

Lecture Notes in Geoinformation and Cartography

Series Editors

William Cartwright, Melbourne, Australia
Georg Gartner, Vienna, Austria
Liqiu Meng, Munich, Germany
Michael P. Peterson, Omaha, USA

For further volumes:
http://www.springer.com/series/7418

http://www.springer.com/series/7418

Jacynthe Pouliot • Sylvie Daniel
Frédéric Hubert • Alborz Zamyadi
Editors

Progress and New Trends
in 3D Geoinformation
Sciences

123

Editors
Jacynthe Pouliot
Geomatics
Université Laval
Quebec, QC
Canada

Sylvie Daniel
Geomatics
Université Laval
Quebec, QC
Canada

Frédéric Hubert
Geomatics
Université Laval
Quebec, QC
Canada

Alborz Zamyadi
Geomatics
Université Laval
Quebec, QC
Canada

ISSN 1863-2246 ISSN 1863-2351 (electronic)
ISBN 978-3-642-29792-2 ISBN 978-3-642-29793-9 (eBook)
DOI 10.1007/978-3-642-29793-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012945737

� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must always
be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright
Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Modelling 3D Topographic Space Against Indoor
Navigation Requirements . 1
Gavin Brown, Claus Nagel, Sisi Zlatanova and Thomas H. Kolbe

Enhancing the Visibility of Labels in 3D Navigation Maps 23
Mikael Vaaraniemi, Martin Freidank and Rüdiger Westermann

Semantic 3D Modeling of Multi-Utility Networks in Cities
for Analysis and 3D Visualization . 41
Thomas Becker, Claus Nagel and Thomas H. Kolbe

Generalization and Visualization of 3D Building Models
in CityGML . 63
Siddique Ullah Baig and Alias Abdul Rahman

From the Volumetric Algorithm for Single-Tree Delineation Towards
a Fully-Automated Process for the Generation of ‘‘Virtual Forests’’. . . 79
Arno Buecken and Juergen Rossmann

A Service-Based Concept for Camera Control
in 3D Geovirtual Environments . 101
Jan Klimke, Benjamin Hagedorn and Jürgen Döllner

Representing Three-Dimensional Topography in a DBMS
With a Star-Based Data Structure . 119
Hugo Ledoux and Martijn Meijers

Can Topological Pre-Culling of Faces Improve Rendering
Performance of City Models in Google Earth? 133
Claire Ellul

v

http://dx.doi.org/10.1007/978-3-642-29793-9_1
http://dx.doi.org/10.1007/978-3-642-29793-9_1
http://dx.doi.org/10.1007/978-3-642-29793-9_2
http://dx.doi.org/10.1007/978-3-642-29793-9_3
http://dx.doi.org/10.1007/978-3-642-29793-9_3
http://dx.doi.org/10.1007/978-3-642-29793-9_4
http://dx.doi.org/10.1007/978-3-642-29793-9_4
http://dx.doi.org/10.1007/978-3-642-29793-9_5
http://dx.doi.org/10.1007/978-3-642-29793-9_5
http://dx.doi.org/10.1007/978-3-642-29793-9_5
http://dx.doi.org/10.1007/978-3-642-29793-9_5
http://dx.doi.org/10.1007/978-3-642-29793-9_6
http://dx.doi.org/10.1007/978-3-642-29793-9_6
http://dx.doi.org/10.1007/978-3-642-29793-9_7
http://dx.doi.org/10.1007/978-3-642-29793-9_7
http://dx.doi.org/10.1007/978-3-642-29793-9_8
http://dx.doi.org/10.1007/978-3-642-29793-9_8

On Problems and Benefits of 3D Topology on Under-Specified
Geometries in Geomorphology . 155
Marc-O. Löwner

Geometric-Semantical Consistency Validation of CityGML Models . . . 171
Detlev Wagner, Mark Wewetzer, Jürgen Bogdahn, Nazmul Alam,
Margitta Pries and Volker Coors

Advancing DB4GeO . 193
M. Breunig, E. Butwilowski, D. Golovko, P. V. Kuper, M. Menninghaus
and A. Thomsen

Glob3 Mobile: An Open Source Framework for Designing Virtual
Globes on iOS and Android Mobile Devices . 211
Agustín Trujillo, Jose Pablo Suárez, Manuel de la Calle, Diego Gómez,
Alfonso Pedriza and José Miguel Santana

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 231
Marc van Kreveld, Thijs van Lankveld and Maarten de Rie

A 3D-GIS Implementation for Realizing 3D Network Analysis
and Routing Simulation for Evacuation Purpose 249
Umit Atila, Ismail Rakip Karas and Alias Abdul Rahman

A Three Step Procedure to Enrich Augmented Reality Games
with CityGML 3D Semantic Modeling . 261
Alborz Zamyadi, Jacynthe Pouliot and Yvan Bédard

Implementation of a National 3D Standard: Case
of the Netherlands . 277
Jantien Stoter, Jacob Beetz, Hugo Ledoux, Marcel Reuvers,
Rick Klooster, Paul Janssen, Friso Penninga, Sisi Zlatanova
and Linda van den Brink

Open Building Models: Towards a Platform for Crowdsourcing
Virtual 3D Cities . 299
Matthias Uden and Alexander Zipf

vi Contents

http://dx.doi.org/10.1007/978-3-642-29793-9_9
http://dx.doi.org/10.1007/978-3-642-29793-9_9
http://dx.doi.org/10.1007/978-3-642-29793-9_10
http://dx.doi.org/10.1007/978-3-642-29793-9_11
http://dx.doi.org/10.1007/978-3-642-29793-9_12
http://dx.doi.org/10.1007/978-3-642-29793-9_12
http://dx.doi.org/10.1007/978-3-642-29793-9_13
http://dx.doi.org/10.1007/978-3-642-29793-9_14
http://dx.doi.org/10.1007/978-3-642-29793-9_14
http://dx.doi.org/10.1007/978-3-642-29793-9_15
http://dx.doi.org/10.1007/978-3-642-29793-9_15
http://dx.doi.org/10.1007/978-3-642-29793-9_16
http://dx.doi.org/10.1007/978-3-642-29793-9_16
http://dx.doi.org/10.1007/978-3-642-29793-9_17
http://dx.doi.org/10.1007/978-3-642-29793-9_17

Modelling 3D Topographic Space Against
Indoor Navigation Requirements

Gavin Brown, Claus Nagel, Sisi Zlatanova and Thomas H. Kolbe

Abstract Indoor navigation is growing rapidly with widespread developments in
the collection and processing of sensor information for localisation and in routing
algorithms calculating optimal indoor routes. However, there is a general lack of
understanding about the requirements for topographic space information to be used
in indoor navigation applications and thus the suitability of existing information
sources. This work presents a structured process for the identification of topo-
graphic space information starting with use cases that support the complete capture
of requirements, thus allowing existing models to be evaluated against these
requirements and conceptual semantic and constraint models developed. A pro-
posal is put forward for the implementation of topographic space semantic and
constraints models as a CityGML Application Domain Extension (ADE) that will
be integrated into the Multilayered Space-Event Model (MLSEM), a flexible
framework supporting all indoor navigation tasks.

Keywords Indoor navigation � Topographic space � Building modelling � Indoor
routing � 3D

G. Brown (&) � C. Nagel � T. H. Kolbe
Institute for Geodesy and Geoinformation Science, Technische Universität
Berlin, Berlin, Germany
e-mail: gbrown1@mailbox.tu-berlin.de

C. Nagel
e-mail: claus.nagel@tu-berlin.de

T. H. Kolbe
e-mail: thomas.kolbe@tu-berlin.de

S. Zlatanova
OTB, Research Institute for the Built Environment, Delft University of Technology,
Delft, The Netherlands
e-mail: s.zlatanova@tudelft.nl

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_1,
� Springer-Verlag Berlin Heidelberg 2013

1

1 Introduction

The field of indoor navigation is now a major research topic with research taking
place on the development of localisation sensors and techniques, routing algo-
rithms and display and dissemination of navigation information to a user.
Topographic Space is a fundamental part of indoor navigation, representing the
interior environment of buildings and its semantic decomposition into building
elements (e.g. rooms and storeys) for route planning and use in combination with
additional sensor information. Indoor environments are increasingly being mod-
elled in 3D using Industry Foundation Classes (IFC) and CityGML and therefore
components of these indoor environments are inherently represented in 3D. When
considering an Unmanned Aerial Vehicle (UAV) being routed through a large
indoor airport terminal, we have a real-world navigation object (represented as a
3D geographic feature) interacting with real-world topographic space features (e.g.
a door opening) that therefore must be described by geographic features with a 3D
representation in Euclidean space (Nagel et al. 2010). A number of developing
indoor navigation techniques are reliant upon a constant, rich 3D information
model for building interiors, considered within the wider context of indoor. Cur-
rently topographic space information is frequently being provided by building
models captured for the purposes of urban/building modelling. These current
sources of information create a number of potential problems including incom-
plete/inconsistent topographic space features and incompatibility of all informa-
tion sources required for tackling the complete set of indoor navigation tasks
(localisation, route planning and route homing). As an example when considering
the use case of routing a person from a start point to an end point within a single
building during an emergency evacuation scenario, a number of requirements are
created including the need to define that elevators are commonly out of use during
this scenario. In existing building models (e.g. CityGML), all semantic features are
not always captured and there is a general lack of support for defining complex
navigation constraints (e.g. that an ‘elevator’ = ‘inaccessible’ if
‘scenario’ = ‘emergency’).

The lack of suitable information models is complicated by the lack of under-
standing of the use cases for topographic space information and the corresponding
requirements. Therefore there is a need to improve the understanding of the
semantics and constraints required for topographic space. Standardised building
models are increasingly being used to provide the topographic space information,
even though these models have not been developed considering this specific
application. The evaluation of existing building models will provide us with a
detailed understanding of the comparable suitability of building models and the
developments required to fully meet these requirements. The problem is also
complicated by topographic space information only being a sub-part of the
information required for full indoor navigation. Therefore the integration of the
extended building model within a flexible indoor navigation framework is required
to ensure that the information provided works in combination with other

2 G. Brown et al.

information sources to fully support the requirements for all indoor navigation
tasks. A Multilayered Space-Event Model (MLSEM) framework has been pro-
posed in order to fully support all of the navigation tasks (as detailed in Nagel et al.
2010). Crucial aspects of this framework are the flexibility in integrating multiple
space layers (topographic space, sensor space, and logical space), the clear sepa-
ration of these space layers and the integration of user context information (e.g.
modes of locomotion and user groups). This framework allows a range of different
information sources to be used for space layers (see Fig. 1), including both
CityGML and IFC for a topographic space layer. This model allows arbitrary
space cells to be captured but however, lacks the semantic information required for
differing topographic space features. The MLSEM does not aim to provide this
level of semantics, instead preferring that a suitable existing building model
provide the required semantic information. Therefore future work will look at
extending existing building models that can be integrated into the MLSEM for full
indoor navigation support.

In Sect. 2 the use cases and corresponding requirements for modelling 3D
topographic spaces are discussed in detail, as a prerequisite for the assessment of
the suitability of related models. Existing topographic space semantic and con-
straint models are introduced and evaluated in Sect. 3. In Sect. 4 our conceptual
approach for modelling semantic topographic space objects and constraints, with
respect to the identified requirements is presented. Linked hierarchical conceptual
models have been developed for semantic topographic space objects, including all
relevant spaces and objects relevant for indoor routing and topographic space

Fig. 1 Multilayered space-event model combining differing space layers (topographic, sensor,
logical space etc.) (Nagel et al. 2010)

Modelling 3D Topographic Space Against Indoor Navigation Requirements 3

constraints, including all factors that can be used to define the level of navigability
through/around indoor spaces and obstacles. In Sect. 5 we draw conclusions and
give an outlook to future work including the implementation of the conceptual
models for an existing building model.

2 Topographic Space Requirements for Indoor Navigation

In order to develop a customised building model suitable for use in indoor navi-
gation, a structured set of use cases for indoor navigation is required. Those papers
proposing models for indoor navigation space do not include use case analysis for
the developed semantic models (Tsetsos et al. 2006; Meijers et al. 2005; Goetz and
Zipf 2011; Yang and Worboys 2011). Therefore a process needs to be developed to
identify the uses of topographic space information and the resulting requirements.
Only use cases within the scope of indoor routing are considered, with those use
cases considering navigation guidance, visualisation of information etc. viewed as
being outside the scope of this work. Requirements can then be drawn out from the
identified use cases and test cases developed to ensure that a customized/extended
building model is fit for use as the topographic space information model.

2.1 Indoor Navigation Topographic Space Use Cases

Planning a route to single/multiple destinations is one of the fundamental tasks of
indoor routing. For this task, a user wants to calculate an optimal route to a single/
multiple known destinations considering parameters including the mode of loco-
motion, current scenario (e.g. emergency evacuation), time of day and access
permissions of the user. Therefore this task can be broken down into use cases (see
Table 1) to abstract the detailed requirements for topographic space information
model. In Table 1, five core use cases (use cases 1–5) are introduced with use
cases 6–8 relating to this core set.

2.2 Indoor Navigation Topographic Space Requirements

From the use cases, defined in Sect. 2.1, an extensive list of requirements for
topographic space information has been identified. The completeness of this list
will be subject to further investigation along with the determination of depen-
dencies between requirements. The indoor environment requirements identified are
as follows:

4 G. Brown et al.

Table 1 Use cases for indoor navigation topographic space information with accompanying
navigation constraints

No. Use case title Example scenario Navigation constraints

1 Route a user within a single
room in a building

Route Person A from check-in
desk 14 to gate A2 in London
Heathrow airport, considering
that the space can contain
fixed (e.g. pillars), movable
(e.g. furniture) and dynamic
obstacles (e.g. crowds of
people)

Spatial extent of space
and obstacles

Surface material of floor

Supporting weight of floor/
furniture

2 Route a user between separate
rooms in a single storey

Route Person A between office
0.02 (Ground floor) and office
0.12 (Ground floor) of a
multi-storey office building

Temporal, user specific, access
type, directional, current
state and spatial extent
restrictions on door and
window (to a lesser extent)
spaces

3 Route a user between different
storeys within a building

Route Person A from the main
entrance (ground level) to
Platform 12 (2 storeys below
ground level) of Berlin main
train station using ramps,
stairs, escalators and lifts
where appropriate

Space types (e.g. power assisted
escalator, stairs etc.)

4 Route a user from outside a
building to inside a building
and from inside to outside a
building

Route Person A from Office 5.12
in the main building of the
TU Berlin to fire evacuation
point 4 (outside the building)
during an emergency
evacuation scenario

Type of door/window spaces
(e.g. interior/exterior)

5 Route a user between separate
buildings (e.g. from a start
point in Building A to a
destination in Building B)

Route a user from a parking space
in a car park to office 6.13 in
a neighbouring office block,
requiring a user to walk
outside

6 Route a user with specific
requirements (e.g. human on
foot, human in a wheelchair,
UAV, emergency services
worker)

Route Person A travelling in a
wheelchair from departures
entrance 1 of Berlin Tegel
airport to check in desk B2

User groups/mode of locomotion

7 Route a user considering a
specific scenario (e.g.
emergency evacuation, rush
hour journey etc.)

Route Person A from supermarket
1 to men’s clothing shop 2
within a large shopping
centre, at a peak shopping
time

Scenario type for routing

Persistency and current state
of obstacles (e.g. walls,
furniture)

8 Route a specific user within a
building where access to
certain parts is controlled

Route Person A with limited
security clearances,
considering restricted access
for specific person/directional
access/temporal access
constraints, between room 1
and room 10

User specific access permissions

Modelling 3D Topographic Space Against Indoor Navigation Requirements 5

• Requirement 1: An indoor environment model shall capture the general
semantic information for a specific building and be represented by all spaces
belonging to this indoor environment (relates to use cases 3, 4 and 5).
Example Scenario: When route planning all space objects belonging to a spe-
cific building (e.g. a Hospital) will need to be able to be identified for use with
routing algorithms.

• Requirement 2: All spaces belonging to an indoor environment shall be rep-
resented both semantically and geometrically, defining spatial properties of
physical spaces (relates to use cases 1 and 6).
Example Scenario: Indoor navigable spaces (e.g. rooms) must be semantically
classified and have a geometry so that navigable space can be identified for
different modes of locomotion (e.g. user in a wheelchair).

• Requirement 3: Spaces belonging to an indoor environment shall be catego-
rised according to specific pre-defined space types (relates to use cases 2 and 3).
Example Scenario: All space types will need to be broken down into pre-defined
space types for the definition of common constraints (e.g. power-assisted
movable doors).

• Requirement 4: All spaces belonging to an indoor environment shall be able to
be decomposed into smaller space parts (relates to use cases 1 and 7).
Example Scenario: A large indoor navigable space (e.g. an airport) will need to
be subdivided into smaller space parts for the definition of start and end points
for a route.

• Requirement 5: All spaces belonging to an indoor environment shall be able to
be extended with additional semantic attributes (does not relate directly to any
single use case).
Example Scenario: Future requirements from routing algorithm developers
could require that additional semantic attributes be represented (e.g. speed
penalty traversing for dynamic obstacles).

• Requirement 6: Storeys within an indoor environment should be represented
and associated to all spaces belonging to a specific storey within an indoor
environment (relates to use cases 2 and 3).
Example Scenario: When routing between Room A and Room B on different
storeys, the storeys these rooms are located on are required to support the
analysis of whether elevators can be used to travel between these 2 storeys.

• Requirement 7: An indoor environment model should be able to be seamlessly
used with outdoor spatial information providing transport networks, navigable
areas etc. (relates to use cases 4 and 5).
Example Scenario: When routing a user from a space in Building A to a space in
a separate Building B, outdoor information must be used together with the
indoor information to define outdoor navigable routes between the entrance/
exits of these buildings.

The indoor space requirements identified are as follows:

• Requirement 8: Storage of semantic information for the function, usage and
occupants of an indoor space (relates to use case 2).

6 G. Brown et al.

Example Scenario: When planning a route it is important that the usage of a
room is known, so that a user is not navigated through meeting rooms when
unoccupied rooms are available instead.

• Requirement 9: Specialised types of indoor space shall be used to differentiate
levels of connectivity of indoor spaces (relates to use cases 2 and 3). This
information could be derived but is required for the categorisation of connected
spaces.
Example Scenario: When planning a route between two rooms, only the spaces
that connect together multiple spaces must be considered when creating a route
between a start and an end position.

• Requirement 10: Specialised types of connecting space with specific semantics
shall be used for vertical (e.g. staircase) and horizontal (e.g. corridor) and fixed
(e.g. ramp), assisted (e.g. escalator) and transfer (e.g. elevator) connecting
spaces (relates to use cases 3 and 5).
Example Scenario: A vertical staircase space requires different specialist attri-
butes for the spatial properties of the stairs, number of flights of stairs and the
staircase types, to determine if this space is navigable for a wheelchair user in an
emergency scenario.

The transfer space requirements identified are as follows:

• Requirement 11: Transfer spaces (e.g. a door opening space between two
rooms) shall be separated into both physical (e.g. door or window opening
spaces) and virtual opening spaces (e.g. airport security gate) for which spe-
cialist attributes can be defined (relates to use cases 2 and 4).
Example Scenario: Virtual opening spaces are required when no physical
boundaries exist between two indoor spaces or indoor and outdoor spaces. A
virtual opening could define the potential access points into an indoor
environment.

The indoor obstacle space requirements identified are as follows:

• Requirement 12: Indoor obstacle spaces should be semantically categorised as
fixed (e.g. pillar), movable (e.g. small table) and dynamic (e.g. fire) obstacle
spaces, with physical attributes representing the spatial extent, supporting
weight, persistency, current state and scenario type (relates to use cases 1, 6
and 7).
Example Scenario: Persistency of obstacle spaces is required, as certain types of
wall (a fixed obstacle space) could be removed in an emergency evacuation
scenario, if required.

• Requirement 13: Fixed position obstacle spaces will have the surface material
and specialist semantics defined for interior and external walls, floors, ceilings,
stairs, ramps and general fittings (e.g. light fittings) (relates to use case 1),
allowing constraints to be defined for these features.
Example Scenario: The surface material of a floor surface is required to
determine the suitability of a floor surface for use by a wheelchair user.

Modelling 3D Topographic Space Against Indoor Navigation Requirements 7

• Requirement 14: Movable obstacle spaces will have semantics including
physical weight and specialist semantics defined for windows, doors, furniture,
construction work etc. (relates to use cases 1, 6 and 7) allowing constraints to be
defined for moving this obstacle space.
Example Scenario: A movable furniture obstacle requires physical weight and
other attributes to determine the movability of this obstacle by different user
groups.

• Requirement 15: Door and window (movable obstacle spaces) should have
specialist semantics allowing constraints to be defined according to the type,
opening mechanism, sub-parts, directionality of opening, current state, acces-
sibility (users with access, times of access, access type and direction) and
usability in scenarios (relates to use cases 2, 6 and 7).
Example Scenario: A movable door obstacle must be able to capture the users
that have access permissions for opening a door in a specific direction.

3 Related Models

Indoor navigation requires a detailed topographic space model including both
semantics and constraints, to meet the requirements specified in Sect. 2.2. In the
following section, we will examine the existing building models, semantic topo-
graphic space models and constraint models against these requirements.

3.1 Semantic 3D Building Models

We will focus on the international standards CityGML and IFC only. These
semantic building models have the potential to provide part or all of the topo-
graphic space information required for indoor navigation through semantic
enrichment. Only semantic models are considered as the requirements have
defined that a detailed set of semantics are required for topographic space.
3D graphics formats will only be considered in comparison to these semantic
building models.

3.1.1 CityGML

CityGML is an Open Geospatial Consortium (OGC) standard based on GML3.
This multi-purpose information model is used for describing geometric, topologic
and semantic aspects of city models in a 3-dimensional way (Kolbe et al. 2005).
The building model is the most detailed thematic concept of CityGML and

8 G. Brown et al.

supports 4 levels of detail (LOD). A LOD4 building model provides the semantics
and geometry for the interior of a building (see Fig. 2).

The semantic and constraint features of a CityGML building model include an
AbstractBuilding, with each building being able to be composed of Rooms and
IntBuildingInstallations (requirement 1). Indoor spaces (Rooms) and transition
spaces (Openings) can be fully semantically and geometrically represented in
CityGML. All required obstacles can only be partially represented by Building-
Furniture, IntBuildingInstallation and indirectly from BoundarySurfaces
(requirement 2). CityGML does not provide a specific concept for the represen-
tation of storeys, as is implemented for IFC. A storey can though be represented as
an explicit aggregation of all building features on a certain height level using
CityGMLs notion of CityObjectGroups (Gröger et al. 2008). This CityObject-
Groups may also have a defined geometry. However, if building features are
associated to a specific storey, this may require the vertical fragmentation of these
features, one part per storey (Gröger et al. 2008). CityGML also supports the use
of a world coordinate system, allowing outdoor and indoor spatial information to
be used seamlessly together to route a user outdoors between buildings (require-
ment 7).

Room features contain attributes allowing the function and usage of these
indoor spaces to be defined (requirement 8). CityGML does not include predefined
connected room types, however, through the aggregation associations between a
Room and BoundarySurface and BoundarySurface and Opening, some information
on the connectivity of indoor spaces can be derived (requirements 9 and 10).

For transition spaces, CityGML defines Openings (windows and doors) in the
BoundarySurfaces and can create virtual openings through the use of Closure-
Surfaces (requirement 11).

Fig. 2 Simplified CityGML LOD4 building model

Modelling 3D Topographic Space Against Indoor Navigation Requirements 9

CityGML has limited support for fixed and movable obstacle spaces and no
support for dynamic obstacles (requirement 12). Complete fixed indoor obstacle
spaces (e.g. walls) are indirectly partly represented in CityGML by Boundary-
Surfaces, which capture only the visible surfaces of a room, see Fig. 3. Therefore
indoor obstacle space can be derived as being the Space of a building minus the
indoor spaces (e.g. rooms). As a result of this wall, ceiling and floor spaces have no
semantics and are unable to be decomposed into sub-parts (requirement 4). The
movable components of a window or door are not modelled separately to the
opening in CityGML and lack detailed semantic information. The limited semantic
information for doors and windows and the lack of support for constraints prevents
navigation constraints on topographic features (e.g. wheelchair only being able to
traverse through a power assisted door) from being defined, as needed for
requirements 12, 13, 14 and 15.

3.1.2 IFC

The term Building Information Modeling (BIM) describes the process of gener-
ating and managing building data (Ashcraft 2007), using 3D modeling approaches.
A commonly used format for BIM is the IFC, describing a neutral and open
specification, registered as ISO 16739 (IAI 2008). IFC defines an entity-relation-
ship model providing an abstract and conceptual representation of data, consisting
of around 900 entity classes organized into an object-oriented hierarchy (Goetz
and Zipf 2011). IFC provides detailed semantics for constructive building
elements, including beams and walls (Fig. 4).

The semantic features of an IFC building model include an IfcBuilding that
should have one or more IfcBuildingStorey (requirement 6), with each IfcBuild-
ingStorey having zero or more IfcSpaces related to it (requirement 1). All indoor
spaces (IFCSpaces), obstacles (IfcBuildingElement and IfcFurnishingElement) and
transition spaces (IfcOpeningElement) are represented in IFC semantically and
allowing multiple geometric representations (requirement 2 and 3). IFC supports
complex space groups, spaces and partial spaces (requirement 4). IFC models are
not normally used to model complete urban environments, but workarounds exist

WallSurface

InteriorWallSurface

FloorSurface

IntBuildingInstallation

GroundSurface
Window

I21

I22

I11

I12

I13

Fig. 3 CityGML model of a
building storey (left) and
BoundarySurfaces for rooms
(right) (Nagel et al. 2009)

10 G. Brown et al.

to support the modelling of sets of buildings within a real world coordinate system
(requirement 7).

IfcSpaceType allows the function of specific spaces to be defined (requirement
8). IFC building models have limited support for connected indoor spaces, with
IFC entities and relation classes (IfcRelConnects) defining general applicable
object types for the connectivity relationship (IAI 2008) that can express some
information on the connectivity between spaces (requirements 9 and 10).

For transition spaces IFC supports the capture and representation of openings
(window and door) and can indirectly create virtual openings through the utili-
zation of IfcVirtualElement (requirement 11).

IFC has no support for dynamic obstacles (requirement 12). Detailed semantics
are provided for fixed obstacles (IfcBuildingElements) and furniture (movable)
obstacles (as specified in IfcFurnitureType for furniture elements) however, other
movable obstacles (e.g. construction work and indoor vehicles) are not supported
(requirements 13 and 14). IfcDoor and IfcWindow provide detailed semantics
including the opening direction, operation type (e.g. double swing) and operation
type, hinge location and construction material. IFC does lack support for complex
topographic space constraints (requirements 12, 13, 14 and 15).

3.1.3 Summary

CityGML, IFC and 3D graphics formats (e.g. kml, collada, X3D etc.) were
quantitatively evaluated against the requirements specified in Sect. 2.2 (see
Table 2), based upon the knowledge of and experience gained from working with
these models/formats.

CityGML and IFC are both versatile data model that aim at spatio-semantic
coherent models but also allow the representation of 3D models at various degrees

Fig. 4 Subset of IFC classes relevant topographic space information (Benner et al. 2005)

Modelling 3D Topographic Space Against Indoor Navigation Requirements 11

of geometric and semantic complexity (Stadler and Kolbe 2007). In this evaluation
full spatio-semantic coherent IFC and CityGML building models are used. Table 2
clearly shows that an IFC building model fulfils slightly more of the overall
requirements than CityGML. The minimal support for fixed obstacles (e.g. walls)
in CityGML can be summarised as being a highly significant differences between
these building models. 3D graphics formats are included in this evaluation to show
that visualisation models are not sufficient as they lack semantics.

3.2 Semantic Indoor Navigation Topographic Space Models

Semantic models and ontologies are increasingly being developed for indoor
navigation topographic space. An Indoor Navigation Ontology (INO) is included
in the OntoNav framework, to describe the basic spatial and structural concepts of
indoor environments (Tsetsos et al. 2006). INO introduces concepts that are rel-
evant for indoor navigation (excluding guidance) including: Space (e.g. Building,
Room, Floor etc.); Path_Element (e.g. Corridor_Segment, Escalator, and Door);
and Obstacle (e.g. table and closed elevator). The Path_Element concept models
the physical or conceptual elements of a navigation path. Passage, a type of
Path_Element, is any spatial element that is part of a path and has specific
accessibility properties (requirement 9). These are separated into: Horizontal
(e.g. connecting corridors); Vertical (e.g. ramp); and Motor passages (requirement

Table 2 Evaluation of CityGML, IFC and 3D graphics formats against topographic space
requirements (++ requirement fully met, + requirement partially met, and o requirement not met)

Requirement no. CityGML IFC 3D graphics formats

Indoor environment:
1 ++ ++ o
2 + ++ o
3 + + o
4 + ++ o
5 ++ ++ o
6 ++ ++ o
7 ++ ++ o
Indoor space:
8 ++ ++ o
9 o o o
10 o o o
Transition space:
11 ++ + o
Indoor obstacle space:
12 + + o
13 + ++ o
14 + + o
15 o + o

12 G. Brown et al.

10). This semantic model does not discuss the requirement for the decomposition
of spaces into smaller parts (requirement 4) or the semantics and constraints for
indoor obstacles including doors and windows (requirements 12, 13, 14 and 15).

Meijers et al. (2005) present a semantic model of interior spaces for facilitating
the calculation of evacuation routes. This semantic model has a building composed
of an aggregation of complexes of sections (e.g. a storey) or of sections
(requirements 1 and 6). Three types of sections exist: end (with only one entrance/
exit); connector (with more than one entrance/exit) and non-accessible (no
entrance/exit) sections (requirements 9 and 10). These sections are geometrically
defined by 3D polygons normally representing walls and are classified according
to persistence (potential for temporary removal), existence (real and virtual walls),
access granting (non-granting, limited and granting access) and types of passing
(uni and bi-directional), partly fulfilling requirements 13 and 15.

In Goetz and Zipf (2011) a 3D Building Ontology (3DBO) is introduced for indoor
environments, intended for use with OpenStreetMap (OSM). In this ontology the 3D
Building representation is defined as having a distinct number of levels (requirement
6), with each level having BuildingParts for spatial elements belonging to a distinct
level (requirement 2 and 3). These BuildingParts are categorised as rooms, halls,
corridors, vertical passages and horizontal passages (requirement 8, 9 and 10).
BuildingParts can also be fixed and movable obstacles and have both windows and
doors, partly fulfilling requirements 11 and 12. This model does not consider how
building parts can be decomposed into sub-parts and additional constraints added to
fixed and movable obstacles (requirements 13, 14 and 15).

Yang and Worboys (2011) have started work on developing ontologies for a
navigation model in a unified indoor and outdoor space. Four levels of ontologies
are developed: upper (general event, object, state, setting concepts); domain
(structure of spaces); navigation task (concepts for navigation guidance); and
application (e.g. for indoor navigation of pedestrian). The domain ontologies
include a structure ontology for indoor spaces. In this ontology the highest-level
features modelled are: Surface (e.g. floor); Portal (e.g. window or entrance);
ControlDevice (e.g. key or lock); Container (e.g. elevator or room); Obstacle
(e.g. wall or internal door). This ontology captures indoor spaces as rooms and
passages, transition spaces as doorways and window spaces and obstacles as fixed
and movable barriers. In this model there is no support for complex constraints
(e.g. persistency of wall obstacles in an emergency scenario).

To summarise, the existing semantic models for indoor navigation topographic
space align much more closely with the requirements than the building models
evaluated as they were developed for these specific tasks. The modelling and
method for integrating navigation constraints in a semantic model was generally
lacking in the semantic models evaluated.

Modelling 3D Topographic Space Against Indoor Navigation Requirements 13

3.3 Constraint Models

The analysis of the requirements for topographic space information showed that
there is a need to be able to add both simple and combined constraints to topo-
graphic space entities (requirements 12, 13, 14 and 15). A simple constraint
expresses a single condition/restriction for a single topographic space element,
whilst a combined constraint expresses multiple constraints on a single feature or
single/multiple constraints on a series of features. An example of a simple con-
straint is the users with access permissions for a specific door.

The ISO Geographic Data File (GDF) standard (ISO 14825:2011) uses con-
straints when modelling features relevant for outdoor routing. This method and
structure used for defining constraints in GDF can be evaluated and considered for
use in modelling constraints of topographic space information. A combined nav-
igation constraint for Prohibited Manoeuvres has been implemented as a GDF
Relationship, defining a manoeuvre that is physically possible but prohibited
legally. This GDF Relationship is specified for at least 2 road elements, a junction
and a traffic sign feature. A similar principal may be able to be applied for uni-
directional access through a door space (requirement 15).

In the OntoNav system, user context is modelled using a developed User
Navigation Ontology (UNO) (Tsetsos et al. 2006). This ontology contains user
classes and elements of user context. Only physical navigation rules, applied to
discard any paths that are not physically accessible to a user, are within the scope
of this work. This ontology links to the OntoNav INO model, fulfilling require-
ments 12, 13, 14 and 15. An example of a possible rule is for excluding Stairways
for wheelchair users (requirement 2).

Stoffel et al. (2007) developed a semantic spatial model for pedestrian indoor
navigation and introduced the concept of annotating nodes and region graphs with
further attributes (e.g. list of key-value-pairs) to provide further context infor-
mation. Modelling of Boolean constraints is introduced for doors and windows,
which can be locked or require access authorisation, have temporal opening times,
and used only in an emergency scenario (all constraints fitting to requirement 15).

To summarise, limited work has been undertaken on understanding the con-
straints needed for topographic space, hierarchically modelling these conceptual
constraints and implementing a method for all navigation constraints to be defined
for semantic entities (IAI 2008; Gröger et al. 2008; Yang and Worboys 2011;
Meijers et al. 2005).

4 Indoor Navigation Topographic Space Model

Existing models have been shown to be lacking semantic and constraint entities
(Sect. 3). Initial work has started on the conceptual modelling of the topographic
space features and constraints needed to fully meet the requirements, defined in

14 G. Brown et al.

Sect. 2.2. These conceptual models would support the customisation/extension of
existing building models. In order to introduce the semantic and constraint con-
cepts an example environment, Berlin main train station, is used (see Fig. 5).

4.1 Conceptual Semantic Indoor Navigation Topographic
Space Model

We define an indoor environment as an abstraction of the collection of all real-
world topographic objects being relevant indoor environment components. The
conceptual modelling of an indoor environment and its components complies with
ISO 19109 and the General Feature Model (GFM) concept, with featureType,
Constraint and geometry stereotypes used.

The basic unit for modelling topographic space (IndoorNavigationTopo-
graphicSpaceObject) is an abstract concept mapping topographic space features to
the GFM feature types. All IndoorNavigationTopographicSpaceObjects are
aggregated together as a collection of units (IndoorNavigationTopographic-
SpaceModel), see Fig. 6. All abstracted topographic space components (e.g. train
station platform spaces, staircases and doors) can be aggregated to an IndoorEn-
vironment (requirement 1). This central feature is an extension of the Building
feature used in other semantic models (Meijers et al. 2005; Tsetsos et al. 2006;
Yang and Worboys 2011; Goetz and Zipf 2011; IAI 2008; Gröger et al. 2008), to
include additional environments (e.g. underground transport systems).

An IndoorEnvironment is composed of multiple SpaceUnits, with these hier-
archically categorised and able to be decomposed into sub-space parts (require-
ment 2 and 4).

Existing building and semantic models use various approaches for modelling a
Storey feature, including the aggregation of an indoor environment into storeys
(with a geometry) and storeys aggregated into spaces (IAI 2008; Meijers et al.
2005; Goetz and Zipf 2011) and the approach discussed for CityGML (see

Fig. 5 Visualisation of CityGML LOD4 building model for Berlin main train station

Modelling 3D Topographic Space Against Indoor Navigation Requirements 15

F
ig

.
6

C
on

ce
pt

ua
l

se
m

an
ti

c
in

do
or

na
vi

ga
ti

on
to

po
gr

ap
hi

c
sp

ac
e

m
od

el

16 G. Brown et al.

Sect. 3.1.1) whereby a CityObjectsGroup could be used to associate all CityOb-
jects belonging to a storey (with or without an individual geometry). The defining
of the geometry of a Storey requires that all indoor spaces are aggregated to a
single storey. This requirement results in this approach not being considered at this
point in time, with a Storey currently represented as a collection of indoor Spa-
ceUnits (requirement 6).

One of the types of SpaceUnit belonging to an indoor environment is Indoor-
Space and is defined as a volume of space that has the potential to be navigated
through by a user. IndoorSpace and sub-space parts are able to have geocoded
addresses, function and usage attributes stored, supporting the search for spaces
and routing considering the semantics of IndoorSpaces (requirements 7 and 8).
IndoorSpace is categorised into both EndSpaces and Passages. This categorisation
uses the concept of end and connector space as introduced by Meijers et al. (2008)
(requirement 9), see Fig. 7. An EndSpace is a unit of bounded indoor space that
only has a single entrance/exit. A connector space (Passage) has multiple
entrance/exits and thus is connecting together multiple indoor spaces (e.g. corri-
dor). Similar categorisations are used in existing semantic models (Tsetsos et al.
2006; Yang and Worboys 2011; Goetz and Zipf 2011), with spaces and passages
being separated. The classification of a corridor space varies within semantic
models, with a corridor either considered a space (Tsetsos et al. 2006; Goetz and
Zipf 2011) or a Passage (Meijers et al. 2005; Yang and Worboys 2011). The use of
the connector space concept in this semantic model results in a corridor or con-
nected room (to 2 or more indoor spaces) being defined as a passage. A Passage is
categorized by the direction of passage, with both HorizontalPassage (e.g. corri-
dor, moving sidewalk) and VerticalPassage (e.g. staircase and elevator) being
defined (requirement 10). This same categorisation is adopted in existing semantic
models (Tsetsos et al. 2006; Goetz and Zipf 2011). For both HorizontalPassges
and VerticalPassages further specialist space objects can be categorised and

Fig. 7 Specialised types of
IndoorSpace: EndSpace with
one DoorSpace; and Passage
with multiple DoorSpaces

Modelling 3D Topographic Space Against Indoor Navigation Requirements 17

defined according to whether these passages are Fixed (e.g. staircase), Assisted
(e.g. escalator) or TransferSpace (e.g. elevator), requirement 10.

An indoor obstacle (IndoorObstacleSpace) is any object that can restrict the
movement of a user. Within Berlin’s main train station obstacles will include
FixedObstcacleSpace (e.g. unmovable pillar in the centre of a room or an interior
wall), MovableObstacleSpace (e.g. furniture or construction work) and Dynami-
cObstacleSpace (e.g. fire or crowd of persons), requirement 12. This categorisation
fits in closely with existing semantic models (Yang and Worboys 2011; Goetz and
Zipf 2011), with DynamicObstacleSpace extending the categories defined in these
models. There is a need for the surface materials of some FixedObstcacleSpaces to
be defined (e.g. surface material of a floor object is important for wheelchair
users). Therefore IndoorObstacleSpaceSurfaces may be aggregated to
IndoorObstacleSpaces.

A TransitionSpace is an opening space providing passage between Indoor-
Spaces. Similar concepts are termed Portal (Yang and Worboys 2011) and Polygon
(Meijers et al. 2005) but represented significantly differently in other existing
semantic models (Tsetsos et al. 2006; and Goetz and Zipf 2011). TransitionSpace
has 3 subclasses: WindowSpace; DoorSpace; and VirtualSpace (requirement 11).
Window and door transition spaces can be related to a window or door movable
obstacle, which represents the actual door or window entity.

4.2 Conceptual Constraints Model

Initial work on the modelling of topographic space constraints follows on from the
modelling of topographic space semantics. Topographic space constraints are
linked to the topographic space semantic model through the relation of Indoor-
NavigationTopographicSpaceConstraints to IndoorNavigation-Topographic-
SpaceObject, shown in Fig. 6. When considering topographic space constraints,
the basic unit is IndoorNavigationTopographicSpaceConstraint, an abstract con-
cept mapping topographic space constraints to the GFM feature types. Single
IndoorNavigationTopographicSpaceConstraints can be aggregated together as a
collection of units for a more complex constraint (CombinedIndoorNavigation-
TopographicSpaceConstraint), see Fig. 8.

From the requirements for topographic space information for indoor navigation,
different categories of constraints can be identified: AccessConstraint; Physical-
Constraint; ScenarioConstraint; and SpaceConstraint, shown in Fig. 8.

AccessConstraints allow the access properties for Door and Window Transi-
tionSpace objects to be defined, requirement 15. A sub-type of AccessConstraints
is Users, supporting the provision of access permissions for individual/groups of
users. The second sub-type is Temporal, allowing the definition of one-off or
repetitive times where access through a door is permitted. AccessType supports the
definition of whether access is possible, partially (in one direction) or not possible.

18 G. Brown et al.

F
ig

.
8

C
on

ce
pt

ua
l

m
od

el
of

in
do

or
na

vi
ga

ti
on

to
po

gr
ap

hi
c

sp
ac

e
co

ns
tr

ai
nt

s

Modelling 3D Topographic Space Against Indoor Navigation Requirements 19

Direction of access can be combined with other constraints to allow a specific user
group to be allowed to have access to pass in one direction through a door.

PhysicalConstraints support the determination of the physical usability of spaces
and obstacles, requirements 2, 12, 13 and 14. The sub-types of PhysicalConstraints
include: Spatial; Weight; State; Persistency; and SurfaceMaterial. Spatial con-
straints allow the minimum required IndoorSpace to be defined for a particular mode
of locomotion. For example a wheelchair can only pass through a door space where
the width is greater than approximately 83 cm. Weight constraints include both the
physical weight (e.g. of a movable piece of furniture) and the supporting weight of a
fixed IndoorObstacleSpace (e.g. floors). Persistency reflects the possibility of an
obstacle being removed if required, including the removal of a thin glass interior wall
during an emergency evacuation scenario. State defines whether a fixed or movable
indoor obstacle is currently open or closed (e.g. a window being open). Specific
SurfaceMaterials cannot easily be traversed by certain modes of locomotion,
including wheelchairs and blind persons, and therefore the surface material needs
specifying.

A scenario type can be specified using the ScenarioConstraint and is designed for
use in combination with other constraints to form a CombinedTopographicSpac-
eConstraint. An example of this could be access through a door only being available
for all users when an evacuation scenario occurs, requirements 12 and 15.

SpaceTypes of topographic space objects can be used to differentiate between
single objects, requirements 3, 8, 9 and 15. An example is an electric powered
elevator type of elevator being inaccessible to all users in an emergency evacua-
tion scenario.

The hierarchical conceptual constraint model could be used to create single or
combined constraints for single or a series of semantic topographic space entities.
An example could be a combined constraint limiting the passage through a doo
space. This constraint would need to be created for an ordered series of semantic
entities (IndoorSpace, DoorSpace and IndoorSpace). The complex constraint could
include Temporal access restrictions (e.g. only accessible between 08.00 and 16.00),
Users access (e.g. only employees), Directional access restriction (e.g. navigation
constraint is unidirectional from start space to end space) and ScenarioType (e.g.
only in heightened security scenario). Only when all components of this complex
constraint are fulfilled, is this door space passable. Additional constraints can also be
created for the same series of semantic entities but with a difference in the properties
of the constraint elements (e.g. for a emergency scenario).

5 Conclusions and Outlook

In this paper we have presented a structured process for defining topographic space
requirements, the evaluation of existing topographic space models and conceptual
semantic topographic space and constraints models. Further work is though
required to analyse the completeness and dependencies between the defined

20 G. Brown et al.

requirements. The approach explained for deriving conceptual features from a
requirement capture driven by use cases, does not only allow the derivation of the
required conceptual data model entities and their relations, but also supports the
identification of requirements and thus use cases for specific entities in the con-
ceptual models. This enables us to answer questions like if we do not have this
type of information in our dataset/building model, which requirements and ulti-
mately which use cases cannot be realised.

In Sect. 2, a detailed set of semantic and constraint requirements were identified
from use cases for the task of planning a route to single/multiple destinations,
supporting the review of existing models. The evaluation of existing semantic and
constraint models for topographic space (Sect. 3) showed that none of the models
are sufficient to meet all the requirements identified, with a general lack of support
for the modelling of constraints. Whilst topographic space semantic models have
been implemented (Sect. 3.2), building data is normally acquired in accordance
with a standardised building information model (Sect. 3.1). Therefore the devel-
opment of a customised/extended building model from a developed conceptual
semantic and constraint model is required in order to avoid duplicating existing
standards for the capture of interior environments. The IFC data model allows
additional elements to be created as standard generic IFC elements. However, the
creation of specialised IFC elements requires a change to the IFC core classes, as
there is not an extension mechanism in place for IFC. An extension mechanism is
available for CityGML through the use of Application Domain Extensions
(ADEs). Therefore only CityGML is considered as being suitable for extension in
order to provide all the required topographic space information.

This work has produced conceptual models for both semantic topographic space
and constraints. These models will be implemented as a CityGML ADE and will
be used by routing algorithms for the calculation of shortest/fastest/optimal routes
that are possible between a start and an end location. The focus of this work is not
on defining user preferences (soft constraints) but instead focuses on defining the
physically passable spaces and traversable/movable obstacles (hard constraints).
A routing algorithm can then determine the shortest/fastest/optimal/preferred
route, considering additional user preferences created independently of the topo-
graphic space information.

Indoor route planning is though only one of the three main navigation tasks:
determination of position (localisation); determination of best route (route plan-
ning); and route tracking (homing) (Becker et al. 2009). For localisation additional
information is required to represent sensor spaces (e.g. for WiFi and Bluetooth
sensors). Therefore this information must be integrated with topographic space
information to support the complete set of indoor navigation tasks. The MLSEM will
provide the framework for integrating all available indoor navigation information
sources together. The work presented in the paper has identified the use cases,
requirements and conceptual models independent to the MLSEM. Future work will
need to look at understanding and defining the relationships between an extended
CityGML model (implementing the conceptual semantic topographic space and
constraint models) and the MLSEM.

Modelling 3D Topographic Space Against Indoor Navigation Requirements 21

Acknowledgments The presented work was started during an EU COST Action funded Short
Term Scientific Mission (STSM) to TU Delft in March 2011. During this STSM cooperation and
support from Sisi Zlatanova and Liu Liu have helped to develop this work.

References

Ashcraft H (2007) Building information modelling: a framework for collaboration. Constr
Lawyer 28(3):1–14

Benner J, Geiger A, Leinemann K (2005) Flexible generation of semantic 3D building models.
In: Gröger G et al (eds) Proceedings of the 1st international workshop on next generation 3D
city models, Bonn

Becker T, Nagel C, Kolbe TH (2009) A multilayered space-event model for navigation in indoor
spaces. In: Kolbe TH et al (eds) Advances in 3D geo-information sciences. Springer, Berlin

Goetz M, Zipf A (2011) Extending openStreetMap to indoor environments: bringing volunteered
geographic information to the next level. In: Rumor M, Zlatanova S, ledoux H (eds) Urban
and regional data management, Udms Annual 2011, Delft, The Netherlands

Gröger G, Kolbe TH, Czerwinski A, Nagel C (2008) OpenGIS city geography markup language
(CityGML) encoding standard. Version 1.0.0, OGC doc no. 08-007r1

IAI (2008) Industry foundation classes (IFC) model documentation. http://buildingsmart-
tech.org/ifc/IFC2x3/TC1/html/index.htm. Accessed 1 Oct 2011

ISO 14825:2011 Intelligent transport systems—geographic data files (GDF). http://www.iso.org/
iso/catalogue_detail.htm?csnumber=54610. Accessed 10 Jan 2012

Kolbe TH, Gröger G, Plümer L (2005) CityGML—interoperable access to 3D city models. In:
Oosterom et al (eds) International symposium on geo-information for disaster management,
Delft, The Netherlands

Meijers M, Zlatanova S, Preifer N (2005) 3D geoinformation indoors: structuring for evacuation.
In: Proceedings of next generation 3D city models. Bonn, Germany

Nagel C, Becker T, Kaden R, Li K, Lee J, Kolbe TH (2010) Requirements and space-event
modelling for indoor navigation. OpenGIS discussion paper, doc ref OGC 10-191r1

Nagel C, Stadler A, Kolbe TH (2009) Conceptual requirements for the automatic reconstruction
of building information models from uninterpreted 3D models. In: Kolbe TH, Zhang H,
Zlatanova S (eds) Academic track of Geoweb 2009—cityscapes, international archives of the
photogrammetry, remote sensing and spatial information sciences, vol XXXVIII 3-4/C3

Stadler A, Kolbe TH (2007) Spatio-semantic coherence in the integration of 3D city models.
http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf. Accessed 14
Dec 2011

Stoffel EP, Lorenz B, Ohlbach HJ (2007) Towards a semantic spatial model for pedestrian indoor
navigation. In: Hainaut JL et al (eds) Advances in conceptual modeling—foundations and
applications, vol 4802. Springer, Berlin

Tsetsos T, Anagnostopoulos C, Kikiras P, Hadjiefthymiades S (2006) Semantically enriched
navigation for indoor environments. Int J Web Grid Serv 2(4):453–478

Yang L, Worboys MF (2011) A navigation ontology for outdoor–indoor space. http://
www.worboys.org/publications/ISA2011Yang.pdf. Accessed 11 Jan 2012

22 G. Brown et al.

http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm
http://www.iso.org/iso/catalogue_detail.htm?csnumber=54610
http://www.iso.org/iso/catalogue_detail.htm?csnumber=54610
http://www.isprs.org/proceedings/XXXVI/2-C43/Session1/paper_Stadler.pdf
http://www.worboys.org/publications/ISA2011Yang.pdf
http://www.worboys.org/publications/ISA2011Yang.pdf

Enhancing the Visibility of Labels in 3D
Navigation Maps

Mikael Vaaraniemi, Martin Freidank and Rüdiger Westermann

Abstract The visibility of relevant labels in automotive navigation systems is
critical for orientation in unknown environments However, labels can quickly
become occluded, e.g. road names might be hidden by 3D-buildings, and conse-
quently, the visual association between a label and its referencing feature is lost. In
this paper we introduce five concepts which guarantee the visibility of occluded
labels in 3D navigation maps. Based on the findings of a pre-study, we have
determined and implemented the two most promising approaches. The first
approach uses a transparent aura to let the label shine through occluding objects.
The second method lets the feature, e.g. the roads, glow through the 3D envi-
ronment, thus re-establishing the visual association. Both methods leave the 3D
world intact, preserve visual association, retain the label’s readability, and run at
interactive rates. A concluding user study validates our approaches for automotive
navigation. Compared to our baseline—simply drawing labels over occluding
objects—both approaches perform significantly better.

Keywords Labeling � Label � Occlusion � Visibility � 3D cities � Navigation �
Maps

M. Vaaraniemi (&)
BMW Research and Technology GmbH, Munich, Germany
e-mail: mikael.vaaraniemi@bmw.de

M. Freidank
University of Koblenz-Landau, Koblenz, Landau, Germany
e-mail: mfreidank@uni-koblenz.de

R. Westermann
Technische Universität München, Munich, Germany
e-mail: westermann@tum.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_2,
� Springer-Verlag Berlin Heidelberg 2013

23

1 Introduction

Automotive navigation devices started appearing in the mid-1980s. The first com-
mercially available device, the Etak Navigator introduced in 1986, guided drivers
with an annotated 2D map and guidance arrows to their destination Thielmann
(2006). Since then, textual annotations in maps have been helping the driver navigate
through unknown environments. They are essential for the exploration of navigation
maps. The visualization has improved gradually and nowadays, 3D navigation maps
have become omnipresent. Several competing companies, like Sygic or Navigon,
include terrain and 3D city models in their latest navigation devices. In these systems,
labels are usually rendered over occluding 3D elements (e.g. road names over
buildings). This approach makes them easily readable, but the visual association to
their corresponding feature is lost. As labels appear in front of occluding objects,
depth perception is hindered and spatial orientation becomes difficult. In this paper,
our primary goal is to preserve the visibility of labels in 3D navigation maps. Hence,
deduced from cartographic rules by Imhof (1975) and our expert study from Sect. 4,
we define the following rules for labeling 3D navigation maps:

• All labels should be readable, even occluded labels.
• The visual association between the label and its feature should be guaranteed.
• Labels should not occlude other labels or important features.
• Depth cues of the 3D world should be preserved.
• Labels should support spatial orientation.

Our main contribution are two approaches fulfilling these rules and, consequently,
enhancing the visibility of occluded labels in 3D navigation maps. The first approach
creates a transparency aura around every label and lets labels shine through
occluding objects (see Fig. 1a). The second method lets the referenced features,
e.g. the roads, glow through the 3D environment, thus creating a visual association
(see Fig. 1b). Both methods leave the 3D world intact, preserve visual association
and retain the labels’ readability. Also, they are able to run at interactive framerates.
The enhancements of these approaches are validated in a user study.

2 Labeling Techniques

2.1 World-Space and Screen-Space Labels

Annotations can be placed in World-Space (WS) or in Screen-Space (SS) into the
3D world. SS labels (or 2D labels) are placed parallel to the screen (see Fig. 2a, b).
They can be thought as being part of a Head-Up-Display (HUD), overlaid over the
3D scene. WS labels (or 3D labels) are part of the 3D world (see Fig. 2c, d).
As such, they are transformed by the perspective projection. Chen et al. (2004)
compare both types of labels. They show that SS labels are better for naive search

24 M. Vaaraniemi et al.

tasks in densely packed scenes. Also, they are easy to read because they are always
facing the viewer. In contrast, as WS labels are part of the 3D scene, they exhibit
occlusion problems and can be very difficult to read (e.g. when they follow the
object’s curvature). However, because they provide strong association cues, they
improve the visual association to the referenced feature (Goldstein 2009). Polys
et al. (2005) evaluate both techniques and state, that even tough WS provides tight
coupling, SS performs better across all tested tasks.

2.2 External and Internal Labels in 3D Worlds

External Labels. Fekete and Plaisant (1999) introduce external labels to annotate
dense sets of points. Connected with an anchor (e.g. a line or a triangle), they are
displayed beside (or outside) the referenced objects (see Fig. 2). Hence, they do
not hide the referenced object. Because they are primarily displayed as SS labels

Fig. 1 The two selected approaches to preserve the visibility of textual labels in a 3D world.
a Transparency label aura: the labels blend out occluding 3D objects. b Glowing roads: the roads
shine through occluding 3D objects

(a) (b)

(c) (d)

Fig. 2 World-space (WS)
and screen-space (SS)
labeling techniques used in
our approaches. a External SS
label with a triangle anchor.
b Internal SS label following
the road. c Internal WS label
placed upright. d Internal WS
label laid onto the road

Enhancing the Visibility of Labels in 3D Navigation Maps 25

they are also easy to read. External labels are mainly used for annotation of single
3D objects, e.g. in scientific illustrations (Hartmann et al. 2004; Ali et al. 2005).
However, Maass and Döllner (2006b) use external labels to annotate virtual
landscapes. Their approach creates dense clusters of labels and long connecting
lines which makes visual association nearly impossible. Stein et al. (2008) com-
pute the placement of external SS labels in a 3D world with an optimization
algorithm. To determine the visibility of a label, a sphere is placed at the 3D
position of the anchor. Its percentage of occlusion determines the transparency of
the label. If the sphere is fully occluded, the feature is not labeled. All these
approaches use greedy algorithms to compute an optimum placement for anno-
tations. The computed positions are connected with the referenced object with an
anchor line. This connection makes the visual association more difficult compared
to a placement directly beside the object. Additionally, as shown by Maass
et al. (2007), using anchor lines might impair depth perception.

Internal Labels. Internal labels are spatially bound to an object. This allows for a
direct visual association to the referenced object (see Fig. 2b). For instance, Maass
and Doellner (2006a) annotate 3D buildings intuitively with billboards in WS. They
introduce an approach to annotate line features in WS (2007). They determine the
placement of labels on the fly using sample points. But, changing the view results in
different label placements and thus in a temporally incoherent layout. They present
an approach to integrate labels directly onto the hulls of 3D buildings by taking their
shape into account Maass and Döllner (2008). This creates internal WS labels which
are part of the world. In general, internal labels depict the visual extent of an object.
Ropinski et al. (2007) and Cipriano and Gleicher (2008) introduce internal WS
labels to annotate e.g. medical illustrations. However, these labels hide parts of the
referenced object and their readability depends on distortion and the viewing angle.

Hybrids. Bell et al. (2001) and Götzelmann et al. (2005, 2006) present similar
hybrid approaches, which use internal and external labels. Bell et al. annotate virtual
3D cities while Götzelmann et al. annotate scientific illustrations. External labels
with anchor lines are used when the viewer is far away. When the viewer gets closer
and the objects’ dimensions allow it, they use internal labels. In contrast, Google
Earth Google Inc (2012) uses SS external labels for cities and WS internal labels for
streets. This makes street names difficult to read at low viewing angles.

2.3 Summary

None of the presented approaches satisfy our stated goals in Sect. 1. In particular, the
goal to preserve readability of labels which are being occluded in a 3D world. The
computations of most SS layouting algorithms are done solely in screen space. They
do not take into account the occlusion between labels and a 3D scene. SS approaches
to annotate scientific illustrations place external labels around single objects, hence,
are not affected by occlusion problems (Hartmann et al. 2004; Ali et al. 2005;
Götzelmann et al. 2005, 2006). Most SS approaches for labeling 3D worlds ignore

26 M. Vaaraniemi et al.

occlusion problem by rendering labels over the scene (similar to a HUD) (Maass and
Döllner 2006b; Google Inc 2012). Only newer SS algorithms take the visibility of the
anchor into account (Stein and Décoret 2008). On the other hand, internal WS
approaches try to find visible positions for labels at runtime (Maass and Döllner
2006a, 2007, 2008). However, if unsuccessful, the object remains unlabeled.

3 Concepts

In this section we introduce several concepts which assure the visibility and thus
preserve the readability of labels occluded by objects of the 3D world.

3.1 Baseline

The first concept we introduce represents our baseline. It consists of drawing the labels
over the 3D world (see Fig. 3). Hence, all occlusion created by objects from the 3D
world is ignored. We chose it as a baseline, because it is a straightforward solution for
resolving occlusion problems. Also, it is used in almost all existing navigation systems,
e.g. Sygic GPS Navigation Sygic (2012) and Google Earth Google Inc (2012).

3.2 Cutaways

Our second concept is cutaways (see Fig. 4). This method is inspired by 2D magic
lenses which were first introduced by Bier et al. (1993). These lenses highlight
focus regions by modifying their representation. One such approach Bier et al.
depicts, is the wireframe representation inside the focus region. Viega et al. (1996)
extend these to 3D environments with flat and volumetric lenses. Coffin and
Höllerer (2006) introduce perspective cutaways for 3D scenes.

The resulting holes are rendered with the correct perspective as if they were cut
in the occluding object. Our approach is very similar to the perspective cutaways.
Every label creates a focus region which cuts away all occluding objects in a
perspectively correct manner.

3.3 Transparency Label Aura

The next concept creates a smoothly blended transparency aura around the labels. It
is similar to Krüger et al. (2006) interactive focus ? context method called Clear-
View. Their approach is directly inspired by magic lenses. They create a semi-
transparent area around the focus region while the remaining parts stay opaque to

Enhancing the Visibility of Labels in 3D Navigation Maps 27

Fig. 4 Cutaways: labels create perspective cut aways in occluding objects of the 3D world in
bird’s eye with WS (left) and snail’s view with SS labeling (right)

Fig. 5 Transparency label aura: labels create a transparent region in the occluding objects in
bird’s eye with SS (left) and snail’s view with WS labeling (right)

Fig. 3 Baseline: drawing labels over the 3D world in bird’s eye with SS (left) and snail view
with WS labeling (right)

Fig. 6 Glowing labels: labels are glowing through the 3D world with a distinct color in bird’s
eye with SS (left) and snail’s view with WS labeling (right)

Fig. 7 Glowing roads: roads are glowing through the 3D world in bird’s eye with SS (left) and
snail’s view with WS labeling (right)

28 M. Vaaraniemi et al.

preserve context information. Elmqvist et al. (2007) evaluate such X-ray vision and
state that it leads to faster and better object discovery. Analogously, we define in our
concept a transparency region around the label (similar to a focus area). All objects of
the 3D world lying in front of this region become transparent. This x-ray vision lets
the user read every label. Because we define the region to be larger than the label, the
referenced feature (e.g. the road) can be seen partially.

This preserves the context of the focus region. Hence, the visual association to
the referenced feature is retained.

3.4 Glowing Labels

In our third concept we let labels glow through occluding objects (see Fig. 6). This
method is inspired by augmented reality (AR) applications. Kalkofen et al.
(2007, 2009) present an approach to augment real objects with context ? focus
information. This helps recreate the spatial relationship between reality and virtual
information. We note that this approach is used in almost all isometric strategy PC
games (e.g. Command and Conquer, Age of Empires).

Units being hidden by structures (e.g. buildings) are usually tinted with a dif-
ferent color. Similarly, we tint the occluded parts of labels with a color distinct
from the surrounding world.

3.5 Glowing Roads

The baseline concept makes the labels visible but thereby loses the visual asso-
ciation to its referenced feature, e.g. the road.

Our fourth concept tries to solve this problem by adding glowing roads to the
baseline. Again, in a similar fashion to the approaches by Kalkofen et al., we let
the occluded parts of the roads shine through the 3D world (see Fig. 7). This
method recreates the missing context of the labels.

4 Expert Study

We conducted an initial expert study. Our goal was to determine which of the
introduced concepts fulfills our rules for labeling a 3D navigation map (stated in
Sect. 1). Also, we wanted to form an opinion about the usability and aesthetics of
each method from our domain experts. Besides, the preferred labeling space (SS or
WS) was surveyed. Two engineers working for over five years on automotive
navigation were chosen as experts. Also, as further subjects, we selected three
research engineers working on human machine interaction systems.

Enhancing the Visibility of Labels in 3D Navigation Maps 29

4.1 Study Design

We presented the four concepts introduced in Sect. 3: cutaways (see Fig. 4),
transparent label aura (see Fig. 5), glowing labels (see Fig. 6) and glowing streets
(see Fig. 7). Each concept was compared to our baseline: rendering labels over the
3D scene (see Fig. 3).

Movies. Movement is an important aspect which greatly affects the way a 3D
concept is perceived. Animation can cause occlusion and creates an important depth
cue: the motion parallax. Hence, to improve the value of our study, we chose to create
animated sequences lasting 20 to 30 seconds. Each movie was shown with SS- and
WS-labeling. We presented each movie with the same flight path in two perspectives: a
snail view closer to the ground and a bird’s eye view. All these combinations culmi-
nated to sixteen different animated sequences. To each subject we showed these
concepts in a fixed order as they are introduced in Sect. 3. In an ensuing discussion, we
queried all statements and asked for a ranking of the presented concepts (see Fig. 8).

Conceptual Details. We selected a light violet color for the glowing labels (see
Fig. 6). Usually, such a color is not present in a 3D navigation visualization, yet it
still remains an aesthetically pleasing color. The hidden parts of the glowing road
concept are drawn slightly blurred in a light green color, similar to HUD designs (see
Fig. 7). Still images from the presented movies can be seen from in Figs. 4, 5, 6, 7.

4.2 Discussion

In both views, glowing streets was ranked highest. 4 of 6 experts chose this as the
best approach in both perspectives (bird and snail). Two experts stated that this
concept improves orientation. Another expert liked how the glowing roads
improve readability by creating an enhanced contrast to the background. One
expert criticized the chosen color and suggested to continue the road in its original
color. Finally, the last expert described this approach as being too colorful.

The second place is shared between the concept transparency label aura and our
baseline. The former performs well in the snail’s view, where labels are frequently
hidden by 3D buildings. Our baseline sufficed in bird’s eye view where occlusion
plays a minor role and the spatial relationship is not needed.

Generally, the concept glowing labels was not approved and always ranked last.
Three experts stated that the label seemed lost in the world and the coloring makes
the visual association even more difficult. Two different experts did not approve
that occluded parts should be marked with a different color. Finally, two experts
criticized the color as being too vivid and distracting.

Our last concept, cutaways, was quickly dismissed by all experts, because it
introduces too much animation. Every movement leads to new cut outs in the 3D
buildings, thus removing parts of the world. When a lot of labels are present, the
3D world falls more and more apart.

30 M. Vaaraniemi et al.

When deciding which labeling space was best, 5 of 6 experts voted SS in bird’s
eye and 5 of 6 experts voted WS in snail’s view. All but one expert agreed that in
snail’s view WS labeling was better despite the restricted readability.

4.3 Results

Concepts. As a first consequence, we dismiss two approaches: glowing labels and
cutaways. In the experts’ opinion, the disadvantages of the glowing labels concept
(e.g. unaesthetical, bad visual association) outweigh the readability improvements.
Cutaways introduce too much movement and destroy huge parts of the 3D world.

Visual association. Displaying the referenced feature besides the label is an
important requirement for our implementation. One expert liked the transparency
aura mainly because he was seeing the referenced road. The glowing labels ranked
last because the association to the road becomes lost. In contrast, the concept
glowing road recreates this reference.

Labeling technique. The last conclusion we draw, is the need to combine both
SS and WS labeling in a 3D navigation. We choose SS in bird’s eye and WS in

(a)

(b)

Fig. 8 Ranking of our concepts according to our six experts. Each concept was presented as a short
movie. The concept glowing roads ranks first in both viewing perspectives. a Bird’s eye. b Snail’s view

Enhancing the Visibility of Labels in 3D Navigation Maps 31

snail’s view. In snail’s view the WS labels fits into the world’s 3D space. In the
bird’s eye we hover at higher altitudes in which the world flattens. Therein, the
better readability of 2D SS labels outweigh the deteriorated spatial relationship.

5 Implementation

We implement the selected concepts in an existing research platform for the
visualization of navigation data. In this framework, the central processing unit
(CPU) helps loading and preparing data for rendering. To ease the CPU load, our
approaches run on the graphics processing unit (GPU) using shader programs.

5.1 Transparency Label Aura

In this concept, occluding parts of the buildings are faded out.
Overview. Our implementation consists of four steps. First, every building

occluding a label is drawn into an offscreen buffer. In the second step, the entire set
of buildings are again rendered offscreen. However, this time, we discard all
fragments located in front of the occluded label – similar to an inverse depth test.
In the third step, we combine these buffers to create a transparent aura around the
label. Finally, we composite the result into the existing 3D world.

Implementation. The first rendering pass is trivial: we create an offscreen buffer and
render all occluding 3D buildings into it. The second pass performs our inverse depth
test in a fragment shader on the GPU. For this step, we need a texture (buffer) con-
taining the depth information of all labels. We approximate each label with an object-
oriented bounding-box (OOBB). And, because our experts stated in Sect. 4.3 that the
referenced objects should be seen, we slightly enlarge the bounding-box of each label.
Then, we render all OOBBs of every visible label into a depth-only offscreen buffer.
Finally, all buildings are drawn. In the fragment shader we compare the incoming depth
value (of our buildings) zbuilding with the depth value of our OOBBs (our labels) zlabel.
If zlabel [zbuilding the building occludes the label and we can discard this fragment.
For the third step, we create a smooth blending in the transparency aura by rendering
the OOBBs with a gradient texture. Finally, using this fullscreen alpha mask, we
composite the results of the prior steps and render it over the current scene (Fig. 9).

5.2 Glowing Streets

In this concept, all occluded parts of the roads are glowing over the 3D world.
Overview. The implementation consists of two steps. First, we detect which

parts of the roads are being occluded. These parts are drawn with a selected color
(e.g. light green). Then, optionally, a blurring filter is applied. Finally, the result is
composited over the existing 3D world and all labels are rendered.

32 M. Vaaraniemi et al.

Implementation. Initially, we need the depth values of all rendered 3D buildings
zbuilding and roads zroad. Then, a fragment shader compares both depth values: If
zbuilding\zroad, then the road is occluded and has to be drawn as a glowing road. If
the glowing road is drawn with a single color, we simply output a constant color to
an offscreen buffer. If we render the roads in their original color we first have to
fetch this color. The resulting buffer can be smoothed with a blur shader and
finally, composited with the existing 3D world. After these steps, all labels are
drawn on top with a disabled depth test (Fig. 10).

6 Results

6.1 Benchmark

We benchmarked the approaches transparency aura and glowing roads. Our goal
was to evaluate the performance scalability and suitability for real-world scenarios.

Configuration. The evaluation was done on an Intel Core 2 Duo E8400 3 Ghz
CPU with 4GB RAM and Windows XP SP3. The GPU was a NVIDIA Quadro
FX 580 (driver v275.89). To reduce the impact of data loading we preloaded all
the needed data. Our performance measurement were done with a flight over a 3D
city with roads, 3D buildings and labels. Figure 12 shows the resulting perfor-
mance graph during a flight of 20 s. We compare the baseline with the

Fig. 9 GPU implementation of the transparency label aura approach

Enhancing the Visibility of Labels in 3D Navigation Maps 33

transparency aura and two variants of the glowing roads: using a single color and
using the original road color. We measured the framerate for low 1; 024� 768
(Fig. 12, top) and high resolution 1680 9 1050 (Fig. 12, bottom). During this run
we tracked the number of buildings, road meshes and labels (see Fig. 12, middle).

Results. At low resolution (1; 024� 768) our new approaches behave similar to
the baseline. Compared to our baseline, they incur a performance drop between 10
and 30 %. The average performance decrease for every approach and for two res-
olutions can be seen in Table 1. Our approaches are fillrate bound. At approximately
twice the fragments (0.8–1.8 MP) we have a 50 % performance decrease for every
approach. Also, the increased number of 3D buildings, roads and labels do not impact
the framerate as much as the increase in resolution (see Fig. 12, middle).

6.2 User Study

Our goal was to evaluate the usability, attractiveness and novelty of our
approaches.

Fig. 10 GPU implementation of the glowing roads approach. Each step represents a shader pass

34 M. Vaaraniemi et al.

Participants. We conducted an user study lasting 20 min with 24 persons aged
between 17 and 45 consisting of 20 men and four women. About one third worked in
the GIS domain. There were 9 students, 12 engineers, two programmers and one
manager. Everyone had experience with commercial 3D navigation systems (Fig. 11).

Study Design. These candidates tested the fully working prototypes of our base-
line and the two implemented concepts: transparency label aura and glowing roads.
In the first part of our evaluation, every subject flew three times the same 30 s lasting
route through a 3D city. First, the baseline approach was active. Then, both new
methods were shown in a changing order. After every flight the candidates had to fill
out an AttrakDiff questionnaire (see Fig. 13). In the second part of the study, we let
the subjects choose manually between all three concepts during a flight of two
minutes. Finally, they completed a second informal questionnaire (see Fig. 14).

AttrakDiff. After experiencing the prototype, every candidate completed the
AttrakDiff questionnaire from Hassenzahl et al. (2003), Hassenzahl (2007). They
had to choose repeatedly between two different statements (e.g. attractive vs dull).
These pairs were given by the AttrakDiff questionnaire to measure the perceived
hedonic quality (HQ) and pragmatic quality (PQ). PQ is an indicator of the perceived
usability of our concepts. HQ is divided into identity (HQ-I) and stimulation (HQ-S):
HQ-I describes the user’s identification, HQ-S defines the novelty of the tested
concept. Finally, the questionnaire measures the overall attractiveness (ATT).

6.2.1 Results

Figure 13a presents the averaged results of the AttrakDiff questionnaire. Compared to
our baseline (orange), both approaches increase significantly every quality aspect and
the overall attractiveness. The boxes in Fig. 13b indicate the overall classification in HQ
and PQ. Therein, a placement in the top-right quadrant defines a very desired product.
The size of the light boxes indicate the variability of the answers. In our case, the small
box size of the baseline (orange) and glowing roads (blue) indicates a consistent opinion.
In contrast, answers about the transparency aura (red) display more variation. In both
figures, glowing roads (blue) achieve the best usability impact (PQ) and attractiveness
(ATT). Overall, this validates the ranking of our experts from our pre-study.

Table 1 Average performance of the implemented concepts and framerate decrease (drop)
compared to the baseline

Framerate

Approach 1; 024� 768
(fps)

Diff
(%)

1; 680� 1; 050
(fps)

Diff
(%)

Resolution
impact (%)

Baseline 110 - 59 – �46
Transparency label aura 82 �25 43 �27 �47
Glowing roads (single color) 90 �18 46 �22 �49
Glowing roads (road’s color) 84 �24 42 �29 �50

Also, we list the performance impact when changing the resolution from 1; 024 � 768 to
1; 680 � 1; 050. We determine that both approaches are fillrate bound

Enhancing the Visibility of Labels in 3D Navigation Maps 35

Informal Questionnaire. Figure 14 depicts the results of our second question-
naire. The majority state that the application of both approaches create an
advantage compared to our baseline, create a better orientation and are aestheti-
cally pleasing. The glowing roads display a higher distraction and are less calm

Fig. 11 Comparison of the implemented approaches in bird’s eye with World-Space labeling:
baseline (top), glowing roads (middle) and transparency label auras (bottom). As concluded from
a conducted user study, the last two methods increase attractiveness and usability compared to the
baseline

36 M. Vaaraniemi et al.

than the transparency label aura. Our subjects would more likely use these
approaches in a GIS than in a car. Overall, the proposed methods are perceived as
a significant improvement compared to the baseline: 86 % see transparency label
aura and 77 % glowing roads as enhancement (Fig. 15).

Fig. 12 Benchmark results of the GPU implementation: both approaches are fillrate-bound

(a) (b)

Fig. 13 Resulting AttrakDiff questionnaire from our conducted user study. PQ describes the
perceived pragmatic quality (� usability), HQ-I the hedonic quality based on identity (� user’s
identification), HQ-S the hedonic quality provided through stimulation (� innovative) and ATT
describes the concepts overall attractiveness. Compared to our baseline, both our presented
approaches improve significantly the HQ, PQ and attractiveness. a Averaged values of the
perceived qualities of the presented concepts. b Quality classification of the concepts and
variability of the given answers

Enhancing the Visibility of Labels in 3D Navigation Maps 37

6 Conclusion

In this paper we have presented two new approaches, glowing roads and trans-
parency label aura, which preserve the readability of occluded labels in 3D nav-
igation maps while maintaining the reference to their corresponding object. We
have described a prototypical implementation of both methods on the GPU run-
ning at interactive framerates. Our profiling has shown that these implementations
are fillrate-bound. In a following user study including 24 subjects we compared
them to our baseline: simply rendering all labels over the world, as done e.g. by
Google Earth and almost every commercial navigation system. We have revealed
that both our methods innovate and improve significantly the usability and overall
attractiveness. Over 86 % deem the approach glowing road better than our base-
line. In further research, we plan to evaluate these approaches in real-world sce-
nario, e.g. while driving through a city. Furthermore, a combination of both
concepts could create new approaches, e.g. transparent road auras.

Acknowledgments We would like to thank Marco Matt for preparing and conducting the expert
and user studies at our research labs. Also, we are grateful for the continuous feedback from
Christopher Roelle while designing the labeling techniques. Finally, we thank Philipp Promes-
berger for developing the basis of the map rendering framework.

Fig. 14 Informal questionnaire answered by our 24 test candidates

Fig. 15 Comparison of transparency label aura (left) and single colored glowing roads (right).
Both figures are in bird’s eye viewing space with WS labeling

38 M. Vaaraniemi et al.

References

Ali K, Hartmann K, Strothotte T (2005) Label layout for interactive 3d illustrations. J WSCG
13(1):1–8

Bier EA, Stone MC, Pier K, Buxton W, Derose TD (1993) Toolglass and magic lenses: the see-
through interface. In: Proceedings of the 20th annual conference on computer graphics and
interactive technique, ACM Press, pp 73–80

Bell B, Feiner S, Höllerer T (2001) View management for virtual and augmented reality. In:
Proceedings of the 14th annual ACM symposium on User interface software and technology,
ACM, pp 101–110

Chen J, Pyla P, Bowman D (2004) Testbed evaluation of navigation and text display techniques in an
information-rich virtual environment. In: IEEE proceedings on virtual reality, pp 181–289

Cipriano G, Gleicher M (2008) Text scaffolds for effective surface labeling. IEEE Trans Visual
Comput Graphics 14(6):1675–1682

Coffin C, Höllerer T (2006) Interactive perspective cut-away views for general 3d scenes. In:
Proceedings of IEEE symposium 3D user interfaces (3DUI 06), IEEE CS, Press, pp 25–28

Elmqvist N, Assarsson U, Tsigas P (2007) Employing dynamic transparency for 3D occlusion
management: design issues and evaluation. In: Baranauskas C, Palanque P, Abascal J,
Barbosa SDJ (eds) Proceedings of INTERACT, series LNCS, vol 4662. Springer, pp 532–545

Fekete J, Plaisant C (1999) Excentric labeling: dynamic neighborhood labeling for data
visualization. In: Proceedings of the SIGCHI conference on human factors in computing
systems: the CHI is the limit, ACM, pp 512–519

Goldstein E (2009) Sensation and perception. Wadsworth Pub Co
Google Inc (2012) Google Earth v6.1.0.5001. (Software). http://earth.google.com/
Götzelmann T, Ali K, Hartmann K, Strothotte T (2005) Adaptive labeling for illustrations. In:

Proceedings of Pacific Graphics 2005:64–66
Götzelmann T, Hartmann K, Strothotte T (2006) Agent-based annotation of interactive 3D

visualizations.In: Smart Graphics, Springer, pp 24–35
Hartmann K, Ali K, Strothotte T (2004) Floating labels: applying dynamic potential fields for

label layout. In: Smart Graphics, Springer, pp 101–113
Hassenzahl M (2007) Attrakdiff (tm). URL http://wwwattrakdiffde/en/AttrakDiff/
Hassenzahl M, Burmester M, Koller F (2003) Attrakdiff: Ein fragebogen zur messung

wahrgenommener hedonischer und pragmatischer qualität. Mensch and Computer, pp 187–196
Imhof E (1975) Positioning names on maps. Cartography Geogr Inform Sci 2(2):128–144
Kalkofen D, Mendez E, Schmalstieg D (2007) Interactive focus and context visualization for

augmented reality. In: Proceedings of the 2007 6th IEEE and ACM international symposium
on mixed and augmented reality, IEEE Computer Society, pp 1–10

Kalkofen D, Mendez E, Schmalstieg D (2009) Comprehensible visualization for augmented
reality. IEEE Trans Vis Comput Graph 15(2):193–204

Krüger J, Schneider J, Westermann R (2006) Clearview: an interactive context preserving hotspot
visualization technique. IEEE Trans on Vis Comput Graph 12(5):941–948

Maass S, Döllner J (2006a) Dynamic annotation of interactive environments using object-
integrated billboards. In: 14th international conference in central Europe on computer
graphics, visualization and computer vision, WSCG, pp 327–334

Maass S, Döllner J (2006b) Efficient view management for dynamic annotation placement in
virtual landscapes. In: Smart Graphics, Springer, pp 1–12

Maass S, Döllner J (2007) Embedded labels for line features in interactive 3d virtual
environments. In: Proceedings of the 5th international conference on Computer graphics,
virtual reality, visualisation and interaction in Africa, ACM, pp 53–59

Maass S, Döllner J (2008) Seamless integration of labels into interactive virtual 3d environments
using parameterized hulls. In: 4th International symposium on computational Aesthetics in
graphics, Lisbon, pp 33–40

Enhancing the Visibility of Labels in 3D Navigation Maps 39

http://earth.google.com/
http://wwwattrakdiffde/en/AttrakDiff/

Maass S, Jobst M, Döllner J (2007) Depth cue of occlusion information as criterionfor the quality
of annotation placement in perspective views. The European information society pp 473–486

Polys N, Kim S, Bowman D (2005) Effects of information layout, screen size, andfield of view on
user performance in information-rich virtual environments. In:Proceedings of the ACM
symposium on virtual reality software and technology, November, ACM, pp 07–09

Ropinski T, Praßni J, Roters J, Hinrichs K (2007) Internal labels as shape cues for medical
illustration. In: Proceedings of the 12th international fall workshop on vision, modeling, and
visualization (VMV07), pp 203–212

Stein T, Décoret X (2008) Dynamic label placement for improved interactive exploration. In:
Proceedings of the 6th international symposium on non-photorealistic animation and
rendering, ACM, pp 15–21

Sygic (2012) Sygic GPS navigation. (Software). http://www.sygic.com/
Thielmann T (2006) you have reached your destination! position, positioning and super-

positioning of space through car navigation systems. Navigation 2:27–62
Viega J, Conway MJ, Williams G, Pausch R (1996) 3d magic lenses. ACM Symposium on user

interface software and technology, pp 51–58

40 M. Vaaraniemi et al.

http://www.sygic.com/

Semantic 3D Modeling of Multi-Utility
Networks in Cities for Analysis
and 3D Visualization

Thomas Becker, Claus Nagel and Thomas H. Kolbe

Abstract Precise and comprehensive knowledge about 3D urban space, critical
infrastructures, and belowground features is required for simulation and analysis in
the fields of urban and environmental planning, city administration, and disaster
management. In order to facilitate these applications, geoinformation about
functional, semantic, and topographic aspects of urban features, their mutual
dependencies and their interrelations are needed. Substantial work has been done
in the modeling and representation of aboveground features in the context of 3D
city and building models. However, standardized models such as CityGML and
IFC lack a rich information model for multiple and different underground struc-
tures. In contrast, existing utility network models are commonly tailored to a
specific type of commodity, dedicated to serve as as-built documentation and thus
are not suitable for the integrated representation of multiple and different utility
infrastructures. Moreover, the mutual relations between networks as well as
embedding into 3D urban space are not supported. The Utility Network ADE of
CityGML as proposed in 2011 provides the required concepts and classes for the
integration of multi-utility networks into the 3D urban environment. While the
core model covers only the topological and topographic representation of network
entities, the functional and semantic classification of network objects is now
introduced in this paper. This paper will show how concepts and classes can be
defined to fulfill the requirements of complex analyses and simulation, and how

T. Becker (&) � C. Nagel � T. H. Kolbe
Institute for Geodesy and Geoinformation Science, Technische Universität Berlin,
Straße des 17. Juni 135, 10623 Berlin, Germany
e-mail: thomas.becker@tu-berlin.de

C. Nagel
e-mail: claus.nagel@tu-berlin.de

T. H. Kolbe
e-mail: thomas.kolbe@tu-berlin.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_3,
� Springer-Verlag Berlin Heidelberg 2013

41

properties of specific networks can be defined with respect to 3D topography but
also network connectivity and functional aspects.

Keywords 3D Data models � 3D City models � 3D Utility networks �Multi-utility
networks � Critical infrastructures � Disaster management � Emergency response �
CityGML

1 Introduction and Motivation

The range of applications of city models reaches far beyond pure visualization
today. Applications such as energy consumption analysis, carbon balancing, risk
and disaster management as well as future applications like city life cycle man-
agement require an extensive ‘‘inventory list’’ of urban space. Nowadays city
models are used to give the administration, disaster managers, and companies
access to the city’s inventory. The inventory comprises buildings, streets, vege-
tation objects, plants, classified land uses, and elevation models. Typically, real
world objects above ground can be modeled using existing standards for 3D city
modeling such as CityGML or the forthcoming INSPIRE data specifications in the
future (Gröger et al. 2008). Assuming that a city can be understood as a system in
terms of an organized structure regarded as a whole and consisting of interrelated
and interdependent elements (components, entities, factors, members, parts, etc.),
thus, a city model can be seen as an abstract representation of such a real existing
system (ISO19109 2005). CityGML and IFC represent such an abstraction of a
system. Whereas CityGML can represent many elements of the city system
(respectively a part of a system), IFC represents a system within a system. Nev-
ertheless, the overall concept of having objects representing physical (building)
and conceptual entities (city), giving them contextual information by setting them
into relationships and assigning characteristic properties is valid for both models.
The IFC model includes object connectivity, processes, etc. that is still an ongoing
task within the city wide model—CityGML. The Utility Network ADE of City-
GML represents a first approach to extend the abstract model of a city by inte-
grating utility infrastructures into the urban space and to make their network
topology and topography explicit.

The core model (Becker et al. 2011a, b) of this application domain extension
establishes the relation, or—to be more precise—the connection between above-
ground and belowground urban inventory with respect to utilities. The core of this
ADE defines the modeling environment by making relevant features and their
mutual relations explicit and allowing the 3D topographical modeling of entire
networks, sub-networks and network features as well as their graph representa-
tions. The consequent treatment of network features as abstraction of real world
objects (topographic point of view) as well as a graph object, represented by its
own network graph, makes the model more flexible as the models realized in
existing GIS utility systems. The module Networkcomponent of the Utility

42 T. Becker et al.

Network ADE will extend the core concept by classes that will describe the
entities of any utility network in a semantical-functional way.

Already existing utility network models represent utilities in a semantically rich
way, but their components do not interact with or have explicit relations with
urban features. Those networks are very detailed and rich of semantics; some of
them dedicated for daily use in utility companies, some used as data exchange
models and others just represent utility networks within parts of urban space
(buildings). Each of them is an abstraction and reduction of a system (model) in
itself but they do not provide links to the higher context and thus are not feasible
for analysis or simulation purposes in terms of urban energy consumption analysis,
carbon balancing, risk- and disaster management, and city life cycle management.
A model feasible for those purposes has to meet the following requirements and
should represent an eligible generalization and subset of reality:

• The elements of such a model must have functional as well as structural rela-
tionships between each other.

• The model must represent independent but interrelated elements in order to
enable simulation and complex analysis.

• The model must be valid for different, heterogeneous types of utility networks.
• The model must reduce the complexity on the one hand but preserve the

required information for usage in simulations, analysis, calculations, and car-
tographic visualization in disaster case.

Some popular data models for representing, exchanging, and storing utility
networks are introduced and discussed briefly in Sect. 2. The ArcGIS utility
models stands proxy for popular GIS-based utility solutions, the IFC model as
proxy for building wide supply system, and the INSPIRE network model as proxy
for a city or country wide supply system. In Sect. 3, a short overview about the
core model of the Utility Network ADE is given, laying out the basis for the
introduction of the specific extensions of the Utility Network ADE—the Net-
workComponents (Sect. 4) and the NetworkProperties (Sect. 5). Section 6 sketches
the implementation of the model in ArcGIS. Finally, we draw conclusions and
point to future work (Sect. 7).

2 Analysis of Existing Geospatial Utility Network Models

2.1 INSPIRE Network Model

The ‘‘Network’’ package of the INSPIRE data specifications (INSPIRE 2010a)
defines the basic application schema for networks which is extended by additional,
domain specific spatial data schemas (INSPIRE 2010b, c). The central class is
NetworkElement, which may be any entity that is relevant for a network. The
network package consists of further classes that are required for modeling net-
works, such as Network, Link, and Node.

Semantic 3D Modeling of Multi-Utility Networks 43

A Network is a collection of NetworkElements that is the superclass for ele-
ments like Area, Node, and some special classes such as GeneralisedLink, LinkSet
and GradeSeparatedCrossing (see Fig. 1).

Thus, a simple network may only consist of Nodes and Links, where a Link
must be bounded by exactly two nodes. The clear distinction of NetworkElements
into point-like (Node) and line-like (Link) objects and the lack of a feature
aggregation schema does not allow for hierarchical decompositions of network
components within the core model. For example, a point-like object cannot consist
of other point-like or line-like objects. The hierarchical modeling of a line-like
object is supported by the class LinkSet. A hierarchical modeling of a network and
the modeling of interdependencies is possible by using the class NetworkCon-
nection. NetworkConnections are also NetworkElements relating two or more
arbitrary NetworkElements facilitating the modeling of hierarchical networks (see
(INSPIRE 2010a, p. 93).

The INSPIRE application schema ‘‘Utility Networks’’ including the sub schemas
for Electricity, Oil and Gas, Sewer, Telecommunications, and Water Networks
extends the Generic Network Model (GNM, see Fig. 2) besides transportation
networks now also by utility networks (INSPIRE 2010a, b, c, 2011). The utility
networks application schema extends the classes provided by the GNM by utility

Fig. 1 Network application schema of INSPIRE (adapted from (INSPIRE 2010a))

44 T. Becker et al.

specific abstract classes such as UtilityLinkSet, UtilityLinkSequence, UtilityLink,
UtilityNode, UtilityNodeContainer and UtilityNetworkElement. For further infor-
mation, reference is made at this point to INSPIRE (2011) consolidated UML Model.

In addition to this, the model provides common features (called CommonTypes)
to the subsequent application schemas for electricity, water, and so on. Those
CommonTypes are types such as pipe, duct, manhole, pole, and diverse enumer-
ations that describe material, exterior shape, and type of features that occur in other
utility networks as well. They serve as container features for entities of other utility
networks. The further semantic specialization of needed utility entities is then done
within the respective application domain schema. Since the core model only
provides a 2D representation of network elements, the theme ‘‘Utility and
Governmental Services’’ allows for the modeling of an ElevationLine or Eleva-
tionPoint to make the relative height of a network component with respect to the
terrain explicit. However, the model lacks of an explicit 3D topographic repre-
sentation of network objects useful for collision detection, simulation of impacts of
blast, and 3D visualization.

Basically, only a specialization of the distribution entities such as pipes and
cables, devices (called appurtenance) and of the respective network is done. There
is no further domain specific classification into other pipes, devices, or other
domain specific entities as shown in Fig. 3. Type attributes being available for
both distribution elements and appurtenance entities take over the further spe-
cialization of those main elements of networks. However, the functionality of
those network entities cannot be derived directly or is not obvious. The named use
cases for the representation of utility networks in INSPIRE are mapping and
documentation, e.g. to facilitate information portals which make information about
cables and lines available for contractors that are planning excavation works. Thus,
the focus of the model is on describing the topography of distribution elements and
appurtenances and not on modeling their functionality and interdependencies.

Fig. 2 Principle structure of modeling networks using the INSPIRE specification. The
dependencies are established by creating subclasses from referred packages

Semantic 3D Modeling of Multi-Utility Networks 45

In summary, the structure of the INSPIRE modeling approach for utility net-
works can be partitioned into three parts. The first part is the Generic Network
Model dedicated to the modeling of topological relationships between any network
entities. The second part defines utility network specific entities such as Utility-
Links and UtilityNodes and provides more entity specific attributes as well as
common types for use in domain specific application schemas. Those schemas
form the third part of utility network modeling and specify the domain specific
entities and attributes for the respective domain (cf. Fig. 3).

2.2 IFC Utility Model

The most important standard for data exchange of buildings in the field of
architecture and civil engineering are the Industry Foundation Classes
(Liebich 2009). The IFC represent logical building structures, accompanying
properties (attributes) with 2D and 3D geometry as well as utilities. As Liebich
et al. (2007), Liebich (2009), Becker et al. (2011a, b), and Hijazi et al. (2011) point
out, IFC offers two different ways of connectivity in order to build up a network
that may be a physical or logical connection between building service elements. In
general, a logical connection realizes the linkage of two components via so-called
Ports, whereas a physical connection is established by a realizing element such as
IfcFlowFitting. The connectivity concept of IFC comprises both the physical
connection between elements (IfcRelConnectsElements) and the logical connec-
tion of building service items on the level of their ports (IfcRelConnectsPorts).

Besides the connectivity concept that realizes the topological relations between
elements the IFC even provide a model for the topographic and semantic repre-
sentation of building service elements. The superclass of all building service
elements respective of all included distribution systems is represented by the class
IfcDistributionElement. Those elements are further specialized (see Fig. 4) into
flow elements (IfcDistributionFlowElement) and controller objects (IfcDistribu-
tionControlElement) which in turn have further subtypes but do not elaborate
further attributes. Those subtypes serve solely for semantically and logically
structuring of the model.

Fig. 3 Specialization within the domain specific extensions of the INSPIRE UtilityNetwork
model (excerpt)

46 T. Becker et al.

IFC distinguishes flow objects into IfcFlowFitting, IfcFlowSegment, Ifc-Flow-
Controller, IfcFlowTerminal, IfcFlowMovingDevice, IfcEnergyConversionDevice,
IfcFlowStorageDevice, IfcFlowTreatmentDevice, and IfcDistributionChamber-
Element. The IfcDistributionControlElement comprises all elements which are
necessary to define elements of a building automation control system that are used
to impart control over elements of a distribution system (Liebich et al. 2007).
Thus, it is possible to control valves, dampers, etc. through explicit actuation (Ifc-
Actuator). IFC allows both 2D and 3D geometries to represent the real-world
shape and extent of network entities. The geometry is given in a local engineering
reference frame which is valid for a single building but which lacks the possibility
to evaluate the building utilities in an urban or regional context. To summarize this
(see Fig. 4) the layer SharedBLDGServiceElements forms an intermediate layer
that classifies the objects and elements of a buildings service system according to
their functionality within the building system. Thus, every building system may
consist of objects that move (IfcFlowMovingDevice), store (IfcFlowStorageDe-
vice), distribute (IfcFlowSegment), etc. the carried medium. A more precise
classification respectively definition of building service system elements is being
done within the domain layers IfcHvacDomain, IfcPlumbingFireProtectionDo-
main, Ifc-ElectricalDomain and IfcBuildingControlsDomain. The IFC utility
model intentionally is tailored to the modeling of utility structures within build-
ings. The integration into citywide utility networks on a larger scale is not sup-
ported. Visualizations and analyses are hence restricted to the building scale.

Fig. 4 Principle structure of IFC building service elements (excerpt)

Semantic 3D Modeling of Multi-Utility Networks 47

2.3 ArcGIS Network Model

In ArcGIS different types of utility networks are defined based on a core concept
called Geometric Networks. This core technology represents the basic structure for
all kind of utility networks. A network is constructed from edges and junctions as
2D line and 2D point features. Each real world utility object can be represented as
one feature in the network whereas same kinds of features can be represented by a
feature class (ESRI 2003, 2007; Grise et al. 2001; Meehan 2007). The geometric
part of a utility network (see Fig. 5) is a single graph structure consisting of edge
and junction elements with an embedding into 2D space. The graph is composed of
features from one or more feature classes in a feature data set (ESRI 2003). It binds
together feature classes that form a network and contains all attributes, relation-
ships, and validation rules. The logical network (see Fig. 5) is a special data
structure to store the connectivity between features of the network and is imple-
mented by a set of tables.

An ArcGIS utility network may consist of four network feature types: simple
edge, simple junction, complex edge, and complex junction and thus provides a
more flexible way to create network topology as pure edge-node topology.
Whereas a simple edge has a one-to-one relation between the feature and the edge
element and connects always two junctions, a complex edge may have more than

Fig. 5 Example of a feature dataset containing a geometric and logical network

48 T. Becker et al.

two connected junctions on their length and may represent a sequence of edge
elements divided by junctions. Therefore, those complex edges realize a logically
connected sequence of edges, but geometrically they represent a single feature and
in this respect, it is a kind of feature hierarchy. Similarly, to the edge concept, a
simple junction is a one-to-one relation between a feature and its corresponding
junction element and is represented by one point in the network. A complex
junction, however, is represented by one object within the geometric network and
multiple objects including junctions and edges within the logical network. This is
illustrated in Fig. 5 where the pump from the upper part of the picture is repre-
sented as a graph like structure in the lower part.

Based on ESRI’s geometric network the data models for electrical power dis-
tribution, gas distribution, and water distribution were developed. All data models
are especially designed for the daily work in utility companies and thus they
represent features and relations for as-built documentation in distribution systems.
These models include essential sets of object classes for water, gas, or electricity
supply networks and properties as well as rules and relationships that define object
behavior and provide ‘‘…an implementation that focuses on operations and
maintenance portions of the facility life cycle’’ (ESRI 2007, p. 3 Sect. 1). These
models extend or address the ArcGIS Geometric Network Model and distinguish
between objects that are building the network topology and those which are used
for documentation or controlling purposes. Network-forming elements are spe-
cializations of SimpleJunctionFeature/ComplexJunctionFeature or Simple-Edge-
Feature/ComplexEdgeFeature. Elements which do not participate in network-
forming process are handled as ‘‘simple’’ Point, Polyline, or Polygon features.
Since they do not participate as network features, they are not part of the network
topology and thus cannot be traced or analyzed by any kind of ArcGIS
network tools.

All investigated ESRI utility data models can be structured into 2–3 stages. In a
first step a superclass for entities with similar semantics is built and is then
associated according to its semantics and geometry as a subclass of either Sim-
pleJunctionFeature, ComplexJunctionFeature, SimpleEdgeFeature, Complex-
EdgeFeature (see Fig. 6, ElectricComplexEdge). All of these superclasses are
container classes, which inherit relevant attributes to subclasses which are further
specializations of these superclasses (ElectricLineSegment, BusBar). The last step
is a further specialization from the second stage classes in order to further dis-
tinguish the entities of the upper class. In case of electricity, the line segments are
further specialized into Overhead (OH) and Underground structures (UG) as well
as Primary (Pri) and Secondary (Sec) lines.

The ArcGIS utility model serves for documentation and planning support in
utility companies and city administrations. The models are semantically rich and
complex, but do only represent the 2D topography of the network besides the
logical network connectivity information. A 3D geometry representation could be
associated by using multipath features but these would be uncoupled from the
network modeling; just pure 3D visualization. Each of the domain data models is
representing a commodity-specific 2D GIS-based abstraction of the respective

Semantic 3D Modeling of Multi-Utility Networks 49

utility network in the real-world. It cannot easily be used for a different type of
utility network, and thus no common model/database integrating different utility
models is being provided. The only ArcGIS component that is shared by all of
these data models is the Geometric Network Model that forms the common
denominator of all ArcGIS utility networks. Nevertheless, the GNM allows for
network tracing and other types of network analysis.

3 Short Introduction to the Utility Network Core Model
for CityGML: Utility Network ADE

The UtilityNetworkCore as proposed by Becker et al. (2011a, b) is a CityGML
application domain extension (ADE) offering the possibility to integrate network
structures into the urban environment. In general, it provides classes and concepts
to model multiple different infrastructure networks, to embedded the 3D multi-
utility networks into the 3D virtual urban environment and to relate them to each
other. The base class of the NetworkCore model is the abstract class _Network-
Feature (see Fig. 7). It is a subclass of the CityGML class _CityObject and
establishes the link between aboveground city objects and network structures
located above and below ground. _NetworkFeature is the conceptual head for the
further semantic and thematic classification and description of network entities.
Collections of _NetworkFeature instances of one transported medium/commodity
can be grouped to Networks, which themselves might be structured into subNet-
works, expressed by a self-association of Network. Thus, network hierarchies as
they exist in power or gas networks can easily be represented. A similar concept is
used to represent component hierarchies. Each _NetworkFeature might contain
other _NetworkFeatures, expressed by a self-association named consistOf and,
thus, enabling on the one hand a very flexible and on the other hand a very detailed

Fig. 6 Example of stepwise refinement of the ArcGIS utility data model shown on ESRI’S
electricity data model (excerpt)

50 T. Becker et al.

way to model the hierarchies and affiliation of features, between features, and
inside of network features.

Network and _NetworkFeature are used for the topographic representation of
utility networks. The representation of network topology and connectivity is
achieved within the network core model by providing a dual concept for the
representation of features where each network component can be represented both
by its topography and by means of a complementary graph structure.

The FeatureGraph is representing a separate graph structure for each utility
element reflecting the functional, structural as well as the topological aspects of
each element. Following the general principles of graph theory the FeatureGraph
may consist of Nodes and InteriorFeatureEdges (cf. Diestel 2010). Thereby a
differentiation into interior and exterior nodes is done. Interior nodes represent
structural, functional, logical, or physical internal aspects within a network feature.

<<Feature>>
core::_CityObject

+targetCityObject : anyURI [0..1]

<<Feature>>
_NetworkFeature

<<Feature>>
FeatureGraph

<<Feature>>
gml::_FeatureCollection

<<Feature>>
NetworkGraph

<<Feature>>
gml::_Feature

+type : NodeType
+connectionSignature : _Signature [0..1]
+linkControl : _FlowControl [0..1]

<<Feature>>
Node

+exterior
+interior

<<Enumeration>>
NodeType

<<Geometry>>
gml::Point

<<Geometry>>
gml::_Curve

<<Feature>>
Network

+connects
+contains

<<Enumeration>>
InterFeatureLinkType

+direction : gml::SignType [0..1]
+linkControl : _FlowControl [0..1]

<<Feature>>
_Edge

<<Feature>>
InteriorFeatureLink

+type : InterFeatureLinkType

<<Feature>>
InterFeatureLink

<<Feature>>
NetworkLink

<<DataType>>
_FlowControl

<<DataType>>
_Signature

0..*

1

0..*

1

1

0..1

0..*

1

0..1

10..*
1

0..*

1

0..1

1

0..1 1

1..*

1

0..* *

1

0..*

1

0..*

1*..0

start end

linkMember

subNetwork topoGraph

component

topoGraph

realization

featureGraphMember

linkMember

linkMember

nodeMember

realization

consistsOf

is

Fig. 7 UML class diagram of the UtilityNeworkADE core model

Semantic 3D Modeling of Multi-Utility Networks 51

Exterior nodes are used to establish the connectivity to other NetworkFeatures.
Different NetworkFeatures can be linked by connecting the exterior nodes via the
InterFeatureLink forming a complete NetworkGraph, which itself is the dual
representation of the collection of NetworkFeatures—the Network. In order to
make mutual relations between networks or network elements explicit, the edge
subclass NetworkLink can be used. Hence, besides the feature aggregation, net-
work aggregation, internal, and external connectivity of features it is possible to
make dependencies between networks of different commodity types explicit.
Networks sharing the same urban space can therefore be modeled as inter modal
networks by having explicitly modeled relations. More details on the NetworkCore
model are given in Becker et al. (2011a, b).

4 Integration of Network Components

Based on the abstract NetworkCore model described in the previous section, now
the concrete representation of the entities within utility networks will be defined.
Since we are interested in the representation of diverse types of utility networks for
different commodities, we first identify the common elements and functionalities
over the different types of utility networks. These entities are then further spe-
cialized to represent the distinct properties and characteristics of the components
of the different utility network types. The representation of the commodities and
the general network properties are modeled independently from the network
components, because each utility network can transport different commodities.
The commodities and network types are defined in Sect. 5.

Please note that the aim of the data model is not to replace the other models or
systems discussed in Sect. 2, but to provide a common basis for the integration of
the diverse models in order to facilitate joint analyses and visualization tasks.

The represented degree of detail, i.e. object classifications and their attributes,
was determined mostly by the use case of the simulation of the propagation of
failures of critical infrastructures across different utility networks in the context of
disaster management. However, first investigations show that the model is also
suitable for supporting strategic energy planning. Although utility networks differ
substantially with regard to transported goods/commodities, they have the fol-
lowing elements in common (see Fig. 8): DistributionElements are used to
transport the commodity from producer to consumer or to connect different net-
work users. FunctionalElements are elements which play a role in the operation or
maintenance of the network, but which themselves are not elements of the net-
work. For example, manholes are required to access components of a utility net-
work but are not elements of the related network graph. Devices represent network
elements playing an active role in the operation of networks like controlling,
measuring, storing, transforming, or amplifying. Terminal-Elements mark end
points of the network where the goods/commodities ‘‘leave’’ or ‘‘enter’’ the

52 T. Becker et al.

modeled network, e.g. a hydrant or house service connection. ProtectiveElements
represent shielding cases or beddings of network elements.

The concrete realization of DistributionElements is highly dependent on the
transported material (gas, liquid, electricity, light, solid medium) and thus is done
by cables, pipes, or canals. Pipes and canals can be further specialized according to
the shape of the cross section or construction type respectively. Cables do not have
to be specialized any further; they are just characterized by diameter/cross section,
material type, and transmission type. Therefore, the modeling of utility network
entities must take into consideration the functional level of network features as
well as the transported commodity type of those features.

Existing infrastructure assets dedicated for the distribution of commodity can
be differentiated into RoundPipe, used to transport liquids like water, wastewater,
domestic hot water, and RectangularPipes used to transport medium such as air for
cooling systems, exhaust systems, and so on (see the two pictures on the left in
Fig. 9). According to this distinction useful attributes can easily be defined which
further specify the shape or general state of those pipes, such as interiorDiameter
and exteriorDiameter for RoundPipes and exteriorHeight, exteriorWidth, interior-
Height, and interiorWidth for RectangularPipes (cf. Fig. 10).

Canals are typically used to transport storm and wastewater and can be built as
walkable, open top, closed, or as multi-utility system depending on mounting type,
model, and size (see the two pictures on the right in Fig. 9). Therefore, canals are
specialized into ClosedCanal and Semi-OpenCanal (cf. Fig. 10). Using additional
attributes such as height, width, and cross section shape further specifies the
interior profile. Semi open structures (SemiOpenCanal) can be used to represent
Storm water systems that exist in urban space as U-shaped features, often along
streets or walkways.

Cables are used for energy supply or signal transmission which determines the
composition and material type of the cable, but does not affect the exterior
appearance (shape) of those. This eliminates the need for further specialization of

Fig. 8 Network components are modeled as specializations of NetworkFeature into 6 main
subclasses. For further details see (NetworkComponents Model 2012)

Semantic 3D Modeling of Multi-Utility Networks 53

the class Cable. The proposed data model for DistributionElements and their
specific subclasses as explained above are depicted in Fig. 10.

Besides the DistributionElements a utility network consists of elements of
feeding, elements of abstraction, and elements of control in order to build a
working infrastructure. Sewage treatment plants, water treatment plants, and relay
stations are feeding elements. Pressure increase stations, pressure decrease sta-
tions, and transformer stations are likewise essential components of those networks
that do not feed into the network but alter the transported commodity by suitable
devices. While such devices obviously are components of the logical network, the
entire treatment plant or transformer station is to be seen as an entity which

Fig. 9 Some examples of DistributionElements (pipes, closed and semi-open canals)

Fig. 10 Modeling approach for DistributionElements. Further details are given in (Network-
Components Model 2012)

54 T. Becker et al.

contains these devices. Since entire stations also need to be represented explicitly
by a specific entity, the class FunctionalElement is introduced (see Fig. 8).
FunctionalElements are further differentiated in order to fulfill the requirement to
represent the main elements of utility networks. ComplexFunctional-Elements
aggregate _Network-Features which build a functional unit such as a water
treatment plant. Thus, they include further network entities such as pumps, valves,
switches, and generators. SimpleFunctionalElements must not contain other net-
work entities since they represent objects useful for maintenance and inspection of
the transported commodity. Manholes or inspection chambers are examples for
SimpleFunctionalElements.

The next major subclass of _NetworkFeatures is Device. The amount of devices
within gas, power, water, and wastewater networks is huge and the definition of
super classes (generalization classes) is difficult due to the fact that the special-
ization within existing utility networks, GIS based as-built documentations is very
fine granular. However, the classification of those devices according to their main
functionalities provides a feasible approach for a distinction into subsets. Each
utility network contains—according to their functionality—StorageDevices,
ControllerDevices, MeasurementDevices, TechDevices, and AnyDevices (the latter
representing features with unspecific functionality such as a blind flange).

A StorageDevice can be a battery, reservoir, underground storage, or any other
device that is used to buffer or put aside the commodity for future use. Con-
trollerDevices are devices such as valves, switches, gate valves, etc. that are used
to control, limit or influence the flow of commodity. MeasurementDevices serve as
entities for the quantification of commodity flow, commodity quality, or distri-
bution, e.g. pressure sensor, meter, volumetric flow rate sensor, etc. TechDevices
might have the same functionality as controller devices and measurement devices
but have a clear dependency on power supply, such as cathodic corrosion pro-
tection, electrical driven valves, gauges, and slider. Thus, an additional classifi-
cation of relevant network features is made and is depicted in Fig. 11.

Finally, two more feature classes have to be taken into account. Entities like
water-tap, street light, gas lamp, hydrant, anything being or situated at an end of a
line can be seen as a sink and, thus, be represented by using the class Terminal-
Element (see Fig. 12). TerminalElements represent interfaces between the utility
network model and the environment, where goods/commodities ‘‘enter’’ or
‘‘leave’’ the network.

The final subclass of _NetworkFeature is ProtectiveElement (see Fig. 12). All
types of elements intended or used to provide protection of some kind, such as duct
work, cable lines, cable protection packages, or cladding tube are covered by this
class. ProtectiveElements are further differentiated into _ProtectionShell and
Bedding, the latter representing cable lines or tracks that build the near sur-
rounding of a utility line. According to the profile shape _ProtectionShell is further
distinguished into RoundShell, RectangularShell, and OtherShell. Since the Pro-
tectiveElement requires objects to be protected, it can contain any other _Network-
Feature including more _ProtectiveElements. As already mentioned in Sect. 3 the
network core model supports a very flexible modeling of network features,

Semantic 3D Modeling of Multi-Utility Networks 55

Fig. 11 Inclusion of network entities suitable for measuring, controlling, storing and manip-
ulating the transported material. Further details are given in (NetworkComponents Model 2012)

Fig. 12 Integration of TerminalElement and ProtectiveElement into the model

56 T. Becker et al.

especially the aggregation of network objects using the consistOf composition.
ProtectiveElements, however, might be an aggregate of different protection entities
and thus each network entity might exist without the parent elements, i.e. a power
cable can exist without the parent protection element surrounding it. A switch in a
switchgear cabinet, however, cannot exist without the surrounding cabinet. Using
both association types allows for simple (cladding tube) and complex (cable
protection package) feature modeling as illustrated in Fig. 13.

5 Modeling Network Properties and Commodities

As already mentioned in the previous section the classification of network objects
is not only done with respect to the functionality of elements in the network, but
also to the transported material. Elements as cable, pipe, and so forth are used for
water, gas, and electricity supply as well as in the field of industrial manufacturing
of goods of any type. They are even used in production facilities and buildings.
Hence, a simple characterization of network elements into water, gas, or electricity
related objects is not appropriate and a more specific way to describe the network
properties has to be found in order to differentiate all elements in a thematic and
semantic manner that will cover all application fields of utility networks.

The abstract class _CommodityType serves as a container for the chemical and
hazard classification of the transported material as well as the material classifi-
cation of the transported commodity and, thus, for the description of its material
properties in particular. As mentioned in Sect. 3 and further described in Becker
et al. (2011a, b) a collection of _NetworkFeatures transporting the same com-
modity are assigned to one network, which itself might consist of sub networks
(network hierarchy) which all transport the same commodity. The commodity type
therefore is related to the Network and not to the individual network features.

Utility networks transport all types of material in every type of physical con-
dition such as gas, electricity, light, and water. According to this a classification
into liquid (LiquidMedium), gaseous (GasMedium), and solid (SolidMedium)
material is required (see Fig. 14). Each physical condition, respectively each
commodity type possesses its own property set which is needed to describe the

Fig. 13 Typical ProtectiveElements from left to right; cable line, cladding, cable protection
package, cladding tube (i.e. district heating), cable protection package (i.e. power supply)

Semantic 3D Modeling of Multi-Utility Networks 57

transported material adequately. Important properties are for example whether a
transported material isExplosive or flammable. Also the electricConductivity
besides the Flow-Rate, Temperature, concentration, and pHValue of a commodity
can be specified and are needed to inform users of a system or city model about the
transported material.

As depicted in Fig. 14 a network might also be used to transport goods that
cannot be described by a physical aggregate state. In fact, another commodity type
is needed that allows for representing electrical energy or signal transmission. As
Fig. 14 indicates a differentiation between electrical and optical transmission was
made due to the fact that the transmission is different and, thus, the needed
properties. Whereas the general principle of optical signal transmission is based on
total reflection and the needed properties are core, cladding cross section, and
mode type, the electrical energy or signal transmission is based on the movement
of electrons and the relevant properties are frequency bandwidth, voltageRange,
and amperageRange. Thus, every commodity type can be expressed by its
respective physical condition or transmission type.

Further classification of commodity types can be done using well-defined and
standardized _CommodityClassifiers. These are explained in detail in (Network-
Properties Model 2012).

6 Implementation and Realization of the Model

The developed data models were brought into practice first within the project
SIMKAS-3D (www.simkas-3d.de). The aim of that project was to develop
methods for the identification and analysis of the mutual interdependencies of

Fig. 14 Classifications of transported medium according to physical condition. Further details
are given in (NetworkProperties Model 2012)

58 T. Becker et al.

http://www.simkas-3d.de

critical infrastructures including the simulation of cascading effects in the failure
of supply infrastructures (see Becker et al. (2011a, b) for more details on the
background).

In order to achieve the project goals a data model and geodatabase for the
homogeneous representation of different utility networks such as water, gas, long-
distance heating, and power supply had to be developed. The integrated database
should facilitate the common operational picture (COP) for disaster management
as well as for the simulation of cascading effects in case of network failures.

The NetworkCore model, the NetworkComponents model, and the Network-
Properties model have been mapped to a relational database schema and are stored
using the ESRI File-Geodatabase format. According to the developed three data
models the database schema is partitioned into three major parts (see Fig. 15) as well.
One is representing the geometry of the network components in 2D (poly-line, point)
and 3D (multipath), one is representing the logical model—the core model, in tables
and the last one is representing the network properties (commodity types) as a
relation to the networks. The utility networks of the supplier companies were con-
verted into the created geodatabase by customized FME workbench processes. The
proprietary GIS systems were the data source for the process and the created geo-
database has defined the destination writer type and schema.

The interdependencies between networks, network objects, as well as city objects
were identified and added. Figure 16 shows 3D visualizations of the available data
and its embedding into the urban space. Each building of the dataset is logically
connected to the available network. Thus, the possibility is given to perform complex
analysis and simulations from producer (treatment plant) to the utility client
(building) with respect to cascading effects, network tracing, and more.

7 Conclusions and Outlook

In this paper a new geospatial information model for multi-utility networks was
proposed. It specializes the UtilityNetworkADE core model for CityGML as
previously presented in Becker et al. (2011a, b) by concrete classes and

Fig. 15 Implementation of the CityGML Utility Network ADE as a geodatabase model for ESRI
ArcGIS

Semantic 3D Modeling of Multi-Utility Networks 59

relationships for the representation of the network entities used in the different
types of utility networks and commodities. The semantic classification of network
components into the essential entity types was based on empirical studies carried
out at different utility providers. A comparison with already existing models and
approaches was given in the paper. The integration with the CityGML standard
facilitates the integration of multi-utility networks into the urban space respec-
tively into 3D city models for joint visualization and analysis tasks. Furthermore,
interoperable exchange of and access to 3D multi-utility networks is enabled.

The data model represents 3D topography, 3D topology, and functional prop-
erties and interdependencies of the networks and their components. Hierarchical
representations for both networks and components are supported as well. These
characteristics allow to perform geospatial analyses in order to determine the
implicit interdependencies between network components within the same or

Fig. 16 Embedded multi-utilities into 3D urban space in a perspective view (top = above
ground; bottom = view from below ground)

60 T. Becker et al.

different infrastructures or between network features and other city objects based
on spatial relations like proximity. For example, collision detection would prevent
many pipeline ruptures caused by excavation works. The logical representation of
networks and their interdependencies support complex analyses and simulations as
needed in the fields of disaster management, critical infrastructure analysis,
strategic energy planning, and simulation of power grids.

Concerning the previously existing utility network models, the suggested model
can be considered a superset with regard to model expressivity. This will improve
the possibilities to exchange or link data between different systems (INSPIRE,
ESRI Utility Networks, IFC , CityGML). However, it will be a task of future
work to show that datasets represented according to these frameworks can be cast
into the proposed model without information loss. For this purpose we intend to
follow the line of Hijazi et al. (2011) where the lossless mapping of IFC utility
networks onto CityGML utility networks and vice versa was shown.

In the current version the model does not distinguish different levels-of-detail
(LOD). Also the 3D geometry model is limited to the usage of Multisurfaces,
Solids, and graph structures with a 3D embedding. The investigation of multiple
LODs and alternative geometry representations like sweep geometries is subject of
ongoing work. Of course, the data model can also be extended to create a more
fine-grained and semantically further enriched model, e.g. for the representation of
material properties of network components and cross sections of pipes and canals.

Further research is currently being undertaken on the cartographic visualization
of multi-utility networks and their operating status meeting the requirements of
disaster management and stressful situations. The cartographic representation will
focus on the functional aspects of network entities and a geometric simplification
will be done in order to provide a common operational picture (COP) of the critical
infrastructures within a city.

Acknowledgments The presented work was mainly carried out within the collaboration project
SIMKAS-3D funded by the Federal Ministry of Education and Research of Germany (BMBF).
We are grateful to the city of Berlin for providing access to the city model of Berlin, to all
members of the SIMKAS-3D project and to all members of the modeling group of the SIG-3D for
the cooperation and fruitful discussions.

References

Becker T, Nagel C, Kolbe TH (2011a) Integrated 3D modeling of multi-utility networks and their
interdependencies for critical infrastructure analysis. In: Kolbe TH, König G, Nagel C (eds)
Advances in 3D Geo-information sciences, Springer, Berlin

Becker T, Nagel C, Kolbe TH (2011b) UtilityNetworkADE—core model. Online available at
http://www.citygmlwiki.org/index.php/CityGML_UtilityNetworkADE. Accessed 9 Mar 2012

Diestel R (2010) Graph theory, 3rd edn. Series on graduate texts in mathematics 173. Springer,
Berlin

Semantic 3D Modeling of Multi-Utility Networks 61

http://www.citygmlwiki.org/index.php/CityGML_UtilityNetworkADE

ESRI (2003) ArcGIS water utility data model. ESRI, Redlands, CA. Online available at http://
www.downloads2.esri.com/resources/datamodels/ArcGISWaterUtilityDataModel.pdf.
Accessed 27 Mar 2012

ESRI (2007) GIS Technology for water, wastewater, and storm water utilities. Environmental
systems research institute. Redlands, CA. Online available at http://www.esri.com/library/
brochures/pdfs/water-wastewater.pdf. Accessed 27 Mar 2012

Grise S, Idolyantes E, Brinton E, Booth B, Zeiler M (2001) Water utilities. ArcGISTM data
models. Environmental systems research institute, Online available at http://support.esri.com/
en/downloads/datamodel/detail/16. Accessed 27 Mar 2012

Gröger G, Kolbe T H, Czerwinski A, Nagel C (2008): OpenGIS� city geography markup
language (CityGML) encoding standard. Version: 1.0.0, OGC 08-007r1, http://
www.opengeospatial.org/standards/citygml. Accessed 27 Mar 2012

Hijazi I, Ehlers M, Zlatanova S, Becker T, Berlo L (2011) Initial investigations for modeling
interior utilities within 3D geo context: transforming IFC-interior utility to CityGML/
UtilityNetworkAD. In: Kolbe TH, König G, Nagel C (eds) Advances in 3D geo-information
sciences. Springer, Berlin

INSPIRE Consolidated UML Model (2011) INSPIRE consolidated UML model. Online available
at https://inspire-twg.jrc.ec.europa.eu/annexII+III/inspire-model/. Accessed 13 Dec 2011

INSPIRE Data Specifications Drafting Team (2010a) D2.5: Generic conceptual model, Version
3.3. Online available at http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/
D2.5_v3_3.pdf. Accessed 13 Dec 2011

INSPIRE Thematic Working Group Transport Networks (2010b) D2.8.I.7 INSPIRE data
specification on transport networks—guidelines. Online available at http://
inspire.jrc.ec.europa.eu/documents/Data_Specifications/
INSPIRE_DataSpecification_TN_v3.1.pdf. Accessed 13 Dec 2011

INSPIRE Thematic Working Group Utility and governmental services (2010c) INSPIRE data
specification on utility and governmental services—draft guidelines, 2011-06-17. Online
available at http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_Data
Specification_US_v2.0.pdf. Accessed 13 Dec 2011

ISO 19109 (2005) ISO 19109 geographic information—rules for application schema. Online
available at http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber
=9891. Accessed 27 Mar 2012

Liebich T, Adachi Y, Forester J, Hyvarinen J, Karstila K, Reed K, Richter S, Wix J (2007)
Industry foundation classes—IFC2x edition 3 technical corrigendum 1. Online available at
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm. Accessed 27 Mar 2012

Liebich T (2009) IFC 2x edition 3. Model implementation guide, Version 2.0. AEC3 Ltd. Online
available from http://buildingsmart-tech.org. Accessed 27 Mar 2012

Meehan B (2007) Empowering electric and gas utilities with GIS. Series on case studies in GIS.
ESRI Press, Redlands CA

NetworkComponents—Model (2012) Online available at http://www.citygmlwiki.org/upload/b/
b1/NetworkComponents_-_UtilityNetworkADE.pdf. Accessed 13 Mar 2012

NetworkProperties-Model (2012) Online available at http://www.citygmlwiki.org/upload/d/d7/
NetworkProperties_-_UtilityNetworkADE.pdf. Accessed 13 Mar 2012

62 T. Becker et al.

http://www.downloads2.esri.com/resources/datamodels/ArcGISWaterUtilityDataModel.pdf
http://www.downloads2.esri.com/resources/datamodels/ArcGISWaterUtilityDataModel.pdf
http://www.esri.com/library/brochures/pdfs/water-wastewater.pdf
http://www.esri.com/library/brochures/pdfs/water-wastewater.pdf
http://support.esri.com/en/downloads/datamodel/detail/16
http://support.esri.com/en/downloads/datamodel/detail/16
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml
https://inspire-twg.jrc.ec.europa.eu/annexII+III/inspire-model/
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/D2.5_v3_3.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/D2.5_v3_3.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/ INSPIRE_DataSpecification_TN_v3.1.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/ INSPIRE_DataSpecification_TN_v3.1.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/ INSPIRE_DataSpecification_TN_v3.1.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_US_v2.0.pdf
http://inspire.jrc.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_US_v2.0.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber = 39891
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber = 39891
http://buildingsmart-tech.org/ifc/IFC2x3/TC1/html/index.htm
http://buildingsmart-tech.org
http://www.citygmlwiki.org/upload/b/b1/NetworkComponents_-_UtilityNetworkADE.pdf
http://www.citygmlwiki.org/upload/b/b1/NetworkComponents_-_UtilityNetworkADE.pdf
http://www.citygmlwiki.org/upload/d/d7/NetworkProperties_-_UtilityNetworkADE.pdf
http://www.citygmlwiki.org/upload/d/d7/NetworkProperties_-_UtilityNetworkADE.pdf

Generalization and Visualization of 3D
Building Models in CityGML

Siddique Ullah Baig and Alias Abdul Rahman

Abstract Generally, cities are expanding due to rapid population growth and
require 3D city models for effective town planning, communication and disaster
management. Rendering of 3D scenes directly is not so much appropriate as
appearance properties, textures and materials attached with city models drastically
increase the loading time for visualization and spatial analysis. Additionally,
different applications or users demand different Level of Detail (LoDs), thus one of
the questions arises—how different LoDs can be made available to these appli-
cations? Generation of lower LoDs given by OGC standard CityGML from higher
LoDs to reduce data volume is a generalization problem. Relying only on existing
geometric-based generalization approaches can result in the elimination or
merging of important features, hence, semantic information can be considered.
A review of pertinent generalization algorithms proposed by several researchers is
presented. Additionally, this paper provides a method for generalization of 3D
structures with the aim to derive multiple LoDs keeping semantic information into
account. For this purpose, height and positional accuracy of objects at different
LoDs provided by CityGML are considered. Initially, building parts and instal-
lations are removed. 2D footprints of remaining 3D structures are projected onto
ground and simplified to derive LoDs building geometry. An adoption of methods
of Sester and Brenner (Continuous generalisation for visualisation on small mobile
devices. Heidelberg, pp. 355–368, 2004) extended by Fan et al. (Lecture notes in
geoinformation and cartography, advances in giscience. Springer, Heidelberg,
pp. 387–405, 2009) are applied for simplification and aggregation of projected

S. U. Baig (&) � A. A. Rahman
3D GIS Research Lab, Faculty of Geoinformation Science and Real Estate,
Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
e-mail: subaig2@live.utm.my

A. A. Rahman
e-mail: alias@utm.my

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_4,
� Springer-Verlag Berlin Heidelberg 2013

63

footprints. The experiments showed that due to repetition of coordinates of con-
nected nodes in CityGML increase both the rendering time and memory space.
However, elimination of important smaller features can be avoided by taking
semantic information into account while performing generalization operations.

Keywords 3D building modeling � Generalization � Simplification �
Aggregation � Level of details (LoDs)

1 Introduction

The demand for visualization, analysis and simulation of 3D city models is
increasing as 3D geospatial data is commonly available as cities are expanding due to
rapid population growth and require 3D models for planning effective communi-
cation, town planning and disaster management. Specific applications of 3D city
models include simulation of air pollutants, noise emission simulations, and 3D
navigation systems (Gröger et al. 2008). Currently, popular 3D visualization tools
e.g. Digital City and Earth Viewer is few of commercially available based on 3D
visualization standards like X3D and KML for online visualization of 3D city
models. These standards are only useful for visualization but not for representation of
3D city models so spatial analysis could not be carried out due to missing semantic
information attached with city models. Alternatively, an OGC approved standard
like CityGML (OGC 2009) defines not only the shape and photo-realistic appearance
of 3D building objects but also thematic properties, attached with rich semantic
information, classification and aggregation of 3D city models Kolbe (2008).

Rendering of 3D scenes directly from CityGML is not so much appropriate as
appearance properties of 3D models depends on both the textures and materials (Mao
et al. 2010) hence drastically increase loading time in visualization and spatial analysis.
Therefore, different task-specific applications demand different abstractions (gen-
eralized) 3D scenes of 3D models. Therefore, lower LoDs are generated from higher
LoDs of 3D models by reducing data volume (depends upon application’s need) by
applying a number of operations but main characteristics of the building are preserved.
Reduction of data is one of the components of generalization process. Technically, a set
of generalization requirements such as automatic generation of different LoDs, mul-
tiple representation of generated LoDs; and functionalities to automatically provide the
required LoD to a given application or user, have to be met to automate the general-
ization process. Abstract models as a result of this generalization process can be
visualized and analyzed efficiently in different scales.

Demands of different applications vary so generalization process should be
tailored to be able to fulfill the requirement of a specific application. Components
of generalization process can be altered to be made suited for a specific applica-
tion. For example, some disaster-related applications may require to keep outer
building installations, openings (doors, window) while deriving LoD2 from LoD3

64 S. U. Baig and A. A. Rahman

to assess potential affected features of a building. Similarly, application specific
attributes e.g. outer building installations and openings are not required for nav-
igation systems so can be removed. Tourism-specific application may require
semantic information about models to be preserved e.g. type of building models
and their components such as entrances of a museum for visitors, exit points of
sport complex, castle etc. Therefore, parts of the generalization process can be
customized to entertain queries from users or applications. The queries can be e.g.
‘‘maintain exit points’’, ‘‘remove windows’’, ‘‘preserve bigger walls’’ etc. Simi-
larly, during simplification operation, generalization engine can ask user to enter
the threshold (40 or 50 m) to see a height of a building if a user wants to mount
antennas for communication purposes. Another benefit of generalization concept
in regard with 3D visualization is, building models closer to the observer should be
clear and in detailed compared to the buildings residing far-away as observers are
more interested in closer models.

Another method for generalization of 3D structures based on semantic infor-
mation is proposed in this paper. Multiple LoDs are derived based on height and
positional accuracy of points at different LoDs provided by CityGML. 3D objects
to be simplified are projected onto ground as footprints. A test of geometry for
details and possible aggregation of projected footprints is achieved. Initially,
CityGML file which is XML-based is parsed and stored in C++ class objects. The
resulting objects contained both geometry and semantic information from the input
CityGML dataset. An adoption of algorithm of Sester and Brenner (2004)
extended by Fan et al. (2009) is used to simplify footprints. Libraries of OpenGL
are used to visualize the generalized LoDs.

Existing geometric and semantic-based generalization algorithms are discussed
in Sect. 2. Another method for generalization of 3D buildings modeled in City-
GML to derive multiple LoDs is presented in Sect. 3. Implementation and results
are described in Sect. 4. A comparison of results for evaluation is presented in
Sect. 5. Finally, the conclusion and outcome of the work is highlighted in Sect. 6.

2 Related Works

2.1 Geometric-Based Generalization Approaches

Generalization method proposed in Thiemann (2002) is useful for single buildings.
Small features e.g. chimneys, balconies, windows and doors are extracted and sep-
arated from main body. Segmentation is carried out on main features and the
sequence of operation is stored in a Constructive Solid Geometry (CSG) tree.
Thiemann and Sester (2005) proposed a method for segmentation of boundary of
building surface for generating a hierarchical generalization hierarchy tree. Protru-
sions are removed and holes are detected resulting finite lump. Elements of hierarchy
tree are removed or recognized through elementary generalization operations.

Generalization and Visualization of 3D Building Models 65

Building models are categorized into a limited number of classes keeping their
characteristic shapes and made similar to available 3D templates in Thiemann and
Sester (2006). Thus, an intended building model is substituted with a similar 3D
template, which is best fit to the real object model. Automatic generalization based
on minimal constraints is implemented.

A method proposed in Forberg (2007) is based on scale-space approach, which
provides morphology and curvature space operators to be used for splitting and
merging of 3D building parts. Different representations of models at different scales
from an image are derived to obtain scale-space. The resulted scale-space has
inherited capability of abstraction to be used to initiate generalization process for 3D
building models. Therefore, scale-space is used to generate different LoDs or coarser
representations of 3D city models. For this, parallel facades are moved to each other
to eliminate the gap between them. Smaller features between two facades are
removed by dragging facades away from each other resulted a split between them.
Squaring technique is applied to generalize non-orthogonal structure like roofs, etc.

2.1.1 Simplification of 2D ground plans

A set of generalization actions were proposed in Staufenbiel (1973) for sim-
plification of 2D footprints based on human interaction. Powitz (1992), Regnauld
(2001) and Harrie (1973) developed algorithms to remove line segments of
ground plan by extending and crossing their neighbor segments based on a pre-
defined threshold of length by taking angles and minimum distances into
account. Mayer (2005) and Rainsford and Mackaness (2002) use vector tem-
plates for generalization 2D ground plan. An adoption of approach developed by
Sester and Brenner (2004) and extended by Fan et al. (2009) is applied for
simplification of ground plan in Mao et al. (2010).

An algorithm proposed in Sester (2005) using Least Square Adjustment (LSA)
removes irrelevant facades of a building. A number of parameters need to be changed
during the process to generalize a building model, so, direct application of LSA
become irrelevant. It become two-steps approach: smaller facades are removed or
replaced during simplification process to generate an estimated ground plan; then a
parametric model from the resulting simplified ground plan is derived. Subsequently,
adjustment process uses the resulting parametric model to be adapted to the new shape.

The algorithm by Sester and Brenner (2004) is applied to simplify ground plan
and intrusions and extrusions are eliminated. Roof structures are adjusted with
respect to ground plan.

2.2 Semantic-Based Generalization Approaches

A semantic-based method is proposed in Fan et al. (2009) for deriving different lower
LoDs from higher LoDs of buildings modeled in CityGML. Generalized LoDs are

66 S. U. Baig and A. A. Rahman

stored in multi-scale representation as a CityTree. An intermediate level of detail
(LoD2.5) was created to reduce the gap between LoD3 and LoD2 for more efficient
visualization of 3D models. The geometric and semantic information of LoD2 is more
generalized than LoD3 hence the process for deriving LoD2 from LoD3 will be rela-
tively more complicated than deriving LoD1 from LoD2. A novel for multiple repre-
sentation data structure for dynamic visualization of 3D city models is proposed in Mao
et al. (2010) and produced CityTree to store different LoDs of generalized models.

3 3D Modeling and Generalization

3.1 CityGML

The building model is the most detailed thematic concept of CityGML. It allows for
the representation of thematic and spatial aspects of buildings, building parts and
installations at four levels of detail (LoD4–LoD1) illustrated in Fig. 1. At LoD1, 3D
buildings are represented by block model with flat roofs. At LoD2, buildings have
differentiated roof structures and thematically differentiated surfaces. LoD3 denotes
architectural models with detailed wall and roof structures, balconies, bays and
projections. LoD4 completes a LoD3 model by adding interior structures.

On the other hand, the LoDs in CityGML are also characterized by differing
accuracies and minimal dimensions of generalized objects. Table 1 shows all object
blocks as generalized features with a footprint of at least 6 m by 6 m have to be
considered in LoD1 as compared to 4 m by 4 m in LoD2. In the detailed model at
LoD3, the minimal footprint should be 2 m by 2 m. Moreover, CityGML supports
the aggregation/decomposition by providing an explicit generalization association
between any City Objects (Gröger et al. 2008). In this sense, buildings at a certain
LoD could be generalized to be represented by an aggregate building at a lower LoD.

3.2 Generalization

The proposed method for derivation of multiple LoDs is based on semantic infor-
mation and height and positional accuracy of LoDs provided by CityGML. LoD3
include outer building installations, opening objects e.g. windows, doors and

Fig. 1 Four buildings of Putrajaya city (Malaysia) in different LoDs, from left to right: (LoD4– LoD1)

Generalization and Visualization of 3D Building Models 67

different types are roofs. Opening objects are removed and remaining objects are
projected on ground as footprints to be simplified. Roof structures are projected and
simplified similar to footprints. If side of feature is less than 4 m are preserved
otherwise deleted. Similarly, the remaining features e.g. outer building installations
are simplified resulting LoD2. Outer building installations are eliminated resulting
LoD1 as a process of aggregation and simplification of geometries of building at
LoD2. Following section explains the simplification process of projected footprints.

The following pseudocode shows the workflow of generalization process.

1. Declaration of C++ objects, which contain both geometry (coordinates of
vertices) and semantic information about components of LoD3

2. Parsed LoD3 model to C++ objects
3. Displayed LoD3
4. Removed ‘‘Opening objects’’ from objects
5. Removed sides of remaining footprints of components of LoD3 resulting LoD2

based on specification of CityGML
6. Displayed LoD2
7. Repeated (5) for simplification and aggregation of footprints at LoD2 resulting

LoD1
8. Displayed LoD1

3.2.1 Simplification of Footprints

Involvement of human interaction for simplification of 2D footprints is an old method
for generalization of 2D geospatial data. Similarly, another ancient method is extending
and crossing neighboring segments to remove line segments of ground plan on a given
both thresholds the angles and distances. Here, in study, an approach developed by
Sester and Brenner (2004) and extended by Fan et al. (2009) is applied for simplification
of ground plan. The proposed method is an adaption of their methods and has been
modified due to different scenarios like if building contains sharp edges in case of dome
of a mosque, etc. or if smaller features make a special pattern. Simplification methods
adopted in our study to simplify footprints based on neighboring edges.

The following semantic-based rules can be imposed to avoid removal/addition
of important parts of building model:

• Building side smaller than a threshold should be removed but in certain cases
similar to Fan et al. (2009), an important object, which lies on the side should
not be removed.

Table 1 (LoD1–LoD4) of CityGML with its accuracy requirements (adopted from OGC 2009)

Generalization

LoD1 Objects blocks as generalized features [6 9 6 m/3 m
LoD2 Objects as generalized features [4 9 4 m/2 m
LoD3 Objects as real features [2 9 2 m/1 m
LoD4 Constructive elements and openings are represented

68 S. U. Baig and A. A. Rahman

• If more than one smaller parts consecutively exists which are smaller than
threshold and make a pattern, then all of them needs to be treated collectively
not individually.

• If removal or modification affects the neighboring feature then or if these is an
overlapping between two smaller features should be treated together.

3.2.2 Removal of Intrusion/Extrusion and Offset

Figure 2 illustrates removal of offset taking neighboring edges into account for
simplification of foot print similar to Sester and Brenner (2004). Before simplifi-
cation each side of building needs to be checked to determine if the side of
building is smaller than threshold. Here in our case, building side Sn is smaller than
threshold and there is no important part of building lies on it. Other sides con-
necting with Sn are Sn+1 and Sn-1 which are larger and parallel to each other while
Sn-2 share an edge with Sn-1. Larger side Sn-2 is extended and vertical side Sn+1 is
reduced resulted a new side Sn-2, Sn.

3.2.3 Removal of Corners

Case 1 (Fig. 3a): Corner of a building side can be reduced without disturbing
shape of sides as both sides (Sn+1 and Sn-1) of corner are not parallel but the
distance of each side is same as illustrated in Fig. 3a. A new point P is produced by
intersecting perpendiculars of both sides. The resulting sides become (Sn+1, P) and
(Sn-1, P) and previous longer sides (Sn+1) and (Sn-1) an be deleted but shape is
preserved.

Case 2 (Fig. 3b): The side of a corner needs to be checked if it is shorter than
two longer sides and threshold. If an important feature like door or window exists
on the wall connected with this side then the smaller side (Sn) should not be
altered. Otherwise, (Sn-1) and (Sn+1) which are neighbors of (Sn) are extended until
they interest with each other at point P. Then the smaller side (Sn) is removed
resulting two longer sides (Sn-1, P) and (Sn+1, P).

Case 3 (Fig. 3c): This case is reverse of Case 2 where a point P is deleted by
reducing both sides (Sn-1, P) and (Sn+1, P) inwards resulting a new side (Sn, P).

Fig. 2 Removal of Offset taking neighboring edges into account for simplification of ground
plan (redrawn from Mao et al. 2010)

Generalization and Visualization of 3D Building Models 69

Sometime we encounter with such buildings which contains intrusions/extrusions,
offsets and corners together and make a pattern on each side of building part. Figure 4a
illustrates three portions (A, B and C) of a larger surface. The pattern of two portions A
and B are similar with two corners and two flat intrusions but the third portion (C) is
slightly different form rest of portions A and B and an intrusion is missing.

Case 4: In this case (Fig. 4b), we need to maintain pattern before reducing data.
It can be said alternatively, we have to increase data before reducing. Therefore,
missing intrusions are produced by extending larger sides vertically resulting two
parallel sides. As next step, edges of both newly formed parallel sides are con-
nected resulting new intrusion. Now, pattern of portion A, B and C is maintained.
Process of insertion of new intrusion is illustrated in Fig. 4b. Identified portion (C)
contains two larger sides (Sn-2) and (Sn+2). An additional intrusion having smaller
sides (Sn), (Sn+1) and (Sn-1) is produced by reducing a smaller side resulting three
smaller sides (Sn,New), (Sn,New-1) and (Sn,New+1). The number of intrusions/Offset in
all three portions A, B and C becomes same and pattern is maintained.

Case 5: (Fig. 4c), as shown in (b), smaller sides (Sn,New+1) and (Sn-1) which are
smaller than threshold need to be reduced. They are reduced and a new side(Sn.New,
Sn, Sn,New+2) is produced. Similarly, the process is repeated similar to Fig. 3 for
Offset and sides of smaller sides are reduced and deleted. The resulting sides larger
than threshold become (S(NewLine)1), (S(NewLine)2) and (S(NewLine)3).

The above-mentioned method is applied to simplification of 3D buildings in
Putrajaya city of Malaysia and presented the results in last section.

Fig. 3 Removal of corners taking neighboring edges into account a introduction of new point at
center, b extension of longer faces until their intersection, c removal of point P and reducing face
inward. (redrawn from Fan et al. 2009)

70 S. U. Baig and A. A. Rahman

Fig. 4 Creation of an intrusion to maintain pattern of features of footprint: a three portions (A,
B and C) of a larger surface, b insertion of new intrusion, c reduction of all intrusions together

Generalization and Visualization of 3D Building Models 71

Building model presented in Fig. 5 is of the Jabatan Pendaftaran Negara
(JPN), Putrajaya city of Malaysia having similar characteristics mentioned. The
model is simplified by applying methods presented in different cases.

3.2.4 Aggregation of Footprints

Aggregation methods developed by a number of researchers for 2D cartographic
objects can be used for 3D objects. Glander and Döllner (2007) introduced a
method for aggregation by cell-based clustering to merge building blocks. ‘‘Direct-
merge’’ and ‘‘Snap-merge’’ are two aggregation operators introduced by Bundy
et al. (1995) to move two objects near to each other for aggregation purpose. A
method developed by Anders (2005) is quite suitable for aggregation of footprints
located on a straight line with same orientation but both simplification and
aggregation of footprints are processed simultaneously. In this case, this method
can preserve the location of original footprints, and creates the new by prolonging
the existing ones but it is not necessary to club buildings horizontally.

In our approach, application of aggregation methods depends upon certain
conditions which include Direct-merge and Snap-merge by Bundy et al. (1995)
and triangulation for aggregation of footprints of building models illustrated in
Fig. 6. Following conditions need to be checked first:

If one or more than one important feature lies in the way between two large
features to be aggregated then important features need to be aggregated first fol-
lowed by aggregation of both larges features.

• If the distance between two separate footprints is smaller than the size of one of
smaller object then Snap-merge method of Bundy et al. (1995) should be applied
otherwise triangulation method similar to Mao (2010) should be applied.

• Smaller part of ground plan should move to larger one in case of Snap-merge or
direct-merge.

• In case of tilting of surfaces which cannot be identified in footprints need to be
addressed taking height of footprint of wall or surface into account.

• All vertices of footprints need to be taken into account for merging.

Fig. 5 Result of removal of intrusion, corners of the Jabatan Pendaftaran Negara (JPN),
Putrajaya, Malaysia

72 S. U. Baig and A. A. Rahman

The Fig. 7 illustrates aggregation of footprints of Putra Mosque and Jabatan
Pendaftaran Negara (JPN) in Putrajaya, Malaysia using triangulation method.
Results of footprints of two buildings of Jabatan Pendaftaran Negara (JPN) and
Putra mosque in Putrajaya city of Putrajaya, Malaysia are presented.

4 Implementation and Results

Generalization and visualization of generalized models were implemented in a
C++ application. The platform is Microsoft Visual Studios 2008 runs on a PC
Pentium (R) Dual-Core CPU 2.10 GHz, 2.00 GB RAM, and Microsoft Windows
2007. The CityGML file was parsed using CMarkup 10.1. 3D building models of
Putrajaya city of Malaysia were used for this research.

Fig. 6 Aggregation of footprints connecting neighboring edges of building model

Fig. 7 Aggregation of footprints of Putra Mosque and Jabatan Pendaftaran Negara (JPN) in
Putrajaya, Malaysia: original model (left), triangulation (middle) and aggregated (right)

Generalization and Visualization of 3D Building Models 73

This research focused on conversion of CityGML to C++ objects, extraction
and simplification of 2D footprints and visualization of simplified and aggregated
2D ground plan in LoD1 in our implementation. Modifications were made in
CityGML file before conversion and unnecessary data was removed. The proposed
methods were not implemented for LoD2, LoD3 and LoD4 completely as methods
to merge nodes for aggregation and visualization from multiple representation data
structure is not yet completed as intended.

Initially, 3D building models are converted into C++ objects after CityGML is
parsed using CMarkup. We used some of the methods like Load, FindElem,
FindChildElem, FindNode, etc. to populate the CMarkup object from CityGML
file and to parse it. FindElem method is used to locate next element, optionally
matching name of the tag. Similarly, IntoElem method takes control into current
main position element that becomes like the current position as a parent.

For visualization, initially, vertices of 2D faces as points are plotted using
various commands of OpenGL. Similarly, other commands are used to define a
three-dimensional vertex using three floats. There are other variants ranging from
four doubles to an array of two shorts. Figure 8 shows the visualization of 3D
building models of Putrajaya city of Malaysia around MaCGDI (Malaysian Center
for Geospatial Data Infrastructure) building without generalization and the results
of generalization processes using the above-mentioned proposed methods is pre-
sented in Fig. 9a, b, Fig. 10 and Fig. 11.

Figure 9a shows the simplified models of a small portion highlighted in Fig. 8
while Fig. 9b illustrates simplified and aggregated building models. Figure 10
shows the results in level as street views. It can be visualized that the buildings
located closer to viewing point of a user are less generalized as compared to those
locating far from user illustrated in Fig. 11. Far-away buildings are aggregated
compared to closer buildings.

Fig. 8 3D building models of a portion of Putrajaya city (Malaysia)

74 S. U. Baig and A. A. Rahman

5 The Evaluation

The evaluation plays a vital role if it is necessary to choose between alternative
generalization results. A comparison of results of two algorithms in terms of
geometrical characteristics of two objects is evaluated to determine the level of
difference of their appearance. For this purpose, results of simplification algorithm
of Sester and Brenner (2004) are compared with our proposed algorithm as dif-
ferent algorithms affect characteristics of these objects. Different characteristics of
an object as a whole is taken into account while determining total effect of both
algorithms to evaluate its quality. During simplification process proposed in the
algorithm of Sester and Brenner (2004), intrusions and extrusions are eliminated
and roof structures are adjusted with respect to ground plan taking length of part
into account. In this paper, pattern as well as length of intrusions and extrusions
are taken into account and enhanced initially rather than removed completely.
These intrusions/extrusions should be enhanced first rather than removed directly
because a larger value than the minimal simplification distance can indicate that
essential components of the city model have been removed, illustrated in Fig. 4.

Semantic-based removal of smaller parts of building is one of the strength of
algorithm as different applications demand maintenance of important parts based on
their priority and feature type. Desktop visualization of generalized 3D building
models is one of the drawbacks of this study as evaluation of results based on time

Fig. 9 Experimental results. a Simplified models. b Simplified and aggregated building models

Fig. 10 3D building models (street view)

Generalization and Visualization of 3D Building Models 75

and consumption of memory space could not be made as part of this work. Sec-
ondly, results are visualized directly without storing them in a data structure.
Thirdly, a user interface (GUI) is not part of this study to receive quests or parameter
values from user or applications to simplify object parts.

6 Conclusion

The objective of this study was to investigategeometric and semantic-based generalization
of 3D building models approaches proposed by different researchers. Currently available
methods applied in different scenarios or cases for simplification and aggregation of
buildings were discussed and extended some of the methods to make them useful.

Building models represented in CityGML which is OGC standard is used for this
study. To process the data from CityGML, we used CMarkup class as a parser to
retrieve contents of XML-based CityGML file. Components of buildings were loaded
and populated C++ objects as a tree to be able to process or to display host information.
CMarkup class used Markup.h as an interface to initialize, produce output. The
resulting C++ objects contained data related to components of building. From C++
objects, OpenGL routines are used to extract footprints by adopting methods of Mao
et al. (2010) followed by simplification. Simplification methods were adopted from
algorithm of Sester and Brenner (2004) extended by Fan et al. (2009).

The experiments showed that coordinates of vertices in CityGML are repeating
for connected polygons hence increase memory space and rendering time. How-
ever, generalization of models keeping semantic information into account help
avoid elimination of important smaller features.

Further research will be conducted to generate BuildingTree as multiple data
structure to represent multiple LoDs as a result from generalization process. A Graph-
ical User Interface (GUI) for the proposed generalization is also part of the future work.

Acknowledgments We would like to convey our deepest acknowledgement firstly to Universiti
Teknologi Malaysia (UTM) for providing research grant Vote No. Q.J130000.7127.04J81, and
also to Mr. Muhammad Imzan Hassan for managing the funding. Last, but not least, our sincere
appreciations to Research Management Centre (RMC) of UTM and Ministry of Higher Education
(MOHE), Malaysia for enabling us to carry out this research project.

Fig. 11 Models closer to observer are in detailed (street view)

76 S. U. Baig and A. A. Rahman

References

Anders K (2005) Level of detail generation of 3D building groups by aggregation and typification.
In: Proceedings of the XXII international cartographic conference, La Coruna, Spain

Bundy GL, Jones CB, Furse E (1995) Holistic generalisation of large-scale cartographic data. In:
Müller JC, Lagrange JP, Weibel R (eds) GIS and generalisation, Gisdata 1. Taylor & Francis,
London, pp 106–119

Fan H, Meng L, Jahnke M (2009) Generalisation of 3D buildings modeled by CityGML. In:
Paelke V, Sester M, Bernard L (eds) Lecture Notes in Geoinformation and Cartography,
Advances in GIScience. Springer, Berlin, Heidelberg, pp 387–405

Forberg A (2007) Generalisation of 3D building data based on scale-space approach. ISPRS J
Photogrammetry Remote Sens 62(2):104–111

Glander T, Döllner J (2007) Cell-Based Generalization of 3D Building Groups with Outlier
Management. In: Proceedings of the 15th international symposium on advances in geographic
information systems, ACMGIS

Gröger G, Kolbe TH, Czerwinski A, Nagel C (2008) OpenGIS� City Geography Markup Language
(CityGML) Implementation specification. ClinMed NetPrints. http://www.opengeospatial.org/
legal/. Accessed 10 Oct 2011

Harrie L (1973) An optimisation approach to cartographic generalization. Doctor thesis, Lund
University

Kolbe TH (2008) Representing and exchanging 3D city models with CityGML. In: Zlatanova S,
Lee J (eds) 3D geo-information sciences. Seoul, South Korea. Springer, Berlin, Heidelberg

Mao B (2010) Visualization and generalization of 3D city models. Doctoral thesis, Lund, Sweden
Mao B, Ban Y, Harrie L (2010) A multiple representation data structure for dynamic visualisation

of generalised 3D city models. ISPRS J Photogrammetry Remote Sens, J Mol Med.
doi:10.1016/j.isprsjprs.2010.08.001

Mayer H (2005) Scale-spaces for generalisation of 3D buildings. Int J Geogr Inf Sci 19(8–9):975–997
OGC, (2009). CityGML specification. ClinMed NetPrints. http://www.opengeospatial.org/

standards/citygml. Accessed 25 Nov 2011
Powitz B (1992) Kartographische generalisierung topographischer daten in GIS. Kartographische

Nachrichten 43(6):229–233
Rainsford D, Mackaness W (2002) Template matching in support of generalization of rural

buildings. In: Joint international symposium on ‘‘GeoSpatial theory, processing and
applications’’ (ISPRS/Commission IV/SDH2002), Ottawa, Canada

Regnauld N (2001) Contextual building typification in automated map generalisation. Algorith-
mica 30(2):312–333

Sester M (2005) Optimization approaches for generalization and data abstraction. Int J Geogr Inf
Sci 19(8):871–897

Sester M, Brenner C (2004) Continuous generalisation for visualisation on small mobile devices.
In: 11th international symposium on spatial data handling, Heidelberg, p 355–368

Staufenbiel W (1973) Zur Automation der Generalisierung topographischer Karten mit
besonderer Berücksichtigung grossmasstäbiger Gebäudedarstellungen. PhD Thesis, Fachrich-
tung Vermessungswesen, Universitate Hanover, Hanover

Thiemann F (2002) Generalization of 3D building data. The international archives of the
photogrammetry, remote sensing and spatial information science, 34 (Part 4)

Thiemann F, Sester M (2005) Interpretation of building parts from boundary representation,
workshop on next generation 3D city models, Bonn

Thiemann F, Sester M (2006) 3D symbolization using adaptive templates. In: ISPRS technical
commission II symposium, Vienna, Austria

Generalization and Visualization of 3D Building Models 77

http://www.opengeospatial.org/legal/
http://www.opengeospatial.org/legal/
http://dx.doi.org/10.1016/j.isprsjprs.2010.08.001
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml

From the Volumetric Algorithm
for Single-Tree Delineation Towards
a Fully-Automated Process
for the Generation of ‘‘Virtual Forests’’

Arno Buecken and Juergen Rossmann

Abstract When we introduced the volumetric algorithm for single-tree delineation
at the 3D GeoInfo 07, it was already a powerful algorithm with a high detection rate
and the capability to generate trees for forestry units with only minimal user
interaction. For the first test-area of 82 km2 this was acceptable, but as the test-areas
grew, it showed that even the little user interaction does make the process laborious
and strenuous. For currently envisaged test-areas of more than 1,000 km2, it is
essential to further limit the required user interaction. In this paper we will show
how to reduce the computational complexity of the volumetric algorithm and how
to automatically calculate the free parameter that had to be set interactively in the
earlier implementation. We will use the so called Receiver Operator Characteristic
(ROC), an approach that is being used to model and imitate the human decision
process when it comes to making a parameter decision in statistical processes. It
turns out that this method, which is commonly used in other fields of scientific
decision making, is also valuable for many other geo-information processes.

Keywords Remote sensing � LIDAR � Single tree delineation � Forest � 3D
modeling

A. Buecken (&) � J. Rossmann
Institute for Man-Machine Interaction, RWTH Aachen University, Aachen, Germany
e-mail: buecken@mmi.rwth-aachen.de

J. Rossmann
e-mail: rossmann@mmi.rwth-aachen.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_5,
� Springer-Verlag Berlin Heidelberg 2013

79

1 Introduction

In the ‘‘Virtual Forest’’ project we develop a next-generation geo-information-
system which is no longer limited to two dimensions. The ‘‘4D-GIS’’ of the Virtual
Forest supports three spatial dimensions and keeps track of changes over time. The
final goal of the project is to provide a forest inventory database for the entire
forest in North-Rhine Westphalia, Germany (approx. 9.000 km2 and 240 million
trees, whose diameter breast height is bigger than 20 cm), resulting in a new
4D-geo-information-system for the forest. We therefore had to consider available
algorithms and developed new approaches for single tree delineation.

Many approaches for single tree delineation from LIDAR-data were published
within the last 15 years. Hyyppä and Inkinen published a variant of the water-
shed algorithm (Hyyppä and Inkinen 1999). Persson, Holmgren and Södermann
used Gaussian filtering and a clever heuristic to delineate trees from high res-
olution laser scanner data (Persson et al. 2002). They observed a hit-rate of
71 %. Erikson described an algorithm based on particle simulation (Erikson
2003). Diedershagen, Koch, Weinacker and Schütt extendend the Watershed
algorithm with a heuristic (Diedershagen et al. 2003). Gougeon developed a
valley following algorithm that was also used for LIDAR data sets (Gougeon
1998, 2010). Popescu used a filter window, which size was adapted to the yield
classes of the stand (Popescu and Wynne 2004). Garcia, Suarez and Patenaude
did a comparison of the algorithms of Gougeon, Popescu and Weinacker (Garcia
et al. 2007). They stated, that the Gougeon algorithm was most suitable to
estimate crown and stem diameter, while Popescu’s approach delivered the best
top height and Weinacker provided the best estimate for basal area and volume
of the stand. Garcia et al. observed a hit-rate of 71.8 % for linked trees in the
Popescu algorithm, 76.0 % for Weinacker and 60.2 % for Gougeon on a LIDAR
dataset with 3–4 sample points per square meter.

The Volumetric Algorithm was already introduced at the 3D GeoInfo 07 in
Delft (Rossmann and Buecken 2007). This algorithm provides high accuracy and
good detection results, but in the presented version it was rather slow and it was
still necessary to manually adjust a free parameter for each forestry unit. For a
state-wide application, we needed a fast, fully automated approach, which works
on a cluster of computers without user interaction.

In this paper we will first analyse the computational complexity of the ori-
ginal algorithm and then improve this to a linear complexity. Compared to the
complexity of the original implementation, which is O(n2), this is a major step
ahead. It is not only a speed-up, that one could also accomplish by using a faster
computer, but it also makes the time, which is required for the calculation, more
predictable, because the time does no longer depend on the size of the individual
forestry units. Only the total size is now the criterion. Afterwards we will show
how to estimate the free parameter by means of the Receiver Operator Char-
acteristic (Fawcett 2003).

80 A. Buecken and J. Rossmann

It turns out that there is a correlation between the dominant height of a unit and
the threshold. The result is a curve that can be used to calculate the free parameter
of the algorithm based on the dominant height of the forestry unit.

The results of this automated approach have been tested and were compared to
the detection results of an algorithm that was interactively tuned by a human
operator. We observed that the automated approach performs in a similar quality
as the human operator.

2 Geo-Data

We currently have recorded LIDAR data for test-areas of about 1400 km2. The
examples used in this paper were taken from the 2007 flight campaign in
Schmallenberg (Fig. 1).

The LIDAR data was recorded with a Riegl LMS-Q560 with a density of six
points per square meter and with full wave-form information. The data was then
filtered and converted into a digital terrain (DTM) and digital surface model
(DSM) with a 40 cm grid (6.25 grid-points per square meter). The elevation
difference between the DSM and the DTM was calculated and serves as the
foundation for the single tree delineation process. This model is known as nor-
malized digital surface model (nDSM) and is sometimes also referred to as canopy
height model (CHM) or differential model (DM). It defines the height of the
vegetation at a certain coordinate. These steps were completed by different
external companies.

An additional source of information, that is required to calculate the single tree
layer, is a species map which has been generated from spectral and LIDAR data
(Rossmann and Krahwinkler 2009). This data is used to facilitate the setting of

Fig. 1 The test-site in Schmallenberg in the Sauerland, North-Rhine Westphalia, Germany

From the Volumetric Algorithm for Single-Tree Delineation 81

different parameters of the algorithm for different species and to annotate the
generated tree with its correct species and with further attributes like diameter at
breast height, which cannot be detected in remote sensing data, but can be
statistically derived from other parameters like crown diameter und tree height.

3 The Volumetric Algorithm

In this section we will first motivate the idea of the Volumetric Algorithm for
single tree delineation and then optimize the original implementation by using a
geometrical algorithm.

3.1 The Idea of the Algorithm

The Volumetric Algorithm (Rossmann and Buecken 2007) provides an effective
solution to delineate individual trees in a forest that is described by a nDSM.
This is equal to the task of deciding whether a local maximum is caused by a
tree-top or a lateral branch. While the Watershed Algorithm only uses the basal
area (i.e. a 2D projection) of a potential tree-top for its decision, the Volumetric
Algorithm adds the third dimension and relies on the volume of a peak pointing
out of the canopy. Figure 2 illustrates the workflow of this approach starting
with the tree and its nDSM (a). In the subsequent images we flipped the nDSM
upside down with the most significant points—the maximum heights in the
original data that may represent tree-tops—as local minima of the graph. The
inverted graph makes it easier to imagine the volumetric algorithm as a simu-
lation of a water-flow. To get volumetric information we, figuratively spoken, fill
the nDSM with water (b). Then in each cycle the point with the highest water-
level is ‘‘opened’’, the flow of the water is simulated and the amount of water
that drains out of the opening is measured (d). The measured volume is com-
posed of the volume of the peak itself and a basal volume below the peak and
the adjacent peaks which are dominated by this peak. The interesting feature is
that the resulting volume emphasizes peaks that are dominant in the surrounding.
For each volume that is higher than a threshold t a tree is generated. In the
example only one tree was detected for the point with a volume of 495 m3.

This threshold t differs for each forestry unit. In the implementation of 2007,
this parameter was set interactively by an operator. This process was supported
by a graphical user interface (GUI) which visualizes the effect of the current
threshold setting. In this GUI the operator moved a slider until the generated
trees match the scenery best.

82 A. Buecken and J. Rossmann

3.2 The Original Implementation

In this section we will discuss the complexity of the flow simulation on the nDSM
for a grid with the same number of grid cells in both dimensions only (s x s cells).
It can be shown easily that grids with different amounts of cells in the two
dimensions (s x t cells) will lead to the same complexity.

If we speak of flow simulation on a discreet, grid-oriented data-set, the tradi-
tional class of algorithms would be cellular automata, which was also the first
implementation of the algorithm that we chose. Figure 3 shows how this imple-
mentation works. For each local maximum a new flow simulation is started. In the
worst case a grid of n cells can have

m ¼ n

4
ð1Þ

local maxima which leads to the same number of executions of the outer loop of
the algorithm.

In each loop we see two actions that require more than constant time: the search
for the cell with the highest amount of water and the flow simulation. The search
has to consider all cells because the water level in each cell could have changed
during the last step, which would change the order in which the cells have to be
processed.

Fig. 2 The volumetric
algorithm: a tree (a), its
flipped nDSM filled with
water (b), the first cycle of
the algorithm (c) and the
calculated volumes (d)

From the Volumetric Algorithm for Single-Tree Delineation 83

Figure 4 shows how the flow simulation on a cellular automaton works. It pictures
the first cycle of the example in Fig. 2. At the beginning (a) we see the grid-cells in
top-view where the grey-scale-level is equivalent to the amount of water that is
currently stored in each cell. In the first step the central cell, which carries the highest
amount of water, is emptied. Then all cells adjacent to the first are considered. This is
repeated until either the whole grid has been considered or the automaton has not
changed for one cycle. The final state is displayed on the image bottom middle. It
seems as though no water is left in the grid, but an amplified display of the same
situation (g) shows the water that has been left. This simulation considers a single cell
in the first step, then the cell and its neighbours and so on. In the worst case—when the
local maximum is located in the corner of the grid—the simulation would therefore
require

s ¼
ffiffiffi

n
p

ð2Þ

steps on the s x s grid with growing sizes of the considered area (n: number of grid-
cells). This would lead to a complexity of

X

s

i¼1

i2 ¼ s sþ 1ð Þ 2sþ 1ð Þ
6

� s3

3
¼ n1;5

3
ð3Þ

Fig. 3 The volumetric algorithm in its original implementation

84 A. Buecken and J. Rossmann

There exists also a faster, list-oriented implementation for this step that only
considers the borders of the area and does not need to look at the center of the
actual peak again. This implementation touches each cell twice which leads to a
linear complexity of this step.

In the worst case this algorithm needs n repetitions of the loop where the action
within the loop has a linear complexity. This again leads to a total complexity of
O(n2).

Fig. 4 The flow simulation for the first step of the example in Fig. 2. Volumes are displayed by
the level of brightness, a bright cell is equivalent to a high volume. a initial situation. b First
cycle, the local maximum has been processed. c Second cycle, the local maximum and the
adjacent cells have been considered. d Third cycle, the cells next to the previous areas have been
processed. e Fourth cycle. f Fifth and last cycle: all cells have been processed. g Changing the
scale between brightness and volume reveals that there are still small volumes left that need to be
processed in separate passes

From the Volumetric Algorithm for Single-Tree Delineation 85

3.3 The Sweep-Plane-Implementation

In a data-set with a resolution of 40 cm a forestry unit of 1 ha includes n = 62,500
sample points. This gives an impression of how fast the running time of an
algorithm with quadratic complexity will increase. When we started to consider
larger units we therefore had to find a more efficient implementation of the
Volumetric Algorithm.

While the cellular automaton works with a two dimensional grid, the same
dataset can also be displayed as a three dimensional grid that consists of voxels
(Fig. 5a). Like a dicom-image of a MRT scan in radiology we can also consider
this grid as a pile of layers and can display each of the layers with a sectional view
that shows all the voxels on this layer. Each voxel can be assigned to one of the
local maxima and the number of voxels is then proportional to the volume that is
measured at this peak.

The new implementation of the Volumetric Algorithm uses a geometric
approach with a sweep plane that iterates through voxel layers to calculate the
volumes of the peaks. In this representation the pile of voxels on each cell has got
the height, that is specified in the nDSM for this cell. In the first step of the
algorithm the topmost voxels of each pile are sorted by their z-coordinate. This
provides an order in which the voxel piles have to be considered when the voxel
layers are iterated from top to bottom. The sort operation can be done in linear
time with bucket sort because the values are discreet and lie within a limited range.

The sweep-plane contains a grid with the same size as the nDSM. It starts at the
top-most layer that contains voxels. These are transferred as points to the sweep-
plane grid and afterwards all independent regions within this grid are detected with
a run through all cells of the plane and a call of a flood fill algorithm for each new
region (‘‘seek and paint’’). Each region is given a number and marked on the
sweep plane with this number. The number of cells for each region, which equals
the number of voxels in this layer for each region, is stored. Then the sweep-plane
moves down layer by layer. If a layer does not contain new voxel piles, the
situation on the sweep-plane remains unchanged and the same number of voxels
that was already used in the previous layer is again added to the counter of each
region. If the layer contains new points, they are added to the sweep-plane. After
that another seek-and-paint run has to be started. This time it has to consider the
already existing regions in the order of their generation. The algorithm starts a
flood-fill at the center of each region and counts the new voxels for it. Afterwards
the algorithm checks the sweep-plane for still untouched cells. If it finds untouched
cells, it starts a new region at this point and again counts the voxels for this region
with a flood-fill.

This procedure is repeated until the sweep-plane reaches the ground. The
order of the flood-fill-calls ensures that the dominant peak still gets the volume
of the peak itself and the basal volume below the peak and the adjacent sub-
ordinate peaks. Figure 5b-g shows how the algorithm works on the example.
Three different layers are shown and the regions are painted in different colours

86 A. Buecken and J. Rossmann

according to the region which they were assigned to. Figure 6 shows a diagram
of the algorithm.

The number of iterations depends no longer on the number of grid-cells but on
the number of layers. Our implementation considers 10,000 layers—a maximum
of 100 m in height and 1 cm resolution. Each iteration consists of a maximum of
three subsequent actions: insertion of new points, seek-and-paint-step and update
of the number of total voxels for all regions. In the worst case all cells are added in
one layer. In this case the insertion step will take a time proportional to n. For the
seek-and-paint-step it is important to see that all calls of the flood-fill together have
a linear complexity. With the 4-connected- or 4-neighbour-flood-fill a grid-cell can
be entered from 4 directions only. Note that this cannot happen more than once for
each direction during a single iteration of the algorithm. Additionally, there are a
maximum of m (maximum number of regions, see formula 1) center-points of
regions that have to be checked and where the flood-fill might start and n cells that
are checked for a new region. Therefore this step has still got linear complexity:

Fig. 5 The 3d-voxel-representation decomposed into layers

From the Volumetric Algorithm for Single-Tree Delineation 87

4 � nþ mþ n ¼ 5
1
4

n 2 OðnÞ ð4Þ

The final action, the update for all regions, can consume a time proportional
to m. So each iteration consumes linear time. Together with the constant number
of layers we achieve a complexity of the algorithm of O(n).

This sweep-plane implementation of the Volumetric Algorithm features a linear
complexity in comparison to the original implementation with a quadratic com-
plexity. This leads to an acceleration of the running time for forestry units of 1 ha
and more. For example a test unit with 5.37 ha takes 3:55 min with the original
implementation and 2:03 min with the sweep-plane implementation.

There is one more interesting fact about the sweep-plane algorithm: Because all
grid-cells have to be touched at least once, there cannot be an algorithm with a
complexity better than O(n). This implies that all other algorithms that solve the
same problem are at a maximum faster by a constant factor.

4 Elimination of the Free Parameter

The new sweep-plane implementation of the Volumetric Algorithm accelerates the
calculation of the volumes for the local maxima, but it does not change the second
step: It is still necessary to define a threshold t for each forestry unit, which
determines whether a local maximum with its associated volume represents a tree
top or a lateral branch. In the following part of this paper we will show how to
determine a heuristic for this threshold.

Fig. 6 The volumetric algorithm in the sweep-plane implementation

88 A. Buecken and J. Rossmann

4.1 The Approach via ‘‘Receiver Operator Characteristic’’

The Receiver Operator Characteristic is a common approach in problems related to
signal detection. For example in medical applications it is used to determine
thresholds for the feature based derivation of a diagnosis (Obuchowski 2005).

The ROC uses ground truth data and calculates results for different settings of
the independent parameter of the algorithm (classifiers)—in our example for
different settings of the threshold value. It examines a set of candidates C, which is
a superset of the set of the ground-truth elements and the detected elements. In our
example it is the set of all local maxima in the normalized digital surface model
nDHM. All elements of C are grouped into four subsets TP, FP, FN and TN
according to Table 1.

In the example of single tree delineation, the classes in the table contain the
following elements:

• P: All local maxima that correspond to a tree in the ground truth dataset.
• N: All local maxima that do not correspond to a tree in the ground truth dataset.
• D: All local maxima that were detected as a tree.
• ND: All local maxima that were neglected as a lateral branch.
• TP: The detected trees that correspond to a tree in the ground truth dataset.
• FP: The detected trees that have no corresponding tree in the ground truth

dataset.

Table 1 The four Sets that are used in the Receiver Operator Characteristic

Ground-Truth
Yes (P) No (N)

D
et

ec
tio

n
R

es
ul

t Y
es

 (
D

)
True Positive

TP
False Positive

FP

N
o

(N
D

)

False Negative
FN

True Negative
TN

From the Volumetric Algorithm for Single-Tree Delineation 89

• FN: The local maxima in the nDSM, which were classified as lateral branches
but correspond to a tree in the ground truth dataset.

• TN: The local maxima in the nDSM, which were classified as a lateral branch
and which have no corresponding tree in the ground truth dataset.

In the Volumetric Algorithm for single tree delineation, a smaller threshold
corresponds to a finer segmentation. Thus, we can expect that the number of true
positives as well as the number of false positives increases when the threshold is
decreased. Once a tree is detected for a certain threshold t1, it will also be detected
for all threshold tx which are smaller than t1. This corresponds to a monotonic
behaviour of TP and FP.

With the ROC graph it is possible to characterize the change of TP and FP for
different classifiers. It plots either the TP rate (‘‘hit-rate’’)

TP� Rate ¼ TPj j
Pj j ð5Þ

against the FP rate (‘‘false alarm rate’’)

FP� Rate ¼ FPj j
Nj j ð6Þ

or TPj j against FPj j(absolute numbers).
In our example it is reasonable to choose absolute numbers, because Nj j is

usually much larger than Pj j and we want to keep the number of false positives
reasonable. In the ROC graph, each possible setting of the algorithm is displayed
as a point

p ¼ FPj j; TPj jð Þ ð7Þ

In the ideal case, this graph would look like Fig. 7 left. In our example this
graph corresponds to the following situation: First the threshold is higher than the
maximum volume of a peak that appears in the scene: No tree is generated. When
the threshold gets smaller, the first trees are recognized by the algorithm. This
continues until all trees in the unit are recognized but no additional tree was

Fig. 7 An ideal (left) and a real ROC graph (right)

90 A. Buecken and J. Rossmann

generated. When the threshold further decreases, additional trees (false positives)
appear.

For most practical computer vision applications this ideal shape can hardly be
achieved. Usually, the graph is shaped like Fig. 7 right. This shows that the first false
positives appear before the last true positive was detected. But independent of the exact
form of the graph, we can define a rule for the selection of the classifier with it and
therewith objectify the selection. In order to visualize the effects of several rules, we use
a second kind of graph—the density graph. The density graph plots the change of true
positives as well as the change offalse positives against the classifier. For each classifier
(x-axis) it shows how many additional true positives and false positives (y-axis) appear.

We marked some rules in the density graph (Fig. 8):

• Only true positives (line out of dots and dashes). The yellow line in the right
graph marks the minimum classifier where no false positive appeared. In the
example this would correspond to a segmentation where all detected trees
correspond to a real tree and no additional tree was detected. In the ROC graph
this is the point where the graph leaves the y-axis or the highest point where the
yellow 90�-tangent contacts the graph.

• All true positives detected (line out of dashes). The blue line in the right graph
marks the maximum classifier, where all true positives appeared. In the example
this is the situation, when the maximum number of trees is detected, indepen-
dent of the number of additional trees that appeared at this time. In the ROC
graph this is the point where the graph contacts the blue 0� tangent first.

• Trade-off between true-positives and false-positives (line out of dots). In the density
graph we look for the point where the number of additional true positives equals the
number of additional false positives. In our example this is the break-even point
between additional correctly detected trees and misclassified trees. If we decrease
the threshold further we will get additional correctly detected trees, but this happens
at the price of a larger amount of false positives. In a ROC graph, that plots absolute
numbers, this is the point where the green 45� tangent contacts the graph.

Fig. 8 A ROC graph (left) and the corresponding density graph (right) with three marks in the graphs

From the Volumetric Algorithm for Single-Tree Delineation 91

Each of these rules defines an objective criterion for the choice of the classifier
for a given example.

4.2 Parameterization of the Volumetric Algorithm

In this section, we will show how the concept of the Receiver Operator was used to
find a formula that specifies the threshold of the Volumetric Algorithm in relation
to parameters of the forestry unit that can be monitored from remote sensing data.

We first collected ground truth data for eleven forestry units in the area of Schmal-
lenberg (North Rhine-Westphalia, Germany) (Fig. 9 and Table 2). The test units contain
237 trees and represent a broad spectrum in the attributes dominant height (12–30.89 m),

Fig. 9 The test units, that were used for the analysis in the paper

Table 2 Attributes of the test units

Unit Dominant height (m) Yield factor Age (years) Number of trees

1 21.11 0.75 47 26
2 16.37 0.98 39 16
3 12 0.87 30 14
4 31.8 0.66 91 35
5 19.86 1.02 46 26
6 30.89 0.7 86 19
7 25 0.74 60 26
8 19.19 0.9 45 29
9 16.66 0.88 39 14
10 27.5 0.84 69 21
11 28 0.86 71 13

92 A. Buecken and J. Rossmann

age (30–115 years) and yield density (0.66–1.02). For each forestry unit we generated a
ground truth map (Fig. 10). This map contains multiple kinds of information:

• All trees in the unit are marked with a red pixel.
• Everything that does not belong to the test unit is marked black.
• Every other pixel has to be marked in another color than black and red.

This representation of ground truth data is simple to generate: We used the grey
scale image of the nDSM (Fig. 10 left). In a first step the tops of the crown of all
trees were marked in the map and in a second step all pixels that belong to trees
which are located outside of the unit were painted with black color. These

Fig. 10 The nDSM (left) and the ground truth map (right) for unit 4

Fig. 11 The ROC graph for unit 4 based on 2,000 threshold values

From the Volumetric Algorithm for Single-Tree Delineation 93

operations can be performed with a simple graphics editor in the field and allow a
fast recording of the required ground truth data.

During the calculation this image was first used to filter the relevant parts of the
nDSM. Afterwards the positions of the red dots were extracted. We then calculated
all tree candidates with the Volumetric Algorithm and performed a mapping
between the generated trees and the marked ground truth trees for 2,000 settings of
the threshold value. In this dataset we counted the true positives and false positives
for each threshold value and generated a ROC graph for the unit. Figure 11 shows
the ROC graph for unit 4 as an example.

We chose to accept a trade-off between true positives and false positives,
because we wanted to achieve a balanced behavior of the algorithm which is
acceptable for all parties in the forestry administration and industry. Therefore we
decided to use the third rule from Sect. 4.1 that would look for the contact point of
the 45� tangent. This balances the generation of additional TPs against the addition
of unwanted FPs. In most graphs this point did not correspond to a single threshold
but to a range of threshold values, that produce the same detection result. Table 3
lists the ranges and the average value of the thresholds for the 11 units.

The next step is to find a relation between the attributes of the forestry units and
the threshold values. We tried the attributes dominant height and yield factor for
this relation, because these attributes can be monitored from remote sensing data
(Rossmann et al. 2009). It turned out that there is obviously a connection between
the dominant height and the threshold (Fig. 12 top). We observed a correlation
factor of 0.854. For the eleven test units we could not see a clear connection
between the yield factor and the threshold (Fig. 12 bottom, correlation factor –
0.633). This observation could change for a larger set of test units, because the
yield factor is a rather fuzzy attribute and it is common that this attribute varies by
10–20 % when it is determined by different surveyors.

Table 3 Thresholds for the 11 units

Unit Dominant height (m) Yield factor Range of thresholds Average

1 21.11 0.75 [0.2;1.0] 0.6
2 16.37 0.98 [0.2;1.0] 0.6
3 12 0.87 [0.0;0.0] 0
4 31.8 0.66 [9.2;30.0] 19.6
5 19.86 1.02 [0.2;1.0] 0.6
6 30.89 0.7 [4.2;18.0] 11.1
7 25 0.74 [2.2;4.0] 3.1
8 19.19 0.9 [0.2;1.0] 0.6
9 16.66 0.88 [0.2;1.0] 0.6
10 27.5 0.84 [5.2;23.0] 14.1
11 28 0.86 [1.2;11.0] 6.1

94 A. Buecken and J. Rossmann

5 Results

We implemented the sweep-plane variant of the Volumetric Algorithm and added
the parameter curve as a heuristic that provides a connection between dominant

Fig. 12 The relation between the thresholds and the dominant height (top), respectively the
thresholds and the yield factor (bottom)

From the Volumetric Algorithm for Single-Tree Delineation 95

height and threshold. With this implementation we tested both, execution speed
and the detection rate of the algorithm.

5.1 Detection Result

Besides the eleven units with 237 trees that were used to determine the shape of
the ROC graph, we have got ground truth data for fourteen additional regions
which contain another 1,266 trees. These trees were used to test the segmentation
results of the new heuristic. We used the sweep-plane implementation of the
Volumetric Algorithm to calculate the volumes for all local maxima. Afterwards
we determined the dominant height for the regions and calculated the appropriate
threshold by means of the Receiver Operator Characteristic as explained in the
previous chapter. The same area was then also processed by an experienced human
operator with the interactive graphical user interface. Table 4 compares the results
of the algorithm and the operator for the ground-truth data.

It turned out that the detection result of the time-consuming interactive
segmentation is only slightly better than the fully-automated delineation. Only
seventeen trees (which is less than 1.5 % of the total number of trees) were
additionally detected in the manual process.

Table 4 Comparison of the number of delineated trees for fourteen test units

Region Number of Trees Human Operator Heuristic

1 16 15 15
2 124 115 113
3 122 110 109
4 56 53 52
5 78 75 75
6 147 132 130
7 102 93 93
8 126 121 116
9 139 132 131
10 49 47 47
11 105 92 91
12 78 70 69
13 53 48 45
14 71 63 63
Total 1266 1166 1149
Hit-rate 92.1 90.8

96 A. Buecken and J. Rossmann

5.2 Processing Speed

In addition to the good detection results it was also essential that the algorithm
performs fast enough for large areas. We therefore analyzed the performance of the
algorithm for several individual units of different sizes. Table 5 and Fig. 13 show the
results of this test. It turns out that the sweep-plane implementation is faster for large
areas but a little slower for small units. The time that is used to initialize the data
structures effects the total running time as well as the considerably high, constant
number of iterations, that the sweep-plane algorithm has to undergo.

After these first tests, we decided to use the whole test-area of Schmallenberg as a
benchmark. On a single high-performance personal computer the algorithm took less
than 4 h to delineate the trees of all forestry units within the 280 km2 of this test-area.

Table 5 Comparison of the performance of the original version and the sweep-plane imple-
mentation of the volumetric algorithm on a standard pc (core 2 duo, 2,13 GHz)

Unit Size (ha) Original version (min) Sweep-plane implementation (min)

1 0.4 0:10 0:15
2 0.92 0:11 0:14
3 3.2 2:02 1:26
4 5.37 3:55 2:03
5 7.92 6:23 3:39
6 12.02 13:58 5:08

Fig. 13 A plot of the running-times for the test-units

From the Volumetric Algorithm for Single-Tree Delineation 97

If we extrapolate this performance linear from the time that was required to
process the 280 km2 to the time that will be required for the delineation of the area
of the whole state of North-Rhine Westphalia (34,088 km2), it is possible to
process this area within a month on a single pc or within days on a small cluster.

6 Conclusions

The new implementation and the added heuristic significantly enhance the
usability on the Volumetric Algorithm for single tree delineation. While the 2007
version of the algorithm was suitable to process a small number of individual
forestry units, the new version presented in this paper has got the required
performance and the level of automation to process areas of the size of a state. Due
to the linear complexity it becomes possible to extrapolate the calculation time
only based on the total area of the test site.

The quality of the detection-results of the fully-automated process comes close
to the results that a human operator can achieve on the same areas with the
interactive implementation.

The ROC proved to be a powerful tool that can be used to estimate free
parameters objectively. While a parameterization based on a manual process
always mirrors personal attitudes of the operator and therefore requires that a
greater number of operators to adjust the algorithm for the same samples, the ROC
reduces the effort to one calculation pass. With this property, the Receiver
Operator Characteristic has shown to be not only valuable for single tree delin-
eation, but also for a number of other algorithms in the context of remote sensing
in forestry applications.

Until now, we tested the heuristic only on LIDAR data that was recorded with
the same parameters (point-density, beam-diameter, etc.) as the Schmallenberg
data-set, because all of our test-areas were recorded with these settings. Currently,
we are deriving a toolset to allow us to make ‘‘educated guesses’’ concerning the
performance of our approach in areas with different forest types, as well as dif-
ferent data densities and qualities.

The delineated trees were used to initialize a single-tree database, which will
provide the foundation for a single-tree forest inventory.

Acknowledgments The project ‘‘Virtual Forest’’ is co-financed by the European Union and
North-Rhine-Westphalia—European Regional Development Fund (EFRE)

References

Buecken A, Rossmann J (2007) Using 3D-laser scanners and image-recognition for volume-based
single-tree-delineation and -parameterization for 3D-GIS-applications. In: van Oesterom,

98 A. Buecken and J. Rossmann

Zlatanova, Penninga, Fendel (eds) Advances in 3D geoinformation systems, lecture notes in
geoinformation and cartography LNG&C, Springer, Delft

Diedershagen O, Koch B, Weinacker H, Schütt C (2003) Combining LIDAR- and GIS data for
the extraction of forest inventory parameters. In: Proceedings scand laser 2003

Erikson M (2003) Structure-preserving segmentation of individual tree crowns by brownian
motion. In: Proceedings SCIA 2003, pp 283–289

Fawcett T (2003) ROC graphs: notes and practical considerations for data mining researchers. HP
http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf. Accessed 10 January 2012

Garcia R, Suárez J, Patenaude G (2007) Delineation of individual tree crowns for LiDAR tree and
stand parameter estimation in Scottish woodlands. In: Fabrikant, Wachowski (eds) The
European information society—leading the way with geo-information lecture notes in
geoinformation and cartography, Springer, Berlin

Gougeon FA (1998) Automatic individual tree crown delineation using a valley-following
algorithm and a rule-based system. In: Proceeding of international forum on automated
interpretation of high spatial resolution digital imagery for forestry. 11–23

Gougeon FA (2010) Forest remote sensing in canada and the individual tree crown (ITC)
approach to forest inventories. J Fac Agric Shinshu Univ 46:85–92

Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser
scanner. Photogram J Finland 2:27–42

Obuchowski N (2005) Fundamentals of clinical research for radiologists, ROC analysis. Am J
Roentgenol 184:364–372

Persson Å, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an
airborne laser scanner. Photogramm Eng Remote Sens 68:925–932

Popescu S, Wynne R (2004) Seeing the trees in the forest: using lidar and multispectral data
fusion with local filtering and variable window size for estimation tree height. Photogramm
Eng Remote Sens 70:589–604

Rossmann J, Krahwinkler PM (2009) Tree species classification and forest stand delineation
based on remote sensing data – large scale monitoring of biodiversity in the forest. In:
Proceedings of the ISRsE33

Rossmann J, Schluse M, Buecken A, Hoppen M (2009) Advances in forestry geo-information
systems enabling new approaches in the bioenergy sector. In: Proceedings of the bioenergy
2009 conference

From the Volumetric Algorithm for Single-Tree Delineation 99

http://www.hpl.hp.com/techreports/2003/HPL-2003-4.pdf

A Service-Based Concept for Camera
Control in 3D Geovirtual Environments

Jan Klimke, Benjamin Hagedorn and Jürgen Döllner

Abstract 3D geovirtual environments (3D GeoVEs) such as virtual 3D city models
serve as integration platforms for complex geospatial information and facilitate
effective use and communication of that information. Recent developments towards
standards and service-based, interactive 3D geovisualization systems enable the
large-scale distribution of 3D GeoVEs also by thin client applications that work on
mobile devices or in web browsers. To construct such systems, 3D portrayal services
can be used as building blocks for service-based rendering. Service-based approa-
ches for 3D user interaction, however, have not been formalized and specified to a
similar degree. In this paper, we present a concept for service-based 3D camera
control as a key element of 3D user interaction used to explore and manipulate 3D
GeoVEs and their objects. It is based on the decomposition of 3D user interaction
functionality into a set of services that can be flexibly combined to build automated,
assisting, and application-specific 3D user interaction tools, which fit into service-
oriented architectures of GIS and SDI-based IT solutions. We discuss 3D camera
techniques as well as categories of 3D camera tasks and derive a collection of
general-purpose 3D interaction services. We also explain how to efficiently compose
these services and discuss their impact on the architecture of service-based visual-
ization systems. Furthermore, we outline an example of a distributed 3D

J. Klimke (&) � B. Hagedorn � J. Döllner
Hasso-Plattner-Institut, University of Potsdam,
Prof.-Dr.-Helmert-Str. 2-3,
14482 Potsdam, Germany
e-mail: jan.klimke@hpi.uni-potsdam.de

B. Hagedorn
e-mail: benjamin.hagedorn@hpi.uni-potsdam.de

J. Döllner
e-mail: doellner@hpi.uni-potsdam.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_6,
� Springer-Verlag Berlin Heidelberg 2013

101

geovisualization system that shows how the concept can be applied to applications
based on virtual 3D city models.

Keywords 3D camera control � Service-oriented architecture � 3D portrayal �
Virtual 3D city models � 3D thin client

1 Introduction

3D geovirtual environments (3D GeoVEs) such as virtual 3D city models and 3D
landscape models serve as integration platforms for complex 2D and 3D geospatial
information. They provide a conceptual and technical framework to integrate,
manage, edit, analyze, and visualize that information, facilitate use and commu-
nication of geospatial information, and represent a key functionality for IT solu-
tions based on 3D GeoVEs. There is a growing number of application fields for 3D
GeoVEs, in particular in those fields that require a true three-dimensional repre-
sentation as in the case of virtual 3D city models. Because 3D GeoVEs commonly
rely on massive, heterogeneous, and complex structured 3D geodata, high-quality,
interactive 3D geovisualization systems usually demand for high processing
power, large memory, and hardware-accelerated 3D graphics. These demands,
however, make the development of robust, efficient, and compatible client appli-
cations a challenging task.

Service-oriented architectures (SOA) (Papazoglou et al. 2007), as a paradigm
for design and development of distributed information systems, represent a com-
mon approach to address these challenges. 3D geovisualization systems, based on
the SOA paradigm, encapsulate resource intensive tasks, such as management,
processing, transmission, and rendering of massive 2D and 3D geodata as services
that can be reused by various client applications. While 2D geovisualization
systems can rely on standardized and robust services such as the Web Map Service
(WMS), specified by the Open Geospatial Consortium (OGC), only first approa-
ches and service implementations for 3D geovisualization, namely the Web 3D
Service (W3DS) and the Web View Service (WVS), have been suggested
(Schilling and Kolbe 2010; Hagedorn 2010). Recent developments in service-
oriented architectures for interactive 3D portrayal aim at making 3D geodata,
geodata management functionalities, and geospatial knowledge available even
through thin clients, i.e., applications with low requirements concerning process-
ing power and 3D graphics capabilities designed for lightweight platforms such as
mobile phones or web browsers (Hildebrandt et al. 2011).

Besides capabilities for the presentation of 3D geodata, client applications need
to offer tools to interact with 3D GeoVEs. 3D camera control, as the major 3D
interaction type, enables users to explore and use a 3D GeoVE; it is crucial for its
usability, as ‘‘a 3D world is only as useful as the user’s ability to get around and
interact with the information within it’’ (Tan et al. 2001). Existing 3D portrayal

102 J. Klimke et al.

services provide only rudimentary support for user interaction or camera control.
Service-based approaches for 3D interaction have not been specified and for-
malized so far. Thus, 3D camera control functionality still needs to be designed
and implemented separately for each client application.

In this paper, we present a concept for service-based 3D camera control as a key
element of 3D user interaction used to explore 3D GeoVEs and their objects. It is
based on the decomposition of 3D user interaction functionality into a set of
services that can be flexibly combined to build automated, assisting, and appli-
cation specific 3D user-interaction tools, which fit into service-oriented architec-
tures of GIS and IT solutions based on spatial data infrastructures (SDI).

We discuss 3D camera control, categories of 3D camera tasks, and derive a
collection of general-purpose 3D interaction services. We also explain how to
efficiently compose these services and discuss their impact on the architecture of
service-based visualization systems. Furthermore, we show by example how to
apply this concept and to decompose a specific camera control technique into a set
of services.

The remainder of this paper is organized as follows: Section 2 provides an
introduction to service-based 3D geovisualization and 3D camera control in 3D
GeoVEs as well as related work. Section 3 presents our concept for the decom-
position of 3D camera control functionalities and their provisioning as services.
Section 4 gives an example of a distributed camera control system that is based on
the described services. Section 5 provides a discussion of the properties of such
systems. Section 6 gives conclusions and an outlook.

2 Basics and Related Work

In this paper we build onto research in the area of service-based geovisualization
and user interaction in virtual environments. Service-based geodata provisioning,
processing and visualization have been standardized in recent years and systems
implementing this paradigm are continuously evolving. In the following we pro-
vide an introduction to service-based 3D geovisualization and provide related
work in the area of 3D camera control.

2.1 Service-Based 3D Geovisualization

The interoperability of systems and applications dealing with geodata is a central
issue to build systems out of interoperable software components for geodata
access, processing, and visualization. Beside a common understanding on infor-
mation models (Bishr 1998), definitions of service interfaces are necessary. The
Open Geospatial Consortium (OGC) defines a set of standardized services, models,
and formats for geodata encoding and processing. For example, a Web Feature

A Service-Based Concept for Camera Control 103

Service (WFS) (Panagiotis and Vretanos 2010) can provide geodata, encoded in
the Geography Markup Language (GML) (Portele 2007) or City Geography
Markup Language (CityGML) (Gröger et al. 2008), and processed by a Web
Processing Service (WPS) (Schut 2007).

For geovisualization processes a general portrayal model is provided by the
OGC that describes three principle approaches for distributing the tasks of the
general visualization pipeline between portrayal services and consuming appli-
cations (Altmaier and Kolbe 2003; Haber and McNabb 1990). While the OGC
Web Map Service (WMS), providing map-like representations of 2D geodata, is
widely adapted and used, 3D geovisualization services have not been elaborated to
a similar degree. Several approaches for 3D portrayal have been presented
(Basanow et al. 2008) and are currently discussed as standard proposal in the
context of the OGC (Schilling and Kolbe 2010; Hagedorn 2010). These approa-
ches differ in the type of data that is exchanged between client and service: Either
filtered feature data, graphical representations (display elements), or rendered
images are transmitted. Each type of data is generated by one specific OGC
service:

• A WFS provides feature data, encoded in standardized formats, to a service
consumer. This data can be processed at the client side; for visualization a thick
client has to derive graphical representations and to perform the rendering.

• A Web 3D Service (W3DS) provides display elements to a service consumer
(e.g. X3D or KML, organized as 3D scene graph) (Schilling and TH 2010;
Altmaier and Kolbe 2003). This representation includes, e.g. geometry infor-
mation and texture data. For visualization, a medium client needs to be able to
process and render this graphics data.

• A Web View Service (WVS) provides images of a 3D scene to a potentially thin
client (Hagedorn et al. 2009). In the simplest case, a client displays finally
rendered images to a user. More advanced clients may also allow for more
interactive visualizations using a WVS.

These segmentations lead to different requirements regarding 3D rendering
capabilities of the portrayal services and corresponding client applications and to
different types of interaction techniques that can be implemented within client
applications.

2.2 Camera Control for 3D GeoVEs

On a technical level, the 3D camera control process generally includes (a) rec-
ognizing navigation intentions, (b) deriving path information, and (c) adjusting the
visualization. Users of a 3D GeoVE express their navigation intentions by inputs
provided to a client application, such as pressing UI controls, selecting objects in
the scene, or sketching paths or gestures (Hagedorn et al. 2009). User input is

104 J. Klimke et al.

evaluated and camera animations, i.e., camera positions alongside with camera
orientations, are derived.

2.2.1 Assisting Camera Control Techniques

3D camera control in a virtual environment is a complex task, especially for non-
expert users. Therefore, techniques for camera control in virtual environments
were presented that assist users to explore 3D space by avoiding confusing or
disorienting viewing situations (Buchholz et al. 2005). Task-oriented camera
techniques generate camera paths with respect to a high-level navigation intention,
such as ‘‘go to the closest landmark’’.

A virtual camera’s behavior can depend on the semantics of the underlying
model data of the 3D GeoVE (Döllner et al. 2005). Such semantics-based camera
interaction techniques need client-side data and computing capabilities to perform
camera path computations. Due to network and computational limitations, it is
hard to make such capabilities available on thin clients or for large datasets.

2.2.2 Camera Control in Service-Based 3D GeoVEs

For distributed applications using thick and medium clients (as described) the
rendering stage of the visualization pipeline is implemented on client-side, so the
necessary data, such as model geometry or points of interest, is generally available.
Therefore various camera-control techniques can be implemented within such
applications, while thin clients need service-side support for reaching corre-
sponding results since there is usually only a very limited set of client-side
information about the geometry or topology of the 3D environment.

For example, a W3DS client, running on a machine with high processing
capabilities and high speed connection to the W3DS server, could provide highly
interactive real-time visualization and camera control, based on the retrieved 3D
graphics data.

In contrast, a WVS provides multi-layer images, including not only color
images but also, e.g. depth information per pixel, which allows for implementing
(a) clients that only display images and provide only a step-by-step navigation as
well as (b) more complex clients that reconstruct the virtual environment from
information contained in such images and could even provide real-time navigation.

The complexity of camera-control techniques achievable for these client classes
differs: Thick clients can easily consider semantic information from underlying
geodata, which is not per se available through a W3DS or WVS. However, each of
these 3D portrayal approaches could benefit from providing camera-control
capabilities as distributed, reusable resources.

A Service-Based Concept for Camera Control 105

2.3 Challenges for Camera Control in 3D GeoVEs

This paper is motivated by the goal to implement interactive 3D GeoVEs on thin
clients. Compared to desktop-based, thick client 3D GeoVEs, thin client 3D
GeoVEs face several challenges regarding network capabilities as well as device
constraints such as computing capacity, presentation, and interaction issues.

For distributed systems implementing camera-control functionality, various
requirements need to be considered for achieving effective 3D camera control for
3D GeoVEs:

• Visualization and interaction should be decoupled to facilitate reuse of camera
control functionalities as independent building blocks of 3D geovisualization
systems.

• The separation of camera-control functionalities should support the implemen-
tation as services, but also as integrated part of a client application. So the
decision of the location of network boundaries in concrete system architectures
can be made per client application.

• Feedback (about available and pending camera movements, as well as system
state information) should be provided by a distributed system for 3D camera
control.

• A distributed system for 3D camera control should be designed to deal with
limitations of wireless communication networks in connection with mobile
clients (e.g. connection loss, latency times, available bandwidth etc.).

• The system architecture should not be restricted to a special type of input.
Especially mobile devices provide more than one sensor that can serve as user
input device. For example, device location, orientation, speed or other data
delivered by device sensors could influence the way camera control has to be
performed, e.g. to support building a relation between a user’s actual position
and the position and orientation inside the 3D GeoVE.

2.4 Further Work

Döllner et al. (2005) present an approach for interactive visualization of 3D
GeoVEs on mobile devices using server-generated video streams. A user expresses
his/her navigation intention by sketches instead of specifying the parameters for
and steering the virtual camera explicitly. Sketch data is transmitted to a server,
which interprets the input data, depending on the semantics of underlying objects,
and computes a resulting camera path. A camera path animation is rendered as
video and streamed to the requesting client. This way, only minimal demands are
put to the mobile device. Our approach for interactive camera control introduces a
more general and more flexible model of integration of 3D camera control into
service-based 3D geovisualization systems. This allows for a larger set of input

106 J. Klimke et al.

and output methods and decoupling camera control functionality from visualiza-
tion functionality where possible.

Nurminen et al. (Nurminen and Helin 2005; Nurminen 2008) introduce a
mobile application, which heavily uses rendering and transmission optimizations
for 3D city models. They provide an interactive 3D GeoVE that integrates
dynamic data, provided by remote servers, into the visualization. Geodata is
preprocessed at server side optimized and transmitted for rendering. Camera
control in the virtual environment is implemented completely client-side on the
mobile device. However, for devices with limited input capabilities a higher level
camera control could improve the usability of such 3D map applications. Due to
the iterative transmission of model data to the mobile client depending on the
camera parameters, camera navigation techniques that use model semantics cannot
operate in many situations due to the lack of data available on the user’s mobile
device. Efficient 3D camera control could be integrated more easily in such an
environment using a service-based approach for the separation and distribution of
camera control functionality.

Chen and Bowman (2009) advocate that design for 3D interaction techniques
should be application domain specific. They propose to decompose the interaction
tasks into subtasks that consist of universal interaction tasks (e.g. navigation,
selection or manipulation). The subtasks are implemented by concrete interaction
techniques. Here, Chen focuses more on the question how to design domain-
specific interaction techniques. In contrast, the focus of this paper is more on
system engineering. We describe how such techniques could be designed as
components of a service-oriented system, which facilitates reuse of specifically
designed camera interaction techniques wherever the specific application domains
come into play.

3 Concept for a Service-Based 3D Camera
Control System

Since network bandwidth and end-user hardware and software is very heteroge-
neous, the development of robust, compatible, and efficient applications that
provide interactive access to 3D GeoVEs represents a complex software archi-
tecture problem. 3D geovisualization systems using thin clients can bypass such
limitations by designing a software architecture that can cope with hardware and
software limitations of end-user devices and platforms. With thin clients, only
small parts of the overall geodata are available on client side and could therefore
be considered for camera path computation. Thus, we propose to move major parts
of functionality for 3D camera control away from client applications to services.
This loosens the dependency of camera interaction techniques from specific client
implementations. Service components can be run in a scalable, controlled server
environment and can, therefore, be maintained and optimized more efficiently.

A Service-Based Concept for Camera Control 107

Server-side access to geodata is usually more efficient due to lower network
latencies and better performing hardware. Each of such service components is
required to expose its capabilities, e.g. their operations, parameters, and effects, as
well as their technical requirements. Capability information should also contain
quality of service information, e.g. expected operation times such as minimum,
maximum and average processing time for requests to allow raw latency
estimations.

To structure the interaction cycle of service-based 3D visualization systems, we
divide the process for 3D camera control into four core tasks (Fig. 1):

• Input Capture: Input provided by a user has to be captured and encoded in a way
that allows for efficient evaluation.

• Input Processing: User input is preprocessed, e.g. converted, transformed,
smoothed, or patterns are recognized and a navigation command is derived from
the resulting data. This command is used to select the 3D camera service for
camera path computation.

• Camera Path Computation: Camera positions and orientations, and transitions
between them are computed. Specifications for camera paths are the result of
this stage.

• Visualization: The computed camera specifications have to be applied for the
client-side visualization of the 3D GeoVE. Visual or non visual (e.g. audible)
feedback has to be generated and integrated in order to complete a 3D camera-
control cycle.

While input capture has to be implemented by a client application, input processing,
camera path computation and visualization can be implemented by one or multiple
services. Figure 2 illustrates our concept for decomposing the core tasks for 3D
camera control into functional independent 3D interaction services and depicts their
collaboration and the types of data exchanged between them. In the following, we
present these major 3D interaction services: input preprocessing services, command
recognition services, 3D camera services and composition services.

Input Data

Navigation
Command

Camera
Path

User

View

Input Capture
Input

Processing

Camera Path
Computation

Visualization

Input

Fig. 1 Conceptional tasks of a 3D camera control process

108 J. Klimke et al.

3.1 Input Capture

An end-user client-application must provide a description of user inputs. These
could be, e.g. a higher-level navigation command (e.g. ‘‘look into a certain
direction’’), button events, or captured mouse-cursor respectively finger positions.
Thus, a specification of user inputs is required that supports a variety of user
inputs. Each data sample is annotated with timestamps to allow, e.g. for seg-
menting user input in time and space (e.g. series of sketches or device positions)
and computing velocities of movements.

Additional information that is not directly originating from user actions could
be required for service-based camera interaction. Client state information, such as
input modifiers (e.g. pressed keys) or previous navigation commands, may affect
the mapping from input parameters to navigation commands to be executed.
Further, a user’s current view (including, e.g. camera specification and visible
objects) specifies the geospatial context of the user input, which may affect the
evaluation of a user input.

3.2 Input Processing

Input processing is divided into two steps: input preprocessing and command
recognition.

Depending on the type of input captured by the client, an input preprocessing
step may be necessary (a) to improve the quality of the input, e.g. by filtering or
smoothing and (b) to convert the input data to an analytic representation, e.g.
recognizing geometry from a series of 2D input samples.

ClientVisualization Service
(WVS, W3DS, VideoService)

Camera
Specifications

3D Views

Geo Data
Services

(WFS,WCS)

Composition Service

User Input, Input Modifiers,
System State, Command,

Current Camera Specification
Camera Path Specification,

Camera Position

3D Camera-
Service
Registry

Command

3D Camera-
Service

Metadata

Camera
Service

Metadata

3D Camera Service

Service Registration,
Capabilities

Data for
Camera Control

Input Preprocessing
Service

Command Recognition
Service

Processed
User Input

Processed
User Input

User
Input

Command

Command
(Processed User Input,

Current Camera
Specification) Camera Path

Specification

Data for Command
Recognition

Geodata for
Visualization

User

Fig. 2 Abstract component architecture and data flow of a geovisualization system using service-
based 3D camera control

A Service-Based Concept for Camera Control 109

In a command recognition step, navigation commands are derived from the
preprocessed input. These represent a more abstract description of a user’s
intention and include all the parameters required for their execution. We define
three categories of navigation commands in respect of the camera-control task they
describe (Hagedorn and Döllner 2008):

• Direct Camera Manipulation: A command directly influences the values of
camera parameters, such as position or orientation vectors, which specify the
current view. Commands like ‘turn by 30�’ or ‘move 100 m into camera
direction’ are examples for such direct camera manipulation commands.

• Path Oriented Navigation Command: A command includes a path description
that has to be followed by a camera path. The desired path has been computed in
the input processing step or has been specified by the client directly (explicit or
implicitly, e.g. by providing a target name).

• Task Oriented Navigation Command: A command contains a description of a
task, which has to be fulfilled by a 3D camera service. Commands like ‘‘go to
the next feature of class X’’ or ‘‘inspect feature X’’ belong to this command
category.

To describe a command and to support command recognition, a generic, structured
command schema is required that specifies, e.g. command parameters (types and
possible values). The command recognition step can involve retrieval of additional
geoinformation, e.g. from geodata or geovisualization services such as WFS or WVS.

Input preprocessing as well as command recognition are optional steps in the
3D camera control process. Simple camera-control tasks can be transmitted by a
client as navigation command, e.g. ‘‘move one meter to north’’ for a stepwise
camera control. Such commands may be handled directly by an appropriate 3D
camera service.

The functionalities of the input preprocessing and command recognition steps
are encapsulated by respective service types, input preprocessing services and
command recognition services.

3.3 Camera Path Computation

Camera path computation is the core task for camera-control in 3D GeoVEs.
3D camera services compute camera paths from navigation commands and their
parameters. Conceptually, one 3D camera service implements one technique for
camera path computation. This includes the generation of camera path compo-
nents, e.g. camera positions, orientations, or other information that can be asso-
ciated with a camera transition, e.g. textual annotations. Each of those can be
computed by distinct functional components that apply specific algorithms and
navigation constraints per path component. For example, a specific position
component could determine camera positions only along a street network, while a
specific orientation component could aim to keep nearby landmarks visible.

110 J. Klimke et al.

A 3D camera service may request additional geodata, e.g. from a WFS, W3DS
or WVS to provide, e.g. a higher-level, semantics-based camera control or to fulfill
constraints for camera parameters. To ensure a consistent behavior, these addi-
tional services have to be based on the same geodata as the visualization services
themselves.

Based on a navigation command, a 3D camera service is selected using a 3D
camera-service registry, which holds information about the available 3D camera
service instances, the navigation commands they support, and additional metadata.

3.3.1 3D Camera Service

In order to be managed in a service registry and allowing consumers to bind correctly
to their operations, 3D camera services are required to express general service
information as well as functional and additional non-functional metadata (ISO
2003, 2005). 3D camera service capabilities should include metadata regarding the
following aspects:

• Service identification: Type and version of the service, service description.
• Camera control metadata: Available path description formats, covered

geospatial region, supported spatial reference systems, available navigation
commands including command parameters.

• Quality of service metadata: Information such as expected computation time,
result accuracies, available collision avoidance (e.g. guaranteed, best-effort, or
no avoidance).

• Application context: Information regarding, e.g. user information, usage infor-
mation, network conditions, and device properties.

3.3.2 Camera Path Specification

Camera paths, generated by 3D camera services, represent transitions from one set
of camera parameters to another. Parameters required for the definition of a view
of a 3D virtual environment are the camera position, its orientation in 3D space
and its projection parameters. Additionally, a camera specification can provide
annotations that can be used to enrich the 3D GeoVE with thematic information
(e.g. distances or relevant objects) using overlays generated by specialized visu-
alization services.

We distinguish two types of representations of camera paths (see Fig. 3):
sampled and analytical representations:

Sampled representations of camera paths include of a series of camera-speci-
fication samples. Those can be created either using fixed or variable sample times.
An adaptive sampling rate of camera specifications allows for more efficient
representations of camera paths. This means more dense sampling for time periods
where camera parameters change more rapidly, e.g. because of increased move-
ment speed or sharp camera turns.

A Service-Based Concept for Camera Control 111

Analytical representations provide a separate function definition for each
camera parameter to compute their values for an arbitrary point in time during a
camera transition (Fig. 3). Each of those functions can be expressed as piecewise
function, which eases the definition of camera paths by different kinds of functions
per time slice, like Bézier curves, splines, linear or even constant functions.
Furthermore, this enables the definition of story-board-like camera transitions.
The overall time for the complete camera path animation is normalized. A camera
path specification contains a recommended overall animation time, which would
produce a comfortable camera motion.

A client may specify which type of path representation it requests. Analytical
descriptions are more favorable for clients that are capable of interactive 3D
rendering themselves, instead of using service-based image synthesis. In contrast,
image-based clients may prefer sampled representations of a camera path, as it
allows them to request images from portrayal services with a minimum of
implementation effort and computational requirements.

A set of utility services can provide functionalities that can be used by several
services of the distributed 3D camera control system. Functionality implemented
by utility services may include, e.g. path manipulation (conversion, transforma-
tion, smoothing, composition), camera orientation computation, sketch recogni-
tion, and overlay creation (creation of image overlays as additional user feedback).
Further, existing standards-based implementations of services, e.g. for geocoding
of locations or conventional 2D routing using street networks may be used for
camera path generation.

+x : double
+y : double
+z : double

Position3D

AbstractAnnotation

+timeHint[0..1]: double
+crs[1] : string

CameraPath

SampledCameraPath AnalyticalCameraPath

+t : double

CameraSample

+from : Position3D
+to : Position3D

Camera

+fovx : double
+fovy : double

PerspectiveCamera

+left : double
+right : double
+top : double
+bottom : double

OrthographicCamera

1..*1..*

*

*

1..*

camera

Fig. 3 Camera path specification. A Camera Path can be described either by samples of
camera parameters or analytically using functional representations. Camera definitions can be
associated with annotations containing additional information for user feedback

112 J. Klimke et al.

3.4 Visualization

The final task of the distributed, service-based 3D camera control process is to adjust
the visualization of the 3D GeoVE according to a generated camera path, and to
display the result to a user. Depending on the type and capabilities of a client
application, several processing and visualization services could be involved for this:

• The retrieval of camera specifications from a camera path (e.g. by interpolating
camera samples) could be implemented by a client application itself or could be
provided by additional utility services.

• A client application that implements the 3D rendering itself needs to process the
camera path specification, adjust the visualization accordingly, and generate
new visual representations of the 3D GeoVE; utility services could support this
process. Graphics data (e.g. X3D scene-graph) could be requested, e.g. from a
W3DS.

• A client that is not capable of high-quality 3D rendering would incorporate a visuali-
zation service (e.g. a WVS) for creating visual representations of the 3D GeoVE, which
could be served as image, set of images, or video to a client application.

Besides generating views of a 3D GeoVE, there are several possibilities for pro-
viding additional feedback about the camera control process. For example, textual
or graphical annotations can be included in a camera path specification (Fig. 3).

3.5 Service Composition

Deploying the functionalities of the 3D camera control process as independent
services enables assembling user input and camera control functionalities aligned
to the requirements and capabilities of a specific client application as well as client
device and network.

For a 3D camera control system, service composition includes (a) the com-
position of relevant input processing, command recognition, and 3D camera
services and (b) the combination of multiple 3D camera services for reaching a
specific camera dramaturgy.

3D camera services themselves could compose other services for implementing
higher-level camera-control functionalities, e.g. task-oriented camera control.

4 Example

In this section we provide an example of a service-based 3D geovisualization
system that supports 3D camera control for a mobile client applications. Images of
a virtual 3D city model, are generated by 3D portrayal service (WVS). Figure 4

A Service-Based Concept for Camera Control 113

illustrates the services involved, the sequence of service calls and the data
exchanged between them. As one purpose, the application allows users to inspect
features of the 3D GeoVE. A user specifies a desired camera control task by
performing gestures on a tangible display, which are captured as series of 2D
positions. The gesture data, together with the client’s current camera specification,
a description of currently visible features (layers), and information about the
visualization service used for image generation, is passed to the composition
service, which manages the workflow for camera path generation.

Input data is handed over to an input preprocessing service, which performs
gesture recognition. The gesture recognition results in geometric primitives that
serve as basis for the command recognition. For example, performing a circle
gesture around an object on the display could mean to inspect that specific feature.
In this case, the gesture recognition service detects a circle primitive from the
input positions.

Composition
Service

Gesture
Recognition

Service

Input
Preprocessing

Service

Command
Recognition

Service

Camera Service
Registry

"Inspect Feature"
3D Camera

Service

Web Feature
Service

Web View
Service

User

Mobile 3D Client

GetView
Request

Camera
Path

Input:

Input:

Circle:
M=(x,y), r

WVS.GetPosition
(Position(x,y),

Layers)

Feature
Request

URL

Circle:M=(x,y),r

WVS-URL,
LastCamera,

Layers

Command:
Inspect Feature ,

FeatureRequest-URL

Command:
Inspect Feature

InspectFeature Service-URL

Circle:
M=(x,y), r

Input:
Camera

Path

Command,
Feature

Data URL,
Last Camera

Feature
Envelope,

FeatureType

GetFeature
Request

WVS-URL,
LastCamera,

Layers

View

Fig. 4 Example of a distributed, service-based camera control system. The call sequence and
concrete input and output data per service are depicted for one type of sketch-based navigation
command

114 J. Klimke et al.

The command recognition service matches the recognized geometry (circle) to
the corresponding ‘‘inspect feature’’-command. The object to be inspected is
determined by requesting the object identifier for the center pixel of the circle from
a WVS using its ‘‘GetFeatureInfo’’ operation and used as command parameter.

The 3D camera service registry is used to identify the 3D camera service that is
able to process the ‘‘inspect feature‘‘ command. The service is invoked with this
command, the current camera parameters, and the reference to the feature data.
The service resolves the reference and retrieves the feature data from a WFS.
Depending, e.g. on the type or the size of an feature an appropriate technique for
camera positioning and alignment can be chosen by the 3D camera service.
For example, the HoverCam (Khan et al. 2005) might be better applicable for the
exploration of buildings, while area-like features, such as green spaces, may be
explored more efficiently through a flyover from a bird’s eye perspective.

The 3D camera service delivers the generated camera path specification to the
calling client. To adjust its view of the 3D GeoVE, the client interprets the camera
path, adjusts the virtual camera parameters accordingly, and requests new image
data from the 3D portrayal service.

5 Discussion

The decomposition of interaction functionality into independent 3D interaction
services requires to decide which kind of functionality to implement at the client
side and which functionality to provide by services. On the one hand, a client-side
implementation allows for application, user, and task specific interaction tech-
niques, which are typically developed in detailed knowledge of a concrete use case
of an application. On the other hand, reusable services permit to provide uniform
interaction mechanisms for a number of different client applications and config-
urations. For example, the externalization of techniques for camera path compu-
tation can enable interaction techniques that need a global view of model data even
for thin clients that are unable to deal with the amount and the complexity of
massive 3D models.

The system provided as example in the previous section represents a quite
complete implementation of the camera interaction functionality using external
services. As central element for camera interaction, camera path computation,
which includes determination of good views regarding various criteria, is most
likely to be usefully implemented as external service. Input preprocessing services
and command recognition services on the other hand are mostly useful for ultra
thin, purely image-based clients (e.g. browser-based clients that displays rendered
images, received from WVS instances). Such clients pass user input to an inter-
action service chain and receive a new camera specification to request new views
from the portrayal service. This relieves clients of all the complexity of 3D
computations. Though, such a client is easy to implement and has low hardware
and software requirements.

A Service-Based Concept for Camera Control 115

Compared to thick client applications implementing user interaction function-
ality completely on client-side, the use of interaction services for camera control
raises challenges concerning response times and bandwidth as well as their effect
on the perceived responsiveness and interactivity of a consuming client applica-
tion. However, these effects get attenuated by the reduction of the amount of data
that has to be transferred over the network due to possible server-side prepro-
cessing and aggregation of complex data needed for the computation of camera
paths. Furthermore, 3D camera services can use precomputed camera positions or
paths as well as caching strategies to reduce server-side processing, communica-
tion effort, and response times.

Dynamic geodata, relevant for the computation of camera paths, can be inte-
grated efficiently by 3D interaction services, since the service encapsulates
retrieval and evaluation of data at a single point in the system. Again, clients are
relieved from data access and processing. For example, a 3D camera service could
integrate sensor or other live data, e.g. extreme temperatures inside a building
indicating a possible fire, to derive situation dependent camera paths. In general,
the decoupling of the complexity of model geodata, model management, access
and usage from camera computations enables to develop general purpose client
applications. These implement only a set of core visualization and interaction
functionalities that are relatively domain independent. This reduces the complexity
of applications that are deployed on end-user devices and platforms and, therefore,
raises the compatibility of such application.

6 Conclusions and Outlook

In this paper, we presented a concept for a distributed 3D camera control system
for 3D GeoVEs, which integrates into existing service-based geovisualization
approaches. This concept provides categories of services and their interconnection
so that functionalities for 3D camera control can be decomposed into and deployed
as independent services. Principal service classes for input processing, camera path
computation, and 3D visualization are introduced; relevant data such as 3D camera
paths and service metadata is modeled. By an example, we demonstrate how to
compose these services to support the exploration of a mobile 3D GeoVE.

With our concept, 3D camera control functionalities become available through
the Internet as distributed resources rather than being hard-coded in specific client
applications. Services for input processing and 3D camera control form major
building blocks for the implementation of interactive service-based 3D GeoVEs.
Using these services, client applications can be relieved from complex computa-
tion tasks (e.g. for generating high-quality 3D camera positions and orientations)
or implementing adapters to services providing geodata relevant for computations
(e.g. WCS or WFS); they only need to interact with the distributed camera control
system. Thus, 3D camera control functionalities become available even for thin
clients, e.g. running on mobile phones or in web-browser environments.

116 J. Klimke et al.

Our approach enables to flexibly select from alternative 3D camera services for
adapting the interaction process to specific application requirements (e.g. user tasks),
device properties (e.g. input devices), and network capabilities (e.g. latencies or
network bandwidth). Additionally, the proposed interaction services can be reused
for achieving a consistent system behavior of the same quality across various
applications. Service reuse also could enable a faster development of service-based
3D geovisualization systems and client applications. The approach allows for sys-
tematically accessing additional geoinformation provided as distributed services and
using this information for 3D camera control (e.g. dynamic sensor data for camera
path computation). Thin client applications for 3D geovisualization will become
more popular in future due to increasing computing and 3D rendering capabilities of
mobile devices (flanked by developments towards browser-based 3D rendering) and
their increasing distribution. Such applications would directly benefit from a dis-
tributed, service-based 3D camera control system.

References

Altmaier A, Kolbe TH (2003) Applications and solutions for interoperable 3d geo-visualization. In:
Fritsch D (ed) Proceedings of the photogrammetric week 2003. Wichmann, Stuttgart, pp 251–267

Basanow J, Neis P, Neubauer S, Schilling A, Zipf A (2008) Towards 3D spatial data
infrastructures (3D-SDI) based on open standards–experiences, results and future issues. In:
Advances in 3D geoinformation systems, Springer, Berlin, Lecture notes in geoinformation
and cartography, pp 65–86. http://www.springerlink.com/content/u45062mr4hh54547

Bishr YA (1998) Overcoming the semantic and other barriers to gis interoperability. Int J
Geograph Inf Sci 12(4):299–314

Buchholz H, Bohnet J, Döllner J (2005) Smart and physically-based navigation in 3D geovirtual
environments. In: 9th international conference on information visualisation (IV’05), IEEE,
pp 629–635.

Chen J, Bowman D (2009) Domain-specific design of 3D interaction techniques: an approach for
designing useful virtual environment applications. Presence: Teleoper Virtual Environ
18(5):370–386.

Döllner J, Hagedorn B, Schmidt S (2005) An approach towards semantics-based navigation in 3D
city models on mobile devices. In: Proceedings of the 3rd symposium on LBS&
teleCartography, Springer, Vienna.

Gröger G, Kolbe T, Nagel C, Häfele K (2008) OpenGIS city Geography Markup Language
(CityGML) encoding standard version 1.0.0. http://www.opengeospatial.org/standards/citygml

Haber RB, McNabb DA (1990) Visualization in scientific computing, IEEE Computer Society
Press, chap visualization idioms: a conceptual model for scientific visualization systems,
pp 74–93

Hagedorn B (2010) OGC web view service. In: OGC discussion paper
Hagedorn B, Döllner J (2008) Sketch-based navigation in 3D virtual environments. In:

Proceedings of the 9th international symposium on smart graphics. Lecture notes in computer
science, vol 5166. Springer, Berlin, pp 239–246.

Hagedorn B, Hildebrandt D, Döllner J (2009) Towards advanced and interactive web perspective
view services. In: Developments in 3D geo-information sciences, Springer, Berlin, pp 33–51

Hildebrandt D, Klimke J, Hagedorn B, Döllner J (2011) Service-oriented interactive 3d
visualization of massive 3d city models on thin clients. In: 2nd international conference on
computing for geospatial research and application cOMGeo 2011.

A Service-Based Concept for Camera Control 117

http://www.springerlink.com/content/u45062mr4hh54547
http://www.opengeospatial.org/standards/citygml

ISO (2003) ISO 19115. Geographic information–metadata, international standard.
ISO (2005) ISO 19119. Geographic information–services, international standard.
Khan A, Komalo B, Stam J, Fitzmaurice G, Kurtenbach G (2005) HoverCam: interactive 3D

navigation for proximal object inspection. In: Proceedings of the 2005 symposium on
interactive 3D graphics and games, ACM, vol 1, pp 73–80

Nurminen A (2008) Mobile 3D city maps. IEEE Comp Graph Appl 28(4):20–31
Nurminen A, Helin V (2005) Technical challenges in mobile real-time 3D city maps with

dynamic content. In: Kokol P (ed) Software engineering
Panagiotis P, Vretanos A (2010) OGC web feature service implementation specification. http://

www.opengeospatial.org/standards/wfs
Papazoglou MP, Traverso P, Dustdar S, Leymann F (2007) Service-oriented computing: state of

the art and research challenges. Computer 40(11):38–45. doi:10.1109/MC.2007.400. http://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4385255

Portele C (2007) OpenGIS geography markup language (GML) encoding standard. http://
www.opengeospatial.org/standards/gml

Schilling A, Kolbe TH (2010) Draft for candidate openGIS web 3D service interface standard.
http://portal.opengeospatial.org/files/?artifact_id=36390

Schut P (2007) OGC Web Processing Service. http://www.opengeospatial.org/standards/wps
Tan D, Robertson G, Czerwinski M (2001) Exploring 3D navigation: combining speed-coupled

flying with orbiting. In: Proceedings of the SIGCHI conference on human factors in
computing systems. ACM New York, pp 418–425

118 J. Klimke et al.

http://www.opengeospatial.org/standards/wfs
http://www.opengeospatial.org/standards/wfs
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4385255
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4385255
http://www.opengeospatial.org/standards/gml
http://www.opengeospatial.org/standards/gml
http://portal.opengeospatial.org/files/?artifact_id=36390
http://www.opengeospatial.org/standards/wps

Representing Three-Dimensional
Topography in a DBMS
with a Star-Based Data Structure

Hugo Ledoux and Martijn Meijers

Abstract For storing and modelling three-dimensional topographic objects (e.g.
buildings, roads, dykes and the terrain), tetrahedralisations have been proposed as
an alternative to boundary representations. While in theory they have several
advantages, current implementations are either not space efficient or do not store
topological relationships (which makes spatial analysis and updating slow, or
require the use of a costly 3D spatial index). We discuss in this paper an alternative
data structure for storing tetrahedralisations in a DBMS. It is based on the idea of
storing only the vertices and stars of edges; triangles and tetrahedra are represented
implicitly. It has been used previously in main memory, but not in a DBMS—we
describe how to modify it to obtain an efficient implementation in a DBMS. As we
demonstrate with one real-world example, the structure is around 20 % compacter
than implemented alternatives, it permits us to store attributes for any primitives,
and has the added benefit of being topological. The structure can be easily
implemented in most DBMS (we describe our implementation in PostgreSQL) and
we present some of the engineering choices we made for the implementation.

1 Introduction

Several data models to represent 3D topographic objects (e.g. buildings, roads, the
terrain and dikes) and to store them in a database management system (DBMS)
have been proposed. Some of them store only the geometry of single objects while

H. Ledoux (&) � M. Meijers
Delft University of Technology, Delft, The Netherlands
e-mail: h.ledoux@tudelft.nl

M. Meijers
e-mail: b.m.meijers@tudelft.nl

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_7,
� Springer-Verlag Berlin Heidelberg 2013

119

others permit us to explicitly store the topological relationships between objects
(and also those between the lower-dimensionality primitives of the representation
of an object). Geometry models usually store objects with a boundary represen-
tation, called b-rep, and one popular data structure used in practice is GML (OGC
2007). It can be seen in the overview of Zlatanova et al. (2004) that many topo-
logical models are variations of the formal data structure (FDS) (Molenaar 1990;
Molenaar 1998), which, unlike its name implies, is a conceptual model—with
rules and constraints to preserve the validity—that can be implemented in a
DBMS. FDS is a b-rep model in which four primitives are kept (nodes, arc, edge
and face; bodies are implicit), and where the topological relationships between
them are stored.

An alternative to b-rep models is to use tetrahedralisations, where 3D objects
are decomposed into tetrahedra and where empty space (e.g. between buildings) is
also decomposed into tetrahedra and integrated in the model.1 Carlson (1987) and
Pilouk (1996), among others, argue that tetrahedralisations have several advan-
tages to represent 3D objects, in the same way that triangulations have advantages
in 2D (Frank and Kuhn 1986). The advantages the most often cited are: storage is
simplified as only one convex primitive is needed (Penninga 2005), spatial anal-
ysis operations can perform more efficiently (Ledoux and Gold 2008), and the
overall implementation is simpler, thus more robust. However, tetrahedralisations
also have theoretical drawbacks as Zlatanova et al. (2004) state in their compar-
ison of the different topological models: ‘‘An additional disadvantage of TEN is its
much larger database size compared with other representations.’’

As Penninga (2008) states, the storage penalty is true only if all the primitives
of the tetrahedra are explicitly represented (nodes, edges and faces, as with the
FDS). He proposes a data structure where only vertices and tetrahedra are repre-
sented, and the other primitives are extracted on-the-fly. His data structure can be
seen as a variation of Simple Features (OGC 2006): vertices are stored in one table
and have an ID, and one tetrahedron is formed by the concatenation of 4 vertex IDs
into one series of bits. He ensures that all tetrahedra are correctly oriented (i.e. the
ordering of the vertices is the same for all tetrahedra), which speeds up spatial
analysis and the incremental update of a model.

While Penninga (2008)’s data structure is compact—it takes only about 20 %
more space than Oracle Spatial’s polyhedra for a few tested real-world datasets—
the topological relationships between the tetrahedra are not explicitly stored
(neither adjacency between tetrahedra nor incidence from one tetrahedron to
primitives in other tetrahedra). That means that spatial analysis operations will
perform slowly on big datasets, and so will incremental updates to a model.
Penninga (2008) advocates using an auxiliary spatial index for each tetrahedron,
such as an R-tree (Guttman 1984), although that has not been implemented nor

1 Notice that this model is often called ‘‘TEN’’, which stands for either TEtrahedral Network,
TEtrahedral irregular Network, TEtrahedronised irregular Network or TEtrahedron Network,
depending on the authors. For the purpose of this paper, they are all equivalent and a TEN is a
tetrahedralisation, as defined in Sect. 2.

120 H. Ledoux and M. Meijers

tested. The main problems with an auxiliary index are: (1) storage space, the
bounding box of a tetrahedron (required by the R-tree) has only one point less than
the tetrahedron itself; (2) a R-tree is a rather complex structure and updating
incrementally a large tree can be slow. Triangulations in 2D often do not index at
the triangle level for the same reasons, see Finnegan and Smith (2010).

We discuss in this paper an alternative data structure for storing tetrahedrali-
sations in a DBMS. Instead of storing explicitly tetrahedra, we store only two
lower-dimensionality primitives (vertices and edges), and the stars of edges. It has
been used previously in 3D in main memory (Blandford et al. 2005), but to our
knowledge no attempts has been made to implement it in a DBMS. We define in
Sect. 2 the concept of star, which is related to that of a tetrahedralisation. One
important advantage of our star-based structure is that it permits us to avoid the use
of an auxiliary 3D spatial index, instead the topological relationships between the
tetrahedra are exploited (only a standard B-tree is needed to index the tetrahedra).
As explained in Sects. 3 and 4, the structure is very compact (around 20 %
compacter than that of Penninga (2008)’s) and can be implemented easily in a
DBMS. We have implemented it in PostgreSQL, and tested it with one real-world
3D city model. We are currently working on the development of the structure, and
in Sect. 5 we discuss some of the engineering choices we made so far, and our
future challenges.

2 Constrained Tetrahedralisation and Stars

2.1 Tetrahedralisation

Given a set S of points in 3D space, a tetrahedralisation decomposes the convex
hull of S into non-overlapping tetrahedra. It is possible to construct the Delaunay
tetrahedralisation (DT) of S, i.e. a tetrahedralisation where every tetrahedron has
an empty circumsphere; the DT has desirable properties that make them popular in
several domains.

2.2 Constrained Delaunay Tetrahedralisation

If the input set contains also edges and/or surfaces (boundaries that have to be
respected in the tetrahedralisation; think of a 3D city model, the walls of the
buildings have to be present in the resulting tetrahedralisation), then the problem is
more complex.

In 2D, a constrained Delaunay triangulation can be used, Fig. 1a shows an
example. However, as Shewchuk (2002) explains, in 3D there are two approaches.
The first one is the conforming DT, where additional vertices (known as Steiner

Representing Three-Dimensional Topography in a DBMS 121

vertices) are inserted to ensure that edges/surfaces are recovered (these extra
vertices do not modify the shape of the surfaces/polyhedra). The main problem for
a data structure is that several new vertices can be required (Cohen-Steiner et al.
2004), and that would require more space.

The second solution, the one we use in this paper, is the constrained Delaunay
tetrahedralisation (CDT) (Si 2008), as Fig. 1b shows. The tetrahedra created are
not fully Delaunay, but this is not a problem and the number of newly inserted
vertices is minimised in comparison to the previous two approaches. Another
advantage is that robust and efficient implementations of CDTs exist, as they are
extensively used in engineering.

2.3 Stars and Links

Let v be a vertex in a d-dimensional triangulation. Referring to Fig. 2, the star of v,
denoted star(v), consists of all the simplices that contain v; it forms a star-shaped
polytope. For example, in 2D, all the triangles and edges incident to v form star(v),
but notice that the edges and vertices disjoint from v—but still part of the triangles
incident to v—are not contained in star(v). Also, observe that the vertex v itself is
part of star(v), and that a simplex can be part of a star(v), but not some of its facets.

The set of simplices incident to the simplices forming star(v), but ‘left out’ by
star(v), form the link of v, denoted link(v), which is a (d � 1) triangulation. For
example, if v is a vertex in a tetrahedralisation, then link(v) is a two-dimensional
triangulation formed by the vertices, edges and triangular faces that are contained
by the tetrahedra of star(v), but are disjoint from v.

(a) (b)Fig. 1 a Two-dimensional
polygons representing
buildings footprints, and their
constrained Delaunay
triangulation. b Three-
dimensional representation of
the same buildings
[polyhedra in this case,
obtained by extruding the
footprints in (a)] and their
constrained Delaunay
tetrahedralisation (for clarity
only the tetrahedra inside the
polyhedra are shown here)

122 H. Ledoux and M. Meijers

The closely related concepts of star and link also apply to edges in 3D: in Fig. 3
star(ab) is formed by all the incident simplices (6 in this case), and link(ab) is a
1-dimensional triangulation (a polyline).

3 A Star-Based Data Structure

To our knowledge, Cline and Renka (1984) are the first to design a data structure
where stars of vertices are used to represent a triangulation, albeit in 2D. Their
structure is compact, but does not allow incremental updates (which is arguably
important for a GIS data model). Shewchuk (2005) uses a star-based data structure
to manipulate 3D triangulations, but his structure is very verbose since the star of
every vertex is stored as a 2D triangulation, itself stored with stars. Blandford et al.
(2005) fix both issues with their structure, which is valid for 2D and 3D trian-
gulations. Their representation indeed uses about a factor 3 less memory than
traditional representations in 3D and at the same time can be queried and
dynamically modified. To achieve this compression, they designed a pointer-less
structure where each vertex is assigned a label (an integer) and they compress
based on labels: if possible they store the integers using 4 bits (they use differences
between the labels to achieve that) and use different optimisations to keep the
memory footprint low.

While it would theoretically be possible to implement the compression in a
DBMS, we are interested in their basic idea of using labels for vertices and store
the stars of edges in 3D. In a nutshell, a star-based data structure for a tetrahed-
ralisation in a DBMS is as follows. For an edge ab of the tetrahedralisation, we
store its link as an ordered list of labels. The orientation is consistent with the
right-hand rule: if the thumb points from a to b, the vertices of link(ab) are ordered
in the direction of the curled fingers of the right hand. In Fig. 3, link(ab) is the
ordered list is ½c; d; e; f ; g; h; c�; notice that this is a circular list and that the starting
vertex could be any vertex. The link list is of variable length: its minimum is 2
(one tetrahedron) and its theoretical maximum is the number of vertices in the
tetrahedralisation minus 2. A tetrahedron is formed by ab and 2 consecutive
vertices in the list; a; b; c; d and a; b; h; c are two examples of tetrahedra implicitly

star () link ()
(a)

star) link()

(b)
(

Fig. 2 The star and the link of a vertex v in a 2D and b 3D

Representing Three-Dimensional Topography in a DBMS 123

represented in link(ab). Notice that the length of the list gives the number of
incident tetrahedra to ab. Also, lower-dimensionality simplices (triangles and
edges) are present in links: for instance, referring to Fig. 3, the triangle abc is
present in the links of its 3 edges. Since the link is an ordered list, the simplices
implicitly represented are also ordered.

The key idea behind the structure is that if we represent the link of each edge,
then we obtain a data structure where relationships such as incidence and adja-
cency between tetrahedra are present. It is the overlap between the (ordered) links
that permits us to represent explicitly that information. Observe that each tetra-
hedron is represented in the link of 6 edges, and that since these are ordered, we
can easily navigate from tetrahedron to tetrahedron. We show in Sect. 4.2 a few
examples of queries.

3.1 Representative Edges

Storing the link for each edge of a tetrahedralisation yields a powerful and
topological data structure, but also one that is not space efficient. Indeed, if the
CDT of a set S of n points contains t tetrahedra, then the number e of edges is
significantly higher: Blandford et al. (2005) estimate it at ð7=6Þt for a CDT where
the points are uniformly distributed in space.

To reduce the number of edges whose star is stored, we store only the repre-
sentative edges (RE), as Blandford et al. (2005) suggest. If the label given to each
vertex is an integer, a RE is one where its 2 vertex labels are either odd or even. If
we randomly label the vertices, that should reduce by a factor of about 2 the
number of edges to be stored and still permits us to represent at least once each
triangle and each tetrahedron (which is fundamental to ensure that all topological
relationships are present). Indeed, it ensures that each triangle has at least one RE:

a

b

c

h

g

f

e

d

Fig. 3 The link of the edge
ab in 3D is formed by the
bold dashed polyline
(c; d; e; f ; g; h; c)

124 H. Ledoux and M. Meijers

a triangle has either 3 REs (3 odd or 3 even labels) or one RE (1 odd/2 even; 2 odd/
1 even).

Figure 4 shows the same 6 tetrahedra as Fig. 3 where the REs are highlighted
(in bold). It can be seen that out of the 19 edges, 6 are representative, and that each
triangle contains at least one RE.

3.2 Storage Space

Evaluating the theoretical storage space is difficult since the number of tetrahedra
in a CDT depends on the locations of the points and the constraints. However, to
obtain an order of magnitude, we can state that we need on average 3 labels per
tetrahedron. Indeed, each tetrahedron has 4 triangles, which are shared by 2 tet-
rahedra (if we ignore those on the convex hull); thus 2 triangles per tetrahedron.
A triangle has 3 labels, but since it appears in 3 stars and that only half of the edges
are represented, we obtain 1 1

2. Thus: 2� 1 1
2 ¼ 3 labels per tetrahedron. Our

experiment with a real-world dataset corroborates that, see Sect. 4.3.

3.3 Attributes

Attaching attributes to the tetrahedra is possible, although one must be careful
since tetrahedra are present in multiple stars. We exploit the fact that each vertex
has a unique label (which can be ordered) and attach the attributes to the star of the
REs whose origin is the lowest; in case there are more than one, the one having the
lowest destination is chosen. Given a tetrahedron abcd, we can find out in constant
time which RE stores its attributes. The attributes can be stored either in the same

1

2

3

8

7

6

5

4

Fig. 4 A set of 8 vertices
yields a tetrahedralisation
with 8 tetrahedra. Out of the
total 19 edges the 6
representative edges (REs)
are stored and shown in bold:
h1; 3i, h1; 5i, h1; 7i, h2; 4i,
h2; 6i, h2; 8i

Representing Three-Dimensional Topography in a DBMS 125

link list (alternating vertex labels with attributes), or in another list (having the
same length as the list of the star).

3.4 Spatial Indexing: The Tetrahedralisation Itself

An advantage of a star-based structure—or of any structure in which adjacency and
incidence relationships are stored—is that a spatial index, such as an R-tree
(Guttman 1984), is not necessary to access efficiently the tetrahedra. Instead, the
tetrahedralisation itself can be used to determine which tetrahedron contains a
query point q: the adjacency relationships between the tetrahedra are used to
navigate in the tetrahedralisation. The latter can be implemented with the walking
algorithm as described in Mücke et al. (1999). It is a sub-optimal algorithm that is
favoured by practitioners since it does not require an auxiliary data structure and
yields fast practical performances (Mücke et al. 1999; Devillers et al. 2002).

The idea is as follows: starting from a given tetrahedron r, we move to one of
the neighbours of r (we choose one neighbour such that the query point q and r
are on each side of the triangular face shared by r and its neighbour) until there is
no such neighbour, then the tetrahedron containing q is r. In Fig. 5, only the grey
triangles are visited during the walk.

To minimise the number of triangles visited, the starting triangle should be
close to q. Mücke et al. (1999) investigated a ‘bucketing’ approach where a certain
number of triangles are randomly selected, and each walk starts from the closest
one (selected by a simple Euclidean distance test); it is called the jump-and-walk
method. The result of a query can be either a tetrahedron, or one representative
edge in that tetrahedron. Modifying this algorithm to start from a representative
edge is trivial.

4 Implementation in a DBMS and Experiments

This section describes a prototype implementation of the star-based data structure
in a specific, object-relational DBMS (PostgreSQL), but since the data structure is
based solely on lists of labels, implementing it in another DBMS should be

q

starting triangle

Fig. 5 Walking in a 2D
triangulation, starting from a
given starting triangle to the
query point q. In 3D the
principle is the same: the
walk is performed from
tetrahedron to tetrahedron

126 H. Ledoux and M. Meijers

straightforward. Several engineering decisions had to be taken when implementing
the structure in PostgreSQL, and we report here on the main ones.

4.1 PostgreSQL Tables

Figure 6 shows that the schema definition of the data structure is straightforward if
the DBMS supports an array type of variable length: two tables are created, one
table for vertices (points) and one for representative edges. A unique ID is
assigned to each vertex and is stored together with the ordinates of each point. For
the IDs of the points, the type bigint (64-bit integers) is used since 32-bit
integers would limit the size of the datasets that could be stored. We define the
column ‘gid’ as a primary key, which creates a binary-tree index on the column
(B-tree). This ensures efficient access and enforces uniqueness.

An edge is stored as a reference to its start and end vertices (the primary key of
the table is composed of the concatenation of both IDs), and its link is stored as an
array of type bigint (which refer to the gid in the vertex table). At a later stage
we will aim at compressing the array stored for the link (by using differences in
vertex labels), so that less storage space is needed; this then will have a direct
impact on how much data needs to be read from disk by the DBMS. Also, to be
able to represent triangles and tetrahedra two custom types are defined. Both types
are a sequence of vertex IDs, where triangles are represented by 3 vertex IDs and
tetrahedra by 4. Based on these custom types a view can be defined that ‘glues’ the
geometry of the vertices and edges together to triangles and tetrahedra (performed
by a DBMS join).

Fig. 6 Schema definition of the star-based data structure in PostgreSQL

Representing Three-Dimensional Topography in a DBMS 127

4.2 Examples of Topological Queries

We describe how a few typical queries could be performed with a star-based
structure. All the queries refer to the example in Fig. 7, and the resulting tables in
PostgreSQL (Table 1). Since triangles and tetrahedra can be present multiple times
in the structure, querying the structure has to be done with care. For example,
tetrahedron h5; 7; 1; 2i is present in the edge table in the links of all its represen-
tative edges: h1; 5i, h1; 7i and h5; 7i.

Is tetrahedron h5; 7; 1; 2i present? First, one RE has to be found: h1; 5i is one of
them. Observe that a RE is found in constant time only by finding locally 2 odd or
even IDs in the tetrahedron. Second, the IDs 2 and 7 have to appear consecutively
in the link of that edge (which is the case, therefore the tetrahedron is present).
What tetrahedra are adjacent to h5; 7; 1; 2i? First, find one RE as above (h1; 5i)
and find the position of vertices 2 and 7 in the link. The vertices before and after
the tuple give 2 adjacent tetrahedra: h1; 5; 6; 7i and h1; 5; 2; 4i. Second, find
another RE of h5; 7; 1; 2i and repeat the same operations in its link. Since we know
that each triangle is represented in at least one RE, this operation will always
return the 4 tetrahedra.
Total number of tetrahedra? Here we apply the same criteria as for storing attri-
butes in Sect. 3.3: the lowest concatenation of the IDs is the one representing the
tetrahedron. For instance, tetrahedron h1; 3; 4; 2i is conceptually stored in edge
h1; 3i and not h2; 4i. Thus, it suffices to scan the edge table and take a local
decision to extract tetrahedra.

We are currently investigating which custom functions are necessary for modelling
3D topographic datasets. Other examples than the ones already mentioned above
are insertion of a new point or a constraint, point location, attaching attributes to a

1

2

3

4

5

6

7

8

Fig. 7 Small example
dataset stored in PostgreSQL,
see Table 1 for the
information that is stored

128 H. Ledoux and M. Meijers

specific tetrahedron, etc. These functions will be programmed in PL/pgSQL (the
procedural language that PostgreSQL offers) or C.

4.3 Experiments With Real-World Data

To test the star-based data structure in PostgreSQL, we have made an experiment
with one real-world dataset. It is the 3D city model of our university campus
obtained by extrusion; the process used to construct it is described in Ledoux and
Meijers (2011). The original dataset covers an area of 2:3 km2 and has 370
buildings. We have created the CDT of the model with TetGen2 (Si 2008). Table 2
gives the details of the 3D extruded dataset, and the results of the construction of
the CDT.

Figure 8 shows a part of the extruded TU Delft campus, once tetrahedralised.
As can be seen, each polyhedron is decomposed into a set of tetrahedra. Notice
also that while the tetrahedra representing the ‘air’ are not shown, they are still
stored. In addition, we have constructed six extra planes forming the bounding box
of the dataset and added them to bound the area.

Table 1 Storing the
tetrahedra from the example
dataset of Fig. 7. In the link
column, ; means that the link
of the edge does not form a
cycle, i.e. the edge is on the
convex hull of the dataset

Vertex table

id x y z

1 5.0 2.5 6.0
2 5.0 11.5 6.0
3 5.0 6.0 12.0
4 9.0 6.0 8.0
5 9.0 6.0 4.0
6 5.0 6.0 0.0
7 1.0 6.0 4.0
8 1.0 6.0 8.0

Edge table
Start End Link[]

2 4 {;, 3, 1, 5}
5 7 {6, 1, 2}
1 7 {;, 8, 2, 5, 6}
1 5 {;, 6, 7, 2, 4}
2 6 {;, 5, 7}
2 8 {;, 7, 1, 3}
1 3 {;, 4, 2, 8}

2 www.tetgen.org

Representing Three-Dimensional Topography in a DBMS 129

http://www.tetgen.org

The CDT has added around 1,000 vertices to the original model (the Steiner
points), and the total number of tetrahedra is 47,707, for an input of only 370
polyhedra. However, it should be noticed that while the total number of edges in
the CDT is 56,291, less than half of these are REs and thus the edge table in the
DBMS is only about 25,000 rows. If the data structure of Penninga (2008) was
used—which is, to the best of our knowledge, the most compact structure for
storing tetrahedralisations in a DBMS—the tetrahedra table would have 47,707
rows, and each row would have exactly 4 IDs. The total number of IDs required for
this dataset would thus be 190,828, if we omit the vertex table.

With our structure, the vertex table is exactly the same as Penninga’s. The edge
table has 25,697 rows with 2 IDs (start and end vertices), plus a total of 101,694
IDs in all the links (this number was obtained by querying the DBMS; the average
length of a link is 4.93, the minimum is 3 and the maximum is 28). Thus, the total
is 153,078 IDs, which makes it around 20 % compacter for this real-world dataset.

For populating the DBMS, we have created a program that takes as input the
result of the tetrahedralisation (a list of vertices and tetrahedra) and outputs a list of
REs and their links. Currently, only bulk loading of data is supported in our
prototype.

5 Discussion and Future Work

We have shown that a star-based data structure implemented in a DBMS can be
both compact and topological at the same time, two criteria that are usually
contradictory. Our structure uses in theory only 3 IDs per tetrahedron, which is an
improvement of 33 % over the most compact structure implemented in a DBMS so
far (that of Penninga (2008)). We should add that these results ignore the fact that
with a non-topological structure an auxiliary spatial index must be used, which
increases greatly the storage space (3 extra vertices per tetrahedron are needed,
plus the size of the tree) and is complex to maintain when objects are deleted. With
a star-based structure, only a standard B-tree is needed, and furthermore less rows
need to be indexed (in our real-world dataset, we had around twice as many
tetrahedra as representative edges). Another strong point of the star-based structure
is that it can easily be implemented in any DBMS with two simple tables.

While a star-based structure seems more cumbersome to maintain when the
data are updated, the users need not be aware that this is the structure used. We
plan to add functionalities to the DBMS so that views can be created over the
edges and stars so that only features (e.g. buildings) are shown to the user, which is

Table 2 Details concerning the datasets used for the experiments

Input 3D model CDT Star

Vertices Constraints Vertices Edges Triangles Tetrahedra Representative edge
5,978 3,982 6,938 56,291 95,420 47,707 25,697

130 H. Ledoux and M. Meijers

what van Oosterom et al. (2002) advocate for storing GIS datasets in a DBMS. We
have plans to make the data structure fully dynamic (i.e. supporting insertions and
deletes of tetrahedra and of features, updating the already stored tetrahedra in the
database).

Object relational DBMS systems keep evolving and new powerful features have
been added to mainstream systems. One example is Common Table Expressions
(SQL-99) which paves the way to deal with more complex data structures like
trees and graph storage inside such systems natively. We intend to see how far
these features are useful during implementation of the query part of our data
structure and how much custom procedural functionality still needs to be build.

Apart from 3D topography, 3D models can also be useful for modelling space
and map scale in one integrated 3D data structure, e.g. van Oosterom and Meijers
(2011). Hence, one operation we want to investigate in more detail is to create a
cross section through the stored 3D model: selecting intersecting tetrahedra,
performing intersection and then create a topologically clean output of the inter-
sected elements to see whether this tetrahedra based model can be a useful
underlying technology for producing vario-scale data.

Acknowledgments This research is supported by the Dutch Technology Foundation STW,
which is part of the Netherlands Organisation for Scientific Research (NWO) and partly funded
by the Dutch Ministry of Economic Affairs, Agriculture and Innovation (project codes: 11300 and
11185).

References

Blandford DK, Blelloch GE, Cardoze DE, Kadow C (2005) Compact representations of
simplicial meshes in two and three dimensions. Int J Comput Geom Appl 15(1):3–24

Fig. 8 Part of the tetrahedralised 3D model of our campus, which was obtained by extrusion

Representing Three-Dimensional Topography in a DBMS 131

Carlson E (1987) Three-dimensional conceptual modeling of subsurfaces structures. In:
Proceedings 8th international symposium on computer-assisted cartography (Auto-Carto 8),
Falls Church, VA, pp 336–345.

Cline AK, Renka RJ (1984) A storage-efficient method for construction of a Thiessen
triangulation. Rocky Mountain J Math 14:119–139

Cohen-Steiner D, Colin de Verdire E, Yvinec M (2004) Conforming delaunay triangulations in
3D. Comput Geom Theor Appl 28:217–233

Devillers O, Pion S, Teillaud M (2002) Walking in a triangulation. Int J Found Comp Sci
13(2):181–199

Finnegan DC, Smith M (2010) Managing LiDAR topography using Oracle and open source
geospatial software. In: Proceedings GeoWeb 2010, Vancouver, Canada.

Frank A, Kuhn W (1986) Cell graphs: a provable correct method for the storage of geometry. In:
Proceedings 2nd international symposium on spatial data handling, Seattle, USA.

Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: Proceedings 1984
ACM SIGMOD international conference on management of data, ACM Press, pp 47–57.

Ledoux H, Gold CM (2008) Modelling three-dimensional geoscientific fields with the Voronoi
diagram and its dual. Int J Geograph Inf Sci 22(5):547–574

Ledoux H, Meijers M (2011) Topologically consistent 3D city models obtained by extrusion. Int J
Geograph Inf Sci 25(4):557–574

Molenaar M (1990) A formal data structure for three dimensional vector maps. In: Proceedings
4th international symposium on spatial data handling, Zurich, Switzerland, pp 830–843.

Molenaar M (1998) An introduction to the theory of spatial object modelling for GIS. Taylor&
Francis, London

Mücke EP, Saias I, Zhu B (1999) Fast randomized point location without preprocessing in two-
and three-dimensional Delaunay triangulations. Comput Geom Theor Appl 12:63–83

OGC (2006) OpenGIS implementation specification for geographic information-simple feature
access. Open Geospatial Consortium inc., document 06–103r3.

OGC (2007) Geography markup language (GML) encoding standard. Open Geospatial
Consortium inc., document 07–036, version 3.2.1.

Penninga F (2005) 3D topographic data modelling: Why rigidity is preferable to pragmatism. In:
Cohn AG, Mark DM (eds) COSIT-Proceedings international conference on spatial
information theory, Lecture Notes in Computer Science, vol 3693. Springer, pp 409–425.

Penninga F (2008) 3D topography: a simplicial complex-based solution in a spatial DBMS. PhD
thesis, Delft University of Technology, Delft, The Netherlands.

Pilouk M (1996) Integrated modelling for 3D GIS. PhD thesis, ITC, The Netherlands.
Shewchuk JR (2002) Constrained Delaunay tetrahedralization and provably good boundary

recovery. In: Proceedings 11th international meshing roundtable, Ithaca, New York, pp 193–
204.

Shewchuk JR (2005) Star splaying: an algorithm for repairing Delaunay triangulations and
convex hulls. In: Proceedings 21st annual symposium on computational geometry, ACM
Press, Pisa, pp 237–246.

Si H (2008) Three dimensional boundary conforming Delaunay mesh generation. PhD thesis,
Berlin Institute of Technology, Berlin.

van Oosterom P, Stoter J, Quak W, Zlatanova S (2002) The balance between geometry and
topology. In: Richardson D, van Oosterom P (eds) Advances in Spatial Data Handling-10th
International Symposium on Spatial Data Handling, Springer, pp 209–224.

van Oosterom P, Meijers M (2011) Towards a true vario-scale structure supporting smooth-zoom.
In: Proceedings of 14th ICA/ISPRS workshop on generalisation and multiple representation,
Paris, pp 1–19.

Zlatanova S, Abdul Rahman A, Shi W (2004) Topological models and frameworks for 3D spatial
objects. Comp Geosci 30(4):419–428

132 H. Ledoux and M. Meijers

Can Topological Pre-Culling of Faces
Improve Rendering Performance of City
Models in Google Earth?

Claire Ellul

Abstract 3D City Models are becoming more prevalent, and have many appli-
cations including city walk-throughs or fly-throughs to show what a new building
would look like in situ, or whether a view or light will be blocked by a new
structure, flood modeling, satellite and signal modeling. Often, these models are
created using a process of extrusion of 2D topographic mapping, resulting in Level
of Detail 1 buildings with flat roofs. The models can contain many thousands of
polyhedra, which in turn results in performance issues when attempting to visu-
alize such models in virtual earth applications such as Google Earth. This paper
presents the results of a series of tests to determine whether using a topological
approach to pre-cull hidden Faces from the model can bring about performance
improvements. Such an approach could also be said to be one step towards the
generalization of such models to support multiple levels of detail.

Keywords 3D city models � Topology � Rendering � Performance � Intersection

1 Introduction

Three-dimensional (3D) City Models are becoming more prevalent and have
applications including utility infrastructure validation (‘‘call-before-you-dig’’),
comparing existing buildings with building and planning regulations, engaging the
public in planning issues (Batty et al. 2001; Coors et al. 2009; Isikdag and Zlatanova
2010), real estate sales, noise studies (Stoter et al. 2008a; Stoter et al. 2008b),

C. Ellul (&)
Department of Civil, Environmental and Geomatic Engineering, University College London,
Gower Street, London, WC1E 6BT, UK
e-mail: c.ellul@ucl.ac.uk

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_8,
� Springer-Verlag Berlin Heidelberg 2013

133

cadastral systems (for example Stoter and Salzmann 2003) and the work undertaken
by the many participants in the recent 3D cadastral conference (such as Pouliot and
Vasseur 2011; Khoo 2011; Aien et al. 2011; Stoter et al. 2011), augmented reality
(Coors 2004), personalized tourist information (Blechschmied et al. 2006), Schulte
and Coors, 2008 in Boguslawski et al. 2011), line of sight analysis (Fredericque and
Lapierre 2009, vehicle positioning in situations where satellite out-takes occur
(Lowner et al. 2010), energy consumption in buildings (e.g. comparing surface area
to volume ratios, Carrión et al. 2010), shadow effects on photo-voltaic cells (Alam
2011), 3D navigation on mobile phones (Basanow et al. 2008) and advanced driver
assistance systems (Van Essen 2008). Such models also facilitate integration of
heterogeneous 2D and 3D data (Glander and Dollner 2008)—for example Richmond
and Romano (2008) construct a 3D City Model and then integrate it with geo-
demographic data to automatically identify ‘residential’ neighborhoods in the city.

A number of methods can be used to generate data for City Models, including
the manual creation of detailed 3D buildings in applications such as Sketch-Up
(2011), or more automated processes such as extrusion, where a 2D footprint of a
building is ‘grown’ to a given height (Evans et al. 2007; Ledoux and Meijers 2011;
Richmond and Romano 2008). Models can also be created from LiDAR and Laser
Scanning datasets (Richmond and Romano 2008; Wang and Sohn 2011).
Increasingly, applications such as neo-photogrammetry (Heipke 2010; PhotoSynth
2012) are also providing sources of detailed 3D data.

The process of extrusion is most efficient when a larger area is to be covered
(for example an entire city), and where high levels of detail (e.g. sloping roofs) are
not required, and has the advantage of integrating 3D buildings with a 2D footprint
(Kada 2009), resulting in Level of Detail 1 (LoD1) buildings (Kolbe et al. 2005).
However, a common problem resulting from this process of model creation is the
complexity of the outcome with respect to individual components, their computer
graphics and the rendering resources (Glander and Dollner 2008). Indeed, the
resulting 3D data is generally quite large in volume, and thus potentially difficult to
visualize in its entirety utilizing 3D packages such as ArcGIS 3D Analyst (ESRI
2011) or Google Earth (2012).

Two aspects can be considered. Firstly, the cognitive load of the resulting
model—does the result provide sufficient information for the applications described
above? Will end users suffer from information overload? Will the resulting clutter
lead to degradation in user performance (Baudisch and Rosenholtz 2003 in Kazar
et al. 2008)? Secondly, what is the performance of such systems when confronted
with large datasets? Efficient and scalable techniques for storing, querying and
visualizing such datasets are fundamental for City Modeling (Kazar et al. 2008) and
the large volume of data presents one of the challenges when serving City Models
over the web, particularly in real time (Sester 2007; Curtis 2008).

This paper focusses on this second issue, and examines the use of topological
concepts to underpin the identification of shared and hidden Faces a 3D City
Model. Can performance gains be made by a process of pre-culling to remove
these Faces from the model before displaying the results in Google Earth?

134 C. Ellul

The remainder of the paper is structured as follows: Sect. 2 presents background
information into the generation of datasets for 3D City Modeling, options for
structuring such data and issues involved in visualization. Section 3 describes the
preparation of two tests datasets—one urban, one suburban—for two London
areas, including the creation of the 3D model by extrusion and the identification
and removal of shared Faces. Section 4 presents the results of the tests carried out
using the Google Earth Application Programmers Interface and Web Plug-In, and
Sect. 5 discusses the potential of the methods developed and identifies areas for
further work.

2 Background

This section reviews the process of generating a 3D City Model from a number of
sources, and includes information on the data storage methods used within a
spatial database for the resulting data. An overview of the general process used to
render such models is given and existing approaches to improving the performance
of this rendering process outlined.

2.1 Methods Used to Generate 3D Datasets
and Resulting Levels of Detail

In 2001, Batty et al. (2001) published an initial list of methods for generating City
Models, which ranged from digital ortho-photos (having very low geometric
content), 2.5D image draping and extrusion (block modeling, with a medium level
of geometric content) and highly detailed, fully volumetric buildings derived from
Computer Aided Design (CAD) models. In addition to this, both Light Detection
and Ranging data (LiDAR, airborne laser scanning generating highly detailed
point clouds from which models can be extracted), vertical photogrammetry
(either professional or through applications such as PhotoSynth, 2011) and ter-
restrial Laser Scanning can be used to generate 3D models of buildings to varying
levels of detail (LoD). In a 3D context, the different levels of detail have been
defined by Kolbe et al. (2005)—where LoD0 corresponds to a digital terrain
model, LoD1 is a block model without any roof structures, and moving up to
LoD4, which includes roofs, and also the interior structures of the buildings.

While it may be possible to derive a 3D model from a single source—as
exemplified by Tse et al. (2008) who attempt to use LiDAR to generate a 3D City
Model including roof structures—in practice, 3D models are generated using a
combination the above methods and data sources. For example, Van Essen (2008)
describes the production of 3D city maps starting from the 2D base and adding
height, roof representations and textures—in this case deriving building height

Can Topological Pre-Culling of Faces Improve Rendering Performance? 135

from photogrammetric elevation models, subtracting terrain height from normal
digital elevation models and façade textures from TeleAtlas’ mobile mapping
images. As the basic method only applies to standard buildings with planar
facades, a separate set of 3D landmarks has been created and added into the map.
Pu (2008) starts by extracting important building features—walls, windows, roofs,
doors, from a point cloud captured via terrestrial laser scanning. Then visible
building geometries are determined by direct fitting of polygons to the feature
segments. Geometric assumptions are made for the occluded parts. These elements
are then combined to generate the solid building models. Richmond and Romano
(2008) describe constructing a City Model through extrusion using a combination
of LiDAR and floor height estimates. More recently, Wang and Sohn (2011)
propose fusing terrestrial and airborne laser scanning with architectural drawings
to generate a seamless 3D building model.

Given the varying input sources, the output of the varying methods can differ
widely in terms of the level of detail about individual buildings. In general,
however, methods such as extrusion (combining 2D topographic mapping with
height information derived from LiDAR data) provide a rapid mechanism of
generating an entire City Model to LoD1, where as detailed terrestrial laser scans
or CAD drawings may be suitable to obtain greater detail (e.g. LoD4) but for fewer
buildings within the city. Extruded models also provide separate ‘building’ entities
which cannot easily be identified from LiDAR or terrestrial scanning, where
blocks of buildings form one point cloud. While CAD models do provide separate
buildings, they are not generally available in large quantities, making extrusion the
most appropriate mechanism to generate the data required for testing performance
of Google Earth.

2.2 Spaghetti and Topology

Geographical Information Systems (GIS) distinguish between two approaches to
modeling lines, polygons or polyhedra. Firstly, a simple features approach, where
each object is stored individually and data is represented as a planar configuration
of points, arcs and areas with no explicit representation of the topological inter-
relationships of the configuration, such as the adjacency relationships between
constituent areas or volumes (Longley et al. 2011; Worboys and Duckham 2004).
The structure of such simple feature polylines or polygons is sometimes called
‘spaghetti’ because, like a plate of cooked spaghetti lines (strands of spaghetti) and
polygons (spaghetti hoops) can overlap and there are no relationships between
individual features (Longley et al. 2011). Polygons are represented as independent
cycles of coordinates and in a 2D context, the ‘spaghetti’ approach is also useful to
rapidly render data onto screen (Worboys and Duckham 2004) or to color indi-
vidual features according to their attributes (Rigaux et al. 2000). However, given
that each feature is stored as a separate entity, this model requires duplication of

136 C. Ellul

information—for example, the shared wall between two adjacent buildings will be
represented twice. This increases the amount of data that is held within the model.

A second approach to data storage is to create a topological model, where
topological features are simple features (Nodes, Edges, and Faces) structured using
topological rules (Longley et al. 2011). There is no redundancy in the model as the
shared boundaries between objects are stored once and then combined to make up
the specific object. Thus topological queries (adjacency, intersection) can be
efficiently computed, and there is also update consistency—when you move the
boundary between two buildings, the same boundary object is moved for both
buildings (there is no redundancy in the shared boundaries, Rigaux et al. 2000).
As shared boundaries are only represented once, data structured topologically
requires less storage than that structured as spaghetti—and the lack of data
duplication means that any edits to the data are automatically propagated to related
objects (e.g. adjacent buildings). A topological structure pre-calculates the topo-
logical relationship between features and stores it in a data structure optimized for
quick retrieval.

Figure 11 shows a simplified topological data structure for 3D data. The basic
components of the model consist of a series of 0-dimension primitives (Nodes)—
which in turn contain X, Y and Z coordinates. These Nodes are joined together to
construct 1-dimensional primitives (Edges) which in turn are ordered to form

FEATURE
-Feature_ID
-Feature_Geometry

NODE
-Node_ID
-Node_Geometry

EDGE
-Edge_ID
-Edge_Geometry

FACE
-Face_ID
-Face_Geometry
-Left Body Feature
-Right Body Feature

NODE_EDGE
-Node_ID
-Edge_ID
-Start_or_End

EDGE_FACE
-Edge_ID
-Face_ID
-Cycle_ID
-Edge_Order
-Edge_Direction

*

*

*

*

*

*

1

*

1

*
*

1

1

*

2

Fig. 1 Basic topological
data structure, showing node,
edge and face primitives and
the links between them

1 Note that for simplicity the volumetric object, which would permit the identification of the
components of a building and of which buildings share a Face, has been omitted as the work
described here focusses on visualisation and on reduction of Face primitives. In general such an
object should be added to have a complete 3D model.

Can Topological Pre-Culling of Faces Improve Rendering Performance? 137

2-dimensional primitives (Faces). The Faces are linked together to form 3D
polyhedra, which represent the buildings in the City Model. For convenience, the
Face primitives have also been retained as geometry objects in the model—these
are used to detect intersecting Faces (see Sect. 3.3 below).

The process of extrusion described in Sect. 2.1 results in a spaghetti structure,
where each Face between buildings is represented twice. Details of how this data
can be transformed into the topological structure shown above are given in
Sects. 3.2 and 3.3.

2.3 Displaying 3D City Models in Google Earth

Google Earth is a commonly used virtual globe which allows the user to explore
the world and shows satellite imagery, maps, terrain and 3D buildings. Users can
zoom in and out, tilt and rotate the map and navigate to places of interest. The
software is based on software created by Keyhole Corporation, which Google
acquired in 2004, is the first version of Google Earth was launched in June 2005
(Google 2012a) and Google estimate that there have been over 1 billion down-
loads of the software (IT World 2012).

Users can also add their own data to Google Earth, making use of the Keyhole
Markup Language (Google 2012b) which allows the specification of 3-dimen-
sional points, lines and polygons. Having built a model (which can show the detail
of a building or can encompass an entire city) users can publish this to the Google
Earth environment for other users to view.

The graphics engine inside Google Earth is proprietary. However, users can run
Google in two Graphics optimization modes—DirectX or OpenGL, depending on
their hardware.

Figure 2 shows part of the graphics rendering process used by OpenGL.2 The
full rendering process to display data on screen requires a transformation from the
3D dataset, having real world coordinates, to a set of 2D pixels corresponding to
the layout of the screen. For each object to be displayed the system must ‘scan’ the
object by generating a series of scan lines (rays) and calculate where these
intersect the object. This computational geometry process is coupled with a pro-
cess of clipping (using computational geometry to determine which objects are
actually visible in the view on screen) and anti-aliasing (to improve rendering of
curved objects). Hidden surface removal algorithms are used to determine which
objects (and which parts of each object) are visible to the user, and which are
hidden by other objects (and hence should not be drawn) (Chen and Chen 2008).
Rendering algorithms are run for every object to be displayed. Therefore, to

2 Open GL is a framework developed over 20 years ago by the Silicon Graphics Lab, and is now
maintained by the Khronos Group [0]. It is a standard for writing computer graphics based
programs, making use of the computer’s graphical processing unit (GPU) which is specialized
hardware designed to optimize image display on computer screens.

138 C. Ellul

minimize the number of times such operations must be repeated, a process of data
reduction is required, to ensure that the data volume 3D City Model can be
rendered by the graphics engine in a timely manner.

2.4 Current Approaches to Data Reduction

A number of approaches to the task of reducing the volume of data of a 3D City
Model can be identified

Firstly, data compression has been identified by Van Essen (2008) as a partial
solution to reducing the size of their City Model, which was stored in the Virtual
Reality Mark-up Language. However, this approach, which reducing the time to
transmit the model to a client in a web-based environment, does not reduce the
number of Faces that are required to be rendered by the graphics pipeline. Simi-
larly, a process of mesh simplification is often employed in Computer Graphics to
remove extraneous detail from 3D triangular meshes. As Sester (2007) notes, these
methods are more suitable for large meshes representing a single object and having
many redundant points, rather than the multiple individual features held in 3D City
model, where removing one point may cause a problem with an individual
building.

Secondly, the concept of Levels of Detail, (Kolbe et al. 2005) where different
representations of the data is used at different scales, is used to limit the size of
datasets—the effective visualization of complex 3D City Models requires an
abstraction of City Model components (Glander and Dollner 2008). Whilst in 2D
Geographic Information Systems (GIS), the equivalent concept (known as gen-
eralization) is well understood, this is less so in 3D. A number of approaches to 3D
generalization can be identified. For example, Glander and Dollner (2008)
investigated methods including cell-based generalization, convex hull creation
(using average heights of buildings in a block) and a voxel based approach,
assigning objects to specific cells on a grid. Generalization using a process of
subdividing building parts into half-planes is suggested by Kada (2007) and
Guercke et al. (2009) describes approaches that take into account the importance
of semantics to the end result, including the identification and emphasis of key
features in a city, proposing a parametric approach towards the problem.
The authors in Guercke et al. (2009) also cite a number of other approaches such as

Fig. 2 Overview the graphics rendering pipeline (from Chen and Chen 2008)

Can Topological Pre-Culling of Faces Improve Rendering Performance? 139

that by Lal 2005 (in Guercke et al. 2009) who makes a distinction between micro,
meso and macro models for generalisation and Dollner and Buchholz (2005), in
(Guercke et al. 2009) who introduce the concept of continuous level of quality
buildings that allows the user to model buildings with a custom level of granularity
according to the task at hand. An additional review of approaches to and tech-
niques for generalisation can be found in Fan et al. (2009), who themselves
investigate generalisation at block level, using an approach to extract the exterior
shell of building models that contain interior and exterior surfaces for walls and
roofs, and examining the issue of generalisation of windows.

A third approach to data reduction is that of defining scales and zoom levels at
which certain features within the model become visible. For example, when
opening a City Model, it may be possible to see only key landmark features in 3D
model. As the user zooms in on a particular area additional features and details
become available.

Although both the second and third approaches above show promise, the former
restricts the user to specific view scales and the latter to pre-defined levels of
detail. Section 3 proposes a complementary method to reduce the data volume of a
3D City Model, which could in turn increase the flexibility and range of both these
approaches.

3 Methodology

The aim of the experiments described in the remainder of this paper is to determine
whether transforming a 3D City Model from a spaghetti to a topological data
structure (as described in Sect. 2.2), and hence reducing the data volume of the
model, results in a performance improvement when rendering the data.

The dataset used for the experiments is a detailed topographic mapping dataset
for London, UK Map, provided by GeoInformation Group, and includes height
information for each polygon. Two tests datasets, one covering a small portion of
central London (the area surrounding University College London, consisting
mainly of high rise buildings) and the other covering a more suburban area (Petts
Wood, to the South East of the city, consisting of low-rise buildings and residential
housing) were chosen to provide insight into the extent to which topologically
structuring the data could reduce the complexity of the dataset in both urban and
suburban situations (Fig. 3). Table 1 summarizes the datasets.

The data was uploaded to an Oracle Spatial database using Snowflake’s GO
Loader software (Snowflake 2012). Oracle Spatial was selected for its ability to
model and index 3D spatial datasets, and in particular for the inbuilt extrude
function which allows the automatic generation of 3D polyhedra from the 2D
polygons. Given the focus on buildings, tables containing the subset of buildings
data were created for further work.

140 C. Ellul

3.1 Extruding the 3D Dataset

Oracle Spatial provides built-in functionality to extrude 3D spatial data (Oracle 2011).
However, preliminary tests revealed that Oracle’s SDO_UTIL.EXTRUDE function is
not able to handle polygons with internal holes. A Java program has been written to
iterate through each building, and identify and extract the shell and Oracle’s
SDO_UTIL.EXTRUDE utility is then applied to this polygon. The internal details of
any building, where present, are discarded.

3.2 Topologically Structuring the Data: Nodes,
Edges and Faces

The result of the extrusion process in Oracle Spatial is a set of 3D features stored
in a spaghetti structure (see Sect. 2.2). Each feature is made up of a single poly-
hedron, which is in turn constructed from a series of individual Faces held in an

Fig. 3 Overview map of London in Google Earth showing UCL test data (top left) and Petts
Wood test data (bottom right)

Can Topological Pre-Culling of Faces Improve Rendering Performance? 141

Oracle SDO_GEOMETRY. The next step in the data preparation is to identify the
topological relationships (in particular adjacency) between the constituent Faces
forming each polyhedron, and to convert the data from spaghetti to a topological
structure.

Each 3D polyhedron created by the extrusion process was split into constituent
Nodes, Edges and Faces. Oracle Spatial stores 3D objects internally as lists of Faces,
which in turn are made up of ordered lists of 3D coordinates. The coordinates were
first extracted and Node objects created for each triplet (with checks for duplicates).
The Node order was then used to construct Edges (formed of two Nodes) and
individual Face polygons created for each of the Faces in the 3D Object. The results
were stored in the topological data structure described in Sect. 2.2 above. For each
new Node and Edge component, the corresponding table was first queried to
determine whether it had already been created. Given the absence of a 3D EQUALs
in Oracle Spatial operation, this was done by comparing the coordinate values at
Node level, and then the linked Nodes at Edge level. The following section describes
the process used to identify shared and intersecting Faces.

3.3 Topologically Structuring the Data: Identifying
Shared Faces

As can be seen in Fig. 1 above, the final topological structure permits a direct
query on the resulting Face objects to determine whether the Face has both a left
and right feature. If this is the case, then it can be concluded that the Face is shared
between two buildings and is an internal wall. Therefore, the second part of the
topological structuring process involved the identification of adjacent Face objects
and hence shared internal walls.

Table 1 Topographic mapping polygon count by theme

Theme Number of
polygons—UCL

% Area,
UCL

Number of polygons—
Petts Wood

%Area, Petts
Wood

Buildings 3147 40.46 12757 8.23
Man-made surfaced

areas
2778 49.35 4106 17.35

Man-made structures
(not buildings)

26 0.40 35 0.07

Vegetated/Natural areas
–grass

486 9.52 6356 45.83

Water 0 0.00 20 0.03
Natural areas—scattered

trees
0 0.00 9 0.79

Natural areas—mostly
trees

1 0.26 75 27.70

Total features 6438 100 23358 100

142 C. Ellul

To date (late 2011), Oracle Spatial does not provide a full 3D intersection query
would easily identify shared Faces.3 Therefore an alternative option was identified
to determine whether two buildings were adjacent in some manner and hence
shared a Face, and if so to create this ‘shared’ Face geometry. Two situations were
considered—buildings that were identical in height and width, and buildings that
were identical in width but not in height, as shown in Fig. 4, where Buildings A
and B share identical Face F1 and Buildings C and D share identical Face F3 but
Building D also includes another Face F2 on the same plane as F3.

The shared Faces were identified by locating common shared base edges—such
as E1 and E2 in Fig. 4. The identified Faces were then projected into 2D space, by
extracting the X and Z coordinates from each Node, as shown in Figs. 5 and 6.

Once the data was projected, 2D intersection and difference queries were used
in Oracle Spatial, on each pair of Faces that shared an edge in 3D, to determine the
intersection geometry and also any difference geometry. The results of this were
then projected back into 3D space through a reversal of the process shown in
Figs. 5 and 6, ensuring that the links between the original Face (e.g. F2 and its
replacement Faces (F3 and F5) were maintained.

3.4 Creating Subsets of Faces for Testing

Once shared Faces were identified, and split topologically where necessary, the
following datasets were created to be utilized performance testing:

• All Faces—these are the Faces derived from the spaghetti structure in the ori-
ginal dataset, and this dataset includes any duplicate Faces or overlapping Faces,
which are represented twice.

• Single Faces—in this dataset, any overlapping Faces identified by the process in
Sect. 3.3 were replaced by a single Face which formed the internal wall between
two buildings, and by any split external Faces where building heights differed.

Fig. 4 Identifying shared
faces between adjacent 3D
buildings—step 1

3 Oracle Spatial at Version 11g supports the following queries in full 3D mode: SDO_ANY-
INTERACT, SDO_FILTER, SDO_INSIDE (for solid geometries only), SDO_NN and
SDO_WITHIN_DISTANCE—http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/
sdo_intro.htm#BABIDJJB Accessed 12th January 2012.

Can Topological Pre-Culling of Faces Improve Rendering Performance? 143

http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_intro.htm#BABIDJJB
http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_intro.htm#BABIDJJB

• No Internal Faces—in this dataset, the shared internal walls were removed
entirely, and only the full shell of the block of buildings was represented.

• No Floors—in this dataset, the Faces making the floors were identified
(as having all height values 0) and removed.

3.5 Performance Testing Using Google Earth

As described in Sect. 2.3, Google Earth is a desktop product designed to read files
storing spatial data in the Keyhole Markup Language. For each of the test datasets
listed above, KML files were generated by iterating through each Face and adding
it as a 3D polygon to the KML file. As the original dataset was stored in the British
National Grid projection, and Google Earth requires geographic coordinates
(latitude/longitude) the data was transformed as part of this process, using Oracle’s
SDO_CS.TRANSFORM functionality.

KML files were generated for each of the four options described above (All Faces,
Single Faces, No Internal Faces and No Floors) for both the Petts Wood and UCL

Fig. 5 Identifying intersections between shared faces—step 2—project the faces into the X/Z
plane

Fig. 6 Identifying intersections between shared faces—step 3—project the faces into the X/Y
plane and then use Oracle’s intersection queries to determine intersection and difference polygons

144 C. Ellul

datasets (8 files in total). The files were generated via a Java export routine, which
iterated through the lists of Faces and created each Face as an individual polygon in
the KML. These were then opened in the desktop version of the Google Earth
package, to validate the KML. The results obtained are shown in Fig. 3, which
shows the UCL data at the top left of the screen, and the Petts Wood data at the
bottom right (the map area covers the greater London area).

The desktop version of the Google Earth package does not provide opportunities
for customization to perform timed display testing. Therefore, the Google Earth
Application Programmers Interface was used, along with JavaScript and HTML, to
undertake the necessary tests. A test script was written that tracked two specific
events in the Google Earth display process—firstly, the loading of the dataset was
timed. Loading takes place via an AJAX (Asynchronous Java and XML) request,
and time was measured from request to response. Secondly, the time to display the
datasets was measured by trapping the Google Earth ‘frameend’ event, which is
triggered when a drawing event is completed. As multiple ‘frameend’ events are
triggered during a draw process, the test script was designed to log each of these and
allow the user to determine when the final frame was drawn (and hence measure the
time between the start of the draw process and the final ‘frameend’ event).

Google Earth displays a series of ‘base’ images underpinning any other data. As
these images are retrieved over the internet, each KML file in each dataset was set
to fly to an identical location on startup, thus causing identical base map tiles to
load. GeoChalkboard (2012) explain how to use the concept of ‘regions’ to
improve performance in Google Earth—this involves sub-dividing the data into a
series of more and more detailed 3D volumes, which ‘switch on’ when the user has
zoomed into a particular scale. However, this concept was not applied in this case
as the aim of the test was to compare performance when displaying a full dataset.

All tests were carried out in the Google Chrome browser, Version 16.0.912.75,
on a desktop machine having a basic Intel HD Graphics Renderer Video Card,
with 3844 MB of Adapter RAM, on an Intel Core i7 CPU with a processing speed
of 2.80 GHz, 8 GB RAM and running Windows 7 64-bit. It was planned to load
each KML dataset ten times.

Fig. 7 Results for 10 valid
rendering tests for the four
face datasets—Petts Wood

Can Topological Pre-Culling of Faces Improve Rendering Performance? 145

4 Results

4.1 Topological Data Storage

Storing the data in topological format reduced the number of coordinate triplets
from 151595 to 32889 for UCL and from 508449 to 114040 for Petts Wood.
A similar reduction in Edges can also be observed—from 124680 to 56267 for
UCL and from 413961 to 190423 for Petts Wood.

4.2 Issues With the Google Earth Plug-In

During preliminary tests, a number of issues were noted with the Google Earth
plug-in in the context of the larger Petts Wood dataset. Three issues were
encountered, as follows:

• Excessively long time required loading and display data, where results obtained
for individual tests were significantly higher than those previously obtained for
the same dataset. For example, a load time of 17492 ms and a display time of
288591 ms for the ‘Single Inner Walls’ dataset for Petts Wood, and load time of
6740 ms and display time of 174212 ms for the ‘No Floors’ dataset. It was
hypothesized that this could be due to internet connection responsiveness and
given the overall consistency of the readings obtained (see Fig. 7) these values
were considered outliers and removed.

• Excessively rapid time required to load and display data, again with results that
can be considered outliers—for example a display time of 19048 ms for the
‘Single Inner Walls’ dataset for Petts Wood. The issue could be detected by a
change in behavior in the plug in—instead of zooming directly to the location of
interest, it first zoomed to the North of Scotland. These results appeared to be
due to data caching, and were again excluded from the measurements. To
overcome this issue, the Google Chrome browser was closed and re-opened as
necessary during the tests.

• Frequent crashes of the Google Earth plug-in, despite re-installation. This was
observed to happen in particular when the test dataset was changed (e.g. when
testing firstly on ‘All Faces’ and then on ‘Single Internal Walls’).

Given the above issues, tests were run for the Petts Wood data until ten valid
results were obtained for each test (requiring approximately 5 extra tests per
dataset). Figures 7 and 8 below show the results obtained. As can be seen, once the
outliers are eliminated the results obtained are consistent across all datasets. The
smaller size of the UCL dataset meant that the above issues were not encountered.

146 C. Ellul

Fig. 9 Google Earth display for Petts Wood data—fixed display for all tests

Fig. 10 Google Earth display for UCL data—fixed display for all tests

Fig. 8 Results for 10 valid rendering tests for the four face datasets—UCL

Can Topological Pre-Culling of Faces Improve Rendering Performance? 147

4.3 Summarizing the Results

Figures 9 and 10 show the resulting Web pages with the embedded Google Earth
plug-in, set to the fixed view in each case to ensure that the base map tiles loaded
were identical and thus did not influence the comparative results.

Tables 2 and 3 summarize the results obtained for UCL and Petts Wood
respectively. As expected, the size of the KML file decreases with the number of
Faces in the file, dropping from 41.39 MB to 27.73 MB for Petts Wood and from
12.11 MB to 6.91 MB for UCL. The ratio between the number of Faces and
number of buildings reflects the urban and suburban nature of the locations—with
a total of 94488 Faces for 12757 buildings in Petts Wood (7.4 Faces per building),
and 26915 Faces for 3147 buildings (8.5 Faces per building) perhaps reflecting the
more ‘complex’ building footprints in the UCL area.

The above tables highlight the differences between the UCL and Petts Wood
datasets, both in terms of the overall number of Faces (UCL has 26915 versus
94488 for Petts Wood) but also the impact of removing shared internal Faces, all
internal Faces and the floors. Table 4 summarizes the resulting number of Faces,
expressed as a percentage of the total.

As can be seen, the percentage of Faces identified as shared is higher for the
UCL area, which may be due to the more central location and hence more densely
packed, terraced (buildings on both sides) buildings. It could be assumed that in a
suburban area, houses may be detached (not touching other buildings) or semi-
detached (only one other building to one side). The urban versus suburban nature
of these neighborhoods is also reflected in the impact of removing the Faces

Table 2 Petts Wood results—load and display time, number of faces and KML file size

Petts Wood All faces Single inner walls No inner walls No floors

Average load time (ms) 2628.30 2422.90 2439.20 3424.80
Average display time (ms) 99287.30 84850.30 64096.70 47167.30
Number of faces 94488.00 88246.00 76622.00 63868.00
KML file size 41.39 38.76 33.84 27.73

Table 3 UCL results—load and display time, number of faces and KML file size

UCL All faces Single inner walls No inner walls No floors

Average load time (ms) 1337.90 1140.20 862.30 711.00
Average display time (ms) 8866.90 7010.40 5777.00 4558.20
Number of faces 26915.00 24138.00 18612.00 15477.00
KML file size 12.11 10.93 8.59 6.91

Table 4 Decreasing numbers of faces as hidden faces removed

All faces Single inner walls No inner walls No floors

UCL 100 89.68 69.15 57.50
Petts Wood 100 93.39 81.09 67.59

148 C. Ellul

corresponding to the floor of each building—in the case of UCL, this removed
11.64 % of the Faces, whereas for Petts Wood, the total percentage of Faces
removed was 13.50 %.

Figures 11 and 12 graph the correspondence between the number of Faces and
the time taken to display the dataset. In both the UCL and the Petts Wood case,
these graphs show an almost linear drop in display time as the number of Faces
decrease. In the case of UCL, going from All Faces to No Floors results in an
overall rendering time nearly half that of the original (51 %), with the display time
for Petts Wood taking less than half the original (47 %).

4.4 Visualizing the Results

Figure 13 shows a screen shot of the Google Earth plug in and the UK Map data
around the ‘Cruciform’ building which forms part of UCL. The KML dataset
shown on the left contains All Faces, whereas the KML dataset on the right is the
‘No Floors’ dataset. As can be seen, the resulting performance gain can be
obtained with no loss of external detail of the buildings.

5 Discussion and Further Work

The results obtained above show that there are significant performance gains
to be obtained by making use of topological data structures to store 3D City
Models generated by extrusion, pre-culling some Faces and hence generating KML
files including only the Faces required for display of a building’s outer shell.

Fig. 11 Comparing the
average number of faces and
average display time—Petts
Wood

Fig. 12 Comparing the
average number of faces and
average display time—UCL

Can Topological Pre-Culling of Faces Improve Rendering Performance? 149

Removing internal and floor information does not impact the overall quality of the
resulting City Model. Additionally, the methods developed take full advantage of
Oracle Spatial’s inbuilt spatial data management functionality (e.g. the extrude
option) and do not require additional algorithm development. In general, the selected
tools (Oracle Spatial, Java and Google Earth’s web plug-in) also proved adequate.
Although not applied in this case, where a simple test was carried out, the methods
described above to identify shared 3D faces (project to the X/Z plane, project into
2D, intersect, re-project upwards and into X/Y/Z) are directly applicable to situa-
tions where the shared Edge between two faces is not identical—i.e. where one
building is offset from the either, either forwards, backwards or in both directions. It
is anticipated that extending the method will result in a higher number of shared
faces. However, in the offset situation the overall number of faces will not be
reduced—two overlapping offset Faces, when split, will result in three Faces in total,
one of which will represent the shared area (hidden Face) and will hence be removed.

Given the high quality dataset used for this project, there was no requirement to
define a tolerance setting to identify shared Nodes –this could be added for use
with poorer quality data or with data sources such as CAD, where dividing walls
may be represented by two separate Faces that define the physical width of the
wall itself. Additional work is also required to improve the Face matching methods
for more complex building types—can it be adapted to LoD2, 3 and 4? The
findings of Ledoux and Meijers (2011) are particularly relevant—they note that
there are ‘‘no guarantees that a set of footprints will yield a topologically consistent
city model’’ and present methods to overcome issues of topological inconsistency.

As a desktop application, Google Earth is well equipped to handle large
datasets, and additionally provides ‘region’ functionality to improve performance.
However, as described in Sect. 4.2 a number of issues were encountered with the
Web-Based Google Earth plug-in when handling the larger dataset. Increasingly
City Models are being used in a web-based context—thus the data reduction
approach described above may become even more significant with the increase in
uptake in mobile devices and tablets—currently a Google Earth App is available
for both the Android and iPhone Platforms.

Fig. 13 UCL cruciform building and surroundings—all faces (left) and UCL cruciform building
and surroundings—No Floors (right)

150 C. Ellul

The techniques described above do not, by themselves, solve the performance
problems encountered in Virtual Globes. Given the limitations of generalization
and fixed-zoom viewing described in Sect. 2.4, it is suggested that the techniques
described above can be used in combination with these approaches to gain an
overall performance improvement for rendering while offering the possibility of
viewing a larger area of the city in more detail, enhancing the user experience.
Such combinations of methods can then be tested with larger datasets, at city level.
The results obtained could also be compared to the rendering capacity of the
Google 3D City layer, and results for other 3D web mapping tools tested.

The use of an Oracle Spatial database as a back-end to the project opens up the
possibility to create a more dynamic system where the KML file could be auto-
matically regenerated when the underlying data changes. Indeed, as KML provides
a very useful data transfer format but is not optimized for editing, additions or
changes to the data could be made using tools similar to those described in Ellul
et al. (2009), with results stored directly in the Oracle Spatial database and shared
through regenerated KML files, moving towards a more fully functional 3D
toolbox. Such an approach could also take advantage of the inbuilt 3D queries
within the Oracle database to provide additional functionality such as area and
volume measurement.

A second benefit of tighter integration with the database would be the option to
take advantage of Oracle’s three-dimensional R-Tree query and again ‘pre-cull’
the number of Faces to be rendered by only retrieving data for the current area of
interest. This approach would be similar to the oct-tree described in Fabritius et al.
(2007) but would generate data subsets dynamically as required. Combining such
approaches with the outcome of work carried out on 3D generalization may also
permit such a tool to retrieve multiple levels of detail in one request—highly
detailed data for the objects closest to the viewer, and more generalized data for
objects further away, perhaps selecting the data using a 3D distance query inside
the database. Given the time required to query and generate such datasets within
the database, a comparison with current methods (as described in the graphics
chain) would be required to determine whether the trade off in terms of extended
SQL query time brings an overall benefit to the display process.

Beyond performance improvements, topology in GIS is well known as a tool
for improving 2D data quality—the process of generating a topological data
structure (identifying shared Nodes, Edges and Faces) can eliminate inconsisten-
cies in geometry such as slivers. Research into data quality in 3D—and in par-
ticular the definition of valid geometries—is ongoing (Kazar et al. 2008; Ledoux
and Meijers 2011). It is envisaged that the methodology presented here could be
extended to assist in the resolution of such inconsistencies, resulting in the
improved geometry quality required to apply 3D City Models to applications
beyond visualization.

Finally, it should be noted that the experiments described in this paper addressed
only one of the two issues faced when using 3D models—the volume of data. It is
hoped that the improvement in rendering performance gained by using the methods
described above will open up opportunities for further experimentation on the

Can Topological Pre-Culling of Faces Improve Rendering Performance? 151

second issue—that of providing 3D City Models with appropriate content for the
task at hand. The importance of gaining an understanding of both what is techni-
cally possible (in terms of performance) and cognitively useful (in terms of detail)
within a City Model cannot be underestimated.

Acknowledgments The author would like to thank the GeoInformation Group for the provision
of the UK Map dataset, and in particular Alun Jones for his initial encouragement. Thanks also go
to the team at Snowflake Ltd. for the GO Loader software used to load the map data into Oracle
Spatial, and to Richard Goodman and Intergraph Corporation for the use of Geomedia Profes-
sional to visualize the datasets stored in Oracle.

References

Aien A, Ali A, Kalantari M, Rajabifard A, Williamson I (2011) Advanced principles of 3D cadastral
data modelling. In: Proceedings of the 2nd international workshop on 3D cadastres, organized by
FIG, EuroSDR and TU Delft, Delft, The Netherlands, November 2011, 271–290 [online]
Available from: http://3dcadastres2011.nl/programme/ Accessed 3rd Jan 2012, 377–396

Alam M (2011) GISt Report No. 5 shadow effect on 3D city modelling for photovoltaic cells,
ISBN: 978-90-77029-27-5 ISSN: 1569-0245

Basanow J, Neis P, Neubauer S, Schilling A, Zipf A (2008) Towards 3D spatial data
infrastructures (3D SDI) based on open standards—experiences, results and future issues. In:
Van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D GeoInformation
systems, Springer, Chapter 2, pp 19–46

Batty M, Chapman D, Evans S, Haklay M, Keupers S, Shiode N, Hudson Smith A, Torrens P
(2001) Visualising the city: communicating urban design to planners and decision-makers. In:
Brail R, Klosterman R (eds) Planning support systems, models and visualisation tools. ESRI
Press and Center Urban Policy Research, Rutgers University, Redland, pp 405–443

Blechschmied H, Coors V, Etz M (2006) Augmented reality and location-based services projects.
In: Zlatanova S, Prosperi D (eds) Large-scale 3D data integration: challenges and
opportunities, Taylor and Francis

Boguslawski P, Gold C, Ledoux H (2011) Modelling and analysing 3D buildings with a primal/
dual data structure. ISPRS J Photogram Rem Sens 66:188–197

Chen J, Chen C (2008) Foundations of 3D graphics programming: using JOGL and Java3D, 2nd
edn. Springer publishing company, ISBN: 9781848002838

Coors V, Hunlich K, On G (2009) Constraint-based generation and visualization of 3D city
models. In: Lee J, Zlatanova S (eds) 3D geoinformation sciences. Springer, Berlin

Curtis E (2008) Serving CityGML via web feature services in the OGC web services –Phase 4
Testbed, Models, In: Van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in
3D geoinformation systems, Springer

Carrión D, Lorenz A, Kolbe T (2010) Estimation of the energetic rehabilitation state of buildings
for the city of berlin using a 3D City model represented in CityGML. International archives of
the photogrammetry, remote sensing and spatial information sciences, vol XXXVIII-4/W15

Ellul C, Haklay M, Francis L, Rahemtulla H (2009) A mechanism to create community maps for
non-technical users, GEOWS ‘09 Proceedings of the 2009 international conference on
advanced geographic information systems and web services, IEEE computer society

ESRI (2011) ArcGIS 3D analyst [online] Available from: http://www.esri.com/software/arcgis/
extensions/3danalyst/index.html Accessed 12th Jan 2012

Evans S, Hudson-Smith A, Batty M (2007) 3-D GIS: Virtual London and beyond an exploration of
the 3-D GIS experience involved in the creation of virtual London, CyberGeo—Eur J Geogr

152 C. Ellul

http://3dcadastres2011.nl/programme/
http://www.esri.com/software/arcgis/extensions/3danalyst/index.html
http://www.esri.com/software/arcgis/extensions/3danalyst/index.html

Fabritius G, Kranigg J, Krecklau L, Manthei C, Hornung A, Habbecke H, Kobbelt L (2007) City
virtualization—coursework [online] Available from http://openmesh.org/uploads/media/
vrar_01.pdf, Accessed 12th Jan 2012

Fan H, Meng L, Jahnke M (2009) Generalization of 3D buildings modelled by CityGML. In:
Cartwright W, Gartner G, Meng L, Peterson M (eds) Lecture notes in geoinformation and
cartography. Springer, Berlin

Fredericque B, Lapierre A (2009) 3D City GIS—A major step towards sustainable infrastruc-
ture—a Bentley white paper [online] Available from, 3D City GIS—A major step towards
sustainable infrastructure Accessed 20th Jan 2012

GeoChalkboard (2012) Using KML regions to display large datasets in Google Earth, [online].
Available from: http://geochalkboard.wordpress.com/2008/01/14/using-kml-regions-to-
display-large-gis-datasets-in-google-earth-part-1/ Accessed 13th Jan 2012

Glander T, Dollner J (2008) Techniques for generalizing building geometry of complex virtual
3D city models. In: Van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in
3D geoinformation systems, Springer

Google (2012) Google company history [online] Available from : http://www.google.com/about/
corporate/company/history.html Accessed 21st Jan 2012

Google (2012b) Keyhole markup language reference [online] Available from http://
code.google.com/apis/kml/documentation/ Accessed 21st Jan 2012

Google Earth (2012)—3D Buildings showcase [online] Available from: http://www.google.co.
uk/intl/en_uk/earth/explore/showcase/3dbuildings.html Accessed 12th Jan 2012

Guercke R, Brenner C, Sester M (2009) Generalization of semantically enhanced 3d city models.
Proceedings of the GeoWeb 2009 conference, Vancouver, Canada

Heipke C (2010) Crowdsourcing geospatial data. ISPRS J Photogram Rem Sens 65(6):550–557
Isikdag U, Zlatanova S (2010) Interactive modelling of buildings in Google Earth: a 3D tool for

urban planning. In: Neutens T, De Maeyer P (eds.) Developments in 3D geo-information
sciences, Springer, 52–70

IT World (2012) Google Earth Announces 1 Billion Downloads [online] Available from: http://
www.itworld.com/cloud-computing/210825/google-earth-announces-1-billion-downloads
Accessed 21st Jan 2012

Kada M (2007) A contribution to 3D generalisation, Photogrammetric week, 41–51
Kada M (2009) The 3D Berlin project, Photogrammetric week, 331–340
Kazar B, Kothuri R, van Oosterom P, Ravada S (2008) On valid and invalid three-dimensional

geometries, in models. In: Van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds)
Advances in 3D geoinformation systems, Springer

Khoo V (2011) 3D cadastre in Singapore. In: proceedings of the 2nd international workshop on
3d cadastres, organized by FIG, EuroSDR and TU Delft, Delft, The Netherlands, November
2011, 271–290 [online] Available from: http://3dcadastres2011.nl/programme/ Accessed 3rd
Jan 2012

Kolbe T, Groger G, Plumer L (2005) CityGML—Interoperable access to 3D city models. In: van
Oosterom P, Fendel E, Zlatanova S (eds) Proceedings of the international symposium on geo-
information for disaster management, Delft, Springer Verlag

Ledoux H, Meijers M (2011) Topologically consistent 3D city models obtained by extrusion. Int J
Geogr Inf Sci 25(4):557–574

Longley P, Goodchild M, Maguire D, Rhind D (2011) Geographical information systems and
science, 3rd edn. Wiley, Hoboken

Lowner M, Sasse A, Hecker P (2010) Needs and potential of 3D city information and sensor
fusion technologies for vehicle positioning in urban environments. In: Neutens T and De
Maeyer P (eds) Developments in 3D geoinformation sciences, Springer

Oracle (2011)—Oracle Spatial SDO_UTIL.EXTRUDE [online] Available from: http://docs.
oracle.com/cd/B28359_01/appdev.111/b28400/sdo_util.htm#BJECJIIE Accessed 12th Jan
2012

PhotoSynth (2012) About Photosynth [online] Available from: http://photosynth.net/about.aspx
Accessed 12th Jan 2012

Can Topological Pre-Culling of Faces Improve Rendering Performance? 153

http://openmesh.org/uploads/media/vrar_01.pdf
http://openmesh.org/uploads/media/vrar_01.pdf
http://geochalkboard.wordpress.com/2008/01/14/using-kml-regions-to-display-large-gis-datasets-in-google-earth-part-1/
http://geochalkboard.wordpress.com/2008/01/14/using-kml-regions-to-display-large-gis-datasets-in-google-earth-part-1/
http://www.google.com/about/corporate/company/history.html
http://www.google.com/about/corporate/company/history.html
http://code.google.com/apis/kml/documentation/
http://code.google.com/apis/kml/documentation/
http://www.google.co.uk/intl/en_uk/earth/explore/showcase/3dbuildings.html
http://www.google.co.uk/intl/en_uk/earth/explore/showcase/3dbuildings.html
http://www.itworld.com/cloud-computing/210825/google-earth-announces-1-billion-downloads
http://www.itworld.com/cloud-computing/210825/google-earth-announces-1-billion-downloads
http://3dcadastres2011.nl/programme/
http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_util.htm#BJECJIIE
http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_util.htm#BJECJIIE
http://photosynth.net/about.aspx

Pouliot J, Vasseur M (2011) Spatial representation of condominium/co-ownership: comparison of
Quebec and French cadastral system based on LADM specifications. In: Proceedings of the
2nd international workshop on 3D cadastres, organized by FIG, EuroSDR and TU Delft,
Delft, The Netherlands, November 2011, 271–290 [online] Available from: http://
3dcadastres2011.nl/programme/ Accessed 3rd Jan 2012

Pu S (2008) Automatic building modelling from terrestrial laser scanning. In: Van Oosterom P,
Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D geoinformation systems, Springer

Richmond P, Romano D (2008) Automatic generation Of residential areas using geodemo-
graphics. In: Van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D
geoinformation systems, Springer

Rigaux P, Scholl M, Voisard A (2000) Introduction to spatial databases: applications to GIS
Morgan Kaufmann

Sester M (2007) 3D Visualization and generalization. 51st Photogrammetric week, Stuttgart
Germany, 285–295

Sketch-Up (2011) 3D modelling for everyone [online] Available from http://sketchup.
google.com/ Accessed 17th Jan 2012

Snowflake (2012) GO Loader—Load GML into your database of choice [online] Available from
http://www.snowflakesoftware.com/products/goloader/ Accessed 21st Jan 2012

Stoter J, de Kluijver H, Kurakula V (2008) Towards 3D environmental impact studies—example
of noise. In: Van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D
geoinformation systems, Springer, 2008, Chapter 2, 19-46

Stoter J, de Kluijver H, Kurakula V (2008b) 3D noise mapping in urban areas. Int J Geogr Inf Sci
22(8):907–924

Stoter J, Salzmann M (2003) Where Do Cadastral Needs and Technical Possibilities Meet? In:
van Oosterom P, Lemmen C (eds.) Computers, environment and urban systems, 27:4, 395-410

Stoter J, Hendrik P, Louwman W, van Oosterom P, Wünsch B (2011) Registration of 3D
situations in land administration in the Netherlands. In: Proceedings of the 2nd international
workshop on 3D cadastres, organized by FIG, EuroSDR and TU Delft, Delft, The
Netherlands, November 2011, 27–290 [online] Available from: http://3dcadastres2011.nl/
programme/ Accessed 3rd Jan 2012, 377-396

Tse R, Gold D, Kidner D (2008) 3D City Modelling from LiDAR Data. In: Models van Oosterom
P, Zlatanova S, Penninga F, Fendel E (eds) Advances in 3D geoinformation systems, Springer

Coors V (2004) 3D modelling and visualisation. Comput Graphics 28(4):519–526
van Erp J, Cremers A, Kessens J (2011) Challenges in 3D geoinformation and participatory

design and descision. In: Kolbe T, Konig G, Nagel C (eds) Advances in 3D geoinformation
sciences, Springer

Van Essen R (2008) Maps get real: digital maps evolving from mathematical line graphs to
virtual reality models. In: van Oosterom P, Zlatanova S, Penninga F, Fendel E (eds) Advances
in 3D geoinformation systems, Springer

Wang L, Sohn G (2011) An integrated framework for reconstructing full 3d building models. In:
Kolbe T, Konig G, Nagel C (eds), Advances in 3D geoinformation sciences, Springer

Worboys M, Duckham M (2004) GIS: a computing perspective, 2nd edn. CRC Press
Zabiki M (2011) OpenCL/OpenGL approach for studying active Brownian motion

154 C. Ellul

http://3dcadastres2011.nl/programme/
http://3dcadastres2011.nl/programme/
http://sketchup.google.com/
http://sketchup.google.com/
http://www.snowflakesoftware.com/products/goloader/
http://3dcadastres2011.nl/programme/
http://3dcadastres2011.nl/programme/

On Problems and Benefits of 3D Topology
on Under-Specified Geometries
in Geomorphology

Marc-O. Löwner

Abstract The science of geomorphology is working on natural 3D landforms.
This includes the change of landforms as well as the processes causing these
changes. The main concepts of geomorphology, i.e. the sediment budget and the
sediment cascade approach can definitely be enhanced by introducing 3D geo-
metrical and topological specifications of the Open Geospatial Consortium. The
ISO 19107, Spatial Schema, implements OGC’s Abstract Specification. It enables
the modelling of real world 3D phenomena to represent them as formal infor-
mation models. Unfortunately, OGC’s concepts are not widely applied in the
science of geomorphology. In this article we are going to show the explicit benefit
of 3D topology for the science of geomorphology. Analysing topological rela-
tionships of landforms can be directly related to geomorphic insights. This
includes firstly, the process-related accessibility of landforms and therefore
material properties, and secondly, the chronological order of landform creation.
Further, a simple approach is proposed to use the benefits of the abstract speci-
fication 3D topologic model, when only under-specified geometries are available.
Often, no sufficient data is available on natural landforms to model valid 3D solids.
Following clearly defined geometric conditions the introduced class _UG_Solid
mediates between primitives of lower dimension and a GM_Solid. The latter is
the realisation of a _UG_Solid that definitely holds the 3D geometry we need to
associate with the 3D topological concepts.

M.-O. Löwner (&)
Institute for Geodesy and Photogrammetry, Technische Universität Braunschweig,
Pockelsstraße 3, 30106 Braunschweig, Germany
e-mail: m-o.loewner@tu-bs.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_9,
� Springer-Verlag Berlin Heidelberg 2013

155

1 Introduction and Problem Statement

The Open Geospatial Consortium’s Abstract Specifications (OGC 2012) enable the
modelling of real world phenomenon to represent them as formal information
models (Kottman and Reed 2009). These information models may include
geometry, attributes and topological relationships of real world objects. The main
advantage of international accepted standards like OGC’ Abstract Specification is
interoperability. This means the seamless exchange of data and a simplified
application of analysis concepts. The main document presenting the Abstract
Specification is the ISO 19107 ‘Spatial Schema’ (Herring 2001) defining
geometric primitives and complexes from 0D to 3D according to the boundary
representation (Foley et al. 1995). Next to other concepts, Spatial Schema is
implemented in the Geography Markup Language (GML) (Lake et al. 2004). The
release of GML led to a number of application schemas e.g. City Geography
Markup Language (CityGML) (Gröger et al. 2012). However, CityGML mainly
represents models on manmade environments.

Spatial Schema also provides a topology package mainly to convert compu-
tational geometry algorithms into combinatorial ones (Herring 2001, p. 104).
Topological primitives (i.e. node, edges, faces and solids) need realizations in the
form of geometric primitives with the same dimension. Thus, if no valid 3D
geometry is provided for features that are known to be 3 dimensional, no 3D
topology can be applied.

In the science of the land’s surface, geomorphology, objects under examination
are definitely volumetric. Built of sediment that is allocated by mainly externally
driven processes geometry concepts of the Spatial Schema would be helpful to
resent such sediment storages. Topological concepts may support the analysis of
geomorphic systems in two aspects. Firstly, identifying neighbouring features and
features connected via material transporting processes and, secondly, supporting
analysis of landform’s chronological order within a geomorphic system.

However, OGC’s 3D concepts are not widely accepted in geomorphology. This
is different with the simple feature concept implemented by main GIS companies.
The main reason is that 3D data is difficult to collect due to complex phenomena
and limited prospecting methods. Thus, especially 3D topology is not applicable to
the science of geomorphology, since the topology package of Spatial Schema
needs to refer to a valid geometry representation.

In this article a new class for 3D objects with under-specified geometry is
proposed. _UG_Solid mediates between Spatial Schema’s geometric primitives
with a dimension less than 3 on the one side and a GM_Solid on the other.
Constraints to aggregate a _UG_Solid are defined. The introduction of _UG_Solid
enables the application of 3D topological concepts to geometric objects that are
known to be volumetric but have to be constructed from sparse data.

In the next section the nature and main concepts of geomorphology will be
outlined. A special focus is put on the topological aspects of landforms. Special
cases of topological relationships between 3D solids will directly be related to

156 M.-O. Löwner

geomorphic insights (Sect. 2.2). In Sect. 3 an application model on geomorphic
objects and processes will be reviewed. Data acquisition and modelling problems
have been identified as the main problems for the acceptance of 3D concepts (Sect.
3.3). Section 4 focuses on utilization the 3D topological concepts. Constraints for
building an under-specified 3D geometry will be defined and proven for
geomorphology. Section 5 follows up with a discussion.

2 Geomorphology: The Science of Natural 3D
Landforms—Geometrical and Topological Considerations

Geomorphology defines itself as the science of natural landforms (Chorley et al.
1984; Hugget 2003). This does not only include geometric aspects of a 2.5D land
surface which are covered by the science of geomorphometry in detail (Evans
1972; Rasemann 2004), but the change of landforms and the processes causing
these changes. In general, landforms can be described as units of material, the
sediment, which was accumulated under specific conditions and is reworked due to
shape, material properties and external forces. The outcrops of these landforms
compose the 2.5D boundary surface between solid earth and the atmosphere and
the hydrosphere.

Without doubt, climate and gravity are the main external forces of such material
transport processes (e.g. soil erosion and the corresponding accumulation or mass
movements). In the first place running water erodes and transports material from
one landform and accumulates it on the top of another one. Next to climate
conditions the eroding power of flowing water is determined by the surface (e.g.
slope) and the material’s resistance. The same internal properties (e.g. soil texture
or bulk density) determine the effectiveness of gravity causing mass movements
like rock fall or debris flows (Summerfield 1997). The latter is definitely a property
of a 3-dimensional body holding the sediment of a landform. Therefore, in geo-
morphology the surface under consideration is a three-dimensional body divided
into neighbouring landforms. These facts are expressed in the broadly accepted
term georelief coined by the German scientists Kugler (1974) and Dikau (1996).
First, it represents the visible and measurable boundary surface between land
surface and atmosphere or hydrosphere and, second, the material this surface is
composed of (Young 1978). In geomorphology this recognition results in a triad of
process, material and form. These three variables are characterised by strong
feedback which has to be resolved when describing a geomorphic system.

It is obvious that a 2.5D concept is not sufficient to represent the 3D georelief
under investigation. While geomorphology investigates the history of landforms,
next to the visible surface, the subsurface is of interest as well. This subsurface, the
paleo-surface, forms the starting conditions of the landform under investigation
and therefore an important jigsaw piece revealing the landform’s history. Anyway,
a 2.5D concept is not able to represent more than one surface at a given position.

On Problems and Benefits of 3D Topology 157

2.1 On Main Concepts of Geomorphology

Sediment budgets in geomorphology are used to quantify erosion and accumula-
tion processes on a catchment scale. They are expressed by the sediment-delivery
ratio. This describes the ratio between sediment eroded and transported in and
through a system and material finally pushed out of the system (Cooke and
Doornkamp 1990; Reid and Dunne 1996). Thus, sources and sinks of a geomor-
phic system have to be investigated and quantified. Performed by ground openings,
drillings or geophysical exploration, geometry and thus volume of sediment bodies
are reconstructed. Internal properties of investigated sediment bodies give hints to
the main material transport processes and the periods in which these processes
were active. The main material transport process might change in time due to
climate variation and others.

The sediment budget concept in geomorphology may definitely be enhanced by
the 3D modelling concepts of the Spatial Schema. The approach investigates true
3D geometries to get volumetric information. Application models are needed to
store internal properties of the objects under investigation (i.e. soil type, density,
chemical composition, etc.). Representing a geomorphic system in an application
model would further support the exchange of data within and throughout the
community.

The concept of a sediment cascade expands the sediment budget approach to
the detailed questions concerning residence time of sediment. It is one of the main
concepts in geomorphology (Church and Slaymaker 1989; Jordan and Slaymaker
1991). In theory, sediment is captured in storages for a certain length of time. This
length depends on eroding processes, their force and, of course, the sediment’s
internal resistance to these processes. In terms of system theory (Chorley and
Kennedy 1971), the output of one storage acts as the input for another one.
Regulators like the land surface may divide the eroded material either to stay on
the landform or to be transported to one or many others.

One example of a sediment cascade is the interaction of a free face, i.e. a wall,
with an underlying talus slope (rf. Fig. 1). As the main storage, the wall feeds the
talus slope by stone fall. The talus slope is situated at the walls foot and built up of
wasting products of the wall. Nevertheless, the same process could accumulate the
material on smaller features sitting on the wall itself, i.e. a band or a cleft. While a
band is a step like feature a cleft is a crack present in every wall. Both are able to
store material. Due to the formalism used in geomorphology (rf. Schrott et al.
2003), no geometry or time is represented.

While material exchange is more likely to be found between adjacent land-
forms, topological representation and analysis could definitely support the concept
of a sediment cascade in geomorphology. Even the chronological order of land-
form creation can be analysed using topology (see below). Representing a sedi-
ment cascade following the concepts of the Spatial Schema would enable such
investigations.

158 M.-O. Löwner

2.2 Topological Aspects of Landforms

Landforms do not exist in isolation but do interact with others. Their specific
association builds up the georelief (Kugler 1974; Dikau 1996) and characterizes a
specific geomorphic system. While single landforms are scale-dependent, the
composition of a geomorphic system follows a spatial hierarchy (Ahnert 1988;
Dikau 1989; Brunsden 1996). Smaller landforms are located on the top of larger
ones and cover them partly. Therefore, size is a good indicator of a landform’s
lifetime and age (Ahnert 1996).

Like a single landform, the association of many depends on internal system
states, material supply and external driving forces. Following this experience,
analysing the composition of landform association allows scientists to understand
the main processes reworking a system, the succession of these processes in the
past and probable developments in the future.

A lot of the landform’s interaction may be analysed using the concept of
topology. First, this includes the chance of processes to transport material from one
landform to another one. Identifying possible material sources is the first step to
expose and explain existing sediment cascades of a geomorphic system. Second,
topological investigation may help to identify the chronological order in which
landforms were formed. Often, this non-metric or relative dating is an important
step towards the understanding of a geomorphic system.

Figure 2 depicts five main relationships of interacting landforms that are
characterised using the topological nine-intersection model (Egenhofer and Herring
1990) in Table 1. Here, we follow the notation of Zlatanova (2000) where qa is
defined as the boundary of a, a- as the interior of a and a� as the exterior of a. Only
boundaries and the interior will be considered.

The examples described in Fig. 2 and Table 1 show that geomorphic infor-
mation can be directly archived from topological analysis. However, this is not

Fig. 1 Sediment cascade of the two subsystems Wall and Talus. Following the notation of
system theory, no geometry and time is represented

On Problems and Benefits of 3D Topology 159

identified in the literature of geomorphology. That definitely shows that topology
is not applied in the science of geomorphology.

Fig. 2 Topological relationships of landforms within a geomorphic system (rf. Table 1)

Table 1 Geomorphic description of topological relationships of landforms (rf. Fig. 2)

Figure Topological
relationship

Geomorphic description

2.A qa \ qb = :Ø
a- \ b- = :Ø

a lies on top of b and is definitely younger. a is formed by an erosion
process on b followed by an accumulation.

Material of a definitely contains material from b.
2.B qa \ qb = :Ø

a- \ b- = Ø
a is adjacent to b. Chronological order can not be proved directly.
Material exchange from the higher situated body to the lower one is

most likely (needs further geometric analysisa).
2.C qa \ qb = Ø

a- \ b- = Ø
a and b are disjoint. Chronological order can not be proved directly.
Material exchange is still possible (needs further geometrical and

topological analysis (ref. 2.E)).
2.D qa \ qb = Ø

a- \ b- = :Ø
a lies within the interior of b. Genesis of b starts before the genesis of

a and ended later. Implies an interruption of b’s building process
either by temporarily high accumulation from another source or
even temporarily erosion of b. Investigators should examine a
separation of b.b

2.E qa \ qb = Ø
a- \ b- = Ø
qa \ qc = :Ø
K b- \

c- = :Ø

a and b are disjoined but connected via c. Possibly the today filled
hollow of c acted like a material transport path (formally an open
channel?).

Finding same material components of a in b or vice versa is likely
(geometric inspection is needed).

a Since above or below are not topological terms, possible pathways have to be analysed applying
geometric algorithms using f. i. a DEM
b This total inclusion of a smaller landform is definitely a 3D problem. 2.5D concepts are not
sufficient

160 M.-O. Löwner

3 On Problems of Semantical and Geometrical
Modelling in Geomorphology

This section exposes significant difficulties in the use of application models within
the science of geomorphology. These are different from the three characteristics
identified by Kottman and Reed (2009), ignorance, modelling of phenomena not of
mutual interest and modelling of phenomena in two different representations. One
may argue that the science of geomorphology indeed is a diverse one and there-
fore, their researchers can be considered as individuals not belonging to the same
information community. However, geomorphologists refer to almost the same
paradigms and theoretical concepts (ref. Sect. 2). Thus, we argue that the main
reason for reluctance to use OGC Abstract Specification based models to represent
objects under investigation are firstly acceptance of technical overhead, and,
secondly, problems in modelling valid 3D objects from sparse data.

3.1 A Class Model for Objects and Processes

Based on the ISO 19107, Spatial Schema (Herring 2001), Löwner (2010) proposed
an application model to represent the aforementioned concepts of geomorphology.
The model does not only include an object- oriented view of landforms with a true
3D geometry. It is designed to capture the internal structures and attributes of
landforms as well. Both, geometry and internal states of landforms can be rep-
resented over different periods of time (ref. Fig. 3).

The abstract class _Geoobject represents a solid landform. As a particular
spatial unit of the georelief it is a subclass of a _GeomorphicObject, which
aggregates a _GeomorphicSystem. The Class _Geoobject has one or more
associations to an abstract class _State. This is to represent different versions of
a _Geoobject. Since a landform’s characteristics, like geometry, may change
from time to time by the impact of processes, its semantical identity remains.

A _State of a _Geoobject is characterized by its geometry and material.
The latter is modelled by an _AttributeSet, which is not depicted here as it
has no relevance in this context.

A _Slope as a synonym for landform is a specialisation of the abstract class
_Geoobject. Referring to Dalrymple’s et al. (1968) and Caine’s (1974) slope
model a _Slope may again contain _Slopes. Thus, the association contains
represents the nested hierarchy of landforms. A _Slope consists of one or more
abstract class _Layer. A _Layer may contain one or more subLayers. Because
_Layer is derived from _Geoobject, it exhibits the association to a _State,
too.

The proposed model seems to be a sensible approach to cover the main
geomorphic concepts from a semantical viewpoint. It is able to represent the
internal structure of landforms, i.e. the slope as the main landform in

On Problems and Benefits of 3D Topology 161

geomorphology. It consists of volumetric bodies bearing homogeneous material.
These bodies themselves may be subdivided, which is an approach that makes
sense, since a slope may consist of a soil layer and a regolith lying below it.
Furthermore, the soil layer may be structured in different layers of homogeneous
material as a result of soil-building processes over time or different sources of
accumulated soil material.

In this formal representation of land surface’s features the modelling of a class
_Geoprocess serves three goals: First to store the interconnection of two or
more _Geoobjects as a process-related accessibility; second to represent the
main process that built up the landform an third to store information about the
genesis of a _Geoobject (Fig. 4).

A _Geoprocess has two associations to a _Geoobject. It alters one or more
_Geoobjectswhile a _Geoobject enables one or more _Geoprocesses. It
is driven by a _Processforce, which might be specialised. The association of a
ComplexGeoprocess is meant to store the genesis of a_Geoobject. Thus, the
_Geoobject can be viewed as an integral of all processes over a given time span.

The formally modelled interrelationship between landform and process enables
a Graph like representation of a sediment cascade (ref. Löwner and Otto 2008). The
landform acting as a sediment source may then be interpreted as the ‘‘from-node’’
and the sink as the ‘‘to-node’’. Nevertheless, representation of geometry remains
the greatest obstacle when applying the proposed model to geomorphology.

Fig. 3 Application model to represent a landform (_Geoobject) and its 3D geometry during
different time steps

162 M.-O. Löwner

3.2 Acceptance of Overhead

The reviewed application models of geoobjects and geoprocesses represent
geomorphology’s concepts of the sediment budget and the sediment cascade. It is able
to map a landform’s 3D shape. Even different states of a landform and process-related
accessibility can be stored. Nevertheless, geometric representation following the ISO
19107 seams to be the main problem to apply it to the science of geomorphology.
Implementation int a DBMS will produce reasonable overhead and dissuades a geo-
scientist from leaving known but only 2.5D GIS. Realising the _GMComplex rep-
resenting a _State’s geometry (Fig. 3) needs to regard another 20 geometrical
classes from spatial schema. Although the main literature on implementing the Spatial
Schema (Lake et al. 2004) using the Geography Mark-Up Language is well known,
only few geomorphologists really work with these techniques.

Describing a geomorphic system 2D or 2.5D maps are widely used (ref. Otto
and Dikau 2004). Landforms are mapped using polygons. Depth information is
given by semantic attributes. Actually, this is supported by the application model
described above (but not depicted here). Löwner (2010) proposes an optional
FieldRepresentation. It holds an association to a RectifiedGridCo-
verage, which is a common raster dataset. Additionally, it has a planar
LinearRing to map the feature’s 2D shape, e.g. when creating a digital geo-
morphological map. Unfortunately, this representation does not exploit the main
advantages of real 3D modelling in terms of geometry and topology, respectively.

3.3 Data Acquisition and Modelling Problems

The science of geomorphology is working on natural 3D landforms consisting of
sediment transported either by water or other driving forces. Although much is

Fig. 4 Class model representing the relationship between a _Geoobject (landform) and a
_Geoprocess

On Problems and Benefits of 3D Topology 163

known about processes and their interaction with the land surface, no construction
plans of landforms are available. In addition, subsurface boundaries of landforms
are developed under different and partly unknown (i.e. regional climate) condi-
tions. Therefore, it is not predictable that they vary in the same manner as the land
surface today. On the contrary, the reconstruction of the paleo-surface representing
a state of a geomorphic system at a specific time is one important research goal in
geomorphology and neighbouring disciplines.

Compared to landforms, features of our manmade environment can be modelled
much more easily. Take CityGML’s Level of Detail 1 building model as an example
(Gröger et al. 2012). Only a few points are needed to reconstruct a LOD1 building
representation in terms of geometry. Usually a polygon, representing the ground
surface and the height of the building is used to create a valid 3D solid representing a
building’s geometry. Even a LOD2 model is generated by adding a few more planar
surfaces to represent the building’s roof structure. Today, at least 2D digital infor-
mation about infrastructure is easily available. Additional 3D datasets are available
by LIDAR technologies (Zheng and Schenk 2000; Kada and McKinley 2009).

Landforms cannot be simplified this way. Extruding a planar 2D-polygon
representing a landform’s boundary by measured feature depth would neglect the
vital role of the land surface. On the other hand, simply copying the land’s surface
digital elevation field to the measured depth would also be inadmissible. Since
landforms are the results of partly unknown material transport processes acting
over a long time on not exactly known boundary conditions, it is not possible to
derive subsurface boundaries from today’s land surface with levity.

Data capture may be identified to explain the significant differences between
modelling approaches representing manmade structures and landforms, respec-
tively. It is obvious that capturing a buried feature is much more difficult than
measuring a construction above the surface. While the surface information on a
landform is available by remote sensing, LIDAR or surveying, reconstruction of
the subsurface is more difficult.

Normally, subsurface information is gathered by drillings. Boundary surfaces
are identified via abrupt change in sediment properties. These are f. i. grain size or
distribution, density, colour or biochemical indicators. The parameters used to
determine a boundary surface depends firstly on the scientific problem, and, sec-
ondly, the theoretically background of the scientist. In most cases, changes in the
environmental boundary conditions lead to changing material transport processes
and therefore to different properties of the material accumulated.

In more clastic environments like alpine systems, geophysics is often applied to
get subsurface information (Schrott and Hoffmann 2008; Schrott and Sass 2008).
Depending on the method used, geophysical devices reveal changes in density,
electronic conductivity and others. These changes are to be interpreted as
boundary surfaces of the landform.

Figure 5 depicts a typically data situation on 3D landforms. In practise, a well
known 2.5D surface in combination with a few points (Fig. 5a) or line information
from 2D geophysical prospection method (Fig. 5b) are given to model a 3D solid.
Even so-called 3D geophysical devices deliver 2D lines, albeit more than one.

164 M.-O. Löwner

In geomorphology there are two ways to overcome the problems of valid
geometric modelling and storing. First, this data is stored using the layer principle.
2D information is represented as a polygon in a GIS. 2.5D data is overlaid, if
available. Depth information of a landform resulting from drilling data or geo-
physical prospection is stored as semantic information (cf. Otto and Dikau 2004;
Otto et al. 2009). Second, the data is just represented in form of text, graphics and
(not database) tables. As a result, research on landforms may not profit from
further developments of the GI community in terms data exchange or geometri-
cally and topologically representation and analysis.

Unfortunately, ISO 19107 Spatial Schema does not offer a valid representation
of 3D geometry, neither by aggregating a surface and one or few points nor by
aggregating a surface and a line. Consequently, even if the nature of a feature is
proved to be three dimensional, Spatial Schema seems to be inadequate for rep-
resenting under-specified 3D geometries. This directly affects the possibility to
apply topological representation.

4 Linking 3D Topology to Under-Specified Geometries

We have outlined that geomorphology is a science on 3 dimensional phenomena
that are changing in time (Sect. 2). Many concepts of geomorphology describe
three dimensional phenomena. Therefore, a 3D application model for the repre-
sentation of geometry, semantic and topology is highly desirable. Additionally,
topological relationships of landforms directly reflect geomorphic principles like
process-related accessibility, possible mass exchange and chronological order.
However, the discussed application model in Sect. 3 seems not to be sufficient in
supporting geoscientists. This was explained by data acquisition problems and
complexity of the object under investigation. Since in Spatial Schema 3D topology
is directly linked to a proper 3D geometric model, it may not be applicable to
geoscientists.

Fig. 5 Typically data situation on 3D landforms. While surface information is available, only
few points (a) or not very reliable line information (b) has to be used to reconstruct a 3D solid

On Problems and Benefits of 3D Topology 165

Here, we present a simple approach to use the benefits of valid 3D topology even if
only sparse data on geometry is available. Therefore, an abstract class _UG_Solid
is introduced to represent an under-specified 3D geometry. Every object should be
modelled as an under-specified 3D geometry that is a 3D object for knowledge
reasons but not well defined for geometrical reasons. That means that no real 3D
boundary representation is available, but data that enables us to reconstruct such a
boundary surface. However, this boundary surface does not mean to represent the
real geometry of the object. Following clearly defined conditions, an _UG_Solid
mediates between the GM_Primitives GM_Point, GM_Curve, GM_Sur-
face, the type GM_Polygon and a GM_Solid. Then, this GM_Solid is the
realisation of _UG_Solid that definitely holds the 3D geometry we need to asso-
ciate with the TP_Solid (Fig. 6).

While the realisation of a _UG_Solid, the GM_Solid class needs to be a real
3D geometry, constraints have to be defined for aggregating an _UG_Solid.

In topology the geometric characteristics are not important, except dimension.
Thus, constraints on the association multiplicity only need to make sure that a real
solid could be modelled from existing data. Of course, this solid must be closed.

Assuming a 2 or 2.5 dimensional (main) surface with an additional geometry
representing the depth of a geomorphic feature this constraint can be formulated
as (1):

ð1 + dimMS) * numMS + (1 + dimDI) * numDI� 4

with : dimMS = dimension of the geometry representing the main surface (e.g. 0
for a point)numMS = minimum number of geometries to represent the
main surface (e.g. 3 points)dimDI = dimension of geometry representing
the depth information (e.g. 1 for a line)numDI = minimum number of
geometries to represent the depth information (e.g. 1 point)

Fig. 6 Aggregation of different GM_Primitives to a _UG_Solid

166 M.-O. Löwner

Table 2 gives examples of typical data available in through the field work of a
geomorphologist. It can be shown that the given data is sufficient to realise a 3D
geometry needed to apply 3D topology.

Testing the aggregating geometries against (1) enables a valid realisation that is
needed to build a GM_Solid. The realisation itself is a matter of implementation
and needs further discussion, elsewhere.

Table 2 Possible combinations of simple geometries to form an _UG_Solid

Geometries
available

Comments

The main surface (e.g. the land surface) is represented by 3
GM_Points. This would result in a triangle representing
the surface performing a realisation.

Depth information is just given by 1 GM_Point (reflecting
the normal situation when a drilling is performed).

Formula (1) = 4

The main surface is represented by a GM_Surface (e.g. a
DEM) or a GM_Polygon.

Depth information is just given by 1 GM_Point.
Formula (1) = 4

The main surface is represented by a GM_Surface (e.g. a
DEM) or a GM_Polygon.

Depth information is given by 1 GM_Curve (reflecting
normal situation when geophysics are performed).

Formula (1) = 5

The main surface is represented by 3 GM_Points.
Depth information is given by 1 GM_Curve.
Formula (1) = 5

On Problems and Benefits of 3D Topology 167

5 Discussion

It was demonstrated that geomorphology is a science investigating natural 3D
objects. These objects change their 3D shape in time due to material transporting
processes. On the one hand landforms influence these processes and on the other
hand they are their product. As a result, the 3D georelief aggregated by landforms
is a complex system of neighbouring objects of different age and material. It is
argued that OGC’s spatial schema concepts are useful to represent and to analyse
such geomorphic systems in principle.

Here, for the first time the explicit benefit of 3D topology for the science of
geomorphology was brought out by a collection of clear examples. Analysing
topological relationships of landforms directly gains our understanding in process-
related accessibility of landforms and therefore material properties. Even the
chronological order of landform creation can be analysed using topology.
Unfortunately, 3D concepts representing geometry and thus 3D topology are not
very common in the community of geoscientists.

Data acquisition and modelling problems have been identified as the main
reason for the rejection of 3D spatial concepts in geomorphology. Apparently,
there is no need to apply the overhead of a 3D concept, when data is sparely
available. Moreover, 2D and 2.5D concepts seem to be sufficient to geomor-
phologist. This, as can be shown with the example of topological analysis is
definitely not the case. However, overhead and a very strict formulism hinder
geomorphologists to model their perception of do a real (Satzbau: of do) 3D world
with 3D concepts.

Here, a simple approach is proposed to use the benefits of the abstract specification
3D topologic model, when only under-specified geometries are available. If no
sufficient data is available for a clear 3D object, this approach helps to apply 3D
topology on it. It was proven on examples that the formulated constraints ensure the
realisation of a _UG_Solid by a GM_Solid. Nevertheless, the approach presented is
incomplete. First, this must be said in terms of dimensions, since 0D–2D under-
specified Geometries are not covered. Second, no relationship between the
GM_Primitives has been modelled. This is surely a focus worthwhile for future
research.

References

Ahnert F (1988) Modelling landform change. In: Anderson MG (ed) Modelling geomorpholog-
ical systems. Wiley, Chichester, pp 375–400

Ahnert F (1996) Einführung in die Geomorphologie. Eugen Ulmer, Stuttgart
Brunsden D (1996) Geomorphological events and landform change. Z Geomorph NF 40:273–288

(Suppl.-Bd.)
Caine N (1974) The geomorphic processes of the alpine environment. In: Ives JD, Barry RG (eds)

Arctic and alpine environments. Methuen, London, pp 721–748

168 M.-O. Löwner

Chorley RJ, Kennedy BA (1971) Physical geography: a system approach. Prentice-Hall, London
Chorley RJ, Schumm SA, Sudgen DE (1984) Geomorphology. Methuen, London
Church M, Slaymaker O (1989) Disequilibrium of Holocene sediment yield in glaciated British

Columbia. Nature 337(2):452–454
Cooke RU, Doornkamp JC (1990) Geomorphology in environmental management. Oxford

University Press, Oxford
Dalrymple JB, Blong RJ, Conacher AJ (1968) A hypothetical nine unit landsurface model.

Z Geomorph NF 12:60–76
Dikau R (1989) The application of a digital relief model to landform analysis in geomorphology.

In: Raper J (ed) Three dimensional applications in Geographic Information Systems. Taylor &
Francis, London, pp 51–77

Dikau R (1996) Geomorphologische Reliefklassifikation und -analyse. Heidelberger Geograph-
ische Arbeiten 104:15–23

Egenhofer MJ, Herring JR (1990) A mathematical framework for the definition of topological
relations. In: Proceedings of 4th international symposium on SDH, Zurich, Switzerland,
pp 803–813

Evans IS (1972) General geomorphometry, derivates of altitude, and descriptive statistics. In:
Chorley RJ (ed) Spatial analysis in geomorphology. Methuen, London, pp 17–90

Foley J, van Dam A, Feiner S, Hughes J (1995) Computer graphics: principles and practice, 2nd
edn. Addison Wesley, Reading

Gröger G, Kolbe TH, Nagel C, Häfele K-H (2012) (eds) OGC city geography markup language
(CityGML) encoding standard

Herring J (2001) The OpenGIS abstract specification, Topic 1: feature geometry (ISO 19107
Spatial Schema), Version 5. OGC Document 01–101

Hugget RJ (2003) Fundamentals of geomorphology. Routledge, London
Jordan P, Slaymaker O (1991) Holocene sediment production in Lillooet river basin British

Columbia: a sediment budget approach. Géog Phys Quatern 45(1):45–57
Kada M, McKinley L (2009) 3D building reconstruction from Lidar based on a cell decomposition

approach. Int Arch Photogrammetry, Remote Sens Spat Inf Sci XXXVIII((3/W4)):47–52
Kottman C, Reed C (2009) The OpenGIS� abstract specification topic 5: features, OGC

document 08–126. (http://www.opengeospatial.org/standards/as)
Kugler H (1974) Das Georelief und seine kartographische Modellierung. Dissertation B, Martin-

Luther-Universität Halle
Lake R, Burggraf DS, Trininic M, Rae L (2004) GML—geography mark-up language. Wiley,

Chichester
Löwner M-O (2010) New GML-based application schema for landforms, processes and their

interaction. In: Otto J-C, Dikau R (eds) Landform—structure, evolution, process control.
Lecture notes in earth sciences, vol 115, pp 21–36

Löwner M-O, J-C Otto (2008) Towards an automatic identification of sediment cascades from
geomorphological maps using graph theory. In: Proceedings of the international symposium on
sediment dynamics in changing environments, Christchurch, Neuseeland, 1–5 Dezember 2008

Open Geospatial Consortium (2012) Abstract specifications (URL: http://www.opengeospatial.
org/standards/as, last visited 23 Jan 2012)

Otto J-C, Dikau R (2004) Geomorphologic System Analysis of a high mountain valley in the
Swiss Alps. Zeitschrift für Geomorphologie 48(3):323–341

Otto J-C, Schrott L, Jaboyedoff M, Dikau R (2009) Quantifying sediment storage in a high alpine
valley (Turtmanntal, Switzerland). Earth Surf Proc Land 34:1726–1742

Rasemann S (2004) Geomorphometrische Struktur eines mesoskaligen alpinen Geosystems,
Bonner Geographische Abhandlungen 111

Reid LM, Dunne T (1996) Rapid evaluation of sediment Budgets. Catena Verlag, Reiskirchen
Schrott L, Hoffmann T (2008) Seismic refraction. In: Hauck C, Kneisel C (eds) Applied

geophysics in periglacial environments. Cambridge University Press, Cambridge, pp 57–80
Schrott L, Sass O (2008) Application of field geophysics in geomorphology: advances and

limitations exemplified by case studies. Geomorphology 93:55–73

On Problems and Benefits of 3D Topology 169

http://www.opengeospatial.org
http://www.opengeospatial.org/standards/as
http://www.opengeospatial.org/standards/as

Schrott L, Hufschidt G, Hankammer M, Hoffmann T, Dikau R (2003) Spatial distribution of
sediment storage types and quantification of valley fill in an alpine basin, Reintal, Bavarian
Alps, Germany. Geomorphology 55:45–63

Summerfield MA (1997) Global Geomorphology: an Introduction to the study of landforms.
Addison Wesley, Essex

Young A (1978) Slopes. Longman limited, London
Zheng W, Schenk T (2000) Building extraction and reconstruction from lidar data. Int Arch

Photogrammetry Remote Sens XXX:958–964 (Amsterdam. Part B3)
Zlatanova S (2000) On 3D topological relationships. In: Proceedings of the 11th international

workshop on database and expert system applications (DEXA 2000), Greenwich, London,
pp 913–919, 6–8 Sept

170 M.-O. Löwner

Geometric-Semantical Consistency
Validation of CityGML Models

Detlev Wagner, Mark Wewetzer, Jürgen Bogdahn, Nazmul Alam,
Margitta Pries and Volker Coors

Abstract In many domains, data quality is recognized as a key factor for suc-
cessful business and quality management is a mandatory process in the production
chain. Automated domain-specific tools are widely used for validation of business-
critical data. Although the workflow for 3D city models is well-established from
data acquisition to processing, analysis and visualization, quality management is
not yet a standard during this workflow. Erroneous results and application defects
are among the consequences of processing data with unclear specification.
We show that this problem persists even if data are standard compliant and
develop systematic rules for the validation of geometric-semantical consistency. A
test implementation of the rule set and validation results of real-world city models
are presented to demonstrate the potential of the approach.

D. Wagner (&) � J. Bogdahn � N. Alam � V. Coors
HFT Stuttgart—University of Applied Sciences, Faculty C, Schellingstraße 24,
70174, Stuttgart, Germany
e-mail: detlev.wagner@hft-stuttgart.de

J. Bogdahn
e-mail: juergen.bogdahn@hft-stuttgart.de

N. Alam
e-mail: nazmul.alam@hft-stuttgart.de

V. Coors
e-mail: volker.coors@hft-stuttgart.de

M. Wewetzer � M. Pries
Beuth Hochschule für Technik Berlin—University of Applied Sciences, Department II,
Luxemburger Straße 10, 13353, Berlin, Germany
e-mail: mark.wewetzer@bht-berlin.de

M. Pries
e-mail: margitta.pries@bht-berlin.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_10,
� Springer-Verlag Berlin Heidelberg 2013

171

1 Introduction

A steadily growing number of application fields for large 3D city models, such as
navigation or solar potential analysis, have emerged in recent years. All of them
are strongly relying on the quality of the underlying models. Besides semantic,
topological or visualization aspects, geometric correctness is a major factor for the
quality of virtual city models. So far, common standards defining correct geo-
metric modeling are not precise enough to define a sound base for data validation.
Depending on the application domain, different standards and guidelines allow
various modeling alternatives. This fact causes difficulties for data suppliers as
well as for customers due to the need of explicitly stating detailed requirements.

Furthermore, modeling and exchange formats like CityGML (Gröger et al.
2008) do not include formal constraints with respect to geometric-semantical
consistency.

In this document we describe the validation of virtual urban models, mainly
focused on CityGML format. We define basic checks to be performed on a given
data set, where geometric requirements should be tested and validated to assure a
user-defined level of quality. This approach focuses on common errors which are
typically found in 3D city models. A prototype of these checks working with
CityGML data sets is implemented in a system developed at HFT Stuttgart.

In the next step, validated geometry has to be checked for semantic consistency
and plausibility. A concept built on a formal set of strict rules is presented.

2 Relevance of Quality Management Of
Three-Dimensional Models

Data validation is the process of checking data against a predefined set of vali-
dation rules. The main goal is to ensure the correctness, integrity and consistency
of the data set regarding certain requirements, which is influenced by the field of
application. A second benefit is that validated data is standard compliant (if the
standard is considered by the rule set) and has advantages with respect to inter-
operability on different systems. Data exchange should be based on validated data
since both data supplier and customer have agreed on common underlying rules.

2.1 Quality Assurance of 3D models in Other Domains

It is acknowledged in the geoinformation domain that ‘‘the representation of 3D
objects using CAD (Computer Aided Design/Drafting) is not new, and significant
work has been done on ensuring that the computer-based model is valid’’
(Thompson and Oosterom 2011). It seems attractive to figure out if existing

172 D. Wagner et al.

methods from the CAD, reverse engineering or computer visualization domain
would be suitable for geodata as well, because quality issues have gained great
importance since many years.

Some examples: Data transformation from one CAD-system to another could
lead to ‘‘dirty geometry’’ caused by different tolerance values (Wöhler et al. 2009);
if data for reverse engineering purposes is collected with a range scanner, it can be
noisy or incomplete, because the scanner was not able to capture every wrinkle of
the model correctly (Rocchini et al. 2004).

Quality issues of CAD-models have lead to the formulation of ISO standard
ISO/PAS 26183 (International Organization for Standardization (ISO) 2006), also
well known as SASIG PDQ1 Guideline v2.1, defining and categorizing common
errors, especially in the automotive industry. A lot of commercial software for
checking and healing geometry has been developed, e.g. CADfix (International
TechneGroup 2011), CADdoctor (Elysium 2008), VALIDAT (T-Systems Inter-
national 2011) or Q-Checker (Transcat PLM 2011).

Quality related research of polygonal models is ongoing since more than
10 years for computational applications. Often these are restricted to surface
models consisting of triangles, thus most of the healing algorithms are limited to
triangles (Ju 2009). Because surface modeling in CAD applications is more error-
prone than polygon based solid modeling, research was focused on healing free-
form surfaces rather than polygons. Additionally, repairing complex models is not
trivial and even today it is normally not possible to heal a corrupted model fully
automatically (Wöhler et al. 2009; Butlin and Stops 1996).

Nonetheless the discussed problems are similar to those occurring in 3D city
models: (Borodin et al. 2002) comment on the finding and filling of holes in
surface models, or resolving self intersections. The latter topic is also discussed by
Attene and Falcidieno (2006), Yamakawa and Shimada (2009) and Rocchini et al.
(2004). For a broader overview we recommend the paper of (Ju 2009).

The efforts and achievements made so far are a good guidance for the devel-
opment of similar documents and tools for 3D city model.

2.2 Validation of Geodata and 3D City Models

Although the advantages of assessing and managing spatial data quality are widely
recognized, their application is not yet widespread (van Oort 2005). Today, the
transition from traditional 2D mapping towards 3D modeling is in full progress for
many real-world applications, and high data quality is becoming essential for
applications such as cadastre or urban planning. Efforts to translate validation
concepts from the 2D GIS world to 3D data are one of the approaches, eventually
trying to link the two domains (Ghawana and Zlatanova 2010).

1 Strategic Automotive Data Standards Industry Group—Product Data Quality.

Geometric-Semantical Consistency Validation of CityGML Models 173

ISO standards referring to spatial data quality exist (International Organization
for Standardization (ISO) 2002; International Organization for Standardization
(ISO) 2003a; International Organization for Standardization (ISO) 2003b), other
standards for 3D data are well established, e.g. CityGML (Gröger et al. 2008). The
OGC domain working group for data quality mentions a number of categories for
quality measures, including accuracy, completeness, consistency and definition for
semantic interoperability (Open Geospatial Consortium (OGC) 2011). However,
there is no generally acknowledged definition of quality so far. As stated by
(Bogdahn and Coors 2010), quality aspects for 3D city models are highly
dependent on user preferences and the field of application. A comprehensive
overview of geometry validation is described by Kazar et al. (2008) and imple-
mented in an Oracle Spatial database system.

A series of vendor specific implementations in commercial software packages
for the validation of 3D geometries came to the market in recent years. For
example, Oracle integrated validation rules and algorithms for 3D geometries in
their database system Oracle Spatial (Kazar et al. 2008), and ESRI’s wide-spread
shapefiles were extended to handle 3D geometries. As internal data models and
processing rules are incompatible, interoperability becomes a challenge if not
impossible. Thus, it became necessary to define the structure of the data in more
detail, e.g. for geometry (Oosterom et al. 2005) or topological consistency and
analysis (Ledoux 2011; Boguslawski et al. 2011). Specific rules and constraints
based on user needs are developed to extend existing standards (Gröger and
Coors 2010).

An overview of validation concepts and needs is presented by Karki et al.
(2010). Their implementation is based on the decomposition of solids into tetra-
hedrons for validation of a 3D cadastre and describes entry-level validation rules in
terms of continuity, reasonability and spatio-temporal aspects. All of the above-
mentioned approaches are dealing with geometry or topology, not considering
semantic information.

Based on the semantic model of CityGML (Stadler and Kolbe 2007) distinguish
six categories of model complexity and structure wrt. spatio-semantical coherence.
Only models where semantic components correlate to geometric components on
the same level of hierarchy can be fully coherent. Thus, ‘‘it becomes clear that
besides the spatial and semantic complexity also the coherence of the two struc-
tures is an important quality aspect of 3D city models’’ (ibid.). CityGML support
coherent representation of geometry and semantics. (Métral et al. 2009) underline
the relevance of semantically enriched models in their ontology-based approach.

Currently, discussions in the German quality working group of SIG-3D2 on
correct usage of attributes and modeling alternatives are ongoing. The goal of the
working group is to suggest ‘‘best-practice’’ rules for 3D city modeling. A
handbook with modeling guidelines for typical elements is in preparation. Par-
tially, these guidelines are directly derived from definitions in the standard. In

2 SIG-3D—GDI-DE; Special Interest Group 3D of the Geo Data Infrastructure Germany.

174 D. Wagner et al.

many cases, however, the standard allows several alternatives. For example, the
basic element Building can be modeled as Solid or as MultiSurface
geometry. Some attributes might refer to different features without being clearly
defined. A prominent example in this context is MeasuredHeight which
reflects the building height which was measured by surveying methods. However,
it is not clear if this value refers to the difference between ground surface and
highest point of the structure, highest point of the roof, average roof height, etc.

Beyond the mere definition of these elements and attributes is their relation to
the geometry. Intuitively, the geometric model height should be less or equal than
the given attribute value of MeasuredHeight. Although attributes with geo-
metric relevance encompass many obvious restrictions, geometric-semantical
consistency is neglected so far. A reason might be the lack of recognized rules and
software implementations.

In this paper, we present a concept to validate the consistency of geometry and
semantics of CityGML models and define adequate rules and restrictions.

3 Concept of Quality Assurance for 3D City Models

A first concept of quality management for urban 3D models is presented by Coors
and Krämer (2011). In this paper the implementation of a prototype for validation
and healing of geometry errors is described (Fig. 1).

Gröger and Plümer (2009) developed a set of axioms to achieve geometric-
topological consistency of 3D models. (Gröger and Coors 2010) defined valid
geometry elements for CityGML in a more detailed approach. They add useful
restrictions which are based on modeling guidelines discussed within the quality
working group (SIG-3D Quality Working Group 2012). These extended rules are
the base for the geometric model which we use for validation of CityGML data.
The rules are applicable for data stored in XML documents as well as in data base
solutions, which are customized adequately (Pelagatti et al. 2009).

Fig. 1 Quality check process

Geometric-Semantical Consistency Validation of CityGML Models 175

CityGML allows many different alternatives for modeling. This is an obstacle
in the validation process, because it is not unambiguously defined what validity
actually means without further specification. A verbal description of the modeling
rules is a first step to formulate constraints for geometry, topology and semantics,
but cannot be used for automated validation tools.

Simple examples are the CityGML elements Building and Building-
Part, which can be modeled in at least three different ways (Table 1):

• as single Solid
• as CompositeSolid (with XREF for shared faces)
• as MultiSurface geometry

All three alternatives are valid in CityGML. Validation of the models is only
possible if the validation rules include information on the underlying modeling
principles. ThenBuildingswhich are modeled according to different rules can be
detected as errors. It should be possible to allow several alternatives at the same time.

To achieve geometric-semantical consistent models it is necessary to

1. specify allowed alternatives with formal rules, and
2. validate the geometry.

3.1 What is Valid Geometry?

Validation against the schema definition of CityGML is a basic requirement to
ensure a standard compliant XML structure. However, no assertion on the geo-
metric correctness of modeled objects is possible: A building can be described by a

Table 1 Modeling alternatives for the CityGML element Building

Alternative 1:
1.Building (Solid)

Alternative 2:
1 Building (Solid)
1 BuildingPart (Solid)
combined geometry:

CompositeSolid

Alternative 3:
1 Building

(MultiSurface)
1 BuildingPart

(MultiSurface)
combined geometry:

Solid

176 D. Wagner et al.

syntactically valid CityGML document but still have geometric errors like holes or
non-planar faces, or contain inconsistent attribute values.

The following definitions are used in this paper. We stick quite close to the
GML standard and limited the definitions to CityGML. Normally a polygon is
bounded by a gml:Ring, but as there is only the linear ring as subtype of
gml:Ring in CityGML we refer directly to gml:LinearRing.

3.1.1 Definitions of geometric elements

1. Point

The element gml:Point is given as a triple of three real numbers:

p :¼ x; y; zð Þ; x; y; z 2 R

2. Edge

A directed edge e is defined by an ordered pair of two points:

ek;l :¼ ðpk; plÞ

3. Linear Ring

A sequence R :¼ p0; p1. . .; pnð Þ of points pi, with linear interpolation between
the points (a sequence of connected edges) is called a gml:LinearRing, if
p0 ¼ pn and n� 3. Note that the direction of an edge in a linear ring is determined
by the order of the points.

4. Polygon

By definition, a gml:Polygon P is a surface bounded by a gml:Lin-
earRing. The boundary is coplanar and the polygon uses planar interpolation in
its interior. Hence, a linear ring is planar if all points of the sequence are coplanar.

5. Solid

A gml:Solid S is defined by a set S :¼ P1; . . .;Pmð Þ of connected polygons
Pi; i ¼ 1; . . .;m. The set of polygons defines a 2-manifold surface.

3.1.2 Validity Axioms

It is quite clear, that the pure definitions of entities derived from the GML standard
could lead to non-manifold, but still valid geometry. To avoid degenerated
geometry we define additional validity axioms which the geometry has to satisfy to
be valid in accordance with Gröger and Plümer (2009).

Linear Ring and Polygon
Let R ¼ p0; p1. . .; pnð Þ be a linear ring and let P be the polygon defined by R.
R and P are called valid, if

Geometric-Semantical Consistency Validation of CityGML Models 177

a. R consists of at least four ordered points (CP-NUMPOINTS);
b. The first and last point are identical: p0 ¼ pn (CP-CLOSE);
c. All points of the sequence besides the first and the last are different: pi 6¼

pj; i; j ¼ 0; . . .n� 1; i 6¼ j CP-DUPPOINT);
d. Two edges ei;iþ1 and ej;jþ1; i; j ¼ 0; . . .n� 1; i 6¼ j of R do only intersect in

one start-/endpoint. No other intersection is allowed (no self-intersection, CP-
SELFINT);

e. According to definition (4), the boundary of P has to be planar (CP-PLAN-
DIST, CP-PLANDISTALL, CP-PLANTRI).

Solid
Let S ¼ P1; . . .;Pmð Þ be a solid. S is called valid, iff

f. all polygons of S are valid (axioms a to e);
g. S consists of at least four polygons (CS-NUMFACES);
h. each edge e of a polygon of S is exactly referenced once by another polygon of

S (CS-2POLYPEREDGE);
i. all polygons in S are oriented such that the normal vector of each polygon

points to the outside of the solid. This means that an edge ev;w of a polygon Pk

is directed in opposite direction in polygon Pl, which is sharing ev;w: ev;w 2
Pk) ew;v 2 Pl (CS-FACEORIENT, CS-FACEOUT);

j. the intersection of two polygonsPk andPl of S is either empty or contains only
points p or edges e (points included), that are part of both polygons:

Pk \Pl ¼

;
pjp ¼ p0; . . .; pcð Þ; pi 2 Pk ^ pi 2 Plf g

eje ¼ ev0;w0 ; . . .; evd ;wd

� �

;
evi;wi 2 Pk ^ ewivi 2 Pl

� �

^
ðpvi ; pwi 2 Pk ^ pvi ; pwi 2 PlÞ

8

<

:

9

=

;

8

>

>

>

>

<

>

>

>

>

:

(CS-SELFINT);

k. all polygons in S are connected (CS-CONCOMP);
l. each point is surrounded by exactly one cycle that is an alternating sequence of

line segments and polygons, also called umbrella axiom (CS-UMBRELLA).

Based on these definitions geometry validation can be limited to the validity
axioms of a solid for Solid geometries and the validity axioms of polygons
for a MultiSurface geometry.

178 D. Wagner et al.

3.2 Description of Check Routines

Five major check routines can be derived from the polygon definition above. The
planarity checks are described in detail below. The other checks and the solid
checks are defined in Coors and Krämer (2011). The relation of the axioms and the
Check-IDs are given in Table 4.

Planarity can be defined in different ways as an internal discussion in the
German Quality Working Group has shown and is referred to in Gröger and Coors
(2010). Our implementation includes three different algorithms as a consequence
of this discussion process, a fourth one is not yet implemented.

• Algorithm 1 (CP-PLANDIST)

Three non-linear points p0; p1; px of a linear ring R with n ? 1 points describe a
plane E with normal vector n. All other points of R must be situated in E (small
deviations e 2 R are allowed):

jðp0 � piÞ � nj\e; i 2 0; . . .; n� 1f g

In LinearRing R ¼ 4; 1; 2; 3; 4f g depicted in Fig. 2 (left), three points
(4,1,2) would define a plane (visualized in gray), but Point 3 is not located in it.
This polygon can still be considered planar if the distance d between Point 3 and
the plane is less than a preset maximum deviation e. Folds and sharp bends cannot
be detected reliably, however.

• Algorithm 2 (CP-PLANDISTALL)

It tests if all points of a linear ring R with n ? 1 points are situated in all
possible planes El with normal vectors nl, defined by three non-linear points
pi; pj; pk of R (small deviations e 2 R are allowed):

jðpi � paÞ � nlj\e; a 2 f1; . . .; n� 1g

Fig. 2 Two examples of a non-planar LinearRing

Geometric-Semantical Consistency Validation of CityGML Models 179

In contrast to CP-PLANDIST, this algorithm detects folds and sharp bends such
as depicted in Fig. 3.

• Algorithm 3 (CP-PLANTRI)

Consider T as a triangulation of the polygon defined by R, containing m trian-
gles. Additionally, let nl; l 2 f0; . . .;m� 1g be the unit normal vector of the l-th
triangle in T. R is planar, iff each scalar product of unit normal vectors na and nb of
two different triangles of T is less than a tolerance value e:

na � nb\ e; a 6¼ b; a; b 2 1; . . .;m� 1f g

Folds and sharp bends are detected. Fewer problems with long polygons occur
because the normal vector does not change its direction whereas point distance to a
reference plane can increase compared to smaller polygons.

• Algorithm 4 (CP-PLANADJUST, not yet implemented in our validation tool, cf.
Sect. 4)

An adjustment plane E with normal vector n for all points pi of a linear ring is
computed. All points pi must be situated in E (small deviations e 2 R are allowed):

jðp0 � piÞ � nj\e

However, as with CP-PLANDIST, folds and sharp bends cannot be detected
reliably by CP_PLANADJUST.

Results of the error distribution of test models are given in Table 4. The highest
number of non-planar polygons is detected by CP-PLANTRI, the lowest number is
found by CP-PLANDIST. CP-PLANDISTALL is supposed to find all possible
planarity errors as well; hence it is surprising that the number is different from the
CP-PLANTRI result in some models. In both cases the tolerance value was set to
0.01. This reflects the maximum point distance for CP-PLANDISTALL and the
maximum angle for CP-PLANTRI. Obviously, the thresholds are not comparable
and CP-PLANTRI is more sensitive.

Another issue is that polygons with a long and narrow shape are expected to
have a large deviation for certain point combinations in CP-PLANDISTALL. This
leads to the question how to determine a useful value for the tolerance value e. Our
implementation is using a default value of 0.01, which can be changed by the user.

Fig. 3 Linear Ring with
a fold

180 D. Wagner et al.

3.3 Dependencies in the Check Process

Some checks perform correctly only if the input has passed other checks before
processing. This might be necessary to guarantee that certain assumptions are
valid. For example, it would not make sense to test a polygon for planarity if there
are less than 4 points, because planarity is not defined in that case.

In a strictly designed check process, all checks (except basic CP-NUMPOINTS)
should depend on each other in a nearly linear way, according to the order as they
are listed in Sect. 3.2. During testing we noticed that such strong restrictions
prevent parts of the geometry to be checked by higher-order checks in case basic
checks have not been passed. The check process stops for the whole building
geometry, even if there is only a CP-DUPPOINT error in one polygon. As a
consequence, some checks at the end of the dependency chain are not executed for
some buildings.

To decrease the number of unchecked buildings we decoupled some checks
from their former dependency. Table 2 gives a quick overview on all remaining
dependencies which are underlying the current check process of our implemen-
tation. For example, CS-FACEOUT yields correct results only for solids which
have passed CS-FACEORIENT successfully.

All other checks work correctly for geometric input extracted from CityGML
files which can be validated against the current XML schema definition.

3.4 Concept of Semantic Validation

CityGML defines a semantic model that enables the user to add further information
to spatial object. This goes far beyond the pure geometrical description of features.
The idea is to enable a model to ‘‘know’’ what kind of features it contains and not
only their location and shape. It can be enriched with domain-specific information
which exceeds the default specification of CityGML. However, semantic infor-
mation can be inconsistent with the geometry, e.g. if a building wall is defined as a
RoofSurface.

Table 2 Dependencies of geometry check routines

CP-NUM-
POINTS

CP-DUP-
POINT

CP-
PLANa

CS-2POLY-
PEREDGE

CS-FACE-
ORIENT

CP-SELFINT – • – – –
CP-PLANa • • – – –
CS-SELFINT – – • – –
CS-FACEORIENT – – – • –
CS-FACEOUT – – – – •
CS-UMBRELLA – – – • –

a CP-PLAN means either CP-PLANDIST, CP-PLANDISTALL or CP-PLANTRI

Geometric-Semantical Consistency Validation of CityGML Models 181

Based on validation of geometrical features as explained above, we introduce a
concept for the validation of geometric-semantic consistency. Valid geometry is
the base before other geometry-related information can be validated. A set of
applicable and unambiguous rules is defined, mainly determined by the underlying
data model (Stadler and Kolbe 2007).

For a start, the concept is focused on the element Building as specified in
CityGML 1.1 standard (Gröger et al. 2008). A Building can have one geometry
per level of detail (LoD) in CityGML. These geometries will be treated separately.
In this paper, we limit the discussion to LoD 1, where the geometric-semantic
themes volume part of the building shell (gml:SolidType), surface part of the
building shell (gml:MultiSurfaceType), terrain intersection curve
(gml:MultiCurveType) and building parts (BuildingPartType) are
defined. The relevant part of the UML diagram is shown in Fig. 4.

3.5 Constraints for Building Models in CityGML

Geometry of LoD1 is either modeled as MultiSurface or as Solid and
CompositeSolid respectively. A terrain intersection curve to define the
intersection line of the building geometry with the terrain model may exist in
addition.

A building can be modeled in several parts (BuildingPart elements),
representing individual structural elements. The CityGML standard defines base
requirements for conformance of Building elements:

‘‘If a building only consists of one (homogeneous) part, it shall be represented
by the element Building. However, if a building is composed of individual
structural segments, it shall be modeled as a Building element having one or
more additional BuildingPart elements. Only the geometry and non-spatial

Fig. 4 UML diagram for CityGML element _AbstractBuilding

182 D. Wagner et al.

properties of the main part of the building should be represented within the
aggregating Building element’’ (Gröger et al. 2008).

Besides basic requirements no detailed rules are given in the standard how to
model a Building correctly in a standardized form. Although there are com-
ments or recommendations on the separation into several BuildingPart ele-
ments, different valid alternatives are possible according to the specification.
However, a consistent modeling concept should be ensured throughout the actual
city model, which is not included in a standard CityGML document. Hence,
validation requires the formulation of rules in a standardized and machine-readable
format.

3.6 Modeling Guidelines and Recommendations

In the simplest case a building geometry in LoD1 consists of an extrusion solid
(Fig. 5). It should always be modeled as a Solid. The standard allows a Mul-
tiSurface in theory as well, which is widely used in practice. However, this
way of modeling is not very helpful considering the consequences for potential
applications of the model (e.g. watertightness).

3.7 Rules for Validation

In the following paragraphs a validation rule set is developed step by step, to
ensure that a model is built of consistent geometric and semantic elements. The
rules are given in colloquial language as well as in Object Constraint Language
(OCL) as machine-readable format that can be processed automatically (Object
Management Group 2011). The OCL statements given below are referring to the
UML diagrams which define the CityGML elements in the standard. The relation
of buildings and their parts is shown in Fig. 4, which includes the geometric
elements for a valid model as well as the different alternatives for solids.

Additional rules are required to enable strict validation of models. We rec-
ommend a rule set on the basis of the modeling guidelines of SIG-3D (SIG-3D

Fig. 5 Simple extrusion
solid

Geometric-Semantical Consistency Validation of CityGML Models 183

Quality Working Group 2012). Other alternatives could allow the users to deviate
from these standards deliberately in case they require customized rules.

3.7.1 Simple Building Without Building Parts

Rule 1: If a building has no separable structural elements it is modeled as a
simple Solid in LoD1:

context Building
inv: self.oclIsTypeOf(t:Building)
inv: self.lod1Solid-[notEmpty() and
self.lod1MultiSurface-[isEmpty()
inv: self.consistsOfBuildingPart-[isEmpty()

3.7.2 Simple Building with Building Part

Different alternatives for modeling have to be considered in case a building is
composed of several structural elements. This is illustrated in the following
example building with different heights (Fig. 6).

This building can be modeled as a Building according to Rule 1, and no
BuildingPart element is necessary in this case.

Just as well it is possible to model the building as Building with additional
BuildingPart. The BuildingPart contains the lower structural segment
at the front side of the building in Fig. 6. Different alternatives are considered
subsequently:

Rule 2: If a building consists of several parts the main element is modeled
as a Solid, as well as all other building parts. The combined geometry of all
parts forms a CompositeSolid:

context Building
inv: self.oclIsTypeOf(t:Building)
inv: self.lod1Solid-[notEmpty()and
self.lod1MultiSurface-[isEmpty()
inv: self.consistsOfBuildingPart-[notEmpty()-[

Fig. 6 Simple LOD 1
building with several
structural elements

184 D. Wagner et al.

forAll(b:BuildingPart | b.lod1Solid-[notEmpty()
and b.lod1multisurface-[isEmpty())
inv: self.lod1Solid-[union(union
(self.consistsOfBuildingPart.lod1Solid))
= compositeSolid

The restriction to a CompositeSolid includes the requirement that all
Building and BuildingPart elements are connected as stipulated by the
standard.

The geometry according to rule 2 contains one or more common planes
between adjacent solids (compare Table 1, alternative 2). This can be avoided by
modeling the individual geometries as MultiSurface elements instead of
Solid elements.

Rule 3: If a building consists of several parts the main segment is modeled
as a MultiSurface element, as well as all other parts. The complete
geometry of all building parts forms a Solid, i.e. the geometries are
connected and the aggregated geometry could be defined by a single Solid:

context Building
inv: self.oclIsTypeOf(t:Building)
inv: self.lod1Solid-[isEmpty() and
self.lod1MultiSurface-[notEmpty()
inv: self.consistsOfBuildingPart-[notEmpty()-[
forAll(b:BuildingPart | b.lod1Solid-[isEmpty()
and b.lod1multisurface-[notEmpty())
inv: self.lod1MultiSurface
-[union(union(self.consistsOfBuildingPart-[
any(exists(lod1MultiSurface))).isTypeOf(lod1Solid)

We recommend modeling according to rules 1 and 2. The rules can by com-
bined: rule 2 OR rule 3 would allow using both alternatives in one model.

A Building can be modeled as a single MultiSurface, the remaining
surfaces would be BuildingPart elements and the aggregated geometry would
be a Solid (Fig. 7).

Rule 4: A Building or BuildingPart that is modeled as MultiSurface
(according to rule 3) must have at least three faces.

context Building
inv: self.oclIsTypeOf(t:Building)
inv: self.lod1Solid-[isEmpty() and
self.lod1MultiSurface-[notEmpty()
inv: self.consistsOfBuildingPart-[notEmpty()-[
forAll(b:BuildingPart | b.lod1Solid-[isEmpty()
and b.lod1Multisurface-[notEmpty())
inv: self.lod1MultiSurface-[size()C3
and self.consistsOfBuildingPart.
lod1MultiSurface-[size()C3

Geometric-Semantical Consistency Validation of CityGML Models 185

3.7.3 Attributes

Buildings as well as building parts can have further attributes. Some attributes
describe geometry-related properties, e.g. storeysAboveGround, sto-
reysHeightsAboveGround and measuredHeight. If the geometry
includes underground structures, storeysBelowGround and storeys-
HeightsBelowGround can be present as well. In a correct model, their values
should be consistent with the geometry. Since these attribute are not unambigu-
ously defined their plausibility should be assessed.

Rule 5: If the number of storeys above ground is given, but not their
heights, then a storey height between 2 and 3 meters is assumed. The height of
the bounding box of the building geometry is expected to be within the cal-
culated range.

context Building
inv: self.storeysHeightsAboveGround.oclIsUndefined()
inv: self.storeysAboveGround*2\
self.lod1Solid.bboxHeight
\self.storeysAboveGround*3
def bboxHeight:Real
= self.lod1Solid.zCoordinate-[maxValue()
- self.lod1Solid.zCoordinate-[minValue()

The height of the bounding box is decreased by the extent of underground
structures included in the model, or in case the Solid has been extended towards
the ground in order to avoid gaps between the GroundSurface and the terrain
model. In this case, the part below the lowest point of the TerrainInter-
sectionCurve is subtracted from the height of the bounding box.

context Building
inv: self.storeysHeightsAboveGround.oclIsUndefined()
and self.tic-[notEmpty()

Fig. 7 Building and
Buildingparts modeled
as single surfaces

186 D. Wagner et al.

inv: self.storeysAboveGround*2\
self.lod1Solid.zCoordinate-[maxValue()
- self.ticLowestPointHeight\
self.storeysAboveGround*3
def ticLowestPointHeight:Real
= self.tic.zCoordinate-[minValue()

Rule 6: If storeysHeightsAboveGround is given, the height of the
bounding box can be calculated more exactly by addition of all values of the list.
The number of values should be equal to the number of storeysAbove-
Ground.

context Building
inv: self.storeysHeightsAboveGround-[notEmpty()
inv: self.storeysHeightsAboveGround-[size()
= self.storeysAboveGround
inv: self.storeysHeightsAboveGround.sum() =
self.lod1Solid.bboxHeight ± tolerance
def bboxHeight:Real = self.lod1Solid.zCoordinate-[
maxValue() - self.lod1Solid.zCoordinate-[minValue()
def: tolerance:Real = 0.5

4 Implementation of Test Tool and Validation Library

The presented tests and approaches to detect geometric errors in 3D city models
are implemented by a library of check components. This library can be used in
order to integrate the check functionality into different software tools and appli-
cations. It provides an interface to control which checks are actually performed
and allows specifying a certain validation configuration.

The implementation is realized as a standalone Java tool for testing 3D city
models for errors (Fig. 8). A Swing-based GUI is put on top of the functionality
provided by the check library. Results are written to a log-file as well as displayed
in the GUI (Fig. 9).

One example for the integration into an existing software tool is depicted in
Fig. 10. Here the check library is integrated into FME (Safe Software 2011) as a
custom transformer. The transformer takes FMEFeatures as input and checks the
features using the check configuration specified by the user. Internally, FMEFe-
atures are converted into a data structure of the library and the checks are per-
formed. As a result the transformer is providing two output channels: one for
features without errors (original) and one for features not compliant with the
validation rules (errors).

Geometric-Semantical Consistency Validation of CityGML Models 187

Other plug-ins for test purposes have been developed for SupportGIS-3D of
CPA Geo-Information (CPA-Systems GmbH 2011) and CityServer3D (Coors and
Krämer 2011).

Fig. 8 Stand-alone implementation of the validation tool

Fig. 9 Graphical user interface (GUI) of the stand-alone validation tool

188 D. Wagner et al.

5 Test Results of Real-World Models

The outlined geometry checks of Sect. 3.3 are implemented with JAVA in a
standalone application. It is tested against specially created models which contain
certain types of errors as well as real-world models or extracts thereof. The models
are characterized with certain key figures in Table 3; the validation results are
given in Table 4.

Fig. 10 Integration of the validation tool in FME

Table 3 Characteristics of test models

A1 A2 H J K L Q X

LOD 1 2 1 2 2 2 2 2
buildings 1 1 61 61 551 4 7 1,922
polygons 220 580 689 3,455 4251 69 403 32,546
RoofSurface – 273 – 1,483 772 10 73 4,957
WallSurface – 305 – 1,448 3122 54 25 24,067
GroundSurface – 2 – 524 360 5 305 3,522
undefined – 0 – 0 0 0 0 0
edges 654 1402 1701 6,452 182 740 75,370
vertices 436 779 1134 2,918 123 466 49,690
holes 0 165 46 1,5504 0 664 0
polygons per building 220 580 11.3 56.6 7.7 17.3 57.6 16.9

Geometric-Semantical Consistency Validation of CityGML Models 189

Only in case CS-2POLYPEREDGE is passed, a building is checked by the
dependent checks, viz. the numbers for CS-UMBRELLA and CS-CONCOMP in
models L and X refer to buildings which have no CS-2POLYPEREDGE errors.

Besides the different results for the planarity checks (cf. Sect. 3.3) the high
numbers of CS-NUMFACES and CS-2POLYPEREDGE in model J are noticeable.
A closer look at the details reveals that building installations are modeled as Mul-
tiSurface elements containing only one single polygon each. A Building-
Installation element is currently treated as a Solid geometry which explains
the high numbers of errors for CS-2POLYPEREDGE also.

6 Conclusion and Future Work

Rules for validation of geometry in 3D city models were defined and implemented
in a JAVA library to enable automated processing of 3D city models. The func-
tionality is available as standalone JAVA application and integrated as plug-in for
three commercial systems. Validation tests with real-world models showed that
nearly all models have geometric errors although they are visually in order. This
fact confirms the importance of geometry validation for 3D city models to enable
other applications to work correctly.

Error-free and standard-compliant geometry is a prerequisite for semantic
validation. We presented a concept of validation rules for geometric-semantical
consistency in LoD 1 of CityGML models. The rules are based on the standard and
introduce additional useful restrictions which can help to increase the overall
quality. They will be implemented as part of the validation tool in future. Fur-
thermore, the rule set will be extended to LoD2 and above. Other CityGML
elements with relation to geometry will be added.

CityGML can be extended by generic attributes (Application Domain Exten-
sions—ADE). Some generic attributes have been defined by organizations such as

Table 4 Error distribution for the test models

Check ID Axiom (cf. p.7) A1 A2 H J K L Q X

CP-NUMPOINTS a 0 0 0 0 0 0 0 0
CP-CLOSE b 0 0 0 0 0 0 0 0
CP-DUPPOINT c 0 0 0 0 46 0 4 0
CP-SELFINT d 0 0 0 0 90 0 2 0
CP-PLANDIST e 0 4 0 0 0 4 8 177
CP-PLANDISTALL e 0 8 0 0 0 4 8 191
CP-PLANTRI e 0 67 0 0 45 5 62 269
CS-NUMFACES g 0 0 0 4,445 133 0 0 0
CS-SELFINT j 0 0 22 – 647 2 – 4,575
CS-2POLYPEREDGE h 0 155 46 15,484 6570 0 298 467
CS-FACEORIENT i 0 – – – – 0 – –
CS-UMBRELLA l 0 – – – – 0 – 116
CS-CONCOMP k 0 – – – – 1 – 980

190 D. Wagner et al.

the German AdV3 and many municipalities. Initially, these attributes were intended
to reflect additional feature properties which cannot be included in 2D data
otherwise. For example, AdV has defined roof-type primitives like gable roof, hip
roof, shed roof etc. In LoD 2 and higher, the geometry should reflect assigned roof
type properties, thus a validation of certain generic attributes should be considered.

Development of consistency rules according to the concept above will be a
major task to bring high-quality city models forward.

Acknowledgments The authors would like to thank the SIG-3D quality working group for
fruitful discussion and the German Federal Ministry of Education and Research (BMBF) for
funding of the project CityDoctor under provision number 17110B10.

References

Attene M, Falcidieno B (2006) Remesh: an nteractive environment to edit and repair triangle
meshes. In: IEEE international conference on shape modeling and applications. p 41

Bogdahn J, Coors V (2010) Towards an automated healingof 3D urban models. In Kolbe TH,
König G, Nagel C (eds) In: Proceedings of international conference on 3D geoinformation.
International archives of photogrammetry, remote sensing and spatial information science.
International conference on 3D geoinformation. Shaker Verlag, Aachen, Germany, pp 13–17

Boguslawski P, Gold C, Ledoux H (2011) Modelling and analysing 3D buildings with a primal/
dual data structure. ISPRS J Photogram Rem Sens 66(2):188–197

Borodin P, Novotni M, Klein R (2002) Progressive gap closing for mesh repairing. In: Vince J,
Earnshaw R (eds) Advances in modelling, animation and rendering, Springer pp 201–213

Butlin G, Stops C (1996) CAD data repair In: 5th international meshing roundtable. pp 7-12
Coors V, Krämer M (2011) Integrating quality management into a 3D geospatial server. In:

UDMS 2011. Urban Data Management Society. Delft, p 8
CPA-Systems GmbH (2011) Available at: http://www.cpa-systems.de/
Elysium (2008) CADdoctor. Available at: http://www.elysiuminc.com/Products/caddoctor.asp.

Accessed 20 Jan, 2012
Ghawana T, Zlatanova S (2010) Data consistency checks for building a 3D model: a case study of

Technical University, Delft campus. Geospatial World, The Netherlands, p 4
Gröger G, Coors V(2010) Rules for validating GML geometries in CityGML. Available at: http://

files.sig3d.de/file/20101215_Regeln_GML_final_DE.pdf. Accessed 18 Jan 2012
Gröger G, Plümer L (2009) How to achieve consistency for 3D city models. GeoInformatica

15(1):137–165
Gröger, G. et al (eds) (2008) OpenGIS city geography markup language (CityGML) encoding

standard. Available at: http://portal.opengeospatial.org/files/?artifact_id=28802. Accessed 28
June 2011

International Organization for Standardization (ISO) (2002) ISO 19113 standard: geographic
information – quality principles. Available at: http://www.iso.org/iso/iso_catalogue/
catalogue_tc/catalogue_detail.htm?csnumber=26018

International Organization for Standardization (ISO) (2003a) ISO 19114 standard: geographic
information—quality evaluation procedures. Available at: http://www.iso.org/iso/iso_
catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26019

3 Working Group of the surveying agencies of the federal states.

Geometric-Semantical Consistency Validation of CityGML Models 191

http://www.cpa-systems.de/
http://www.elysiuminc.com/Products/caddoctor.asp
http://files.sig3d.de/file/20101215_Regeln_GML_final_DE.pdf
http://files.sig3d.de/file/20101215_Regeln_GML_final_DE.pdf
http://portal.opengeospatial.org/files/?artifact_id=28802
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26018
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26018
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26019
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=26019

International Organization for Standardization (ISO) (2003b) ISO/CD 19107, Geographic
information—spatial schema

International Organization for Standardization (ISO) (2006) ISO/PAS 26183—SASIG product
data quality guidelines for the global automotive industry

International TechneGroup (2011) CADfix. Available at: http://www.transcendata.com/products/
cadfix/index.htm

Ju T (2009) Fixing geometric errors on polygonal models: a survey. J Comput Sci Technol
24(1):19–29

Karki, S., Thompson, R. & McDougall, K., 2010. Data validation in a 3D cadastre. In Neutens T,
Maeyer P (eds) Developments in 3D geo-Iinformation sciences. Lecture notes in
geoinformation and cartography, Springer Berlin Heidelberg, pp. 92-122

Kazar BM et al (2008) On valid and invalid three-dimensional geometries. In: Oosterom P et al
(eds) Advances in 3D geoinformation systems. Springer, Berlin, pp 19–46 (Available at:
http://www.springerlink.com/index/10.1007/978-3-540-72135-2_2. Accessed 22 June 2011)

Ledoux H (2011) Topologically consistent 3D city models obtained by extrusion. Int J Geogr Inf
Sci 25(4):557–574

Métral C, Falquet G, Cutting-Decelle AF (2009) Towards semantically enriched 3D citymodels:
an ontology-based approach. In: Academic track of geoweb 2009—cityscapes, international
archives of photogrammetry, remote sensing and spatial information sciences (ISPRS).
Vancouver, Canada

Object Management Group (2011) OMG object constraint language (OCL). Available at: http://
www.omg.org/spec/OCL/2.3.1/. Accessed 20 Jan 2012

van Oort P (2005) Spatial data quality: from description to application. Optima Grafische
Communicatie, The Netherlands

Oosterom P, Quak W, Tilssen T (2005) About invalid, valid and clean polygons. In Fisher PF (ed)
Developments in spatial data handling. 11th international symposium on spatial data handling.
Leicester, UK: Springer, Berlin, pp 1–16. Available at: http://dx.doi.org/10.1007/3-540-
26772-7_1

Open Geospatial Consortium (OGC) (2011) Data quality DWG. Available at: http://www.
opengeospatial.org/projects/groups/dqdwg. Accessed 19 Jan 2012

Pelagatti G et al. (2009) From the conceptual design of spatial constraints to their implementation
in real systems. In Proceedings of the 17th ACM SIGSPATIAL international conference on
advances in geographic information systems. Seattle, pp 448-451, Nov 4-6

Rocchini C et al (2004) The marching intersections algorithm for merging range images. Vis
Comput 20:149–164

Safe Software (2011). FME desktop. Available at: http://www.safe.com/inc/vendors/elqNow/
elqRedir.htm?ref=http://downloads.safe.com/fme/brochures/FME_Desktop.pdf

SIG-3D Quality Working Group (2012) Modellierungshandbuch Gebäude. Available at: http://
www.sig3d.de/index.php?catid=2&themaid=8777960

Stadler A, Kolbe TH (2007) Spatio-semantic coherence in the integration of 3D city models. In:
Proceedings of the 5th inter-national symposium on spatial data quality. Enschede. Available
at: http://spirit.bv.tu-berlin.de/igg/htdocs/fileadmin/user_upload/ Stadler/SDQ2007_Stadler_
Kolbe.pdf

Thompson R, Oosterom P (2011) Modelling and validation of 3D cadastral objects. In: Zlatanova
S et al (eds) Urban and regional data management–UDMS annual 2011. CRC Press, Delft

Transcat PLM (2011) Q-Checker. Available at: http://www.transcat-plm.com/software/transcat-
software/q-checker.html. (Accessed 24 Jan 2012)

T-Systems International (2011) VALIDAT. Available at: https://servicenet.t-systems.de/validat.
Accessed 24 Jan 2012

Wöhler T, Pries M, Stark R (2009) Effiziente Verfahren zur Aufbereitung von Geometriemod-
ellen für die virtuelle Absicherung. In 3. Symposium Geometrisches Modellieren, Visual-
isieren und Bildverarbeitung. Stuttgart

Yamakawa S, Shimada K (2009) Removing self intersections of a triangular mesh by edge
swapping, edge hammering, and face lifting. In 18th international meshing roundtable

192 D. Wagner et al.

http://www.transcendata.com/products/cadfix/index.htm
http://www.transcendata.com/products/cadfix/index.htm
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/OCL/2.3.1/
http://dx.doi.org/10.1007/3-540-26772-7_1
http://dx.doi.org/10.1007/3-540-26772-7_1
http://www.opengeospatial.org/projects/groups/dqdwg
http://www.opengeospatial.org/projects/groups/dqdwg
http://www.safe.com/inc/vendors/elqNow/elqRedir.htm?ref=http://downloads.safe.com/fme/brochures/FME_Desktop.pdf
http://www.safe.com/inc/vendors/elqNow/elqRedir.htm?ref=http://downloads.safe.com/fme/brochures/FME_Desktop.pdf
http://www.sig3d.de/index.php?catid=2&themaid=8777960
http://www.sig3d.de/index.php?catid=2&themaid=8777960
http://spirit.bv.tu-berlin.de/igg/htdocs/fileadmin/user_upload/
http://www.transcat-plm.com/software/transcat-software/q-checker.html
http://www.transcat-plm.com/software/transcat-software/q-checker.html
https://servicenet.t-systems.de/validat

Advancing DB4GeO

M. Breunig, E. Butwilowski, D. Golovko, P. V. Kuper,
M. Menninghaus and A. Thomsen

Abstract The analysis of complex 3D data is a central task for many problems in
the geo- and engineering sciences. Examples are the analysis of natural events
such as mass movements and volcano eruptions as well as 3D city planning and the
computation of 3D models from point cloud data generated by terrestrial laser
scanning for 3D data analysis in various domains. The volume of these data is
growing from year to year. However, there is no geo-database management system
on the market yet that efficiently supports complex 3D mass data, although
prototypical 3D geo-database management systems are ready to support such
challenging 3D applications. In this contribution we describe how we reply to
these requirements advancing DB4GeO, our 3D/4D geo-database architecture. The
system architecture and support for geometric, topological and temporal data are
presented in detail. Besides the new spatio-temporal object model, we introduce
new ideas and implementations of DB4GeO such as the support of GML data and
the new WebGL 3D interface. The latter enables the direct visualization of 3D

M. Breunig (&) � E. Butwilowski � D. Golovko � P. V. Kuper � M. Menninghaus
Geodetic Institute, Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: martin.breunig@kit.edu

E. Butwilowski
e-mail: edgar.butwilowski@kit.edu

D. Golovko
e-mail: daria.golovko@kit.edu

P. V. Kuper
e-mail: kuper@kit.edu

M. Menninghaus
e-mail: mathias.menninghaus@kit.edu

A. Thomsen
Institute of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
e-mail: athomsen@geophysik.uni-kiel.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_11,
� Springer-Verlag Berlin Heidelberg 2013

193

database query results by a standard web browser without installing additional
software. Examples for 3D database queries and their visualizations with the new
WebGL interface are demonstrated. Finally, we give an outlook on our future
work. Further extensions of DB4GeO and the support for the data management for
collaborative subway track planning are discussed.

1 Introduction

The demand for modeling and handling large 3D and 4D data sets has been rapidly
growing during the last decades (Breunig and Zlatanova 2011; Hashemi et al.
2009; Kolbe 2012; Kolbe et al. 2011; Mallet 2002; Raper 1989). Techniques and
applications such as geodesy, terrestrial laser scanning (TLS), 3D city planning,
geological modeling, geothermal reservoir modeling, and early warning of natural
events strengthen this trend by generating large volumes of 3D data. However, the
analysis of these data becomes a confusing task without the help of geo-databases,
because the geo-expert has to access dozens or even hundreds of single data files.
Furthermore, without documentation and long-time archiving of modeling and
simulation (results) in a geo-database, many examinations become useless as soon
as their authors are no longer available.

In this paper we argue that 3D geo-databases can be accessed by non-experts in
a straightforward manner. The rest of this paper is organized as follows. In Sect. 2
the service-based system architecture of DB4GeO, our 3D geo-database kernel, is
presented. Section 3 is dedicated to the geometric, topological, and temporal
database support. Section 4 describes the support for GML data and implemen-
tation details of the REST communication interface. Section 5 presents the new
WebGL interface of DB4GeO with various visualization examples. Finally, we
give a conclusion and outlook on our future work concerning 3D and 4D geo-data
support in DB4GeO, e.g. in the field of collaborative subway track planning.

2 System Architecture

DB4GeO (Bär 2007; Breunig et al. 2010; Thomsen et al. 2008b) has its roots in the
development of GeoToolKit (Balovnev et al. 2004), an object-oriented library for
3D geometric data types for geo-databases. It has a service-based user interface and
is exclusively implemented in the Java programming language. Hitherto REST
(Fielding 2000) is used as communication platform, i.e., REST style web services
are used to enable remote interaction of clients with the geo-database. The system
architecture of DB4GeO is presented in Fig. 1. On the client side, GIS or mobile
clients have access to 3D data managed by the DB4GeO server. On the server
side, DB4GeO is accessed exclusively via its service infrastructure. The services are
divided into simple and complex services (Breunig et al. 2010). The simple services

194 M. Breunig et al.

are equivalent to basic geometric and topological operations such as the distance
between 3D objects or the determination if two 3D objects intersect etc. However,
also computations such as the intersection between two surfaces belong to the
simple services. A typical complex service is the so called ‘‘3D-to-2D service’’ that
has been introduced in Breunig et al. (2010). It computes a vertical profile section of
a geological subsoil model by intersecting all existing surface objects with a vertical
plane. Finally, it projects all wells within a specified distance onto the vertical plane.
The geological model has to be bounded by a 3D bounding box. Further examples of
complex services are the ‘‘4D-to-3D service’’, which calculates the geometry of a
spatio-temporal object at a given moment in time, and a triangulation service that
creates a triangle net from a set of points.

The core of DB4GeO is its 3D geo-database which is based on a geometry
library and the R-tree based spatial access structures. DB4GeO is implemented
upon the open source object-oriented database management system db4o (Paterson
et al. 2006; Versant Corp 2012).

Developed from a system designed primarily for geological applications,
DB4GeO concentrates in the first place on the modeling of spatial and temporal
characteristics of objects and their parts. Support of semantics has received less
attention in our research so far but is expected to gain importance in our future
work. Although DB4GeO has not had many users lately, we hope that extending
the data model and the functionality of the geo-database will extend its user
community. DB4GeO primarily aims at geoscientists who need to store and
process 3D and 4D objects represented with simplicial complexes or who want to
combine such data with non-simplicial geometries.

Fig. 1 DB4GeO system architecture

Advancing DB4GeO 195

3 3D/4D Database Support

As a database management system, the main task of DB4GeO is to store and
manage large sets of geo-data in an efficient way for a long period of time without
loss and free of contradictions (i.e., consistent data storage). DB4GeO provides a
tightly defined, extensive set of geometric, topological and spatio-temporal objects
that can be stored, managed and retrieved. Data models of these objects will be
presented in the following subsections.

3.1 Geometry

The object model of the geometric component in DB4GeO has been discussed in
detail in Bär (2007). Roughly explained, the object model can be summarized as
follows: at the root of the object model, a 3D object is located (Object3D class).
Part of every 3D object is one three-dimensional spatial object (Spatial3D).
The spatial objects can be of one of four abstract data types, namely either a
sample, a curve, a surface or a volume. Any of the mentioned abstract data types
has a concrete realization in the database. Currently, these are point nets
(PointNet3D) as realization of the sample type, segment nets (Segment-
Net3D) as realization of the type curve, triangle meshes (TriangleNet3D) as
realization of the surface type and tetrahedral nets (TetrahedronNet3D) as
realization of the volume type. All of these concrete classes for spatial data types
are nets of the most simple geometric constructs (or geometric elements) of the
respective dimension (so-called simplices).1 A geometric net of any of these types
in turn consists of an arbitrary number of disconnected net components. A net
component is a contiguous geometric object, which consists entirely of geometric
elements of one of the geometric types point, segment, triangle or tetrahedron.

3.2 Topology

The topology model of DB4GeO extends its geometry model and is closely linked
to it. The topology model provides an additional construct which allows to go
beyond the model of simplicial complexes and to manage more complex structures.
Furthermore, it enables easy and efficient navigation in the meshes. The topology
model of DB4GeO is based on the combinatorial concepts of Generalized Maps
(abbreviated as G-Maps) and cell-tuple structure introduced by Lienhardt (1989)

1 The entire geometric model of DB4GeO is based on the model of simplicial complexes
introduced in the context of GIS by EGENHOFER and MOISE, cf. Breunig (2001).

196 M. Breunig et al.

and Brisson (1989), respectively. Further research on the theory of G-Maps can be
found in Fradin et al. (2005); Lévy and Mallet (1999), and Thomsen et al. (2008a).

The G-Map representation itself does not provide information about the spatial
extent of modeled objects. The link between the topology model and the geometry
model of DB4GeO is realized by constructing the topology representation on top
of an already existing TriangleNet3D or TetrahedronNet3D. The created
object is represented by the classes FaceNet3d or SolidNet3d, respectively.
Similarly to the geometry model, it includes one or more components. Instead of
points, segments, triangles and tetrahedrons of the geometry model, the topology
model manages four types of cells: nodes, edges, faces and solids. The cells are not
limited to simplices. A cell-tuple represents a unique combination of a node, an
edge, a face and a solid. Cell-tuples that differ in only one cell are linked to each
other by so-called involutions. Specific combinations of involutions form so-called
orbits used to define cells and groups of cells. Cell-tuples and orbits of various
dimensions are shown in Fig. 2.

Figure 3 demonstrates the principal classes of DB4GeO topology model used to
manage face nets. Since the concept of G-Maps is not bound to a particular
dimension, the handling of solid nets was designed similarly to the handling of
face nets without great difficulties. Each component of a FaceNet3d or a
SolidNet3d consists of a net level (CNL, class FaceNet3dCompNetLevel)
and an object level (COL, class FaceNet3dCompLevel). Both classes imple-
ment the interface CellNet3dCompLevel. The topology of CNL exactly
repeats the topology of the underlying triangle or tetrahedron net, i.e., every face
or solid of CNL is a simplex and points to the corresponding simplex of the triangle
or tetrahedron net. Each node of CNL is also linked to a particular point and can
thus access its coordinates. COL describes the overall geo-object structure that is
modeled by cells that are commonly composed of a large amount of simplices
(so-called ‘‘big cells’’). At the creation of the topological net, COL consists of
exactly one cell whose boundary is identical to the boundary of the whole
component. COL is linked to CNL by the higher and lower attributes of their
cell-tuples. The higher attribute of a cell-tuple of COL points to a corresponding
cell-tuple of CNL, and it is null for every cell-tuple of CNL. The lower attribute
of a cell-tuple of CNL stores the link to its counterpart at COL if such a cell-tuple

Fig. 2 Fragment of a face net with cell-tuples shown as darts and orbits of a node (left), an edge
(center) and a face (right)

Advancing DB4GeO 197

exists; otherwise the lower attribute is null. A special OrbitIterator
allows retrieving cell-tuples of CNL that are inside a particular cell of COL.

Such a structure permits separating geometry from topology, which is handy
e.g. for the management of temporal changes that involve the object’s coordinates
but not its topology (cf. Sect. 3.3). Direct links to the geometry model enable
access to the core functionality of DB4GeO at any time.

The topology module of DB4GeO offers the possibility to manage multiple
levels of detail (LoDs) by using hierarchical G-Maps also referred to as HG-Maps
(Lévy 2000; Fradin et al. 2005; Thomsen et al. 2008a). In DB4GeO, all LoDs have
the same geometric extent and it is possible to relate particular locations of various
LoDs to each other. This approach is different from e.g. the CityGML specification
where various LoDs of the same object do not correspond to each other geo-
metrically and can even be represented by different geometry types. For instance
an object may be represented by a polygon at a more detailed LoD and by a line at
a less detailed LoD. Furthermore, the geometry of objects in CityGML at each
LoD is regarded as one entity and it is not always possible to determine which part
of a more detailed LoD corresponds to a particular part of a less detailed LoD.

Similarly to cell-tuples, LoDs in DB4GeO also point to their higher and
lower counterparts. The higher attribute of the most detailed LoD is CNL. Note
that, while a FaceNet3dComp has exactly one COL, an HFaceNet3dComp can
have multiple LoDs (cf. Fig. 3). COL can be regarded as one of the LoDs.

Two ways of creating a new hierarchical face net (HFaceNet3d) are available
to the user. First, it can be created from an already existing non-hierarchical face
net (FaceNet3d). In this case, the underlying triangle net and CNL of the original
FaceNet3d are copied for the new HFaceNet3d, and COL of the original net is
converted to be an LoD of the new hierarchical geo-object. This permits retaining
the current subdivision of COL. Secondly, the user can create a new hierarchical
face net from a set of triangles, similarly to the construction of a non-hierarchical
net. In that case, the underlying triangle net is created first, then the net level, and
finally the first LoD of the new hierarchical net with exactly one face. In order to

Fig. 3 Classes of DB4GeO topology model used to manage face nets

198 M. Breunig et al.

ensure the geometric correspondence between LoDs, a new LoD can only be
created as a copy of an already existing LoD. Besides, this allows the users to edit
the hierarchical net more conveniently, because they can transfer already made
changes to another LoD and continue editing.

The editing of LoDs in a HFaceNet3d and of COL in a FaceNet3d is
possible via 3D Euler operations. DB4GeO offers methods for inserting and
removing nodes and edges of a face net. Before the changes are applied on the net,
a check of constraints takes place. For both types of nets, topological correctness
within the edited COL or LoD has to be ensured. Hierarchical nets additionally
require verifying that the hierarchy of LoDs is not violated, i.e., that every cell and
every cell-tuple has its counterpart at the next more detailed LoD. If the constraints
are fulfilled, the changes are carried out. Implementing 3D Euler operations and
the management of hierarchies for solid nets are the objectives of future work.

3.3 Time

The modeling of time in geoscientific information systems (and in solid modelers
in general) is a subject of widespread research. One of the research issues is the
combination of continuous temporal geometry models with discrete temporal
topology models. POLTHIER and RUMPF added some relevant work on this issue. In
Polthier and Rumpf (1995) they propose the concept of adaptive time-dependent
discretization. THOMSEN and ROLFS designed a concept to handle and store the
vertices of time-dependent simplex nets efficiently. This approach was termed
Point Tube model (Rolfs 2005, p. 51). Another important approach in this context
is the concept of Delta-Storage used by STRATHOFF during the development of
GeoToolKit to reduce the storage volume of redundant data between two timesteps
(Strathoff 1999).

In DB4GeO we implemented a combination of these three concepts to support
spatio-temporal data. Therefore it is possible to create time series of 3D objects
whose topology changes with time. Due to the concept of Delta-Storage and the
Point Tube model, we were able to reduce the amount of required memory and
increased the performance of operations such as the interpolation between time
steps or the generation of snapshots at specified dates (Kuper 2010). Figure 4
shows a 4D object containing 5 timesteps with a change of the net topology at
timestep 3.

However, a restriction of the implemented model is that the topology of the net
configuration of the geo-object has to stay invariant throughout all time steps–only
the geometry may change. Also POLTHIER and RUMPF make no statement on how to
model the transition between two states of the object’s topology (object level) of
the same geo-object. In such a transition, the geometry generally stays unchanged,
but the topology of the geo-object as a whole may change. The implementation of
the space-time module of DB4GeO also excludes the issue of managing change in
spatio-temporal topology. RAZA and KAINZ have done some relevant research in the

Advancing DB4GeO 199

area of spatio-temporal topology. In Raza and Kainz (1999) they propose a tem-
poral cell-tuple structure to manage Spatio-Temporal-Attribute Objects in generic
temporal GIS (TGIS). The temporal cell-tuple structure used by RAZA and KAINZ is
also based on the cell-tuple structure of BRISSON and thus is comparable to the
internal model of the topology module for DB4GeO. In contrast to the concept of
RAZA and KAINZ, we use a graph representation and not a relational approach to
manage and store the cell-tuple data. We also combine the concept of temporal
cell-tuple structure with our previously discussed concepts of spatio-temporal
geometry and hierarchical G-Maps to manage the temporal topology of ‘‘big cells’’
(cf. Sect. 3.2). Figure 5 shows a simple example application sketching the inten-
ded functionality of the proposed spatio-temporal topology module for DB4GeO.
This module is currently in implementation process.

Figure 5 shows a similar case as demonstrated in Fig. 4. Both illustrations
depict a geo-object that moves through time and changes its geometry (in time
intervals) and the topology of its meshing (at time steps). The example of Fig. 5
consists of three time steps. The geo-object is created at time step t ¼ 1. Between
the time steps t ¼ 1 and t ¼ 2 the geometry of the spatial object changes (the
object grows). At time step t ¼ 2 the meshing of the object changes, while the
geometry remains constant. The geometry then changes again in the period
between time steps t ¼ 2 and t ¼ 3. In the spatio-temporal model of DB4GeO this
temporal geo-object is internally managed as two sequential PointTubes (that
describe the point geometry at each interval) and two sequential temporal triangle
nets (TriangleNet4D) (that describe the meshing at each interval). This means
that whenever a change in the meshing takes place (here at t ¼ 2), there is a break
in the continuity of the spatial object. At this point, all object identifications get
lost. From this point on, the evolution of the spatial object cannot be clearly traced.
An unambiguous assignment of all geometric elements between the pre- and post-
object of t ¼ 2 would not be possible due to the changed meshing.

However, even if an unambiguous assignment of all geometric elements is not
possible, still some elements can be assigned (cf. coincidences of pre- and post-
objects of t ¼ 2 in Fig. 5). Such conditions can be used to trace the mentioned
temporal big cells. In Fig. 5, the thick lines symbolize the boundaries of two face
cells (big cells) that are part of a face net component at object level COL. While
TriangleNet4D a ends at t ¼ 2, the topology of the geo-object stays constant

Fig. 4 Representation of a
4D object with the new 4D
model of DB4GeO (Kuper
2010)

200 M. Breunig et al.

at the object level (cf. lifespan of FaceNetCompLevel in Fig. 5), thus the two
faces can be traced throughout the whole lifespan of the geo-object.

4 Web-Based Geo-Data Access

One of the objectives of DB4GeO is to remotely provide geo-database services.
Nowadays, web-based access to geo-data is closely associated with OGC stan-
dards. In the following, we discuss the handling of GML data in DB4GeO and
afterwards present the implementation of the REST-based architecture of the geo-
database (Fielding 2000).

4.1 Support for GML Data

Originally, DB4GeO was only capable of exchanging data in its own XML-format.
However, as the OGC standards are developed and spread out among the providers
and users of spatial information, the need for extending DB4GeO to offer data via
OGC services is becoming more acute. To enable that, support for the Geography
Markup Language (GML) is developed. This will make DB4GeO a handy tool that
can at first import the results of 3D geomodeling software that does not offer OGC
support, and then provide those results in a data format compatible with OGC
standards. An example of such software is Gocad� (Gocad Research Group 2012),
a widely used tool for 3D subsurface modeling. The geometry models of both
DB4GeO and Gocad� are based on simplicial complexes making it easy to

Fig. 5 Simple example of a temporal cellular network of net level (thin lines) and of object level
(thick lines)

Advancing DB4GeO 201

exchange data between the two. DB4GeO offers importers and exporters for
various types of Gocad� geometrical objects (GObj).

A further reason to offer GML support in DB4GeO is the growing number of
interdisciplinary projects with joint handling of data from different sources, e.g. of
nature-formed and anthropogenic objects. While DB4GeO originated in the field
of geosciences, particularly that of geology, integrating CityGML data will make
the database interesting for instance for subsurface construction projects where
building and infrastructure data are processed and visualized together with the
information about geological structures (Breunig et al. 2011).

In GML, objects are modeled as features that have geometry as a property. The
geometry model of GML is based on boundary representations, e.g. polygons are
defined via their exterior and interior (the latter is used when polygons
have holes). The exterior and interior are represented by ordered lists of
point coordinates. In our work, GML 3.0 geometries only with linear interpolation
between points have been considered. Those lists can include an arbitrary number
of points. Planarity assumed by many GML geometries is well suited for modeling
anthropogenic objects that are geometrically simple. This simplicity also allows to
construct more complex hierarchies of geometries. However, nature-formed
objects in most cases are more compex and far from planar, so they have often
been modeled in geosciences using simplicial complexes native to DB4GeO
(Breunig 2001; Balovnev et al. 2004). Because of the different assumptions of the
two data models representing anthropogenic and nature-formed objects, data in
most cases cannot be transferred between them without adjustments of geometry.

On the one hand, integration of non-simplex geometries of GML into DB4GeO
requires a representation by simplices. A method that triangulates complex planar
polygons has been implemented in DB4GeO for that purpose. On the other hand,
importing GML data into DB4GeO just by triangulating non-simplicial geometric
objects causes data loss and distortion. The initial structure of the data might be
lost and thus the attributes related to it. For instance, if the original object with n
polygons, each with the ?population density? attribute, is imported into DB4GeO,
its polygons will be substituted with an even greater number of triangles, and the
density attribute will lose its sense in the new geometric boundaries. Therefore, an
additional construct is necessary to store the original geometric structure.

The topology model of DB4GeO provides such a construct (cf. Sect. 3.2). The
G-Maps structure (Lienhardt 1989; Mallet 2002) enables managing non-simplex
polygons (Thomsen et al. 2008a, 2008b). The geometric extent of the object is
stored at the net level (CNL) of the face net, enabling access to diverse geometric
operations available in DB4GeO. The object level (COL) models how triangles of
CNL are aggregated to the original non-simplex geometries of GML.

Figures 6 and 7 provide examples of importing CityGML data into DB4GeO.
After the data set of a part of Berlin’s downtown (Fig. 6) obtained in CityGML
format was imported into DB4GeO, it is possible to export it into one of the formats
supported by the geo-database. For example, the data set can be exported into the

202 M. Breunig et al.

Gocad� format (.ts) and visualized in Gocad� or another 3D visualization tool, e.g.
ParaViewGeo� (ParaViewGeo 2012), together with data illustrating the subsurface
of the area. Figure 7 looks closer at how a building can be stored in DB4GeO. The
building came as a part of a CityGML data set. Its surface is represented by the GML
geometry type CompositeSurface, which is made up of 17 Polygons. In
DB4GeO, the non-simplex polygons were triangulated, which resulted in 32 trian-
gles for the whole building. Those triangles become faces of CNL. The 17 original
polygons are represented in DB4GeO by faces of COL. This enables, for instance,
assigning a certain color or a texture to each wall of the building (cf. Fig. 7).

While additional classes for the modeling of topology are available in GML 3.0,
GML offers an alternative which is simpler and almost as powerful. GML uses the
XML concept of Xlinks that reference resources via their IDs avoiding redundant
data storage. For instance, if two neighboring buildings share a wall, the wall can
be stored just once and then be references via an XLink from all other objects that
use it. Such references carry information about the topology of the objects: first,
the neighbor relationship between the two buildings is stored; secondly, the
relationship between the wall and each of the buildings is defined (Krimmelbein
2011, p. 14ff). We have chosen to use the G-Maps topology concept of DB4GeO to
represent non-simplex geometry types of GML rather than the less widely used
GML 3.0 topology classes. In the future, we also plan to use XLinks to avoid
redundancy when providing data from DB4GeO in the GML format. The imple-
mentation of G-Maps in DB4GeO already takes care of storing each node, edge,
face and solid in the net just once under a unique ID, even if the original data
structure stored them redundantly. The advantage of topology management is that
this approach is dimension-independent, i.e., it can be applied to 0D-, 1D-, 2D- and
3D-geometries. Furthermore, topology is modeled explicitly without the semantic
information of the objects.

Fig. 6 GML data (� City of Berlin, obtained from citygml.org) converted to Gocad� format in
DB4GeO, visualized with ParaViewGeo�

Advancing DB4GeO 203

4.2 REST-Based Access and Query Examples

DB4GeO is capable of providing its services via a RESTful web service archi-
tecture (Fielding and Taylor 2002). This architecture permits sending requests to
the server via uniform resource identifiers (URIs). Each such request contains all
the information necessary for the server to understand it and is independent of
other requests that might have been sent to the server before. Such manner of
communicating with the server is easier to interpret by humans without technical
background, first, due to the familiarity of most people with URIs, and secondly,
because of the isolation of requests. Furthermore, common browsers can serve as
clients communicating with DB4GeO without installing additional software.

Manipulating resources using REST is possible via four commands: GET
(retrieving a resource), POST (adding a new resource), PUT (updating an existing
resource), and DELETE (removing a resource). DB4GeO uses two of them: GET
and PUT. The latter can be used e.g. to add a new surface created by triangulation
to the geo-database.

By default, when a request is sent to the geo-database, the response comes back
in the DB4GeO-XML format and can be viewed in a browser. In DB4GeO, it is
also possible to export the objects into other formats, e.g. the Gocad�, GML and
VRML formats. In order to obtain an object in a certain format, the user should
add the extension .vrml, .gml, .ts, .vs, .so, etc. at the end of the URI used to retrieve
the object.

The REST-based services of DB4GeO are accessible from a web browser, via a
Java application or an OpenJump plugin. In our future work, we plan to extend the
number of operations available to the database users via the RESTful service and
to create a user-friendly web interface to replace the XML-based representation in
the browser.

Below are some examples of URIs used to query data from DB4GeO:

(1) http://server/projects/GeolProj
(2) http://server/projects/GeolProj/StructGeolSpace3D
(3) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces
(4) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces.ts

Fig. 7 Building (� Ordnance Survey Great Britain, obtained from citygml.org) represented by
faces of the net level (left) and of the object level (right), visualized with ParaViewGeo�

204 M. Breunig et al.

(5) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces
?intersects(x1,y1,z1,x2,y2,z2)

(6) http://server/projects/GeolProj/StructGeolSpace3D/TestSurfaces
?3dto2d(CuttingPlane)

(7) http://server/projects/GeolProj/StructGeolSpace4D/TestSurfaces?time=0

Sets of objects in DB4GeO are managed by grouping them into spaces and pro-
jects. Spaces aggregate objects with the same dimension (e.g. 3D or 4D spaces),
same coordinate reference, constraints, thematic information, etc. A project may
contain multiple spaces. There is a defined way this hierarchical structure can be
navigated via URIs. For example, the URI (1) returns information about the project
GeolProj. That information includes the names of spaces that belong to the pro-
ject. The user can easily add one of those names to the URI to access information
about the corresponding space, like in the URI (2). In the same way, the user can
go over to the object information in the XML format [(URL (3)]. If the object is to
be retrieved in the Gocad� format for further processing in Gocad�, this is done by
adding the extension .ts after the object name [(URI (4)].

Furthermore, it is possible to define operations to be carried out on objects via a
URI. Operations include querying an object of a lower dimension, such as obtaining a
3D object for a certain point in time [(URI (7)] or the cross-section of a 3D object with
a plane using the 3D-to-2D service of DB4GeO [(URI (6)]. Other operations include
intersecting a given object with another object or a minimum bounding box
[(URI (5)], projecting objects onto a plain and triangulating point sets.

5 Visualization with WebGL

Usually the visualization of 3D geodata takes place in various 3D modeling or
visualization tools such as Gocad� or ParaViewGeo�. The user is responsible for
the selection of one of these clients. For an alternative we developed a direct
visualization of 3D database query results in a web browser based on WebGL
(Khronos Group 2012).

WebGL (Web Graphics Library) is the mapping of OpenGL ES (Open Graphics
Library for Embedded Systems) for web browsers and is now supported by almost
all current browsers without installing an extra plugin. Since the graphical cal-
culations runs directly on the hardware of the client, a high performance compared
to traditional solutions such as VRML (Virtual Reality Modeling Language) and
X3D (Extensible 3D) is provided. Thereby the user does not need to install any
additional software apart from a modern web browser.

Thus with the help of our WebGL viewer it is possible to visualize geo-objects
of the geo-database directly in a browser in 3D including lighting, colors, and
controls.

For the visualization in WebGL we are using the free library Three.js (Three.js
2012). This JavaScript based library provides various types of cameras, lights and
various shading concepts (e.g. Flat, Gouraud, Phong). We developed an exporter

Advancing DB4GeO 205

which creates a 3D scene by using the geometry of the DB4GeO database. The
following criteria were relevant for this intent:

• A suitable lighting.
• An intuitively controllable camera to view around the 3D object.
• Suitable shaders, colors, etc.

We decided to use THREE.DirectionalLight lights and a THREE.Per-
spectiveCamera camera. The DB4GeO WebGL Exporter creates an HTML
file that executes JavaScript code with the use of Three.js. Within the JavaScript
code different Three.js objects are created, adapted and transferred from the
geometries of the spatial database into a format suitable for Three.js. For the
DB4GeO objects Point3D and Triangle3D we use THREE.Vertex and
THREE.Face3, respectively.

An overview of such an HTML file is shown in Fig. 8 and the result of an
export in the Chrome� browser is shown in Fig. 9.2 The viewer supports zooming,
panning, and the possibility to rotate the object. The implemented WebGL viewer
also shows the numbers of triangles for the visualized object. For instance the
object demonstrated in Fig. 9 has 98,740 triangles.

The whole 3D model is transmitted from the database at the start of the viewer.
Even larger amounts of data (test data sets with up to 2.5 million points) are
represented efficiently due to the use of WebGL. In order to avoid further loading
while viewing the model, caching is dispensed. To reduce the amount of data to be
transferred, we plan to optionally provide a reduced 3D model.

Fig. 8 Structure of the
HTML file generated by
DB4GeO calling WebGL

2 3D-Model of ‘‘The Thinker’’ by Simon Schuffert (KIT), all rights reserved.

206 M. Breunig et al.

As one of the additional spatial operations the distance function has been
implemented. In the future, various operations and queries should be directed back
to the geo-database. After their executions, the results should again be displayed
visually in the browser.

6 Conclusion and Outlook

In this contribution we have presented our last steps advancing DB4GeO, our
service-based geo-database architecture. Besides the new object model for spatio-
temporal data, new features are the support for GML data (implementation started)
and the WebGL-interface (implementation completed) enabling direct geo-data-
base access and visualizing 3D objects via a standard web browser without
installing any additional software.

In our future work we intend to query geo-database operations directly from the
WebGL viewer. Our focus here is on a BBox query, the query of meta-data, and
the comparison of different time steps of a 4D object. Therefore we need to
develop some additional spatio-temporal operations in DB4GeO and extend our
WebGL viewer. Additionally we intend to examine how DB4GeO can be accessed
via extended OGC services.

Finally, we intend to develop a new branch of DB4GeO supporting spatio-
temporal data used for multi-scale subway track planning.

In the research group ‘‘Computer-Aided Collaborative Subway Track Planning
in Multi-Scale 3D City and Building Models’’ (Breunig et al. 2011) a spatio-
temporal database will be used to store several states and versions of building
plans. As DB4GeO by now has been used to store geological data in 3D and time,
it should be enhanced to support a data model that is commonly used to describe
building models (Eastman 1999). Such parametric models stand in contrast to the
simplicial complexes which are a core concept of DB4GeO. Re-using the sim-
plicial model would lead to a loss of data when converting the parametric data into

Fig. 9 WebGL viewer of DB4GeO with colored mesh (left) and wireframe representation (right)

Advancing DB4GeO 207

the discrete triangle nets which can be stored by DB4GeO. Converting and storing
the data in higher resolution would only increase the memory consumption, but not
decrease the data loss in an equal manner. We will test two solutions. First, we
intend to implement a hybrid model, which means that the database will convert
the parametric geometries into discrete triangle nets handled by DB4GeO and we
store the original file-based data linked to these converted geometries. By doing
this we will be able to use the high performance queries of DB4GeO and its
topology module. This does not cause any data losses, because both the parametric
data is stored in the database and changes are simultaneously made on the con-
verted geometries. Secondly, we intend to implement a complete new data-
structure keeping the core concepts in mind. Therefore, we do not need to build the
database from scratch and can use an already stable and proven system.

Another issue in advancing DB4GeO within the research group is the usage of
spatio-temporal data within the database. In the geosciences, spatio-temporal data
often consists of moving objects. Construction plans, however, may be modeled in
two different ways. First, the temporal axis can show the construction progress of a
building, i.e., it can be modeled which part of a building will appear at first and
which one will appear later on. Therefore, the geometry of an object will not change
in time, but only appear at a certain time step and may disappear later. Secondly, if
several people develop a plan, there will be different versions of that plan, but it is
unlikely to have one definite plan all the time. These different versions should be
stored in the database in order to compare them with each other and re-use them
later on, if needed. By using two qualities of time, valid-time and transaction time,
we need to extend DB4GeO with a Bi-Temporal model (Worboys 1994). Experi-
ences gained in handling the two qualities of time might be useful to integrate
further time dimensions in DB4GeO later in the future. In order to perform efficient
spatio-temporal queries, we also need to implement an efficient indexing technique.
At first, we will extend the R*-Tree (Beckmann et al. 1990), which also is used in
DB4GeO, to a Spatio-Temporal R-Tree (Saltenis and Jensen 1999). After that, we
will concentrate on suitable and efficient query techniques (Snodgrass 1995).

Acknowledgments We thank Thomas Kolbe from the Technical University of Berlin, the City
of Berlin and Ordnance Survey of Great Britain for the CityGML data sets. Furthermore, we are
grateful to Simon Schuffert from Karlsruhe Institute of Technology for providing the 3D model of
the figure ‘‘The Thinker’’. This research has been funded by the German Research Foundation
(DFG), grant no. BR2128/12-1 and BR2128/14-1.

References

Balovnev O, Bode T, Breunig M, Cremers AB, Möller W, Pogodaev G, Shumilov S, Siebeck J,
Siehl A, Thomsen A (2004) The story of the GeoToolKit–an object-oriented geodatabase
kernel system. GeoInformatica 8(1):5–47 (Kluwer Academic Publishers, Hingham)

Bär W (2007) Management of geoscientific 3D data in mobile database management systems. In
German. PhD thesis, University of Osnabrück, Germany

208 M. Breunig et al.

Beckmann N, Kriegel HP, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust
access method for points an rectangles. In: Proceedings of the ACM SIGMOD international
conference on management of data (SIGMOD’90), pp 322–331

Breunig M (2001) On the way to component-based 3D/4D geoinformation systems. Springer,
New York

Breunig M, Zlatanova S (2011) 3D geo-database research: retrospective and future directions.
Comput Geosci 37(7):791–803. doi:10.1016/j.cageo.2010.04.016

Breunig M, Schilberg B, Thomsen A, Kuper PV, Jahn M, Butwilowski E (2010) DB4GeO, a 3D/
4D geodatabase and its application for the analysis of landslides. Lecture notes in
geoinformation and cartography for risk and crisis management, pp 83–102

Breunig M, Rank E, Schilcher M, Borrmann A, Hinz S, Mundani RP, Ji Y, Menninghaus M,
Donaubauer A, Steuer H, Vögtle T (2011) Towards computer-aided collaborative subway
track planning in multi-scale 3D city and building models. In: Proceedings of the 6th 3D
geoinfo conference, p 17.

Brisson E (1989) Representing geometric structures in d dimensions: topology and order. In:
Proceedings of the 5th ACM symposium on computational geometry, ACM Press,
Washington, pp 218–227

Eastman CM (1999) Building product models, 1st edn. CRCPress, Taylor& Francis group, Boca
Raton, Florida

Fielding RT (2000) Architectural styles and the design of network-based software architectures.
PhD thesis, University of California, Irvine

Fielding RT, Taylor RN (2002) Principled design of the modern web architecture. ACM Trans Int
Technol 2(2):115–150

Fradin D, Meneveaux D, Lienhardt P (2005) Hierarchy of generalized maps for modeling and
rendering complex indoor scenes. Signal Image Communication laboratory, CNRS, Univer-
sity of Poitiers (Tech. rep.)

Gocad Research Group (2012) http://www.gocad.org. Accessed 29 Feb 2012
Hashemi L, Mostafavi MA, Pouliot J, Therrien R (2009) Developing an adaptive topological

tessellation for 3D modeling in geosciences. J Can Inst Geom Geomat (GEOIDE students
special issue) 63(4):419–431

Khronos Group (2012) http://www.khronos.org/webgl/. Accessed 17 Jan 2012
Kolbe TH (2012) CityGML. http://www.citygml.org. Accessed 12 Jan 2012
Kolbe TH, Konig G, König G, Nagel C (2011) Advances in 3D geo-information sciences. In:

Lecture notes in geoinformation and cartography, Springer
Krimmelbein A (2011) Topologie in CityGML (Topology in CityGML). Diploma thesis,

Karlsruhe Institute of Technology, Germany
Kuper PV (2010) Development of 4D object management for the geo-database DB4GeO.

Diploma thesis, University of Osnabrück, Germany (in German)
Lévy B (2000) Computational topology: combinatorics and embedding. PhD thesis, National

Polytechnic Institute of Lorraine (in French)
Lévy B, Mallet JL (1999) Cellular modeling in arbitrary dimension using generalized maps.

http://alice.loria.fr/publications/papers/1999/gmaps/gmaps.pdf. Accessed 14 Dec 2011
Lienhardt P (1989) Subdivisions of n-dimensional spaces and n-dimensional generalized maps.

In: Proceedings of the fifth annual symposium on computational geometry, ACM Press,
Washington, pp 228–236

Mallet J (2002) Geomodeling. Oxford Press, New York
ParaViewGeo (2012) http://sites.google.com/a/objectivity.ca/paraviewgeo/. Accessed 29 Feb

2012
Paterson J, Edlich S, Hörning H, Hörning R (2006) The definitive guide to db4o. Apress Series,

APress
Polthier K, Rumpf M (1995) A concept for time-dependent processes. Visualization in Scientific,

Computing, pp 137–153
Raper J (1989) Three dimensional applications in geographical information system. Taylor&

Francis, London

Advancing DB4GeO 209

http://dx.doi.org/10.1016/j.cageo.2010.04.016
http://www.gocad.org.
http://www.khronos.org/webgl/.
http://www.citygml.org.
http://alice.loria.fr/publications/papers/1999/gmaps/gmaps.pdf
http://sites.google.com/a/objectivity.ca/paraviewgeo/

Raza A, Kainz W (1999) Cell tuple based spatio-temporal data model: an object oriented
approach. ACM-GIS, pp 20–25

Rolfs C (2005) Design and implementation of a data model for the management of 3D models in
geoscientific applications. Diploma thesis, University of Osnabrück, Germany (In German)

Saltenis S, Jensen CS (1999) R-tree based indexing of general spatio-temporal data. Tech. rep,
TimeCenter

Snodgrass RT (1995) The TSQL2 temporal query language, 1st edn. Kluwer Academic
Publishers, Dordrecht

Strathoff F (1999) Memory-efficient management of time-dependent geometries for GeoToolKit.
Diploma thesis, University of Bonn, Germany (In German)

Thomsen A, Breunig M, Butwilowski E (2008a) Towards a G-Map based tool for the modeling
and management of topology in multiple representation databases. Photogrammetrie,
Fernerkundung. Geoinformation (J Photogram Rem Sens Geoinf Process) 3:175–186

Thomsen A, Breunig M, Butwilowski E, Broscheit B (2008b) Modelling and managing topology
in 3D geoinformation systems. In: Advances in 3D Geoinformation Systems. Springer,
Heidelberg, pp 229–246

Three.js (2012) http://github.com/mrdoob/three.js/. Accessed 17 Jan 2012
Versant Corp (2012) Db4o. http://www.db4o.com. Accessed 12 Jan 2012
Worboys MF (1994) A unified model for spatial and temporal information. Comput J

37(1):26–34

210 M. Breunig et al.

http://github.com/mrdoob/three.js/.
http://www.db4o.com.

Glob3 Mobile: An Open Source
Framework for Designing Virtual Globes
on iOS and Android Mobile Devices

Agustín Trujillo, Jose Pablo Suárez, Manuel de la Calle,
Diego Gómez, Alfonso Pedriza and José Miguel Santana

Abstract The widely development of mobile devices is contributing to a high
demand in 3D graphics, as they have also become a very important requirement of
modern applications. Virtual Globes integrating environmental data at any time or
place, remain a challenge within the technical constraints imposed by mobile devices.
We present Glob3 Mobile, an open source framework for the development of virtual
globes on familiar iOS and Android mobile devices. The paper discusses the design
and development choices for each platform. The aim of this work is twofold. First, to
provide an efficient Virtual Globe application, testable and freely accessible from the
web and providing a truly 3D navigation experience with smooth flying. Second, to
provide the main software components to easily design and implement 3D Virtual
Globes based applications, on both iOS and Android platforms.

Keywords Virtual globe � Smartphone application � iOS � Android

A. Trujillo � J. M. Santana
Imaging Technology Center (CTIM), University of Las Palmas de Gran Canaria,
Canary Islands, Spain
e-mail: atrujillo@dis.ulpgc.es

J. P. Suárez (&)
Division of Mathematics, Graphics and Computation (MAGiC), IUMA, Information and
Communication Systems. University of Las Palmas de Gran Canaria, Canary Islands, Spain
e-mail: jsuarez@dcegi.ulpgc.es

M. d. la Calle � D. Gómez
Departamento de I+D, IGO SOFTWARE, Santiago Caldera 4, 10004 Cáceres, Spain
e-mail: mdelacalle@igosoftware.es

A. Pedriza
COTESA, Área de Sistemas de Información, C/Luis Proust, 17. Boecillo,
47151 Valladolid, Spain
e-mail: alfonsopedriza@grupotecopy.es

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_12,
� Springer-Verlag Berlin Heidelberg 2013

211

1 Introduction

Today, the popularity of smart devices, such as phones and tablets, and mobile
networks has considerably changed the way people access computers and remote
services.

A Virtual Globe is a geographic information system that provides graphical
access to huge amount of imagery and elevation models of the Earth. Virtual
Globes on smart devices come to make it free and easy 3D Earth exploration and
mobility. They enhance human capacity by providing geo-location facilities,
collaboration and ultimately decision support.

Over last years, smart devices have made important advances. Increasing
processor speed, emerging platforms with dual processors, improved memory
resources, power graphics and more than acceptable programming capabilities
have opened these platforms to the development of general purpose applications.
Of increasing interest on mobile application are Virtual Globes, as they play a
central role in GIS applications, map browsers etc. The development of Virtual
Globes began in 2001 with companies that pursued to effectively communicate
their research and results to a broad audience worldwide. It was Google Earth
project that brought Virtual Globes in 2004 to world-wide attention. At the same
time, NASA World Wind, Bell et al. (2007) also emerged with a power open
source implementation and versatile possibilities. It is written in Java, so it can be
run as an applet, or embedded in a web page. World Wind still does not work on
mobile devices, and moreover, in Apple devices it is not expected, since there is no
Java interpreter on these devices. World Wind can also be expanded to include
additional imagery and data whereas Google Earth is very limited here, as it uses
commercial satellite imagery. If we look for truly open source options to develop
Virtual Globes, Google Earth is not surely the best option. World Wind, however
is open source and this has led to a proliferation of add-ons and plugins which are
enriching and increasing the power of Virtual Globes.

At recent times, many other appreciated Virtual Globes engines can be found on
desktop computers. WebGLEarth is also a valuable option, a free software project
that focus on web browsers, using JavaScript and WebGL technology. It shows
neither dependency on native languages nor computer platforms. It run on any
device with a standard HTML5 compliant browser. A major drawback is that it
still does not work properly on mobile devices. And when it does, the obtained
performance is still very poor, maybe caused because it is a very recent project.
A different alternative deserving attention is osgEarth, a C++ terrain rendering
toolkit that uses OpenSceneGraph. Although osgEarth does not consider mobile
devices yet, OpenSceneGraph has been released in 2011 to be used with handheld
devices, supporting OpenGL-ES enabling both iOS and Android platforms. An
increasing interest has also arisen to the research community. A recent work of
terrain navigation in mobile devices, although in prototype stage, has been
presented in Noguera et al. (2011), which handles efficiently the computational
resources and network bandwidth. Several World Wind based frameworks for

212 A. Trujillo et al.

desktop computers with powerful capabilities have emerged in the last years, for
example, iGlobe, Chandola et al. (2011), and Glob3.1 Glob3 is an open source 3D
GIS multiplatform framework and it is the precursor of the Glob3 Mobile pre-
sented in this work.

1.1 iOS and Android Platforms

Android is an open source software project and operating system developed by
Google for mobile devices.2 It is build on the open Linux Kernel and allows
developers to write programming code in Java language. However, it does not
support the standard Java JME libraries and then the specific Google-developed Java
libraries must be used instead. JME was designed some years ago for small handsets,
whereas the Google Java libraries have been developed with the aim of running in
more powerful modern smartphones. In terms of graphics capabilities, Android
currently supports OpenGL-ES 2.0 specification. Lastly, Android has been extended
to other devices, not only smarphones, as for example to notebooks and ebooks,
providing so to be a reliable and efficient open source operative system.

On the other hand, iPhone is a smartphone designed by Apple Inc. It is powered
by the iPhone Operating System (iPhone OS) which is based on a variant of the
same basic kernel that is found in Mac OS X.3 Objective-C together with Cocoa
API, Davidson (2002) is the development framework provided by Apple on
iPhone OS. This language is a superset of C, which includes both syntactic and
semantic features to support object-oriented programming. iPhone OS also pro-
vides the OpenGL-ES framework which conforms to the OpenGL-ES v2.0
specification.

Contributing with a third party application onto the iOS is only possible after
paying a membership fee, whereas in Android is free. Today, a surprisingly amount
of applications are being developed for mobile devices, free or paid they are served
to the user in an easy and fast way.

1.2 3D Graphics Overview for Mobile Devices

Computer graphics are rapidly advancing in mobile devices as a consequence of
improvement of mobile operating systems, i.e. iOS and Android. However, there are
still some technical limitations in mobile devices that make it difficult to translate
algorithms and programming strategies from desktop computers as they are, Xiao
et al. (2010). In general handheld devices lack of the CPU power and memory
capabilities to manage large data as in terrain representation. Fortunately,

1 Glob3: An open source 3D GIS multiplatform framework (2011) http://glob3.sourceforge.net
2 Android Mobile Operating System (2012) http://www.android.com
3 iOS Mobile Operating System, (2012) http://www.apple.com/iphone/ios

Glob3 Mobile: An Open Source Framework 213

http://glob3.sourceforge.net
http://www.android.com
http://www.apple.com/iphone/ios

programming capabilities for mobile devices are improving considerably. Classical
programming paradigms as Java and C can be used, together with specific libraries
as for 3D Graphics as OpenGL-ES, Khronos Group (2004) and M3G, Pulli et al.
(2007). OpenGL-ES (Embedded Systems) is a well-defined subset of the familiar
OpenGL 3D graphics API. It is specially designed for embedded devices including
mobile phones, video game consoles and other handheld devices. OpenGL-ES
provides a flexible and powerful low-level interface that facilitates the software
development through graphics acceleration. For a review of OpenGL-ES and other
graphics library options for mobile devices see Pulli et al. (2005).

A salient advance in the hardware of handheld devices is the inclusion of
specific 3D graphics hardware. This feature is being a differentiating factor for the
fabricants of mobile devices. This permits GPU-based solutions with a increasing
expected performance of applications.

With the lack of one unique proposal for implementing Virtual Globes on the
most familiar mobile devices iOS and Android, in this paper we present Glob3
Mobile, an open source solution for Virtual Globes, enabling a true 3D navigation
experience and scalable possibly with enriched extensions as plugins. Moreover,
user may benefit of a viable methodology enabling to reproduce own Virtual Globe
enjoying with user specific features over it. Instantly access to Glob3 Mobile can
be done at http://ami.dis.ulpgc.es/glob3m. Figure 1 shows Glob3 Mobile running
in Apple iPhone and Samsung Tab Android.

The paper is organized as follows. Section 2 introduces the software aspects of
the Virtual Globe, focusing on the architecture, object classes and details of the
implementation. In Sect. 3 we define the policy to represent the Earth globe in
handheld devices, and outline de LOD strategy. Section 4 is devoted to 3D view
interaction with multitouch devices, and gives details of the implemented gestures
to interact with the globe. Accessing and handling of images are described in
Sect. 5, where we focus on accessing to imagery data from public and WMS
related servers, and explaining texture handling in mobile GPU. In Sect. 6 we give
final conclusions and outline future work.

2 Globe3 Mobile Framework Architecture

Nowadays, with the fragmented and rapidly emerging mobile platforms, the
development of applications easily portable to different platforms is a must. With
this aim, we have developed a multilayer object oriented architecture.

Figure 2 shows the software layers model. Lowest two layers are platform
dependent, whereas higher layers are designed to be decoupled from specific
platforms. Glob3 Mobile framework, at the user view level, is located at the
uppermost layer. With the aim to provide extra capabilities to the globe, a new
layer is identified where developers may find a way to program user-specific tasks
as Plugin Extensions.

214 A. Trujillo et al.

http://ami.dis.ulpgc.es/glob3m

The main decision regarding the software architecture is the separation of cross-
platform independent programming from the issues close related to iOS and Android.
A base engine is constructed that permits abstracting the virtual classes for file
management, network petitions, image processing and event handling. Then such
virtual classes are implemented on each platform using its own native language.

The Android dependent classes have been written in Android Java, which is
slightly different to standard Java. The same classes have been implemented in
Objective-C and linked to the kernel to generate the Apple version of the globe.
Besides, the kernel makes use of a virtual graphic class, which is implemented
using OpenGL-ES technology, following two different versions: 1.1 for older
devices, and 2.0 for newer ones.

The methodology followed to develop the framework can be organized in three
steps:

1. Develop a full engine in C++ that serves as base of the API architecture and
supports the core functionality for the 3D graphic visualization. By using
virtual classes, iOS and Android implementations are facilitated afterwards.

2. An iOS version of the Virtual Globe is built, using the base engine and specific
iOS implementation using Objective-C.

3. An Android version is finally built, based upon the C++ to Java straightforward
conversion of the base engine together with the new classes developed in Java.

The C++ kernel used for iOS is converted automatically with a Java converter
to generate a Java kernel with exactly the same functionality. It uses the same
OpenGL classes than in the iOS version, but using Java instead of C++.

Figure 3 shows the main components of the engine, organized in four different
blocks. Layers block deals with WMS protocol to connect to servers and ask for

Fig. 1 Glob3 mobile running in a Apple iPhone and b Samsung Tab Android

Glob3 Mobile: An Open Source Framework 215

textures. LUA block (probably will be substituted in the future versions by
JavaScript) will enable users to write plugins applications by means of LUA4

script language. By means of plugins, developers could add features to Glob3
Mobile without changing the program’s source code, so expanding the possibilities
of our Virtual Globe. Plugins are small programs written in a scripting
language which could be loaded and compiled by Glob3 Mobile at startup. LUA is
chosen as it is an embeddable, fast and simple scripting language. Separately,
TinyXML5 block, a third party library, is devoted to read and write XML files
needed when connecting to WMS servers.

Engine is the bigger block, and it is organized in two separate modules, Core
and Renderers. Core controls the whole scene currently displayed by handling user
interaction with screen. Virtual classes for file handling, network petitions and
events are defined within Interfaces. Precise camera movement and scene visu-
alization are elaborated in the View submodule. Globe information as triangle
meshes, vertices, ellipsoidal data and LOD, together with geometric implemen-
tations of the navigation are also grouped in submodule Planet. The rendering
process is one of the main task of the Virtual Globe and so programming objects
are encapsulated separately in several modules named Renderers. The main
components to be rendered in the globe are the tiles that compose the earth surface
(TileRenderer object). However, enriched scenes of the Virtual Globe may include
the rendering of atmosphere, stars, 3D objects on the terrain, etc. and so these
objets are programmed in different Renderer submodules. RendererList contains
all the objects that must be rendered in the scene. Finally, the GLU module

Fig. 2 Glob3 Mobile
software architecture

4 www.lua.org
5 www.grinninglizard.com/tinyxml/

216 A. Trujillo et al.

http://www.lua.org
http://www.grinninglizard.com/tinyxml/

includes some geometric and mathematical utilities such as projection and
unprojection computation, matrix and vector operations, etc.

2.1 Adding Functionality by a Plugin Mechanism

An user API or plugin mechanism is under development on Glob3 Mobile. As an
open source project, users can access to provided engine functions which permit
adding WMS layers, moving the camera, and also drawing geometry on the globe.
This can be viewed as a scripting capability to personalize the appearance of the
virtual globe. For example, users may perform a camera movement by entering
following high level command:

globe.camera.position=Position.create(lat,lon,height);

Ideally, this API permits writing code once and then run such code in all
smartphones platforms. A preliminary version of the plugin mechanism can be
tested in the Glob3 Mobile page project.6

Fig. 3 Framework architecture for the virtual globe

6 http://ami.dis.ulpgc.es/glob3m/

Glob3 Mobile: An Open Source Framework 217

http://ami.dis.ulpgc.es/glob3m/

3 Globe Representation and LOD Strategy

The Earth model widely used is the ellipsoid. The geographic coordinate system
defines each position on the globe by longitude, latitude and height, whereas the
projection system used is WGS84. As in World Wind application Bell et al.
(2007), due to restrictions of NASA World Wind server (explained more in detail
in Sect. 5), we initially construct the ellipsoid with a tessellation of 10� 5 patches
(tiles), each one obtained each 36� 36�. It should be noted that many terrain
visualization tools, specially those dealing with very large elevation data uses
adaptive triangle meshes to model the surface, for example Pajarola (1998).
As in Losasso et al. (2004) we adopt a regular mesh for representing the earth
surface. We generate a regular triangle mesh per patch of n� n vertices, where n
depends upon the screen resolution of the device. See Table 1 for a list of some
familiar mobiles devices, screen resolution and our choice for n values.

Using a LOD strategy is crucial to avoid bottle-necks in terrain navigation. In the
last decade, several strategies have appeared to cope with this problem, see a review
in Cozzi and Ring (2011). For example, Geometry Clipmapping, Losasso et al.
(2004) renders terrain data as a mipmapped height map. We use a Chunk LOD sys-
tem, Cline et al. (2001) that incrementally renders the surface of the globe. We break
the terrain into a quadtree of tiles, named chunks. The root of that quadtree is a low-
detail representation of the globe and the successive child chunks are new divisions of
the globe into four-equal-sized areas that provide higher-detail of the terrain. A geo-
metric error dictates which portion in the quadtree is displayed at the screen scene.

When the observer is located close to ground, the number of visible tiles could
be very high (LOD value is close to 18). We must use a LOD strategy that keeps
the maximum number of visible tiles under a limited value.

Many of the LOD methods use a threshold that depends on the projected area of
each tile on the screen. This works properly when camera view direction is normal to
the globe surface, but when this is not the case, all the tiles located behind the camera,
have a very low LOD level. In a handheld device user can quickly rotate the camera
with the fingers to see what is behind. This produces several frames with a very low
detail of that part of the scene, until all the correct LOD levels are uploaded in GPU.
Other methods use the distance from the tile to the camera, but again, when view
direction is not normal to the surface, we have a lot of tiles located just below the
camera with a maximum level of detail when it is not necessary.

Table 1 iOS and Android mobile devices resolution and values adopted for number n of vertices
(n� n) per mesh

Device Resolution n

iPhone 3 480� 320 8
Galaxy S-SII 800� 400 10
iPhone 4 960� 640 10
iPad-iPad2 1024� 768 12
Galaxy Tab 700–10.100 1280� 800 12

218 A. Trujillo et al.

To verify if the current LOD level of the tile is correct or not we propose a
different test that is computed in every frame for each visible tile. The test dictates
if current LOD should be changed to a more detailed level, subdividing it into four
children, or to a less detailed level grouping it with its three brothers.

The first step of the test is computing, at each frame, the estimated central point
of user view, CPV. Usually, when the camera view direction is normal to the
surface, CPV is located on the center of the screen, but when this is not the case,
this point is moved towards the bottom of the screen, as seen in Fig. 4. A ray is
casted from the eye to CPV point, and the intersection with the globe is obtained.
This surface point should be the one with more detail on the screen.

After obtaining the searched point, we compute for every tile T the geodesic
distance dT from this point to the center of the tile. The criteria for deciding
whether a tile T should be divided or not is that the relationship between this
geodesic distance and the current width of the tile, wT be lower than a threshold e:
This value, that is not constant, is given by:

eðTÞ ¼ emax þ emin � emaxð ÞwT � D=4
pR� D=4

ð1Þ

where wT is the current width of the tile, D is the distance from the eye to CPV,
and R is the radius of the globe. After several experimental tests, chosen values for
emax and emin have been delimited to 1:1 and 0:9 respectively.

Then, a tile is subdivided if the following two conditions are true:

dT

wT
\e

wT [D=4
ð2Þ

where Eq. 2 is forcing the highest LOD in the scene (for the tile including CPV).
Two different situations of sample tiles are seen in Fig. 5.

Fig. 4 The location of CPV depends on the camera tilt. a View direction normal to the surface.
b 30�. c 60�

Glob3 Mobile: An Open Source Framework 219

By zooming in toward the globe, the distance from the eye to the globe is
decreased, and new child partitions come into the new scene with higher detailed
resolution. In a reverse manner, when zooming out, the engine will capture pre-
vious lower-detail portions of the globe. A common problem of this technique is to
preserve coherence between adjacent tiles, as the two chunks may not have the
same number of supported terrain vertices. We adopt here a simple but efficient
solution, Ulrich (2002) that fills gaps between chunks using skirts, a triangle strip
covering the four perimeters of the chunk. This triangle strip is then mapped
together with the wrapping texture of the chunk, as showed in Fig. 6.

This skirt solution is a very fast technique, because it only depends on each tile,
and not on its neighbors. On the other hand, the mesh is not readapted which may
induce a very high consuming time.

Such skirts cover the holes formed by these gaps avoiding undesirable visual
artifacts, as illustrated in Fig. 7.

4 3D View Interaction in the Multitouch Mobile System

Realistic navigation and smooth flying over the Virtual Globe is high demanded.
For this reason, a careful programming of the user interaction with 3D ellipsoid is
required, implying a very precise control of the geometry involved in globe
movements.

Fig. 5 The CPV point on the
globe indicates the terrain
point with highest detail. The
criteria to decide if a visible
tile T must be subdivided or
not depends on its width an
the geodesic distance from its
center to CPV

220 A. Trujillo et al.

It should be noted that the devices we are dealing with use finger gestures for
the interaction with the touchscreen. A prominent task in the programming of our
globe is to detect finger gestures that users make on the screen and then accord-
ingly modify the globe. A reference guide to touchscreen gestures can be found
at Villamor et al. (2010).

To help applications detect gestures, iOS introduces gesture recognizers. How-
ever, Android systems lack of gesture event handling similar to iOS that facilitate the
gesture detection. Then, to normalize the programming on both platforms we
developed our own control of gesture events, using only two low level event gestures:
fingerdown and fingermove. We describe next the types of gestures introduced in
Glob3 Mobile. Readers may test the performance and quality of such gestures by
downloading the free application at the page project online.

4.1 Tapping

To clearly describe the geometric meaning of the gestures, we show in Fig. 8
detailed explanations of each gesture type. The common notation in this figure is: c is
the point that represents the observer eye. When user makes a quick up-and-down
touch on the screen with one finger, point P00 is defined. If the ray starting from c and
passing through P00 is projected back directly to the earth globe, we have point P0.

Fig. 7 Quality of earth visualization. a Without using skirts. b Using skirts

Fig. 6 A terrain chunk a without skirts and b with skirts

Glob3 Mobile: An Open Source Framework 221

Normally, tapping is the first event before other gestures, like dragging with one
or more fingers on the screen. The first step is always finding the unprojected point
on the globe surface. This option is also useful for future functionalities, as getting
information about that location (height, geographic coordinates), or picking up
some object on the terrain.

4.2 Panning

The user moves fingertip over the screen without losing contact. Globe is con-
tinued rotated whereas the finger is in contact, see Fig. 8b. The rotation axis is

given by the cross product of vectors OPk
��!

and OP0
��!

whereas the rotation angle is
obtained from the dot product.

If the finger is released while dragging on the screen, a small animation is
executed during the following seconds, continuing the rotation with decreasing
angle until the globe is stopped, or until the screen is touched again. This result in a
pleasant and attractive visual effect.

4.3 Pinching

In this event, user touches surface with two fingers and brings them closer together
or moves them apart. A zooming effect is attained by moving the camera along the
view direction. The goal is displacing a magnitude making that those points
resulted when the user fingers touched down on the screen, keep in contact
approximately with the fingers. The idea is obtaining the similar effect that when
stretching a 2D image. The distance to displace the camera is given by the length
O0Ok, see Fig. 8c. This magnitude is calculated from the two rays given by c and
passing through the points given respectively by fingers P00 and Q00. These rays are
projected back onto the globe giving points P0 and Q0. Moreover, two other points
P0k and Q0k are known while user keeps dragging the fingers. Then, the new camera
position is estimated along its view direction, searching for the position that
verifies that the projection of original points P0 and Q0 after the displacement are
close to P0k and Q0k:

4.4 Double Tapping

If the user quickly touches the screen twice with one finger, similar to the mouse
double clicking, the resulting action will be a combination of panning and
pinching. The visual effect is a smooth animation of two seconds, where the terrain

222 A. Trujillo et al.

point touched by the user moves toward the center of the screen, and simulta-
neously, the camera approaches a little bit.

4.5 Rotating

To rotate the globe, user touches the screen at two points, and then rotate them
around themselves on the screen, as seen in Fig. 8d.

Starting and finishing points of the rotation define two rays and then it is
straightforward to obtain the rotation angle by the formula:

Fig. 8 Multitouch gestures implemented in Glob3 Mobile. a Tapping. b Panning. c Pinching. d
Rotating. e Vertical swiping. f Horizontal swiping

Glob3 Mobile: An Open Source Framework 223

jP00Q00
���!

� P0kQ0k
���!

j
jP00Q00
���!

j � jP0kQ0k
���!

j

4.6 Swiping

This gesture is reproduced when user touches the screen with two fingers, giving
points P00, Q00 and drag them parallel to each other without losing the contact to the
final position P0k, Q0k. The desired globe movement is obtained by rotating the
camera around the globe with respect to an axis which depends weather the
swiping is vertical or horizontal. When the finger movement is on the vertical the
globe is rotated through the horizon axis parallel to the screen, whereas the hor-
izontal swiping implies rotation through the vector normal N to the surface earth,
see Fig. 8f. Both rotation axes are positioned in the F point on the terrain, that is
the unprojected point of the screen center.

5 Image Access and Handling

A key reason for the advances of Virtual Globes on handheld devices is the
Internet-connected applications, often browser-based, that run on mobile devices
such as smartphones, tablets or embedded computers that have wireless access to
the Internet. Through GPS or other positioning information gathered from internet
servers, mobile devices can report their position to applications that deliver
location services. Next sections deal with remote access to textures and height
maps in the Virtual Globe.

5.1 Access to Web Map Services

The Open Geospatial Consortium (OGC), an international voluntary consensus
standards organization, works to enable geographic information more usable and
useful in GIS related applications. For example users can access the enormous
amount of available internet data layers by means of the Web Map Service
(WMS), as it provides map images from almost everywhere on Earth.

Glob3 Mobile supports access to remote data repositories from any public WMS
server. The interface available in Glob3 Mobile enables a list of proved WMS servers
and also the user may provide the URL of the web service to use, see Fig. 9. By
accessing to this menu, we can select a WMS server, or just add a new one.

Working simultaneously with the LOD algorithm, every time a tile must be
subdivided in four new children tiles, four new petitions are submitted to the WMS

224 A. Trujillo et al.

server. To detect which server to use for each petition, the list is visited sequentially,
until a server is reached that includes completely the bounding box of the tile. By
using the WMS selection dialog, users may insert at first server positions, such URLs
of web services corresponding to imagery data more close to the ground surface,
while other global terrain imagery is recommended to be added at last positions. The
last server in the list is always the NASA World Wind server, because that server
covers the whole world with a good resolution.

The NASA World Wind server actually consist of two different servers. The
first one is the Blue Marble WMS Global Mosaic, that includes the first levels of
detail for images of the whole globe (from LOD 0 to LOD 3). The second one is
Virtual Earth Tile Server, that is used for higher detailed images. This server is the
backend for Microsoft Map Web services. It is not a standard WMS server, but
works with fixed location images of predefined size. The first level of this server if
composed of a mosaic of 160� 80 images covering areas of 2:25� 2:25�. For this
reason, our globe starts with an initial mosaic of 10� 5 tiles in the LOD 0, in order
to match the resolution of the Virtual Earth tiles.

To avoid that the application stop while a network petition is not completely
downloaded, all the petitions are made in an asynchronous way using multi-
threading. In this way, several network petitions could be sent at the same time,
while the user is navigating through the globe. Obviously, each tile won’t be

Fig. 9 User dialog to choose the WMS texture servers on Glob3 Mobile

Glob3 Mobile: An Open Source Framework 225

subdivided into its four children until all of their textures have arrived. Experi-
ments have validated this technique for several bandwidth connections, leading so
a good navigation experience.

Some WMS servers do not allow to send many petitions simultaneously. For
this reason, network petitions are not made in every frame, and in every case, only
tiles with highest priority, depending on the distance to the observer, are sent to the
server. Moreover, no more than 50 tiles are allowed to be sent simultaneously.

All the images are saved to a disk cache after downloading, using a very simple
caching strategy. Thus if a tile is removed from the quadtree, because the observer
has navigated to a different place, when coming back to same place, the texture is
first searched in the cache before sending the request to the WMS server. So
simply, this caching mechanism has proven to be efficient, allowing a faster
visualization for those areas previously visited.

5.2 Dealing with Textures in Mobile GPU

Some limitations of graphic hardware in mobile devices avoid using usual com-
pressed image formats as PNG or JPG, requiring instead own compressed format
that is hardware dependent. For example, iPhone only supports a specific type of
compression called PVRTC, supported by PowerVR chip, the iPhone’s graphic
processor, see Rideout (2010). The problem is that a desktop computer is needed
to compress a JPG image to this format, because there is no available source code
to make the compression task within the iPhone hardware. The iPhone SDK only
comes with a command-line program that must be used to generate PVRTC data.
In this way, image compression can be done firstly, and then attached to the iPhone
project.

Obviously, the solution of such command-line compression is not efficient at
all. The WMS server only responds with well-known formats, as JPG and PNG,
and we would be forced to compress images on the fly. For this reason, we read the
pixel data with its original uncompressed 24 bit color values, and convert them to a
16 bit representation. This simple image compression has proven to be successful
in the of tested devices.

We are using 256� 256 textures for each tile, with 16 bits/pixels, that must be
stored in GPU memory (130 Kb approximately). After several tests in different
smartphones, a number of 300 textures in GPU memory is proven to be acceptable
for most of them. We have included this parameter in the LOD strategy, in order to
keep the maximum number of visible tiles close to this value.

Transparency or alpha channels are used frequently and then are supported in
our framework. Some WMS textures include this channel to indicate that some
areas on the maps must not be displayed, see Fig. 10. In these cases, two textures
are required for each tile. In a desktop computer, this could be done using multi-
texture in the GPU, but the problem is that we need double memory requirements

226 A. Trujillo et al.

in the GPU. For this reason, the merging of textures is done at CPU, to maintain
the maximum value of 300 textures in GPU memory.

5.3 Including Elevation Data

Elevation data is obtained using another WMS server from NASA World Wind.
This server uses a specific format (BIL) to return elevation data. Every pixel in the
resulting image (named height map) is a 16 bit signed value, that indicates the
height in meters of the corresponding point. Then, each tile is composed by a
triangle mesh of n� n vertices, and a BIL image of n� n pixels. With this image,
each vertex in the mesh is translated in the normal direction to the globe surface as
many meters as indicated in the height map.

After several experimental results, we have seen that the precision of height
maps is not very accurate. To obtain more precision in the elevation values close to
the tile borders, it is better to send petitions that include a wider area. For this
reason, if the tile has a mesh resolution of n� n, we ask for a height map with a
resolution of 3n� 3n, that includes an area three times larger (in both dimensions).
In this manner, the obtained accuracy in the n� n inner area is more precise.

Fig. 10 Displaying a transparent texture (street map of a city) merged with an aerial photo

Glob3 Mobile: An Open Source Framework 227

6 Discussion, Future Work and Conclusions

In this work we contribute with the development of an open source Virtual Globe
that can be freely testable from the Glob3 Mobile page project.7 We describe here
the main software components to easily design and implement a Virtual Globe and
also user-specific application over it, on both iOS and Android platforms.

Our server-client approach provides a highly scalable architecture, capable of
dynamically balancing the workload of the textures and height fields. Careful
attention has been paid to the 3D user interaction in multitouch iOS and Android
platforms. We have tested the application in a dozen of different mobile devices,
leading to analogous (real-time) performance for an average of internet bandwidth
wifi connection between 10 and 100 kb/s. Another interesting feature of our
Virtual Globe, is that it could work without internet access, if the geographical
data (textures and elevation data) of those areas to be visited have been stored
previously in the cache.

A major challenge in this project is extending the globe to the emerging
technology WebGL, executing the embedded 3D application in an HTML page.
Some nearest extensions to the globe which are coming up very soon are:

• Display buildings and other 3d models on the globe.
• Display photos, panoramic pictures and videos on the terrain.
• Include gateways to open Internet API’s such as Climate, Geonames, Twitter,

Facebook.

Some other long-term promising implementation goals include:

• Display large clouds of points or other geometry (vectors, polylines) using
streaming.

• Including Streaming video.
• Access to a scene server.
• Display different graphics geographic formats (KML, WFS, GML).
• Work with a distributed model view controller client/server architecture.
• Integration with Euclid 3D geometry library, developed within the project.

Acknowledgments This work has been supported in part by Spanish firms IGO software and
COTESA, by CYCIT Project MTM2008-05866-C03-02/MTM from Ministerio de Educación y
Ciencia of Spain and by AECID Project A/030194/10 of Ministerio de Asuntos Exteriores y de
cooperación of Spain.

7 http://ami.dis.ulpgc.es/glob3m/

228 A. Trujillo et al.

http://ami.dis.ulpgc.es/glob3m/

References

Bell DG, Kuehnel F, Maxwell C, Kim R, Kasraie K, Gaskins T, Hogan P, Coughlan J (2007)
NASA world wind: opensource GIS for mission operations. In: Proceedings of the 2007 IEEE
aerospace conference, vol 3, issue 10, pp 1–9

Cline D, Parris KE (2001) Terrain decimation through quadtree morphing. IEEE Trans Visual
Comput Graph 7(1):62–69

Cozzi P, Ring K (2011) 3D engine design for virtual globes. CRC Press
Chandola V, Vatsavai RR, Bhaduri BL, (2011) iGlobe: an interactive visualization and analysis

framework for geospatial data. In: Proceedings of the 2nd international conference and
exhibition on computing for geospatial research& application, COM.Geo, Washington, DC.
ACM International Conference Proceeding Series. doi:10.1145/1999320.1999341

Davidson AJ (2002) Learning cocoa with objective C. O’Reilly& Associates
Khronos Group (2004) OpenGL ES: the standard for embedded accelerated 3D graphics. http://

www.khronos.org/
Losasso F, Hoppe H (2004) Geometry clipmaps: terrain rendering using nested regular grids.

ACM Trans Graph (SIGGRAPH) 23(3)
Noguera JM, Segura RJ, Ogáyar Joan-Arinyo R (2011) Navigating large terrains using

commodity mobile devices. Comput Geosci 37(9):1218–1233
Pajarola R (1998) Large scale terrain visualization using the restricted quadtree triangulation. In:

Proceedings of the conference on visualization ’98. IEEE Computer Society Press, Los
Alamitos, CA, pp 19–26

Pulli K, Aarnio T, Miettinen V, Roimela K, Vaarala J (2007) Mobile 3D graphics with OpenGL
ES and M3G. Morgan Kaufmann

Pulli K, Aarnio T, Roimela K, Vaarala J (2005) Designing graphics programming interfaces for
mobile devices. IEEE Comput Graph Appl 25(6):66–75

Rideout P (2010) iPhone 3D programming: developing graphical applications with OpenGL ES.
O’Reilly Media, Inc., USA

Ulrich T (2002) Rendering massive terrains using chunked level of detail control. In: Proceedings
of SIGGRAPH2002. ACM Press

Villamor C, Willis D, Wroblewski L (2010) Touch gesture reference guide. http://
www.lukew.com/ff/entry.asp?1071

Xiao J, Zhu M, Wang X, Wan W (2010) Analysis of mobile graphics pipeline with real-time
performance. In: Proceedings of the international conference on audio language and image
processing (ICALIP), pp 489–493

Glob3 Mobile: An Open Source Framework 229

http://www.khronos.org/
http://www.khronos.org/
http://www.lukew.com/ff/entry.asp?1071
http://www.lukew.com/ff/entry.asp?1071

(a, d)-Sleeves for Reconstruction
of Rectilinear Building Facets

Marc van Kreveld, Thijs van Lankveld and Maarten de Rie

Abstract We introduce the concept of ða; dÞ-sleeves as a variation on the well-
known a-shapes. The concept is used to develop a simple algorithm for con-
structing a rectilinear polygon inside a plane; such an algorithm can be used to
delineate a building facet inside a single plane in 3D from a set of points obtained
from LiDAR scanning. We explain the algorithm, analyse different parameter
settings on artificial data, and show some results on LiDAR data.

1 Introduction

In recent years, public interest in the use of virtual cityscapes has drastically
increased. Applications in a variety of fields like navigation, urban planning, and
serious games, increasingly use building models for visualization and simulation
purposes. Simultaneously, the quality, complexity, and availability of urban
datasets are increasing. Smart-phones are becoming ubiquitous, making photo and
video images very easy to obtain, while modern LiDAR devices can capture
hundreds of data points per square meter (John Chance Land Surveys and Fugro
2009).

This wide interest requires efficient automation of urban scene reconstruction to
process the vast datasets. The general goal of urban reconstruction is recreating the
geometry and visual likeness of the buildings in the scene. Whether applying
structure from motion and dense stereo reconstruction to image data (Furukawa

M. van Kreveld � T. van Lankveld (&) � M. de Rie
Department of Information and Computing Sciences, Utrecht University, Utrecht,
The Netherlands
e-mail: T.vanLankveld@uu.nl

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_13,
� Springer-Verlag Berlin Heidelberg 2013

231

et al. 2009; Seitz et al. 2006), or directly using LiDAR data, urban geometry
reconstruction is usually aimed at identifying the shapes of buildings from a point
cloud.

Earlier methods in photogrammetry would use a predefined collection of
parametric models of complete buildings and either try to determine the model that
best fits the data (Brenner 2005; Schwalbe et al. 2005), or only model roofs
supported by vertical walls (Rottensteiner 2003; You et al. 2003; Zhou and
Neumann 2008). While these methods are able to construct scenes from very
sparse data sets, they are inherently limited by the versatility of the building
models in their collection.

Other methods reconstruct free-form triangular meshes that interpolate the data
points (Carlberg et al. 2009; Marton et al. 2009; Tseng et al. 2007). While these
methods can reconstruct buildings of any shape, most have difficulty dealing with
the artifacts inherent in the point data like measurement error and outliers.
Additionally, most mesh-based reconstruction methods reconstruct smooth sur-
faces, removing the sharp edges and simple shapes widely present in urban scenes.

We present a method that is partially parametric and partially free-form to deal
specifically with the shapes of urban scenes. While most parametric methods
reconstruct the scene per building, we assume that these buildings are composed of
planar surfaces and reconstruct these individual surfaces.

Most point clouds measured in an urban scene have inliers and outliers, points
measured from a planar surface and the remaining points respectively. The data
also contains noise, a small displacement in the point locations. We use Efficient
RANSAC (Schnabel et al. 2007) to cluster the points per individual surface,
although methods based on region growing (Tseng et al. 2007) could also be used.

Both dense stereo and LiDAR produce point sets densely covering the viewed
surfaces. Our method estimates the shape that the points were measured from per
individual surface. A surface can be reconstructed by computing a polygon that
contains all its points while not containing large empty regions. A popular method
for computing such a polygon is the a-shape (Edelsbrunner et al. 1983).

Another prevalent feature of the surfaces in urban data sets is rectilinearity,
caused by the predominant use of right angles. In recent work (van Lankveld et al.
2011), we showed that roughly a third of the surfaces in many city scenes are
rectangles and we presented a method for reconstructing these surfaces. Here, we
broaden this to general rectilinear shapes that tightly bound a point set. To
determine these shapes, we present a simple variation of the a-shape, called the
ða; dÞ-sleeve. This structure creates a buffer around the shape and we search for a
rectilinear shape within this buffer. Figure 1 shows an overview of our method.

Finding a rectilinear shape that is close to a given shape is a problem that has
been studied in different contexts. For example, restricted—orientation line sim-
plification has been studied for the purpose of schematized map computation
(Buchin et al. 2011; Swan et al. 2007; Wolff 2007). Another example is squari-
fying, an operation that occurs in ground plan generalization (Mayer 2005; Reg-
nauld et al. 1999; Ruas 1999). In these cases, the starting point is a polygonal line
or planar subdivision, whereas (initially) we start with a set of points. Furthermore,

232 M. van Kreveld et al.

since sampled points are assumed to be inside the rectilinear polygon to be found,
we wish to find an outer approximation of the boundary of the point set. Hence, an
area-preserving method like in (Buchin et al. 2011) does not appear suitable. Our
method guarantees that the rectilinear polygon is within a specified distance of the
a-shape but still outside it; other methods do not have this feature.

2 ða; dÞ-Sleeves and Minimum-Link Paths

In this section we describe the approach for computing a rectilinear polygon that
corresponds to the shape of a set of points well. We first define the a-shape
(Edelsbrunner et al. 1983), then we introduce a new structure called the ða; dÞ-
sleeve. We show properties of this new structure and give an efficient algorithm for
its construction. Finally, we show how we can use the ða; dÞ-sleeve to determine a
suitable rectilinear polygon, and give an algorithm to compute it.

Our objective is to bound the point set by a rectilinear shape with few edges.
This shape must have all points to the inside or on it, but we must allow the shape
to cover some area outside of the a-shape to accomodate a rectilinear shape with
few edges.

Like was done for finding rectangles to fit a set S of points in (van Lankveld
et al. 2011), we will use the d-coverage concept. There we defined the d-coverage
region to be the union of the radius-d disks centered on the points of S. Any point
in the plane not in the d-coverage region is at least at distance d from all sample
points. We required the approximating rectangle to contain all points of the
sample, but not be outside the d-coverage region. The value of d should be chosen
small enough so that the rectangle cannot be too far away from the sampled points

Fig. 1 An overview of our method. From top left to bottom right: the surface, a point sample of
the surface, the a-shape, the ða; dÞ-sleeve, three rectilinear minimum-link paths within the ða; dÞ-
sleeve for different rotations, and the path with the fewest links over all rotations

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 233

and therefore from the likely shape. On the other hand, d should be chosen large
enough so that the irregularities in the sampling do not exclude the existence of a
rectangle in the d-coverage region that encloses the points as well.

2.1 Definition and Properties of (a, d)-Sleeves

We adopt these ideas from rectangles to rectilinear shapes. Let S be a set of
sampled points in a plane, and let P denote a desired rectilinear polygon. Let a [0
be a real parameter related to the sampling density, typically between 20 and
50 cm. Let d[0 be another such parameter, also related to the sampling density.

Definition 1 (Edelsbrunner et al. 1983) Given a point set S, a point p 2 S is a-
extreme if there exists an empty open disk (i.e., not containing any point from S) of
radius a with p on its boundary. Two points p; q 2 S are called a-neighbors if they
share such an empty disk. The a-shape of S is the straight-line graph whose
vertices are the a-extreme points and whose edges connect the respective a-
neighbors.

We will compute the a-shape A of S and require that P contains A completely. If
P was a rectangle, there is no difference between requiring P inside or A inside, but
for other rectilinear shapes it can make a difference. Our main reason for using the
a-shape is the guarantee that P is not self-intersecting if the a-shape consists of one
connected component. Under regular sampling conditions of an individual surface,
we can make sure that the a-shape has only one component by carefully choosing
a based on the sampling density.

From the a-shape A of S we will compute the ða; dÞ-sleeve, defined as follows.

Definition 2 For set S of points in the plane, the ða; dÞ-sleeve is the Minkowski
sum of the a-shape of S with a disk of radius d, where only the part outside the a-
shape is taken.

The Minkowski sum with a disk creates a buffer region around the shape. The
ða; dÞ-sleeve is an outer proximity region of the a-shape.

Not all values of a and d, or combinations of values, give nice properties to the
ða; dÞ-sleeve. Let us assume that a is such that the a-shape is in principle a good

α δ

Fig. 2 Left, values of a and d
shown by disks, and the
ða; dÞ-sleeve of the points
shown. Right, a minimum-
link rectilinear path in the
sleeve

234 M. van Kreveld et al.

approximation of the underlying shape. In particular, let us assume that it is
connected and has no holes.

This implies that the inner boundary of the ða; dÞ-sleeve is the boundary of a
simple polygon. If d is sufficiently small, the outer boundary of the ða; dÞ-sleeve
will be the boundary of a simple polygon as well, but with circular arcs. For some
shapes and larger values of d, the ða; dÞ-sleeve can have several inner boundaries:
not just those created by subtracting the interior of the a-shape, but also ones
where opposite sides on the outside of the a-shape are close. Figure 3 shows an
example.

It turns out that if we set d\ 4
5 a, then the ða; dÞ-sleeve will have the desired

topology with one outer and one inner boundary. We prove this after proving some
more properties of the a-shape.

Lemma 1 For a given a[0, let A be an a-shape of a set S of points in the plane.
Any two points p; q 2 S that share the boundary of an empty open disk d of radius
� a are connected by a line segment inside A.

Proof According to Edelsbrunner et al. (1983), the interior of the a-shape is the
union of all Delaunay triangles with a circumcircle of radius � a.

The Delaunay triangulation on S must contain the edge p; q as witnessed by d.
Now consider the Delaunay triangle t incident to p; q on the side of the center of d;
we distinguish two cases. Either (a) this triangle has a circumcircle of radius � a
and is part of the interior of A, or (b) there is an empty radius-a disk with p; q on its
boundary and p; q are a-neighbors. In both cases, p; q must be either in the interior
or on the boundary of A. h

Lemma 2 For a given a[0, let A be an a-shape of a set S of points in the plane.
Any two points p; q 2 S at distance at most 2a are connected by a path that lies
both inside A and inside the disk with p; q as its diameter

Proof In this proof, we use a property of a-shapes that is easily inferred from
Lemma 1: for two points p; q 2 S at distance at most 2a, either (1) they are a-
neighbors, or (2) the connecting line segment is interior to the a-shape, or (3) the
disk with p; q as its diameter contains another point of S.

In cases (1) and (2), it is clear there is a connecting path within A and within the
disk with p; q as its parameter. In case (3), we consider the collection of empty disks
with their center on p; q and touching two points of S, as shown in Fig. 4. These disks
impose an ordering ðp; s1; s2qÞ on a subset of the points inside the disk. For any two

Fig. 3 If the a-shape is the
grey interior shown left, and d
corresponds to the radius of
the disks shown left, then the
ða; dÞ-sleeve (shown in grey
on the right) has more than
one inner boundary

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 235

subsequent points x; y in this ordering, the line segment connecting x; y is contained
in A, according to Lemma 1. h

Lemma 3 For a given a[0, let A be an a-shape of a set S of points in the plane,
and assume that A is the boundary of a simple polygon. Then for 0\d� 4

5 a, the
ða; dÞ-sleeve has the topology of an annulus.

Proof Since for very small d, the topology of the ða; dÞ-sleeve is an annulus, we
can imagine growing d to the first (smallest) value d0 where the topology is no
longer an annulus. This happens only when there are two points p; q, not neces-
sarily in S, on the a-shape at distance 2d0. Let m be the midpoint of p; q. Then m is
at distance d0 from p and q, and no point of the a-shape is closer to m. Hence, the
disk D centered at m with radius d0 does not intersect the a-shape in points other
than p and q.

Assume first that the two points are two vertices p; q 2 S. According to Lemma
2, D contains an edge inside the a-shape. This contradicts the assumption that no
point of the a-shape is closer to m than p or q.

Assume next that p; q 62 S. Then they lie in the interior of two different a-shape
edges. If they are not parallel, it is impossible that the first topological change
occurs at m. If they are parallel, then the topological change will occur simulta-
neously along a stretch of the two edges, and we can choose p and q such that at
least one of them is an endpoint and therefore in S. So this case is treated together
with the final case.

Assume finally that only one point is in S, say, p 2 S and q 62 S. Let q1 and q2 be
the endpoints of the a-shape edge that q lies on, so q1; q2 2 S. The diametral disk D
of p and q is tangent to the edge q1; q2 at q. Assume without loss of generality that
q1q2 is vertical, that q1 is the lower endpoint of q1q2, that q1 is closer to p than q2,
and that p is to the right of q1q2, see Fig. 5.

Fig. 4 Illustration of the
proof of Lemma 2

236 M. van Kreveld et al.

Since the topology of the ða; dÞ-sleeve changes for the first time (smallest d0)
due to the contact at m, the a-neighbors of p cannot lie to the left of the vertical
line through p. Let p0 be the a-neighbor of p that makes the smallest angle with the
vertical upward direction. Since p and p0 are a-neighbors, an empty a-disk D exists
that has p and p0 on its boundary and its center to the left of the directed edge from
p to p0.

We now rotate D in contact with p in counterclockwise direction, see Fig. 5.
Initially D does not contain any point of S inside. Let r be the first point of S that is
reached by the boundary of D, such that r would be inside if we were to rotate D
further. We distinguish several cases.

If r ¼ q2, then pq2 are a-neighbors (as witnessed by the emptiness and current
position of D). The implied a-shape edge will intersect D because q2 lies left of p, a
contradiction. The same contradiction is obtained when r ¼ q1, or when r is any
point that lies left of the vertical line through p. Hence, r lies to the right of this
vertical line or on it. This implies that the disk D has rotated beyond the situation
where it has a vertical tangent. This is equivalent to stating that the center c of D
lies below the horizontal line through p. Also, this center must lie right of the line
through q1 and q2, because q1; q2 is an a-shape edge with the interior to its left.

Because q1; q2 are a-neighbors, kq1q2k� 2a. We argue that kpq2k[2a.
According to Lemma 2, if kpq2k� 2a, there is a path connecting p; q2 inside their
diametral disk. Because kpq1k�kpq2k, the same holds for p; q1. This means that if
kpq2k� 2a, then either there is a point in A closer to m than p, or A is not a simple
polygon; both cases contradict an assumption.

We are interested in the threshold case, where kpqk ¼ 2d0 is as small as possible,
and the ða; dÞ-sleeve is an annulus for d� d0, but not if d is infinitesimally larger than
d0. Because kq1q2k� 2a, kpq2k[2a, and kpq1k�kpq2k and \pqq2 ¼ p

2, the
smallest kpqk occurs when the angle \q1q2p is as small as possible. At the same
time, the radius-a disk D touching p; r cannot contain q1 and cannot have its center
above pq. Finally, because r was the first point encounterd by D during its rotation,

Fig. 5 Illustration of the proof of Lemma 3

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 237

either kpq1k� 2a or c is above pq1. If kpq1k� 2a, then kpqk�
ffiffiffi

3
p

a so
d0 � 1

2

ffiffiffi

3
p

a[4
5 a: We continue to show that the other case can give a smaller lower

bound for d:Here kpq1k\ 2a and c is above pq1. By Lemma 2, A has a sequence of
edges connecting p with q1 via r inside the disk that has pq1 as its diameter.

The threshold case is shown in Fig. 5(right). If D stays empty while rotating
beyond the point where c lies on p; q, it is possible for the boundary of A to connect
q1 to r and p through a series of edges strictly outside D. This would result in a
hole in the ða; dÞ-sleeve just below m, meaning that the topology of the ða; dÞ-
sleeve is not an annulus.

In the threshold case, c lies on p; q, and then Mq2cq1 and Mq2cp are mirrored
triangles, so the angles \q2q1c ¼ \q2pc, and Mq2qp and Mcqq1 are similar tri-

angles. This implies that 2a
a ¼

kq2qk
kcqk or kq2qk ¼ 2kcqk. If we combine this with the

Pythagorean theorem on Mq2qp we can derive that 2d0 ¼ kpqk ¼ 8
5 a:

ð2aÞ2 ¼ kq2qk2 þ ðkcqk þ aÞ2

4a2 ¼ 4kcqk2 þ kcqk2 þ 2kcqkaþ a2

3a2 � 2kcqka� 5kcqk2 ¼ 0

ðaþ kcqkÞð3a� 5kcqkÞ ¼ 0

kcqk ¼ �a orkcqk ¼ 3
5
a

The first option leads to a degenerate triangle Mq1q2p. The second option leads to
kpqk ¼ kcqk þ a ¼ 8

5 a.
The threshold case presented results in an ða; d0Þ-sleeve with the topology of an

annulus: the value of d0 does not allow D to rotate beyond a vertical tangency at p
when it reaches r but before it reaches q1. Hence, r is not right of p. If r is
vertically below p (a degenerate situation), then we can repeat the whole con-
struction with r instead of p, which means we can ignore this case. Hence, in order
to get a different topology, r must be strictly right of p, and c must be strictly
below p; q. Because D cannot contain q1, kq1q2k� 2a, and kpq2k[2a, this
implies that kpqk ¼ 2d0[8

5 a. h

We can use known algorithms to compute the ða; dÞ-sleeve for given values of a
and d. For a set S of n points in the plane, the a-shape can be computed directly
from the Delaunay triangulation of S (Edelsbrunner et al. 1983). Then we use a
buffer computation algorithm on the a-shape. Such an algorithm can be based on
computing the Voronoi diagram of the line segments of the a-shape first (de Berg
et al. 2008; Yap 1987). Then the buffer boundary can be found in each Voronoi
cell, and these can be merged into the boundaries of the d-buffer of the a-shape.
Converting this to the ða; dÞ-sleeve is then straightforward. This procedure takes
Oðn log nÞ time in total.

238 M. van Kreveld et al.

2.2 Minimum-Link Paths in ða; dÞ-Sleeves

The ða; dÞ-sleeve gives a region in which we want to determine a rectilinear shape.
The rectilinear shape should separate the inner boundary from the outer boundary.
We will show how to use a minimum-link path algorithm to find the shape. We
will assume that the ða; dÞ-sleeve has the topology of an annulus.

For any simple polygon and start- and endpoints s and t inside, we can find a
minimum-link path that uses only horizontal and vertical edges. This problem has
been well-studied in computational geometry, and a linear-time algorithm exists
that finds such a path (Hershberger and Snoeyink 1994). Our problem is different
in three aspects: (a) We do not have a simple polygon but a shape with the
topology of an annulus. (b) We do not have a start- and endpoint but we want a
rectilinear cycle. (c) We do not know the orientation of the edges beforehand, we
only know that the angles on the path are 90�.

Lemma 4 In an ða; dÞ-sleeve, there exists a minimum-link axis-parallel cycle that
passes through the lowest point of the inner boundary of the sleeve (the a-shape).

Proof Consider any minimum-link cycle in the sleeve, and let e be its lowest
horizontal edge. If e contains a vertex of the a-shape the lemma is true, otherwise
we can move e upwards while shortening the two adjacent edges of the cycle.
During this move two things can happen: (a) An adjacent edge reduces to length 0,
but then a cycle with two fewer links is found. (b) Edge e is stopped by a vertex of
the a-shape, which must be its lowest vertex because all vertices of the a-shape
have a y-coordinate at least as high as the lowest edge of the cycle. This proves the
lemma. h

Another property of the minimum-link rectilinear path is that it is non-selfin-
tersecting. Otherwise, we could remove the extra loop and obtain a cycle with
fewer links.

Lemma 5 Any minimum-link rectilinear path in an ða; dÞ-sleeve is non-
selfintersecting.

Suppose that we know the orientation of the minimum-link path. Then we can
rotate the ða; dÞ-sleeve so that this orientation becomes the axis-parallel orienta-
tion. By the lemma above, we now know a point that we can assume to lie on the
minimum-link cycle. To convert the ða; dÞ-sleeve to a polygonal region we do the
following. We find the lowest vertex v of the a-shape and insert a new edge

Fig. 6 The bottom part of an ða; dÞ-sleeve, the lowest vertex v of the a-shape (left), and the
conversion of the sleeve to a simple polygon (right)

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 239

vertically down from v, until it reaches the outer boundary, see Fig. 6. This edge
will split the annulus into a shape with the same topology as a simple polygon. We
duplicate the new edge including its endpoints, splitting v into a left copy vl and a
right copy vr. Now our shape does not have doubly used edges, and it can be
treated as a normal simple polygon. We will find a minimum-link axis-parallel
path from vr to vl using the algorithm in (Hershberger and Snoeyink 1994). The
output path can easily be converted back into a minimum-link cycle.

3 Experiments

In the previous section we presented a method to construct a rectilinear minimum-
link path that approximates the a-shape. Here, we evaluate this method on syn-
thetic and real data with the main goal of checking whether the method is suitable
for piecewise planar urban scene reconstruction. In particular, we wish to discover
whether for a given point density, values of a and d exist that lead to a rectilinear
minimum-link path that is close to the true building facet shape.

This section describes both the setup of these experiments and the results. The
first two subsections describe our experiments on synthetic data to determine a
value for d to get the correct number of edges or the best overlap with the ground
truth, respectively. The last subsection describes an experiment on urban LiDAR
data.

3.1 Universal d

For the evaluation on synthetic data, we have constructed fifteen test cases of
varying shape and complexity. Each test case comprises a ground truth polygon T
that should represent a realistic urban surface shape with an area of between 30
and 60 m2, as shown in Fig. 7. To counter bias towards a certain initial orientation,
T is rotated by a random real-valued angle for each test. Each rotated T then yields
a point set of predetermined density by uniform sampling from its interior.

For each case, we compute the ða; dÞ-sleeve using a fixed a based on the
sampling density q and a varying d. We have chosen a fixed a such that the a-
shape is connected and without holes irrespective of test case. We vary d to
determine whether there is a single value of d at each q such that our method
produces polygons similar to the ground truth in all test cases. To measure the
impact of q on the results of our method, we have repeated the experiments for
three different densities. The chosen a for each density q is shown in Table 1. We
vary d using increments of 1 cm.

240 M. van Kreveld et al.

A rectilinear polygon P̂ is constructed inside the ða; dÞ-sleeve, according to the
algorithm given in Sect. 2, such that P̂ has the minimum number of edges over all
rotation angles. We use an angular step size of 1 degree, meaning that we run the
minimum-link algorithm 90 times for each ða; dÞ-sleeve. To get a canonical result
for each angle, we ‘shrink’ P̂ to a smaller polygon P by moving each edge inward
until it touches the a-shape. We move edges in descending order of edge length. If
there are multiple polygons with the minimum number of edges, created for dif-
ferent rotation angles, P is chosen as the one with the smallest area.

In urban reconstruction, the shape of a surface is not known a priori. For this
reason, we have analyzed whether our method reconstructs the correct shapes. We
measure the correctness of a shape by its number of edges and its angle of rotation,
by comparing them to the ground truth. In the optimal case, there is a value for d at
which our method always produces the correct shape. However, it is very likely
that the optimal value of d depends on q. Because we want our method to be

Fig. 7 The different test cases used for the experiments on synthetic data

Table 1 The different
densities used for the point
sampling and the associated
values of a

q (points/m2) a (cm)

50 60
100 20
200 17

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 241

shape-invariant, we are looking for a d for which our method performs well,
irrespective of ground truth case.

Our experiments showed that the chosen polygons P always have a rotation
within 1 degree of the rotation of the ground truth. Figure 8 shows the ranges of d
values for which the constructed polygon has the same number of edges as the
ground truth. At the higher densities (100 and 200 points/m2), we can choose the
value of d at 24 cm and 20 cm respectively to construct a shape with the same
number of edges for most cases.

At the lowest density (50 points/m2), there is no d value that consistently results
in a correct polygon. Additionally, Fig. 8 shows that in half of the cases the range
of d resulting in the correct number of edges is very small. These cases all have
some small features that add edges to the ground truth while being difficult to
make out in the rough point samples. Visual inspection showed that the openings
of the ‘‘grip’’ cases were closed off in their a-shape, explaining the problems with
constructing the correct shape. For the cases without a small feature, a value of d
between 50 and 85 results in the correct polygons.

Considering the values of a and d together, we observe that we should choose d
slightly larger than a. However, by Lemma 3, we are not guaranteed to get an
ða; dÞ-sleeve with the topology of an annulus in this case. Especially in ‘‘grip’’
cases, finding ways to correctly deal with ða; dÞ-sleeves that do not have an
annulus topology may yield better results.

0

10

20

30

40

50

60

70

80

90

100
δ

(c
m

)

Com
b

Cro
ss

Den
te

d

L−
sh

ap
e

L−
sh

ap
e2 NY

Rec
t

Squ
ar

e
W

hit
e U

Grip
Grip

2

3−
Grip

2−
Grip

Cine
m

a

Fig. 8 The range of d for which the constructed polygon has the same number of edges as the
ground truth at point densities 50 (dashed), 100 (solid), and 200 (dash-dotted) points/m2

242 M. van Kreveld et al.

3.2 Data-Dependent d

The shapes encountered in urban scenes vary greatly. Small features of the shape
combined with insufficient sampling density may make it very difficult to correctly
estimate the number of edges of the shape, even for a human modeler. Addi-
tionally, the sampling density may vary greatly between surfaces. For this reason,
it may be interesting to estimate the best value for d from the point data itself
instead of choosing some fixed value.

One way to determine which d is best is to analyze how P changes as d
increases. At the smallest d, P will approximate the a-shape and from some large d
onwards, P is a rectangle. Recall that P is the shrunken version of P̂, so we can
expect the largest changes in P when its number of edges change. Additionally,
given a fixed number of edges, it is likely that the polygon that approximates T
best is found immediately after a jump to that number of edges. While growing d,
we use the polygon just after each jump as representative for the polygons with the
same number of edges. This leads to a succession of representative polygons
fR0Rkg, where each consecutive polygon has fewer edges, culminating in four
edges at Rk.

The best R should strike a balance between complexity and approximation of
the shape of T . The complexity can again be measured in the number of edges,
with a preference for low complexity. How well R approximates T could be
measured from their area of symmetric difference. Unfortunately, for real-world
data the ground truth is not known, so the symmetric difference cannot be used to
determine the best d. However, because the area of T is fixed, a simple approxi-
mation for the symmetric difference is to use the area of R.

Because R always covers the a-shape, we can assume that the reason for large
jumps in the area of R is the removal of a large feature of T from R. The goal then
becomes to determine when the process of increasing d stops reducing the com-
plexity of the shape and starts removing large features. If we denote by vi the
change in area between consecutive representative polygons Ri and Riþ1, we
search for a threshold value �v for vx. The idea is that if the area of R makes a jump
of vi [�v due to a decrease in the number of edges, then the polygon loses a key
feature of T so Ri is the simplest polygon that contains all important features.

We determine �v by selecting which reference polygon Ri best approximates T
by visual inspection and computing vi. Choosing �v such that it is smaller than vi

but larger than vj for all j\i would result in terminating the automatic search for d
at the preferred polygon. Because we want the method to be shape-invariant, we
are looking for a value of �v for which our method performs well, irrespective of
ground truth case.

The ranges of �v resulting in the polygon selected by visual inspection are shown
in Fig. 9. At the higher densities (100 and 200 points/m2), there are values for �v
that result in the correct polygon in all the test cases. At a density of 50 points/m2,
there is no �v that produces the correct polygon in all cases, although 0.8 m2 is a
good value for most cases.

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 243

3.3 LiDAR Data

Apart from synthetic data, we have also applied our method to an airborne LiDAR
data set of a building, as shown in Fig. 10. The point density varies greatly
between surfaces, because of the scanning method. However, based on our earlier
work on the same data (van Lankveld et al. 2011), we set a to 125 cm for surfaces
close to vertical and 60 cm for the other surfaces.

The building contains many rectilinear surfaces, which we have reconstructed
using d ¼ 60 cm. The surfaces near the edge of the scene were given jagged edges
because the buildings are not aligned with the scene. However, our results do
favour long straight edges for the remainder of the shape.

0

0.5

1

1.5

2

2.5

3

3.5

4
 (

m
2)

Cine
m

a

Com
b

Cro
ss

Den
te

d

L−
sh

ap
e

L−
sh

ap
e2 NY

Rec
t

Squ
ar

e
W

hit
e U

Grip
Grip

2

3−
Grip

2−
Grip

Fig. 9 The range of �v for which the polygon selected by visual inspection is constructed at point
densities 50 (dashed), 100 (solid), and 200 (dash-dotted) points/m2

Fig. 10 A LiDAR data set with points colored per surface and the rectilinear boundaries of those
surfaces

244 M. van Kreveld et al.

Figure 11 shows two interesting surfaces and their rectilinear boundaries. Note
how the rotation of the reconstructed polygons matches the neighboring surfaces.
A human modeler may construct a similar shape with fewer edges for these
surfaces. It seems that these faults in our results are caused by missing data in the
input sets.

4 Conclusions

We have presented a novel concept, the ða; dÞ-sleeve, which contains a proximity
zone around a point set. When combined with a minimum-link path algorithm, this
structure can be used to reconstruct simple shapes that contain the point set. We
have presented a method aimed at reconstructing surfaces in urban scenes from a
point set by combining the ða; dÞ-sleeve with a rectilinear minimum-link path. Our
experiments showed that when the surfaces are sampled sufficiently dense, there
are parameter settings for a and d that lead to correct reconstructions for artificial
data. Finally, we have shown on an urban LiDAR data set that our method pro-
duces plausible results.

A number of interesting possibilities for extensions and improvements remain.
In most urban scenes there are some surfaces that are not rectilinear. By changing
the rectilinear minimum-link path algorithm to allow a few edges that do not
follow one of the principal directions, the ða; dÞ-sleeve can be used to reconstruct
such surfaces as well. Alternatively, we could use a post-processing method that
replaces long stair-like parts in the rectilinear surface boundary by one line.

Another recurring problem we encountered is the rounding of concave corners.
As Fig. 12 shows, the a-shape can ‘‘round off’’ a concave corner, often going
outside the original polygon. In such cases, constructing a polygon within the
ða; dÞ-sleeve requires either more edges or a larger d. This problem may be
overcome by using pieces of the a-hull (Edelsbrunner et al. 1983) as inner
boundary of the ða; dÞ-sleeve, instead of the a-shape. The a-hull uses concave
circular arcs between its boundary vertices, allowing the polygon to go deeper into
concave corners. Unfortunately, using a-hull arcs everywhere may cause the inner
boundary to self-intersect, which in turn can result in a self-intersecting rectilinear

Fig. 11 Two interesting rectilinear surfaces

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 245

path. Hence, this solution would require additional steps to ensure that the con-
structed polygon does not have self-intersections.

Finally, for this work we have ignored holes in the a-shape. Reconstructing
those holes can be done in a fashion similar to the method described in this paper.
The ða; dÞ-sleeve would consist of several components, each one with the topology
of an annulus. We can run minimum-link path algorithms in each annulus with the
same orientations in order to find an orientation that is best overall. This way we
can easily ensure that the rectilinear directions of the outside boundary and of the
hole boundaries are the same.

Acknowledgments This research has been supported by the GATE project, funded by the
Netherlands Organization for Scientific Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

References

Brenner C (2005) Building reconstruction from images and laser scanning. Int J Appl Earth Obs
6(3–4):187–198

Buchin K, Meulemans W, Speckmann B (2011) A new method for subdivision simplification
with applications to urban-area generalization. In: Proceedings SIGSPATIAL, pp 261–270

Carlberg M, Andrews J, Gao P, Zakhor A (2009) Fast surface reconstruction and segmentation
with ground-based and airborne lidar range data. Technical Report ADA538860, University
of California at Berkeley

de Berg M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry-algorithms
and aplications. Springer, Berlin

Edelsbrunner H, Kirkpatrick DG, Seidel R (1983) On the shape of a set of points in the plane.
IEEE Trans on Inf Theory 29(4):551–559

Furukawa Y, Curless B, Seitz SM, Szeliski R (2009) Manhattan-world stereo. In: IEEE Computer
Society, pp 1422–1429

Hershberger J, Snoeyink J (1994) Computing minimum length paths of a given homotopy class.
Comp Geom 4:63–97

Fig. 12 An example a-shape
where a concave corner is
rounded off

246 M. van Kreveld et al.

John Chance Land Surveys, Fugro (2009) Fli-map specifications. http://www.flimap.com/
site47.php

Marton ZC, Rusu RB, Beetz M (2009) On fast surface reconstruction methods for large and noisy
point clouds. In: Proceedings ICRA, pp 2829–2834

Mayer H (2005) Scale-spaces for generalization of 3D buildings. Int J Geogr Inf Sci 19:975–997
Regnauld N, Edwardes A, Barrault M (1999) Strategies in building generalisation: modelling the

sequence, constraining the choice. In: Proceedings ICA
Rottensteiner F (2003) Automatic generation of high-quality building models from lidar data.

IEEE Comput Graphics Appl 23(6):42–50
Ruas A (1999) Modèle de généralisation de données géographiques à base de contraintes et

d’autonomie. PhD thesis, Université de Marne la Vallée
Schnabel R, Wahl R, Klein R (2007) Efficient RANSAC for point-cloud shape detection. Comput

Graphics Forum 26(2):214–226
Schwalbe E, Maas HG, Seidel F (2005) 3D building model generation from airborne laser

scanner data using 2D GIS data and orthogonal point cloud projections. In: Proceedings
ISPRS, pp 12–14

Seitz S, Curless B, Diebel J, Scharstein D, Szeliski R (2006) A comparison and evaluation of
multi-view stereo reconstruction algorithms. In: Proceedings CVPR, vol 1, pp 519–528

Swan J, Anand S, Ware M, Jackson M (2007) Automated schematization for web service
applications. In: Web and Wireless GISystems. LNCS 4857:216–226

Tseng YH, Tang KP, Chou FC (2007) Surface reconstruction from LiDAR data with extended
snake theory. In: Proceedings EMMCVPR, pp 479–492

van Lankveld T, van Kreveld M, Veltkamp RC (2011) Identifying rectangles in laser range data
for urban scene reconstruction. Comput Graph 35(3):719–725

Wolff A (2007) Drawing subway maps: a survey. Inform Forsch Entwickl 22(1):23–44
Yap CK (1987) An Oðn log nÞ algorithm for the Voronoi diagram of a set of simple curve

segments. Discrete Comput Geom 2:365–393
You S, Hu J, Neumann U, Fox P (2003) Urban site modeling from LiDAR. In: Proceedings

ICCSA. LNCS, vol 2669, pp 579–588
Zhou QY, Neumann U (2008) Fast and extensible building modeling from airborne LiDAR data.

In: Proceedings SIGSPATIAL, pp 1–8

(a, d)-Sleeves for Reconstruction of Rectilinear Building Facets 247

http://www.flimap.com/site47.php
http://www.flimap.com/site47.php

A 3D-GIS Implementation for Realizing
3D Network Analysis and Routing
Simulation for Evacuation Purpose

Umit Atila, Ismail Rakip Karas and Alias Abdul Rahman

Abstract The need for 3D visualization and navigation within 3D-GIS environ-
ment is increasingly growing and spreading to various fields. When we consider
current navigation systems, most of them are still in 2D environment that is
insufficient to realize 3D objects and obtain satisfactory solutions for 3D envi-
ronment. One of the most important research areas is evacuating the buildings with
safety as more complex building infrastructures are increasing in today’s world.
The end user side of such evacuation system needs to run in mobile environment
with an accurate indoor positioning while the system assist people to the desti-
nation with support of visual landscapes and voice commands. For realizing such
navigation system we need to solve complex 3D network analysis. The objective
of this paper is to investigate and implement 3D visualization and navigation
techniques and solutions for indoor spaces within 3D-GIS. As an initial step and as
for implementation a GUI provides 3D visualization of Corporation Complex in
Putrajaya based on CityGML data, stores spatial data in a Geo-Database and then
performs complex network analysis under some different kind of constraints. The
GUI also provides a routing simulation on a calculated shortest path with voice
commands and visualized instructions which are intended to be the infrastructure
of a voice enabled mobile navigation system in our future work.

U. Atila
Directorate of Computer Center, Gazi University, Ankara, Turkey
e-mail: umitatila@gazi.edu.tr

I. R. Karas (&)
Department of Computer Engineering, Karabuk University, Karabuk, Turkey
e-mail: ismail.karas@karabuk.edu.tr

A. A. Rahman
Department of Geoinformatics, Universiti Teknologi Malaysia, Johor, Malaysia
e-mail: alias.fksg@gmail.com

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_14,
� Springer-Verlag Berlin Heidelberg 2013

249

Keywords 3D-GIS � Network analysis � Navigation � Evacuation

1 Introduction

The need for 3D visualization and navigation within 3D-GIS environment is
increasingly growing and spreading to various fields. Most of the navigation
systems use 2D or 2.5D data (e.g. road layer) to find and simulate the shortest path
route which is lacking in building environment (Musliman and Rahman 2008).
When we consider current navigation systems, most of them are still in 2D
environment and there is a need for different approaches based on 3D aspect which
realize the 3D objects and eliminate the network analysis limitations on multilevel
structures (Cutter et al. 2003; Pu and Zlatanova 2005; Kwam and Lee 2005;
Zlatanova et al. 2004).

Passing from two-dimensional (2D) GIS toward 3D-GIS, a great amount of 3D
data sets (e.g. city models) have become necessary to be produced and satisfied
widely. This situation requires a number of specific issues to be researched, e.g. 3D
routing accuracy, appropriate means to visualize 3D spatial analysis, tools to
effortlessly explore and navigate through large models in real time, with the correct
texture and geometry (Musliman et al. 2006).

One of the most important research area is evacuating the buildings through the
shortest path with safety in a case of extraordinary circumstances (i.e. disastrous
accidents, massive terrorist attacks) happening in complex and tall buildings of
today’s world which is the subject of 3D network analysis applications for indoor.

In research environments, two main approaches to indoor evacuation systems are
currently accepted. One is 3D modeling environment that this study follows and the
other is fire simulation models. Originating from 3D modelling environment,
evacuation and routing is based on graph networks (Karas et al. 2006; Jun et al. 2009),
while 3D visualization problems achieved by CityGML (Kolbe 2008). Researchers
following the network approach generally modify the existing 2D routing algorithms
to the 3D aspect (Musliman and Rahman 2008). Initial requirements of 3D-GIS and
navigation (Musliman et al. 2006), concepts, frameworks and its application from a
bigger scope of view were widely represented (Pu and Zlatanova 2005), but there is
currently still a lack of implementation of 3D network analysis and navigation for
evacuation purpose.

Compared to outdoor space there is more tendency to be lost in building envi-
ronment because of a more complicated recognition of landmarks in the indoor
environment (Gartner et al. 2009). An ideal evacuation system should have an engine
for route calculation and an engine for adapting the routing presentation. The most
advanced possibility is to use mobile devices like cell phone, PDA, etc. for presenting
the calculated route to the user. Mobile devices can supply people with voice com-
mands and graphical evacuation instructions (Pu and Zlatanova 2005). Therefore,

250 U. Atila et al.

providing such evacuation systems needs to solve some complex 3D topology, 3D
modeling, 3D network analysis and so on.

This paper investigates 3D network analysis within an evacuation system and
presents how to manage 3D network analysis using Oracle Spatial within a Java
based 3D-GIS implementation. All experiments highlighted in this paper are on a
3D model of Corporation Complex in Putrajaya, Malaysia. Section 2 gives some
examples on visualization of 3D building and network model from CityGML
format. Section 3 gives some information on storing spatial data in a Geo-DBMS
and explains how to create Network Model in Oracle Spatial. Section 4 gives
visualized results of some 3D network analysis performed by 3D-GIS imple-
mentation. Section 5 elaborates the routing engine integrated in simulation module
of 3D-GIS implementation and gives some visualization samples. Finally, we
conclude the work with some future tasks that needs to be addressed.

2 Visualization of 3D Building and Network Model

Visualization of 3D building model is performed by Java based 3D-GIS imple-
mentation. The implementation reads data from CityGML format which is a
common semantic information model for the representation of 3D urban objects
that can be shared over different applications. CityGML is designed as an open
data model and XML-based format for the storage and exchange of virtual 3D city
models (Gröger et al. 2008).

For visualization of 3D spatial objects, OpenGL graphic library is used. The
implementation supports 4 different types of view mode for spatial objects. These
modes are Wireframe (Fig. 1a), HiddenLine (Fig. 1b), Shaded (Fig. 1c) and
Shaded with Texture (Fig. 1d).

CityGML supports different Levels of Detail (LOD). LODs are required to
reflect independent data collection processes with differing application require-
ments(Gröger et al. 2008). The prepared 3D-GIS implementation uses
citygml4j Java class library and API for facilitating work with the CityGML and
JOGL Java bindings for OPENGL to carry out visualization. CityGML datasets
from LOD0 to LOD2 are supported. Building model is represented in LOD2
described by polygons (Fig. 2) and network model is represented as a linear
network in LOD0 using Transportation Module of CityGML (Fig. 3).

3 Managing 3D Network in Geo-DBMS

Using Geo-DBMS in 3D modeling and spatial analysis has a lot of advantages.
Beside the standart advantages of DBMS with respect to centralized control, data
independence, data redundancy, data consistency, sharing data, data integrity and
improved security, geo-DBMS brings efficient management of large spatial data

A 3D-GIS Implementation for Realizing 3D Network Analysis 251

sets. The management of a 3D network requires usage of graph model in DBMS.
While CityGML is used to store and visualize 3D spatial objects, the graph model
is used to perform network analysis.

A network is a type of mathematical graph that captures relationships between
objects using connectivity. A network consists of nodes and links. Oracle Spatial
maintains a combination of geometry model and graph model within Network

Fig. 1 Viewing modes of 3D spatial objects

Fig. 2 Building model

252 U. Atila et al.

Data Model. Network elements (links and nodes) may have geometric information
associated with them. A logical network contains connectivity information but no
geometric information. A spatial network contains both connectivity information
and geometric information. In a spatial network, the nodes and links are
SDO_GEOMETRY objects representing points and lines, respectively. A spatial
network can also use other kinds of geometry representations. One variant lets you
use linear referenced geometries. Another lets you use topology objects.

To define a network in Oracle Spatial, at least two tables should be created:
A node and a link table. These tables should be provided with the proper structure
and content to model the network. A network can also have a path table and a path
link table. These tables are optional and are filled with the results of analyzes, such
as the shortest path between two nodes.

Node table (see Table 1) describes all nodes in the network. Each node has a
unique numeric identifier (the NODE_ID column). Other optional columns are
geometry, cost, hierarchy_level, parent_node_id, node_name, node_type and
active.

Link table (see Table 2) describes all links in the network. Each link has a
unique numeric identifier (the LINK_ID column) and contains the identifiers of the
two nodes it connects. Other optional columns are geometry, cost, bidirected,
parent_link_id, active, link_level, link_name and link_type(Kothuri et al. 2010).

In this study we use spatial network with SDO_GEOMETRY type for repre-
senting points and lines.

Oracle Spatial Network Data Model is composed of a data model to store
networks inside the database as a set of network tables, SQL functions to define
and maintain networks (SDO_NET), network analysis functions in Java and net-
work analysis functions in PL/SQL (SDO_NET_MEM) which is a ‘‘wrapper’’ over
Java API that executes inside database.

Fig. 3 Network model

A 3D-GIS Implementation for Realizing 3D Network Analysis 253

There are two ways to define data structures for a network. One is to create
network automatically by calling CREATE_SDO_NETWORK procedure defined
in SDO_NET package in Oracle Spatial. This procedure creates all the tables and
populates the metadata. This procedure is not atomic. If it fails to complete it may
cause a half created network. The automatic network creation method gives very
little control over the actual structuring of the tables and gives no control at all
over their physical storage (table spaces, space management, partitioning and so
on). But this procedure is easy to use and makes sure the table structures are
consistent with metadata.

The other and more flexible way is creating tables manually. Creating tables is
not enough to define a network in Oracle Spatial. The actual naming of the tables
that constitute a network and their structure should be defined in a metadata table
called USER_SDO_NETWORK_METADATA as shown below by an insert
statement ensuring that the table structures are consistent with metadata.

INSERT INTO USER_SDO_NETWORK_METADATA
(NETWORK,NETWORK_CATEGORY,GEOMETRY_TYPE,

NO_OF_HIERARCHY_LEVELS,NO_OF_PARTITIONS,LINK_DIRECTION,
NODE_TABLE_NAME,NODE_GEOM_COLUMN,NODE_COST_COLUMN,
LINK_TABLE_NAME,LINK_GEOM_COLUMN,LINK_COST_COLUMN,
PATH_TABLE_NAME,PATH_GEOM_COLUMN,PATH_LINK_
TABLE_NAME,
NETWORK_TYPE)
VALUES(‘CORPORATION_PUTRAJAYA’,’SPATIAL’,’SDO_

GEOMETRY’,’10,

Table 1 Columns of Node table in network model

NODE_ID 230

NODE_NAME NODE-230
GEOMETRY MDSYS.SDO_GEOMETRY(3001,NULL,MDSYS.SDO_POINT_TYPE

(42.2019449799705,100.382921548946,-3.7),NULL,NULL)
ACTIVE Y

Table 2 Columns of link table in network model

LINK_ID 15

START_NODE_ID 452
END_NODE_ID 455
LINK_NAME Link-452-455-Corridor
GEOMETRY MDSYS.SDO_GEOMETRY(3002,NULL,NULL,MDSYS.SDO_

ELEM_INFO_ARRAY(1,2,1),MDSYS.SDO_ORDINATE_ARRAY
(115.306027729301,85.9775129777152,1.8,115.306027729301,
82.9483382781573,1.8))

LINK_LENGTH 3,029174699557899
ACTIVE Y
LINK_TYPE Corridor

254 U. Atila et al.

‘1’,’UNDIRECTED’, ‘CORP_NETWORK_NODE’,’LOCATION’,NULL,
‘CORP_NETWORK_LINK’,’GEOMETRY’, ‘LINK_LENGTH’,
‘CORP_NETWORK_PATH’,’GEOMETRY’,
‘CORP_NETWORK_PATH_LINK’,’Corp_Network’)

Our implementation automates network definition in Oracle Spatial database
using manual network creation method presented in this section. As soon as the 3D
model of a building in LOD2 and its linear network model in LOD0 opened from
CityGML format, the network model creation menu of the implementation gets
active to be used (Fig. 4). Network creation tool reads CityGML data, creates
tables to define network, inserts proper data into tables and defines network.

4 Performing Network Analysis

The implementation performs network analysis based on Java API provided by
Network Data Model of Oracle Spatial. Many kind of network analysis such as
shortest path, travelling salesman, given number of nearest neighbors, all possible
shortest paths between given nodes, all nodes within given distance, finding
reaching nodes to a given node, finding all possible paths between two nodes and
finding shortest paths to a node from all other nodes in the network can be
performed as well as under some kind of constraints like avoided nodes, links and
so on.

Fig. 4 Automating network creation

A 3D-GIS Implementation for Realizing 3D Network Analysis 255

In this section some examples for network analysis will be presented. Figure 5
shows a shortest path analysis without any constraint and Fig. 6 shows how the
shortest path is updated after links associated with elevators are avoided showed
by red lines which means elevator is not in use any more in that part of building.

Figure 7 shows all nodes within 40 m distance to node 3354 and Fig. 8 shows
the updated result of the same analysis after events occurred in all associated links
used to go upstairs.

Fig. 5 Shortest path between two nodes without any constraint

Fig. 6 Updated shortest path when the elevators are all out of order in a part of building

256 U. Atila et al.

5 Routing Instruction Engine

One of the most important components of an ideal evacuation system is an
instruction engine which should produce real time instructions for the users to
assist them accurately till they arrive destination. Our implementation has such an
instruction engine which is integrated into simulation module to produce voice
commands and visual instructions for assisting users dynamically on the way to the

Fig. 7 All nodes within 40 m distance to node 3354

Fig. 8 All nodes within 40 m to node 3354 after events occurred that avoid going upstairs totally

A 3D-GIS Implementation for Realizing 3D Network Analysis 257

destination. This instruction engine is intended to be the infrastructure of a voice
enabled mobile navigation system for indoor spaces in our future work (Fig. 9).

The most significant job for producing routing instructions is to determine the
direction that users should follow. According to the determined direction, ‘‘go
upstairs, go downstairs, go on the floor, turn left, turn right, keep going’’ com-
mands are produced and vocalized. For producing instruction commands, a
method developed by Karas (2007) is used. According to this method, the dif-
ference on elevations of the next node and the next node in the two that user will
visit is compared. If the next node in the two is in a higher position then the
instruction engine produces ‘‘go upstairs’’ command (Fig. 10a), else if opposite
then ‘‘go downstairs’’ command is produced (Fig. 10b), else if the user has just
used elevator or stairs, command to be produced is ‘‘go on the floor’’, otherwise the
elevation of the nodes are equal and instruction engine decides to turn right or left.
To make this decision a side direction calculation should be performed.

Side direction calculation determines if a point is on the right side or on the left
side of a line segment. If we suppose the end points of a line segment as A and B,
then if a point C is on the right side of this line segment then result is positive(+),
otherwise negative(-). Assuming point A is the node user stands, point B is the
next node to A and the point C is the next node to B, if we calculate the length and
sign of perpendicular distance of point C to line segment AB then the final
direction can be determined. If the sign of the result is positive(+) then the
command should be ‘‘turn right’’ on the point B (Fig. 10c), otherwise the com-
mand is ‘‘turn left’’ (Fig. 10d). If the calculated distance is zero the instruction
engine produces ‘‘keep going’’ command (Fig. 10e).

Fig. 9 Simulation process of instruction engine

258 U. Atila et al.

6 Conclusions

This paper presented a Java based 3D-GIS implementation which can visualize 3D
building and network models from CityGML format and automate 3D network
definition in Oracle Spatial’s Network Data Model. We showed some samples of
performing 3D network analysis with visualized results supporting both graph
based and geometric constraints applied. We also elaborated a method for pro-
ducing voice commands and visual instructions for assisting people dynamically
on the way to the destination which is intended to be the routing engine infra-
structure of our intelligent evacuation system work in progress. Our experiments
successfully showed that our 3D-GIS implementation could be improved to design
an ideal navigation system for evacuation purpose.

Fig. 10 Determining routing instructions

A 3D-GIS Implementation for Realizing 3D Network Analysis 259

References

Cutter S, Richardson DB, Wilbanks TJ (eds) (2003) The geographical dimensions of terrorism.
Routledge, New York and London, pp 75–117

Gartner G, Huang H, Schmidt M, Li Y (2009) Smart environment for ubiquitous indoor
navigation. In: Proceedings of the 2009 international conference on new trends in information
and service science, Beijing, China, pp 176–180

Gröger G, Kolbe TH, Czerwinski A, Nagel C (2008) Open GIS city geography markup language
(CityGML) encoding standard, version 1.0.0, international OGC standard. Open geospatial
consortium

Jun C, Kim H, Kim G (2009) Developing an indoor evacuation simulator using a hybrid 3D
model. In: Lee J, Zlatanova S (eds) 3D geo-information science. Springer, Berlin, pp 173–178

Karas IR (2007) PhD thesis, Objelerin Topolojik _Ilis�kilerinin 3B CBS ve Ağ Analizi Kapsamında
Değerlendirilmesi. YTÜ FBE Jeodezi ve Fotogrametri Anabilim Dalı Uzaktan Algılama ve
CBS, pp 99–101

Karas IR, Batuk F, Akay AE, Baz I (2006) Automatically extracting 3D models and network
analysis for indoors. In: Abdul-Rahman A, Zlatanova S, Coors V (eds) Innovation in 3D-Geo
Information System. Springer, Berlin, pp 395–404

Kolbe TH (2008) Representing and exchanging 3D city models with CityGML. In: Lee J,
Zlatanova S (eds) 3D Geo-Information Science. Springer, Berlin, pp 15–31

Kothuri R, Godfrind A, Beinat E (2010) Pro oracle spatial for oracle database 11 g. Apress, New
York

Kwan MP, Lee J (2005) Emergency response after 9/11: the potential of real-time 3D GIS for
quick emergency response in micro-spatial environments. Comput, Environ Urban Syst
29:93–113

Musliman IA and Rahman AA (2008) Implementing 3D network analysis in 3D GIS.
International archives of ISPRS, vol 37, part B, comm. 4/4, Beijing, China

Musliman IA, Rahman AA and Coors V (2006) 3D navigation for 3D-GIS—initial requirements.
Innovations in 3D geo information systems, Springer, New York p 125–134

Pu S, Zlatanova S (2005) Evacuation route calculation of inner buildings. In: van Oosterom PJM,
Zlatanova S, Fendel EM (eds) Geo-information for disaster management. Springer,
Heidelberg, pp 1143–1161

Zlatanova S, van Oosterom P and Verbree E (2004) 3D technology for improving disaster
management: geo-DBMS and positioning. In: Proceedings of the 20th ISPRS congress,
Istanbul, Turkey

260 U. Atila et al.

A Three Step Procedure to Enrich
Augmented Reality Games with CityGML
3D Semantic Modeling

Alborz Zamyadi, Jacynthe Pouliot and Yvan Bédard

Abstract 3D representations have been recognized as an essential component of
Augmented Reality (AR) oriented applications. However, not many examples of
AR-oriented applications employ structured 3D data models despite the existence
of standard 3D information models like CityGML. One of the reasons for this
shortcoming can be explained by lack of a semantic-based modeling method for
enriching AR-oriented data models with 3D features. Therefore, a three step
procedure is proposed to address this limitation as (1) back-ward engineering of an
AR-oriented application to its current data model, (2) enriching the current data
model with 3D features, (3) and mapping the enriched model to a standard 3D
information model. A notable contribution of this work is that the procedure of
data modeling has been subject to the UModelAR meta-model which has brought a
complementary standpoint to the employment of 3D geospatial modeling in AR
environments. Furthermore, the 3D enriched data model has been mapped to
CityGML information model with CityGML Application Domain Extension
(ADE) concept. To demonstrate the feasibility of this approach, an operating
mobile AR-oriented game has been used for the case study.

Keywords Augmented reality � 3D model � Semantic � CityGML � Application
domain extension (ADE)

A. Zamyadi (&) � J. Pouliot � Y. Bédard
Département des Sciences Géomatiques, Université Laval, 1055, avenue du Séminaire,
Québec City, QC G1V 0A6, Canada
e-mail: alborz.zamyadi.1@ulaval.ca

J. Pouliot
e-mail: jacynthe.pouliot@scg.ulaval.ca

Y. Bédard
e-mail: yvan.bedard@scg.ulaval.ca

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_15,
� Springer-Verlag Berlin Heidelberg 2013

261

1 Introduction

Augmented Reality (AR) has been defined as a live scene of reality in form of
video streaming being supplemented by adding numeric representations such as
graphics, annotations, images, sounds, videos, and other comments (Azuma 1997;
Milgram et al. 1994). For instance, one can see restaurant names, menus, and
working hours at the corresponding locations using an AR-oriented tourist guide
while walking on a street in an urban area. The AR tourist guide application
augments the live video capture on a user’s smart phone with certain information
which are not accessible to the user on the street unless checking each restaurant
door by door. Indeed, the displayed information (i.e. restaurant names and menus)
are virtual with respect to the user’s observable reality and may appear as markers
(2D or 3D graphics), annotations, or even voice guides.

There are various types of AR-oriented applications like tourist guides such as
Layar,1 games such as ARhrrrr (Oda and Feiner 2010; Yang and Maurer 2010),
urban design and monitoring such as VIDENTE (Schall et al. 2009). Höllerer and
Feiner (2004) have indicated the principal elements of AR-oriented 3D capabilities
as visualization, registration, and interaction. Visualization considers rendering 3D
graphics improving the visual quality of augmentation with rich visualization
features. 3D registration is the ability to comprehend 3D position and orientation
of real world objects and augmentation features respectively to resolve occluding
objects considering observers’ standpoint (e.g. identifying the hidden parts of an
augmenting 3D graphic which are covered by the foremost buildings). 3D inter-
action considers the ability to interact with objects explicitly like retrieving the
information for specific doors or windows of a building. These elements could be
considered as the base for examining and comparing the AR-oriented 3D
perspectives.

For instance, several 3D AR-oriented research initiatives have become subject
to 3D visualization (Schall et al. 2007a; De Souza e Silva 2009; Lee and Park
2005; Liestol 2009; Zlatanova and Van Den Heuvel 2001). Some others AR
prototypes are focusing on 3D data acquisition (Thomas et al. 2010) or 3D reg-
istration (Höllerer and Feiner 2004; Schall et al. 2007a). Finally few AR research
initiatives were interested in data exchange (Badard 2006; Reitmayr and Sch-
malstieg 2003), or advanced behaviour-aware interactions (Harrap and Daniel
2009).

A review of various AR-oriented implementations shows that they have been
mainly about 3D visualization using computer aided design (CAD) formats (Lee
and Park 2005), 3D graphics like 3ds and obj (Liestol 2009), and 3D textual mark-
up formats like KML and X3D (Thomas et al. 2010; Wojciechowski et al. 2004).
However, as suggested by Zlatanova and Van Den Heuvel (2001), the use of
semantics and explicit accessibility to 3D features like geometry and appearance is
a requirement if the accomplishments of full 3D capabilities of AR perspectives

1 http://layar.pbworks.com/w/page/7783211/3D-objects-in-a-layer

262 A. Zamyadi et al.

http://layar.pbworks.com/w/page/7783211/3D-objects-in-a-layer

are considered. Stadler et al. (2009) have indicated that the mentioned 3D sources
from the actual implementations are weak in semantics and explicit definition of
geometries. In response, the use of geospatial database systems (Schall et al.
2007b) and standard semantic information models like CityGML and Building
Information Model (BIM) (Woodward et al. 2010; Hasse and Koch 2010) have
been suggested. But our investigation has shown that the relative experiments are
mainly technology driven and have not been conceptualized for global diffusion to
other developers.

In this context of involving a semantic model with AR applications, one of the
well-known open standards for presenting a structure 3D semantic model, City-
GML, leaded by the Open Geospatial Consortium (OGC), is certainly of interest.
CityGML (Kolbe et al. 2005; OGC 08-007rl 2008) addresses the geometric and
semantic representation of model objects explicitly as well as the appearance
information having in mind the requirements for 3D AR-oriented capabilities.
CityGML has been successfully examined by several types of applications such as
Geographic Information System (GIS), web mapping, and navigation operating in
various domains such as architecture, urban planning, transportation, and tourism
(Dollner et al. 2006; Kolbe et al. 2008; Vanclooster et al. 2009). CityGML has
been also a preferable choice for upgrading existing geospatial- applications from
2D to 3D since CityGML information model is extendible in different ways.

A recent study by Hasse and Koch (2010) has employed an extended adaptation
of CityGML for Electronic Nautical Charts (ENC) alongside an AR engine. The
output of their work has been a CityGML ADE upgrading the pre-known and well
defined 2D thematic model (i.e. ENC) with 3D features. Finally, an AR-oriented
interface has been developed employing the ENC ADE for displaying 3D repre-
sentation of ENC objects and the corresponding electrical information. The actual
tendency in employing 3D representations and CityGML ADE seems sufficient for
visualization aspect of AR and domain specific thematic information. However,
their work does not consider various application oriented needs (e.g. geospatial
game events, constrains and behaviours) and the procedure to equip them with 3D
representations.

Indeed, this paper presents a procedure for enriching an AR application (a game
in our case) with 3D capabilities conforming to AR and 3D geospatial data stan-
dards. Three steps are proposed as a modus operandi. At first, the current data model
of a selected AR game is figured out based on the back-ward engineering of the game
scenario. Second, the data model is extended with the essential AR-oriented 3D
features. An important distinction of this step is that the procedure of data modeling
has been subject to the UmodelAR meta-model which has brought a complementary
standpoint to the adoption of 3D geospatial modeling by AR environments
(Zamyadi et al. 2011). Third, the extended model (now supporting AR-oriented 3D
capabilities) is mapped on the CityGML information model.

A Three Step Procedure to Enrich Augmented Reality Games 263

This work is part of the GeoEduc3D project funded by the Canadian Network of
Excellence—GEOIDE (GEOmatics for Informed Decisions).2 GeoEduc3D is a
major academic project carried out by several Canadian universities aiming at
designing learning-oriented tools that foster enriched and augmented player
experiences in real geographies. Energy Wars Game, one of the outcomes of the
GeoEduc3D Project3, is an award winning educational game prototype (Dumont
et al. 2011) deploying a mobile AR interface in known urban geographies like a
university campus. The current version of Energy Wars Mobile runs a game
scenario (known as Energy Wars mini scenario) and employs 2D geospatial maps,
interacts with 2D coordinates values and allows 3D graphics rendering. Conse-
quently, the current AR interface of the game does not support full 3D capabilities.
However, the final features of the Energy Wars project like interactions with
various parts of buildings such as windows and walls, managing occlusions in the
AR-oriented game area, and interactive computer generated game personas would
benefit from comprehending the semantics and 3D position and orientation of real
world objects and the augmenting features respectively. Thus, the main objective
of the work presented in this paper is to propose an approach for enriching the
Energy Wars mini scenario with 3D features and CityGML semantic modeling.

The paper is organized as follows. Section 2 presents the three step procedure
proposed to enrich the Energy Wars mini scenario. Section 3 offers a discussion
about the experiment, the advantages, and the limits of the proposed approach.
Section 4 concludes this paper and gives the future possibilities ahead.

2 The Three Step Procedure for Enriching an AR Application
with 3D Semantic Modeling

2.1 Back-ward Engineering of Energy Wars Game

As indicated, the Energy Wars Mobile prototype is a learning oriented game which
is played in known urban areas employing an AR interface (Dumont et al. 2011).
The goal of this game is to help teenagers to learn about some of the issues of
energy consumption and Geomatics. At this time, a simple version of this game
has been implemented and tested in Laval University known as Energy Wars mini
scenario. This game is played on a field (i.e. the university campus) where certain
buildings have been provided with energy consumption information. Each team,
consisting of three gamers with different roles and role specific smart phone based
mobile interfaces, must find the buildings with low energy efficiency and earn
enough money to improve their energy consumption coming back to their
whereabouts. Money can be earned by answering to relevant questions about

2 http://www.geoide.ulaval.ca/
3 http://geoeduc3d.scg.ulaval.ca

264 A. Zamyadi et al.

http://www.geoide.ulaval.ca/
http://geoeduc3d.scg.ulaval.ca

energy saving or finding bonuses tagged at different locations on the field. Each
location represents a game hint which might carry one or several questions,
a money bonus, or a money loss. These hints can be observed on the screen of the
smart phone as graphical cubes augmenting the reality and gamers can find out
their content by arriving at their location. The augmented hint cubes can be
observed only by specific gamers (according to the given roles) inside the visibility
range of the gamer. Figure 1 shows a screen shot from the Energy Wars mini
scenario AR-oriented interface.

The current version of the game uses 2D dimensional geospatial representations
for locating buildings (i.e. footprint of the building with 2D coordinate values) and
game hints (i.e. points with 2D coordinate values). Furthermore, the 3D coordi-
nates for each vertex of every graphical cube is stored for every game hint. These
coordinates are used by the rendering engine to create the corresponding 3D
graphics. Since the augmenting cubes are supposed to hover above the ground
surface, the base elevation of each cube (the Z coordinate of the lowest vertices)
has been derived by adding a constant value to the average elevation of the ground
surface of the Laval University campus. The use of the average elevation of
ground surface has been sufficient for the Laval University campus since the target
area on which the game has been tested is flat.

The diagram in Fig. 2 shows the current Energy Wars mini scenario data model
in UML formalism. Since we have not been involved in the implementation of the
Energy Wars mini scenario, this data model is the result of back-ward engineering
and has been created based on the discussions with the developers of the game. In
the current data model, the building whereabouts is spatially described by the
Footprint class which is a part of the building composed of one or several con-
nected line segments. The building energy properties are addressed by the corre-
sponding attributes of the Building class indicating the actual energy consumption
(the Energy Consumption attribute), the classification of energy consumption (the
Energy Efficiency Level attribute and the Energy Efficiency Level domain value),
and the required amount of money for improving the building energy consumption
(the Needed Money attribute). Furthermore, the Game Hint class represents the
Energy Wars mini scenario game hints. The Hint Type attribute defines the type of
the game hint and has three possible values indicated in the Game Hint Type

Fig. 1 Screen shot of energy
wars mini scenario AR
interface with augmented
game hint cubes (image
provided by Energy Wars
mini scenario development
team in Laval University)

A Three Step Procedure to Enrich Augmented Reality Games 265

domain value. The Game Hint class has two components representing the game
hint location (the Punctual Position class) and the coordinates of the augmenting
cube vertices (The Marker class). Finally, the Hint Question class enables storing
the corresponding question of each game hint (Question attribute), the question
right answer (Correct Answer attribute), the wrong choices (Wrong Choice attri-
bute), and the amount of the money that can be earned choosing the right answer
(Question Score attribute).

Based on the current data model, the Energy Wars mini scenario only supports
interactions at certain locations with 2D coordinate values and does not comprehend
the 3D position and orientation of real world objects and the augmenting features
respectively. However, the final features of the Energy Wars project aiming at
interactions with building parts or computer controlled game persona with graphical
augmentation capable of hiding behind real world objects would benefit from them.

2.2 The Basis for Enriching AR-Oriented Games
with 3D Features

The next step in the proposal method aims at enriching the current data model with
essential 3D features comforting to AR. Azuma (1997) has defined three condi-
tions that should be satisfied within an AR environment as:

• combining real and virtual;
• real time interactions at certain coordinates or with certain objects;
• being registered in 3D (i.e. comprehending 3D position and orientation of the

real world objects and the augmenting features).

Accordingly, Höllerer and Feiner (2004) have classified the principal roles of
3D models in AR environments as providing detailed information for visual
rendering, 3D registration of augmenting features, and resolving occluding objects

Fig. 2 The current data model of Energy Wars Mini scenario

266 A. Zamyadi et al.

with (e.g. identifying the hidden part of a game hint which is covered by the
foremost building).

In order to design 3D data models comforting to the aforementioned, Zamyadi
et al. (2011) have suggested meta-modeling as the prerequisite for modeling AR
environments. Meta-model is the structured abstraction of model concepts that
defines the specifications of model components prior to developing new models or
upgrading the existing ones (Caplat 2008). The principal idea has been derived
from the additional features and considerations that exist in AR environment
comparing to the ordinary reality. There are different thematic points of view for
modeling the reality. However, in AR, complementary meanings and relations are
superimposed to the real themes requiring an additional outlook by which 3D
models could adopt AR concepts.

The output of this proposal, named as UModelAR, is a meta-model which has
brought a complementary standpoint to designing 3D semantic models with
respect to AR (Zamyadi et al. 2011). UModelAR follows a top down order for
representing the relation between virtuality and the associated reality in AR
environments trying to bring the perspectives of AR and 3D model conceptual-
izers, developers, and users closer to each other. UModelAR meta-model has
considered the various aspects of data modeling for AR-oriented 3D capabilities
introducing the real and virtual semantics of features, localization of the AR
environment and its conforming geometries. Furthermore, UModelAR defines a
mechanism to create the application specific hierarchies within which the events
and action occur. Such hierarchy is complementary to the common classifications
of real world themes creating various semantic spaces within the AR environment.
UModelAR helps defining the type and order of 3D data model components
considering specific scenario and common AR needs. UModelAR consists of five
packages as (1) Augmented Reality Interface (2) World and Associated Repre-
sentations (3) Acquisition of Physical Reality (4) Model Localization (5) Model
Description.

The following section will present the Energy Wars mini scenario data model
which has been enriched with AR-oriented 3D features mapped on CityGML.

2.3 Mapping the Enriched Data Model
of the Game to CityGML

As mentioned, the Energy Wars mini scenario is a good example of an AR
application which operates in a known urban area. Hence, it has the potential to be
played in various urban locations all around the world (i.e. in any university
campus or city neighbourhood providing 3D geospatial urban representations). On
the other hand, the final features of the Energy Wars project would benefit of
having 3D geospatial supporting data layer. Therefore, the current data model has
been upgraded with the essential AR-oriented 3D features according to the

A Three Step Procedure to Enrich Augmented Reality Games 267

UModelAR approach on modeling AR environments and by exploiting a global
3D geospatial information model (i.e. OGC CityGML standard).

CityGML addresses the thematic properties of city objects alongside their
geometric properties. The base class of all thematic objects is _CityObject (an
abstract class) from which they inherit the basic properties of the CityGML core
module such as Appearance feature and External References to corresponding
objects in external datasets. The actual thematic module of CityGML is composed
of the most relevant urban fields including Digital Terrain Models, Buildings,
Vegetation, Water Bodies, Transportation Facilities, and City furniture. CityGML
can represent objects in five consecutive Levels of Detail (LOD) where objects
become more detailed as LOD increases. In other words, the same object may be
represented by one or several LoDs enabling different degrees of resolution (OGC
08–007rl, 2008; Kolbe et al. 2005).

The UML class diagram in Fig. 3 shows the Energy Wars mini scenario data
model enriched with 3D features from CityGML information model based on the
UModelAR approach on modeling AR environments. The aim of this paper is not
to explain this diagram in detail. But in brief, here are some explanations.

• White Thin-Edge classes are from the current data model. For instance, The
Footprint class corresponds to building outset extent in the Energy Wars mini
scenario around which the associated events occur when the users arrive at its
whereabouts from each building side.

• Gray classes represent the features which have been supplemented according to
UModelAR (i.e. 11 classes). The new Game Element class organizes the Energy
War application theme (i.e. game). This means that game features inherit from
Game Element. For instance:

– The Game Hint class is added under Game Element with two localized fea-
tures (the Punctual Location and Marker classes) and number of descriptive
properties.

– The Hint Question class from the current data model is extended by two
further classes. The new External Question class is used for referring to
questions from external URLs.

– The building energy consumption properties are defined by the _Building
Energy Measure.

– The new Augmentation Appearance class is an AR-oriented feature for
defining the appearance information of augmenting graphics.

• White Bold-Edge classes are CityGML features indicating the corresponding
CityGML ADE extension. Building in Energy Wars is equivalent to the CityGML
Building class that is derived from the CityGML _Abstract Building class.
Therefore, the building energy consumption properties would be added to City-
GML _Abstract Building from the _Building Energy Measure (which is a Gray
class) using the mechanism of extension by super classing. CityGML External
Code Lists is used for defining the domain values. The CityGML Appearance from
the CityGML core module has been used for defining appearance information of

268 A. Zamyadi et al.

the AR environment. The CityGML _CityObject class is associated with the
CityGML Appearance class. Augmentation Appearance (which is a Gray class)
inherits from CityGML Appearance and is exclusively associated with the features
which augment the real scene.

Fig. 3 Energy wars mini scenario data model enriched with 3D features according to
UModelAR approach and mapped to CityGML 3D information model—White Thin-Edge
classes are from the current data model (Step 1). Gray classes have been added according to
UModelAR (Step 2). White Bold-Edge classes are used to map the enriched model to CityGML
(Step 3)

A Three Step Procedure to Enrich Augmented Reality Games 269

3 Discussions

What can we now learn from this three-step procedure for enriching AR-oriented
applications with a structured 3D data model mapped to CityGML data model?
Our experiment allows us to state that:

• The backward engineering aims at creating the corresponding data model behind
the AR application and depends on the original work. A developer needs to be
fully aware of the target AR-oriented application design if having the intention
to enrich it with further 3D features. Since UModelAR has been developed
using UML conforming to the common modeling standards, it is strongly
suggested to use UML formalism for creating the current data model. This
would facilitate UModelAR reasoning and finding the correspondences in
CityGML.

• In agreement with the first condition of Azuma (1997) for creating AR envi-
ronments (i.e. combining real and virtual), it is necessary to classify the AR
features considering their correspondence to the reality before mapping AR
environments to 3D information models like CityGML. Considering CityGML
for example, every localized feature of the AR environment which corresponds
to a real urban object has an equivalent CityGML thematic object or would be
extended in a CityGML thematic module. On the other hand, it is required to
create a new theme from _CityObject for adding the localized features which are
not derived from a real urban object.

• In order to enrich an AR-oriented data model with 3D features, the localized
feature of the AR environment must be identified. However, since localized
features assign various descriptive features like attributes and appearance to the
environment, their spatio-semantic representation should conform to the nota-
bility of their measures (i.e. shape and size). It means that a localized feature
should have an explicit geometric representation such as 0D, 1D, 2D or 3D
primitive/aggregation, if the scale, precession, and accuracy of its location,
shape and size are considered in spatio-semantic computations like occlusion or
interactions. Otherwise, it would be represented by symbols. For instance, in the
new data model the Marker class is associated with 0D to 3D CityGML Explicit
Geometry for permitting multiple interactions with various marker parts or
orientation. It is also associated with CityGML Implicit Geometry for visuali-
zation-only cases. The use of implicit geometry permits using external 3D
graphics like VRML or X3D from any source. This may be preferable for
localized features with duplicating shape like a cube. However, it should be
remembered that each source of an implicit 3D geometry (e.g. VRML or X3D)
has a local spatial reference which would be oriented to the CityGML dataset
global spatial reference by an anchor point and a transformation matrix. For a
mobile scenario with several visual augmentations, the on-the-fly metrical
computations could be a drawback.

• In order to register the interactions and behaviours on AR environment features,
an application theme should be created considering the localization hierarchy of

270 A. Zamyadi et al.

its components partitioning the AR environment. It has been noticed that 3D
localized features create the various spaces where only specific game (appli-
cation) events occur (i.e. UModelAR Space features). Each UModelAR Space
feature, except the top most space (i.e. the global extent of the application) may
partition one or many superior UModelAR Space features. The lowest level of
an application theme hierarchy is the UModelAR Object feature and is not
partitioned any more. It means that no other localized feature is part of an
UModelAR Object feature or no application event is localized inside it. The
UModelAR application theme hierarchical relationships among UModelAR
Spaces/Objects are shown with aggregations in the class diagram and will be
created by GML XLinks for implementation.

– The extent of the game, with respect to the real urban area where the game is
played, is an important UModelAR Space Feature for deciding the spatial
extent and the application theme features and relationships. For example, in
the Energy Wars mini scenario users are only part of the game while they are
within a particular extent. This particular area corresponds to the top most
UModelAR Space feature and is represented by the new Game Area class.
Furthermore, users can not enter buildings and there is no specific event that
occurs inside buildings. Therefore, Building class corresponds to an
UModelAR Object feature and is directly related to the Game Area class with
an aggregation. Likewise, Game Hint is an UModelAR Object feature. The
Game Hint must be part of a superior UModelAR Space feature having in
mind that game hints cannot situate on buildings. This UModelAR Space
feature is represented by the new Land Cover class in the new data model.

• If the interactions (e.g. game events) are immersive in a way that user position
becomes an event or constrain handler, the position of user (e.g. gamer) should
be explicitly defined as a localized feature. For instance in the Energy Wars mini
scenario, the visual augmentation of game hints is determined according to
various user positions who may have different roles. Considering the importance
of the hierarchical partitions where game event can occur, Land Cover is the
only partition of the Game Area that users can traverse. Therefore, the Gamer
class corresponds to UModelAR Object feature whose superior UModelAR
Space feature is Land Cover. Since Gamer is only part of Land Cover partition it
can only interact with other parts of the Game Area that are part of Land Cover
(like Game Hint) or are adjacent to it. Indeed, the definition of UModelAR
Space and Object features would help to indicate the topological relationships of
the AR environment as well.

• An AR-oriented data model may include number of localized features who are
not part of the application theme but would be useful to improve the sensitivity
of the computer based system to the surrounding reality. Such features are
preferred to be explicitly presented avoiding symbols. In this case study, Street
is not part of the game scenario but could improve the awareness of the system
by its presence, like by warning the users about the possible dangers as they
enter the street area.

A Three Step Procedure to Enrich Augmented Reality Games 271

• The geometric representation of various localized features of an AR environ-
ment may require different resolution with respect to AR-oriented application
needs and the target 3D standard (e.g. CityGML).

– The Punctual Location class of the new data model is mapped to CityGML by
LOD-0 to LOD-2 Point with the horizontal and vertical accuracy varies
between 2 and 5 m. However, the LOD-0 3D point accuracy (around 5 m)
would be sufficient for a mobile scenario.

– In the current data model the augmentation component of the Game Hint (the
Marker class) is limited to a box like cube. In the new data model the Marker
class may be associated with either CityGML Explicit Geometry or CityGML
Implicit Geometry, both from LOD-0 to LOD-3. An LOD-3 Marker permits
various parts with different interactive or appearance capabilities (e.g. buttons
on different sides of the marker) while an LOD-1 marker is limited to a box
like shape.

– The most relevant CityGML concept to building footprint is the CityGML
Terrain Intersection Curve (TIC) denoting the exact position where the
building touches the earth surface. Therefore, the Footprint class is by TIC
concept. However, with the current version of CityGML it is essential to have
an LOD-1 TIC since LOD 0 is not permitted.

• The package diagram in Fig. 4 shows the Energy Wars mini scenario CityGML
ADE package diagram as the sketched arrows mark the dependencies to City-
GML modules. Dependencies occur when classes from a package are related to
or derived from classes of another package. The direction of the arrow indicates
the direction of dependency. The Energy Wars mini scenario CityGML ADE
has dependencies to the CityGML Core, Building, Land Use, and Transportation
modules. According to this resolution, The Energy Wars mini scenario game can
be implemented in every urban area around the world which has been presented
by CityGML datasets improving the portability, interoperability, and reusability
of existing resources. Such game (application) can be played in any of such
places without any change. For instance, the gamer may connect to Delft
CityGML model as soon as arriving there and play the game as he/she has been
playing in Quebec City.

Fig. 4 The dependency model of energy wars mini scenario 3D extensions to CityGML

272 A. Zamyadi et al.

4 Conclusions and Future Work

In this paper we proposed a three step procedure to enrich the Energy Wars mini
scenario with a structured 3D data model based on CityGML. At first, the back-ward
engineering step permitted us to know the current data model behind the game. The
current data model has shown the missing presence of 3D representations. Therefore,
the current data model has been subject to the UModelAR meta-model analysis
during the second step for being enriched with 3D features. In the third step, the
enriched data model has been mapped to CityGML information model.

For the given case study, the presented steps became feasible in a two week
effort which is promoting for the test on other cases. Indeed, it must be remem-
bered that we have been working on the AR-oriented 3D perspectives. If a
developer intends to follow our three-step procedure, practical experience with
data model conceptualization, 3D representations, and AR domain would be an
advantage. Besides, a very important base of the three-step procedure is the
UModelAR meta-model conducting the AR-oriented 3D feature modeling.
Therefore, the relevant documentation is required to be studied. Accordingly, this
procedure has been encouraging since the outcome of UModelAR analysis facil-
itated identifying the required 3D features and mapping to CityGML information
model. However, the developers should be noticed that UModelAR is being used
to ensure that the developed data model conform to AR-oriented 3D requirements
and does not rate the developed model.

CityGML has shown enough completeness and flexibility for supporting these
features either by its original thematic modules and objects or the ADE concept.
However, the developers may have a difficulty to choose between CityGML ADE
and CityGML Generic Objects and Attributes for cases in the third step (e.g. Game
Hint and _Hint Question classes which are member of the known thematic clas-
sifications). In order to resolve such difficulty, it should be remembered that the
outcome of the second step of the procedure is an AR-oriented 3D data model
indicating the game specific hierarchy of 3D features being reused in every
instance of the game. Accordingly, CityGML ADE looks as the appropriate choice
for mapping the 3D data model from the second step on CityGML for two reasons.
First, ADE permits structured additions to CityGML which are portable and
reusable. Second, ADE extensions are formally specified and can be validated
against CityGML and respective schemas.

The next step ahead is the implementation of the enriched data model for
Energy Wars mini scenario. The 3D model of the game area in the target 3D
standard dataset format (e.g. CityGML) is the basic requirement to implement the
output of the three-step procedure. The additional features (under Game Element
class in Fig. 3) would be implemented conforming to the target 3D standard
(e.g. the complementary XML). In order to examine the functionality of the output
model, it is recommended to create the additional features dataset (the Game
Element namespace) and run the application in various locations with separate
CityGML datasets. After validation phases, one of the outcome could be a new

A Three Step Procedure to Enrich Augmented Reality Games 273

CityGML-based application schema for AR game, that is an important market for
promoting the use of such semantic model. Indeed, CityGML is becoming more
popular worldwide and such perspective would be a benefit to both 3D modeling
and AR game community. At the same time being in contact with OGC would help
us disseminate our results.

Finally, we are also interested to verify the achieved portability, and reusability of
the proposed approach in testing its implementation for other case studies. All we need
is an AR-oriented application functioning in urban areas (demanding AR 3D capa-
bilities), the corresponding technical documentations for the application theme and
design, and the 3D model of the target area (in CityGML dataset format or convertible
to that). Furthermore, it would be possible to follow the three-step procedure and run
the application in various locations which provide CityGML 3D model.

Acknowledgments This study was done part of GeoEduc3D project, a research initiative funded
by the Canadian Network of Excellence—GEOIDE (GEOmatics for Informed Decisions).
Accordingly we wish to thank all scientific and industrial partners, the Geomatics Department
and Centre de Recherche en Géomatique (CRG) at Laval University for their supports. We also
thank Thomas Butzbach from the developers of the Energy War mobile game for helping us with
procedure of back-ward-engineering.

References

Azuma R (1997) A survey of augmented reality. Tele-operators Virtual Environ 6:355–385
Badard T (2006) Geospatial service oriented architectures for mobile augmented reality. In:

Proceedings of the 1st international workshop on mobile geospatial augmented reality, Banff,
Canada, pp 73–77

Caplat G (2008) Modèles & métamodèles. Presses polytechniques et universitaires romandes,
France

De Souza e Silva A (2009) Hybrid reality and location based gaming: redefining mobility and
game spaces in urban environments. J Simul Gaming 40:404–424

Dollner J, Baumann K, Buchholz H (2006) Virtual 3D city models as foundation of complex
urban information spaces. In: Proceedings of CORP 2006 and Geomultimedia 06, Vienna,
Austria

Dumont M-A, Power MT, Barma S (2011) GéoÉduc3D: Évolution des jeux sérieux vers la
mobilité et la réalité augmentée au service de l’apprentissage en science et technologie. Can J
Learn Technol 37:2

Harrap R, Daniel S (2009) Mobile LIDAR mapping: building the next generation of outdoor
environment model for augmented reality. In: IEEE international symposium on mixed and
augmented reality (ISMAR), Let’s go out workshop, Orlando, Florida, USA. Available at:
https://www.icg.tugraz.at/*reitmayr/lgo/harrap_lidar.pdf

Hasse K, Koch R (2010) Extension of electronical nautical charts for 3D interactive visualization
via CityGML. In: Proceedings of GeoInformatik 2010, Germany

Hollerer T, Feiner S (2004) Mobile augmented reality (Chapter nine). In: Karimi H, Hammed A (eds)
Telegeoinformatics: Location-Based Computing and Services. Taylor & Francis books ltd,
London

Kolbe TH, Gröger G, Plümer L (2008) CityGML—3D city models and their potential for
emergency response. In: Geospatial information technology for emergency response. Taylor
& Francis Group, London

274 A. Zamyadi et al.

https://www.icg.tugraz.at/~reitmayr/lgo/harrap_lidar.pdf

Kolbe TH, Gröger G, Plümer L (2005) CityGML—Interoperable access to 3D city models. In:
Van Oosterom P, Zlatanova S, Fendel E M (eds) Proceedings of the international symposium
on geo information for disaster management. Springer, pp 883–899

Lee W, Park J (2005) Augmented foam: a tangible augmented reality for product design. In:
Proceedings of 4th IEEE and ACM international symposium on mixed and augmented reality.
Vienna, Austria, pp 106–109

Liestol G (2009) Situated simulations: a prototyped augmented reality genre for learning on the
iPhone. Int J Interact mobile Technol 3:24–28

Milgram P, Takemura H, Utsumi A, Kishino F (1994) Augmented reality: a class of displays on
the reality-virtuality continuum. In: Proceedings of telemanipulator and telepresence
technologies, vol 2351. pp 282–292

Oda O, S Feiner (2010) Rolling and shooting: two augmented reality games. In: Proceedings of
the 28th international conference on human factors in computing systems. Atlanta, USA,
pp 3041–3044

OGC 08-007rl (2008) OpenGIS� city geography markup language (CityGML) encoding
standard. Groger G, Kolbe TH, Czerwinski A, Nagel C (eds) Open Geospatial Consortium Inc

Reitmayr G, Schmalstieg D (2003) Data management strategies for mobile augmented reality. In:
Proceedings of international workshop on software technology for augmented reality systems
(STARS). Tokyo, Japan, pp 47–52

Schall G, Mendez E, Kruijff E, Veas E, Junghanns S, Reitinger B, Schmalstieg D (2009)
Handeheld augmented reality for underground infrastructure visualization. Pers Ubiquit
Comput 13:281–291

Schall G, Mendez E, Junghanns S, Schmalstieg D (2007a) Urban 3d models: what’s underneath?
Handheld augmented reality for subsurface infrastructure visualization. In: Proceedings of
Ubicomp 2007. Springer

Schall G, Junghanns S, Mendes E, Schmalstieg D, Reitinger B (2007b) Handheld geospatial
augmented reality using urban 3d models. In: Proceedings of the workshop on mobile spatial
interaction, ACM international conference on human factors in computing systems, San Jose,
USA

Stadler A, Nagel C, König G, Kolbe TH (2009) Making interoperability persistent: a 3D geo
database based on CityGML. In: Jiyeong L, Zlatanova S (eds) Lecture notes in geoinfor-
mation and cartography. Proceedings of the 3rd international workshop on 3D geo-
information, Seoul, Korea, pp 175–192

Thomas V, Daniel S, Pouliot J (2010) 3d modeling for mobile augmented reality in unprepared
environment. In: Kolbe TH, Koing G, Nagel C (eds) Proceedings of 5th international 3D
GeoInfo conference, Berlin, Germany

Vanclooster A, Maeyer PD, Fack V (2009) Implementation of indoor navigation networks using
CityGML. In: Proceedings of the 4th international workshop on 3D Geo-Information, Ghent,
Belgium

Wojciechowski R, Walczak K, White M, Cellary W (2004) Building virtual and augmented
reality museum exhibitions. In: Proceedings of the 9th international conference on 3D web
technology, Monterey, USA, pp 135–144

Woodward C, Hakkarainen M, Rainio K (2010) Mobile augmented reality for building and
construction: software architecture. In: Proceedings of mobile AR Summit at the 9th IEEE
international symposium on mixed and augmented reality, Seoul, Korea

Yang J, Maurer F (2010) Literature survey on combining digital tables and augmented reality for
interacting with model of human body. Technical report. University of Calgary, Calgary,
Canada

Zamyadi A, Pouliot J, Bédard Y (2011) Improving the interoperability of 3D models among
augmented reality systems: Proposal for a meta-model. In: Proceedings of the joint ISPRS
workshop on 3D city modelling and applications and the 6th 3D GeoInfo Conference. In: The
China academic journals electronic magazine. Wuhan, China

Zlatanova S, Van Den Heuvel FA (2001) 3D city modeling for mobile augmented reality. In:
Proceedings of CIPA 2001 symposium, Potsdam, Germany

A Three Step Procedure to Enrich Augmented Reality Games 275

Implementation of a National 3D
Standard: Case of the Netherlands

Jantien Stoter, Jacob Beetz, Hugo Ledoux, Marcel Reuvers,
Rick Klooster, Paul Janssen, Friso Penninga, Sisi Zlatanova
and Linda van den Brink

Abstract This paper describes the motivation and problem statements as well as
the ongoing investigations regarding the follow-up activities of the 3D Pilot NL.

J. Stoter (&)
Kadaster, Hofstraat 110, 7311 KX Apeldoorn, The Netherlands
e-mail: jantien.stoter@kadaster.nl, j.e.stoter@tudelft.nl, j.stoter@geonovum.nl

J. Stoter � H. Ledoux � S. Zlatanova
OTB, GISt, Delft University of Technology, Jaffalaan 9, 2600AA Delft, The Netherlands
e-mail: H.Ledoux@tudelft.nl

S. Zlatanova
e-mail: S.zlatanova@tudelft.nl

J. Stoter � M. Reuvers � P. Janssen � L. van den Brink
Geonovum, Barchman Wuytierslaan 10, 3818 LH Amersfoort, The Netherlands
e-mail: m.reuvers@geonovum.nl

P. Janssen
e-mail: p.janssen@geonovum.nl

L. van den Brink
e-mail: I.vandenbrink@geonovum.nl

J. Beetz
Design Systems Group, Department of the Built Environment, Eindhoven University
of Technology, 5612 AZ Eindhoven, The Netherlands
e-mail: j.beetz@tue.nl

R. Klooster
Geo-information Department, Municipality Apeldoorn, Marktplein 1,
7311 LG Apeldoorn, The Netherlands
e-mail: R.klooster@Apeldoorn.nl

F. Penninga
Geo-information Department, Municipality The Hague, Spui 70,
2511 BT Den Haag, The Netherlands
e-mail: f.penninga@denhaag.nl

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_16,
� Springer-Verlag Berlin Heidelberg 2013

277

This pilot is a large collaboration in the Netherlands aiming at pushing 3D devel-
opments in the Netherlands. The first phase resulted in a national 3D standard,
modeled as CityGML Application Domain Extension. Some insights obtained
during this phase are sufficiently mature to be anchored in practice such as main-
taining and further developing the 3D standard by Geon ovum and the provision of
a countrywide 3D midscale base dataset which is currently under study at the
Kadaster. Other results need further attention in a collaborative setting, specifically
how the new 3D standard works in practice. This is currently being further explored
in a second phase of the 3D Pilot in which over 100 organizations are participating.
The goal of the follow-up pilot is more focused than the first pilot and aims at
writing best practice documents by joint effort of the 3D Pilot community. The best
practice documents are based on tools and techniques that are being developed for
supporting the implementation of the 3D standard. Specific attention is being paid
how to align City GML to the standard in the BIM (Building information Model)
domain (IFC). Initial findings and work in progress are presented.

Keywords 3D city and landscape models � 3D standard � City GML

1 Introduction

Over the past 10 years technologies for generating, maintaining and using 3D geo-
information have matured. In addition many local governments have 3D models of
the city, a large number of companies are providing services for constructing 3D
models, and universities and research organisations are investigating 3D technolo-
gies (3D re-construction, data management, validation and visualisation). Yet many
(governmental) organisations face numerous challenges in introducing 3D appli-
cations and technologies in their day-to-day processes. Despite the practical diffi-
culties, it is clear that 3D information is becoming increasingly important in many
applications. These developments motivated a pilot in the Netherlands to advance the
use of 3D in this country. The pilot was initiated by the Dutch Kadaster, Geonovum
(the National Spatial Data Infrastructure executive committee in the Netherlands
which develops and manages the geo-standards), the Netherlands Geodetic
Commission (NCG) and the Dutch Ministry of Infrastructure and Environment.

From January 2010 until June 2011 a uniform approach for acquiring, main-
taining and disseminating 3D geo-information has been explored in collaboration
between over 65 stakeholders in The Netherlands (Stoter et al. 2011a). A major
result of the pilot was the proof of concept for a 3D Spatial Data Infrastructure
(SDI), covering issues on the acquisition, standardisation, storage and use of 3D
data. The findings of the pilot were formally established in a national 3D standard
realised as a CityGML Application Domain Extension. The ADE completely
integrates the OGC CityGML Encoding Standard (OGC 2008, 2012) with a new
version of the existing national Information Model for Geo-information

278 J. Stoter et al.

(called IMGeo; described in IMGeo 2007). IMGeo contains object definitions for
large scale representations of roads, water, land use/land cover, bridges, tunnels
etc. and prescribes 2D point, curve or surface geometry for all objects. As the new
version of IMGeo is completely integrated with CityGML, (see Fig. 1), IMGeo
version 2.0 also facilitates extensions to 2.5D representations (i.e. as height sur-
faces; equivalent to CityGML LOD0) and 3D (i.e. volumetric; i.e. CityGML
LOD1, LOD2 and LOD3) representations of the objects according to geometric
and semantic principles of CityGML.

The close integration between an existing information model for 2D geo-
information and CityGML is an important step toward the practical use and re-use
of 2D and 3D information. Further technical details about the ADE are reported in
van den Brink (2012a, b).

Although the 3D standard is an important prerequisite for further 3D devel-
opments, wide use of 3D is still not common practice in the Netherlands. Further

Fig. 1 TunnelPart AD element with 2D geometry

Implementation of a National 3D Standard 279

advances are required to assure that 3D Pilot results are implemented in actual
applications. Therefore the follow-up activities have been started to make the
results of the 3D Pilot further ready for practice.

These activities are described and justified in this paper. The main purpose of
the paper is to describe the motivation and problem statements as well as ongoing
investigations regarding the follow-up activities. On the one hand these activities
elaborate on findings that are sufficiently mature to be picked in daily processes of
governmental organisations (Sect. 2). On the other hand, these activities focus on
further research within a similar collaborative and experimental environment as
the first phase of the 3D Pilot. Section 3 describes the motivations and method-
ology of the second phase of the 3D Pilot and details the six activities. Initial
conclusions and work in progress are finally described in Sect. 4.

It should be noted that main focus of this paper is on the construction and
maintenance of 3D spatial data to support the national 3D SDI. The use of 3D data
in applications was studied during the first phase of the 3D Pilot. Demonstrations
of the use cases can be found at Geonovum (2012c).

2 Topics Ready for Practice

The pilot identified three main topics that are ready to put into practice in order to
support further 3D developments.

Firstly, to assure that the established 3D standard NL serves as solid base for 3D
innovations, the standard needs to be maintained as well as to be improved based
on new insights. This is done by Geonovum and also includes studying extensions
of other domain models with the notion of 3D if appropriate.

Secondly, besides the need for a national 3D standard, the pilot showed the
need for a nationwide 3D base dataset. This dataset can serve as reference for
(new) 3D information in the 3D virtual world and as a basis for 3D planning and
management of public space, and can be further refined when a 3D project
develops. Many large municipalities have 3D data sets, but these are specifically
acquired for the territory of the city and in various formats and resolutions. The
pilot has shown promising results for generating a 3D national topographic dataset
as combination of 2D topography with high-resolution laser data, based on work of
participants. Currently those results are extended to generate a national 3D
topographic dataset covering the whole of the Netherlands in collaboration
between University of Twente, Delft University of technology and the Kadaster
(who also holds the national mapping agency).

The high-resolution data used to generate the 3D base dataset is AHN2: the
National Height model of the Netherlands, obtained by airborne LiDAR systems
with an average point density of 10 points per square meter. Two 2D topographic
data sets are candidates for automated extension into 3D to obtain a complete 3D
data coverage of the Netherlands: the large scale base data modelled according to
IMGeo and TOP10NL data.

280 J. Stoter et al.

As mentioned before, the new version of the model IMGeo (focusing on scale
1:500–1:1000) has recently been established. It is expected that providers of this
data—municipalities, water boards, provinces, ProRail (the manager of Dutch
railway network infrastructure) and Rijkswaterstaat (Dutch Ministry for infra-
structure)- will produce the data from 2015 onwards. The second candidate for the
national 3D dataset (TOP10NL) is being maintained by the Netherlands’ Kadaster
and is available since 2005. This dataset is currently being used to generate a
nationwide 3D base dataset.

The reason to focus first on the TOP10NL is not only because it is available
nationwide. This less detailed scale is also better suitable for 100 % automated 3D
object reconstruction since it is less demanding concerning 3D details. Conse-
quently it was decided that 3D TOP10NL is the best option to generate and
disseminate a nationwide 3D base dataset in a limited amount of time. This is
currently realised by in collaboration between University of Twente and the
Kadaster, see Fig. 2.

Finally, the accomplished network is considered crucial for further 3D devel-
opments in the Netherlands. Therefore the network is being maintained and sup-
ported by social media and further expanded by a continued facilitation of the 3D
test bed (Stoter et al. 2011b) and through regular 3D symposia where organisations
exchange ideas and experiences regarding 3D applications.

3 3D Pilot NL Phase II

In the development process of CityGML ADE IMGeo 2.0 a number of topics were
identified that requires further attention before the standard can be widely
implemented.

Fig. 2 First results of 3D TOP10NL (Oude Elberink 2010)

Implementation of a National 3D Standard 281

Firstly, more research is needed to understand how the national 3D standard
works in practice including the consequences of this new modelling method for
IMGeo when used for both 2D and 3D datasets, e.g. how to preserve the links
between the different Levels of Detail (LODs) and how to upgrade 2D LOD to
higher LODs. Also, knowledge is required on the ability to use 3D IMGeo data in
CityGML-aware software, i.e. whether software systems are compatible with our
extensions and which changes are necessary? Finally more research is needed
concerning the creation and management of CityGML-IMGeo data. Which
methods can be used to generate CityGML-IMGeo data? How should this data be
validated and maintained?

These open issues are currently being studied in a follow-up project of the 3D
Pilot. A pilot setting is again used because the first pilot has shown that funda-
mental 3D innovations can best be realised by an intensive collaboration of
research institutes, private and public organisations. These organisations all pos-
sess unique knowledge and experiences that need to be brought together to
accomplish 3D innovations. Also further agreements between many stakeholders
are necessary for advances in 3D.

The goal of the follow-up pilot is more focused than the first pilot and aims at
writing best practice documents by joint effort of the 3D Pilot community. The
best practice documents are based on tools and techniques that are being devel-
oped for supporting the implementation of the 3D standard. Specific attention is
being paid how to align CityGML to the standard in the BIM (Building infor-
mation Model) domain (IFC).

In summer 2011 a new call was launched responded by over 100 organisations.
These organisations, listed at Geonovum (2012b), are currently executing the six
activities of the second 3D Pilot NL. The activities, including background,
motivations and work in progress, will be further explained in the remainder of this
section and are:

1. Generating example 3D IMGeo data for several levels of detail and classes
2. Writing example tendering documents for creating 3D information
3. Designing and implementing a 3D validator
4. Describing a generic approach for maintenance, update and dissemination of

3D IMGeo data
5. Collecting examples of 3D killer applications
6. Align CityGML and IFC/BIM

3.1 Generating Example 3D IMGeo Data

To understand how IMGeo works for the integrated 2D and 3D approach example
3D IMGeo data is being built and made available to wider audiences. The example
data is also used to check whether CityGML compliant software is capable to
understand the 3D IMGeo data. The example data will be specifically useful to:

282 J. Stoter et al.

• Obtain insights into the 3D aspect of our approach including different LOD’s,
i.e. for buildings the LOD concept is well-defined, but how does the LOD
concept applies to other object such as trees, see Fig. 3;

• Provide the possibility for third (new) parties to experiment with 3D IMGeo
data;

• Provide test data for 3D validation tests (see Sect. 3.3);
• Show how the standard is interpreted when applied to real data (helpful for

future data providers).

3.1.1 Test Area

In the previous 3D Pilot the test area was located in the City of Rotterdam. For this
phase we selected a test area which is more familiar to an average municipality:
situated in the municipality of Den Bosch (southern part of The Netherlands)
containing a usual living area with common houses, a river and a bridge:

The source data that has been made available on the 3D Pilot data server
(hosted by the Delft University of Technology) are:

• IMGeo compliant 2D data (see Fig. 4a, provided by the municipality of Den Bosch;
• Stereo photos (30 march, 2011), 10 cm resolution, provided by the municipality

of Den Bosch;
• Point cloud (3 points per m2), DTM&DHM, date: April 2009, provided by the

municipality of Den Bosch;
• High resolution laserdata (selected from a data set available for the whole country:

Actueel Hoogtebestand Nederland, AHN), provided by Het Waterschapshuis;
• Ortho photos (provided by Cyclomedia);
• High resolution point cloud obtained from terrestrial laser scanning (by Cobra,

see Fig. 4b
• Point clouds generated from aerial photographs (Imagem)
• Oblique photos (Slagboom en Peeters)

LOD1

LOD2

LOD3

Fig. 3 LOD concept applied
to trees (Clement 2011)

Implementation of a National 3D Standard 283

To get thorough insight into the key aspects of 3D IMGeo data including how
the LOD concept applies to several themes and how these data can be created
accordingly, the following 3D information will be created:

• LOD3 of a selected number of buildings as combination of AHN2, stereo
photo’s, texture information and 2D IMGeo data;

• LOD3 of both the bridge and the lock situated in the test area (see Fig. 5a, b);
This is being done by the company ‘‘Coenradie’’. The modelling of the bridge
are visualised in Fig. 5c and d.

• LOD0 of the complete test area (as combination of AHN2 and 2D IMGeo);
• LOD1 of all buildings in test area (as combination of AHN2 and 2D IMGeo);
• LOD2 of city furniture (traffic signs);
• LOD2 of trees;
• LOD3 of a selected number of points of interest.

During the work of activity 1, decisions have to be made and tips and tricks will
be formulated. These experiences gained from the technical operation of IMGeo
2.0 will be supportive for future use and creation of 3D IMGeo data. And this will
be important input for the example tendering documents (Activity 2).

3.2 Tendering Documents for Creating 3D Information

Usually a municipality will outsource the 3D data acquisition for 3D IMGeo data.
For most municipalities 3D is a new domain and example-tendering documents
may help them to precisely specify what to ask the market. In a next step, when the
data is delivered, the specifications can be used as acceptance criteria, i.e. to check
the quality of the data. For private companies these documents are helpful since
they both clarify and unify the demand for their services.

Apart from the experiences gained from building example data (activity 1), the
tendering documents will be based on experiences of cities that have already invested
in 3D city models, i.e. The Hague and Rotterdam. Both cities faced difficulties in

Fig. 4 Example source data available for the 3D Pilot test area. a 2D IMGeo data. b High
resolution laser data, obtained by terrestrial laser scanning

284 J. Stoter et al.

comparing offers from different companies because the specifications appeared to be
interpretable in several ways and this also caused problems in setting up acceptance
criteria for the delivered product. The result is that the CityGML datasets differ
between the two cities but it is not always clear whether this was intended.

Since the example tendering documents will be a joint effort of the 3D pilot
community, they will be based on knowledge, interests and experiences of
research institutes, private and governmental organisations and not only based on
the information available at the bidder as currently practiced.

Several variants of the tendering documents are possible based on the available
source data (i.e. point clouds or high resolution photographs) and the ambition
level (i.e. which information at which LOD).

3.3 Design and Implementation of a 3D Validator

A validator is necessary as an independent tool to verify whether a dataset is
compliant with IMGeo 2.0, or not. This also applies for the 3D extensions. When
validating objects, it is necessary to validate both the semantics and the geometry.
The former is according to the classes of CityGML and/or of the IMGeo exten-
sions, and the latter is according to the international specifications (e.g. ISO19107
and GML). Geonovum has already built a validator for IMGeo datasets [the
software is available as open source software, see Geonovum (Geonovum 2012a)],
but it is only for two-dimensional primitives.

Fig. 5 Objects in test area to be modelled at CityGML LOD3. a Bridge. b Lock. c Point cloud of
the bridge. d Model of the bridge (in progress)

Implementation of a National 3D Standard 285

This activity primarily studies which functionalities are necessary to validate
the geometry of 3D solids. During the first 3D Pilot we have noticed that several
real-world datasets have objects that appear to be valid when looking quickly at
them, but in reality they are not. Figure 6 shows two examples. These (often small)
problems prevent users from, for instance, convert their objects to other formats
(including BIM and CAD formats, see Sect. 3.6) and also to analyse them (the
volume of an invalid solid could be impossible to calculate).

While different definitions of a valid 3D object are used in different disciplines,
we focus on the definition given in the ISO standards (ISO 2003) and implemented
with GML (OGC 2007). A GML Solid: ‘‘The extent of a solid is defined by the
boundary surfaces as specified in ISO 19107:IS0 2003. gml: exterior specifies the
outer boundary, gml: interior the inner boundary of the solid’’ (OGC 2007).
Without going into all the details, we can state that a solid is represented by its
boundaries (surfaces), and that like its counterpart in 2D (the polygon), a solid can
have ‘holes’ (inner shells, or cavities) that are allowed to touch each others, or the
outer boundary, under certain circumstances. To be considered a valid solid, a
solid must fulfil several properties. The most important are: (1) it must be simple
(no self-intersection of its boundary); (2) it must be closed, or ‘watertight’; (3) its
interior must be connected; (4) its boundary surfaces must be properly oriented; (5)
its surfaces are not allowed to overlap each other.

We are currently building an open-source 3D validator. This is because none of
the surveyed GIS packages that provide functionalities for validating 3D objects
was fully compliant with the definition of the ISO. Our validator is based on the
work of Ledoux et al. (2009) and is ISO-compliant. It uses advanced data struc-
tures and operations to analyse the topological relationships between 3D objects.
Furthermore, it will be built as an extension to the current validator for 2D
(developed by Geonovum) so that the geometry of 3D objects can be taken into
account while using the same website with the same workflow.

Finally, other validation issues will be investigated. We plan to investigate the
validation of not only solids, but also 3D MultiSurfaces as these are often used
(buildings are often modelled without the ground floor for instance).

Fig. 6 Two real-world invalid buildings

286 J. Stoter et al.

3.4 Maintenance, Update, Visualisation and Dissemination
of 3D IMGeo

After having invested in a good 3D model, the next question is how to maintain
and update the model. Can mainstream DBMSs be used? How to update: inte-
grated with the existing data processes, renewed creation when the 2D data
changes or a mix of both? For the maintenance of the data it is a relevant question
how to guarantee that 3D IMGeo data remains synchronized with the 2D data. The
challenge differs if the 3D data is managed separately from 2D (how to maintain
3D data? In a 3D spatial DBMS?) or generated on the fly.

An important first step is to obtain more insight into how CityGML data
encoded in CityGML files can be maintained and updated.

Therefore a challenge was organized in order to study the state-of-the-art of 3D
editing in commercial software. Four neighboring CityGML data sets (courtesy of
the Municipality of The Hague) were provided and the following challenges were
defined:

In addition to these challenges it was mentioned that it was up to the vendors to
decide in which environment or format the actual edits were made, as long as both
input and output were in CityGML format without any loss of data.

1. Integration of CityGML files

Create one 3D model of the four adjacent neighbourhoods by integrating
the eight CityGML files. The resulting 3D model can either be stored in a
database, a CityGML file or another file format (without loss of
information).

2. Editing in CityGML files

File 13_buildings.xml contains a building with id {B65F9980-76C8-4F8C-
8449-243FE4FD168E}. Select this building, add another storey on top of it
and save the results in another CityGML file

3. 3. Enrichment of CityGML files from other sources

File 12_buildings.xml contains o.a. the ‘‘Binnenhof’’ in The Hague
(houses of parlement) in CityGML format. Show how the two more
detailed KMZ models of the Binnenhof can be used to enrich the CityGML
files and save this enriched model as a CityGML files.

4. 4. Bonus question

For those vendors that encounter no problems with the challenges above:
pick a more complex operation and demonstrate this

Implementation of a National 3D Standard 287

Up till now the following companies demonstrated their capabilities: StrateGis,
Toposcopie, CPA Systems, Safe and Bentley. Results and findings are presented in
the remainder of this subsection.

3.4.1 StrateGis—Gebiedsontwikkelaar

StrateGis is a Dutch company, founded in 2006, focusing mainly on decision
support systems for urban planning. Their system ‘‘Gebiedsontwikkelaar’’ (which
roughly translates as ‘‘Space developer’’) supports interactive planning and pro-
vides insight in the costs and benefits of different versions of plans. Although
originally based on Microsoft Excel, with the emphasis on financial consequences,
StrateGis now also supports 3D planning. The 3D modeling module is based on
Sketch Up.

Challenge Results

Importing the separate citygml files turned out to be a straightforward operation,
although it took a significant amount of time (30–60 min). Since the Ge-
biedsontwikkelaar incorporates the SketchUp API for editing, the challenges on
building edits and KMZ texturing were easy. Exporting the results back to City-
GML is also possible with the export to citygml functionality of Sketch Up. So
from a modelling point of view the Gebiedsontwikkelaar does not offer any
additional functionality over Sketch Up, But the product enables financial analysis
based on the 3D model of The Hague, although it turned out to be rather time
consuming. Outputs are visualized in Fig. 7.

3.4.2 Toposcopie—Toposcopie

Toposcopie is a small Dutch company that has developed 3D modelling software
based on terrestrial photogrammetry, using inexpensive regular cameras. Already
in 2007 the support of CityGML was added to te existing VRML support.

Challenge results

The Toposcopie module Append is designed for this purpose. As a result, inte-
grating the CityGML files was easy.

Toposcopie also uses SketchUp for 3D edits. Two different approaches were
selected for this challenge. This first option is to separate the specific building from
the CityGML file and import only this building into Sketch Up. After editing, the
results are exported to CityGML format and integrated in the CityGML file.
Although this approach is the fastest, it does require specific knowledge of City-
GML in order to be able to separate and later integrate the specific building. The
second option does not require specific CityGML knowledge, as it converts the
entire file into Sketch Up. After editing it converts the entire file back into City-
GML format. Although easier, it is obviously more time consuming.

288 J. Stoter et al.

This time the KMZ is directly imported into SketchUp and than exported
together with the 3D model exported to CityGML. In order to position the KMZ-
model Toposcopie uses its module Convert And Translate KML.

Although the conversions between CityGML and Sketch Up include the ID’s it
has to be checked whether the other attributes are also preserved during these
conversions. Outputs are visualized in Fig. 8.

3.4.3 CPA Systems—SupportGIS

CPA systems is a German company that focuses on OGC compliant geo DBMS’s,
3D city models and municipal applications. With Support GIS CPA offers a
database solution, independent of any specific GIS software, DBMS manufacturer
and operating system (see Fig. 9). Their solution is based on ISO and OGC
standards in order to achieve interoperability. Data models can be incorporated
through XSD schema’s, geo-information is im- and exported in GML, the JDBC
kernel is used to create OGC compliant web services. Support GIS consists of a
database, an editor and a viewer. Support of 3D data is accomplished through the
Google Sketch Up API. In cooperation with GeoRes, one of CPA’s partners,
exports to Google Earth and Bing are created.

Challenge results

Merging the files was done by loading all CityGML files into the database. This
turned out to be easy, since there were no gaps or overlaps between the separate

Fig. 7 Screenshots of the strateGIS solutions

Implementation of a National 3D Standard 289

cityGML files and all ID’s were unique. Editing is also enabled in a separate
Editor. Since the building consists of multiple building parts, it was decided to
select all building parts of this building and raise their height with a standard
function of the editor. Integrating the KMZ model was performed again trough the
Sketch Up API, followed by an export to CityGML format.

Fig. 9 Schema of the CPA approach

Fig. 8 Screenshots of the toposcopie solutions

290 J. Stoter et al.

3.4.4 Safe—FME

Safe offers with FME a solution for data transformation issues, supporting over
275 different data formats. Transformation issues include both transforming
between formats and coordinate systems and transforming data models and
schemas.

Challenge results

Merging the separate files is done by a simple workbench, with multiple readers
and writers. As FME is not a intended as an editing environment, the editing
challenge was not presented.

The integration of a KMZ model was also performed with a simple workbench,
although it turned out that the FME Data inspector did not show texture. In the
CityGML file itself however, the textures were present. As an additional challenge
a filter was presented to identify high risks in case of huge snow loads, based on
roof area and slope. Screenshots by Safe Software are visualized in Fig. 10.

Fig. 10 Screenshots of the safe software approach

Implementation of a National 3D Standard 291

3.4.5 Bentley—Bentley Map

Bentley (a GIS/CAD vendor) used their module Bentley Map to face this
challenge.

Challenge results

Merging the files was accomplished by importing all files into Bentley Map. Since
Bentley Map uses FME to do so, the results were the same as the results of Safe.
Modifying structures is well supported with the drawing functionality from Micro
station. An edit was demonstrated in which a surface was extruded first, then a
center line was added and as a last step this center line was extruded in order to
create a saddle roof. Converting the results back to CityGML format was per-
formed using FME again. Bentley showed two additional edits: first the creation of
cross sections of 3D models to simplify interpretation of 3D situation and second a
solar exposure analysis.

The preliminary conclusion of the challenge to maintain City GML data is first
that the five vendors showed solutions that (partially) rely on either Google Sketch
Up (or the Google Sketch Up API) or FME. In addition database solutions for 3D
data are rare. Therefore the availability of good import and export functionalities
for CityGML (and the ADEs) is essential, which gave motivation to plan a ‘‘City
GML relay’’ as follow up step of these challenge-outcomes (work in progress).

3.5 Collecting Examples of 3D Killer Applications

Although a 3D application are common practice for many professionals, 3D is new
and considered as ‘‘complex’’ and ‘‘expensive’’ to others. To show the need for 3D
to policy makers and new comers in the field, this activity is collecting examples
of 3D applications that are already practised by the 3D pilot participants and make
them available in an easy accessible format (flyer, PPT, Website). Specific
attention is paid to the integration-role of 3D information, i.e. as base information
for many applications, see Fig. 11.

3.6 Align CityGML and IFC/BIM

In both GIS and BIM domains it is acknowledged that the integration of both types
of data is beneficial. BIM data is commonly modelled in the IFC standard and 3D
GIS data can be encoded in CityGML. The two standards model similar object
types. Therefore it is relevant to see how these two standards map, integrate and
interact with each other.

BIM (i.e. design) data can feed GIS data and GIS can serve as reference for
BIM data. However, integration should acknowledge the differences between both

292 J. Stoter et al.

types of data. To start with, the object description of BIM and GIS (e.g. CityGML
LOD4) differs significantly. In addition GIS is characterised by coverage of large
areas (e.g. a complete city) and lower precision, while BIM is characterised by its
local and very detailed approach, the limited number of construction models usu-
ally available in a city and high precision necessary for reliable construction cal-
culations. Also the modelling approaches of CityGML and IFC differ significantly,
i.e. IFC models much more classes and allow also non-hierarchal relationships,
where CityGML contains a limited number of classes structured via hierarchical
relationships. Another core issue for bidirectional transformations are additional
geometry types that are handled in the building industry and can be captured in IFC
instances (Nagel 2007). Among them are Boundary Edge Representations (BRep)
and Constructive Solid Geometry (CSG), which are frequently used as implicit
capturing formats while CityGML is limited to explicit polygonal representations.
While polygonal representations can be derived from these geometry types in a
straightforward manner (thus transforming IFC to CityGML), it is impossible to
generate e.g. efficient CSGs from triangulated surface representations.

Several studies have shown that a conversion between IFC and CityGML is
possible, see (Isikdag and Zlatanova 2009; Berlo and De Laat 2010; Bormann
2010; El-Mekawy et al. 2010). However, because of the different modelling
approach of both information models, there is not one optimal or uniform
conversion.

Therefore, based on experiments and a study on best practices, this activity is
working on making agreements how to best realise the alignment between the two
standards; e.g. agreements on a unique mapping between IFC and CityGML to

Fig. 11 Screenshot of the 3D pilot website with uses cases (the circles represent the different
uses cases)

Implementation of a National 3D Standard 293

make sure that a conversion always happens in the same meaningful way. This will
also avoid the currently common situation that the rich semantics of IFC is lost
because all objects are converted in the GenericObjectClass. Also it may help to
model according to specific rules in IFC to make sure that specific CityGML
concepts can be derived (e.g. LOD2 Buildings) from the IFC data. Those agree-
ments will be formulated as recommendations to the relevant standardisation or-
ganisations, i.e. as change requests to Building Smart (2012) and OGC for generic
issues and to national standardisation organisations for the national specific issues.

Because IFC and CityGML both serve different applications, it is important that
both the original IFC source data and a CityGML representation are available and
that CityGML objects explicitly refer to their interrelated IFC objects and vice
versa. In this specific activity we studied how this can be done by joint effort from
IFC and CityGML experts.

Referring from CityGML objects to IFC objects

The integration between the source IFC data and the 3D CityGML data can be
maintained through a link between the two representations.

In CityGML one can refer to an external object via ‘‘external references’’. This
reference maintains the link to the external objects from which the CityGML data
was derived. One CityGML object can contain more of such external references.

The external reference is a URI (either URL or URN). Every object that is a subclass
of IfcRoot (all semantic classes) has an UUID identity that is compressed into a unique
ID within the specific dataset, for example 3QbcAsYsg7Hvx$4VHzijdF. This ID can
be converted into a 128-bit UUID via a publicly available method and can be used in
the CityGML external reference.

For example linking a CityGML Building to a IfcBuilding can be done via an
URN based on the decompressed GUID of the IfcBuilding:

urn:uuid:[UUID]
or based on the compressed ID:
urn:ifc-guid:3QbcAsYsg7Hvx$4VHzij

It is still not clear if the IFC GUIDs should be used in the reference or the
uncompressed UUID. Both seems possible because a compressed ID can be
converted into an uncompressed ID and vice versa.

Another option is to use an external Reference that contains a http URL. The
advantage is that it is both identification and a reference to the location where more
information can be found about the object. In contrast, a URN is only an identifi-
cation; to find more information about the object an extra step is required to resolve
the URN to a location on the internet. An example is the BIM Server
(www.bimserver.org) where every IFC object has a URL. This could simply be used
as CityGML external Reference for every object that was derived from an Ifc object.

This next example shows a CityGML XML fragment with in bold an external
reference:

294 J. Stoter et al.

http://www.bimserver.org

\core:cityObjectMember[

\bldg:Building gml:id = ’’Build0815’’[

<core:externalReference>

<core:externalObject > .

<core:uri > urn:uuid:550e8400-e29b-41d4-a716-446655440000 </core:uri>

</core:externalObject>

</core:externalReference>
\bldg:function

codeSpace = ’’http://www.sig3d.org/codelists/standard/building/2.0/_Abstract
Building_function.xml’’[1000\/bldg:function[

\bldg:measuredHeight uom = ’’#m’’ [8.0 \/bldg:measuredHeight[
\bldg:storeysAboveGround [2\/bldg:storeysAboveGround[
\bldg:storeyHeightsAboveGround uom = ’’#m’’ [2.5 2.5 \/bldg:storey

HeightsAboveGround[
\bldg:lod2Solid [… \/bldg:lod2Solid[

\/bldg:Building[

\/core:cityObjectMember[

A similar approach of referring to external objects is available in IFC and
therefore this solution can establish an integration on the semantic level. It should
be noted that this reference mechanism does not solve the problem of mapping the
boundary-presentations of CityGML to the component-assemblage representations
of IFC. Instead, the external references make it possible to use IFC as a kind of
additional LOD5 representation of CityGML objects. This is a simpler approach,
than modeling IFC as Application Domain Extension (Berlo and De Laat 2010).

4 Initial Conclusions and Work in Progress

This paper presents the follow-up of the 3D Pilot NL, which is a large collabo-
ration in the Netherlands aiming at pushing 3D developments in the Netherlands.
The first phase resulted in a national 3D standard. Some results and insights
obtained during the first phase are sufficiently mature to be anchored in practice
such as maintaining and further developing the 3D standard by Geonovum and the
provision of a countrywide 3D midscale base dataset which is currently under
study at the Kadaster (collaboration with University of Twente). Other results of
the first 3D Pilot NL phase need further attention, specifically how the new 3D
standard works in practice. This is currently being further explored in a second
phase of the 3D Pilot in which 100 organizations are participating.

Implementation of a National 3D Standard 295

http://www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_function.xml
http://www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_function.xml
http://www.sig3d.org/codelists/standard/building/2.0/_AbstractBuilding_function.xml

The main conclusion of running the 3D Pilot is the change of vision concerning
3D in the Netherlands. At the start of the 3D Pilot (March 2010) many saw that 3D
had potentials, but did not know how to deal with 3D. In the course of the pilot the
ambitions for 3D have become much more focused, also supported by the national
3D standard. These ambitions are further developed now the second phase of the
pilot is running. Several aspects appear to be crucial for the adoption of the 3D
standard. Firstly, the engagement of many stakeholders is important to gain the
necessary support. Secondly, aligning to the ongoing 2D efforts makes that 3D
applications become in reach for governmental organizations. In addition, col-
laborating is important because the issues of 3D are complex and sharing
knowledge between different 3D experts is therefore important to realize inno-
vations. Finally, it has been important that some national organizations took the
responsibility to facilitate the process. Although the pilot is a joint effort and
‘owned’ by the community, national organizations have to initiate and facilitate
such a network organization and they are important for anchoring the results.

Currently the work on the six activities of the 3D Pilot NL II is running in parallel,
supported by discussions within the 3D Pilot NL LinkedIn group (over 500 members)
and frequent meetings. 3D test data have been prepared for the test area and several
participants are currently working on generating different LODs and different themes
for 3D IMGeo data. The 3D validator is being developed, a contest for maintaining
and updating 3D CityGML data has been launched and killer applications for 3D are
being collected. In addition the information models IFC and CityGML are studied for
possible integration, and the possible mappings, alignments and conversions are
discussed in dedicated working sessions. Also the integration of 3D IMGeo with the
subsoil (i.e. geology and cables & pipelines) is being studied (see also the work of
Becker et al. 2010; Hijazi et al. 2010; Zobl and Marschallinger 2008).

The 3D Pilot will finish in summer 2012. Among the end results are: examples of
3D IMGeo data, a 3D validator, best practice documents of how to acquire, maintain,
update and disseminate 3D IMGeo data, demonstrators that show the potentials of
3D, and recommendations for further developing CityGML compatible with 3D
standards in other domains and with the established 2D information models. The
results will be presented to the wider (professional) public in a special issue of a
Dutch professional magazine on geo-information and a national 3D symposium.

From our national pilot we have observed that 3D is increasingly vital for
managing and planning our densely built environment. Therefore 3D information
will be more and more important for governmental organisations. To move for-
ward in the highly complex domain of 3D information, we consider agreements
and collaborations essential. In addition a national consensus on a generic 3D
approach supported by a 3D standard diminishes the risks of investment for
individual organisations. This is accomplished in the 3D Pilot NL.

Acknowledgments We would like to acknowledge the contributions of all 3D Pilot participants which
is very important for the achievements in our country. This research is supported by the Dutch Tech-
nology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO)
and partly funded by the Ministry of Economic Affairs,Agriculture and Innovation (project code: 11300).

296 J. Stoter et al.

References

Becker T, Nagel C, Kolbe TH (2010) Integrated 3D modelling of multi-utility networks and their
interdependencies for critical infrastructure analysis, 5th international 3D geoinfo conference,
Berlin, Nov 2010

Berlo L, de Laat R (2010) Integration of BIM and GIS: the development of the cityGML geoBIM
extension, 5th international 3D geoinfo conference, Berlin, Nov 2010

Bormann A (2010) From GIS to BIM and back again—a spatial query language for 3D building
models and 3D city models, 5th international 3D geoinfo conference, BerlinV, Nov 2010

BuildingSmart (2012) [online] available from. www.buildingsmart.nl/
Clement J (2011) Presented at the second meeting of 3D pilot phase II [online] available from.

http://www.geonovum.nl/sites/default/files/3D/december.zip
El-Mekawy M.S, Östman A, Shahzad K (2010) Towards interoperating cityGML and IFC

building models: a unified model based approach, 5th international 3D geoinfo conference,
Berlin, Nov 2010

Geonovum (2012).[online]. http://validatie-dataspecificaties.geostandaarden.nl/genericvalidator/
content/standard/19

Geonovum (2012b) [online] available from. http://www.geonovum.nl/dossiers/3d-pilot/
deelnemersvervolg

Geonovum (2012c) Demonstrations of the 3D pilot uses cases [online available].
www.geonovum.nl/dossiers/3dpilot/bibliotheek/presentaties#films (YouTube)

Hijazi I, Ehlers M, Zlatanova S, Becker T, van Berlo L (2010) Initial investigations for modelling
interior Utilities within 3D geo context: transforming ifc-interior utility to cityGML/
UtilityNetworkADE, 5th international 3D geoinfo conference, Berlin, Nov 2010

IMGeo (2007). Informatiemodel Geografie, oktober 2007[online]. www.geonovum.nl/sites/
default/files/IMGeo_rapport_definitief_versie_1.0.pdf

Isikdag U, Zlatanova S (2009) Towards defining a framework for automatic generation of
buildings in CityGML using building information models. In: Lee J, Zlatanova S (eds) 3D
geo-information sciences. Springer, Berlin, pp 79–96

IS0 (2003). ISO 19107:2003 Geographic information—Spatial schema, [online]. Available from
www.iso.org/iso/catalogue_detail.htm?csnumber=26012

Ledoux H, Verbree E, Si H (2009) Geomatric validation of GML solids with the constrained
Delaunay tetrahedralization. In: De Mayeer, Neutens, De Rijck (eds) Proceedings of the 4th
international workshop on 3D-Geo- Information, Ghent, pp 143–148

Nagel C. (2007). Ableitung verschiedener Detallierungsstufen von IFC Gebäudemodellen
(Derivation of different levels of detail from IFC building models). Master Thesis. Karlsruhe
University of Applied Sciences, Germany

OGC (2007) OpenGIS� Geography Markup Language (GML) Encoding Standard. Version 3.2.1,
doc # OGC 07-036. http://portal.opengeospatial.org/files/?artifact_id=20509

OGC (2008) OpenGIS� City Geography Markup Language (CityGML) Encoding Standard,
version 1.0.0, document # 08-007r1. http://portal.opengeospatial.org/files/?artifact_id=28802

OGC (2012) OpenGIS� City Geography Markup Language (CityGML) Encoding Standard,
version 2.0. www.opengeospatial.org/standards/citygml

Oude Elberink SJ (2010) Acquisition of 3D topography: automated 3D road and building
reconstruction using airborne laser scanner data and topographic maps. Enschede, University
of Twente, Faculty of geo-information science and earth observation ITC dissertation 167,
p 171. ISBN: 978-90-6164-288-6

Stoter J, Vosselman G, Goos J, Zlatanova S, Verbree E, Klooster R, Reuvers M (2011) Towards a
national 3D spatial data infrastructure: case of the Netherlands. PFG Photogrammetrie,
Fernerkundung, Geoinformation, (6):405–420

Stoter J, Tijssen T, Verbree E, Zlatanova S (2011b) Het 3D-testbed van de 3D-Pilot: ceci n’est
pas CityGML (in Dutch). In: Geo-Info, Volume 8, 5, 2011, pp 19–22

Implementation of a National 3D Standard 297

http://www.buildingsmart.nl/
http://www.geonovum.nl/sites/default/files/3D/december.zip
http://validatie-dataspecificaties.geostandaarden.nl/genericvalidator/content/standard/19
http://validatie-dataspecificaties.geostandaarden.nl/genericvalidator/content/standard/19
http://www.geonovum.nl/dossiers/3d-pilot/deelnemersvervolg
http://www.geonovum.nl/dossiers/3d-pilot/deelnemersvervolg
http://www.geonovum.nl/dossiers/3dpilot/bibliotheek/presentaties#films
http://www.geonovum.nl/sites/default/files/IMGeo_rapport_definitief_versie_1.0.pdf
http://www.geonovum.nl/sites/default/files/IMGeo_rapport_definitief_versie_1.0.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=26012
http://portal.opengeospatial.org/files/?artifact_id=20509
http://portal.opengeospatial.org/files/?artifact_id=28802
http://www.opengeospatial.org/standards/citygml

van den Brink L, Stoter JE, Zlatanova S (2012a) Establishing a national standard for 3D topographic
data compliant to CityGML, in: International Journal of Geographical Information Science, in
press.URL: http://www.tandfonline.com/doi/abs/10.1080/13658816.2012.667105

van den Brink L, Stoter JE, Zlatanova S (2012b) Modeling an application domain extension of
CityGML in UML. In: Proceedings 3D geoinfo symposium, Quebec, Canada, 16–17 May

Zobl F, Marschallinger R (2008) Subsurface geobuilding information modelling GeoBIM.
GEOinformatics 8(11):40–43, December 2008

298 J. Stoter et al.

http://www.tandfonline.com/doi/abs/10.1080/13658816.2012.667105

Open Building Models: Towards
a Platform for Crowdsourcing Virtual 3D
Cities

Matthias Uden and Alexander Zipf

Abstract Within the last years, Volunteered Geographic Information (VGI) has
developed rapidly and influenced the world of GIscience significantly. Most
prominently, the Open Street Map (OSM) project maps our world in a detail never
seen before in user-generated maps. Particularly within urban areas, the focus
recently shifts from only streets towards buildings and other objects of the envi-
ronment such as parks or street furniture. However, this innovation is mostly
restricted to 2D so far. In order to come closer to the Digital Earth, it needs to be
discussed, how the 3D aspect can be integrated into such VGI-projects. This article
has two objectives that are closely related: firstly, the current situation of 3D-VGI
is reviewed and crucial issues for future development are pointed out. This leads to
the concept of defining a free and open web repository for architectural 3D
building models. Therefore secondly, the concept of such a new web platform
called Open Building Models is presented. This is an important effort towards 3D-
VGI. The models can be linked to OSM objects and displayed by a dedicated 3D
viewer. This can extend the possibilities to crowd source 3D city models in the
future.

Keywords Volunteered geographic information � Open street map � 3D city
models � 3D spatial data infrastructures � 3D building modelling

M. Uden (&) � A. Zipf
Department of Geography, University of Heidelberg, Berliner Straße 48,
69120, Heidelberg, Germany
e-mail: uden@uni-heidelberg.de

A. Zipf
e-mail: zipf@uni-heidelberg.de

J. Pouliot et al. (eds), Progress and New Trends in 3D Geoinformation Sciences,
Lecture Notes in Geoinformation and Cartography, DOI: 10.1007/978-3-642-29793-9_17,
� Springer-Verlag Berlin Heidelberg 2013

299

1 Introduction

It’s now been over 4 years that Goodchild (2007) has introduced the term
‘‘Volunteered Geographic Information’’ (VGI) describing the recent revolution of
collaboratively created spatial information on the Web 2.0. The increasing
availability of smart phones as devices for creating, using and sharing geoinfor-
mation spatially enables our society more and more (cf. Williamson et al. 2011).
This leads to an ever growing amount of various VGI-related activities which also
have an impact on research in geographic information science (e.g. WikiMapia
2012; Cloudmade 2012; Panoramio 2012).

The most popular and successful VGI project is probably Open Street Map1

(OSM). Recent investigations on its completeness and quality have shown that in
particular urban areas in Central Europe have already been mapped with an
impressive level of detail (cf. Haklay 2010; Neis et al. 2012). In those areas, OSM
is meanwhile well ahead of only mapping the street network. For a continuous
improvement of OSM it is crucial to enable the mapping of even more detailed, 3D
spatial information.

Another phenomenon which is rapidly gaining relevance over the last decade
not only in the geodomain but also in the general public is 3D city models. This
has been an important research field in GIscience since a couple of years now (cf.
Förstner 1999; Früh and Zakhor 2004; Kolbe 2009). Furthermore, numerous
efforts exist from both companies (e.g. Google 2012) as well as public adminis-
trations (e.g. Stadtmessungsamt 2012). The era of mapping the Digital Earth (Gore
1998) in 3D has long begun. Based on the recent developments in VGI it now
becomes possible to investigate the potential of applying crowd sourcing also to
3D geodata.

The dominant parts of 3D city models are buildings. In early 2012, the total
number of mapped building footprints in OSM exceeded 50 million.2 It even
surpassed the number of mapped streets. This shows the gradual shift in the
purpose of this project, which is no longer limited to only the streets but also
includes buildings and other components of urban environments. However, the
footprint is only a very rough representation of a building and much more infor-
mation lies in its detailed 3D structure. The idea of letting the crowd assemble
comprehensive 3D city models is very promising.

This paper firstly examines the current state and future directions of user-
generated 3D spatial information. Secondly, the concept of Open Building Models,
one possible way of how to advance 3D-VGI, is introduced thereafter. We
investigate the following questions: How can the potential of VGI be exploited for
generating 3D city models beyond what has been reached so far? What are the
main scientific and practical questions and problems in this leap forward from 2D

1 http://www.openstreetmap.org
2 extracted from our internal, regularly updated OSM database.

300 M. Uden and A. Zipf

http://www.openstreetmap.org

to 3D with respect to crowd sourcing? What are the means to enable voluntary
users to contribute rich 3D information?

The remainder of this paper is structured as follows: the review part starts in
Sect. 2 with related work on user-generated spatial 3D content. Subsequently, the
current situation of 3D-VGI is critically reflected and crucial issues for the future
development are pointed out. In Sect. 3, the concept and a first prototype of Open
Building Models (OBM) is described. Furthermore, a discussion of advantages and
drawbacks of the OBM approach as well as the implemented prototype is given.
The last chapter summarises important aspects of this article, pointing out the main
insights and limitations as well as potential future work.

2 The 3D Aspect in VGI

2.1 Related Work

Letting the crowd generate spatial 3D information is still in its early stages,
however, the idea is not entirely new. This section contains related work which
deals with this topic, approaching it from different directions.

One of the most prominent examples is Google’s 3D Warehouse.3 This shared
repository contains user-generated 3D models of both geo-referenced real-world
objects such as churches or stadiums and non-geo-referenced prototypical objects
like trees, light posts or interior objects like furniture. The former also appear in
Google Earth. In order to voluntarily contribute, users have to have a certain level
of 3D modelling skill. The main focus of this repository does not lie on assembling
3D city models as the non-geo-referenced objects seem to be more important in
related work. They are for example used to improve methods of automatic object
recognition in the field of laser scan classification (Lai and Fox 2009) or robotic
vision (Klank et al. 2009). Also, the 3D warehouse models are being integrated in
several commercial systems like design tools (Render Lights 2012) or simulation
software (Simio 2012).

Google also developed the Building Maker,4 which provides a model kit to
create buildings, deriving the 3D geometry from a set of oblique (and proprietary)
birds-eye images of the same object from different perspectives. In contrast to the
3D Warehouse, this tool specifically aims at geo-referenced 3D building models
only. It is intended for people who do not have knowledge in 3D modelling, but
still want to contribute. Willmes et al. (2010) and Yiakoumettis et al. (2010) have
demonstrated, how this tool can be used to create 3D buildings rather quickly, even
of an entire university campus. Drawbacks are the potentially inaccurate modelling
due to image errors or obstructions, the current little availability of the required

3 http://sketchup.google.com/3dwh
4 http://sketchup.google.com/3dwh/buildingmaker.html

Open Building Models 301

http://sketchup.google.com/3dwh
http://sketchup.google.com/3dwh/buildingmaker.html

oblique aerial imagery as well as limited usage of the result due to restrictions of
Google’s proprietary data.

Even though both introduced methods are based on collaboratively collected
data, it is Google who stands behind it and claims usage and distribution rights for
the contributed contents. Hence, this is far away from being open source or open
data. However, there are also numerous free-to-use 3D object repositories on the
internet, for example Open Scenery X,5 Archive 3D6 or Shapeways.7 These
projects emerged from entirely different communities with interest in e.g. flight
simulators or 3D printing. The contents usually lack the connection to the real-
world but can nonetheless also be useful to enrich real 3D city model visualisation.

More and more ideas for collaboratively mapping the third dimension are also
being discussed recently in the Open Street Map community. Several approaches
exist which basically all try to utilise the crowd sourced data for deriving 3D city
models from it.

The OSM2World8 software takes into account various 3D-related information
that is available, such as the building height or the basic roof shape. It offers
different export possibilities like obj-files, direct output via an OpenGL binding for
Java (JOGL) or a .pov-file for the persistence of vision9 ray tracer. It also
experiments with the integration of terrain data from a Digital Elevation Model
(DEM), however, this is currently still under development. Also, an easy-acces-
sible web or desktop interface or standardisation of output formats is missing.

Another example which is intended to support the user in generating 3D data
for OSM is the Kendzi 3D plug-in (Kendzi 2011) for the widely used Java Open
Street Map-Editor (JOSM).10 It directly converts several 3D-related information
into a 3D model during an edit session on the screen, allowing the user to
immediately see the result of their annotation. This makes model creation in the
OSM context much easier. It is, however, still under development and many
improvements in usability and the supported 3D-related OSM annotations have to
be carried out in the future.

The most advanced work in the context of creating 3D city models from VGI
data is the OSM-3D project (cf. Over et al. 2010; OSM-3D 2012). It combines the
extrusion of the building footprints into the 3D with a detailed integrated terrain
model derived from SRTM11 height data. It provides the 3D data in a standardised
manner through a Web 3D Service12 (W3DS), which is currently a discussion
paper at the Open Geospatial Consortium (OGC). At present, the OSM-3D W3DS

5 http://www.opensceneryx.com
6 http://www.archive3d.net
7 http://www.shapeways.com
8 http://osm2world.org
9 http://www.povray.org
10 http://josm.openstreetmap.de
11 http://srtm.csi.cgiar.org
12 http://www.w3ds.org

302 M. Uden and A. Zipf

http://www.opensceneryx.com
http://www.archive3d.net
http://www.shapeways.com
http://osm2world.org
http://www.povray.org
http://josm.openstreetmap.de
http://srtm.csi.cgiar.org
http://www.w3ds.org

supports different terrain generalisation levels and provides tiled 3D scenes, based
on the requested point of view, in VRML, X3D, COLLADA or KML format.
There has also been developed a tailored client software called XNavigator,13

which automatically requests the data from the W3DS server and assembles
complex 3D landscapes worldwide. This client also allows the integration of other
OGC Web Services such as a Web Feature Service (WFS), the Open GIS Location
Services (Open LS, Schilling et al. 2009) or the Sensor Observation Service (SOS,
Mayer and Zipf 2009). Thus, for example POIs or 3D routes can be included. The
interoperability with different data sources (e.g. also CityGML), web services and
targets has recently been examined within the OGC 3D Portrayal Interoperability
Experiment (3DPIE, OGC 2011). The wide applicability of the W3DS and X
Navigator with heterogeneous data could be demonstrated. Figure 1 exemplarily
shows two scenes of Central Heidelberg rendered in X Navigator.

All these approaches are mainly different available tools in this highly inno-
vative field of 3D volunteered geographic information and only little research on it
exists. Some related work shows, however, that the preconditions for voluntary 3D
data capturing are already mostly fulfilled. With low-cost sensors and cameras
which are often available in today’s smart phones, the acquisition of 3D data
becomes possible for a wider audience. This allows for example the reconstruction
of 3D objects based on 2D images taken by low-cost sensors (Rocchini et al. 2001;
Pomaska 2009; Wang 2011). According to the typical processing workflow of any

Fig. 1 a OSM-3D overview of Central Heidelberg in X Navigator. b Detailed view of a street
with its buildings

13 http://XNavigator.sourceforge.net

Open Building Models 303

http://XNavigator.sourceforge.net

geographic data, the capturing is followed by data editing and visualisation.
Research about suitable data structures, modelling techniques and visualisation
strategies in the context of crowd sourced 3D data is strongly needed. While a lot
of research about accurate 3D reconstruction of buildings is available (e.g. Brenner
2005; Sampath and Shan 2010), all this has to be examined in an altogether
different light for the crowd sourced approach. Apart from some work on 3D-VGI
within indoor environments (Goetz and Zipf 2012), there is, to the author’s
knowledge, no related scientific work in this area.

2.2 Current Issues and Future Directions

The previous section shows, that crowd sourced spatial 3D modelling is still a very
young and innovative field of research with only little existing research and many
open questions. This section will take a closer look at the field of 3D-VGI,
investigating current issues and possible future directions more thoroughly. This
will be done with a focus on Open Street Map, since it is currently the most
elaborated platform for crowd sourced geoinformation. Apart from the above
mentioned approaches, there are also various other ideas and concepts in the OSM
community. Numerous people are working on this topic and lively discussions on
how to advance it are taking place (cf. OSM Wiki 2011a).

The step from 2D maps to 3D models is not a small one and there exist a lot of
issues that have to be tackled. In particular, three main aspects can be pointed out
which currently prevent a faster development into the 3D within OSM:

• The missing support of 3D geoinformation in the simple OSM data model
• The lack of a mature and disseminated 3D viewer for OSM
• The lack of appropriate mechanisms that allow users to contribute various kinds

of 3D environmental information with different levels of detail

2.2.1 No Suited 3D Data Model

The main issue regarding the first point is that the OSM data model is deliberately
kept rather simple in order to attract as many users as possible. It tries to model the
world with only nodes, ways and relations. Apart from this geometry, every kind
of additional information for a certain feature has to be expressed by so called tags
in the form of key-value pairs (cf. Haklay and Weber 2008). Whilst these tags can
in general be freely defined by any user, there exists an agreement on common tag
names and values, whose usage is recommended (OSM Wiki 2011b). With this
ontology it is possible to semantically annotate many features of our environment.
For instance, building footprints can be modelled with closed way geometries
which are annotated with the tag building = yes. That is, 3D geometry is not

304 M. Uden and A. Zipf

inherently supported in the data model, but can so far only be expressed with
appropriate tags. Simple building properties like its height or number of floors can
be modelled this way. However, for more complex geometrical features such as
detailed roof structures, dormers or balconies, this approach is severely limited.
Nevertheless, there are efforts trying to express 3D phenomena with this simple
data model. Simple 3D-related tags are partly already being used in OSM
(cf. Goetz and Zipf 2012 in press). Also, proposals for appropriate tagging sche-
mas for more complex 3D buildings are currently being discussed in the com-
munity (cf. Strassenburg-Kleciak 2011). Most of the proposed tags are nonetheless
only rarely used so far since no consensus on tag-based 3D modelling has been
reached yet. One could argue that the basic OSM data model should be extended to
better allow for 3D modelling. However, such a major change is currently not very
likely to be accepted by the community, since there are also people disapproving
of the idea to bring 3D into OSM. It is preferable to find out how far the approach
to build 3D information on top of the simple OSM model brings us closer to the
goal of supporting crowd sourcing 3D, and at which point a different approach
with a dedicated data model is needed.

2.2.2 No Widespread 3D Viewer

Another reason for the little usage of 3D-related attributes is the absence of a
widespread and established 3D viewer that visualises the 3D data. The appearance
of one’s specially created cartographic object on a worldwide available online map
is one of the main motivations why people are committed to the OSM project in
the first place (cf. Coleman et al. 2009). An essential point in order to push forward
3D mapping is therefore the development and dissemination of such a 3D viewer
which displays the objects modelled by the users. If already existing approaches
like OSM-3D or OSM2World are improved and promoted, there will probably be a
boost in the interest of 3D mapping. Without it, it is currently not surprising that
only few people are willing to contribute 3D information, even though it is already
possible to a certain extent.

2.2.3 Not Enough Support for Voluntarily Contributing 3D Information

Finally, there are currently too little possibilities for the crowd to contribute 3D
information to OSM apart from the aforementioned tag-based modelling. This
aspect of missing capturing and editing mechanisms will be reviewed more
thoroughly in the following.

The range of possible 3D-related information in our environment that could be
mapped by the users is very wide. It starts with simple building characteristics such as
the number offloors, the facade material or a rough roof structure. This information is
easy to obtain by any mapper, neither 3D modelling skills nor specialised equipment
are required, and it is already supported in OSM. However, it should also be possible

Open Building Models 305

to map more details about a 3D object, up to entire architectural models, and link
them to the OSM world. The above mentioned example of the Google 3D Warehouse
has shown that there are people who have the skills and interest to do this.
Accordingly, there should be a wide range of tools and concepts which support the
motivated mapper in contributing various 3D information in different levels of detail.

On the top of the diagram in Fig. 2, different sensors are shown with which
spatial 3D information can be obtained by voluntary mappers. Whilst simple
building properties do not require sensors with high accuracy but are simply
measureable with the eye, more complex models can only be created by means of
various sensors such as laser meters, terrestrial and/or aerial imagery, GPS or even
terrestrial laser scanning. Many of these sensors are now-a-days included in
modern smart phones, making them a multi-sensor-system which is pretty well-
suited for crowd sourced 3D data capturing. In the future, further sensors like
barometers, stereo cameras (e.g. Microsoft Kinect, cf. Elgan 2011) and maybe also
laser meters and little laser scanners will possibly be included into smart phones,
making them even more all-round tools for 3D-VGI.

Once the data is captured, it needs to be edited. Between simple OSM-tagging and
the creation of entire 3D models with 3D graphics modelling software, there are
further (planned or existing) tools inbetween, which support mappers with different
skills and ambitions in terms of the level of detail. For instance, an editor like the

Fig. 2 Methods for capturing and processing 3D volunteered geographic information for Open
Street Map on different levels of detail

306 M. Uden and A. Zipf

aforementioned Kendzi 3D JOSM-plugin (Kendzi 2011), which is specialised for
advanced OSM 3D-building modelling, makes it easier for the users to assemble
parametric 3D models without caring about the rather complicated and cumbersome
tagging itself. Such an editor could also avoid incorrect modelling and ensure
topological consistency in complex 3D objects. Besides the manual creation of entire
3D models with 3D modelling software, there is also the possibility of reconstructing
3D buildings from terrestrial photographs. In research, many photogrammetric and
digital image processing approaches exist (e.g. Debevec 1996; Müller et al. 2007).
This reconstruction could traditionally only be accomplished with complex and
expensive photogrammetrical software systems such as ERDAS LPS.14 However, as
already mentioned in Sect. 2.1, there recently also emerged free-to-use ‘‘assisted’’ 3D
modelling software like Autodesk 123D Catch15 or My3DScanner16 which offer a
low-cost alternative for creating 3D models from photographs. This could evolve to
an important feature for crowd sourced 3D modelling.

Therearebasically twotypesofmodelswhichemergefromtheeditinglayer:Onthe
one hand, we get parametric building models, which are based on a geo-referenced
footprint plus various tags and can be generated dynamically by the 3D viewer. On the
other hand, there are finished models, created by dedicated (or assisted) modelling
software,whichhavetobeplacedproperlyinthe3Dviewer.Attributesdescribingtheir
geo-reference and scale are then required.

The currently available 3D viewers do only partly include the desired func-
tionality and flexibility shown in the diagram. Generative modelling based on
OSM tags is currently limited to some simple 3D-related attributes. The possibility
to integrate entire 3D models is in general already available in the OSM-3D
viewer X Navigator (cf. Fig. 3). However, this process includes many difficult
steps which have to be carried out manually. Also, no real link to the OSM
database is being established, nor is the model stored in a publicly available online
repository. Hence, other viewers cannot display this model.

Many parts of the diagram in Fig. 2 are visionary and only partly implemented,
if at all. There are a lot of things to be done in order to assist the realisation of VGI
in the 3D. In this article, we start with a concept for linking entire 3D models to the
OSM database. As Over et al. (2010) mentioned, the development of a free 3D
repository with architectural building models would be a major step forward.

3 The Concept of Open Building Models (OBM)

In this chapter, a first prototype of Open Building Models is introduced. Its
objective is to create a web-based platform for uploading and sharing entire 3D
building models. Many complex buildings like churches or other landmarks cannot

14 http://www.erdas.com/products/LPS/LPS/Details.aspx
15 http://www.123dapp.com/catch
16 http://www.my3dscanner.com

Open Building Models 307

http://www.erdas.com/products/LPS/LPS/Details.aspx
http://www.123dapp.com/catch
http://www.my3dscanner.com

be modelled in detail with a tag-based, parametric approach. Instead, 3D models
from the OBM repository should be linked to OSM, so they can be rendered by
OSM 3D viewers subsequently. Thus, crowd sourced 3D city models can be
greatly improved.

The processing of the OSM data and set up of a model repository in the first
prototype comprises several steps, which are briefly described in the following.
The user should be able to interactively choose the building of interest from a map.
Therefore, the ground plans first have to be derived from the OSM data separately
and overlaid as vector layer. This is achieved by first importing the OSM data into
a PostgreSQL/PostGIS database with the Osmosis tool and converting the closed
ways which are tagged as buildings to polygon geometries. Native SQL along with
several PostGIS functions is used for this. More complex footprints that contain
inner holes and therefore consist of more than one closed way can also be con-
verted (cf. Goetz and Zipf 2012; Goetz et al. 2012). This conversion step is part of
the pre-processing illustrated at the top of Fig. 4. For the provision of the
processed building polygons to the web-client, we set up a GeoServer.17 The web-
client requests the geometries via an OGC-compliant Web Feature Service.

Figure 5 shows a screenshot of the current OBM web-client. The main com-
ponent is an Open Layers18 map, which shows the building footprints as a vector

Fig. 3 An OSM-3D scene shown in X Navigator without (a) and with (b) a manually integrated
architectural 3D model of a church

17 http://geoserver.org
18 http://openlayers.org

308 M. Uden and A. Zipf

http://geoserver.org
http://openlayers.org

overlay. When a building is selected, the client requests general information about
the OSM way with the corresponding ID over the OSM API19 via a HTTP GET
request. The API delivers a small XML file which contains for example the user
who created that geometry and all associated tags (key-value pairs). The XML is
parsed by a PHP script and the information is displayed to the user. Since this
operation only reads contents from the database, no OSM authentication is
necessary.

The connection of a separately created 3D model with the selected OSM
building is being achieved in the current prototype by simply setting the tag
building:model = URL. When a new building model is uploaded, this tag is set to
the new URL automatically. Alternatively, the user can set or update the URL
manually, if a model for the selected building already exists on some other
publicly available server. For these operations, an OSM user account is required,
since new information is written to the database. If the model-tag is already set for
a given building, it is also possible to directly download the model, e.g. in order to
edit it or convert it to a different format.

4 Discussion

After the technical components of the OBM prototype have been explained, the
general approach as well as the client is reflected critically in the following.

Fig. 4 Workflow of the Open Building Models prototype

19 http://api.openstreetmap.org

Open Building Models 309

http://api.openstreetmap.org

Linking 3D building models with the OSM database was in general already
possible before by manually setting the building: model-tag and storing the model
on some publicly available server. However, the OBM prototype makes this
process much easier and integrates building selection and uploading in an inter-
active easy-to-use client. Once the models appear in a viewer like OSM-3D, OBM
can potentially attract valuable users from the 3D modelling domain with the
necessary skills to build complex models. It is expected, that predominantly
complex landmark buildings will be uploaded to the OBM repository first. This is
beneficial, since these kinds of buildings are particularly important for possible
applications like pedestrian navigation. The improved visualisation in the 3D
viewer with enhanced landmark models will lead to better representations of the
cities. This can be seen in Fig. 3b, where the integration of a recognisable, realistic
3D model of the church is a massive improvement.

Fig. 5 Screenshot of the OBM web-client. The OSM properties of a building are shown on
selection and a 3D model can be up- or downloaded to our repository

310 M. Uden and A. Zipf

While the 3D visualisation can be greatly enhanced with this approach, it has
also some drawbacks. As good as architectural 3D objects might look, they often
lack topology and semantics, unless they are created in a dedicated format like
CityGML. Apart from an improved visualisation, models without semantic
annotation will have only little added value for applications that require semantic,
standardised 3D city models. Similar to existing repositories, users will certainly
create 3D models of varying complexity. Some might include in their model each
and every detail of the outer structure or also model the interior. Others might
create 3D models with a lower level of detail. On top of the entire 3D models,
parametric models based on 3D-OSM-tagging will also exist with varying detail.
Hence, one could generally argue that offering various tools and approaches for
contributing 3D information could lead to a rag rug with a low level of stan-
dardisation and that an agreement on only one defined method to map 3D build-
ings is preferable. However, such heterogeneous modelling is a general
phenomenon inherent in VGI. The current 2D OSM also consists of many dif-
ferently mapped features and the consensus on common mapping techniques is
rather low. And this is not necessarily a drawback, because only this keeps the
barrier for beginners as low as possible. The introduction of mandatory mapping
standards for quality assurance would repel most people from participating and
contradict the general idea of the openness of VGI.

The described client is only a first prototype and there are lots of open issues
that have to be addressed in the future. Figure 4 indicates the most important next
step: the models have to be geo-referenced in order to place them correctly in the
real-world. This could be accomplished by a semi-automatic approach which tries
to reference the object by fitting it into the given OSM footprint first and asks the
user for further manual refinement. In order to ensure a correct alignment between
3D objects and OSM footprints in the first place, it would be helpful to initially
offer a download of the existing building outline as a basis for the modelling of a
new building. OBM should support various 3D formats in the future in order to
guarantee a high level of flexibility. At the same time, a 3D viewer has to support
all these formats. This will lead to issues about format conversion and interop-
erability. Currently, textures are not supported by OBM. Since textures are an
essential part of high-detail building models, this should be made possible in the
future. Another important aspect is the usability of the web-client. It is desirable to
provide not only the upload of 3D models for buildings whose footprint is already
part of OSM, but also for such that have not been mapped at all. The user could
properly place the 3D model on the map and the corresponding 2D footprint could
be derived and added to the OSM database automatically. Furthermore, an
important improvement would certainly be to support models with different levels
of detail for the same object. This is currently not possible due to the bijective
approach that only uses the building: model-tag. Also, performance will play a
crucial role once a couple of detailed models will have been added. Ensuring
smooth visualisations and efficient storage of the models will be a challenging task
due to the enormous data load.

Open Building Models 311

5 Conclusion and Future Work

In this paper, the current situation of 3D volunteered geographical information was
discussed and a new concept of how to push it forward was introduced with Open
Building Models.

In the first part, a review about related work in this context was given, showing
that besides some available tools, only little research exists in this innovative field.
Subsequently, the current situation was critically discussed and main issues
regarding further progress in this area were pointed out. In the second part of this
article, a basic prototype of Open Building Models was introduced. This approach
aims to build up a free repository of 3D building models which can be linked to the
OSM database. Advantages and shortcomings of this approach were discussed
thereafter. OBM has the potential to attract users with 3D modelling skills to the
geodomain and the Open Street Map project in the future. This is an important step
for the progression of 3D-VGI, because it is impossible to model each and every
building based on the rather low-level data schema of OSM. However, there are
still many challenges to be tackled. Most importantly, these include a correct geo-
referencing of the models. Also, there are many different 3D formats in which the
models can be created and therefore questions regarding the conversion of formats
and interoperability are to be answered as well. Furthermore, issues arise about
how complex 3D models can be effectively edited by multiple users, since this is
not as straightforward as it is for standard 2D map features. The possibility to
upload multiple models for one object to the repository with different levels of
detail must be considered. Finally, performance as well as effective storage and
compression of complex models will be further issues.

A VGI-based approach to 3D city modelling is very promising and can
potentially lead to an added-value in this field of application. User-generated
approaches have already proven their potential to be capable of capturing high-
quality spatial information. The interest in 3D mapping is rising in the OSM
community. Since OSM is an established and successful platform, it is currently
most qualified for 3D-VGI, although there are some shortcomings like the rather
unsuitable data model. One key question will be how much 3D is capable and
sensible in such a project and when new approaches and platforms are needed.
Open Building Models is one of several possible means to enable voluntary users
to contribute rich 3D information. It is a first effort to push forward the 3D
mapping and apart from it, many other possible issues could be tackled in the
future. For instance, the tag-based modelling and therefore the parametric building
model creation could be advanced. Dedicated OSM-3D editors have to be
developed in order to make it as easy as possible for inexperienced mappers to
contribute 3D information. There should be a wide range of mechanisms available
to allow crowd sourced 3D mapping on different scales. Also, an extension of the
OBM repository to not only buildings but also other objects of our environment
like street furniture, prototypical landscape objects or the like is conceivable and
would lead to more detailed and usable crowd sourced 3D city models.

312 M. Uden and A. Zipf

Acknowledgments The authors would like to thank all proofreaders who helped to improve this
article and particularly all contributors to the OSM-3D project. This research has been partially
funded by the Klaus-Tschira Foundation (KTS) Heidelberg.

References

Brenner C (2005) Building reconstruction from images and laser scanning. Int J Appl Earth Obs
Geoinf 6(3–4):187–198

Cloudmade (2012) Application gallery. http://cloudmade.com/application-gallery. Accessed 09/
01/2012

Coleman DJ, Georgiadou Y, Labonte J (2009) Volunteered geographic information: the nature
and motivation of produsers. Int J Spat Data Infrastruct Res 4:332–358

Debevec PE (1996) Modeling and rendering architecture from photographs. Dissertation,
University of California, Berkeley, CA

Elgan M (2011) Kinect: microsoft’s accidental success story. http://www.computerworld.com/s/
article/9217737/Kinect_Microsoft_s_accidental_success_story. Accessed 11/01/2012

Förstner W (1999) 3D-city models: automatic and semiautomatic acquisition methods. In: Fritsch
D, Spiller R (eds) Photogrammetric Week ‘99. Wichmann, Heidelberg

Früh C, Zakhor A (2004) An automated method for large-scale, ground-based city model
acquisition. Int J Comput Vision 60(1):5–24. doi:10.1023/B:VISI.0000027787.82851.b6

Goetz M, Lauer J, Auer M (2012) An algorithm based methodology for the creation of a regularly
updated global online map derived from volunteered geographic information. Paper presented
at the 4th international conference on advanced geographic information systems, applications
and services geoprocessing, Valencia, Spain, 31/01/2012

Goetz M, Zipf A (2012) Towards defining a framework for the automatic derivation of 3D
cityGML models from volunteered geographic information. Int J 3D Inf Model (IJ3DIM)
1(2):496–507

Goetz M, Zipf A (2012) The evolution of geocrowd sourcing: bringing volunteered geographic
information to the 3D. In: Sui D, Elwood S, Goodchild M (eds) Volunteered geographic
information, public participation, and crowdsourced production of geographic knowledge.
Springer, Berlin (in press)

Goodchild M (2007) Citizens as sensors: the world of volunteered geography. GeoJournal
69:211–221

Google (2012) Earth. http://www.google.com/earth. Accessed 09/01/2012
Gore A (1998) The digital earth: understanding our planet in the 21st century. Aust surveyor

43(2):89–91
Haklay M (2010) How good is volunteered geographical information? a comparative study of

open street map and ordnance survey datasets. Environ Plan B Plan Des 37(4):682–703.
doi:10.1068/b35097

Haklay M, Weber P (2008) Open street map: user-generated street maps. IEEE Pervasive Comput
7(4):12–18. doi:10.1109/MPRV.2008.80

Kendzi (2011) 3D plug-in for josm. http://wiki.openstreetmap.org/wiki/Kendzi3d. Accessed 13/
12/2011

Klank U, Zeeshan M, Beetz M (2009) 3D model selection from an internet database for robotic
vision. In: Proceedings of the IEEE international conference on robotics and automation
(ICRA 2009), Kobe, Japan

Kolbe TH (2009) Representing and exchanging 3D city models with cityGML. In: Lee J,
Zlatanova S (eds) Lecture notes in geoinformation and cartography: 3D geoinformation
sciences, Springer, Heidelberg, pp 15–31. doi:10.1007/978-3-540-87395-2_2

Lai K, Fox D (2009) 3D laser scan classification using web data and domain adaptation. In:
Proceedings of robotics: science and systems, Seattle, USA

Open Building Models 313

http://cloudmade.com/application-gallery
http://www.computerworld.com/s/article/9217737/Kinect_Microsoft_s_accidental_success_story
http://www.computerworld.com/s/article/9217737/Kinect_Microsoft_s_accidental_success_story
http://dx.doi.org/10.1023/B:VISI.0000027787.82851.b6
http://www.google.com/earth
http://dx.doi.org/10.1068/b35097
http://dx.doi.org/10.1109/MPRV.2008.80
http://wiki.openstreetmap.org/wiki/Kendzi3d
http://dx.doi.org/10.1007/978-3-540-87395-2_2

Mayer C, Zipf A (2009) Integration and visualization of dynamic sensor data into 3D spatial data
infrastructures in a standardized way. Paper presented at the geoviz 2009, contribution of
geovisualization to the concept of the digital city, Workshop, Hamburg, Germany, 05/03/2009

Müller P, Zeng G, Wonka P, Van Gool L (2007) Image-based procedural modelling of facades.
ACM Trans Graph (TOG) 26(3):85–93

Neis P, Zielstra D, Zipf A (2012) The street network evolution of crowdsourced maps: open street
map in Germany 2007–2011. Future Internet 4:1–21. doi:10.3390/fi4010001

OGC (2011) Open geospatial consortium 3D portayal interoperability experiment (3dpie). http://
www.opengeospatial.org/projects/initiatives/3dpie. Accessed 13/12/2011

OSM-3D (2012) The open street map 3D project. http://www.osm-3d.org/home.en.htm. Acces-
sed 27/03/2012

OSM Wiki (2011a) 3D development. http://wiki.openstreetmap.org/wiki/3D_Development.
Accessed 16/12/2011

OSM Wiki (2011b) Map feature list. http://wiki.openstreetmap.org/wiki/Map_Features. Accessed
14/11/2011

Over M, Schilling A, Neubauer S, Zipf A (2010) Generating web-based 3D city models from
open street map: the current situation in Germany. Comput Environ Urban Syst 34(6):
496–507. doi:10.1016/j.compenvurbsys.2010.05.001

Panoramio (2012) Map. http://www.panoramio.com/map. Accessed 09/01/2012
Pomaska G (2009) Utilization of photosynth point clouds for 3D object reconstruction. In:

Proceedings of the 22nd CIPA symposium, Kyoto, Japan
RenderLights (2012) Viewer for google 3D warehouse. http://www.renderlights.com/?p=103745.

Accessed 10/12/2012
Rocchini C, Cignoni P, Montani C, Pingi P, Scopigno R (2001) A low cost 3D scanner based on

structured light. Comput Graph Forum 20(3):299–308. doi:10.1111/1467-8659.00522
Sampath A, Shan J (2010) Segmentation and reconstruction of polyhedral building roofs from

aerial lidar point clouds. IEEE Trans Geosci Remote Sens 48(3):1554–1567. doi:10.1109/
TGRS.2009.2030180

Schilling A, Over M, Neubauer S, Neis P, Walenciak G, Zipf A (2009) Interoperable location
based services for 3D cities on the web using user generated content from open street map.
Paper presented at the 27th urban data management symposium (UDMS 2009), Ljubljana,
Slovenia, 24—26/06/2009

Simio (2012) Enhancing 3D animation with google warehouse. http://www.simio.com/resources/
videos/Enhancing-3D-Animation-with-Google-Warehouse.htm. Accessed 10/12/2012

Stadtmessungsamt (2012) Stuttgart 3D-stadtmodell. http://www.stuttgart.de/item/show/21491.
Accessed 09/01/2012

Strassenburg-Kleciak M (2011) Roof table proposal. http://wiki.openstreetmap.org/wiki/
DE:Roof_table. Accessed 14/11/2011

Wang Y-F (2011) A comparison study of five 3D modelling systems based on the sfm principles.
Technical Report 2011-01. Visualize Inc., Goleta, USA

WikiMapia (2012) http://wikimapia.org. Accessed 09/01/2012
Williamson I, Rajabifard A, Wallace J, Bennett R (2011) Spatially enabled society. Paper

presented at the FIG working week 2011, Marrakech, Morocco, 19/05/2011
Willmes C, Baaser U, Volland K, Bareth G (2010) Internet based distribution and visualization of

a 3D model of the university of cologne campus. Paper presented at the 3rd ISDE digital earth
summit, Nessebar, Bulgaria, 14/06/2010

Yiakoumettis CP, Bardis G, Miaoulis G, Plemenos D, Ghazanfarpour D (2010) Virtual globe
based collaborative 3D city modelling. Intell Comput Graph 321:165–184

314 M. Uden and A. Zipf

http://dx.doi.org/10.3390/fi4010001
http://www.opengeospatial.org/projects/initiatives/3dpie
http://www.opengeospatial.org/projects/initiatives/3dpie
http://www.osm-3d.org/home.en.htm
http://wiki.openstreetmap.org/wiki/3D_Development
http://wiki.openstreetmap.org/wiki/Map_Features
http://dx.doi.org/10.1016/j.compenvurbsys.2010.05.001
http://www.panoramio.com/map
http://www.renderlights.com/?p=103745
http://dx.doi.org/10.1111/1467-8659.00522
http://dx.doi.org/10.1109/TGRS.2009.2030180
http://dx.doi.org/10.1109/TGRS.2009.2030180
http://www.simio.com/resources/videos/Enhancing-3D-Animation-with-Google-Warehouse.htm
http://www.simio.com/resources/videos/Enhancing-3D-Animation-with-Google-Warehouse.htm
http://www.stuttgart.de/item/show/21491
http://wiki.openstreetmap.org/wiki/DE:Roof_table
http://wiki.openstreetmap.org/wiki/DE:Roof_table
http://wikimapia.org

	Progress and New Trends in 3D Geoinformation Sciences
	Contents
	1 Modelling 3D Topographic Space Against Indoor Navigation Requirements
	2 Enhancing the Visibility of Labels in 3D Navigation Maps
	3 Semantic 3D Modeling of Multi-Utility Networks in Cities for Analysis and 3D Visualization
	4 Generalization and Visualization of 3D Building Models in CityGML
	5 From the Volumetric Algorithm for Single-Tree Delineation Towards a Fully-Automated Process for the Generation of ‘‘Virtual Forests’’
	6 A Service-Based Concept for Camera Control in 3D Geovirtual Environments
	7 Representing Three-Dimensional Topography in a DBMS with a Star-Based Data Structure
	8 Can Topological Pre-Culling of Faces Improve Rendering Performance of City Models in Google Earth?
	9 On Problems and Benefits of 3D Topology on Under-Specified Geometries in Geomorphology
	10 Geometric-Semantical Consistency Validation of CityGML Models
	11 Advancing DB4GeO
	12 Glob3 Mobile: An Open Source Framework for Designing Virtual Globes on iOS and Android Mobile Devices
	13 (alpha , delta)-Sleeves for Reconstruction of Rectilinear Building Facets
	14 A 3D-GIS Implementation for Realizing 3D Network Analysis and Routing Simulation for Evacuation Purpose
	15 A Three Step Procedure to Enrich Augmented Reality Games with CityGML 3D Semantic Modeling
	16 Implementation of a National 3D Standard: Case of the Netherlands
	17 Open Building Models: Towards a Platform for Crowdsourcing Virtual 3D Cities

