
Model-Based Techniques for Performance

Engineering of Business Information Systems

Samuel Kounev1, Nikolaus Huber1, Simon Spinner2, and Fabian Brosig1

1 Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5

76131 Karlsruhe, Germany
{kounev,fabian.brosig,nikolaus.huber}@kit.edu
2 FZI Research Center for Information Technology

Haid-und-Neu-Straße 10
76131 Karlsruhe, Germany

spinner@fzi.de

Abstract. With the increasing adoption of virtualization and the tran-
sition towards Cloud Computing platforms, modern business information
systems are becoming increasingly complex and dynamic. This raises the
challenge of guaranteeing system performance and scalability while at the
same time ensuring efficient resource usage. In this paper, we present a
historical perspective on the evolution of model-based performance en-
gineering techniques for business information systems focusing on the
major developments over the past several decades that have shaped the
field. We survey the state-of-the-art on performance modeling and man-
agement approaches discussing the ongoing efforts in the community to
increasingly bridge the gap between high-level business services and low
level performance models. Finally, we wrap up with an outlook on the
emergence of self-aware systems engineering as a new research area at
the intersection of several computer science disciplines.

Keywords: business information systems, performance, scalability, pre-
dictive modeling, simulation.

1 Introduction

Modern business information systems are expected to satisfy increasingly strin-
gent performance and scalability requirements. Most generally, the performance
of a system refers to the degree to which the system meets its objectives for
timeliness and the efficiency with which it achieves this [55,25]. Timeliness is
normally measured in terms of meeting certain response time and/or through-
put requirements, response time referring to the time required to respond to a
user request (e.g., a Web service call or a database transaction), and throughput
referring to the number of requests or jobs processed per unit of time. Scalability,
on the other hand, is understood as the ability of the system to continue to meet
its objectives for response time and throughput as the demand for the services it

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 19–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 S. Kounev et al.

provides increases and resources (typically hardware) are added. Numerous stud-
ies, e.g., in the areas of e-business, manufacturing, telecommunications, health
care and transportation, have shown that a failure to meet performance require-
ments can lead to serious financial losses, loss of customers and reputation, and
in some cases even to loss of human lives. To avoid the pitfalls of inadequate
Quality-of-Service (QoS), it is important to analyze the expected performance
and scalability characteristics of systems during all phases of their life cycle.
The methods used to do this are part of the discipline called Performance En-
gineering. Performance Engineering helps to estimate the level of performance a
system can achieve and provides recommendations to realize the optimal perfor-
mance level. The latter is typically done by means of performance models (e.g.,
analytical queueing models or simulation models) that are used to predict the
performance of the system under the expected workload.

However, as systems grow in size and complexity, estimating their perfor-
mance becomes a more and more challenging task. Modern business information
systems based on the Service-Oriented Architecture (SOA) paradigm are often
composed of multiple independent services each implementing a specific busi-
ness activity. Services are accessed according to specified workflows representing
business processes. Each service is implemented using a set of software compo-
nents distributed over physical tiers as depicted in Figure 1. Three tiers exist:
presentation tier, business logic tier, and data tier. The presentation tier includes
Web servers hosting Web components that implement the presentation logic of
the application. The business logic tier normally includes a cluster of applica-
tion servers hosting business logic components that implement the business logic
of the application. Middleware platforms such as Java EE, Microsoft .NET, or
Apache Tomcat are often used in this tier to simplify application development
by leveraging some common services typically used in enterprise applications.
Finally, the data tier includes database servers and legacy systems that provide
data management services.

The inherent complexity of such architectures makes it difficult to manage
their end-to-end performance and scalability. To avoid performance problems, it
is essential that systems are subjected to rigorous performance evaluation during
the various stages of their lifecycle. At every stage, performance evaluation is
conducted with a specific set of goals and constraints. The goals can be classified
in the following categories, some of which partially overlap:

Platform Selection: Determine which hardware and software platforms would
provide the best scalability and cost/performance ratio?

Platform Validation: Validate a selected combination of platforms to ensure
that taken together they provide adequate performance and scalability.

Evaluation of Design Alternatives: Evaluate the relative performance, scal-
ability and costs of alternative system designs and architectures.

Performance Prediction: Predict the performance of the system for a given
workload and configuration scenario.

Performance Tuning: Analyze the effect of various deployment settings and
tuning parameters on the system performance and find their optimal values.

Model-Based Techniques for Performance Engineering of BIS 21

Client 1 Client 2 Client n

AS 1 AS m

Load Balancers

Presentation
Tier

Business Logic
Tier

Data Tier

Firewall

Legacy Systems

Web Routers

WS 1 WS 2 WS k

Intra/InterNET

Web Servers (WS)
1..k

App. Servers (AS)
1..m

Database Servers (DS)
1..p

Client Side

Clients
1..n

DS 1 ... DS p

Fig. 1. Modern business information system

Performance Optimization: Find the components with the largest effect on
performance and study the performance gains from optimizing them.

Scalability and Bottleneck Analysis: Study the performance of the system
as the load increases and more hardware is added. Find which system com-
ponents are most utilized and investigate if they are potential bottlenecks.

Sizing and Capacity Planning: Determine how much hardware resources are
required to guarantee certain performance levels.

Run-Time Performance and Power Management: Determine how to vary
resource allocations during operation in order to ensure that performance re-
quirements are continuously satisfied while optimizing power consumption
in the face of frequent variations in service workloads.

Two broad approaches are used in Performance Engineering for performance
evaluation of software systems: performance measurement and performance mod-
eling. In the first approach, load testing tools and benchmarks are used to gen-
erate artificial workloads on the system and to measure its performance. In the

22 S. Kounev et al.

second approach, performance models are built and then used to analyze the
performance and scalability characteristics of the system.

In this paper, we focus on performance modeling since it is normally much
cheaper than load testing and has the advantage that it can also be applied in
the early stages of system development before the system is available for testing.
We present a historical perspective on the evolution of performance modeling
techniques for business information systems over the past several decades, focus-
ing on the major developments that have shaped the field, such as the increasing
integration of software-related aspects into performance models, the increasing
parametrization of models to foster model reuse, the increasing use of automated
model-to-model transformations to bridge the gap between models at different
levels of abstraction, and finally the increasing use of models at run-time for
online performance management.

The paper starts with an overview of classical performance modeling ap-
proaches which is followed by an overview of approaches to integrate performance
modeling and prediction techniques into the software engineering process. Next,
automated model-to-model transformations from architecture-level performance
models to classical stochastic performance models are surveyed. Finally, the use
of models at run-time for online performance management is discussed and the
paper is wrapped up with some concluding remarks.

2 Classical Performance Modeling

The performance modeling approach to software performance evaluation is based
on using mathematical or simulation models to predict the system performance
under load. A performance model is an abstract representation of the system that
relates the workload parameters with the system configuration and captures the
main factors that determine the system performance [45].

A number of different methods and techniques have been proposed in the
literature for modeling software systems and predicting their performance under
load. Most of them, however, are based on the same general methodology that
proceeds through the steps depicted in Figure 2 [46,55,24]. First, the goals and
objectives of the modeling study are specified. After this, the system is described
in detail in terms of its hardware and software architecture. Next, the workload
of the system is characterized and a workload model is built. The workload model
is used as a basis for building a performance model. Before the model can be used
for performance prediction, it has to be validated. This is done by comparing
performance metrics predicted by the model with measurements on the real
system obtained in a small testing environment. If the predicted values do not
match the measured values within an acceptable level of accuracy, the model
must be refined and/or calibrated. Finally, the validated performance model is
used to predict the system performance for the deployment configurations and
workload scenarios of interest. The model predictions are analyzed and used to
address the goals set in the beginning of the modeling study.

Model-Based Techniques for Performance Engineering of BIS 23

��������	
�������
����������

�	����������
������

�	����������
�������

�������
��� �������
����

!������
����
"� ���
��#��

���������
����

������
������
��� �������

$������
"��%���
&
$����
����������

Fig. 2. Performance modeling process

2.1 Workload Characterization

Workload characterization is the process of describing the workload of the sys-
tem in a qualitative and quantitative manner [44]. The result of workload char-
acterization is a nonexecutable workload model that can be used as input to
performance models. Workload characterization usually involves the following
activities [55,43]:

1. The basic components of the workload are identified. Basic component refers
to a generic unit of work that arrives at the system from an external source [42].
Some examples include HTTP requests, Web service invocations, database
transactions, and batch jobs. The choice of basic components and the de-
cision how granular they are defined depend on the nature of the services
provided by the system and on the modeling objectives.

2. Basic components are partitioned into workload classes. To improve the rep-
resentativeness of the workload model, the basic components are partitioned
into classes (called workload classes) that have similar characteristics. The
partitioning can be done based on different criteria, depending on the type
of system modeled and the goals of the modeling effort [42,48].

3. The system components and resources used by each workload class are iden-
tified. For example, an online request to place an order might require using a
Web server, application server, and backend database server. For each server,
the concrete hardware and software resources used must be identified and
characterized.

24 S. Kounev et al.

4. The inter-component interactions and processing steps are described. The
aim of this step is to described the processing steps, the inter-component
interactions, and the flow of control for each workload class. Also for each
processing step, the hardware and software resources used are specified.

5. Service demands and workload intensities are quantified. The goal is to quan-
tify the load placed by the workload components on the system. Service de-
mand parameters specify the average total amount of service time required
by each workload class at each resource. Workload-intensity parameters pro-
vide for each workload class a measure of the number of units of work, that
contend for system resources.

One of the greatest challenges in workload characterization is to obtain values
for service demand parameters. Most techniques require the availability of a
system to take measurements. If this is not possible, some techniques can also
be used to estimate service demand parameters in the early stages of system
development before the system is available for testing [47]. The process to obtain
service demands through measurements at a running systems usually consists
of three steps. First, the performance metrics that need to be monitored for
quantifying service demands are selected. It is usually not possible to measure
the service demands directly. Instead, the service demands must be derived from
other metrics, which can be readily observed at the system. Typical metrics
are the aggregate CPU utilization, the throughput and the transaction response
time. Second, measurement data for the selected metrics is gathered from the
system. This is usually done either by running controlled experiments in a test
environment or by monitoring production systems while serving real workloads.
Finally, the measurement data gathered in the previous step is analyzed and
transformed in order to derive service demands.

A common approach to derive service demands from indirect measurements
is based on the Service Demand Law [46]. This operational law states that the
service demand Di,r of class r transactions at resource i is equal to the aver-
age utilization Ui,r of resource i by class r transactions divided by the average
throughput X0,r of class r transactions during the measurement interval, i.e.

Di,r =
Ui,r

X0,r
. (1)

However, system monitors usually provide only statistics of the overall utilization
of a resource aggregated over all workload classes. There are two approaches to
determine values for Ui,r: conduct a single experiment injecting transactions from
all workload classes simultaneously or conduct several experiments injecting only
transactions of a single workload class at a time. In the former case, interactions
between workload classes are not included in the service demands. In the latter
case, methods to apportion the measured total utilization between workload
classes are required, as described in [42,45,46]. However, there is often some
unattributed resource usage due to system overheads. It is hard to find a fair
distribution of the unattributed resource usage between workload classes [23].

Model-Based Techniques for Performance Engineering of BIS 25

Other approaches to resource demand estimation have been proposed over
the years, e.g., based on linear regression [3,51,49], general optimization tech-
niques [62,35,1], or Kalman filters [63,33]. Each of these approaches makes certain
assumptions, e.g., regarding the type, amount and quality of measurements. The
decision which of these estimation approaches can be used depends heavily on
the modeled system.

2.2 Stochastic Performance Models

Performance models have been employed for performance prediction of software
systems since the early seventies. In 1971, Buzen proposed modeling systems
using queueing network models and developed solution techniques for several
important classes of models. Since then many advances have been made in im-
proving the model expressiveness and developing efficient model analysis tech-
niques as well as accurate approximation techniques. A number of modeling
techniques utilizing a range of different performance models have been proposed
including standard queueing networks, extended and layered queueing networks,
stochastic Petri nets, queueing Petri nets, stochastic process algebras, Markov
chains, statistical regression models and simulation models. Performance models
can be grouped into two main categories: simulation models and analytical mod-
els. One of the greatest challenges in building a good model is to find the right
level of abstraction and granularity. A general rule of thumb is: Make the model
as simple as possible, but not simpler! Including too much detail might render
the model intractable, on the other hand, making it too simple might render it
unrepresentative.

Simulation Models. Simulation models are software programs that mimic the
behavior of a system as requests arrive and get processed at the various system re-
sources. Such models are normally stochastic because they have one or more ran-
dom variables as input (e.g., the times between successive arrivals of requests).
The structure of a simulation program is based on the states of the simulated sys-
tem and events that cause the system state to change. When implemented, sim-
ulation programs count events and record the duration of time spent in different
states. Based on these data, performancemetrics of interest (e.g., the average time
a request takes to complete or the average system throughput) can be estimated
at the end of the simulation run. Estimates are provided in the form of confidence
intervals. A confidence interval is a range with a given probability that the esti-
mated performance metric lies within this range. The main advantage of simula-
tion models is that they are very general and can be made as accurate as desired.
However, this accuracy comes at the cost of the time taken to develop and run
the models. Usually, many long runs are required to obtain estimates of needed
performance measures with reasonable confidence levels.

Several approaches to developing a simulation model exist. The most time-
consuming approach is to use a general purpose programming language such
as C++ or Java, possibly augmented by simulation libraries (e.g., CSIMor
SimPack, OMNeT++, DESMO-J). Another approach is to use a specialized

26 S. Kounev et al.

simulation language such as GPSS/H, Simscript II.5, or MODSIM III. Finally,
some simulation packages support graphical languages for defining simulation
models (e.g., Arena, Extend, SES/workbench, QPME). A comprehensive treat-
ment of simulation techniques can be found in [34,2].

Analytical Models. Analytical models are based on mathematical laws and
computational algorithms used to derive performance metrics from model pa-
rameters. Analytical models are usually less expensive to build and more efficient
to analyze compared to simulation models. However, because they are defined
at a higher level of abstraction, they are normally less detailed and accurate.
Moreover, for models to be mathematically tractable, usually many simplifying
assumptions need to be made impairing the model representativeness. Queueing
networks and generalized stochastic Petri nets are perhaps the two most popular
types of models used in practice.

Queueing networks provide a very powerful mechanism for modeling hardware
contention (contention for CPU time, disk access, and other hardware resources).
A number of efficient analysis methods have been developed for a class of queue-
ing networks called product-form queueing networks allowing models of realistic
size and complexity to be analyzed with a minimum overhead [9]. The downside
of queueing networks is that they do not provide direct means to model soft-
ware contention aspects accurately (contention for processes, threads, database
connections, and other software resources), as well as blocking, simultaneous re-
source possession, asynchronous processing, and synchronization aspects. Even
though extensions of queueing networks, such as extended queueing networks [37]
and layered queueing networks (also called stochastic rendezvous networks) [60],
provide some support for modeling software contention and synchronization as-
pects, they are often restrictive and inaccurate.

In contrast to queueing networks, generalized stochastic Petri net models
can easily express software contention, simultaneous resource possession, asyn-
chronous processing, and synchronization aspects. Their major disadvantage,
however, is that they do not provide any means for direct representation of
scheduling strategies. The attempts to eliminate this disadvantage have led to
the emergence of queueing Petri nets [4], which combine the modeling power and
expressiveness of queueing networks and stochastic Petri nets. Queueing Petri
nets enable the integration of hardware and software aspects of system behavior
in the same model [28]. A major hurdle to the practical use of queueing Petri
nets, however, is that their analysis suffers from the state space explosion prob-
lem limiting the size of the models that can be solved. Currently, the only way
to circumvent this problem is by using simulation for model analysis [29].

Details of the various types of analytical models are beyond the scope of
this article. The following books can be used as reference for additional infor-
mation [9,57,5]. The Proceedings of the ACM SIGMETRICS Conferences and
the Performance Evaluation Journal report recent research results in perfor-
mance modeling and evaluation. Further relevant information can be found in
the Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE), the Proceedings of the International Conference on

Model-Based Techniques for Performance Engineering of BIS 27

Quantitative Evaluation of SysTems (QEST), the Proceedings of the Annual
Meeting of the IEEE International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), and the
Proceedings of the International Conference on Performance Evaluation Method-
ologies and Tools (VALUETOOLS).

3 Software Performance Engineering

A major hurdle to the adoption of classical performance modeling approaches in
industry is the fact that performance models are expensive to build and require
extensive experience and expertise in stochastic modeling which software engi-
neers typically do not possess. To address this issue, over the last fifteen years, a
number of approaches have been proposed for integrating performance modeling
and prediction techniques into the software engineering process. Furthermore,
using models and automatic transformation and processing can simplify the
software performance engineering approach, making it less error-prone.

3.1 Software Performance Meta-models

Efforts introducing performance models in the software engineering process were
initiated with Smith’s seminal work pioneered under the name of Software Per-
formance Engineering (SPE) [53]. Since then a number of languages (i.e., meta-
models) for describing performance-relevant aspects of software architectures and
execution environments have been developed by the SPE community, the most
prominent being the UML SPT profile (UML Profile for Schedulability, Perfor-
mance and Time) and its successor the UML MARTE profile (UML Profile for
Modeling and Analysis of Real-time and Embedded Systems). The latter are
extensions of UML (Unified Modeling Language) as the de facto standard
modeling language for software architectures. Other proposed architecture-level
performance meta-models include SPE-MM [54], CSM [50] and KLAPER [17].
The common goal of these efforts is to enable the automated transformation of
architecture-level performance models into analytical or simulation-based perfor-
mancemodels that canbe solvedusing classical analysis techniques (see Section 3.2).

In recent years, with the increasing adoption of Component-Based Software
Engineering (CBSE), the SPE community has focused on adapting and extend-
ing conventional SPE techniques to support component-based systems. A num-
ber of architecture-level performance meta-models for component-based systems
have been proposed as surveyed in [31]. Such meta-models provide means to
describe the performance-relevant aspects of software components (e.g., inter-
nal control flow and resource demands) while explicitly capturing the influences
of their execution context. The idea is that once component models are built
they can be reused in multiple applications and execution contexts. The perfor-
mance of a component-based system can be predicted by means of compositional
analysis techniques based on the performance models of its components. Over
the last five years, research efforts have been targeted at increasing the level

28 S. Kounev et al.

of parametrization of component models to capture additional aspects of their
execution context.

An example of a mature modeling language for component-based systems is
given by the Palladio Component Model (PCM) [6]. In PCM, the component
execution context is parameterized to explicitly capture the influence of the com-
ponent’s connections to other components, its allocated hardware and software
resources, and its usage profile including service input parameters. Model arti-
facts are divided among the developer roles involved in the CBSE process, i.e.,
component developers, system architects, system deployers and domain experts.

Design

Performance
Model

Response Time,
Utilization,
ThroughputFeedback

Model
Transformation

Analysis /
Simulation

Estimation /
Measurement

Annotated
Design

2 ms

15 ms10 ms

Fig. 3. Model-driven Performance Engineering Process

3.2 Model-to-Model Transformations

To bridge the gap between architecture-level performance models and classical
stochastic performance models, over the past decade the SPE community has
focused on building automated model-to-model transformations (see Figure 3)
which make it possible to exploit existing model solution techniques from the
performance evaluation community [39]. In the following, we provide an overview
of the most common transformations available in the literature.

Marco and Inverardi transform UML models annotated with SPT stereotypes
into a multichain queueing network [38]. UML-ψ, the UML Performance SImu-
lator [40], transforms a UML instance annotated with the SPT profile to a simu-
lation model. The results from the analysis of the simulation model are reported

Model-Based Techniques for Performance Engineering of BIS 29

back to the annotated UML instance [39]. Another approach uses the stochastic
process algebra PEPA as analysis model [56]. In this case, only UML activity
diagrams are considered, which are annotated with a subset of the MARTE pro-
file. A software tool implementing this method is also available. Bertolino and
Mirandola integrate their approach into the Argo-UML modeling tool, using the
RT-UML performance annotation profile [8]. An execution graph and a queueing
network serve as the target analysis formalisms.

Other approaches use UML, but do not use standardized performance profile
annotations: the approach in [18] uses XSLT, the eXtensible Stylesheet Language
Transformations, to execute a graph pattern based transformation from a UML
instance to LQNs. Instead of annotating the UML model, it has to be modeled in
a way so that the transformation can identify the correct patterns in the model.
The authors of [7] consider only UML state charts and sequence diagrams. A
transformation written in Java turns the model into GSPN sub-models that are
then combined into a final GSPN. Gomaa and Menascé use UML with custom
XML performance annotation [16]. The performance model is not described in
detail, but appears to be based on queueing networks. In [61], the authors use
UML component models together with a custom XML component performance
specification language. LQN solvers are used for the analysis.

Further approaches exist that are not based on UML: [11,10] builds on the
ROBOCOP component model and use proprietary simulation framework for
model analysis. [15] proposes a custom control flow graph model notation and
custom simulation framework. [20] employs the COMTEK component technol-
ogy, coupled with a proprietary analysis framework. In [52], the authors specify
component composition and performance characteristics using a variant of the
big-O notation. The runtime analysis is not discussed in detail.

Several model-to-model transformations have been developed for the Palla-
dio Component Model (PCM). Two solvers are based on a transformation to
Layered Queueing Networks (LQNs) [32] and a transformation to Stochastic
Regular Expressions [30], respectively. Stochastic Regular Expressions can be
solved analytically with very low overhead, however, they only support single
user scenarios. Henßproposes a PCM transformation to OMNeT++, focusing on
a realistic network infrastructure closer to the OSI reference network model [19].
The PCM-Bench tool comes with the SimuCom simulator [6] which is based on a
model-to-text transformation used to generate Java code that builds on DESMO-
J, a general-purpose simulation framework. The code is then compiled on-the-fly
and executed. SimuCom is tailored to support all of the PCM features directly
and covers the whole PCM meta-model. Meier et al. present a transformation
of the PCM to Queuing Petri Nets (QPN) [41]. This transformation enables the
analysis of PCM model instances with simulation and analysis techniques devel-
oped for QPNs [29]. The work also illustrates and compares important aspects
concerning the accuracy and overhead of the solvers for PCM model instances
(SimuCom, LQNS and LQSim) and SimQPN, the solver for QPNs. The results
show that LQN-based solvers are less accurate regarding mean response times
and that solvers can have significantly different analysis overhead.

30 S. Kounev et al.

Finally, a number of intermediate languages (or kernel languages) for spec-
ifying software performance information have been proposed in the literature.
The aim of such efforts is to reduce the overhead for building transformations,
i.e., only M + N instead of M · N transformations have to be developed for
M source and N target meta-models [39]. Some examples of intermediate lan-
guages include SPE-MM [54], KLAPER (Kernel LAnguage for PErformance and
Reliability analysis) [17] and CSM (Core Scenario Model) [50].

4 Run-Time Performance Management

With the increasing adoption of virtualization and the transition towards Cloud
Computing platforms, modern business information systems are becoming in-
creasingly complex and dynamic. The increased complexity is caused by the in-
troduction of virtual resources and the resulting gap between logical and physical
resource allocations. The increased dynamicity is caused by the complex interac-
tions between the applications and services sharing the physical infrastructure.
In a virtualized service-oriented environment changes are common during opera-
tion, e.g., new services and applications can be deployed on-the-fly, service work-
flows and business processes can be modified dynamically, hardware resources
can be added and removed from the system, virtual machines (VMs) can be
migrated between servers, resources allocated to VMs can be modified to reflect
changes in service workloads and usage profiles. To ensure adequate performance
and efficient resource utilization in such environments, capacity planning needs
to be done on a regular basis during operation. This calls for online performance
prediction mechanisms.

Service A
Service B

Service C Service D Service E
Service F

1 2 3 4

Server Utilization
85% 55% 60% 70%20%

Stand-By
Mode

Service A
Service B

Service C
Service E

Service D
Service F

1 2 3 4

Server Utilization
85% 0%

Service A
Service B

Stand-By
Mode

Service D

1 2 3 4

Service E
Service F
Service C

Server Utilization
85% 0%

Average Service Response Times (sec)

Service A B C D E F

Before Reconfiguration 2 3 1 2 2 3

After Reconfiguration 1 2 3

After Reconfiguration 2 2 3 2

Service Level Agreement 4 3 5 5 6 6

? ?

? ?

?
?
? ? ?
? ?

Fig. 4. Online performance prediction scenario

Model-Based Techniques for Performance Engineering of BIS 31

An example of a scenario where online performance prediction is needed is
depicted in Figure 4. A service-oriented system made of four servers hosting six
different services is shown including information on the average service response
times, the response time service level agreements (SLAs) and the server utiliza-
tion. Now assume that due to a change in the demand for services E and F,
the average utilization of the fourth server has dropped down to 20% over an
extended period of time. To improve the system’s efficiency, it is considered to
switch one of the servers to stand-by mode after migrating its services to other
servers. Two possible ways to reconfigure the system are shown. To ensure that
reconfiguring the system would not break the SLAs, the system needs a mecha-
nism to predict the effect of the reconfiguration on the service response times.

Given the variety of changes that occur in modern service-oriented environ-
ments, online performance prediction techniques must support variations at all
levels of the system including variations in service workloads and usage profiles,
variations in the system architecture, as well as variations in the deployment and
execution environment (virtualization, middleware, etc). To predict the impact
of such variations, architecture-level performance models are needed at run-time
that explicitly capture the influences of the system architecture, its configura-
tion, and its workload and usage profiles.

While many architecture-level performance prediction techniques exist in the
literature, most of them suffer from two significant drawbacks which render them
impractical for use at run-time: i) performance models provide limited support
for reusability and customization, ii) performance models are static, creating and
maintaining them manually during operation is prohibitively expensive [59].

While techniques for component-based performance engineering have con-
tributed a lot to facilitate model reusability, there is still much work to be done
on further parameterizing component models before they can be used for online
performance prediction. In particular, current techniques do not provide means
to model the layers of the component execution environment explicitly. The
performance influences of the individual layers, the dependencies among them,
as well as the resource allocations at each layer should be captured as part of
the models. This is necessary in order to be able to predict at run-time how a
change in the execution environment (e.g., modifying resource allocations at the
virtualization layer) would affect the overall system performance.

As to the second issue indicated above, building architecture-level perfor-
mance models that accurately capture the different aspects of system behavior
is a challenging task and requires a lot of time when applied manually to large
and complex real-world systems. Often, no explicit architecture documentation
of the system exists and hence, the model must be built from scratch. Addi-
tionally, experiments and measurements must be conducted to parameterize the
model such that it reflects the system behavior accurately.

Current performance analysis tools used in industry mostly focus on profiling
and monitoring transaction response times and resource consumption. They of-
ten provide large amounts of low-level data while important information about

32 S. Kounev et al.

the end-to-end performance behavior is missing (e.g., service control flow and
resource demands).

In research, approaches such as [58,13] use systematic measurements to build
black-box mathematical models or models obtained with genetic optimization.
However, these approaches are purely measurement-based, the models serve as
interpolation of the measurements, and neither a representation of the system
architecture nor its performance-relevant factors are extracted. Services are mod-
eled as black boxes and many restrictive assumptions are often imposed such as
a single workload class, single-threaded components, homogeneous servers or ex-
ponential request interarrival times. Given these limitations, such models are
rarely applied in practice and instead ad hoc mechanisms for performance and
resource management are employed. Performance-relevant details of the virtual-
ization platform and the applications running inside the hosted virtual machines
are not considered explicitly preventing detailed performance predictions which
are necessary for efficient resource management. Approaches aiming at the ex-
traction of architectural information are presented in, e.g., [21,22,12]. They use
call path tracing, a form of dynamic analysis to gain reliable data on the ac-
tual execution of an application. However, the model extraction techniques for
architecture-level performance models are usually not automated or applicable at
run-time [21,22] and they do not consider the virtualization layer explicitly [12].

Existing work concerning the quantification of virtualization overheads is
mainly based on system benchmarking. The performance of several virtualization
solutions such as Xen, VMware workstation, Linux-VServer, OpenVZ, etc. are
compared. However, the focus is on the overall performance overhead, individ-
ual performance-influencing factors are not analyzed. In contrast, Lu et al. [36]
present a calibration process based on application usage traces that covers the
main resource types CPU, memory, network and disk I/O and is applicable at
run-time. Approaches to automatically extract performance models of the virtu-
alization layer are normally very specific and do not provide models which can
be used for performance predictions at the application level. Therefore, there
is a major need for an approach which addresses these deficiencies and com-
bines methods for automated model extraction and performance prediction in
virtualized environments at run-time.

The heart of the problem is in the fact that architecture-level performance
models are normally designed for offline use and as such they are decoupled from
the system components they represent. Models do not capture dynamic aspects
of the environment and therefore they need to be updated manually after every
change in the system configuration or workload. Given the frequency of such
changes, the amount of effort involved in maintaining performance models is
prohibitive and therefore in practice such models are rarely used after deploy-
ment.

Research Challenges. The described limitations of the existing work lead to
the following two general research challenges:

– Designing abstractions for modeling performance-relevant aspects of services
in dynamic virtualized environments. The abstractions should be structured

Model-Based Techniques for Performance Engineering of BIS 33

around the system components involved in processing service requests. Indi-
vidual layers of the software architecture and execution environment, context
dependencies and dynamic system parameters should be modeled explicitly.

– Developing methods for the automatic online model extraction, maintenance,
refinement and calibration during operation. This includes the efficient res-
olution of service context dependencies including dependencies between ser-
vice input parameters, resource demands, invoked third-party services and
control flow of underlying components.

To address these challenges, current research efforts are focusing on develop-
ing online architecture-level performance models designed specifically for use at
run-time, e.g., the Descartes Meta-Model [14,27]. Such models aim at capturing
all information, both static and dynamic, relevant to predicting the system’s
performance on-the-fly. They are intended to be integrated into the system com-
ponents and to be maintained and updated automatically by the underlying
execution platform (virtualization and middleware) reflecting the evolving sys-
tem environment.

Online performance models will make it possible to answer performance-
related queries that arise during operation such as: What would be the effect
on the performance of running applications if a new application is deployed in
the virtualized infrastructure or an existing application is migrated from one
physical server to another? How much resources need to be allocated to a newly
deployed application to ensure that SLAs are satisfied? How should the sys-
tem configuration be adapted to avoid performance issues or inefficient resource
usage arising from changing customer workloads?

The ability to answer queries such as the above provides the basis for imple-
menting techniques for self-aware performance and resource management [27].
Such techniques will be triggered automatically during operation in response
to observed or forecast changes in application workloads. The goal will be to
proactively adapt the system to such changes in order to avoid anticipated QoS
problems or inefficient resource usage. The adaptation will be performed in an
autonomic fashion by considering a set of possible system reconfiguration scenar-
ios (e.g, changing VM placement and/or resource allocations) and exploiting the
online performance models to predict the effect of such reconfigurations before
making a decision.

Self-aware systems engineering [14,26] is currently emerging as a new research
area at the intersection of several computer science disciplines including software
architecture, computer systems modeling, autonomic computing, distributed sys-
tems, and more recently, Cloud Computing and Green IT. It raises a number
of big challenges that represent emerging hot topics in the systems engineering
community and will be subject of long-term fundamental research in the years
to come. The resolution of these challenges promises to revolutionize the field
of systems engineering by enabling guaranteed QoS, lower operating costs and
improved energy efficiency.

34 S. Kounev et al.

5 Concluding Remarks

We presented a historical perspective on the evolution of model-based perfor-
mance engineering techniques for business information systems, focusing on the
major developments over the past four decades that have shaped the field, such as
the increasing integration of software-related aspects into performance models,
the increasing parametrization of models to foster model reuse, the increasing use
of automated model-to-model transformations to bridge the gap between mod-
els at different levels of abstraction, and finally the increasing use of models at
run-time for online performance management. We surveyed the state-of-the-art
on performance modeling and management approaches discussing the ongoing
efforts in the community to increasingly bridge the gap between high-level busi-
ness services and low level performance models. Finally, we concluded with an
outlook on the emergence of self-aware systems engineering as a new research
area at the intersection of several computer science disciplines.

References

1. Computing missing service demand parameters for performance models. In: CMG
2008, pp. 241–248 (2008)

2. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-
tion, 3rd edn. Prentice Hall, Upper Saddle River (2001)

3. Bard, Y., Shatzoff, M.: Statistical methods in computer performance analysis. Cur-
rent Trends in Programming Methodology, III (1978)

4. Bause, F.: Queueing Petri Nets - A formalism for the combined qualitative and
quantitative analysis of systems. In: Proceedings of the 5th International Workshop
on Petri Nets and Performance Models, Toulouse, France, October 19-22 (1993)

5. Bause, F., Kritzinger, F.: Stochastic Petri Nets - An Introduction to the Theory,
2nd edn. Vieweg Verlag (2002)

6. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Syst. and Softw. 82, 3–22 (2009)

7. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-
echarts to analysable petri net models. In: Proc. on WOSP 2002, pp. 35–45 (2002)

8. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Perfor-
mance Engineering into Practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg
(2004)

9. Bolch, G., Greiner, S., Meer, H.D., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. John Wiley & Sons, Inc. (April 2006)

10. Bondarev, E., de With, P., Chaudron, M., Muskens, J.: Modelling of input-
parameter dependency for performance predictions of component-based embedded
systems. In: Proc. on EUROMICRO 2005, pp. 36–43 (2005)

11. Bondarev, E., Muskens, J., de With, P., Chaudron, M., Lukkien, J.: Predicting
real-time properties of component assemblies: a scenario-simulation approach. In:
Proc. of the 30th Euromicro Conference, pp. 40–47 (2004)

Model-Based Techniques for Performance Engineering of BIS 35

12. Brosig, F., Huber, N., Kounev, S.: Automated Extraction of Architecture-
Level Performance Models of Distributed Component-Based Systems. In: 26th
IEEE/ACM International Conference On Automated Software Engineering (ASE
2011), Oread, Lawrence, Kansas (November 2011)

13. Courtois, M., Woodside, M.: Using regression splines for software performance anal-
ysis. In: Proceedings of the International Workshop on Software and Performance
(2000)

14. Descartes Research Group (December 2011),
http://www.descartes-research.net

15. Eskenazi, E., Fioukov, A., Hammer, D.: Performance Prediction for Component
Compositions. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 280–293. Springer, Heidelberg (2004)

16. Gomaa, H., Menascé, D.: Performance Engineering of Component-Based Dis-
tributed Software Systems. In: Dumke, R.R., Rautenstrauch, C., Schmietendorf,
A., Scholz, A. (eds.) WOSP 2000 and GWPESD 2000. LNCS, vol. 2047, pp. 40–55.
Springer, Heidelberg (2001)

17. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach.
Journal of Systems and Software 80(4), 528–558 (2007)

18. Gu, G.P., Petriu, D.C.: XSLT transformation from UML models to LQN perfor-
mance models. In: Proc. on WOSP 2002, pp. 227–234 (2002)

19. Henss, J.: Performance prediction for highly distributed systems. In: Proc. on
WCOP 2010, vol. 14, pp. 39–46. Karlsruhe Institue of Technology (2010)

20. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Packaging Predictable Assembly.
In: Bishop, J.M. (ed.) CD 2002. LNCS, vol. 2370, pp. 108–124. Springer, Heidelberg
(2002)

21. Hrischuk, C.E., Woodside, M., Rolia, J.A., Iversen, R.: Trace-Based Load Char-
acterization for Generating Performance Software Models. IEEE Trans. on Softw.
Eng. (1999)

22. Israr, T., Woodside, M., Franks, G.: Interaction tree algorithms to extract effective
architecture and layered performance models from traces. J. Syst. Softw. (2007)

23. Kounev, S.: Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction. PhD Thesis. Shaker Verlag
(December 2005)

24. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-
Based Systems using Queueing Petri Nets. IEEE Transactions on Software Engi-
neering 32(7), 486–502 (2006)

25. Kounev, S.: Software Performance Evaluation. In: Wiley Encyclopedia of Computer
Science and Engineering, Wiley-Interscience, John Wiley & Sons Inc. (September
2008) ISBN-10: 0471383937, ISBN-13: 978-0471383932

26. Kounev, S.: Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap. GI Softwaretechnik-Trends 31(4) (November 2011)

27. Kounev, S., Brosig, F., Huber, N., Reussner, R.: Towards self-aware performance
and resource management in modern service-oriented systems. In: Proc. of the
7th IEEE Intl. Conf. on Services Computing (SCC 2010). IEEE Computer Society
(2010)

28. Kounev, S., Buchmann, A.: Performance Modelling of Distributed E-Business Ap-
plications using Queuing Petri Nets. In: Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and Software (2003)

http://www.descartes-research.net

36 S. Kounev et al.

29. Kounev, S., Buchmann, A.: SimQPN - a tool and methodology for analyzing queue-
ing Petri net models by means of simulation. Performance Evaluation 63(4-5),
364–394 (2006)

30. Koziolek, H.: Parameter dependencies for reusable performance specifications of
software components. PhD thesis, University of Karlsruhe, TH (2008)

31. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Performance Evaluation 67(8), 634–658 (2009)

32. Koziolek, H., Reussner, R.: A Model Transformation from the Palladio Component
Model to Layered Queueing Networks. In: Kounev, S., Gorton, I., Sachs, K. (eds.)
SIPEW 2008. LNCS, vol. 5119, pp. 58–78. Springer, Heidelberg (2008)

33. Kumar, D., Tantawi, A., Zhang, L.: Real-time performance modeling for adap-
tive software systems. In: VALUETOOLS 2009: Proceedings of the Fourth Inter-
national ICST Conference on Performance Evaluation Methodologies and Tools,
pp. 1–10. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), Brussels (2009)

34. Law, A., Kelton, D.W.: Simulation Modeling and Analysis, 3rd edn. McGraw Hill
Companies, Inc. (2000)

35. Liu, Z., Wynter, L., Xia, C.H., Zhang, F.: Parameter inference of queueing models
for IT systems using end-to-end measurements. Performance Evaluation 63(1), 36–
60 (2006)

36. Lu, L., Zhang, H., Jiang, G., Chen, H., Yoshihira, K., Smirni, E.: Untangling mixed
information to calibrate resource utilization in virtual machines. In: Proceedings
of the 8th ACM International Conference on Autonomic Computing, ICAC 2011,
pp. 151–160. ACM, New York (2011)

37. MacNair, E.A.: An introduction to the Research Queueing Package. In: WSC 1985:
Proceedings of the 17th Conference on Winter Simulation, pp. 257–262. ACM
Press, New York (1985)

38. Di Marco, A., Inverardi, P.: Compositional generation of software architecture per-
formance QN models. In: Working IEEE/IFIP Conf. on Software Architecture,
p. 37 (2004)

39. Di Marco, A., Mirandola, R.: Model Transformation in Software Performance En-
gineering. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 95–110. Springer, Heidelberg (2006)

40. Marzolla, M., Balsamo, S.: UML-PSI: The UML performance simulator. Quanti-
tative Eval. of Syst., 340–341 (2004)

41. Meier, P., Kounev, S., Koziolek, H.: Automated Transformation of Palladio Com-
ponent Models to Queueing Petri Nets. In: 19th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2011), Singapore, July 25-27 (2011)

42. Menascé, D., Almeida, V.: Capacity Planning for Web Performance: Metrics, Mod-
els and Methods. Prentice Hall, Upper Saddle River (1998)

43. Menascé, D., Almeida, V.: Scaling for E-Business - Technologies, Models, Perfor-
mance and Capacity Planning. Prentice Hall, Upper Saddle River (2000)

44. Menascé, D., Almeida, V., Fonseca, R., Mendes, M.: A Methodology for Workload
Characterization of E-commerce Sites. In: Proceedings of the 1st ACM Conference
on Electronic Commerce, Denver, Colorado, United States, pp. 119–128 (November
1999)

45. Menascé, D.A., Almeida, V., Dowdy, L.W.: Capacity Planning and Performance
Modeling - From Mainframes to Client-Server Systems. Prentice Hall, Englewood
Cliffs (1994)

Model-Based Techniques for Performance Engineering of BIS 37

46. Menascé, D.A., Almeida, V., Dowdy, L.W.: Performance by Design. Prentice Hall
(2004)

47. Menascé, D.A., Gomaa, H.: A Method for Desigh and Performance Modeling
of Client/Server Systems. IEEE Transactions on Software Engineering 26(11)
(November 2000)

48. Mohr, J., Penansky, S.: A forecasting oriented workload characterization method-
ology. CMG Transactions 36 (June 1982)

49. Pacifici, G., Segmuller, W., Spreitzer, M., Tantawi, A.: CPU demand for web serv-
ing: Measurement analysis and dynamic estimation. Performance Evaluation 65(6-
7), 531–553 (2008)

50. Petriu, D., Woodside, M.: An intermediate metamodel with scenarios and resources
for generating performance models from UML designs. Software and Systems Mod-
eling (SoSyM) 6(2), 163–184 (2007)

51. Rolia, J., Vetland, V.: Parameter estimation for performance models of distributed
application systems. In: CASCON 1995: Proceedings of the 1995 Conference of the
Centre for Advanced Studies on Collaborative Research, p. 54. IBM Press (1995)

52. Sitaraman, M., Kulczycki, G., Krone, J., Ogden, W.F., Reddy, A.L.N.: Performance
specification of software components. SIGSOFT Softw. Eng. Notes 26(3), 3–10
(2001)

53. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1990)

54. Smith, C.U., Lladó, C.M., Cortellessa, V., Di Marco, A., Williams, L.G.: From
UML models to software performance results: an SPE process based on XML in-
terchange formats. In: WOSP 2005: Proceedings of the 5th International Workshop
on Software and Performance, pp. 87–98. ACM Press, New York (2005)

55. Smith, C.U., Williams, L.G.: Performance Solutions - A Practical Guide to Creat-
ing Responsive, Scalable Software. Addison-Wesley (2002)

56. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proc. on
WOSP 2008 (2008)

57. Trivedi, K.S.: Probability and Statistics with Reliability, Queueing and Computer
Science Applications, 2nd edn. John Wiley & Sons, Inc. (2002)

58. Westermann, D., Happe, J.: Towards performance prediction of large enterprise
applications based on systematic measurements. In: WCOP (2010)

59. Woodside, M., Franks, G., Petriu, D.: The future of software performance engineer-
ing. In: Future of Software Engineering (FOSE 2007), pp. 171–187. IEEE Computer
Society, Los Alamitos (2007)

60. Woodside, M., Neilson, J., Petriu, D., Majumdar, S.: The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-Like Distributed
Software. IEEE Transactions on Computers 44(1), 20–34 (1995)

61. Wu, X., Woodside, M.: Performance modeling from software components. SIG-
SOFT Softw. E. Notes 29(1), 290–301 (2004)

62. Zhang, L., Xia, C.H., Squillante, M.S., Iii, W.N.M.: Workload service requirements
analysis: A queueing network optimization approach. In: Proceedings of the 10th
IEEE International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems, MASCOTS 2002, p. 23. IEEE Computer
Society, Washington, DC (2002)

63. Zheng, T., Woodside, C.M., Litoiu, M.: Performance model estimation and tracking
using optimal filters. IEEE Transactions on Software Engineering 34(3), 391–406
(2008)

	Model-Based Techniques for Performance Engineering of Business Information Systems
	Introduction
	Classical Performance Modeling
	Workload Characterization
	Stochastic Performance Models

	Software Performance Engineering
	Software Performance Meta-models
	Model-to-Model Transformations

	Run-Time Performance Management
	Concluding Remarks
	References

