ.
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Proof (1) Let m = ∑
i, j

(ni j
2

)
, m1 = ∑

i

(ni ·
2

)
, m2 = ∑

j

(n· j
2

)
, M = (n

2

)
. Then we

have

R = M − m1 − m2 + 2m

M
,

Γ ′ = M − 2m1 − 2m2 + 4m

M
.

As m1, m2 and M are constants, and the expected value E(m) = m1m2/M under
the assumption of multivariate hypergeometric distribution, we can easily compute
E(R) and E(Γ ′), and finally have

Rn = R − E(R)

1− E(R)
= Γ ′n =

Γ ′ − E(Γ ′)
1− E(Γ ′)

= m − m1m2/M

m1/2+ m2/2− m1m2/M
. (5.4)

Likewise, as

J ′ =2(m1 + m2 − m)

m1 + m2
, and

M S′ =m1 + m2 − 2m

m2
,

we have

J ′n =
J ′ − 0

E(J ′)− 0
= M S′n =

M S′ − 0

E(M S′)− 0
= m1 + m2 − 2m

m1 + m2 − 2m1m2/M
. (5.5)

According to Eqs. (5.4) and (5.5), we can easily have Rn+ J ′n = 1, which indicates
that Rn is equivalent to J ′n for cluster validity.

(2) As

Γn = Γ − E(Γ )

1− E(Γ )
,

Γn = Γ if E(Γ ) = 0. As we know,

Γ = Mm − m1m2√
m1m2(M − m1)(M − m2)

.

So

E(Γ ) = M · E(m)− m1m2√
m1m2(M − m1)(M − m2)

= 0.

We thus complete the proof. ��
According to Proposition 5.1, the three normalized measures, i.e. Γ ′n , J ′n , and M S′n ,

are redundant measures and therefore should be filtered out. We can only consider
the three independent normalized measures: Rn , F Mn , and Γn , for further study.
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The normalization of VI and VD. These two measures often take the second
normalization scheme in Eq. (5.2). However, to know the exact maximum and min-
imum values is often impossible. So we usually turn to a reasonable approximation,
e.g. the upper bound of the maximum, or the lower bound of the minimum.

When the cluster structure matches the class structure perfectly, V I = 0. So, we
have min(V I ) = 0. However, finding the exact value of max(V I ) is computationally
infeasible. Meila suggested to use 2 log max(K , K ′) to approximate max(V I ) [17],
and the resulted normalized V I is V I

2 log max(K ,K ′) .
The V D in Table 5.2 can be regarded as a normalized measure. In this measure,

2n has been taken as the upper bound [6], and min(V D) = 0.
However, we found that the above normalized V I and V D cannot well capture

the uniform effect of K-means, because the proposed upper bound for V I or V D is
not tight enough. Therefore, we propose new upper bounds as follows:

Lemma 5.4 Let random variables C and P denote the class and cluster sizes, re-
spectively, and H(·) be the entropy function. Then

V I ≤ H(C)+ H(P) ≤ 2 log max(K ′, K ).

Proof By the definition of V I [16], we have

V I = H(C |P)+ H(P|C).

According to the information theory [4], we have

H(C |P) ≤ H(C) ≤ log K ′, and H(P|C) ≤ H(P) ≤ log K ,

which complete the proof. ��
Lemma 5.4 gives an upper bound H(C) + H(P) tighter than 2 log max(K ′, K )

provided by Meila [17]. With this new upper bound, we can have the normalized V I
measure, as indicated by V In in Table 5.5. It is interesting to note that, if we use
H(P)/2+H(C)/2 as the upper bound to normalize the defective Mutual Information
measure, V In is indeed equivalent to the normalized Mutual Information measure
M In , i.e. V In+M In = 1. This implies that a defective measure may be also corrected
by a well designed normalization scheme.

Lemma 5.5 Let ni ·, n· j and n be the values in Table 5.1. Then

V D ≤ 2n −maxi ni · −max j n· j
2n

< 1.

Proof It is easy to show

∑

i

max
j

ni j ≥ max
j

∑

i

ni j = max
j

n· j ,
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∑

j

max
i

ni j ≥ max
i

∑

j

ni j = max
i

ni ·.

Therefore,

V D = 2n −∑
i max j ni j −∑

j maxi ni j

2n
≤ 2n −maxi ni · −max j n· j

2n
< 1.

Thus we complete the proof. ��
The above two lemmas imply that the tighter upper bounds of V I and V D are

the functions of the class and cluster sizes. Using these two new upper bounds, we
can derive the normalized V I and V D measures, as shown in Table 5.5.

Procedure 1: The computation of F−.

1: Let n∗ = maxi ni ·;
2: Sort the class sizes so that n·[1] ≤ n·[2] ≤ · · · ≤ n·[K ′];
3: Let a j = 0, for j = 1, 2, · · · , K ′;
4: for j = 1 : K ′
5: if n∗ ≤ n·[ j]
6: a j = n∗, break;
7: else
8: a j = n·[ j], n∗ ← n∗ − n·[ j];
9: end if
10: end for
11: F− = (2/n)

∑K ′
j=1 a j /(1+maxi ni ·/n·[ j]);

The normalization of F and ε. As we know, max(F) = 1. Now the goal is to
find a tight lower bound. We have the following lemma, which finds a lower bound
for F .

Lemma 5.6 Given F− computed by Procedure 1, F ≥ F−.

Proof It is easy to show:

F =
∑

j

n· j
n

max
i

2ni j

ni · + n· j
≥ 2

n
max

i

∑

j

ni j

ni ·/n· j + 1
. (5.6)

Let us consider an optimization problem as follows.

min
xi j

∑

j

xi j

ni ·/n· j + 1

s.t.
∑

j

xi j = ni ·; ∀ j, xi j ≤ n· j ; ∀ j, xi j ∈ Z+.



5.4 Measure Normalization 111

For this optimization problem, to have the minimum objective value, we need
to assign as many objects as possible to the cluster with highest ni ·/n· j + 1, or
equivalently, with smallest n· j . Let n·[0] ≤ n·[1] ≤ · · · ≤ n·[K ′] where the virtual
n·[0] = 0, and assume

∑l
j=0 n·[ j] < ni · ≤∑l+1

j=0 n·[ j], l ∈ {0, 1, . . . , K ′ − 1}. We
have the optimal solution:

xi[ j] =
⎧
⎨

⎩

n·[ j], 1 ≤ j ≤ l;
ni · −∑l

k=1 n·[k], j = l + 1;
0, l + 1 < j ≤ K ′.

Therefore, according to Eq. (5.6), F ≥ 2
n maxi

∑K ′
j=1

xi[ j]
ni ·/n·[ j]+1 .

Let Fi = 2
n

∑K ′
j=1

xi[ j]
ni ·/n·[ j]+1 = 2

n

∑K ′
j=1

xi[ j]/ni ·
1/n·[ j]+1/ni · . Denote “xi[ j]/ni ·” as

“yi[ j]”, and “ 1
1/n·[ j]+1/ni · ” as “pi[ j]”, we therefore have Fi = 2

n

∑K ′
j=1 pi[ j]yi[ j].

Next, we remain to show

arg max
i

Fi = arg max
i

ni ·.

Assume ni · ≤ ni ′·, and for some l,
∑l

j=0 n·[ j] < ni · ≤ ∑l+1
j=0 n·[ j],

l∈{0, 1, . . . , K ′ − 1}. This implies that

yi[ j]
{≥ yi ′[ j], 1 ≤ j ≤ l;
≤ yi ′[ j], l + 1 < j ≤ K ′.

Since
∑K ′

j=1 yi[ j] = ∑K ′
j=1 yi ′[ j] = 1 and j ↑ ⇒ pi[ j] ↑, we have

∑K ′
j=1

pi[ j]yi[ j] ≤ ∑K ′
j=1 pi[ j]yi ′[ j]. Furthermore, according to the definition of pi[ j], we

have pi[ j] ≤ pi ′[ j], ∀ j ∈ {1, . . . , K ′}. Therefore,

Fi = 2

n

K ′∑

j=1

pi[ j]yi[ j] ≤ 2

n

K ′∑

j=1

pi[ j]yi ′[ j] ≤ 2

n

K ′∑

j=1

pi ′[ j]yi ′[ j] = F ′i ,

which implies that “ni · ≤ ni ′·” is the sufficient condition for “Fi ≤ F ′i ”. Therefore,
by Procedure 1, we have F− = maxi Fi , which finally leads to F ≥ F−. Thus we
complete the proof. ��

Therefore, Fn = (F − F−)/(1− F−), as listed in Table 5.5. Finally, we have the
following lemma for the ε measure:

Lemma 5.7 Given K ′ ≤ K , ε ≤ 1− 1/K .

Proof Assume σ1 : {1, . . . , K ′} → {1, . . . , K } is the optimal mapping of the classes
to different clusters, i.e.
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ε = 1−
∑K ′

j=1 nσ1( j), j

n
.

Then we construct a series of mappings σs : {1, . . . , K ′} �→ {1, . . . , K } (s =
2, . . . , K ) which satisfy

σs+1( j) = mod(σs( j), K )+ 1, ∀ j ∈ {1, . . . , K ′},

where “mod(x, y)” returns the remainder of positive integer x divided by positive
integer y. By definition, σs (s = 2, . . . , K ) can also map {1, . . . , K ′} to K ′ dif-
ferent indices in {1, . . . , K } as σ1. More importantly we have

∑K ′
j=1 nσ1( j), j ≥

∑K ′
j=1 nσs ( j), j , ∀s = 2, . . . , K , and

∑K
s=1

∑K ′
j=1 nσs ( j), j = n.

Accordingly, we have
∑K ′

j=1 nσ1( j), j ≥ n
K , which implies ε ≤ 1 − 1/K . The

proof is completed. ��
Therefore, we can use 1 − 1/K as the upper bound of ε, and normalize ε to εn ,

as shown in Table 5.5.

5.4.2 The Effectiveness of DCV for Uniform Effect Detection

Here, we present some experiments to show the importance of DCV (i.e. CV1−CV0)
for selecting validation measures.

Experimental Data. Some synthetic data sets were generated as follows. Assume
we have a two-dimensional mixture of two Gaussian distributions. The means of the
two distributions are [−2,0] and [2,0], respectively. And their covariance matrices
are exactly the same as: [σ 2 0; 0 σ 2].

Therefore, given any specific value of σ 2, we can generate a simulated data set
with 6000 instances, n1 instances from the first distribution, and n2 instances from the
second one, where n1+n2 = 6000. To produce simulated data sets with imbalanced
class sizes, we set a series of n1 values: {3000, 2600, 2200, 1800, 1400, 1000,
600, 200}. If n1 = 200, n2 = 5800, we have a highly imbalanced data set with
CV0 = 1.320. For each mixture model, we generated 8 simulated data sets with
CV0 ranging from 0 to 1.320. Further, to produce data sets with different clustering
tendencies, we set a series of σ 2 values: {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. As
σ 2 increases, the mixture model tends to be more unidentifiable. Finally, for each
pair of σ 2 and n1, we repeated the sampling 10 times, thus we can have the average
performance evaluation. In summary, we produced 8 × 10 × 10 = 800 data sets.
Fig. 5.1 shows a sample data set with n1 = 1000 and σ 2 = 2.5.

We also did sampling on a real-world data set hitech to get some sample data
sets with imbalanced class distributions. This data set was derived from the San Jose
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Fig. 5.1 A simulated data set (n1 = 1000, σ 2 = 2.5). Reprinted from Ref. [23] © 2009 Association
for Computing Machinery, Inc. Reprinted by permission

Table 5.6 The sizes of the sampled data sets

Data set 1 2 3 4 5 6 7 8

Class 1 100 90 80 70 60 50 40 30
Class 2 100 90 80 70 60 50 40 30
Class 3 100 90 80 70 60 50 40 30
Class 4 250 300 350 400 450 500 550 600
Class 5 100 90 80 70 60 50 40 30
Class 6 100 90 80 70 60 50 40 30
CV0 0.490 0.686 0.880 1.078 1.270 1.470 1.666 1.860

Mercury newspaper articles,1 which contains 2301 documents about computers, elec-
tronics, health, medical, research and technology. Each document is characterized by
126373 terms, and the class sizes are 485, 116, 429, 603, 481 and 187, respectively.
We carefully set the sampling ratio for each class, and get 8 sample data sets with the
class-size distributions (CV0) ranging from 0.490 to 1.862, as shown in Table 5.6.
For each data set, we repeated sampling 10 times, so we can observe the average
clustering performance.

Clustering Tools. We used the MATLAB 7.12 and CLUTO 2.1.13 implemen-
tations of K-means. The MATLAB version with the squared Euclidean distance is
suitable for low-dimensional and dense data sets, while CLUTO with the cosine sim-
ilarity is used to handle high-dimensional and sparse data sets. Note that the number
of clusters, i.e. K , was set to match the number of true classes.

The Effectiveness of DCV. Figure 5.2 shows the clustering results evaluated by
DCV . As can be seen in Fig. 5.2a, for the extreme case of the simulated data sets
when σ 2 = 5, the DCV value decreases as the CV0 value increases. Note that DCV

1 http://trec.nist.gov
2 http://www.mathworks.cn/help/toolbox/stats/kmeans.html
3 http://glaros.dtc.umn.edu/gkhome/views/cluto

http://dx.doi.org/http://trec.nist.gov
http://dx.doi.org/http://www.mathworks.cn/help/toolbox/stats/kmeans.html
http://dx.doi.org/http://glaros.dtc.umn.edu/gkhome/views/cluto
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Fig. 5.2 The relationship between CV0 and DCV . Reprinted from Ref. [23] © 2009 Association
for Computing Machinery, Inc. Reprinted by permission

values are usually negative since K-means tends to produce clustering results with
relative uniform cluster sizes (CV1 < CV0). This means that, when the true cluster
sizes of data become more skewed, the clustering results generated by K-means
tend to be worse. As a result, we can select measures by observing the relationship
between the evaluations of the measures and the DCV values. As the DCV value
goes down, a good measure is expected to indicate worse clustering performances.
Note that, in this experiment, we used the MATLAB version of K-means.

A similar trend can be found in Fig. 5.2b for the sampled data sets. That is, as the
CV0 value goes up, the DCV value decreases, which implies worse clustering per-
formances. Indeed, DCV is a good indicator for finding the measures which cannot
capture the uniform effect by K-means clustering. Note that, in this experiment, we
used the CLUTO version of K-means to handle the high-dimensionality of text data.

5.4.3 The Effect of Normalization

In this subsection, we show the importance of measure normalization. Along this
line, we first apply K-means clustering on the simulated data sets with σ 2 = 5
and the sampled data sets from hitech. Then, both unnormalized and normalized
measures are used for cluster validation. Finally, the correlation between DCV and
the measures are computed.

We here use the Kendall’s rank correlation (κ) [13] to measure the correlation
between the measure values and the DCV values. Note that, κ ∈ [−1, 1], with
κ = 1 or −1 indicating the perfect positive or negative rank correlation, and κ = 0
indicating no significant correlation. Therefore, a good measure is expected to have
a high positive κ value.

Table 5.7 shows the results. As can be seen, if we use the unnormalized measures to
do cluster validation, only three measures, namely R, Γ , Γ ′, have strong consistency
with DCV on both groups of data sets. V I, V D, and M S even show strong conflicts
with DCV on the sampled data sets, for their κ values are all close to -1. In addition,
we notice that F, ε, J and F M show weak correlation with DCV .
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Table 5.7 The correlation between DCV and the validation measures

κ V I V D M S ε F R J F M Γ Γ ′

Simulated data −0.71 0.79 −0.79 1.00 1.00 1.00 0.91 0.71 1.00 1.00
Sampled data −0.93 −1.00 −1.00 0.50 0.21 1.00 0.50 −0.43 0.93 1.00
κ V In V Dn M S′n εn Fn Rn J ′n F Mn Γn Γ ′n
Simulated data 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Sampled data 1.00 1.00 1.00 0.50 0.79 1.00 1.00 1.00 0.93 1.00

Note Poor correlations are highlighted in bold
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Fig. 5.3 The comparison of value range between unnormalized and normalized measures.
Reprinted from Ref. [23] © 2009 Association for Computing Machinery, Inc. Reprinted by permis-
sion

Table 5.7 also shows the rank correlations between DCV and the normalized
measures. As can be seen, all the normalized measures show perfect consistency
with DCV except for Fn and εn . This indicates that the normalization is crucial
for evaluating K-means clustering. The proposed bounds for the measures are tight
enough to capture the uniform effect in the clustering results.

We then focus on Fn and εn , both of which are not consistent with DCV in
Table 5.7. This indicates that the normalization does not help F and ε too much. The
reason is that the proposed lower bound of F and the upper bound of ε are not very
tight. Indeed, the normalization of F and ε is very challenging. This is because they
both exploit relatively complicated optimization schemes. As a result, we cannot
easily compute the expected values or the tighter bounds of extreme values based on
the multivariate hypergeometric distribution assumption.

Nevertheless, the above experiments show that the normalization is very important
for external measures. In addition, Fig. 5.3 shows the cluster validation results of the
measures on all the simulated data sets with σ 2 ranging from 0.5 to 5. It is clear
that the normalized measures have much wider value range than the unnormalized
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Fig. 5.4 Correlations of the measures. a Unnormalized measures; b Normalized measures.
Reprinted from Ref. [23] © 2009 Association for Computing Machinery, Inc. Reprinted by
permission

measures in [0,1], which is also very important for the comparison of clustering
results.

In summary, measure normalization can help external validation measures to
detect the uniform effect of K-means and gain a wide range of value in [0,1], and
therefore is crucial to the success of cluster validity.

5.5 Measure Properties

In this section, we investigate measure properties, which can serve as the guidance
for the selection of measures.

5.5.1 The Consistency Between Measures

Here, we define the consistency between a pair of measures in terms of the similarity
between their rankings on a series of clustering results. The similarity is measured
by the Kendall’s rank correlation. And the clustering results are produced by the
CLUTO version of K-means clustering on 29 benchmark real-world data sets listed
in Table 5.8. In the experiment, the cluster number is set to the true cluster number
of each data set.

Figure 5.4a, b show the correlations between the unnormalized and normalized
measures, respectively. One interesting observation is that the normalized measures
have much stronger consistency than the unnormalized measures. For instance, the
correlation between V I and R is merely −0.21, but it reaches 0.74 for the corre-
sponding normalized measures. This observation indeed implies that the normalized
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Table 5.8 The benchmark data sets

ID Data Source #Class #Instance #Feature CV0

1 cacmcisi CA/CI 2 4663 41681 0.53
2 Classic CA/CI 4 7094 41681 0.55
3 cranmed CR/ME 2 2431 41681 0.21
4 fbis TREC 17 2463 2000 0.96
5 Hitech TREC 6 2301 126373 0.50
6 k1a WebACE 20 2340 21839 1.00
7 k1b WebACE 6 2340 21839 1.32
8 la1 TREC 6 3204 31472 0.49
9 la2 TREC 6 3075 31472 0.52
10 la12 TREC 6 6279 31472 0.50
11 mm TREC 2 2521 126373 0.14
12 ohscal OHSUMED 10 11162 11465 0.27
13 re0 Reuters 13 1504 2886 1.50
14 re1 Reuters 25 1657 3758 1.39
15 Sports TREC 7 8580 126373 1.02
16 tr11 TREC 9 414 6429 0.88
17 tr12 TREC 8 313 5804 0.64
18 tr23 TREC 6 204 5832 0.93
19 tr31 TREC 7 927 10128 0.94
20 tr41 TREC 10 878 7454 0.91
21 tr45 TREC 10 690 8261 0.67
22 Wap WebACE 20 1560 8460 1.04
23 DLBCL KRBDSR 3 77 7129 0.25
24 Leukemia KRBDSR 7 325 12558 0.58
25 LungCancer KRBDSR 5 203 12600 1.36
26 Ecoli UCI 8 336 7 1.16
27 Pageblocks UCI 5 5473 10 1.95
28 Letter UCI 26 20000 16 0.03
29 Pendigits UCI 10 10992 16 0.04
- MIN - 2 77 7 0.03
- MAX - 26 20000 126373 1.95

Note CA-CACM, CI-CISI, CR-CRANFIELD, ME-MEDLINE

measures tend to give more robust validation results, which also agrees with our
previous analysis.

Let us take a closer look on the normalized measures in Fig. 5.4b. According
to the colors, we can roughly find that Rn , Γ ′n , J ′n , M S′n , F Mn and Γn are more
similar to one another, while V Dn , Fn , V In and εn show inconsistency with others
in varying degrees. To gain the precise understanding, we do hierarchical clustering
on the measures by using their correlation matrix. The resulting hierarchy can be
found in Fig. 5.5 (“s” means the similarity). As we know before, Rn , Γ ′n , J ′n and
M S′n are equivalent, so they have perfect correlation to one another, and form the
first group. The second group contains F Mn and Γn . These two measures behave
similarly, and have just slightly weaker consistency with the measures in the first
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Fig. 5.5 The similarity
hierarchy of the measures.
Reprinted from Ref. [23] ©
2009 Association for Comput-
ing Machinery, Inc. Reprinted
by permission

Table 5.9 M(R1)− M(R2)

Rn F Mn Γn V Dn Fn εn V In

Rn 0.00 0.09 0.13 0.08 0.10 0.26 −0.01
F Mn 0.09 0.00 0.04 0.00 0.10 0.22 −0.10
Γn 0.13 0.04 0.00 0.04 0.14 0.22 −0.06
V Dn 0.08 0.00 0.04 0.00 0.05 0.20 −0.18
Fn 0.10 0.10 0.14 0.05 0.00 0.08 −0.08
εn 0.26 0.22 0.22 0.20 0.08 0.00 0.04
V In −0.01 −0.10 −0.06 −0.18 −0.08 0.04 0.00

group. Finally, V Dn , Fn , εn and V In have obviously weaker consistency with other
measures in a descending order.

Furthermore, we explore the source of the inconsistency among the measures. To
this end, we divide the data sets in Table 5.8 into two repositories, where R1 contains
data sets with CV0 < 0.8, and R2 contains the rest. Then we compute the correlation
matrices of the measures on the two repositories respectively (denoted as M(R1) and
M(R2)), and observe their difference (M(R1) − M(R2)) in Table 5.9. As can be
seen, roughly speaking, all the measures except V In show weaker consistency with
one another on data sets in R2. In other words, most measures tend to disagree with
one another on data sets with highly imbalanced classes.

5.5.2 Properties of Measures

In this subsection, we investigate some key properties of external clustering validation
measures.

Sensitivity. The measures have different sensitivity to the clustering results. Let us
illustrate this by an example. For two clustering results in Table 5.10, the differences
between them are the numbers in bold. Then we employ the measures on these
two clusterings. Validation results are shown in Table 5.11. As can be seen, all the
measures show different validation results for the two clusterings except for V Dn

and Fn . This implies that V Dn and Fn are less sensitive than other measures. This
is due to the fact that both V Dn and Fn use maximum functions, which may loose
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Table 5.10 Two clustering results

C1 C2 C3
∑

Result I
P1 3 4 12 19
P2 8 3 12 23
P3 12 12 0 24
∑

23 19 24 66
Result II
P1 0 7 12 19
P2 11 0 12 23
P3 12 12 0 24
∑

23 19 24 66

Table 5.11 The cluster validation results

Rn F Mn Γn V Dn Fn εn V In

I 0.16 0.16 0.16 0.71 0.32 0.77 0.78
II 0.24 0.24 0.24 0.71 0.32 0.70 0.62

some information in the contingency matrix. Furthermore, V In is the most sensitive
measure, since the difference of V In values for the two clusterings is the largest.

Impact of the Number of Clusters. We use the data set la2 in Table 5.8 to
show the impact of the number of clusters on the validation measures. We change
the number of clusters from 2 to 15 for K-means clustering, and see whether the
measures can indicate the number of true clusters. As shown in Fig. 5.6, the nor-
malized measures including V In , V Dn and Rn clearly capture the optimal cluster
number: 5. Similar results can also be observed for other normalized measures, such
as Fn , F Mn and Γn . This implies that measure normalization indeed improves the
validation performance of the external measures.

Math Properties. We here summarize without proof the five math properties of
the validation measures in Table 5.12. Details are illustrated as follows:

Property 5.1 (Symmetry) A measure O is symmetric, if O(MT ) = O(M) for any
contingence matrix M.

The symmetry property treats the pre-defined class structure as one of the par-
titions. Therefore, the task of cluster validation is the same as the comparison of
partitions. This means transposing two partitions in the contingency matrix should
not bring any difference to the measure value. This property is not true for Fn which
is a typical measure in asymmetry. Also, εn is symmetric if and only if K = K ′.

Property 5.2 (N-invariance) For a contingence matrix M and a positive integer λ,
a measure O is n-invariant, if O(λM) = O(M), where n is the number of objects.



120 5 Selecting External Validation Measures for K-means Clustering

2 4 6 8 10 12 14 16
1.8

2

2.2

2.4

2.6

2.8

3

3.2

Number of Clusters

0.4

0.45

0.5

0.55

0.6

0.65

2 4 6 8 10 12 14 16
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Number of Clusters

0.35

0.4

0.45

0.5

0.55

2 4 6 8 10 12 14 16
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Clusters

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

(a)

(b) (c)

Fig. 5.6 Impact of the number of clusters. Reprinted from Ref. [23] © 2009 Association for
Computing Machinery, Inc. Reprinted by permission

Table 5.12 Math properties of measures

Property Fn V In V Dn εn Rn F Mn Γn

P1 No Yes Yes Yesa Yes Yes Yes
P2 Yes Yes Yes Yes No No No
P3 Yesb Yesb Yesb Yesb No No No
P4 No Yes Yes No No No No
P5 Yes Yes Yes Yes Yes Yes Yes

Note a Yes for K = K ′ b Yes for the unnormalized measures

Intuitively, a mathematically sound validation measure should satisfy the
n-invariance property. However, three measures, namely Rn , F Mn and Γn cannot
fulfill this requirement. Nevertheless, we can still treat them as the asymptotically
n-invariant measures, since they tend to be n-invariant as the increase of n.

Property 5.3 (Convex additivity) Let P = {P1, . . . , PK } be a clustering, P ′ be a
refinement of P (i.e. P ′ is the descendant node of node P in the lattice of partitions
[17]), and P ′l be the partitioning induced by P ′ on Pl . Then a measure O is convex

additive, if O(M(P, P ′)) =∑K
l=1

nl
n O(M(IPl , P ′l )), where nl is the number of data

points in Pl , IPl represents the partitioning on Pl into one cluster, and M(X, Y ) is
the contingency matrix of X and Y .
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The convex additivity property was introduced by Meila [17]. It requires the mea-
sures to show additivity along the lattice of partitions. Unnormalized measures in-
cluding F, V D, V I and ε hold this property. However, none of the normalized mea-
sures mentioned in this study holds this property.

Property 5.4 (Left-domain-completeness) A measure O is left-domain-complete,
if, for any contingence matrix M with statistically independent rows and columns,

O(M) =
{

0, O is a positive measure;
1, O is a negative measure.

When the rows and columns in the contingency matrix are statistically indepen-
dent, we should expect to see the poorest values of the measures, i.e. 0 for positive
measures and 1 for negative measures. Among all the measures, however, only V In

and V Dn can meet this requirement.

Property 5.5 (Right-domain-completeness) A measure O is right-domain-complete,
if, for any contingence matrix M with perfectly matched rows and columns,

O(M) =
{

1, O is a positive measure;
0, O is a negative measure.

This property requires measures to show optimal values when the class structure
matches the cluster structure perfectly. The above normalized measures hold this
property.

5.5.3 Discussions

In a nutshell, among 16 external validation measures shown in Table 5.2, we first
know that Mirkin metric (M) is equivalent to Rand statistic (R), and Micro-Average
Precision (M AP) and Goodman-Kruskal coefficient (G K ) are equivalent to Purity
(P) by observing their computational forms. Therefore, the scope of our measure
selection is reduced from 16 measures to 13 measures. In Sect. 5.3, our analysis shows
that Purity, Mutual Information (M I ), and Entropy (E) are defective measures for
evaluating K-means clustering. Also, we know that Variation of Information (V I ) is
an improved version of M I and E , and van Dongen criterion (V D) is an improved
version of P . As a result, our selection pool is further reduced to 10 measures.

In addition, as shown in Sect. 5.4, it is necessary to use the normalized measures
for evaluating K-means clustering, since the normalized measures can capture the
uniform effect by K-means and allow to compare different clustering results on
different data sets. By Proposition 5.1, we know that the normalized Rand statistic
(Rn) is the same as the normalized Hubert Γ statistic II (Γ ′n). Also, Rn is equivalent
to J ′n , which is the same as M S′n . Therefore, we only need to further consider Rn and
can exclude J ′n , Γ ′n , and M S′n from the pool. The results in Sect. 5.4 also show that
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the normalized F-measure (Fn) and Classification Error (εn) cannot well capture the
uniform effect by K-means. Also, as mentioned in Sect. 5.5, these two measures do
not satisfy some math properties in Table 5.12. As a result, we can exclude them.
Now, we have five normalized measures: V In , V Dn , Rn , F Mn , and Γn . In Fig. 5.5,
we know that the validation performances of Rn , F Mn , and Γn are very similar to
each other. Therefore, we only need to consider to use Rn .

From the above study, we believe it is most suitable to use the normalized van
Dongen criterion (V Dn), the normalized Variation of Information measure (V In),
and the normalized Rand statistic (Rn) for K-means clustering validation. V Dn has
a simplest computation form, and satisfies some mathematical properties. When
different clustering performances are hard to distinguish, however, we may want to
use V In instead for its high sensitivity. Rn is most complicated in computation, but
has a clear statistical meaning and a wide range of value.

Some recent studies on information-theoretic clustering use the normalized
Mutual Information (N M I ) to evaluate the clustering performance [5, 25]. That
is, N M I = M I (P, C)/

√
H(C)H(P), where the random variables P and C denote

the cluster and class sizes, respectively. Apparently, the value of N M I is in the in-
terval: [0,1], and a larger value indicates a better clustering result. It is interesting to
note that if we substitute the geometric mean

√
H(P)H(C) by the arithmetic mean

(H(P) + H(C))/2 in N M I , N M I reduces to M In , which is equivalent to V In .
From this perspective, N M I is a validation measure similar to V In , but tends to give
higher scores to clustering results than V In due to the smaller geometric mean.

5.6 Concluding Remarks

In this chapter, we illustrated how to select the right external measures for K-means
clustering validation. The ability to detect the uniform effect of K-means is high-
lighted as an important criterion for measure selection. Moreover, we unveil that it is
necessary to normalize validation measures before using them, since unnormalized
measures may lead to inconsistent or even misleading results, particularly for data
with highly imbalanced class distributions. Along this line, we provide normalization
solutions to the popular measures by computing their expected or extreme values in
two normalization schemes. Furthermore, we explore the correlation between these
measures, and present some key properties that may impact their validation perfor-
mance. We finally summarize the whole procedure for the measure selection, and
suggest using the three normalized measures for K-means clustering: V Dn, V In ,
and Rn .
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Chapter 6
K-means Based Local Decomposition for Rare
Class Analysis

6.1 Introduction

Classification provides insight into the data by assigning objects to one of several pre-
defined categories. A longstanding critical challenge for classification is to address
the so-called “imbalanced classes” in the data. Specifically, people are interested in
predicting rare classes in the data sets with imbalanced class distributions. For exam-
ple, in the domain of network intrusion detection, the number of malicious network
activities is usually very small compared to the number of normal network connec-
tions. It is crucial and challenging to build a learning model which has the prediction
power to capture future network attacks with low false-positive rates. Indeed, rare
class analysis is often of great value and is demanded in many real-world applica-
tions, such as the detection of oil spills in satellite radar images [17], the prediction
of financial distress in enterprises [33], and the prediction of telecommunication
equipment failures [29].

To meet the above challenge, considerable research efforts have been focused on
the algorithm-level improvement of the existing classifiers for rare class analysis.
There are two promising research directions: The use of re-sampling techniques or
the use of cost-sensitive learning techniques [26]. These two methods indeed show
encouraging performances in some cases by directly or indirectly adjusting the class
sizes to a relatively balanced level. Nevertheless, in this chapter, we reveal that the
class imbalance problem is strongly related to the presence of complex concepts
(inherent complex structures) in the data. For imbalanced data sets with complex
concepts, it is often not sufficient to simply manipulate class sizes. In fact, our
experimental results show that adjusting class sizes alone usually can improve the
predictive accuracy of rare classes slightly, but at the cost of seriously decreasing the
accuracy of large classes. As a result, one way to tackle this problem is to develop a
classification method which follows two criteria below:

• The ability to divide imbalanced classes into relatively balanced classes for clas-
sification.
• The ability to decompose complex concepts within a class into simple concepts.

J. Wu, Advances in K-means Clustering, Springer Theses, 125
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Indeed, this study fills this crucial void by designing a method for classification
using local clustering (COG). Specifically, for a data set with an imbalanced class
distribution, we perform clustering within each large class and produce sub-classes
with relatively balanced sizes. Then, we apply traditional supervised learning algo-
rithms, such as Support Vector Machines (SVMs) [1, 27], for classification. Since the
clustering is conducted independently within each class rather than across the entire
data set, we call it local clustering, which is the essential part of the COG method. By
exploiting local clustering within large classes, we can decompose the complex con-
cepts (e.g., linearly inseparable concepts difficult for linear classifiers) into relatively
simple ones (e.g., linearly separable concepts). Another effect of local clustering is to
produce subclasses with relatively uniform sizes, by using the well-known K-means
algorithm [20] as the clustering tool. In addition, for data sets with highly skewed
class distributions, we further integrate the over-sampling technique into the COG
scheme and propose the COG with the over-sampling method (COG-OS).

The merit of COG lies in three aspects. First, COG has the ability to divide imbal-
anced classes into relatively balanced and small sub-classes, and thus provide the
opportunities in exploiting traditional classification algorithms for better predicting
rare classes. Second, similar to the re-sampling schemes, COG is not a “bottom-
level” algorithm but provides a general framework which can incorporate various
existing classifiers. Finally, COG is especially effective on improving the perfor-
mance of linear classifiers. This is noteworthy, since linear classifiers have shown
their unique advantages, such as simplicity and understandability, higher execu-
tive efficiency, less parameters, and less generalization errors, in many real-world
applications [8, 24].

We have conducted extensive experiments on a number of real-world data sets.
The experimental results show that, for data sets with imbalanced classes, COG and
COG-OS show much better performances in predicting rare classes than two popular
re-sampling schemes as well as two state-of-the-art rule induction classifiers without
compromising the prediction accuracies of large classes. In addition, for data sets with
balanced classes, we show that COG can also improve the performance of traditional
linear classifiers, such as SVMs, by decomposing the linearly inseparable concepts
into linearly separable ones. To further demonstrate the effectiveness of COG in
real-world applications, we have applied COG and COG-OS for two real-world
applications: the credit card fraud detection and the network intrusion detection.
Finally, we discuss the limitations of COG and COG-OS due to the inconsistent uses
of the features in unsupervised and supervised learning, and illustrate the effect of
feature selection on alleviating this problem.

The remainder of this chapter is organized as follows. In Sect. 6.2, we describe the
preliminaries and define the problem studied in this chapter. Section 6.3 introduces
the local clustering technique and presents a discussion of its properties. Then, in
Sect. 6.4, we give the COG and COG-OS schemes for rare class analysis. Section 6.5
shows experimental results and real-world case studies. Finally, we present related
work in Sect. 6.6, and draw conclusions in Sect. 6.7.
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6.2 Preliminaries and Problem Definition

In this section, we first review the main issues related to rare class analysis. Then,
we present the problem definition.

6.2.1 Rare Class Analysis

Rare events are often of special interests. Indeed, people often want to uncover subtle
patterns that may be hidden in massive amounts of data [28]. In the literature, the
problem of rare class analysis has been addressed from the following two perspec-
tives.

The Class Imbalance Perspective. From this viewpoint, it is the skewed class
distribution that brings the challenge for traditional classifiers. A natural solution is
to re-balance the numbers of training instances in different classes. The re-sampling
schemes meet this requirement nicely. Specifically, over-sampling replicates the rare
instances so as to match the scale of the normal class. In contrast, under-sampling cuts
down the size of normal classes by performing random sampling. In addition, a com-
bined use of over-sampling and under-sampling techniques may be more beneficial
in some cases.

The Cost Sensitive Perspective. From this viewpoint, the costs of misclassifi-
cations are different; that is, assigning rare instances to the normal class should be
penalized more heavily. One way to incorporate the cost information is to use the cost
matrix explicitly during model learning. For example, in SVMs, we can set differ-
ent penalty parameters for misclassifying rare and normal instances. Another way to
incorporate the cost information is through the algorithm-independent schemes, such
as boosting. For instance, AdaCost [10], one of the variants of AdaBoost [11], uses
the additional cost adjustment function in the weight updating rule for the purpose
of rare class analysis.

While the above mentioned methods can often improve the prediction accuracy
of rare classes, they often lead to large classification errors for normal classes. Let
us illustrate this by some examples shown in Fig. 6.1. In the figure, the solid lines
denoted as “T” indicate the true borders, and the dashed lines denoted as “F” are
the classification borders learned by applying the over-sampling or cost-sensitive
schemes. As can be seen, these two schemes tend to assign the normal instances
to the rare class. This is due to the fact that we usually do over-sampling for or
assign higher costs to all the rare instances so as to match the scale of the normal
class. However, the normal instances can be sparsely distributed so that many of
them are far away from the true border, and thus have little impact during the border
learning process. As a result, rare instances tend to have more power to decide the
border. This power may “shift” the border into the normal class, and lead to a large
misclassification rate for the normal class. Furthermore, if the rare class consists
of some small disjoints, as shown in Fig. 6.1c, the re-sampling and cost-sensitive
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(a) (b) (c)

Fig. 6.1 Illustrative examples. a Example 1. b Example 2. c Example 3. Reprinted from Ref. [31],
with kind permission from Springer Science+Business Media

methods may encounter even more problems, since more normal instances can be
assigned to the rare class.

Another widely used approach to handle rare classes is to be focused on learning
rare classes and produce classification rules that only predict rare classes. RIPPER
[3] is such an algorithm. It utilizes a separate-and-conquer approach to build rules to
cover previously uncovered training instances. It generates rules for each class from
the most rare class to the second most common class (the most common class is the
default class). Each rule is grown by adding conditions until no negative instances
are covered. Thus, for a two-class data set, RIPPER will only learn rules for the rare
class, and assign the negative instances to the normal class. Although this type of
learning systems has high efficiency and good performances in many applications,
they are easier to get overfitting, which results in a relatively poor generalization
ability. Also, when the number of rare events is extremely small, there may be no
enough training instances to induce the rules for RIPPER.

To sum up, further investigation is still needed to improve the classification per-
formance on rare classes and meanwhile avoid the significant negative impact on the
classification performance on normal classes.

6.2.2 Problem Definition

For traditional classifiers, all the instances from a class are used to represent a specific
concept and are used as a whole for building the classification model. However,
it is quite normal to see that the instances from a large class can be divided into
different sub-concepts. In this study, we define three types of concepts. First, the
linearly separable concepts consist of linearly separable sub-concepts. Second, the
nonlinearly separable concepts include sub-concepts which are not linearly separable,
but nonlinearly separable. Finally, the complex concept includes sub-concepts which
may not be easily separated by either linear or nonlinear methods. For instance,
the three sub-figures in Fig. 6.1 well illustrate the linearly separable, non-linearly
separable, and complex concepts, respectively.
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Problem Definition. Given data sets with rare classes, we are going to develop a
method for Classification using lOcal clusterinG (COG). Specifically, we will exploit
linear-classifiers for rare class analysis even if data sets include instances with linearly
inseparable or complex concepts. The key is the use of “local clustering”, which will
be detailed in the following section. Indeed, local clustering can help to decompose
instances with linearly inseparable or complex concepts in a class into several linearly
separable sub-groups. Note that the reason that we target on linear classifiers is to
leverage their distinct merits, such as the high efficiency, the good interpretability,
and the high generalizability [24].

6.3 Local Clustering

In this section, we introduce the Local Clustering (LC) technique, and explore its
unique properties for rare class analysis.

6.3.1 The Local Clustering Scheme

People typically do clustering on the entire data to find the inherent data structure.
However, due to the existence of complex concepts in real-world data sets, cluster-
ing algorithms usually produce clusters with a mix of data instances from different
classes. Therefore, clustering on the entire data cannot help to decompose complex
concepts in one class into several linearly separable simple concepts. To meet this
challenge, a natural way is to do clustering within each class to divide complex struc-
tures/concepts in a class into several simple sub-strutures/sub-concepts, which are
usually much easier to be separated by linear classifiers. This is the basic idea of the
use of local clustering for classification.

Local clustering is a partitional strategy which exploits clusterings inside each
class rather than across the entire data set. By using the external information of
instance labels, local clustering can produce simple structures for the subsequent
classification tasks. Figure 6.2 illustrates the local clusterings on the three sample
data sets in Fig. 6.1. For sample data sets 1 and 2, we only do local clusterings on the
normal classes. But for the presence of some small disjoints in the rare class, to do
local clustering on both the normal and rare classes are more beneficial, as shown in
Fig. 6.2c.

6.3.2 Properties of Local Clustering for Classification

Here, we explore some properties of local clustering for classification. Specifi-
cally, we demonstrate the “balance effect” and the “decomposition effect” of local
clustering.
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(a) (b) (c)

Fig. 6.2 Illustrations of local clusterings. a Example 1. b Example 2. c Example 3. Reprinted from
Ref. [31], with kind permission from Springer Science+Business Media

The balance effect refers to the fact that local clustering can re-balance the scales
of normal and rare classes. For instance, local cluster can help to divide the instances
of a normal class into several sub-groups which have much smaller sizes compared
to the original class. If we label those sub-groups with pseudo-class labels, we can
have a more balanced multi-class training data set. This property is very important
for rare class analysis, since it can help to alleviate the skewed class distributions
in the training data. Also, local clustering can help to achieve this without using
oversampling and undersampling techniques and can keep the integrity of the original
data for the learning process.

The decomposition effect refers to the fact that local clustering can help to
decompose linearly inseparable or complex concepts in a large class into several
simple structures/concepts, which are much easier to be separated by linear classi-
fiers. Indeed, this is crucial for the successful use of linear classifiers for rare class
analysis. For example, in Fig. 6.1b, the true border for the normal and rare classes
(denoted as “T”) is non-linear. However, local clustering can help to divide the normal
class into four groups, which can be labeled as four new pseudo-classes. Now, the
four new classes and the rare class are linearly separable, as can be seen in Fig. 6.2b.

In summary, the balance and decomposition effects by local clustering provide
unique opportunities for the successful use of linear classifiers for rare class analysis.

6.4 COG for Rare Class Analysis

In this section, we introduce COG (Classification using lOcal clusterinG) and COG-
OS (COG with Over-Sampling) algorithms.

6.4.1 COG and COG-OS

In a nutshell, COG provides a general framework which can incorporate various
linear classifiers and improve their classification performances on data sets with
complex concepts as well as imbalanced class distributions. As to COG-OS, it is
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Fig. 6.3 The COG algorithm

an extended version of COG, which integrates the over-sampling technique into the
COG scheme for the purpose of better predicting the rare classes in data sets with
extremely imbalanced class distributions.

Figure 6.3 shows the pseudo-codes of COG including four phases. In Phase I,
we employ local clustering on class i (i = 1, . . . , c) according to the user specified
cluster number K (i), and change the instance labels of class i with the cluster labels,
thus form a multi-class data set with

∑c
i=1 K (i) subclasses. Typically, we suggest

using K-means [20] as the default local clustering tool. This is due to the following
reasons: (1) K-means tends to partition the data into clusters in relatively uniform
sizes (as indicated in Chap. 2), which is of great help to show the balance effect
of local clustering; and (2) the efficiency of K-means is approximately linear in the
number of training instances [26], which is the best among various popular clustering
methods. Moreover, we recommend not using a large K (i) for each class i , for the
purpose of improving the modeling efficiency and reducing the generalization errors
of the learning model. In most cases, we let K (i) = 4. Finally, we usually do local
clustering on the normal classes. However, as indicated in Fig. 6.2c, when the rare
class consists of some small disjoints, we can also locally cluster the rare instances.

http://dx.doi.org/10.1007/978-3-642-29807-3_2
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This happens when we achieve a high false-positive rate by only employing local
clustering on normal classes.

Phase II is optional and only for COG-OS. In this phase, we replicate r( j) times
the instances of class j ( j = 1, . . . , c), to form a more balanced data set. Typi-
cally, r( j) > 1 when class j is a rare class. Furthermore, if the rare class has been
partitioned into small disjoints, we may set different sampling ratios for them.

Phase III is to build the model on the modified data set using a user specified
linear classifier such as SVMs and BMR.1 In detail, we only learn linear models to
separate each pair of sub-classes derived from DIFFERENT parent-classes. In other
words, we do not discriminate the instances from the same parent-class. Therefore,
exactly

∑
1≤i< j≤c K (i)K ( j) linear hyper-planes will be learned in this phase.

Phase IV is simply for prediction. However, two points should be further
addressed. First, we use the comparison rather than voting mechanism to determine
the label of a new instance. Second, the assigned pseudo sub-class label for each new
instance must be converted into the label of its parent-class.

6.4.2 An Illustration of COG

Here, we use a synthetic data set with complex concepts to illustrate the process
of COG. The scales of three classes are 133, 60 and 165, respectively, as shown in
sub-figure “Original Data” of Fig. 6.4. The classifier is LIBSVM2 with the linear
kernel.

First, we build the classification model by simply applying SVMs on the original
data set, and the result is shown in the “‘Pure’ SVMs” subplot. In this subplot,
the solid line represents the maximal margin hyperplane (MMH) learned by SVMs
algorithm. One interesting observation is that the instances of the small class, i.e.,
class 2, have totally “disappeared”; that is, they are all assigned to either class 1 or
class 3 according to the only one MMH. This indicates that the complex concept
indeed hinders the rare class analysis.

Instead, we employ COG. First, we apply local clustering on class 1 and 3, respec-
tively, given the cluster number is two. The clustering results can be seen in Subplot
“COG: Phase I”. In other words, class 1 and class 3 are divided into two sub-classes
respectively by K-means. Thus, we obtain a modified data set with 5 relatively bal-
anced and linearly separable classes. Next, we apply SVMs on this five-class data
set and get results shown in Subplot “COG: Phase III”. As can be seen, eight MMHs
appear in the model, which enables the model to identify the instances of class 2.
Finally, for each instance, we convert its predicted label of some sub-class into the
label of the parent-class, as indicated by the “COG: Phase IV” subplot. Therefore, by
applying COG, we build up a more accurate model which can identify the instances
from rare classes at the presence of complex concepts.

1 http://www.stat.rutgers.edu/~madigan/BMR/
2 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.stat.rutgers.edu/~madigan/BMR/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Fig. 6.4 Illustration of the COG procedure. Reprinted from Ref. [31], with kind permission from
Springer Science+Business Media

6.4.3 Computational Complexity Issues

In this section, we analyze the computational complexity of COG. By examining the
COG procedure as shown in Fig. 6.3, we know that there are two major computational
components. One is local clustering, and the other is model learning.

For local clustering, we take K-means as an example to illustrate the use of time
and space. Since we only store the data instances and centroids, the space require-
ment for K-means is O((p+ K )n), where p and n are the numbers of attributes and
instances, and K is the number of clusters. Therefore, for the whole local cluster-
ing procedure, the space complexity is O(maxi (p + Ki )ni ), where i denotes class
i , i∈{1, · · · , c}. The time requirement for K-means is O(I K pn), where I is the
number of iterations required for convergence. Therefore, the time complexity for
local clustering is O(p

∑
i Ii Ki ni ). Since Ii is often small and can usually be safely

bounded, and we often set a small Ki for each class, the efficiency of local clustering
is approximately linear in the number of all data instances: n =∑

i ni .
For model learning, we take SVMs as an example to illustrate the use of time

and space. Specifically, we would like to compare the computational complexities
of SVMs with and without using local clustering. Given a training data set D =
{(xi , yi )}ni=1 with yi ∈ {1,−1}, SVMs with linear kernel solves the following primal
problem:
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minw,b,ξ
1
2‖w‖2 + C

∑
i ξi ,

s.t. yi (wT xi + b)+ ξi ≥ 1,

ξi ≥ 0, i = 1, . . . , n,

(6.1)

where C is the penalty of misclassification, and ξi is the vector of slack variables.
The dual problem of Eq. (6.1) is as follows.

minα
1
2

∑n
i=1

∑n
j=1 yi y jαiα j xT

i x j −∑n
i=1 αi ,

s.t.
∑n

i=1 yiαi = 0,

0 ≤ αi ≤ C, i = 1, . . . , n.

(6.2)

This is a typical convex-quadratic-programming problem. Existing methods, such
as the Newton-PCG algorithm and the Quadratic Interior Point method, can be used to
solve this problem. In general, these methods require to store the n×n kernel matrix.
Therefore, the space requirement for SVMs is roughly O(n2 + np). However, once
employing local clustering, we can divide the original large-scale problem into some
smaller scale problems. For instance, let nis denote the number of instances from
cluster s produced by local clustering on class i . Since we only learn a hyperplane
for each pair of sub-classes from different parent-classes, the space requirement for
SVMs in COG is only O(max1≤i< j≤c, 1≤s≤Ki , 1≤t≤K j (nis + n jt )

2 + np), which is
much less than O(n2+ np). Therefore, local clustering can help to reduce the space
requirement for SVMs.

The time requirement for SVMs in COG is often much less than the pure SVMs
(without using local clustering) in real-world applications, because local clustering
helps to decompose complex structures/concepts into smaller and simpler concepts
which are much easier to learn by SVMs. For SVMs, we need to compute the n × n
kernel matrix for data with n instances. After employing local clustering, the time

complexity for learning SVMs is O
(∑

1≤i< j≤c
∑

1≤s≤Ki

∑
1≤t≤K j

(nis + n jt )
2
)

,

which is less than O

((∑c
i=1

∑Ki
s=1 nis

)2
)

, i.e., O(n2) for learning SVMs with-

out local clustering. Also, for large-scale data sets, people usually employ iterative
methods to approach the true SVMs gradually. And the convergence speed is strongly
related to the number of support vectors—less support vectors often lead to a faster
convergence. Since local clustering can decompose the non-linearly separable or
even the complex concepts into some linearly separable concepts, it can help to
reduce the number of misclassified instances. This results in a smaller number of
support vectors eventually.

In summary, while COG introduces additional cost for local clustering, COG can
greatly reduce the time and space uses for SVMs learning. In real-world applications,
the time used for local clustering is usually much less than the time used for SVMs
learning, therefore the cost for local clustering can usually be ignored. As a result,
COG can significantly improve the computational performances of the underlying
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Table 6.1 Some characteristics of experimental data sets

Dataset Source #Objects #Features #Classes MinClassZize MaxClassSize CV

UCI data sets
breast-wa UCI 683 9 2 239 444 0.424
pima-diabetes UCI 768 8 2 268 500 0.427
letter UCI 20000 16 26 734 813 0.030
optdigitsb UCI 3823/1797 64 10 376/174 389/183 0.014/0.015
page-blocks UCI 5473 10 5 28 4913 1.953
pendigitsb UCI 7494/3498 16 10 719/335 780/364 0.042/0.042
satimageb UCI 4435/2000 36 6 415/211 1072/470 0.425/0.368
vowelb UCI 528/462 10 11 48/42 48/42 0.000/0.000
Document data sets
k1b WebACE 2340 21839 6 60 1389 1.316
la12 TREC 6279 31472 6 521 1848 0.503
LIBSVM data sets
fourclass LIBSVM 862 2 2 307 555 0.407
german.numer LIBSVM 1000 24 2 300 700 0.567
splice LIBSVM 1000 60 2 483 517 0.048
SVMguide1 LIBSVM 3089 4 2 1089 2000 0.417

Notes The numbers before and after “/” are for the training and test sets, respectively a16 instances
with missing data have been deleted bThese data sets contain test sets provided by the sources

learning models, such as SVMs. In the following section, we will also provide an
empirical study to validate the above analysis.

6.5 Experimental Results

In this section, we present experimental results to validate the performance of the
COG and COG-OS methods.

6.5.1 Experimental Setup

We first introduce the experimental setup, including the data information and the
classifiers.

Experimental Data. We used a number of benchmark data sets that were obtained
from different application domains. Some characteristics of these data sets are shown
in Table 6.1. In the table, the Coefficient of Variation (CV ) [5] shows the dispersion
of the distribution of the class sizes for each data set. In general, the larger the CV
value is, the greater the variability in the data.
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UCI Data Sets. In the experiments, we used eight well-known benchmark
data sets from the UCI Repository.3 Among them two data sets, breast-w and
pima-diabetes, are binary data sets from the medical domain. The breast-w
data set contains two types of results from real-world breast cancer diagnosis, and
the pima-diabetes data set is about the information of whether the patient shows
signs of diabetes according to the WHO criteria. The rest six data sets are frequently
used in the pattern recognition community.letter,optdigits andpendigits
are data sets containing the information of handwritings; that is, letter has the
letter information from A to Z , and the other two have the number information from
0 to 9. The satimage data set contains the multi-spectral values of pixels in 3× 3
neighborhoods in a satellite image. The page-blocks data set contains the infor-
mation of five types of blocks from a document page layout. And the last data set
vowel was designed for the task of speaker independent recognition of the eleven
steady state vowels of British English.

Document Data Sets. We also used high-dimensional document data sets in our
experiments. The data set k1b was from the WebACE project [12]. Each document
corresponds to a web page listed in the subject hierarchy of Yahoo!. The la12 data
set was obtained from articles of the Los Angeles Times in TREC-5.4 The categories
correspond to the desk of the paper that each article appeared and include documents
from the entertainment, financial, foreign, metro, national, and sports desks. For
these two document data sets, we used a stop-list to remove common words, and the
words were stemmed using Porter’s suffix-stripping algorithm [23].

LIBSVM Data Sets. Finally, four benchmark binary data sets: fourclass,
german.numer, splice, and SVMguide1, were selected from the LIBSVM
repository.5

Note that for any data set without a given test set, we did random, stratified
sampling on it and had 70 % samples as the training set and the rest as the test set.

Experimental Tools. In the experiment, we used four types of classifiers: Support
vector machines (SVMs), Bayesian logistic regression, decision trees, and classifi-
cation rules. Their corresponding implementations are LIBSVM, BMR, C4.5,6 and
RIPPER [3], respectively. In all the experiments, default settings were used except
that the kernel of LIBSVM was set to linearity. LIBSVM and BMR are linear clas-
sifiers, and C4.5 and RIPPER are non-linear classifiers.

We applied K-means for local clustering in our COG scheme. K-means is a widely
used clustering method which tends to produce clusters with relatively uniform
sizes. During the K-means clustering, for data sets with relatively few dimensions,
squared Euclidean distance was used as the proximity measure. However, for high-
dimensional data sets, the cosine similarity was used instead. This is due to the fact
that the Euclidean notion of proximity is not very meaningful for high-dimensional
data sets, such as document data sets.

3 http://www.ics.uci.edu/~mlearn/MLRepository.html
4 http://trec.nist.gov
5 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
6 http://www.rulequest.com/Personal/

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://trec.nist.gov
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.rulequest.com/Personal/
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Table 6.2 Sampled data sets

Data Class Sampling ratio #Instances CV

breast-w 1/2 0.20/1.00 48/444 1.14
pima-diabetes 1/2 0.20/1.00 54/500 1.14
fourclass 1/2 0.20/1.00 62/555 1.13
german.numer 1/2 0.20/1.00 60/700 1.19
splice 1/2 0.10/1.00 49/517 1.17
SVMguide1 1/2 0.05/1.00 53/2000 1.34

Finally, in addition to the COG and COG-OS schemes, we also used the under-
sampling (US) and over-sampling (OS) techniques. The default classifier used in the
experiment is SVMs. If some other classifier is used instead, we will point it out
explicitly. For instance, we use COG(BMR) to denote “BMR in the COG scheme”.

6.5.2 COG and COG-OS on Imbalanced Data Sets

In this section, we show how COG and COG-OS can improve the performance
of linear classifiers on imbalanced data sets. Specifically, we employ COG-OS on
binary data sets with rare classes, and COG on multi-class data sets with imbalanced
classes.

For each binary data set, we did K-means clustering on the normal class, and set
the cluster number consistently to four. Then we did over-sampling on the rare class,
and made the size approximately to be one fourth of the size of the normal class.
In this way, we can have much more balanced data sets. For each multi-class data
set, however, we set different local-clustering numbers for different normal classes
according to the sizes of normal classes.

It is noteworthy that the binary data sets with rare classes were generated by
sampling various benchmark data sets. Specifically, we did random sampling on the
small class to turn it into a rare class, then combined it with the original large class to
form a sample data set. Detailed information of the samples can be found in Table 6.2.
We repeated sampling ten times for each data set such that we can have the average
classification accuracy. Finally, since SVMs shows best classification performances
in many cases [4], we used it as the base classifier for all the experiments in this
section.

Results by COG-OS on Two-class Data Sets. Table 6.3 shows the performances of
COG-OS and pure SVMs on six two-class data sets. As can be seen, for three data sets
pima-diabetes, fourclass and german.numer, pure SVMs assigned all
the instances to the normal classes. This indicates that pure SVMs has no prediction
power on rare classes for these three data sets. In contrast, COG-OS successfully
identified more than 30 % instances of the rare classes. Indeed, the F-measure values
of the rare classes by COG-OS are consistently higher than the F-measure values
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Table 6.3 Classification results of sampled data sets by COG-OS

Data Set Method Class #Clusters #Repetitions Recall Precision F-measure

breast-w SVMs 1 N/A N/A 0.871 0.878 0.872
2 N/A N/A 0.986 0.987 0.985

COG-OS 1 1 3 0.907 0.850 0.873
2 4 1 0.982 0.990 0.986

pima-diabetes SVMs 1 N/A N/A 0.000 #DIV/0! N/A
2 N/A N/A 1.000 0.904 0.949

COG-OS 1 1 2 0.344 0.428 0.373
2 4 1 0.949 0.931 0.940

fourclass SVMs 1 N/A N/A 0.000 #DIV/0! N/A
2 N/A N/A 1.000 0.902 0.948

COG-OS 1 1 2 0.606 0.699 0.646
2 4 1 0.971 0.958 0.964

german.numer SVMs 1 N/A N/A 0.000 #DIV/0! N/A
2 N/A N/A 1.000 0.921 0.959

COG-OS 1 1 3 0.317 0.239 0.270
2 4 1 0.915 0.940 0.927

splice SVMs 1 N/A N/A 0.314 0.289 0.298
2 N/A N/A 0.929 0.938 0.933

COG-OS 1 1 3 0.493 0.270 0.344
2 4 1 0.874 0.950 0.910

SVMguide1 SVMs 1 N/A N/A 0.069 0.261 0.104
2 N/A N/A 1.000 0.976 0.988

COG-OS 1 1 9 0.913 0.365 0.518
2 4 1 0.956 0.998 0.976

Notes 1. For SVMs: -t 0 2.“#clusters” indicates the cluster numbers for K-means in local clustering
3.“#repetitions” indicates the over-sampling ratio 4.“N/A”: not applicable; “#DIV/0!”: divided by
zero

produced by pure SVMs for all six data sets, as indicated in Table 6.3. For instance,
for data sets SVMguide1 and fourclass, COG-OS leads to the increase of the
F-measure values by more than 0.4.

Another observation is that, for COG-OS, the increase of the F-measure value of
the rare class is NOT at the significant cost of the prediction accuracy of the normal
class. For example, for data setsbreast-w and fourclass, the F-measure values
of both the normal and rare classes by COG-OS are higher than the F-measure values
produced by pure SVMs. Also, for the rest four data sets, the F-measure values of
the normal classes by COG-OS are just slightly smaller. This is acceptable since the
rare class is usually the major concern in many real-world applications.

In addition, we also investigate how the F-measure value changes as the increase
of the sampling ratio on the small class. As an example on the SVMguide1 data
set, Table 6.4 shows the information of various samples as the increase of the size
of the rare class. Figure 6.5 shows the classification results on these samples. Please
note that for each sampling ratio, we repeated sampling ten times and therefore got
ten results for each sample, as indicated by the box plots in Fig. 6.5. As can be seen,
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Table 6.4 Information of SVMguide1 samples

Sample ID 1 2 3 4 5

Sampling ratio 0.03 0.05 0.07 0.09 0.11
Size of rare class 33 55 77 99 120
#clusters for normal class 4 4 4 4 4
#repetitions for rare class 15 9 6 5 4

Note The size of the normal class is 2000

Fig. 6.5 The effect of rare
class sizes on COG-OS.
Reprinted from Ref. [31],
with kind permission from
Springer Science+Business
Media
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the F-measure values by COG-OS are consistently higher than the ones produced
by pure SVMs, no matter what the sampling ratio is. Moreover, COG-OS performs
much better than pure SVMs when the rare class size is relatively small. However,
as the increase of the size of the rare class, the performance gap is narrowed.

Results by COG on Multi-class Data Sets. In addition to the two-class data
sets, we also used some multi-class data sets with imbalanced classes to validate
the performance of the COG method. For these multi-class data sets, we simply
used the COG scheme. Since the Euclidean distance is not very meaningful for the
high-dimensional document data sets k1b and la12, in the local clustering phase,
we used the CLUTO implementation of K-means7 on these two data sets with the
cosine similarity as the proximity measure. Table 6.5 shows the classification results
by pure SVMs and COG. As can be seen, for data set k1b, the F-measure value for
every class using COG is higher than that produced by pure SVMs. Meanwhile, the
results on the page-blocks and la12 data sets show a similar trend as k1b. In
summary, COG indeed can improve the prediction performances on rare classes, and
this improvement is achieved without a big loss of the prediction power on normal
classes.

7 http://glaros.dtc.umn.edu/gkhome/views/cluto

http://glaros.dtc.umn.edu/gkhome/views/cluto
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Fig. 6.6 COG-OS versus re-sampling. Reprinted from Ref. [31], with kind permission from
Springer Science+Business Media

6.5.3 COG-OS Versus Re-Sampling Schemes

In previous sections, we mentioned that re-sampling is a widely used technique to
improve the classification performance on imbalanced data sets. Here, we compare
the performances of COG-OS with two re-sampling strategies: under-sampling and
over-sampling [26, 21].

In this experiment, we also used the six sampled data sets in Table 6.2. We set the
sampling ratio for under-sampling or over-sampling carefully so that the modified
size of the rare class is approximately the same as the normal class, and the classifier
used here is also SVMs. Figure 6.6 shows the results. One observation is that, for all
data sets, COG-OS performs the best for the rare classes, except for one data set:
splice, on which COG-OS and over-sampling show comparable results. Another
observation is that COG-OS achieved better performances on both rare classes and
normal classes.

In summary, compared to the two widely used re-sampling schemes, COG-OS
shows appealing performances on rare class analysis, yet keeps much better perfor-
mances on normal classes.

6.5.4 COG-OS for Network Intrusion Detection

Here, we demonstrate an application of COG-OS for network intrusion detection. For
this experiment, we used a real-world network intrusion data set, which is provided
as part of the KDD-CUP-99 classifier learning contest, and now is a benchmark data
set in the UCI KDD Archive.8

The KDD Cup Data Set. This data set was collected by monitoring a real-life
military computer network that was intentionally peppered with various attacks that
hackers would use to break in. Original training set has about 5 million records

8 http://kdd.ics.uci.edu/

http://kdd.ics.uci.edu/
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belonging to 22 subclasses and 4 classes of attacks, i.e., DoS, Probe, R2l and U2R,
and still one normal class. In this experiment, we used the 10 % sample of this original
set which is also supplied as part of the KDD CUP contest. We present results for two
rare classes: Probe and R2l, whose populations in the 10 % sample training set are
0.83 % and 0.23 %, respectively. The provided test set has some new subclasses that
are not present in the training data, so we deleted the instances of new subclasses, and
the percentages of Probe and R2l in the test set are 0.81 % and 2.05 %, respectively.
Table 6.6 shows the detailed information of these data sets. Note that we obtained the
probe_binary data set by making the probe class as the rare class, and the rest
four classes as one large class. The other data set, i.e., r2l_binary, was prepared
in a similar way.

The Benchmark Classifiers. In this experiment, we applied four classifiers:
COG-OS(SVMs), pure SVMs, RIPPER [3], and PNrule [14]. For COG-OS, the clus-
ter number for the large class is four, and over-sampling ratios for the rare classes of
probe_binary and r2l_binary are 30 and 120, respectively. For SVMs, we set
the parameters as: -t 0. Ripper and PNrule are two rule induction classifiers. RIPPER
builds rules first for the smallest class and will not build rules for the largest class.
Hence, one might expect that RIPPER can provide a good performance on the rare
class. As to PNrule, it consists of positive rules (P-rules) that predict presence of the
class, and negative rules (N-rules) that predict absence of the class. It is the existence
of N-rules that can ease the two problems induced by the rare class: splintered false
positives and error-prone small disjuncts. These two classifiers have shown appeal-
ing performances on classifying the modified binary data sets in Table 6.6, and the
PNrule classifier even shows superior performance [14]. To our best knowledge, we
used the same source data as Joshi et al., and the pre-processing procedure for the
modified data sets is also very similar to the one used by them. Therefore, we simply
adopted the results of PNrule in [14] for our study.

The Results. Table 6.7 shows the classification results by various methods on the
probe_binary data set. As can be seen, COG-OS performs much better than pure
SVMs and RIPPER on predicting the rare class as well as the normal class, while
PNrule shows slightly higher F-measure on the rare class. For data set r2l_binary,
however, COG-OS shows the best performance among all classifiers. As indicated
in Table 6.7, the F-measure value of the rare class by COG-OS is 0.496, far more
higher than the ones produced by the rest classifiers. Meanwhile, the predictive
accuracy of the large class by COG-OS is also higher than that of pure SVMs and
RIPPER. This real-world application nicely illustrates the effectiveness of COG-
OS—the combination of local clustering and over-sampling schemes. We believe
that COG-OS is a prospective solution to the difficult classification problem induced
by complex concepts and imbalanced class distributions.

We also observed the training efficiency of COG-OS, where the experimental
platform is Windows XP with an Intel Core2 1.86 GHz cpu and 4 GB memory. As
can be seen in Fig. 6.7, for the probe_binary data set, the training time for COG-
OS is 173 s, which is far less than the training time for pure SVMs: 889 s. Note
that the scale of the training data set for COG-OS is 613124 after over-sampling,
which is a much larger number than the scale of the training data set for pure SVMs:
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Table 6.7 Results on modified data sets

probe_binary SVMs RIPPER PNrule COG-OS

rare class 0.806 0.798 0.884 0.881
huge class 0.998 0.998 N/A 0.999
total 0.996 0.996 N/A 0.998
r2l_binary SVMs RIPPER PNrule COG-OS
rare class 0.262 0.360 0.230 0.496
huge class 0.991 0.992 N/A 0.993
total 0.983 0.984 N/A 0.986

Note “N/A” means results were not provided by the source paper [14]

Fig. 6.7 The computational performance on the network intrusion data. Reprinted from Ref. [31],
with kind permission from Springer Science+Business Media

494021. This implies that local clustering indeed helped to reduce the training time
for SVMs. Actually, if we only learn SVMs but not employ local clustering on the
over-sampled data set, as indicated by the “OS” column in Fig. 6.7, the training time
increases dramatically up to over 2.5 h! To better illustrate the efficiency of COG-OS,
we further recorded the time consumed for learning each of the four hyper-planes
in COG-OS, as shown by the pie plot in Fig. 6.7. As can be seen, for four sub-
classes produced by local clustering on the normal class, only one sub-class is much
harder to be distinguished from the rare class, since it took longer time to find a
hyper-plane for this sub-class and the rare class. For the rest three sub-groups, it
took much less time to find the corresponding hyper-planes. The above indicates that
local clustering can help to divide a complex structure/concept into several simple
structures/concepts which are easy to be linearly separated and take less training time
to find hyper-planes.
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Table 6.8 Some characteristics of the credit card data set

Dataset #instances #features CV
Normal class Rare class

Training set 67763 13374 324 0.948
Test set 67763 13374 324 0.948

Table 6.9 Results on the credit card data set

SVMs RIPPER COG
R P F R P F R P F

Normal class 0.969 0.856 0.909 0.955 0.874 0.913 0.949 0.881 0.914
Rare class 0.176 0.530 0.264 0.304 0.573 0.397 0.353 0.577 0.438
total 0.838 0.838 0.838 0.848 0.848 0.848 0.851 0.851 0.851

Note R recall, P precision, F F-measure

6.5.5 COG for Credit Card Fraud Detection

In this section, we showcase the application of COG for credit card fraud detection.
The Data Set. The experimental data set is from a security company. There

are two classes in the data set: one normal class and one rare class. Table 6.8
shows some characteristics of the training and test data sets. As can be seen,
the size of the rare class is approximately 20 % of the size of the normal class.
And the sizes of the training and test data sets are the same here.

Tools and Settings. In this experiment, we also used pure SVMs, RIPPER,
and COG(SVMs). For COG, the cluster number for the normal class was set to
5, and we did not over-sample the rare class. As to pure SVMs and RIPPER, we also
used the default settings except that the kernel of SVMs is linear.

The Results. In Table 6.9, we can observe that COG shows the best performances
on both the normal and rare classes. If we take a closer look on the recalls produced
by pure SVMs and COG, we can notice that COG greatly improved the ability of
SVMs in detecting more fraud cases. This is extremely important for credit card risk
management, since the cost of missing one fraud case is often much higher than that
of rejecting one normal application.

We also compared the computational efficiencies of pure SVMs and COG. As can
be seen in Fig. 6.8, pure SVMs took 23.8 h in learning the hyper-planes. In contrast,
COG only used 2.5 h for learning five hyper-planes. The runtime of COG is approx-
imately ten percent of that of pure SVMs. Let us also take a close look at the time
consumed in learning each of the five hyper-planes when applying COG. As shown
in the pie plot of Fig. 6.8, approximately 77 % of training time consumed for learn-
ing two hyper-planes. This implies that we may further improve the performances of
COG by further decomposing the sub-concepts separated by these two hyper-planes.
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Fig. 6.8 The computational
performance on the credit
card fraud data. Reprinted
from Ref. [31], with kind
permission from Springer
Science+Business Media

6.5.6 COG on Balanced Data Sets

In previous sections, we have shown that COG and COG-OS can improve the rare
class analysis. Here, we would like to show COG is also applicable to data sets with
balanced class sizes.

In this experiment, we used five balanced data sets including letter,
optdigits, pendigits, satimage and vowel. The CV values of these data
sets are less than 0.5. Among them, four data sets have been split into training and
test sets by the UCI repository except for letter. Four classifiers including SVMs,
BMR, C4.5 and RIPPER were used for the purpose of comparison. The local cluster-
ing method is K-means with the squared Euclidean distance and the cluster number
for each class in a data set is exactly the same, in the range of four to eight.

Results by COG with Linear Classifiers. Table 6.10 shows the experimental
results on these balanced data sets. As can be seen, for linear classifiers SVMs and
BMR, COG can improve the classification accuracies no matter what the cluster
number is. For instance, for the data set letter, the accuracies achieved by pure
SVMs and BMR are merely 0.851 and 0.750, respectively (as indicated by the italic
numbers). In contrast, COG with SVMs and BMR increased the prediction accuracies
of the rare classes steadily as the increase of the cluster number, and finally up to
0.952 and 0.850, respectively when the cluster number was eight (as indicated by
the bold numbers). Indeed, the resulting prediction accuracies are 10 % higher than
the ones achieved by pure SVMs and BMR.

Next, we take a closer look at the performance of COG at the class level. Table 6.11
shows the classification accuracies on the data set optdigits by pure SVMs and
COG. As can be seen, COG simultaneously improved the classification accuracies
for nearly all the classes of optdigits. In addition, Fig. 6.9 shows the ratio of
classes with accuracy gain by COG in the five balanced data sets (“#clusters”=8). A
very similar improvement trend can be observed for all five data sets. Indeed, COG
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Table 6.10 Performances of COG with different classifiers on balanced data sets

Data set #Clusters Classifier

COG(SVMs) COG(BMR) COG(C4.5) COG(RIPPER)
letter N/A 0.851 0.750 0.862 0.839

2 0.872 0.762 0.846 0.821
4 0.923 0.812 0.858 0.826
6 0.946 0.844 0.854 0.818
8 0.952 0.850 0.856 0.812

optdigits N/A 0.965 0.949 0.858 0.874
2 0.973 0.958 0.880 0.840
4 0.973 0.970 0.855 0.816
6 0.979 0.972 0.866 0.805
8 0.981 0.973 0.860 0.771

pendigits N/A 0.953 0.901 0.921 0.925
2 0.969 0.937 0.920 0.918
4 0.979 0.964 0.927 0.917
6 0.981 0.962 0.923 0.897
8 0.977 0.967 0.920 0.867

satimage N/A 0.852 0.834 0.854 0.854
2 0.860 0.837 0.841 0.855
4 0.871 0.841 0.857 0.850
6 0.883 0.862 0.850 0.848
8 0.881 0.863 0.847 0.847

vowel N/A 0.517 0.448 0.517 0.468
2 0.602 0.517 0.392 0.312
4 0.582 0.541 0.385 0.370
6 0.580 0.491 0.370 0.314
8 0.597 0.513 0.346 0.251

Notes 1. All classifiers used default settings except for SVMs: -t 0 2. For K-means, maxItera-
tion = 500, repeat = 10

Table 6.11 Classification accuracies on optdigits in the class-wise level

Class ID 1 2 3 4 5 6 7 8 9 10

pure SVMs 0.994 0.967 0.960 0.934 0.989 0.989 0.989 0.950 0.920 0.956
COG(SVMs) 1.000 0.989 0.994 0.973 1.000 0.995 0.994 0.950 0.954 0.956
pure BMR 0.972 0.940 0.977 0.918 0.972 0.978 0.978 0.911 0.902 0.939
COG(BMR) 1.000 0.978 0.989 0.967 0.967 0.973 0.989 0.961 0.948 0.961

Note For COG, the cluster number is set to be 8 for every class

can divide the complex concepts in the data into the linearly separable concepts so
as to simultaneously improve the performances of linear classifiers for most of the
classes in the data.

Another interesting observation is that, the accuracy improvement gained by COG
with SVMs and BMR are quite close. To illustrate this, we compute the maximal
accuracy gain for each data set; that is, we first select the highest accuracy among
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Fig. 6.9 Ratio of the classes with accuracy gain by COG. Reprinted from Ref. [31], with kind
permission from Springer Science+Business Media

Fig. 6.10 A comparison
of the maximal accuracy
gains by COG(SVMs) and
COG(BMR). Reprinted
from Ref. [31], with kind
permission from Springer Sci-
ence+Business Media
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four values achieved in different “#clusters” levels, then subtract it by the accuracy
obtained by the pure classifier. Figure 6.10 shows the results. As can be seen, the
maximal accuracy gains of all data sets by COG with SVMs and BMR are quite
close except for pendigits. This implies that the complex concept in the data is
the bottle-neck that hinders the analysis of linear classifiers.

Results by COG with Non-linear Classifiers. Table 6.10 also shows the results
of COG with non-linear classifiers such as RIPPER and C4.5 on five balanced data
sets. In the table, we can see that COG(RIPPER) has worse performances than pure
RIPPER on all five data sets. This is due to the fact that the rule learning algorithm
aims to build up a rule set in a greedy fashion by employing the standard divide-
and-conquer strategy. Meanwhile, COG partitions instances of the same class into
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Fig. 6.11 Local clustering
versus random partitioning
on the letter data set.
Reprinted from Ref. [31],
with kind permission from
Springer Science+Business
Media
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different sub-classes. This can increase the number of negative examples for some
target rules, and ultimately results in missing such rules.

Finally, for another widely used non-linear classifier C4.5, the performance of
COG with C4.5 is not consistent on five balanced data sets, as shown in Table 6.10.
For instance, COG improved the classification accuracy of optdigits, but led to
worse performances on letter, vowel and satimage. This is due to the fact
that COG can increase the number of sub-classes so as to make the branch-splitting
decision even harder to make. In other words, the splitting attributes of the tree
can be better or worse selected in such “uncertain” scenarios, which results in the
inconsistent performances.

Local Clustering Versus Random Partitioning. In this experiment, we compare
the effect of local clustering in the COG scheme with that of simple random parti-
tioning. To this end, we take the data set letter and classifier SVMs to illustrate
this. First, we randomly split the letter data set into two parts, 70 % of which as
the training set and the rest as the test set (the class size distribution holds). Then
we performed training and testing in a very similar fashion to the procedure of COG
except that we use random partitioning instead of local clustering on each class.

Figure 6.11 shows all the experimental results. Please note that for each class, the
number of local clusters is four. As indicated by Fig. 6.11, while the performance of
random partitioning with SVMs, i.e., RP(SVMs), is slightly better than the results of
pure SVMs, they are much worse than the results by local clustering with SVMs, i.e.,
LC(SVMs). This indicates that the local clustering phase in COG is very important.
In fact, random partitioning can only provide the balance effect, which cannot help
to decompose complex concepts into simple and linearly separable concepts.

In summary, COG is of great use on improving the classification accuracy of
linear classifiers by eliminating or mitigating the complex concepts in the data. But
for the non-linear classifiers, such as C4.5 and RIPPER, COG shows no competitive
results.
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Fig. 6.12 Illustration of the
effect of noise attributes
on COG. Reprinted from
Ref. [31], with kind per-
mission from Springer Sci-
ence+Business Media
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6.5.7 Limitations of COG

Despite of various merits described above, COG also has some limitations. For
example, since COG combines the use of supervised classification techniques with
unsupervised local clustering technique, if there are some inconsistent uses of the
set of attributes for classification and clustering, the performance of COG can be
degraded.

For classification, class labels can help to build up a classifier mainly based
on some relevant attributes; that is, classification algorithms can inherently select
attributes related to class labels. However, due to the lack of information of class
labels, clustering methods tend to assign equal weights to all the attributes, thus can-
not avoid the negative impact of irrelevant or weakly relevant attributes. Therefore,
the set of attributes for classification can be different from the set of attributes for
local clustering in COG. This inconsistent use of attributes can lead to difficulties
for the COG scheme. Indeed, when there are many noise attributes in the data, COG
may not be very effective. Let us illustrate this by an example as follows.

In this example, we added some “noise” attributes to the letter data set, which
contains 16 attributes originally. The added attributes consist of numbers generated
randomly from the uniform distribution and scaled to the same value interval as
the original attributes. We gradually increased the number of noise attributes and
observed the change of the classification accuracies by pure SVMs and COG (the
cluster number is 4 for each class). Figure 6.12 shows the results. As can be seen,
the classification accuracy of pure SVMs does not change much as the increase of
the number of noise attributes. This indicates that noise features do not have much
influence on the performance of pure SVMs. In contrast, the accuracy of COG is
significantly reduced as the increase of noise features. This means noise attributes
indeed have a strong negative impact on the performance of the COG method. The
reason is that the quality of local clustering in COG is sensitive to the use of attributes.
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Table 6.12 The effect of feature selection on COG

Data set Type #Features Pure SVMs COG

segment Without F.S. 18 0.941 0.899
with F.S. 7 0.939 0.950

splice Without F.S. 60 0.848 0.838
with F.S. 12 0.840 0.880

To further demonstrate this, we exploited feature selection on two data sets:
segment and splice. COG does not work well on these two data sets. Table 6.12
shows the classification results before and after feature selection. An interesting
observation is that, by feature selection, COG indeed achieved a much better accu-
racy than that produced by pure SVMs (with or without feature selection). Note
that the feature selection scheme we used here is “SVMAttributeEval” available in
WEKA 3.5 [30], and the corresponding search method is “Ranker”, all with default
settings.

In summary, while COG works very well for linear classifiers in many cases, it
is sensitive to the presence of irrelevant or noise attributes. However, by applying
appropriate feature selection methods, we can ease this problem significantly.

6.6 Related Work

In the literature, there are a number of methods addressing the class imbalance prob-
lem. The sampling based methods are one of the simplest yet effective ones [26]. For
instance, the over-sampling scheme replicates the small classes to match the sizes of
large classes [19]. In contrast, the under-sampling method cuts down the large class
sizes to achieve a similar effect [18]. Drummond and Holte provided detailed com-
parisons on these two re-sampling schemes [7]. Chawla et al. demonstrated that the
combination of over-sampling and under-sampling can achieve better performances
[2]. Another popular method is the cost-sensitive learning scheme which takes the
cost matrix into consideration during model building and generates a model that
has the lowest cost. The properties of a cost matrix had been studied by Elkan [9].
Margineantu and Dietterich examined various methods for incorporating cost infor-
mation into the C4.5 learning algorithm [22]. Other cost-sensitive learning methods
that are algorithm-independent include AdaCost [10], MetaCost [6], and Costing
[32]. In addition, Joshi et al. discussed the limitations of boosting algorithms for rare
class modeling [15], and proposed PNrule, a two-phase rule induction algorithm, to
handle the rare class purposefully [14]. Other algorithms developed for mining rare
classes include BRUTE [25], SHRINK [16], RIPPER [3], etc. A good survey paper
is given by [28].

Finally, Japkowicz showed the idea of “supervised learning with unsupervised
output separation” [13]. This work shares some common grounds with our COG
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method in terms of combining supervised and unsupervised learning techniques.
However, we have a novel perspective on rare class analysis in this study. We develop
the foundation of classification using local clustering (COG) for enhancing linear
classifiers on handling both balanced and imbalanced classification problems.

6.7 Concluding Remarks

In this chapter, we proposed a method for classification using local clustering (COG).
The key idea is to perform local clustering within each class and produce linearly
separable sub-classes with relatively balanced sizes. For data sets with imbalanced
class distributions, the COG method can improve the performance of traditional
supervised learning algorithms, such as Support Vector Machines (SVMs), on rare
class analysis. In addition, the COG method has the capability in decomposing com-
plex structures/concepts in the data into simple and linearly separable concepts, and
thus enhancing linear classifiers on data sets containing linearly inseparable classes.
Finally, as demonstrated by our experimental results on various real-world data sets,
COG with over-sampling can have much better prediction accuracy on rare classes
than state-of-the-art methods. Also, the COG method can significantly improve the
computational efficiency of SVMs.
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Chapter 7
K-means Based Consensus Clustering

7.1 Introduction

Consensus clustering [14, 16], also known as cluster ensemble or clustering aggre-
gation, aims to find a single clustering from multi-source basic clusterings on the
same group of data objects. It has been widely recognized that consensus clustering
has merits in generating better clusterings, finding bizarre clusters, handling noise,
outliers and sample variations, and integrating solutions from multiple distributed
sources of data or attributes [15].

The problem of consensus clustering is NP-complete in essence. In the literature,
many algorithms have been proposed to address the computational challenge, such
as the co-association matrix based methods [6], the graph-based methods [16], the
prototype-based clustering methods [18, 19], and other heuristic approaches [11].
Among these research studies, the K-means based consensus clustering method [18]
is of particular interests for its simplicity, robustness and high efficiency inherited
from classic K-means clustering. However, the existing works along this line are
still scattered and fragmented. The general theoretic framework of utility functions
suitable for K-means based consensus clustering (KCC) is still not available.

To fulfill this crucial void, in this chapter, we provide a systematic study of utility
functions for K-means based consensus clustering. The major contributions are sum-
marized as the following. First, we propose a sufficient condition for utility functions
which are suitable for KCC. Indeed, by this condition, we can easily derive a KCC
utility function from a continuously differentiable convex function. This helps to
establish a unified framework for K-means based consensus clustering. Second, we
design the new computation process of utility functions (in consensus clustering) and
distance functions (in K-means clustering), and successfully adapt KCC for handling
inconsistent data.

Finally, we have conducted extensive experiments on real-world data to evalu-
ate the performances of KCC using different utility functions. Experimental results
demonstrate that: (1) KCC is an efficient and effective method, which generates clus-
tering results comparable to the results by state-of-the-art graph-partitioning method;
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(2) While diversified utility functions bring extra flexibility to KCC in different ap-
plication domains, the utility functions based on the Shannon entropy often lead to
better performances of KCC; (3) KCC is a very robust method, which can generate
stable results on basic clusterings of varying qualities, even for severely inconsistent
data; (4) The generation strategy of basic clusterings has a strong impact on KCC,
and the Random Feature Selection (RFS) strategy is particularly effective in handling
data with noisy features and finding the true number of clusters.

The remainder of this chapter is organized as follows. In Sect. 7.2, we give some
preliminaries and provide the problem definition. Section 7.3 introduces the sufficient
condition for utility functions that can be used for K-means based consensus clus-
tering. In Sect. 7.4, we study how to exploit KCC for inconsistent data. Section 7.5
presents the experimental results. In Sect. 7.6, we describe the related work. Finally,
Sect. 7.7 concludes this work.

7.2 Problem Definition

Here, we briefly introduce the basic concepts of consensus clustering, and formulate
the problem to be studied in this chapter.

7.2.1 Consensus Clustering

Let X = {x1, x2, . . . , xn} denote a set of data objects. A partitioning of X into K
crisp clusters can be represented as a collection of K sets of objects: C = {Ck |k =
1, . . . , K }, with Ck

⋂
Ck′ = ∅,∀k �= k′ and

⋃K
k=1 Ck =X , or as a label vector:π =

〈Lπ (x1), . . . , Lπ (xn)〉, where Lπ (xi ) maps xi to one of the K labels: 1, 2, . . . , K .
The problem of consensus clustering is typically formulated as follows. Given

a set of r basic partitionings: Π = {π1, π2, . . . , πr } of X , the goal is to find a
consensus partitioning π such that

Γ (π,Π) =
r∑

i=1

wiU (π, πi ) (7.1)

is maximized, where Γ : Nn×N
nr �→ R is a consensus function, U : Nn×N

n �→ R

is a utility function, and wi ∈ R++ is the user-specified weight for πi , i = 1, 2, . . . , r .
The choice of the utility function is critical for the success of a consensus cluster-

ing. In the literature, many external measures originally proposed for cluster validity
have been adopted as the utility functions for consensus clustering, such as Nor-
malized Mutual Information [16], Category Utility Function [13], Quadratic Mutual
Information [18], and Rand Index [11]. These utility functions, together with the
consensus function, largely determine the quality of consensus clustering.
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Table 7.1 The contingency matrix

πi

C (i)
1 C (i)

2 · · · C (i)
Ki

∑

C1 n(i)
11 n(i)

12 · · · n(i)
1Ki

n1+

π C2 n(i)
21 n(i)

22 · · · n(i)
2Ki

n2+
· · · · · · · ·
CK n(i)

K 1 n(i)
K 2 · · · n(i)

K Ki
nK+

∑
n(i)
+1 n(i)

+2 · · · n(i)
+Ki

n

7.2.2 K-means Based Consensus Clustering

The computation issue is always the critical concern of consensus clustering, since
maximizing Eq. (7.1) is an NP-complete problem. Many algorithms have been pro-
posed to address this challenge [5, 11, 16, 18]. Among these approaches, a K-means
based method is of particular interests, which was firstly studied by [13], and later
introduced to consensus clustering by [18]. Here, we call it the K-means based Con-
sensus Clustering (KCC) problem, and revisit it briefly from a contingency-matrix
perspective as follows.

A contingency matrix is often employed for computing the difference of two
partitionings. As can be seen from Table 7.1, n(i)

k j denotes the number of data objects

contained by both cluster C (i)
j in πi and cluster Ck in π , nk+ = ∑Ki

j=1 n(i)
k j , and

n(i)
+ j =

∑K
k=1 n(i)

k j , 1 ≤ k ≤ K , 1 ≤ j ≤ Ki . Let p(i)
k j = n(i)

k j /n, pk+ = nk+/n,

and p(i)
+ j = n(i)

+ j/n, we then have the normalized contingency matrix for utility
computation. For instance, the well-known Category Utility Function for KCC [13]
can be computed as follows:

Uc(π, πi ) =
K∑

k=1

pk+
Ki∑

j=1

(p(i)
k j /pk+)2 −

Ki∑

j=1

(p(i)
+ j )

2. (7.2)

We then construct a binary data set X (b) = {x (b)
l |1 ≤ l ≤ n} according to Π as

follows:
x (b)

l = 〈x (b)
l,1 , . . . , x (b)

l,i , . . . , x (b)
l,r 〉, (7.3)

x (b)
l,i = 〈x (b)

l,i1, . . . , x (b)
l,i j , . . . , x (b)

l,i K i 〉, (7.4)

x (b)
l,i j =

{
1, if Lπi (xl) = j
0, otherwise

, (7.5)
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where Lπi maps xl to one of the Ki labels in πi . This implies that X (b) is an

n ×∑r
i=1 Ki binary data matrix with

∑Ki
j=1 x (b)

l,i j = 1,∀l, i . In [13], X (b) is further

centralized to X (c) = {x (c)
l |1 ≤ l ≤ n} where x (c)

l,i j = x (b)
l,i j −

∑n
l=1 x (b)

l,i j/n, which
leads to:

max
π

r∑

i=1

Uc(π, πi )⇐⇒ min
C

K∑

k=1

∑

x (c)
l ∈Ck

‖x (c)
l − mk‖2, (7.6)

where mk is the arithmetic mean of all x (c)
l ∈ Ck . Eq. (7.6) indicates that, given wi = 1

∀i and U
.= Uc, the maximization of Γ in Eq. (7.1) is equivalent to the minimization

of the sum of inner-cluster variances of X (c), which can be solved quickly by the
centroid-based alternating optimization process of the K-means clustering [12].

7.2.3 Problem Definition

While its properties have not been fully understood in the literature, KCC is expected
to have appealing merits inherited from the K-means algorithm (i.e. simple, efficient,
and robust). In this chapter, we focus on studying the general framework of K-
means based consensus clustering. Specifically, we aim to answer the following two
questions:

• What kind of utility functions can be used for K-means based consensus clustering?
• How well do these utility functions perform for K-means based consensus clus-

tering on real-world data sets?

The answers to these questions can not only establish a theoretic framework for
KCC, but also provide a better guidance for the practical use of KCC.

7.3 Utility Functions for K-means Based Consensus Clustering

In this section, we give a sufficient condition for utility functions that can be used for
K-means based consensus clustering (KCC). First, given the symbols in Sect. 7.2,
we have the definition of utility functions for KCC as follows:

Definition 7.1 (KCC Utility Function) A utility function U is called a KCC utility
function, if there exists a distance function f such that

max
π

r∑

i=1

wiU (π, πi )⇐⇒ min
C

K∑

k=1

∑

x (b)
l ∈Ck

f (x (b)
l , mk). (7.7)
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Definition 7.1 implies that, by using KCC utility functions, the search for the
consensus clustering π is equivalent to the K-means clustering of the binary data set
X (b). Thus, we can reduce an NP-complete problem to a roughly linear one. As a
result, in what follows, we focus on finding KCC utility functions.

7.3.1 The Distance Functions for K-means

To understand U in Eq. (7.7), we should first understand f , the distance function of
K-means. It is interesting to note that the choice of distance functions is highly cor-
related with the choice of centroid types, given that the convergence of the K-means
algorithm must be guaranteed [17]. For instance, if the well-known squared Euclid-
ean distance is used, the centroids must be the arithmetic means of cluster members.
However, if the city-block is used instead, the centroids must be the medians. By
taking account of the computational efficiency and the mathematical property, we
limit K-means in Eq. (7.7) to the one with the centroid type of the arithmetic mean,
i.e., the classic K-means.

Recall the point-to-centroid distance defined in Definition 3.2 of Chap. 3. It has
been pointed out in Corollary 3.4 that, the point-to-centroid distance is the only
distance function suitable for the classic K-means clustering. This indicates that f
in Eq. (7.7) must be a point-to-centroid distance taking the form as follows:

f (x, y) = φ(x)− φ(y)− (x − y)T∇φ(y), (7.8)

where φ is a continuously differentiable convex function defined on an open convex
set. As different φ can lead to different instances, the point-to-centroid distance
is actually a family of multiple distance functions. Some popular point-to-centroid
distances widely used for K-means clustering, e.g. the squared Euclidean distance
(d2), the KL-divergence (D), the cosine distance ( fcos), and the l p distance ( fl p ),
can be found in Table 3.2 of Chap. 3.

7.3.2 A Sufficient Condition for KCC Utility Functions

Given the math symbols in Sect. 7.2, we have a sufficient condition for being a KCC
utility function as follows:

Theorem 7.1 A utility function U is a KCC utility function, if there exists a contin-
uously differentiable convex function φ such that

r∑

i=1

wiU (π, πi ) =
K∑

k=1

pk+φ(mk), (7.9)

http://dx.doi.org/10.1007/978-3-642-29807-3_3
http://dx.doi.org/10.1007/978-3-642-29807-3_3
http://dx.doi.org/10.1007/978-3-642-29807-3_3
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where Π = {π1, . . . , πr } and π are arbitrary partitionings of X , pk+ = |Ck |/|X |
is the size ratio of cluster Ck in π , and mk is the centroid of Ck when applying π to
X (b).

Proof For a binary data set X (b), the objective function of K-means is

min
π

K∑

k=1

∑

x (b)
l ∈Ck

f (x (b)
l , mk), (7.10)

where f is a point-to-centroid distance derived by some continuously differentiable
convex function φ. Also, according to Eq. (7.8), we have

K∑

k=1

∑

x (b)
l ∈Ck

f (x (b)
l , mk)

(α)=
∑

x (b)
l ∈X

φ(x (b)
l )− n

K∑

k=1

pk+φ(mk)

(β)=
∑

x (b)
l ∈X

φ(x (b)
l )− n

r∑

i=1

wiU (π, πi ).

Note that (α) holds since
∑

x (b)
l ∈Ck

x (b)
l −|Ck |mk = 0, and (β) holds according to

Eq. (7.9). Since both
∑

x (b)
l ∈X φ(x (b)

l ) and n are constants, we finally have Eq. (7.7).

Therefore, by Definition 7.1, U is a KCC utility function. ��
Remark Theorem 7.1 provides a criterion for recognizing KCC utility functions;
that is, if we can transform the consensus function Γ (π,Π) = ∑r

i=1 wiU (π, πi )

into the form:
∑K

k=1 pk+φ(mk), then U is a KCC utility function. In other words,
a KCC utility function relates the contingency-matrix-based utility computation to
the K-means clustering of a binary data set X (b).

In what follows, we continue to explore the properties of φ in Eq. (7.9). To this end,
we first revisit the binary data set X (b) generated from Π . As noted in Sect. 7.2.2,
X (b) = [x (b)

l,i j ]n×∑r
i=1 Ki

consists of n records, each of which contains
∑r

i=1 Ki

binary attributes with values in {0, 1}. As a result, the k-th centroid mk of partitioning
π in Eq. (7.9) is also a

∑r
i=1 Ki -dimensional vector as follows:

mk = 〈mk,1, . . . , mk,i , . . . , mk,r 〉, (7.11)

mk,i = 〈mk,i1, . . . , mk,i j , . . . , mk,i Ki 〉, (7.12)
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where 1 ≤ k ≤ K , 1 ≤ i ≤ r , and 1 ≤ j ≤ Ki . Also, according to the contingency
matrix in Table 7.1, we have

mk,i j =
∑

x (b)
l ∈Ck

x (b)
l,i j

nk+
= n(i)

k j

nk+
= p(i)

k j

pk+
. (7.13)

Then, we have a theorem about φ as follows:

Theorem 7.2 If U is a KCC utility function satisfying Eq. (7.9), then there exists a
continuously differentiable convex function ϕ such that

φ(mk) =
r∑

i=1

wiϕ(mk,i ), 1 ≤ k ≤ K . (7.14)

Proof Denote φ(mk,i ) by ϕ(mk,i ). Since Eq. (7.9) holds for individual πi and a
same π , for each 1 ≤ i ≤ r we have

U (π, πi ) =
K∑

k=1

pk+ϕ(mk,i ). (7.15)

Accordingly, we have

r∑

i=1

wiU (π, πi ) =
K∑

k=1

pk+
r∑

i=1

wiϕ(mk,i ). (7.16)

By comparing Eq. (7.16) with Eq. (7.9), and taking the arbitrariness of π into
consideration, we have

φ(mk) =
r∑

i=1

wiϕ(mk,i ), 1 ≤ k ≤ K , (7.17)

which indicates that the theorem holds. ��
Remark From the application viewpoint, Theorem 7.2 is an important supplement
to Theorem 7.1. It reveals that φ can be derived by simply summarizing the weighted
ϕ on mk,i , i = 1, . . . , r . In other words, given ϕ and the weights, we can define the
K-means clustering in correspondence with the consensus clustering.

Based on Theorem 7.2, we can further explore the properties of KCC utility
functions satisfying Eq. (7.9). We have the following corollary:

Corollary 7.1 If U is a KCC utility function satisfying Eq. (7.9), then there exists a
continuously differentiable convex function ϕ such that ∀i
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Table 7.2 Some examples of KCC utility functions

U (π, πi ) =
K∑

k=1

pk+ϕ(〈p(i)
k1 /pk+, · · · , p(i)

kKi
/pk+〉). (7.18)

Remark Compared with Theorem 7.1, Corollary 7.1 provides a more practical guid-
ance for the recognition of KCC utility functions. To understand this, let us recall the
normalized contingency matrix in Sect. 7.2.2, from which we can learn that U (π, πi )

in Eq. (7.18) is nothing more than the weighted average of ϕ on normalized elements
in each row. As a result, given a ϕ, we can derive a KCC utility function. Hereinafter,
we denote the KCC utility functions derived by Eq. (7.18) as Uϕ for simplicity.

In summary, a continuously differentiable function ϕ serves as the bridge between
the consensus clustering and the K-means clustering. Table 7.2 shows some exam-
ples of KCC utility functions (U ) derived from various convex functions (ϕ), and
their corresponding point-to-centroid distance ( f ). Therefore, for the K-means based
consensus clustering, we have an algorithmic framework as follows: (1) Select an
appropriate Uϕ ; (2) Decompose Uϕ to get ϕ; (3) Derive φ and f from ϕ; (4) Apply
K-means on binary data X (b) using f as the distance function. Then, the resultant
partitioning is returned as the consensus clustering π we want.

7.3.3 The Non-Unique Correspondence and the Forms of KCC
Utility Functions

Here, we discuss the correspondence between KCC utility functions and K-means
clustering. We have two forms of Uϕ as follows.
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The standard form of Uϕ . It is interesting to note that Uϕ and the point-to-
centroid distance have a many-to-one correspondence. In other words, different utility
functions may correspond to a same point-to-centroid distance, and therefore lead to
a same consensus partitioning π . To illustrate this, suppose we have a utility function
Uϕ derived from ϕ. If we let

ϕs(mk,i ) = ϕ(mk,i )− ϕ(〈p(i)
+1, . . . , p(i)

+Ki
〉)

︸ ︷︷ ︸
(α)

, (7.19)

then by Eq. (7.18), we can construct a new utility function as follows:

Uϕs (π, πi ) = Uϕ(π, πi )− ϕ(〈p(i)
+1, . . . , p(i)

+Ki
〉). (7.20)

Since (α) is a constant in Eq. (7.19) given πi , it is easy to show that Uϕs and
Uϕ correspond to a same point-to-centroid distance. Moreover, since Uϕs ≥ 0 for
the convexity of ϕ (using the Jensen’s inequality), Uϕs can be regarded as the utility

gain after calibrating Uϕ to the benchmark: ϕ(〈p(i)
+1, . . . , p(i)

+Ki
〉). Here, we define

utility gain as the standard form of a KCC utility function. As a result, all the utility
functions listed in Table 7.2 are in the standard form.

The normalized form of Uϕ . It is natural to take a further step from the standard
form Uϕs to the normalized form Uϕn . Let

ϕn(mk,i ) = ϕs(mk,i )/|ϕ(〈p(i)
+1, . . . , p(i)

+Ki
〉)|. (7.21)

Since 〈p(i)
+1, . . . , p(i)

+Ki
〉 is a constant vector given πi , it is easy to note that ϕn is

also a convex function from which a KCC utility function Uϕn can be derived. That is,

Uϕn (π, πi ) =
Uϕ(π, πi )− ϕ(〈p(i)

+1, . . . , p(i)
+Ki
〉)

|ϕ(〈p(i)
+1, . . . , p(i)

+Ki
〉)|

. (7.22)

From Eq. (7.22), Uϕn ≥ 0 can be viewed as the utility gain ratio to the constant

ϕ(〈p(i)
+1, · · · , p(i)

+Ki
〉). As a result, the corresponding point-to-centroid distance of

Uϕn will be the same as Uϕ , if we let wi ← wi/|ϕ(〈p(i)
+1, . . . , p(i)

+Ki
〉)|, i = 1, . . . , r .

Since they have clear physical meanings, the standard form and the normalized
form become the two major forms of Uϕ we will use in the following experimental
section.
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7.3.4 Discussions

It is noteworthy that Theorem 7.1 and Corollary 7.1 only provide a sufficient condition
for a utility function to be a KCC utility function. However, the necessary condition
has not been fully understood yet.

Recall Definition 7.1, which defines the concept of KCC utility functions. Similar
to the proof of Theorem 7.1, since f is a point-to-centroid distance, a utility function
is a KCC utility function if and only if

max
π

r∑

i=1

wiU (π, πi )⇐⇒ max
π

K∑

k=1

pk+φ(mk). (7.23)

where φ is a continuously differentiable function.
Equation (7.23) is the necessary and sufficient condition for a KCC utility function.

However, it has only the theoretical significance, since it is hard to link φ to U given
only the equivalence relation. A more practical way is to replace equivalence by
equality, as we have done in Theorem 7.1, which gives a sufficient condition. In fact,
we can have a more general sufficient condition as follows:

Theorem 7.3 A utility function U is a KCC utility function, if there exist a con-
tinuously differentiable function φ and a positive monotonic transformation g such
that

g

(
r∑

i=1

wiU (π, πi )

)

=
K∑

k=1

pk+φ(mk). (7.24)

Proof Since g is a positive monotonic transformation, or more directly, a strictly
increasing function, we have

max
π

g

(
r∑

i=1

wiU (π, πi )

)

⇐⇒ max
π

r∑

i=1

wiU (π, πi ). (7.25)

Then, according to Eq. (7.24), we have Eq. (7.23), which indicates that U is a KCC
utility function. ��
Remark Although Theorem 7.3 is still a sufficient condition, it extends our
knowledge about KCC utility functions greatly by introducing a positive monotonic
transformation g. Indeed, compared with Theorem 7.1, this sufficient condition is
much closer to the necessary condition given in Eq. (7.23), with a stronger assump-
tion that ∀	,

∑r
i=1 wiU (π, πi ) and

∑K
k=1 pk+φ(mk) must have the same ranking

to all π . More importantly, Eq. (7.24) can help to find the correspondence between
φ and U , which enables the practical use of KCC. Some typical instances of g are
as follows:

• g(Γ (π,Π)) = aΓ (π,Π)+ b, where a > 0, b is a constant.
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Table 7.3 The adjusted contingency matrix

πi

C (i)
1 C (i)

2 · · · C (i)
Ki

∑

C1 n(i)
11 n(i)

12 · · · n(i)
1Ki

n(i)
1+

π C2 n(i)
21 n(i)

22 · · · n(i)
2Ki

n(i)
2+

· · · · · · · ·
CK n(i)

K 1 n(i)
K 2 · · · n(i)

K Ki
n(i)

K+
∑

n(i)
+1 n(i)

+2 · · · n(i)
+Ki

n(i)

• g(Γ (π,Π)) = Γ (π,Π)q , where q is a positive odd number.
• g(Γ (π,Π)) = ln Γ (π,Π).

While there are more choices about KCC utility functions after introducing g, from
the application viewpoint, it is still a good way to take the simple affine transformation
with a = 1 and b = 0, which results in Eq. (7.9) and the subsequent Eq. (7.18).

7.4 Handling Inconsistent Data

Here, we address the issue when applying K-means based consensus clustering to
basic partitionings on inconsistent data.

Let X ={x1, x2, . . . , xn} denote a set of data objects. A basic partitioning πi is
obtained from the clustering of a data subset Xi ⊆ X , 1 ≤ i ≤ r , with the cons-
traint that

⋃r
i = 1 Xi =X . Here, the problem is, given r basic parititionings Π =

{π1, . . . , πr } obtained from r inconsistent data subsets, how to adapt KCC for the clu-
stering of X into K crisp clusters? Indeed, this problem is worthy of research from a
practical viewpoint, since some data instances are often unavailable in a basic partiti-
oning due to the reasons such as the geographical distribution or time delay of data.

We first adjust the way for utility computation with the presence of inconsistent
data. We still have maximizing Eq. (7.1) as the objective of consensus clustering, but
the contingency table for the computation of U (π, πi ) should be modified carefully,
as shown in Table 7.3.

In Table 7.3, n(i)
k+ is the number of instances in Xi from cluster Ck , 1 ≤ k ≤ K ,

and n(i) is the total number of instances in Xi , i.e., n(i) = |Xi |, 1 ≤ i ≤ r . Let
p(i)

k j = n(i)
k j /n(i), p(i)

k+ = n(i)
k+/n(i), p(i)

+ j = n(i)
+ j/n(i), and p(i) = n(i)/n.

We then adjust the K-means clustering on the binary data set X (b) with the
presence of inconsistent data. Assume the distance

f (x (b)
l , mk) =

r∑

i=1

fi (x (b)
l,i , mk,i ), (7.26)
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we obtain a new objective for K-means clustering as follows:

min
C

L =
r∑

i=1

K∑

k=1

∑

x (b)
l ∈Ck

⋂
Xi

fi (x (b)
l,i , mk,i ), (7.27)

where the centroid

mk,i j =
∑

x (b)
l ∈Ck

⋂
Xi

x (b)
l,i j

|Ck
⋂

Xi | = n(i)
k j

n(i)
k+
= p(i)

k j

p(i)
k+

, 1 ≤ j ≤ Ki . (7.28)

The two-phase iteration process of K-means turns into: (1) Assign x (b)
l to the

cluster with the smallest distance f computed by Eq. (7.26); (2) Update the centroid
of cluster Ck by Eq. (7.28). It is easy to note that the assigning phase will decrease L
in Eq. (7.27) definitely. Moreover, since fi is a point-to-centroid distance derived by a
continuously differentiable convex function φi , we have∀yk �= mk , L(yk)−L(mk) =∑r

i=1
∑K

k=1 n(i)
k+ fi (mk,i , yk,i ) ≥ 0, which indicates that the centroid-updating phase

will also decrease L definitely. As a result, we guarantee that the solution of K-means
will converge to a local minimum or a saddle point within finite numbers of iterations.

Based on the above adjustments, we now extend the K-means based consensus
clustering to the inconsistent-data case. We have a theorem as follows:

Theorem 7.4 A utility function U is a KCC utility function, if there exists a contin-
uously differentiable convex function ϕ such that ∀i

U (π, πi ) = p(i)
K∑

k=1

p(i)
k+ϕ(〈p(i)

k1 /p(i)
k+, . . . , p(i)

kKi
/p(i)

k+〉). (7.29)

Proof Let mk,i j = p(i)
k j /p(i)

k+, and φi
.= wiϕ. On one hand, we have

Γ (π,Π) =
r∑

i=1

wiU (π, πi ) =
r∑

i=1

p(i)
K∑

k=1

p(i)
k+φi (mk,i ). (7.30)

On the other hand, using φi , fi in Eq. (7.27) can be:

fi (x (b)
l,i , mk,i ) = φi (x (b)

l,i )− φi (mk,i )− (x (b)
l,i − mk,i )

T∇φi (mk,i ). (7.31)

Accordingly, we have
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Table 7.4 Some characteristics of real-world data sets

Data Source #Objects #Attributes #Classes MinClassSize MaxClassSize CV

breast_w UCI 699 9 2 241 458 0.439
ecoli UCI 336 7 8 2 143 1.160
iris UCI 150 4 3 50 50 0.000
pendigits UCI 10992 16 10 1055 1144 0.042
satimage UCI 4435 36 6 415 1072 0.425
wine UCI 178 13 3 48 71 0.194
sports TREC 8580 126373 7 122 3412 1.022
tr45 TREC 690 8261 10 18 160 0.669

L =
r∑

i=1

K∑

k=1

∑

x (b)
l ∈Ck

⋂
Xi

φi (x (b)
l,i )

︸ ︷︷ ︸
(α)

−n
r∑

i=1

p(i)
K∑

k=1

p(i)
k+φi (mk,i ). (7.32)

Since (α) and n are constants, according to Eq. (7.30), we have

min
C

L ⇔ max
C

r∑

i=1

p(i)
K∑

k=1

p(i)
k+φi (mk,i )⇔ max

π
Γ (π,Π). (7.33)

The above implies that the maximization of the consensus function is equivalent
to the clustering of the binary data, so U is a KCC utility function. ��
Remark Eq. (7.29) is very similar to Eq. (7.18) except for the parameter p(i). This
parameter implies that the basic partitioning with more data instances should have
more impact on the consensus clustering, which is considered reasonable. Note
that, when the inconsistent case reduces to the consistent one, Eq. (7.29) reduces
to Eq. (7.18) naturally. This implies that the inconsistent case is a more general sce-
nario. Finally, the KCC procedure for the inconsistent case is very similar to the
consistent one; that is, given U , we first obtain ϕ, and then φi , fi and f , and finally
perform K-means clustering on the binary data to get π .

7.5 Experimental Results

In this section, we present experimental results of K-means based consensus cluster-
ing using various utility functions. Specifically, we demonstrate: (1) The convergence
of KCC; (2) The cluster validity of KCC; (3) The impact of the generation strategies
of basic partitionings on KCC; (4) The effectiveness of KCC in handling inconsistent
data.
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7.5.1 Experimental Setup

We first introduce the experimental setup, including the data information, the clus-
tering tools, the validation measure, and the experimental environment.

Experimental data. In the experiments, we use a number of real-world data sets.
Table 7.4 shows some important characteristics of these data sets, where CV is the
distribution of class sizes measured by coefficient of variation [1].

Clustering tools. Two types of consensus clustering algorithms, namely the
K-means based consensus clustering algorithm (KCC) and the graph partitioning
algorithm (GP), have been tested in the experiments. GP is actually a general con-
cept of three well-known benchmark algorithms: CSPA, HGPA and MCLA [16],
which were implemented in MATLAB provided by Strehl.1 We also implemented
KCC in MATLAB, which includes ten utility functions, namely Uc, UH , Ucos, UL5

and UL8 and their normalized versions (denoted as NU ).
To generate basic partitionings, we used the kmeans function2 of MATLAB with

squared Euclidean distance for UCI data sets, and the vcluster tool of CLUTO3

with cosine similarity for text data. Three generation strategies [11, 16], i.e. Random
Parameter Selection (RPS), Random Feature Selection (RFS), and Multiple Cluster-
ing Algorithms (MCA), are used. In RPS, we randomized the number of clusters for
K-means in different basic clusterings. In RFS, we randomly selected partial features
for clustering. Finally, in MCA, we used different clustering algorithms to produce
diversified basic clusterings.

The default setting is as follows. The number of clusters K for KCC or GP is set
to the number of true classes, and the weights of all basic partitionings are exactly
the same, i.e. wi = 1, ∀ i . For UCI data, the RPS strategy is used, with the number
of basic partitionings r = 100, and the number of clusters Ki ∈ [K , �√n�], ∀ i .
For text data, however, the MCA strategy is used instead, with 25 basic partitionings
generated by the combination of five clustering methods (i.e. rb, rbr, direct, agglo
and bagglo) and five objective functions (i.e. i2, i1, e1, g1, g1p) in CLUTO, and
Ki ∈ [K − 2, K + 2], ∀ i . We run KCC or GP 10 times for each data set to get the
average result. Each time KCC calls K-means routine 10 times for the best result,
and GP calls all the three algorithms and returns the best result.

Validation measure. Since we have class labels for all the real-world data sets,
we use the external validation measures for cluster validity. In the literature, it has
been recognized that the normalized Rand index (Rn) has merits in evaluating the
K-means clustering [20]. The details of Rn can be found in [9]. Note that Rn is a
positive measure with a wide value range.

Experimental environment. All the experiments were run on a Microsoft Win-
dows 7 platform with SP2 32-bit edition. The PC has an Intel Core2 Duo T7250
2.0GHz×2 CPU of a 2MB cache, and a 3GB DDR2 332.5MHz RAM.

1 http://www.strehl.com.
2 http://www.mathworks.cn/help/toolbox/stats/kmeans.html.
3 http://glaros.dtc.umn.edu/gkhome/views/cluto/.

http://www.strehl.com
http://www.mathworks.cn/help/toolbox/stats/kmeans.html
http://glaros.dtc.umn.edu/gkhome/views/cluto/
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Fig. 7.1 The convergence of KCC using different utility functions

7.5.2 The Convergence of KCC

We first study the convergence property of KCC by observing the changing tendency
of the consensus-function value during the clustering processes.

To this end, we employ KCC on the data sets in Table 7.4 using the default setting.
Figure 7.1 shows some randomly selected runs of KCC on data sets satimage and
pendigits, respectively. As can be seen, no matter what utility function is used, the
value of the consensus function (Γ ) keeps going up while the value of the objective
function of K-means (obj) keeps going down, until a solution is found. Indeed, we
find this trend ubiquitous for all 8× 10× 10 = 800 runs of KCC. This implies that
any Uϕ derived by a continuously differentiable convex ϕ can be used for K-means
based consensus clustering.

If we take a closer look at the convergence processes in Fig. 7.1, we can find that
the convergence speed of KCC is satisfactory. Indeed, KCC usually achieves the
largest portion of utility increase within 10 iterations. Furthermore, while having no
theoretical evidence, we still find that UH and NUH often lead to faster convergence
than other utility functions, in 6 out of 8 data sets for our case.

We also applied GP for the same groups of basic partitionings of all data sets.
Figure 7.2 shows the comparative results of KCC (using Uc) and GP with respect
to the average execution time. As can be seen, for seven data sets, KCC consumes
obviously less time than GP. Note that (1) we do not have the result of GP on
pendigits due to the out-of-memory failure caused by high Ki values, and (2) for
satimage and sports, GP only calls two algorithms due to the large data scales.
These imply that GP may not be a very good choice for large-scale, multiple-class
data when a RPS setting is used.
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Fig. 7.2 KCC versus GP: the execution time

7.5.3 The Cluster Validity of KCC

In this section, we analyze the cluster validity of KCC in terms of both the quality,
diversity and robustness.

Table 7.5 shows the clustering results of KCC and GP on the same groups of basic
partitionings. As can be seen from Table 7.5, KCC using different utility functions
shows higher clustering quality than GP in six out of eight data sets (indicated by
the numbers in bold). For the two data sets, namely breast_w and satimage,
the advantage of KCC is particularly evident. Nonetheless, it can be argued that the
six winning cases of KCC should contribute to five utility functions. We can explain
this from two aspects. On one hand, if we compare the clustering quality of GP and
KCC with UH , NUH , or Ucos, we can find that KCC still has at least five winning
cases. This implies that KCC using a proper utility function can outperform GP. On
the other hand, this result well illustrate that diversified utility functions are very
important for the success of KCC. For instance, KCC with UH produces a much
better clustering result for breast_w, whereas KCC with NUL8 is obviously a
better choice for sports. Indeed, by incorporating different utility functions into a
unified framework, KCC has more flexibilities in clustering data sets from different
application domains.

Furthermore, the clustering result produced by KCC is very robust. To illustrate
this, we plot the 10-run clustering results of KCC (with UH ) on the six UCI data sets,
and the best basic-clustering results (with the least volatility among 100 partitionings
in the 10 runs) are also plotted as references. Figure 7.3 shows the results. As can be
seen from the figure, for each data set, KCC has a much narrower Rn range than the
basic clustering, and also has a much higher average Rn value, except for the wine
data set (we will address this in the next subsection). This indicates that although the
results of basic clusterings may be drastically varying, KCC can still generate stable
results. This robustness is particularly important for the real-world applications when
external information of data is not available.

Finally, while it is hard to know which utility function is the best for a given data
set, we can still provide some guidance for the practical use of KCC. We here attempt
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Table 7.5 The clustering results of real-world data sets. (measured by Rn)

Data set Uc UH Ucos UL5 UL8 NUc NUH NUcos NUL5 NUL8 GP

breast_w 0.390 0.872 0.505 0.135 0.135 0.065 0.854 0.131 0.124 0.124 0.497
ecoli 0.356 0.377 0.358 0.364 0.346 0.360 0.357 0.367 0.353 0.358 0.351
iris 0.746 0.735 0.746 0.746 0.746 0.702 0.737 0.746 0.746 0.746 0.915
pendigits 0.545 0.554 0.591 0.590 0.565 0.498 0.580 0.576 0.567 0.569 N/Aa

satimage 0.338 0.490 0.494 0.484 0.482 0.292 0.498 0.454 0.432 0.385 0.385
wineb 0.144 0.140 0.144 0.137 0.137 0.146 0.138 0.145 0.145 0.143 0.147
sports 0.461 0.499 0.464 0.458 0.481 0.480 0.478 0.495 0.502 0.510 0.465
tr45 0.669 0.629 0.671 0.684 0.670 0.656 0.658 0.688 0.652 0.664 0.642
score 6.855 7.758 7.392 6.921 6.852 6.294 7.734 6.974 6.831 6.772 -
aOut of memory
bThe last attribute is normalized by a scaling factor 100
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Fig. 7.3 The robustness of KCC

to rank the utility functions according to their performance on the eight data sets. We

score a utility function Ui by score(Ui ) = ∑
j

Rn(Ui ,D j )

maxi Rn(Ui ,D j )
, where Rn(Ui , D j )

is the Rn score of the clustering result generated by KCC using Ui on data set D j .
Table 7.5 lists the scores of all utility functions in the bottom row. Accordingly, the
ranking of the ten utility functions is as follows: UH � NUH � Ucos � NUcos �
UL5 � Uc � UL8 � NUL5 � NUL8 � NUc. Although this ranking is a bit coarse,
we can still learn from the eight data sets that (1) UH , NUH , or Ucos is usually a
good choice for KCC on unknown data, and (2) although it is the first utility function
proposed in the literature, Uc and the normalized NUc often work poorly in real-
world applications.
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7.5.4 The Comparison of the Generation Strategies of Basic
Clusterings

In the previous section, we mainly used the RPS and MCA strategies to generate
basic partitionings for consensus clustering. The RFS strategy, often considered as
a limited alternative for using only partial data, has not been fully investigated.
Therefore, in this subsection, we reveal the special effects of RFS for KCC.

First, RFS may help KCC to avoid the negative impact of noise or irrelevant
attributes. Let us take the wine data set for illustration. As can be seen from Table 7.5
and Fig. 7.3, by using the RPS strategy, KCC produces clustering results even worse
than the ones by the basic clustering. We now use RFS instead, with r = 100,
Ki = K , and the number of randomly selected features num F = 2. Figure 7.4
shows the comparative results evaluated by Rn . As can be seen from the figure,
by employing RFS, KCC with all utility functions improves the clustering quality
dramatically! To explore the reasons, we first cluster wine by K-means and obtain
a clustering quality Rn = 0.134. Then, we use the χ2 method to rank the features,
delete the five features with extremely low χ2 values, and cluster the new data by
K-means again. Now, we get a clustering accuracy Rn = 0.631. This result indicates
that there exist some noise or irrelevant attributes in wine which seriously degrade
the performances of KCC if RPS is used. Instead, RFS only selects partial attributes
for one basic clustering, and thus can produce some high-quality basic partitionings,
which may guide KCC to find a good consensus partitioning eventually.

Second, RFS can help KCC to find the true number of clusters K . Recall the nor-
malized utility function NUH (π, πi ) = M I (C ,C ′)

H(C ′) . Let Γ ′ = ∑r
i=1 wi NUH (π, πi )

√
H(C ′)
H(C )

. We use KCC with NUH for consensus clustering, and observe the change of

Γ ′ with respect to K , and search for the best ones. Figure 7.5 shows the comparative
result using RPS and RFS, respectively. As can be seen, for data sets breast_w
and wine, KCC using RFS obtains the highest Γ ′ values when K equals the true
cluster numbers 2 and 3, respectively. For the iris data set, KCC using RFS obtains
just a slightly smaller Γ ′ value when K = 3. In contrast, KCC using RPS obtains
increasing Γ ′ values as K increases for all the three data sets, and therefore cannot
identify the best K . Note that, for each K value, we repeat running KCC 10 times
and return the average Γ ′ value for robustness.

7.5.5 The Effectiveness of KCC in Handling Inconsistent Data

In this subsection, we demonstrate the effectiveness of KCC in clustering inconsistent
data. To illustrate this, we select two data sets with different sizes, breast_w and
satimage, to simulate two cases with inconsistent data as follows.

The first is the “missing samples” case, which means that although we are given
the basic parititionings Π = {π1, . . . , πr }, part of the labels in πi (1 ≤ i ≤ r ) are
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Fig. 7.5 A comparison of RFS and RPS in finding K

missing due to some unknown reasons. To simulate this, we do sampling on πi with
different ratios, and the unsampled labels are discarded as missing samples. The
second is the “distributed samples” case, which means that the data is distributed so
that each basic clustering is performed on different data subsets. To simulate this,
we sample the original data, and perform basic clustering on the sampled subsets to
obtain Π . For the two cases, the sampling ratio is set from 0.1 to 0.9, and KCC with
UH is run 10 times for average scores.

Figure 7.6 illustrates the clustering result. One observation is that, although the
sampling ratio keeps going down from 0.9 to 1.0, KCC provides clustering results of
surprisingly stable quality. This implies that KCC has the ability to organize “cluster
fragments” into a complete picture. Another observation is that, KCC shows roughly
the same clustering quality for two cases with inconsistent data. This is interesting,
as we had thought that the “distributed samples” case would be much harder to
deal with. This indicates that KCC can be employed for real-world distributed data
clustering.
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Fig. 7.6 The clustering result
of KCC on inconsistent data
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7.6 Related Work

Consensus clustering is often formulated as an NP-complete optimization problem.
In the literature, many optimization objectives (explicit or implicit) and solutions
have been proposed to do consensus clustering. In the pioneer work, [16] developed
three graph-based algorithms, namely CSPA, HGPA and MCLA, for consensus clus-
tering using Normalized Mutual Information (N M I ). Another class of solutions is
based on the similarity matrix. For instance, [6] summarized the results of basic
clusterings in a co-association matrix, based on which the agglomerative hierarchi-
cal clustering [3, 17] was used to find the final clustering. [7] also proposed the
Furthest Consensus algorithm to repeatedly find the furthest centers based on the
similarity matrix. In the inspiring work, [18] proposed to use K-means for consensus
clustering with Quadratic Mutual Information, and this elegant idea can be traced
back to the work by Mirkin on the Category Utility Function [13]. They further
extended their work to using the Expectation Maximization (EM) algorithm with
a finite mixture of multinomial distributions for consensus clustering [19]. Other
approaches for consensus clustering including relabeling and voting [2, 4], iterative
voting [15], simulated annealing [11], weighting [10], etc. [8] provided a good com-
parison of various heuristic algorithms for consensus clustering. Different from the
existing research efforts, in this chapter, we establish a general theoretic framework
for K-means based consensus clustering using multiple utility functions derived from
continuously differentiable convex functions.

7.7 Concluding Remarks

In this chapter, we studied the generalization issues of utility functions for K-means
based consensus clustering (KCC). Specifically, we identified a sufficient condition,
which indicates that utility functions that fit KCC can be derived from continu-
ously differentiable convex functions. We therefore established a unified framework
for KCC on both consistent and inconsistent data. Experiments on real-world data
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demonstrated the efficiency and effectiveness of KCC compared with the state-of-
the-art method. In particular, KCC exhibits robustness on basic clusterings of varying
qualities, and works surprisingly well for highly inconsistent data.
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Glossary

Basic clustering The clustering performed for the purpose of generating a single
data partition for the subsequent consensus clustering. See Chap. 7 and the term
‘‘consensus clustering’’.

Class imbalance problem The challenge to data mining tasks where the data
have multiple classes (or true clusters) in varying sizes. See Chaps. 2, 5, and 6.

Cluster analysis The data analysis task that attempts to partition data objects into
multiple clusters (or groups) without using external information, such that objects
in a cluster are more similar to each other than to objects in different clusters. See
Chap. 1.

Cluster validity Using external or internal validation measures to evaluate
clustering results in a quantitative and objective way. See Chap. 5 and the term
‘‘external validation measure’’.

Consensus clustering Also known as cluster ensemble or clustering aggregation,
an NP-complete combinatorial optimization problem that aims to find a single
clustering from multi-source basic clusterings such that this single clustering
matches all the basic clusterings as much as possible. See Chap. 7.

Data smoothing A technique that adds a small positive real number to all data
objects such that the sparsity of high-dimensional data, such as text corpora, can
be eliminated. See Chap. 4.

External validation measure A category of cluster validity measures that eval-
uates clustering results by comparing them to the true cluster structures defined
by external information such as class labels. See Chap. 5.

Fuzzy c-means A type of prototype-based fuzzy clustering algorithms that acts
like K-means clustering but allows a data object to belong to two or more
clusters with a membership grade between zero and one. See Chap. 3 and the
term ‘‘K-means’’.
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Information-theoretic K-means The K-means algorithm using the Kullback-
Leibler divergence (KL-divergence) as the distance function. See Chap. 4 and
the term ‘‘K-means’’.

K-means A type of prototype-based clustering algorithms that assigns data
objects to closest clusters by computing the distances between the data objects
and the centroids of the clusters. It can be also viewed as a special case of fuzzy
c-means when the fuzzy factor tends to one. See Chap. 1 and the term ‘‘fuzz c-
means’’.

Local clustering A data decomposition technique that performs clustering on a
subset of data, e.g. the major class of data. See Chap. 6.

Measure normalization The issue that attempts to normalize the cluster validity
measures into a small value range such as [0,1] or [-1,1], for the purpose of
comparing clustering quality. See Chap. 5.

Point-to-centroid distance The only family of distance functions that fits directly
K-means clustering with centroids of arithmetic means. See Chap. 3 and the
term ‘‘K-means’’.

Rare class analysis The task of classification analysis on highly imbalanced data
with the emphasis on identifying positive instances of rare classes. It plays a
vital role in many important real-life applications, such as network intrusion
detection, credit-card fraud detection, and facility fault detection. See Chap. 6.

Resampling A technique that draws randomly with or without replacement from
the available data for generating a smaller (under-sampling) or a larger (over-
sampling) subset of that data. See Chap. 6.

Spherical K-means The K-means algorithm using the cosine similarity as the
proximity function. See Chap. 4 and the term ‘‘K-means’’.

Uniform effect The effect of K-means that tends to partition data objects into
clusters in uniform sizes. This is a negative effect when applying K-means for
class imbalance data. See Chap. 2 and the term ‘‘K-means’’.

Variable neighborhood search An optimization meta-heuristic which exploits
systematically the idea of neighborhood change, both in the descent to local
minima and in the escape from the valleys that contain them. See Chap. 4.

Zero-value dilemma The problem in computing KL-divergence between data
objects and centroids when there exist zero-value features in the high-dimen-
sional feature space. See Chap. 4.
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