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Abstract The analysis of complex 3D data is a central task for many problems in
the geo- and engineering sciences. Examples are the analysis of natural events
such as mass movements and volcano eruptions as well as 3D city planning and the
computation of 3D models from point cloud data generated by terrestrial laser
scanning for 3D data analysis in various domains. The volume of these data is
growing from year to year. However, there is no geo-database management system
on the market yet that efficiently supports complex 3D mass data, although
prototypical 3D geo-database management systems are ready to support such
challenging 3D applications. In this contribution we describe how we reply to
these requirements advancing DB4GeO, our 3D/4D geo-database architecture. The
system architecture and support for geometric, topological and temporal data are
presented in detail. Besides the new spatio-temporal object model, we introduce
new ideas and implementations of DB4GeO such as the support of GML data and
the new WebGL 3D interface. The latter enables the direct visualization of 3D
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database query results by a standard web browser without installing additional
software. Examples for 3D database queries and their visualizations with the new
WebGL interface are demonstrated. Finally, we give an outlook on our future
work. Further extensions of DB4GeO and the support for the data management for
collaborative subway track planning are discussed.

1 Introduction

The demand for modeling and handling large 3D and 4D data sets has been rapidly
growing during the last decades (Breunig and Zlatanova 2011; Hashemi et al.
2009; Kolbe 2012; Kolbe et al. 2011; Mallet 2002; Raper 1989). Techniques and
applications such as geodesy, terrestrial laser scanning (TLS), 3D city planning,
geological modeling, geothermal reservoir modeling, and early warning of natural
events strengthen this trend by generating large volumes of 3D data. However, the
analysis of these data becomes a confusing task without the help of geo-databases,
because the geo-expert has to access dozens or even hundreds of single data files.
Furthermore, without documentation and long-time archiving of modeling and
simulation (results) in a geo-database, many examinations become useless as soon
as their authors are no longer available.

In this paper we argue that 3D geo-databases can be accessed by non-experts in
a straightforward manner. The rest of this paper is organized as follows. In Sect. 2
the service-based system architecture of DB4GeO, our 3D geo-database kernel, is
presented. Section 3 is dedicated to the geometric, topological, and temporal
database support. Section 4 describes the support for GML data and implemen-
tation details of the REST communication interface. Section 5 presents the new
WebGL interface of DB4GeO with various visualization examples. Finally, we
give a conclusion and outlook on our future work concerning 3D and 4D geo-data
support in DB4GeO, e.g. in the field of collaborative subway track planning.

2 System Architecture

DB4GeO (Bär 2007; Breunig et al. 2010; Thomsen et al. 2008b) has its roots in the
development of GeoToolKit (Balovnev et al. 2004), an object-oriented library for
3D geometric data types for geo-databases. It has a service-based user interface and
is exclusively implemented in the Java programming language. Hitherto REST
(Fielding 2000) is used as communication platform, i.e., REST style web services
are used to enable remote interaction of clients with the geo-database. The system
architecture of DB4GeO is presented in Fig. 1. On the client side, GIS or mobile
clients have access to 3D data managed by the DB4GeO server. On the server
side, DB4GeO is accessed exclusively via its service infrastructure. The services are
divided into simple and complex services (Breunig et al. 2010). The simple services
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are equivalent to basic geometric and topological operations such as the distance
between 3D objects or the determination if two 3D objects intersect etc. However,
also computations such as the intersection between two surfaces belong to the
simple services. A typical complex service is the so called ‘‘3D-to-2D service’’ that
has been introduced in Breunig et al. (2010). It computes a vertical profile section of
a geological subsoil model by intersecting all existing surface objects with a vertical
plane. Finally, it projects all wells within a specified distance onto the vertical plane.
The geological model has to be bounded by a 3D bounding box. Further examples of
complex services are the ‘‘4D-to-3D service’’, which calculates the geometry of a
spatio-temporal object at a given moment in time, and a triangulation service that
creates a triangle net from a set of points.

The core of DB4GeO is its 3D geo-database which is based on a geometry
library and the R-tree based spatial access structures. DB4GeO is implemented
upon the open source object-oriented database management system db4o (Paterson
et al. 2006; Versant Corp 2012).

Developed from a system designed primarily for geological applications,
DB4GeO concentrates in the first place on the modeling of spatial and temporal
characteristics of objects and their parts. Support of semantics has received less
attention in our research so far but is expected to gain importance in our future
work. Although DB4GeO has not had many users lately, we hope that extending
the data model and the functionality of the geo-database will extend its user
community. DB4GeO primarily aims at geoscientists who need to store and
process 3D and 4D objects represented with simplicial complexes or who want to
combine such data with non-simplicial geometries.

Fig. 1 DB4GeO system architecture
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3 3D/4D Database Support

As a database management system, the main task of DB4GeO is to store and
manage large sets of geo-data in an efficient way for a long period of time without
loss and free of contradictions (i.e., consistent data storage). DB4GeO provides a
tightly defined, extensive set of geometric, topological and spatio-temporal objects
that can be stored, managed and retrieved. Data models of these objects will be
presented in the following subsections.

3.1 Geometry

The object model of the geometric component in DB4GeO has been discussed in
detail in Bär (2007). Roughly explained, the object model can be summarized as
follows: at the root of the object model, a 3D object is located (Object3D class).
Part of every 3D object is one three-dimensional spatial object (Spatial3D).
The spatial objects can be of one of four abstract data types, namely either a
sample, a curve, a surface or a volume. Any of the mentioned abstract data types
has a concrete realization in the database. Currently, these are point nets
(PointNet3D) as realization of the sample type, segment nets (Segment-
Net3D) as realization of the type curve, triangle meshes (TriangleNet3D) as
realization of the surface type and tetrahedral nets (TetrahedronNet3D) as
realization of the volume type. All of these concrete classes for spatial data types
are nets of the most simple geometric constructs (or geometric elements) of the
respective dimension (so-called simplices).1 A geometric net of any of these types
in turn consists of an arbitrary number of disconnected net components. A net
component is a contiguous geometric object, which consists entirely of geometric
elements of one of the geometric types point, segment, triangle or tetrahedron.

3.2 Topology

The topology model of DB4GeO extends its geometry model and is closely linked
to it. The topology model provides an additional construct which allows to go
beyond the model of simplicial complexes and to manage more complex structures.
Furthermore, it enables easy and efficient navigation in the meshes. The topology
model of DB4GeO is based on the combinatorial concepts of Generalized Maps
(abbreviated as G-Maps) and cell-tuple structure introduced by Lienhardt (1989)

1 The entire geometric model of DB4GeO is based on the model of simplicial complexes
introduced in the context of GIS by EGENHOFER and MOISE, cf. Breunig (2001).
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and Brisson (1989), respectively. Further research on the theory of G-Maps can be
found in Fradin et al. (2005); Lévy and Mallet (1999), and Thomsen et al. (2008a).

The G-Map representation itself does not provide information about the spatial
extent of modeled objects. The link between the topology model and the geometry
model of DB4GeO is realized by constructing the topology representation on top
of an already existing TriangleNet3D or TetrahedronNet3D. The created
object is represented by the classes FaceNet3d or SolidNet3d, respectively.
Similarly to the geometry model, it includes one or more components. Instead of
points, segments, triangles and tetrahedrons of the geometry model, the topology
model manages four types of cells: nodes, edges, faces and solids. The cells are not
limited to simplices. A cell-tuple represents a unique combination of a node, an
edge, a face and a solid. Cell-tuples that differ in only one cell are linked to each
other by so-called involutions. Specific combinations of involutions form so-called
orbits used to define cells and groups of cells. Cell-tuples and orbits of various
dimensions are shown in Fig. 2.

Figure 3 demonstrates the principal classes of DB4GeO topology model used to
manage face nets. Since the concept of G-Maps is not bound to a particular
dimension, the handling of solid nets was designed similarly to the handling of
face nets without great difficulties. Each component of a FaceNet3d or a
SolidNet3d consists of a net level (CNL, class FaceNet3dCompNetLevel)
and an object level (COL, class FaceNet3dCompLevel). Both classes imple-
ment the interface CellNet3dCompLevel. The topology of CNL exactly
repeats the topology of the underlying triangle or tetrahedron net, i.e., every face
or solid of CNL is a simplex and points to the corresponding simplex of the triangle
or tetrahedron net. Each node of CNL is also linked to a particular point and can
thus access its coordinates. COL describes the overall geo-object structure that is
modeled by cells that are commonly composed of a large amount of simplices
(so-called ‘‘big cells’’). At the creation of the topological net, COL consists of
exactly one cell whose boundary is identical to the boundary of the whole
component. COL is linked to CNL by the higher and lower attributes of their
cell-tuples. The higher attribute of a cell-tuple of COL points to a corresponding
cell-tuple of CNL, and it is null for every cell-tuple of CNL. The lower attribute
of a cell-tuple of CNL stores the link to its counterpart at COL if such a cell-tuple

Fig. 2 Fragment of a face net with cell-tuples shown as darts and orbits of a node (left), an edge
(center) and a face (right)
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exists; otherwise the lower attribute is null. A special OrbitIterator
allows retrieving cell-tuples of CNL that are inside a particular cell of COL.

Such a structure permits separating geometry from topology, which is handy
e.g. for the management of temporal changes that involve the object’s coordinates
but not its topology (cf. Sect. 3.3). Direct links to the geometry model enable
access to the core functionality of DB4GeO at any time.

The topology module of DB4GeO offers the possibility to manage multiple
levels of detail (LoDs) by using hierarchical G-Maps also referred to as HG-Maps
(Lévy 2000; Fradin et al. 2005; Thomsen et al. 2008a). In DB4GeO, all LoDs have
the same geometric extent and it is possible to relate particular locations of various
LoDs to each other. This approach is different from e.g. the CityGML specification
where various LoDs of the same object do not correspond to each other geo-
metrically and can even be represented by different geometry types. For instance
an object may be represented by a polygon at a more detailed LoD and by a line at
a less detailed LoD. Furthermore, the geometry of objects in CityGML at each
LoD is regarded as one entity and it is not always possible to determine which part
of a more detailed LoD corresponds to a particular part of a less detailed LoD.

Similarly to cell-tuples, LoDs in DB4GeO also point to their higher and
lower counterparts. The higher attribute of the most detailed LoD is CNL. Note
that, while a FaceNet3dComp has exactly one COL, an HFaceNet3dComp can
have multiple LoDs (cf. Fig. 3). COL can be regarded as one of the LoDs.

Two ways of creating a new hierarchical face net (HFaceNet3d) are available
to the user. First, it can be created from an already existing non-hierarchical face
net (FaceNet3d). In this case, the underlying triangle net and CNL of the original
FaceNet3d are copied for the new HFaceNet3d, and COL of the original net is
converted to be an LoD of the new hierarchical geo-object. This permits retaining
the current subdivision of COL. Secondly, the user can create a new hierarchical
face net from a set of triangles, similarly to the construction of a non-hierarchical
net. In that case, the underlying triangle net is created first, then the net level, and
finally the first LoD of the new hierarchical net with exactly one face. In order to

Fig. 3 Classes of DB4GeO topology model used to manage face nets
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ensure the geometric correspondence between LoDs, a new LoD can only be
created as a copy of an already existing LoD. Besides, this allows the users to edit
the hierarchical net more conveniently, because they can transfer already made
changes to another LoD and continue editing.

The editing of LoDs in a HFaceNet3d and of COL in a FaceNet3d is
possible via 3D Euler operations. DB4GeO offers methods for inserting and
removing nodes and edges of a face net. Before the changes are applied on the net,
a check of constraints takes place. For both types of nets, topological correctness
within the edited COL or LoD has to be ensured. Hierarchical nets additionally
require verifying that the hierarchy of LoDs is not violated, i.e., that every cell and
every cell-tuple has its counterpart at the next more detailed LoD. If the constraints
are fulfilled, the changes are carried out. Implementing 3D Euler operations and
the management of hierarchies for solid nets are the objectives of future work.

3.3 Time

The modeling of time in geoscientific information systems (and in solid modelers
in general) is a subject of widespread research. One of the research issues is the
combination of continuous temporal geometry models with discrete temporal
topology models. POLTHIER and RUMPF added some relevant work on this issue. In
Polthier and Rumpf (1995) they propose the concept of adaptive time-dependent
discretization. THOMSEN and ROLFS designed a concept to handle and store the
vertices of time-dependent simplex nets efficiently. This approach was termed
Point Tube model (Rolfs 2005, p. 51). Another important approach in this context
is the concept of Delta-Storage used by STRATHOFF during the development of
GeoToolKit to reduce the storage volume of redundant data between two timesteps
(Strathoff 1999).

In DB4GeO we implemented a combination of these three concepts to support
spatio-temporal data. Therefore it is possible to create time series of 3D objects
whose topology changes with time. Due to the concept of Delta-Storage and the
Point Tube model, we were able to reduce the amount of required memory and
increased the performance of operations such as the interpolation between time
steps or the generation of snapshots at specified dates (Kuper 2010). Figure 4
shows a 4D object containing 5 timesteps with a change of the net topology at
timestep 3.

However, a restriction of the implemented model is that the topology of the net
configuration of the geo-object has to stay invariant throughout all time steps–only
the geometry may change. Also POLTHIER and RUMPF make no statement on how to
model the transition between two states of the object’s topology (object level) of
the same geo-object. In such a transition, the geometry generally stays unchanged,
but the topology of the geo-object as a whole may change. The implementation of
the space-time module of DB4GeO also excludes the issue of managing change in
spatio-temporal topology. RAZA and KAINZ have done some relevant research in the
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area of spatio-temporal topology. In Raza and Kainz (1999) they propose a tem-
poral cell-tuple structure to manage Spatio-Temporal-Attribute Objects in generic
temporal GIS (TGIS). The temporal cell-tuple structure used by RAZA and KAINZ is
also based on the cell-tuple structure of BRISSON and thus is comparable to the
internal model of the topology module for DB4GeO. In contrast to the concept of
RAZA and KAINZ, we use a graph representation and not a relational approach to
manage and store the cell-tuple data. We also combine the concept of temporal
cell-tuple structure with our previously discussed concepts of spatio-temporal
geometry and hierarchical G-Maps to manage the temporal topology of ‘‘big cells’’
(cf. Sect. 3.2). Figure 5 shows a simple example application sketching the inten-
ded functionality of the proposed spatio-temporal topology module for DB4GeO.
This module is currently in implementation process.

Figure 5 shows a similar case as demonstrated in Fig. 4. Both illustrations
depict a geo-object that moves through time and changes its geometry (in time
intervals) and the topology of its meshing (at time steps). The example of Fig. 5
consists of three time steps. The geo-object is created at time step t ¼ 1. Between
the time steps t ¼ 1 and t ¼ 2 the geometry of the spatial object changes (the
object grows). At time step t ¼ 2 the meshing of the object changes, while the
geometry remains constant. The geometry then changes again in the period
between time steps t ¼ 2 and t ¼ 3. In the spatio-temporal model of DB4GeO this
temporal geo-object is internally managed as two sequential PointTubes (that
describe the point geometry at each interval) and two sequential temporal triangle
nets (TriangleNet4D) (that describe the meshing at each interval). This means
that whenever a change in the meshing takes place (here at t ¼ 2), there is a break
in the continuity of the spatial object. At this point, all object identifications get
lost. From this point on, the evolution of the spatial object cannot be clearly traced.
An unambiguous assignment of all geometric elements between the pre- and post-
object of t ¼ 2 would not be possible due to the changed meshing.

However, even if an unambiguous assignment of all geometric elements is not
possible, still some elements can be assigned (cf. coincidences of pre- and post-
objects of t ¼ 2 in Fig. 5). Such conditions can be used to trace the mentioned
temporal big cells. In Fig. 5, the thick lines symbolize the boundaries of two face
cells (big cells) that are part of a face net component at object level COL. While
TriangleNet4D a ends at t ¼ 2, the topology of the geo-object stays constant

Fig. 4 Representation of a
4D object with the new 4D
model of DB4GeO (Kuper
2010)
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at the object level (cf. lifespan of FaceNetCompLevel in Fig. 5), thus the two
faces can be traced throughout the whole lifespan of the geo-object.

4 Web-Based Geo-Data Access

One of the objectives of DB4GeO is to remotely provide geo-database services.
Nowadays, web-based access to geo-data is closely associated with OGC stan-
dards. In the following, we discuss the handling of GML data in DB4GeO and
afterwards present the implementation of the REST-based architecture of the geo-
database (Fielding 2000).

4.1 Support for GML Data

Originally, DB4GeO was only capable of exchanging data in its own XML-format.
However, as the OGC standards are developed and spread out among the providers
and users of spatial information, the need for extending DB4GeO to offer data via
OGC services is becoming more acute. To enable that, support for the Geography
Markup Language (GML) is developed. This will make DB4GeO a handy tool that
can at first import the results of 3D geomodeling software that does not offer OGC
support, and then provide those results in a data format compatible with OGC
standards. An example of such software is Gocad� (Gocad Research Group 2012),
a widely used tool for 3D subsurface modeling. The geometry models of both
DB4GeO and Gocad� are based on simplicial complexes making it easy to

Fig. 5 Simple example of a temporal cellular network of net level (thin lines) and of object level
(thick lines)
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exchange data between the two. DB4GeO offers importers and exporters for
various types of Gocad� geometrical objects (GObj).

A further reason to offer GML support in DB4GeO is the growing number of
interdisciplinary projects with joint handling of data from different sources, e.g. of
nature-formed and anthropogenic objects. While DB4GeO originated in the field
of geosciences, particularly that of geology, integrating CityGML data will make
the database interesting for instance for subsurface construction projects where
building and infrastructure data are processed and visualized together with the
information about geological structures (Breunig et al. 2011).

In GML, objects are modeled as features that have geometry as a property. The
geometry model of GML is based on boundary representations, e.g. polygons are
defined via their exterior and interior (the latter is used when polygons
have holes). The exterior and interior are represented by ordered lists of
point coordinates. In our work, GML 3.0 geometries only with linear interpolation
between points have been considered. Those lists can include an arbitrary number
of points. Planarity assumed by many GML geometries is well suited for modeling
anthropogenic objects that are geometrically simple. This simplicity also allows to
construct more complex hierarchies of geometries. However, nature-formed
objects in most cases are more compex and far from planar, so they have often
been modeled in geosciences using simplicial complexes native to DB4GeO
(Breunig 2001; Balovnev et al. 2004). Because of the different assumptions of the
two data models representing anthropogenic and nature-formed objects, data in
most cases cannot be transferred between them without adjustments of geometry.

On the one hand, integration of non-simplex geometries of GML into DB4GeO
requires a representation by simplices. A method that triangulates complex planar
polygons has been implemented in DB4GeO for that purpose. On the other hand,
importing GML data into DB4GeO just by triangulating non-simplicial geometric
objects causes data loss and distortion. The initial structure of the data might be
lost and thus the attributes related to it. For instance, if the original object with n
polygons, each with the ?population density? attribute, is imported into DB4GeO,
its polygons will be substituted with an even greater number of triangles, and the
density attribute will lose its sense in the new geometric boundaries. Therefore, an
additional construct is necessary to store the original geometric structure.

The topology model of DB4GeO provides such a construct (cf. Sect. 3.2). The
G-Maps structure (Lienhardt 1989; Mallet 2002) enables managing non-simplex
polygons (Thomsen et al. 2008a, 2008b). The geometric extent of the object is
stored at the net level (CNL) of the face net, enabling access to diverse geometric
operations available in DB4GeO. The object level (COL) models how triangles of
CNL are aggregated to the original non-simplex geometries of GML.

Figures 6 and 7 provide examples of importing CityGML data into DB4GeO.
After the data set of a part of Berlin’s downtown (Fig. 6) obtained in CityGML
format was imported into DB4GeO, it is possible to export it into one of the formats
supported by the geo-database. For example, the data set can be exported into the
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Gocad� format (.ts) and visualized in Gocad� or another 3D visualization tool, e.g.
ParaViewGeo� (ParaViewGeo 2012), together with data illustrating the subsurface
of the area. Figure 7 looks closer at how a building can be stored in DB4GeO. The
building came as a part of a CityGML data set. Its surface is represented by the GML
geometry type CompositeSurface, which is made up of 17 Polygons. In
DB4GeO, the non-simplex polygons were triangulated, which resulted in 32 trian-
gles for the whole building. Those triangles become faces of CNL. The 17 original
polygons are represented in DB4GeO by faces of COL. This enables, for instance,
assigning a certain color or a texture to each wall of the building (cf. Fig. 7).

While additional classes for the modeling of topology are available in GML 3.0,
GML offers an alternative which is simpler and almost as powerful. GML uses the
XML concept of Xlinks that reference resources via their IDs avoiding redundant
data storage. For instance, if two neighboring buildings share a wall, the wall can
be stored just once and then be references via an XLink from all other objects that
use it. Such references carry information about the topology of the objects: first,
the neighbor relationship between the two buildings is stored; secondly, the
relationship between the wall and each of the buildings is defined (Krimmelbein
2011, p. 14ff). We have chosen to use the G-Maps topology concept of DB4GeO to
represent non-simplex geometry types of GML rather than the less widely used
GML 3.0 topology classes. In the future, we also plan to use XLinks to avoid
redundancy when providing data from DB4GeO in the GML format. The imple-
mentation of G-Maps in DB4GeO already takes care of storing each node, edge,
face and solid in the net just once under a unique ID, even if the original data
structure stored them redundantly. The advantage of topology management is that
this approach is dimension-independent, i.e., it can be applied to 0D-, 1D-, 2D- and
3D-geometries. Furthermore, topology is modeled explicitly without the semantic
information of the objects.

Fig. 6 GML data (� City of Berlin, obtained from citygml.org) converted to Gocad� format in
DB4GeO, visualized with ParaViewGeo�
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4.2 REST-Based Access and Query Examples

DB4GeO is capable of providing its services via a RESTful web service archi-
tecture (Fielding and Taylor 2002). This architecture permits sending requests to
the server via uniform resource identifiers (URIs). Each such request contains all
the information necessary for the server to understand it and is independent of
other requests that might have been sent to the server before. Such manner of
communicating with the server is easier to interpret by humans without technical
background, first, due to the familiarity of most people with URIs, and secondly,
because of the isolation of requests. Furthermore, common browsers can serve as
clients communicating with DB4GeO without installing additional software.

Manipulating resources using REST is possible via four commands: GET
(retrieving a resource), POST (adding a new resource), PUT (updating an existing
resource), and DELETE (removing a resource). DB4GeO uses two of them: GET
and PUT. The latter can be used e.g. to add a new surface created by triangulation
to the geo-database.

By default, when a request is sent to the geo-database, the response comes back
in the DB4GeO-XML format and can be viewed in a browser. In DB4GeO, it is
also possible to export the objects into other formats, e.g. the Gocad�, GML and
VRML formats. In order to obtain an object in a certain format, the user should
add the extension .vrml, .gml, .ts, .vs, .so, etc. at the end of the URI used to retrieve
the object.

The REST-based services of DB4GeO are accessible from a web browser, via a
Java application or an OpenJump plugin. In our future work, we plan to extend the
number of operations available to the database users via the RESTful service and
to create a user-friendly web interface to replace the XML-based representation in
the browser.

Below are some examples of URIs used to query data from DB4GeO:

(1) http://server/projects/GeolProj
(2) http://server/projects/GeolProj/StructGeolSpace3D
(3) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces
(4) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces.ts

Fig. 7 Building (� Ordnance Survey Great Britain, obtained from citygml.org) represented by
faces of the net level (left) and of the object level (right), visualized with ParaViewGeo�
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(5) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces
?intersects(x1,y1,z1,x2,y2,z2)

(6) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces
?3dto2d(CuttingPlane)

(7) http://server/projects/GeolProj/StructGeolSpace4D/TestSurfaces?time=0

Sets of objects in DB4GeO are managed by grouping them into spaces and pro-
jects. Spaces aggregate objects with the same dimension (e.g. 3D or 4D spaces),
same coordinate reference, constraints, thematic information, etc. A project may
contain multiple spaces. There is a defined way this hierarchical structure can be
navigated via URIs. For example, the URI (1) returns information about the project
GeolProj. That information includes the names of spaces that belong to the pro-
ject. The user can easily add one of those names to the URI to access information
about the corresponding space, like in the URI (2). In the same way, the user can
go over to the object information in the XML format [(URL (3)]. If the object is to
be retrieved in the Gocad� format for further processing in Gocad�, this is done by
adding the extension .ts after the object name [(URI (4)].

Furthermore, it is possible to define operations to be carried out on objects via a
URI. Operations include querying an object of a lower dimension, such as obtaining a
3D object for a certain point in time [(URI (7)] or the cross-section of a 3D object with
a plane using the 3D-to-2D service of DB4GeO [(URI (6)]. Other operations include
intersecting a given object with another object or a minimum bounding box
[(URI (5)], projecting objects onto a plain and triangulating point sets.

5 Visualization with WebGL

Usually the visualization of 3D geodata takes place in various 3D modeling or
visualization tools such as Gocad� or ParaViewGeo�. The user is responsible for
the selection of one of these clients. For an alternative we developed a direct
visualization of 3D database query results in a web browser based on WebGL
(Khronos Group 2012).

WebGL (Web Graphics Library) is the mapping of OpenGL ES (Open Graphics
Library for Embedded Systems) for web browsers and is now supported by almost
all current browsers without installing an extra plugin. Since the graphical cal-
culations runs directly on the hardware of the client, a high performance compared
to traditional solutions such as VRML (Virtual Reality Modeling Language) and
X3D (Extensible 3D) is provided. Thereby the user does not need to install any
additional software apart from a modern web browser.

Thus with the help of our WebGL viewer it is possible to visualize geo-objects
of the geo-database directly in a browser in 3D including lighting, colors, and
controls.

For the visualization in WebGL we are using the free library Three.js (Three.js
2012). This JavaScript based library provides various types of cameras, lights and
various shading concepts (e.g. Flat, Gouraud, Phong). We developed an exporter
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which creates a 3D scene by using the geometry of the DB4GeO database. The
following criteria were relevant for this intent:

• A suitable lighting.
• An intuitively controllable camera to view around the 3D object.
• Suitable shaders, colors, etc.

We decided to use THREE.DirectionalLight lights and a THREE.Per-
spectiveCamera camera. The DB4GeO WebGL Exporter creates an HTML
file that executes JavaScript code with the use of Three.js. Within the JavaScript
code different Three.js objects are created, adapted and transferred from the
geometries of the spatial database into a format suitable for Three.js. For the
DB4GeO objects Point3D and Triangle3D we use THREE.Vertex and
THREE.Face3, respectively.

An overview of such an HTML file is shown in Fig. 8 and the result of an
export in the Chrome� browser is shown in Fig. 9.2 The viewer supports zooming,
panning, and the possibility to rotate the object. The implemented WebGL viewer
also shows the numbers of triangles for the visualized object. For instance the
object demonstrated in Fig. 9 has 98,740 triangles.

The whole 3D model is transmitted from the database at the start of the viewer.
Even larger amounts of data (test data sets with up to 2.5 million points) are
represented efficiently due to the use of WebGL. In order to avoid further loading
while viewing the model, caching is dispensed. To reduce the amount of data to be
transferred, we plan to optionally provide a reduced 3D model.

Fig. 8 Structure of the
HTML file generated by
DB4GeO calling WebGL

2 3D-Model of ‘‘The Thinker’’ by Simon Schuffert (KIT), all rights reserved.
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As one of the additional spatial operations the distance function has been
implemented. In the future, various operations and queries should be directed back
to the geo-database. After their executions, the results should again be displayed
visually in the browser.

6 Conclusion and Outlook

In this contribution we have presented our last steps advancing DB4GeO, our
service-based geo-database architecture. Besides the new object model for spatio-
temporal data, new features are the support for GML data (implementation started)
and the WebGL-interface (implementation completed) enabling direct geo-data-
base access and visualizing 3D objects via a standard web browser without
installing any additional software.

In our future work we intend to query geo-database operations directly from the
WebGL viewer. Our focus here is on a BBox query, the query of meta-data, and
the comparison of different time steps of a 4D object. Therefore we need to
develop some additional spatio-temporal operations in DB4GeO and extend our
WebGL viewer. Additionally we intend to examine how DB4GeO can be accessed
via extended OGC services.

Finally, we intend to develop a new branch of DB4GeO supporting spatio-
temporal data used for multi-scale subway track planning.

In the research group ‘‘Computer-Aided Collaborative Subway Track Planning
in Multi-Scale 3D City and Building Models’’ (Breunig et al. 2011) a spatio-
temporal database will be used to store several states and versions of building
plans. As DB4GeO by now has been used to store geological data in 3D and time,
it should be enhanced to support a data model that is commonly used to describe
building models (Eastman 1999). Such parametric models stand in contrast to the
simplicial complexes which are a core concept of DB4GeO. Re-using the sim-
plicial model would lead to a loss of data when converting the parametric data into

Fig. 9 WebGL viewer of DB4GeO with colored mesh (left) and wireframe representation (right)
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the discrete triangle nets which can be stored by DB4GeO. Converting and storing
the data in higher resolution would only increase the memory consumption, but not
decrease the data loss in an equal manner. We will test two solutions. First, we
intend to implement a hybrid model, which means that the database will convert
the parametric geometries into discrete triangle nets handled by DB4GeO and we
store the original file-based data linked to these converted geometries. By doing
this we will be able to use the high performance queries of DB4GeO and its
topology module. This does not cause any data losses, because both the parametric
data is stored in the database and changes are simultaneously made on the con-
verted geometries. Secondly, we intend to implement a complete new data-
structure keeping the core concepts in mind. Therefore, we do not need to build the
database from scratch and can use an already stable and proven system.

Another issue in advancing DB4GeO within the research group is the usage of
spatio-temporal data within the database. In the geosciences, spatio-temporal data
often consists of moving objects. Construction plans, however, may be modeled in
two different ways. First, the temporal axis can show the construction progress of a
building, i.e., it can be modeled which part of a building will appear at first and
which one will appear later on. Therefore, the geometry of an object will not change
in time, but only appear at a certain time step and may disappear later. Secondly, if
several people develop a plan, there will be different versions of that plan, but it is
unlikely to have one definite plan all the time. These different versions should be
stored in the database in order to compare them with each other and re-use them
later on, if needed. By using two qualities of time, valid-time and transaction time,
we need to extend DB4GeO with a Bi-Temporal model (Worboys 1994). Experi-
ences gained in handling the two qualities of time might be useful to integrate
further time dimensions in DB4GeO later in the future. In order to perform efficient
spatio-temporal queries, we also need to implement an efficient indexing technique.
At first, we will extend the R*-Tree (Beckmann et al. 1990), which also is used in
DB4GeO, to a Spatio-Temporal R-Tree (Saltenis and Jensen 1999). After that, we
will concentrate on suitable and efficient query techniques (Snodgrass 1995).
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