

Lecture Notes
in Business Information Processing 109

Series Editors

Wil van der Aalst
Eindhoven Technical University, The Netherlands

John Mylopoulos
University of Trento, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, Qld, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

Boris Shishkov (Ed.)

Business Modeling
and Software Design

First International Symposium, BMSD 2011
Sofia, Bulgaria, July 27-28, 2011
Revised Selected Papers

13

Volume Editor

Boris Shishkov
Interdisciplinary Institute for Collaboration and Research
on Enterprise Systems and Technology – IICREST
Sofia, Bulgaria
E-mail: b.b.shishkov@iicrest.eu

ISSN 1865-1348 e-ISSN 1865-1356
ISBN 978-3-642-29787-8 e-ISBN 978-3-642-29788-5
DOI 10.1007/978-3-642-29788-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012935862

ACM Computing Classification (1998): J.1, H.4, H.3.5, D.2

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This book contains extended and revised versions of a set of selected papers
from the First International Symposium on Business Modeling and Software
Design (BMSD 2011), held in Sofia, Bulgaria. The symposium was organized and
sponsored by the Interdisciplinary Institute for Collaboration and Research on
Enterprise Systems and Technology (IICREST), in cooperation with the Center
for Telematics and Information Technology (CTIT), the Institute for Systems
and Technologies of Information, Control and Communication (INSTICC), and
the Technical University of Sofia, and was technically co-sponsored by Sofia
Municipality and QlikTech Netherlands B.V.

The purpose of BMSD 2011 was to bring together researchers and practi-
tioners interested in business modeling and its relation to software design. The
theme of BMSD 2011 was: “Business Models and Advanced Software Systems,”
and the scientific areas of interest to the symposium were: (a) business models
and requirements; (b) business models and services; (c) business models and
software; (d) information systems architectures.

Building adequate business models is of huge importance not only for under-
standing and re-engineering an organization but also for automating (part of) its
processes by means of software systems. Not grasping correctly and exhaustively
a business system would inevitably lead to consequent software failures. BMSD
2011 addressed these challenges, by considering a large number of research top-
ics: from more abstract ones, such as essential business models, to more technical
ones, such as software specification, from more business-oriented ones, such as
business process management and coordination, and requirements specification
to IT architectures -related topics.

BMSD 2011 received 58 paper submissions from which 22 papers were se-
lected for publication in the symposium proceedings. From these, 10 papers were
selected for a 30-minute oral presentation (Full Papers), leading to a “full-paper”
acceptance ratio of 17%; this shows the intention of preserving a high-quality
forum for the next editions of this symposium. The 8 papers published in the
current book were selected from the BMSD 2011 Full Papers. In all BMSD 2011
selections, a double-blind paper evaluation method was used: each paper was re-
viewed by at least two internationally known experts from the BMSD Program
Committee.

The high quality of the BMSD 2011 program was enhanced by four keynote
lectures, delivered by distinguished guests who are renowned experts in their
fields, including (alphabetically): Mehmet Aksit (University of Twente, The
Netherlands), Dimitar Christozov (American University in Bulgaria - Blago-
evgrad, Bulgaria), Hermann Maurer (Graz University of Technology, Austria),
and Bart Nieuwenhuis (University of Twente, The Netherlands). Their lectures

VI Preface

inspired the participants to gain a deeper understanding of the business modeling
and software design fields.

We hope that you will find these papers interesting and consider them a help-
ful reference in the future when addressing any of the research areas mentioned
above.

February 2012 Boris Shishkov

Symposium Committee

Chair

Boris Shishkov IICREST, Bulgaria

BMSD Program Committee

Mehmet Aksit University of Twente, The Netherlands
Antonia Albani University of St. Gallen, Switzerland
Ognian Andreev Technical University - Sofia, Bulgaria
Paulo Anita Delft University of Technology,

The Netherlands
Rumen Arnaudov Technical University - Sofia, Bulgaria
Colin Atkinson University of Mannheim, Germany
Csaba Boer Tba, The Netherlands
Boyan Bontchev Sofia University St. Kliment Ohridski, Bulgaria
Frances Brazier Delft University of Technology,

The Netherlands
Barrett Bryant University of Alabama at Birmingham, USA
Cinzia Cappiello Politecnico di Milano, Italy
Kuo-Ming Chao Coventry University, UK
Ruzanna Chitchyan Lancaster University, UK
Samuel Chong Capgemini, UK
Dimitar Christozov American University in Bulgaria, Bulgaria
Selim Ciraci University of Twente, The Netherlands
José Cordeiro Polytechnic Institute of Setúbal, Portugal
Dumitru Dan Burdescu University of Craiova, Romania
Joop De Jong Delft University of Technology,

The Netherlands
Jan L.G. Dietz Delft University of Technology,

The Netherlands
Lyubka Doukovska Bulgarian Academy of Sciences, Bulgaria
Joaquim Filipe Polytechnic Institute of Setúbal, Portugal
Boris Fritscher University of Lausanne, Switzerland
J. Paul Gibson T&Msp - Telecom & Management Sudparis,

France
Eduardo Goncalves Da Silva University of Twente, The Netherlands
Rafael Gonzalez Javeriana University, Colombia
Clever Ricardo Guareis De

Farias University of Sao Paulo, Brazil

VIII Symposium Committee

Markus Helfert Dublin City University, Ireland
Philip Huysmans University of Antwerp, Belgium
Ilian Ilkov IBM, The Netherlands
Ivan Ivanov Suny Empire State College, USA
Dimitris Karagiannis University of Vienna, Austria
Marite Kirikova Riga Technical University, Latvia
Samuel Kounev Karlsruhe Institute of Technology, Germany
Kecheng Liu University of Reading, UK
Leszek Maciaszek Macquarie University, Australia / University of

Economics, Poland
Jelena Marincic University of Twente, The Netherlands
Michele Missikoff Institute for Systems Analysis and Computer

Science, Italy
Dimitris Mitrakos Aristotle University of Thessaloniki, Greece
Preslav Nakov National University of Singapore, Singapore
Ricardo Neisse University of Kaiserslautern, Germany
Bart Nieuwenhuis University of Twente, The Netherlands
Selmin Nurcan University Paris 1 Pantheon Sorbonne, France
Olga Ormandjieva Concordia University, Canada
Robert Parhonyi Inter Access, The Netherlands
Marcin Paprzycki Polish Academy of Sciences, Poland
Oscar Pastor Universidad Politécnica de Valencia, Spain
Erik Proper Public Research Centre - Henri Tudor,

Luxembourg
Jolita Ralyte University of Geneva, Switzerland
Gil Regev EPFL / Itecor, Switzerland
Ella Roubtsova Open University, The Netherlands
Irina Rychkova University Paris 1 Pantheon Sorbonne, France
Shazia Sadiq University of Queensland, Australia
Brahmananda Sapkota University of Twente, The Netherlands
Tony Shan Keane Inc., USA
Kamran Sheikh IBM, The Netherlands
Valery Sokolov Yaroslavl State University, Russia
Richard Starmans Utrecht University, The Netherlands
Cosmin Stoica Spahiu University of Craiova, Romania
Coen Suurmond RBK Group, The Netherlands
Bedir Tekinerdogan Bilkent University, Turkey
Linda Terlouw ICRIS B.V., The Netherlands
Yasar Tonta Hacettepe University, Turkey
Roumiana Tsankova Technical University - Sofia, Bulgaria
Marten van Sinderen University of Twente, The Netherlands
Mladen Velev Technical University - Sofia, Bulgaria

Symposium Committee IX

Kris Ven University of Antwerpen, Belgium
Maria Virvou University of Piraeus, Greece
Martijn Warnier Delft University of Technology,

The Netherlands
Shin-Jer Yang Soochow University, Taiwan
Benjamin Yen University of Hong Kong, China
Fani Zlatarova Elizabethtown College, USA

Invited Speakers

Mehmet Aksit University of Twente, The Netherlands
Dimitar Christozov American University in Bulgaria - Blagoevgrad,

Bulgaria
Hermann Maurer Graz University of Technology, Austria
Bart Nieuwenhuis University of Twente, The Netherlands

Table of Contents

Reasoning on Models Combining Objects and Aspects 1
Ella Roubtsova

Model-Based Techniques for Performance Engineering of Business
Information Systems . 19

Samuel Kounev, Nikolaus Huber, Simon Spinner, and Fabian Brosig

Enabling Enterprise Collaboration Using Service Source Descriptions . . . 38
Brahmanadna Sapkota and Marten van Sinderen

Revisiting Goal-Oriented Requirements Engineering with a Regulation
View . 56

Gil Regev and Alain Wegmann

On the Impact of Modular Dependencies on Innovation
in Organizations . 70

Philip Huysmans

Calculating the Application Criticality and Business Risk from
Technology Obsolescence . 91

Cameron Spence, Vaughan Michell, and Daniel Spence

A Method for Business Model Development . 113
Lucas O. Meertens, Maria-Eugenia Iacob, and
Lambert (Bart) J.M. Nieuwenhuis

Administrations as Instruments for Dealing with Organizational
Complexity . 130

Coen Suurmond

Author Index . 147

Reasoning on Models Combining Objects

and Aspects

Ella Roubtsova

Open University of the Netherlands
ella.roubtsova@ou.nl

Abstract. Modelling techniques are instruments for reality reflection.
Precision of reality reflection demands coexistence of different abstrac-
tion types like objects and aspects in one model. Experiments with ex-
tension of modelling techniques aimed to accommodate combinations of
objects and aspects in one specification have resulted in aspect-oriented
extensions of many conventional modelling semantics. It was found that
one of semantics called Protocol Modelling possess a very practical prop-
erty of local reasoning on objects and aspects about behaviour of the
whole model. In this paper the local reasoning property is defined in the
reasoning logic and this property is demonstrated with a case study in
the Protocol Modelling approach. Then the same case study is presented
in aspect-oriented extensions of modelling approaches based on the se-
mantics of contracts, sequence diagrams, workflows and state machines.
The case study shows that the extensions of conventional semantics do
not possess the local reasoning property. The semantic difference between
Protocol Modelling and the listed modelling semantics is discussed and
the useful semantic elements are recommended for new aspect-oriented
languages and middleware.

Keywords: Local Reasoning, Aspects, Protocol Models, Contracts,
Sequence Diagrams, Workflows, State Machines.

1 Introduction

Modelling abstractions were created to mirror systems and reflect the step-
wise way of collecting domain knowledge during requirements engineering. Us-
ing objects for system decomposition is a very common practice and it is well
known that separation of objects often causes crosscutting abstractions scattered
through system specification.

In order to implement a crosscutting abstraction a modular unit called aspect
was designed [7]. An aspect contains an advice in the form of a code presenting a
concern and pointcut designators being the instructions on where, when and how
to invoke the advice. The well defined places in the structure of a program or a
model where an advice should be attached were named join points. Programming
community had already accepted a join point model that used method calls as
join points and inserted advice before, after or around a method call [7]. This join
point model was implemented as various extensions of programming languages.

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 1–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 E. Roubtsova

Such extensions gave a new task to compilers: to produce the code with aspects
woven in necessary places at the compilation time. This way an aspect is localized
only at the design time. In the code it remains scattered through the code.

Another branch of aspect-oriented programming developed middleware for
run-time aspect weaving without producing the code of the complete program.
The weaving program in the middleware registers aspects and their pointcut des-
ignators. At run time the weaving program is intercepting the method invoca-
tions and inserting aspects before, after or around specified method invocations.
The weaving programs implement sequential composition of method calls and
returns of the base program and the method calls and returns of aspects.

However, it was found that the aspect-oriented programming techniques built
on the existing aspect definition allow producing so-named invasive aspects [12].
Invasive aspects change the values of variables in other aspects and objects. In the
case of invasive aspects no guarantee can be given about preserving behaviour of
the base program after adding aspects and it is impossible to keep the reasoning
control over the evolving program.

At this point the modelling community decided to investigate the problem
and find the semantics that prevents constructing invasive aspects and guaran-
tees safe modelling and system construction. The idea was to recommend such
semantics for new aspect-oriented languages and weaving middleware.

The experiments were made in combining objects and aspects in different
modelling techniques. These experiments have shown that practical use of mod-
elling semantics combining different abstractions demands the convenient way
to reason on models. The most attractive reasoning is the local reasoning on
abstractions about behaviour of the whole system. Local reasoning makes the
reasoning simple and allows building scalable models of systems and at the end
the working systems.

The goal of this paper is to define local reasoning in reasoning logic and
demonstrate its presence and absence in different modelling semantics. In the
correspondence with the goal, section 2 reminds the reasoning logic and defines
the local reasoning in this logic. Section 3 presents models of the same case
study in the Protocol Modelling approach that possess the property of local
reasoning and in other aspect-oriented modelling approaches that do not have
such a property. The case study demonstrates the semantic elements that make
the local reasoning impossible. Section 4 summarizes the semantic elements of
Protocol Modelling that enable localization of reasoning.

2 Reasoning Logic and Local Reasoning

Let us consider a reasoning logic for state-transition systems: S = (s0, S, T),
where s0 is an initial state, S is a set of states and T is a set of transitions of
type (si, sj) and s0, si, sj ∈ S.

Let a state s ∈ S be defined on a set of variables V used to store data, a
set E variables used to temporally store events received from the environment
and IE variables used to temporary store internal events generated inside the

Reasoning on Models Combining Objects and Aspects 3

system S = V ∪ E ∪ IE; s = (v1,, vn, e1, ..., em, ie1, ...iek);n,m, k ∈ N. (An
event, an operation call or return can be stored in a data structure).

Let AP be a set of Atomic Propositions φ ∈ AP about values of variables
of a system V ∪ E ∪ IE. The examples of atomic propositions are “Amount =
2000”,“Event=Open”, “Password=Saved Password’ ’, etc.

A reasoning logic about a system is traditionally defined on a Kripke struc-
ture [1,21]: M = (M,R, μ), where (M,R) is a reachability graph of this system.
A node m ⊆M of a reachability graph is a state of the whole system. R is a set
of relations on states giving possible transitions, and μ :M → 2AP is a function
which assigns true values of propositions to each node of this reachability graph.

Function μ states that a predicate ψ is true in state s corresponding to node
n of a reachability graph, iff and only iff the state described by the proposition
is a sub-set of the set presented by the node of the reachability graph μ(φ) ⊆ n.

All variety of the reasoning statements is inductively defined as a set of pred-
icates built from atomic propositions called state formulas φ ∈ TP about states
in the reachability graph. We will analyse reasoning in different behaviour mod-
elling semantics and to cover them all will use a superset CTL* of computational
tree logic (CTL):

ψ ::= true |false |φ | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 |ψ1AUψ2 | ψ1EUψ2.

The interpretation of satisfaction relations in the reasoning logic has the reach-
ability graph semantics:

1. predicate φ is satisfied in all nodesm of the reachability graph where predicate
φ = true.
2. predicate ¬ψ is satisfied in all nodes where predicate ψ = false.
3. predicate ψ1 ∨ ψ2 is satisfied in all nodes where φ1 or ψ2 is satisfied.
4. predicate ψ1 ∧ ψ2 is satisfied in all nodes where both φ1 and ψ2 are satisfied.
5. predicate ψ1AUψ2 is satisfied in node m if for every path m0,m1, ... of the
reachability graph starting from node m = m0 there is node mi such that for
nodes m0, ...,mi−1 predicate ψ1 is true and for mi predicate ψ2 is true.
6. predicate ψ1EUψ2 is satisfied in node m if for some path m0,m1, ... of the
reachability graph starting from node m = m0 there is node mi such that for
node m0, ...,mi−1 predicate ψ1 is true and for mi predicate ψ2 is true.

There are two groups of reasoning statements: state predicates and path
predicates.

- State predicates can be formulated about one state, about a set of states and
all states. The state predicates are expressed using variables. The two special
forms of state variables are: STATE that presents the state from the semantic
point of view and EVENT that express the fact that an event of a given data
structure has been sent or received or an operation presented as a data structure
has been called or returned.
- Path predicates can be formulated about states that follow each other in an
existing path, about states that follow each other in a set of existing paths.

4 E. Roubtsova

The reasoning structure presented before is applied both to the whole program
or model and to an abstraction.

Definition 1. Local Reasoning Statement on an Abstraction. A reasoning state-
ment is local to an abstraction if it is formulated in terms of the states of this
abstraction and events or operation calls (returns) accepted by the abstraction
and describes the states or paths of the abstraction.

Definition 2. Local Reasoning Property of a System of Abstractions. A model/
system possesses the property of local reasoning if in any state any reasoning
statement about the model/system is a conjunction of finite number of local
reasoning statements of abstractions of this model/system and there are no other
reasoning statements about this model/system.

In another words, if a model/system possess the property of local reasoning,
then the analysis of every system property is reduced to analysis of a conjunction
of properties of a finite number of system abstractions.

3 Reasoning in Different Modelling Semantics

3.1 Case Study

The chosen case study is deliberately simple. It is designed to show the differ-
ence in composition of abstractions and the different reasoning possibilities in
modelling semantics.

Let us consider a customer and a bank account. A customer can be registered.
A registered customer can open an account and leave the bank. A customer can
be frozen and released from freezing. The customer with the status “frozen”
cannot leave the bank and open an account. An active account can be operated.
An active account can be closed. An account can be also frozen and released. If
an account is frozen then closing, depositing and withdrawing are impossible.

3.2 Protocol Modelling - Modelling with Local Reasoning

To date only one aspect-oriented modelling semantics, namely Protocol Mod-
elling, has proven the possession of property of local reasoning [14]. Let us present
the case study in Protocol Modelling and show what local reasoning means in
practice. Figure 1 shows the case study in Protocol Modelling semantics.

Structure. A protocol model of a system is a composition of protocol machines
Customer, Account, Freezing and Freeze Control. Protocol machines are partial
descriptions of behaviour classes. For example, the behaviour class Account is
described by three protocol machines: Account, Freezing and Freeze Control. Be-
haviour of class Customer is described by three protocol machines Customer,
Freezing and Freeze Control. Freezing and Freeze Control are aspects woven
into both behaviour classes Account and Customer. In order to generate own

Reasoning on Models Combining Objects and Aspects 5

B

INCLUDE

FreezingFreezing

Initialise
Freeze

Freeze

frozennot
frozen

Release

Deposit: Balance-Balance + Amount
Withdraw: Balance=Balance - Amount

Freeze Control

Operatefreeze
not
active

DERIVED STATE:
If State of
Subject. Freezing=“not frozen”
return "freeze not active";
else return “other’;

EVENT Open
Account: Account,
Account Number:
String

EVENT Close
Account: Account

EVENT Withdraw
Account: Account,
Amount: Currency

EVENT Deposit
Account: Account,
Amount: Currency

Account

Close
closedactive

Deposit,
Withdraw,

Open

Balance=0.0

EVENT Register
Customer:Customer

EVENT Leave
Customer: Customer

EVENT Freeze
Subject: Freezing

EVENT Release
Subject: Freezing

GENERIC Initialise Freeze
MATCHES
Open, Register

GENERIC Operate
MATCHES Deposit,
Withdraw, Close,
Open, Leave

Customer
Register Leave

leftregistered

Open,

INCLUDE

INCLUDE

INCLUDE

other

Fig. 1. Protocol Model

instances of Freezing and Freeze Control for each object of different behaviour
classes, behaviours Freezing and Freeze Control are included into those ob-
jects. The INCLUDE-relation, depicted as a half-dashed triangle, gives to Pro-
tocol Models the expressiveness of multiple inheritance. Each object has its
object identifier and behaviours of aspects are instantiated with instantiation of
objects.

Events.A protocolmachine has its own alphabet of recognized events. Event types
Open, Close, Deposit, Withdraw, Register, Leave, Freeze, Release are presented as
data structures in Figure 1. An event instance contains values of the attributes.
Event alphabets of protocol machines can have a not empty intersection.

6 E. Roubtsova

For example, the intersection of alphabets of protocol machinesAccount and Cus-
tomer is event Open. It is used for synchronization of an instance of a Customer
and an instance of an Account.

State. A protocol machine has its local state. The intersection of local states
of protocol machines is always empty. The local state of a protocol machine is
presented as a set of attributes and special enumerated attribute STATE. For
example, the protocol machine Account has attributes Account Number and Bal-
ance and the attribute STATE with values @new|open|closed.

Behaviour Semantics of Event Refusal. A protocol machine presents a system
that communicates with its environment. Events are presented to the model by
the environment. Being in a suitable state, a protocol machine accepts the pre-
sented event, otherwise it refuses the event. The states accepting an event have
an outgoing arc labeled by this event. A transition is depicted as an arc con-
necting two states (state, event, state). The behaviour of a protocol machine is
a set of sequences of accepted events. The sequences of transitions of a protocol
machine can be combined into a computation tree and their properties can be
described with path predicates.

CSP Parallel Composition. Behaviour of a protocol model is a composition of
behaviours of its protocol machines. The composition operator for protocol ma-
chines is a variant of the parallel composition operator defined by Hoare [9] in
his process algebra Communication of Sequential Processes (CSP). This oper-
ator was extended by McNeile and Simons [16] for machines and events with
data. Protocol machines use the CSP parallel composition algorithm to form
more complex protocol machines. This is the description of the CSP parallel
composition algorithm:

- A protocol model handles one event at a time and reaches a well defined qui-
escent state before handling the next event;
- If all machines of the protocol model, having an event in their alphabet, accept
the event, the protocol model accepts it;
- If at least one of protocol machines, having this event in its alphabet, refuses
the event, the composition of machines refuses it.

Derived States. A protocol machine can have a state function to derive its states
from states of other protocol machines. Derived states are states that are cal-
culated from the state of other protocol machines. For example, the protocol
machine Freeze Control derives its state from the state of machine Freezing us-
ing its state function. The state function associated with the protocol machine
results in state ’freeze not active’ or state ’other’ (Figure 1).

The derived states should not be topologically connected with other states.
The arc of Freeze Control labeled with Operate does not need the right-end node.
The arc means that Freeze Control accepts event Operate. The output state is

Reasoning on Models Combining Objects and Aspects 7

defined by the transitions of stored state protocol machines labeled with event
Operate or events matching with it.

Protocol Modelling distinguishes protocol machines with derived state from
protocol machines with stored states in order to simplify modelling.

Protocol Machines with derived state can be seen as spectative aspects. They
observe the state of other protocol machines, calculate state from them and al-
low or forbid some traces of the system [17].

Execution and Reasoning. The Protocol Model is directly executed in the Mod-
elscope tool [15] that provides a generic interface for execution. All possible
events are visible at any step of the execution. All states may be made visible
during the execution. As any state variables and any attribute is local to a pro-
tocol machine, there is a local reasoning predicate about every state change. Let
us go through a sequence of model execution and reasoning.

1. For a new Customers the only available event is Register.
The reasoning is local to the object Customer :

((Customer = @new)EU(ExistsUntil)(Event = Register)).

2. If event Register takes place, then Customer transits into state ’registered’
and instances of two protocol machines Freezing and Freeze Control are
created for the Customer.

Freezing is instantiated in the state ’not frozen’ and Freeze Control de-
rives its state ’freeze not active’ from Freezing .

Reasoning statements are local to Customer and Freezing:

((Event = Register)EU(Customer = registered)),

((Freezing = @new)EU(Event = InitialiseFreeze)),

((Event = InitialiseFreeze)EU(Freezing = not frozen)),

StateFunction : FreezeControl(Freezing = not frozen) = freeze not active,

Generic : InitializeFreezeMATCHESRegister.

After application of the State Function and substitution of the Generic each
of three reasoning statements as well as the conjunction of these local rea-
soning statements is the true reasoning statement about the behaviour of
the whole model at this step.

3. Next, eventCustomer.Freeze becomes possible thanks to the Freezing aspect:

((Freezing = notfrozen)EU(Event = Freeze)).

4. Than event Open becomes possible thanks to Customer and Freeze Control :

((Customer = registered)EU(Event = Open));

((FreezeControl = freeze not active)EU(Event = Operate));

Generic : OperateMATCHES Open.

8 E. Roubtsova

5. We also can reason that event Register for a chosen Customer is impossible
because the local statements on Customer

((Customer = registered)¬EU(not exists)(Event = Register)).

We can continue the execution and reasoning. Any state change can be explained
by a conjunction of local reasoning statements on a limited number of abstrac-
tions. The composed model does not have states and paths properties of which
cannot be described as a conjunction of local properties of a final number of
composed protocol machines.

If a large number of instances of abstractions is involved in a reasoning, then
a Protocol Machine with a derived state is created. It derives its states from all
instances and reasoning remains local to this Protocol Machine with the derived
states. For example, if event Leave for Customer would be possible only if all
corresponding Accounts are closed, then we would add a protocol machine Close
Control with the derived state ’All Accounts of Customer are closed’ and al-
low acceptance of event Leave only in this state. Modelscope provides SELECT
functions [15] to select instances and derive states from the selected instances of
different abstractions.

Join Points. A join point in Protocol Modelling is a set of events that can be
seen identical to each other at the abstraction level of a particular protocol ma-
chine. For example, the Freezing abstraction does not see the difference between
events Open and Register and defines join point GENERIC Initialise Freeze that
matches each of these events. The Freeze Control abstraction does not separate
events Deposit, Withdraw, Leave and Close and defines GENERIC Operate that
matches each of those events.

The proof presented in [14] shows that the CSP parallel composition of proto-
col machines guarantees preservation of ordering of traces of aspects and objects
in the whole specification. This property is called observational consistency [6].
In combination with localization of state and the prohibition for protocol ma-
chines to change state of each other, the observational consistency guarantees
the property of local reasoning of protocol models.

Small and deterministic protocol machines are verified or tested by direct ex-
ecution. Any new functionality, even the crosscutting one, is localized in a new
protocol machine and synchronized with existing protocol machines. New proto-
col machines cannot cause any damage to behaviour of other protocol machines
except possible forbidding of some traces. But this is directly identified as the
conjunction of the reasoning statements local to this new forbidding protocol
machine and the local reasoning statements of protocol machines allowing this
trace. For example, the conjunction of reasoning statements of the Customer
and the Freeze Control in state ’other’:

((Customer = registered)EU(Event = Open))AND

((FreezeControl = other)¬EU(Event = Operate));

GENERIC : OperateMATCHESOpen.

Reasoning on Models Combining Objects and Aspects 9

results is the forbidding statement

((FreezeControl = other)¬EU(Event = Open)).

3.3 Visual Contract Language

In this section we model our case study in the contract-based semantics called
Visual Contract language (VCL) [2]. VCL explores the declarative way of aspect
specification based on composition of sets of operations, attributes, classes and
packages. In the VCL specification (Figure 2) classes Customer and Account are
defined as sets of attributes and operations. Operations are depicted as hexagons.

A contract for a class is a set of its operations. Each operation has a cor-
responding diagram which specifies the operation name, its input (?) and out-
put (!), the pre-conditions in the left hand side field and the post-conditions in
the right hand side field. For example, the input of operation Open is an Ac-
count Number? String and the output is the a! Account. The post-condition is
Balance=0 AND Account Number=Account Number. The empty pre-condition
field means that there are no restrictions on the values of variables for this oper-
ation. (If we define variable STATE for the Account, than the precondition will
be (STATE�=Closed).

Classes can have relations. For example, ’Customer opens Account’.
Aspects are specified as classes. Figure 2 shows aspect Freezing. The function-

ality of Freeze Control is specified inside Freezing as Freeze Control functionality
does not contain any own operations.

Classes can be combined into packages. A class and a package may have invari-
ants that specify the types, or relations that are not changed during the object
life cycle. A package may have operations that are specified as join interfaces
(JI). Packages can join on join interfaces. Figure 2 shows how aspect Freezing
is woven into objects Account and Customer. Package AccountJI1 contains join
interface Open used for weaving operation Account.Freezing.Initialise Freezing.
Package AccountJI2 contains join interface Withdraw, Deposit, Close. Each of
these operations is used for weaving of Account.Freezing.Get State Freezing.

There are some general features of the contract semantics used by VCL that
should be mentioned.

– The units of behaviour in contracts are operations. An operation itself has
a body that may change both the state of its own object and the state of
other objects. Pre- and post-conditions are even able to specify the changes
of variables of other objects. Such operations cannot be elements of local
behaviour of any object or aspect.

– A contract does not define what happens with an operation call if the pre-
condition is not satisfied [18]:“If a precondition is violated, the effect of the
section of code becomes undefined and thus may or may not carry out its
intended work.” Operation calls are not refused. Usually an operation call is
kept (somewhere in a stack) waiting for the preconditions to become true.
The absence of the refuse semantics in contracts makes the CSP synchro-
nization impossible.

10 E. Roubtsova

Fig. 2. VCL Model

Reasoning on Models Combining Objects and Aspects 11

From carefully specified contacts, having the Z-semantics, it is possible to
generate a computation graph that shows the behaviour of the system but
only if events happen when they are expected to happen.

– Operations are called one after another even all of them have true precondi-
tions. The operation calls form sequences that can be sequentially composed
or inserted between an operation call and return. For example, after Reg-
ister(Customer Name), Initialise.Customer.Freezing can be called and then
operation Register can proceed to the completion. This is the aspect-oriented
’around invoke’ technique. Because of the sequential way of weaving, the be-
haviour of the whole model (and its computation graph) will always contain
states that cannot be composed from the states of the abstractions. It is im-
possible to reason about such new states using reasoning statements defined
on the states of abstractions.

For example, if ((Customer.Freezing = other)¬EU(Event = Open)) and
event Open is called, it will not be refused immediately as the state of Cus-
tomer.Freezing has to be checked. There will be a state after Customer.Open
before call Customer.Get State Freezing where

((Customer.Freezing = other)¬EU(Event = Open)) is false.

– In order to check a state of another package, the abstraction has to call
operation Get State. This technique does not allow abstraction A to have
derived states corresponding to the states of abstraction B. During the time
interval between the call of Get State and its return the state of abstraction
B can be changed. Therefore, quantification on states and using derived
states as join points is impossible.

We can now summarize, that three semantic elements: (1) using operations that
can change the state of other objects, (2) absence of operation synchronization
and (3) sequential composition of operations, - produce in the whole model
extra states and paths that cannot be described as composition of states of local
abstractions. The whole model needs global reasoning and complete reachability
graph has to be analyzed using theorem proving techniques.

3.4 Sequence Diagrams with Joint Point Diagrams

A set of sequence diagrams with conventional semantics is aimed to present only
a part of possible sequences of system behaviour. Sequence diagrams illustrate
behaviour of programs and therefore use operation calls and returns as elements
of behaviour. The composition techniques of sequence diagrams are restricted to
sequential composition, alternatives, cycles and insertion of sequences of opera-
tions calls and returns.

For Aspect-Oriented Modelling (AOM) the conventional sequence diagrams
were extended with Join Point Designation Diagrams (JPDDs) [23]. Conven-
tional sequence diagrams usually specify sequences to the completion of a use
case. Sequence diagrams with JPDDs specify sequences of base objects as well
as fragments of sequences of repeated aspects and join points.

12 E. Roubtsova

Fig. 3. JPDD diagrams

Reasoning on Models Combining Objects and Aspects 13

Figure 3 specifies JPDDs for our case study. The figure does not show the
sequences of the base objects Customer and Account but specifies join points
and advice fragments. JPDDs (1) and (3) are modelling means to graphically
represent join point queries on Customer and Account. They use lists of opera-
tions that serve as join points. Diagram 2 presents the advice for initializing of
aspect Freezing and diagrams 4 and 5 specify two different advice traces of the
aspect Freeze Control.

In reality the set of sequences is infinite and sequence diagrams with JPDDs
do not present the complete system behaviour to reason on it. However, even
when all possible sequences are specified for a simple model then the sequences
are combined into a computation graph using the same sequential composition
technique as in contracts. Sequence diagrams use all three semantic elements
that make local reasoning impossible.

Several approaches such as Theme [3], GrACE (Graph-based Adaptation,
Configuration and Evolution [4], RAM (Reusable Aspect Models) [11] use JPDDs
in combination with class diagrams. All approaches use global reasoning tech-
niques [3,4,11].

3.5 Workflows as Aspect-Oriented Notations

Activity and workflow based approaches are aimed to specify complete system
behaviour that can be analyzed and verified against required properties. The
workflows are often used in AOM approaches as integration means to combine
specified aspects. For example, the Theme approach [5] uses an activity diagram
as an integration view. There are also AOM approaches that define fragments
of workflows and compose these fragments into the complete workflow. An ex-
ample is the approach called Activity moDel supOrting oRchestration Evolution
(Adore) [19].

Figure 4 renders our case study in Adore. Adore specifies a computation
graph (a process) combining several basic abstractions. In our case it combines
behaviours of Customer and Account in the workflow. Repeated partial be-
haviours of abstractions are specified as workflow fragments (or aspects). For
example, behaviours Freezing, Freeze Control and Leaving are specified as frag-
ments. Each fragment corresponds to a specific aspect and it is used as a partial
point of view on its target. A fragment contains special activities, called prede-
cessors P, successors S and hooks (assimilated as a Proceed in AspectJ). The
hook predecessors (P) are the immediate predecessors of the first activity in the
target block, and the hook successors (S) are the immediate successors of the
last activity in the block.

The binding or weaving instructions assigning predecessors and successors are
specified in a separate file. For example, the fragment P3;S3 of Freeze Control
from Figure 4 can be bound as follows

P3 = i : Withdraw;S3 = r : Withdraw,

14 E. Roubtsova

Fig. 4. ADORE Workflow diagram

where i is the invocation and r is the return of operation Withdraw. The hook
is the sequence of activities

hook = i : GetStateFreezing; r : GetStateFreazing = notfrozen.

The complete orchestration is generated from fragments according to the binding
instructions.

As with such an approach there is no guarantee that local properties of aspects
are propagated to the complete orchestration, the side effects of separating of
concerns and composition in Adore are formulated as rules. The rule violation
not always signals a mistake. It may indicate a ”bad-smell”, like, for example,
the non-determinism caused by two conditions evaluated to false at the same
time. The ”bad-smells” are analyzed by the designer of the orchestration.

Reasoning on Models Combining Objects and Aspects 15

All workflow fragments are combined at design or runtime into a computation
graph. This means that the behaviour composition technique is the same as in
contract-based and sequences based notations.

It is possible to synchronize operation calls and returns in workflows using a
synchronization construction. It is also possible to work on the level of events
and do not separate calls and returns. However, one semantic feature makes this
synchronization different from the CSP parallel composition used in Protocol
Modelling. Namely, workflows do not have the semantics of event refusal. At
any state several events may happen and the events are kept in bags or stack
structures. The event may wait until the model transits to the state where this
event is accepted. The computation graph of workflows depends on the state
of those stacks or bags and the system has states that cannot be described as
conjunction of states of system abstractions. Such a composition semantics does
not leave any other possibility for reasoning than the global reachability analysis.

3.6 Aspect-Oriented Extension of State Machines

A UML Behaviour State Machines (BSM) [20] usually presents behaviour of one
class. There are several approaches trying to extend BSM to enable several BSMs
for one class. Mahoney et al. [13] suggested to exploit the AND-composition of
several independent (orthogonal) statecharts defined by D.Harel [8]. ”The key
feature of orthogonal statecharts is that events from every composed statechart
are broadcast to all others. Therefore an event can cause transitions in two or
more orthogonal statecharts simultaneously” [13].

The ideas proposed by Mahoney et al. were further developed in the approach
called High-Level Aspects (HiLA) [10]. HiLA modifies the semantics of BSM
allowing classifiers to apply additional or alternative behaviour. Aspects extend
the behaviour specified for classes.

The basic static structure usually contains one or more classes. Each base
state machine is attached to one of these classes and specifies its behaviour.
Figure 5 shows two state machines Customer and Account that look similar to
protocol machines, but have different semantics.

– The first difference is in the semantics of labels on the arcs. A label of a
protocol machine presents an event but a label of a state machine presents
some state information before and after the event that run to completion:
[precondition] event/ [postcondition][20].

– The second difference is the absence of event refusal. Events coming from
the environment are kept in a queue or a stack of active events [20]. There
are complex rules for handling or keeping events in the queue until the state
is appropriate for their handling.

The HiLA approach does not change both mentioned semantic features but of-
fers the patterns of aspect weaving. High-level aspects apply to state machines
and specify additional or alternative behaviour to be executed at certain “ap-
propriate” points in time of the base machines execution.

16 E. Roubtsova

Fig. 5. HiLA State Machines

HiLA introduces patterns for specification of dynamic aspects. Any pattern
has an Aspect Name, a Pattern Type, a Transformation Point and a Transfor-
mation Advice.

In Figure 5 we use pattern of type “WhilstOnGoTo” to specify aspects of
our case study.

For example, the transformation point of aspect Freezing shows that the event
Initilise Freezing happens in two situations (1)Whilst Customer is in the initial
state, shown by the black dot, and when event Register takes place and becomes
the trigger and (2) Whilst Account is in the initial state and event Open becomes
the trigger. A pattern Whilst always has a specification of a state and an anno-
tation Trigger = e. Conceptually it selects the compound transition from State
with Trigger e, but if this transition does not exist, it is created [10,24]. This
means that an aspect is added while an action is in the stack of active actions.

As the authors of the approach indicate [10,24], weaving of aspects into basis
BSM results in another UML state machine which is analyzed using the model
checking component of Hugo/RT model checking tools. Hugo/RT translates the
state machine and the assertions into the input language of a back-end model
checker SPIN. SPIN then is used to verify the given properties presented in
Linear Temporal Logic for global analysis of the model behaviour.

Reasoning on Models Combining Objects and Aspects 17

4 Conclusion

This paper presents a survey of modelling semantics designed to accommodate
aspects and objects in one model. The need of scalable models and reasoning
control over complex models shows that accommodation of different abstraction
types in one model demands more than just instructions on where, when and
how to invoke advice of aspects. It is desired that modelling semantics possess
the property of local reasoning on abstractions about behaviour of the whole
model to reduce the analysis of any whole model property to the analysis of a
finite number of local properties of model abstractions.

In this paper we have given the definition of local reasoning in the reasoning
logic. We have applied the definition to show that the models built in many
modelling semantics do not possess local reasoning property as they have extra
states and paths that cannot be described as conjunction of states and paths of
their abstractions.

Using the definition we have shown that Protocol Models possess local reason-
ing property. Other approaches may use semantic findings of Protocol Modelling
as a notation independent basis for combining objects and aspects. The semantic
elements that are needed for local reasoning are the following:

– considering events as instances of data structures but not as operations and
this way avoiding state transformation defined inside operation bodies;

– using semantics of event refusal allowing synchronization of behaviour ab-
stractions and the CSP parallel composition;

– handing one event at a time until the system stays in a quiescent state;
– allowing abstractions to transform their own state and read but not modify

the state of other abstractions;
– allowing abstractions to derive their state from the state of other abstrac-

tions.
– mapping events to an alias if events are not differentiated at the level of a

particular abstraction.

As further experiments show [22], with involving yet other abstractions into
design, a combination of composition techniques might be necessary. The the-
ory of system modelling has developed many composition techniques, but their
combinations have not been investigated yet and have not been implemented in
suitable modelling and programming tools. As the systems become more com-
plex and use abstractions with different communication techniques, the practical
modelling approaches, using combination of composition techniques and provid-
ing local reasoning when possible, are yet to be found and implemented.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information
and Computation 104(1), 2–34 (1993)

2. Amálio, N., Kelsen, P.: VCL, a Visual Language for Modelling Software Systems
Formally. In: Goel, A.K., Jamnik, M., Narayanan, N.H. (eds.) Diagrams 2010.
LNCS, vol. 6170, pp. 282–284. Springer, Heidelberg (2010)

18 E. Roubtsova

3. Baniassad, E., Clarke, S.: Theme: An Approach for Aspect-Oriented Analysis and
Design. In: Proceedings of the 26th International Conference on Software Engi-
neering, ICSE 2004, pp. 158–167. IEEE (2004)

4. Ciraci, S., Havinga, W.K., Akşit, M., Bockisch, C.M., van den Broek, P.M.: A
Graph-Based Aspect Interference Detection Approach for UML-Based Aspect-
Oriented Models. Technical Report TR-CTIT-09-39, Enschede (September 2009)

5. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Ap-
proach. Addison Wesley (2005)

6. Ebert, J., Engels, G.: Observable or invocable behaviour-you have to choose. Tech-
nical report. Universität Koblenz, Koblenz, Germany (1994)

7. Filman, R., Elrad, T., Clarke, S., Akşit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley (2004)

8. Harel, D., Gery, E.: Executable Object Modelling with Statecharts. IEEE Com-
puter 30(7), 31–42 (1997)

9. Hoare, C.: Communicating Sequential Processes. Prentice-Hall International (1985)
10. Hölzl, M.M., Knapp, A., Zhang, G.: Modeling the Car Crash Crisis Management

System Using HiLA. T. Aspect-Oriented Software Development 7, 234–271 (2010)
11. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented Multi-view Modeling. In: Pro-

ceedings of the International Conference on Aspect-Oriented Software Develop-
ment, AOSD 2009, Charlottesville, Virginia, USA, pp. 87–98 (2009)

12. Katz, S.: Aspect Categories and Classes of Temporal Properties. In: Rashid, A.,
Aksit, M. (eds.) Transactions on AOSD I. LNCS, vol. 3880, pp. 106–134. Springer,
Heidelberg (2006)

13. Mahoney, M., Bader, A., Elrad, T., Aldawud, O.: Using Aspects to Abstract and
Modularize Statecharts. In: The 5th Aspect-Oriented Modeling Workshop in Con-
junction with UML 2004 (2004)

14. McNeile, A., Roubtsova, E.: CSP parallel composition of aspect models. In: AOM
2008: Proceedings of the 2008 AOSD Workshop on Aspect-Oriented Modeling, pp.
13–18 (2008)

15. McNeile, A., Simons, N.: http://www.metamaxim.com/
16. McNeile, A., Simons, N.: State Machines as Mixins. Journal of Object Technol-

ogy 2(6), 85–101 (2003)
17. McNeile, A., Simons, N.: Protocol Modelling. A Modelling Approach that Supports

Reusable Behavioural Abstractions. Software and System Modeling 5(1), 91–107
(2006)

18. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (1997)
19. Mosser, S., Blay-Fornarino, M., France, R.: Workflow Design Using Fragment Com-

position - Crisis Management System Design through ADORE. T. Aspect-Oriented
Software Development 7, 200–233 (2010)

20. OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-03
(2003)

21. Pnueli, A.: The temporal logic of programs. In: Proc. 18th IEEE Symp. Founda-
tions of Computer Csience (FOCS 1977), Providence, RI, USA, pp. 46–57 (1977)

22. Roubtsova, E., McNeile, A.: Abstractions, Composition and Reasoning. In: AOM
2009: Proceedings of the 13th Workshop on Aspect-Oriented Modeling, Char-
lottesville, Virginia, USA (2009)

23. Stein, D., Hanenberg, S., Unland, R.: Visualizing Join Point Selections Using
Interaction-Based vs. State-Based Notations Exemplified With Help of Business
Rules. In: EMISA 2005, pp. 94–107 (2005)

24. Zhang, G., Hölzl, M.: HiLA:High-Level Aspects for UMLStateMachines. In: Ghosh,
S. (ed.) MODELS 2009. LNCS, vol. 6002, pp. 104–118. Springer, Heidelberg (2010)

http://www.metamaxim.com/

Model-Based Techniques for Performance

Engineering of Business Information Systems

Samuel Kounev1, Nikolaus Huber1, Simon Spinner2, and Fabian Brosig1

1 Karlsruhe Institute of Technology (KIT)
Am Fasanengarten 5

76131 Karlsruhe, Germany
{kounev,fabian.brosig,nikolaus.huber}@kit.edu
2 FZI Research Center for Information Technology

Haid-und-Neu-Straße 10
76131 Karlsruhe, Germany

spinner@fzi.de

Abstract. With the increasing adoption of virtualization and the tran-
sition towards Cloud Computing platforms, modern business information
systems are becoming increasingly complex and dynamic. This raises the
challenge of guaranteeing system performance and scalability while at the
same time ensuring efficient resource usage. In this paper, we present a
historical perspective on the evolution of model-based performance en-
gineering techniques for business information systems focusing on the
major developments over the past several decades that have shaped the
field. We survey the state-of-the-art on performance modeling and man-
agement approaches discussing the ongoing efforts in the community to
increasingly bridge the gap between high-level business services and low
level performance models. Finally, we wrap up with an outlook on the
emergence of self-aware systems engineering as a new research area at
the intersection of several computer science disciplines.

Keywords: business information systems, performance, scalability, pre-
dictive modeling, simulation.

1 Introduction

Modern business information systems are expected to satisfy increasingly strin-
gent performance and scalability requirements. Most generally, the performance
of a system refers to the degree to which the system meets its objectives for
timeliness and the efficiency with which it achieves this [55,25]. Timeliness is
normally measured in terms of meeting certain response time and/or through-
put requirements, response time referring to the time required to respond to a
user request (e.g., a Web service call or a database transaction), and throughput
referring to the number of requests or jobs processed per unit of time. Scalability,
on the other hand, is understood as the ability of the system to continue to meet
its objectives for response time and throughput as the demand for the services it

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 19–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

20 S. Kounev et al.

provides increases and resources (typically hardware) are added. Numerous stud-
ies, e.g., in the areas of e-business, manufacturing, telecommunications, health
care and transportation, have shown that a failure to meet performance require-
ments can lead to serious financial losses, loss of customers and reputation, and
in some cases even to loss of human lives. To avoid the pitfalls of inadequate
Quality-of-Service (QoS), it is important to analyze the expected performance
and scalability characteristics of systems during all phases of their life cycle.
The methods used to do this are part of the discipline called Performance En-
gineering. Performance Engineering helps to estimate the level of performance a
system can achieve and provides recommendations to realize the optimal perfor-
mance level. The latter is typically done by means of performance models (e.g.,
analytical queueing models or simulation models) that are used to predict the
performance of the system under the expected workload.

However, as systems grow in size and complexity, estimating their perfor-
mance becomes a more and more challenging task. Modern business information
systems based on the Service-Oriented Architecture (SOA) paradigm are often
composed of multiple independent services each implementing a specific busi-
ness activity. Services are accessed according to specified workflows representing
business processes. Each service is implemented using a set of software compo-
nents distributed over physical tiers as depicted in Figure 1. Three tiers exist:
presentation tier, business logic tier, and data tier. The presentation tier includes
Web servers hosting Web components that implement the presentation logic of
the application. The business logic tier normally includes a cluster of applica-
tion servers hosting business logic components that implement the business logic
of the application. Middleware platforms such as Java EE, Microsoft .NET, or
Apache Tomcat are often used in this tier to simplify application development
by leveraging some common services typically used in enterprise applications.
Finally, the data tier includes database servers and legacy systems that provide
data management services.

The inherent complexity of such architectures makes it difficult to manage
their end-to-end performance and scalability. To avoid performance problems, it
is essential that systems are subjected to rigorous performance evaluation during
the various stages of their lifecycle. At every stage, performance evaluation is
conducted with a specific set of goals and constraints. The goals can be classified
in the following categories, some of which partially overlap:

Platform Selection: Determine which hardware and software platforms would
provide the best scalability and cost/performance ratio?

Platform Validation: Validate a selected combination of platforms to ensure
that taken together they provide adequate performance and scalability.

Evaluation of Design Alternatives: Evaluate the relative performance, scal-
ability and costs of alternative system designs and architectures.

Performance Prediction: Predict the performance of the system for a given
workload and configuration scenario.

Performance Tuning: Analyze the effect of various deployment settings and
tuning parameters on the system performance and find their optimal values.

Model-Based Techniques for Performance Engineering of BIS 21

Client 1 Client 2 Client n

AS 1 AS m

Load Balancers

Presentation
Tier

Business Logic
Tier

Data Tier

Firewall

Legacy Systems

Web Routers

WS 1 WS 2 WS k

Intra/InterNET

Web Servers (WS)
1..k

App. Servers (AS)
1..m

Database Servers (DS)
1..p

Client Side

Clients
1..n

DS 1 ... DS p

Fig. 1. Modern business information system

Performance Optimization: Find the components with the largest effect on
performance and study the performance gains from optimizing them.

Scalability and Bottleneck Analysis: Study the performance of the system
as the load increases and more hardware is added. Find which system com-
ponents are most utilized and investigate if they are potential bottlenecks.

Sizing and Capacity Planning: Determine how much hardware resources are
required to guarantee certain performance levels.

Run-Time Performance and Power Management: Determine how to vary
resource allocations during operation in order to ensure that performance re-
quirements are continuously satisfied while optimizing power consumption
in the face of frequent variations in service workloads.

Two broad approaches are used in Performance Engineering for performance
evaluation of software systems: performance measurement and performance mod-
eling. In the first approach, load testing tools and benchmarks are used to gen-
erate artificial workloads on the system and to measure its performance. In the

22 S. Kounev et al.

second approach, performance models are built and then used to analyze the
performance and scalability characteristics of the system.

In this paper, we focus on performance modeling since it is normally much
cheaper than load testing and has the advantage that it can also be applied in
the early stages of system development before the system is available for testing.
We present a historical perspective on the evolution of performance modeling
techniques for business information systems over the past several decades, focus-
ing on the major developments that have shaped the field, such as the increasing
integration of software-related aspects into performance models, the increasing
parametrization of models to foster model reuse, the increasing use of automated
model-to-model transformations to bridge the gap between models at different
levels of abstraction, and finally the increasing use of models at run-time for
online performance management.

The paper starts with an overview of classical performance modeling ap-
proaches which is followed by an overview of approaches to integrate performance
modeling and prediction techniques into the software engineering process. Next,
automated model-to-model transformations from architecture-level performance
models to classical stochastic performance models are surveyed. Finally, the use
of models at run-time for online performance management is discussed and the
paper is wrapped up with some concluding remarks.

2 Classical Performance Modeling

The performance modeling approach to software performance evaluation is based
on using mathematical or simulation models to predict the system performance
under load. A performance model is an abstract representation of the system that
relates the workload parameters with the system configuration and captures the
main factors that determine the system performance [45].

A number of different methods and techniques have been proposed in the
literature for modeling software systems and predicting their performance under
load. Most of them, however, are based on the same general methodology that
proceeds through the steps depicted in Figure 2 [46,55,24]. First, the goals and
objectives of the modeling study are specified. After this, the system is described
in detail in terms of its hardware and software architecture. Next, the workload
of the system is characterized and a workload model is built. The workload model
is used as a basis for building a performance model. Before the model can be used
for performance prediction, it has to be validated. This is done by comparing
performance metrics predicted by the model with measurements on the real
system obtained in a small testing environment. If the predicted values do not
match the measured values within an acceptable level of accuracy, the model
must be refined and/or calibrated. Finally, the validated performance model is
used to predict the system performance for the deployment configurations and
workload scenarios of interest. The model predictions are analyzed and used to
address the goals set in the beginning of the modeling study.

Model-Based Techniques for Performance Engineering of BIS 23

��������	
�������
����������

�	����������
������

�	����������
�������

�������
��� �������
����

!������
����
"� ���
��#��

���������
����

������
������
��� �������

$������
"��%���
&
$����
����������

Fig. 2. Performance modeling process

2.1 Workload Characterization

Workload characterization is the process of describing the workload of the sys-
tem in a qualitative and quantitative manner [44]. The result of workload char-
acterization is a nonexecutable workload model that can be used as input to
performance models. Workload characterization usually involves the following
activities [55,43]:

1. The basic components of the workload are identified. Basic component refers
to a generic unit of work that arrives at the system from an external source [42].
Some examples include HTTP requests, Web service invocations, database
transactions, and batch jobs. The choice of basic components and the de-
cision how granular they are defined depend on the nature of the services
provided by the system and on the modeling objectives.

2. Basic components are partitioned into workload classes. To improve the rep-
resentativeness of the workload model, the basic components are partitioned
into classes (called workload classes) that have similar characteristics. The
partitioning can be done based on different criteria, depending on the type
of system modeled and the goals of the modeling effort [42,48].

3. The system components and resources used by each workload class are iden-
tified. For example, an online request to place an order might require using a
Web server, application server, and backend database server. For each server,
the concrete hardware and software resources used must be identified and
characterized.

24 S. Kounev et al.

4. The inter-component interactions and processing steps are described. The
aim of this step is to described the processing steps, the inter-component
interactions, and the flow of control for each workload class. Also for each
processing step, the hardware and software resources used are specified.

5. Service demands and workload intensities are quantified. The goal is to quan-
tify the load placed by the workload components on the system. Service de-
mand parameters specify the average total amount of service time required
by each workload class at each resource. Workload-intensity parameters pro-
vide for each workload class a measure of the number of units of work, that
contend for system resources.

One of the greatest challenges in workload characterization is to obtain values
for service demand parameters. Most techniques require the availability of a
system to take measurements. If this is not possible, some techniques can also
be used to estimate service demand parameters in the early stages of system
development before the system is available for testing [47]. The process to obtain
service demands through measurements at a running systems usually consists
of three steps. First, the performance metrics that need to be monitored for
quantifying service demands are selected. It is usually not possible to measure
the service demands directly. Instead, the service demands must be derived from
other metrics, which can be readily observed at the system. Typical metrics
are the aggregate CPU utilization, the throughput and the transaction response
time. Second, measurement data for the selected metrics is gathered from the
system. This is usually done either by running controlled experiments in a test
environment or by monitoring production systems while serving real workloads.
Finally, the measurement data gathered in the previous step is analyzed and
transformed in order to derive service demands.

A common approach to derive service demands from indirect measurements
is based on the Service Demand Law [46]. This operational law states that the
service demand Di,r of class r transactions at resource i is equal to the aver-
age utilization Ui,r of resource i by class r transactions divided by the average
throughput X0,r of class r transactions during the measurement interval, i.e.

Di,r =
Ui,r

X0,r
. (1)

However, system monitors usually provide only statistics of the overall utilization
of a resource aggregated over all workload classes. There are two approaches to
determine values for Ui,r: conduct a single experiment injecting transactions from
all workload classes simultaneously or conduct several experiments injecting only
transactions of a single workload class at a time. In the former case, interactions
between workload classes are not included in the service demands. In the latter
case, methods to apportion the measured total utilization between workload
classes are required, as described in [42,45,46]. However, there is often some
unattributed resource usage due to system overheads. It is hard to find a fair
distribution of the unattributed resource usage between workload classes [23].

Model-Based Techniques for Performance Engineering of BIS 25

Other approaches to resource demand estimation have been proposed over
the years, e.g., based on linear regression [3,51,49], general optimization tech-
niques [62,35,1], or Kalman filters [63,33]. Each of these approaches makes certain
assumptions, e.g., regarding the type, amount and quality of measurements. The
decision which of these estimation approaches can be used depends heavily on
the modeled system.

2.2 Stochastic Performance Models

Performance models have been employed for performance prediction of software
systems since the early seventies. In 1971, Buzen proposed modeling systems
using queueing network models and developed solution techniques for several
important classes of models. Since then many advances have been made in im-
proving the model expressiveness and developing efficient model analysis tech-
niques as well as accurate approximation techniques. A number of modeling
techniques utilizing a range of different performance models have been proposed
including standard queueing networks, extended and layered queueing networks,
stochastic Petri nets, queueing Petri nets, stochastic process algebras, Markov
chains, statistical regression models and simulation models. Performance models
can be grouped into two main categories: simulation models and analytical mod-
els. One of the greatest challenges in building a good model is to find the right
level of abstraction and granularity. A general rule of thumb is: Make the model
as simple as possible, but not simpler! Including too much detail might render
the model intractable, on the other hand, making it too simple might render it
unrepresentative.

Simulation Models. Simulation models are software programs that mimic the
behavior of a system as requests arrive and get processed at the various system re-
sources. Such models are normally stochastic because they have one or more ran-
dom variables as input (e.g., the times between successive arrivals of requests).
The structure of a simulation program is based on the states of the simulated sys-
tem and events that cause the system state to change. When implemented, sim-
ulation programs count events and record the duration of time spent in different
states. Based on these data, performancemetrics of interest (e.g., the average time
a request takes to complete or the average system throughput) can be estimated
at the end of the simulation run. Estimates are provided in the form of confidence
intervals. A confidence interval is a range with a given probability that the esti-
mated performance metric lies within this range. The main advantage of simula-
tion models is that they are very general and can be made as accurate as desired.
However, this accuracy comes at the cost of the time taken to develop and run
the models. Usually, many long runs are required to obtain estimates of needed
performance measures with reasonable confidence levels.

Several approaches to developing a simulation model exist. The most time-
consuming approach is to use a general purpose programming language such
as C++ or Java, possibly augmented by simulation libraries (e.g., CSIMor
SimPack, OMNeT++, DESMO-J). Another approach is to use a specialized

26 S. Kounev et al.

simulation language such as GPSS/H, Simscript II.5, or MODSIM III. Finally,
some simulation packages support graphical languages for defining simulation
models (e.g., Arena, Extend, SES/workbench, QPME). A comprehensive treat-
ment of simulation techniques can be found in [34,2].

Analytical Models. Analytical models are based on mathematical laws and
computational algorithms used to derive performance metrics from model pa-
rameters. Analytical models are usually less expensive to build and more efficient
to analyze compared to simulation models. However, because they are defined
at a higher level of abstraction, they are normally less detailed and accurate.
Moreover, for models to be mathematically tractable, usually many simplifying
assumptions need to be made impairing the model representativeness. Queueing
networks and generalized stochastic Petri nets are perhaps the two most popular
types of models used in practice.

Queueing networks provide a very powerful mechanism for modeling hardware
contention (contention for CPU time, disk access, and other hardware resources).
A number of efficient analysis methods have been developed for a class of queue-
ing networks called product-form queueing networks allowing models of realistic
size and complexity to be analyzed with a minimum overhead [9]. The downside
of queueing networks is that they do not provide direct means to model soft-
ware contention aspects accurately (contention for processes, threads, database
connections, and other software resources), as well as blocking, simultaneous re-
source possession, asynchronous processing, and synchronization aspects. Even
though extensions of queueing networks, such as extended queueing networks [37]
and layered queueing networks (also called stochastic rendezvous networks) [60],
provide some support for modeling software contention and synchronization as-
pects, they are often restrictive and inaccurate.

In contrast to queueing networks, generalized stochastic Petri net models
can easily express software contention, simultaneous resource possession, asyn-
chronous processing, and synchronization aspects. Their major disadvantage,
however, is that they do not provide any means for direct representation of
scheduling strategies. The attempts to eliminate this disadvantage have led to
the emergence of queueing Petri nets [4], which combine the modeling power and
expressiveness of queueing networks and stochastic Petri nets. Queueing Petri
nets enable the integration of hardware and software aspects of system behavior
in the same model [28]. A major hurdle to the practical use of queueing Petri
nets, however, is that their analysis suffers from the state space explosion prob-
lem limiting the size of the models that can be solved. Currently, the only way
to circumvent this problem is by using simulation for model analysis [29].

Details of the various types of analytical models are beyond the scope of
this article. The following books can be used as reference for additional infor-
mation [9,57,5]. The Proceedings of the ACM SIGMETRICS Conferences and
the Performance Evaluation Journal report recent research results in perfor-
mance modeling and evaluation. Further relevant information can be found in
the Proceedings of the ACM/SPEC International Conference on Performance
Engineering (ICPE), the Proceedings of the International Conference on

Model-Based Techniques for Performance Engineering of BIS 27

Quantitative Evaluation of SysTems (QEST), the Proceedings of the Annual
Meeting of the IEEE International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS), and the
Proceedings of the International Conference on Performance Evaluation Method-
ologies and Tools (VALUETOOLS).

3 Software Performance Engineering

A major hurdle to the adoption of classical performance modeling approaches in
industry is the fact that performance models are expensive to build and require
extensive experience and expertise in stochastic modeling which software engi-
neers typically do not possess. To address this issue, over the last fifteen years, a
number of approaches have been proposed for integrating performance modeling
and prediction techniques into the software engineering process. Furthermore,
using models and automatic transformation and processing can simplify the
software performance engineering approach, making it less error-prone.

3.1 Software Performance Meta-models

Efforts introducing performance models in the software engineering process were
initiated with Smith’s seminal work pioneered under the name of Software Per-
formance Engineering (SPE) [53]. Since then a number of languages (i.e., meta-
models) for describing performance-relevant aspects of software architectures and
execution environments have been developed by the SPE community, the most
prominent being the UML SPT profile (UML Profile for Schedulability, Perfor-
mance and Time) and its successor the UML MARTE profile (UML Profile for
Modeling and Analysis of Real-time and Embedded Systems). The latter are
extensions of UML (Unified Modeling Language) as the de facto standard
modeling language for software architectures. Other proposed architecture-level
performance meta-models include SPE-MM [54], CSM [50] and KLAPER [17].
The common goal of these efforts is to enable the automated transformation of
architecture-level performance models into analytical or simulation-based perfor-
mancemodels that canbe solvedusing classical analysis techniques (see Section 3.2).

In recent years, with the increasing adoption of Component-Based Software
Engineering (CBSE), the SPE community has focused on adapting and extend-
ing conventional SPE techniques to support component-based systems. A num-
ber of architecture-level performance meta-models for component-based systems
have been proposed as surveyed in [31]. Such meta-models provide means to
describe the performance-relevant aspects of software components (e.g., inter-
nal control flow and resource demands) while explicitly capturing the influences
of their execution context. The idea is that once component models are built
they can be reused in multiple applications and execution contexts. The perfor-
mance of a component-based system can be predicted by means of compositional
analysis techniques based on the performance models of its components. Over
the last five years, research efforts have been targeted at increasing the level

28 S. Kounev et al.

of parametrization of component models to capture additional aspects of their
execution context.

An example of a mature modeling language for component-based systems is
given by the Palladio Component Model (PCM) [6]. In PCM, the component
execution context is parameterized to explicitly capture the influence of the com-
ponent’s connections to other components, its allocated hardware and software
resources, and its usage profile including service input parameters. Model arti-
facts are divided among the developer roles involved in the CBSE process, i.e.,
component developers, system architects, system deployers and domain experts.

Design

Performance
Model

Response Time,
Utilization,
ThroughputFeedback

Model
Transformation

Analysis /
Simulation

Estimation /
Measurement

Annotated
Design

2 ms

15 ms10 ms

Fig. 3. Model-driven Performance Engineering Process

3.2 Model-to-Model Transformations

To bridge the gap between architecture-level performance models and classical
stochastic performance models, over the past decade the SPE community has
focused on building automated model-to-model transformations (see Figure 3)
which make it possible to exploit existing model solution techniques from the
performance evaluation community [39]. In the following, we provide an overview
of the most common transformations available in the literature.

Marco and Inverardi transform UML models annotated with SPT stereotypes
into a multichain queueing network [38]. UML-ψ, the UML Performance SImu-
lator [40], transforms a UML instance annotated with the SPT profile to a simu-
lation model. The results from the analysis of the simulation model are reported

Model-Based Techniques for Performance Engineering of BIS 29

back to the annotated UML instance [39]. Another approach uses the stochastic
process algebra PEPA as analysis model [56]. In this case, only UML activity
diagrams are considered, which are annotated with a subset of the MARTE pro-
file. A software tool implementing this method is also available. Bertolino and
Mirandola integrate their approach into the Argo-UML modeling tool, using the
RT-UML performance annotation profile [8]. An execution graph and a queueing
network serve as the target analysis formalisms.

Other approaches use UML, but do not use standardized performance profile
annotations: the approach in [18] uses XSLT, the eXtensible Stylesheet Language
Transformations, to execute a graph pattern based transformation from a UML
instance to LQNs. Instead of annotating the UML model, it has to be modeled in
a way so that the transformation can identify the correct patterns in the model.
The authors of [7] consider only UML state charts and sequence diagrams. A
transformation written in Java turns the model into GSPN sub-models that are
then combined into a final GSPN. Gomaa and Menascé use UML with custom
XML performance annotation [16]. The performance model is not described in
detail, but appears to be based on queueing networks. In [61], the authors use
UML component models together with a custom XML component performance
specification language. LQN solvers are used for the analysis.

Further approaches exist that are not based on UML: [11,10] builds on the
ROBOCOP component model and use proprietary simulation framework for
model analysis. [15] proposes a custom control flow graph model notation and
custom simulation framework. [20] employs the COMTEK component technol-
ogy, coupled with a proprietary analysis framework. In [52], the authors specify
component composition and performance characteristics using a variant of the
big-O notation. The runtime analysis is not discussed in detail.

Several model-to-model transformations have been developed for the Palla-
dio Component Model (PCM). Two solvers are based on a transformation to
Layered Queueing Networks (LQNs) [32] and a transformation to Stochastic
Regular Expressions [30], respectively. Stochastic Regular Expressions can be
solved analytically with very low overhead, however, they only support single
user scenarios. Henßproposes a PCM transformation to OMNeT++, focusing on
a realistic network infrastructure closer to the OSI reference network model [19].
The PCM-Bench tool comes with the SimuCom simulator [6] which is based on a
model-to-text transformation used to generate Java code that builds on DESMO-
J, a general-purpose simulation framework. The code is then compiled on-the-fly
and executed. SimuCom is tailored to support all of the PCM features directly
and covers the whole PCM meta-model. Meier et al. present a transformation
of the PCM to Queuing Petri Nets (QPN) [41]. This transformation enables the
analysis of PCM model instances with simulation and analysis techniques devel-
oped for QPNs [29]. The work also illustrates and compares important aspects
concerning the accuracy and overhead of the solvers for PCM model instances
(SimuCom, LQNS and LQSim) and SimQPN, the solver for QPNs. The results
show that LQN-based solvers are less accurate regarding mean response times
and that solvers can have significantly different analysis overhead.

30 S. Kounev et al.

Finally, a number of intermediate languages (or kernel languages) for spec-
ifying software performance information have been proposed in the literature.
The aim of such efforts is to reduce the overhead for building transformations,
i.e., only M + N instead of M · N transformations have to be developed for
M source and N target meta-models [39]. Some examples of intermediate lan-
guages include SPE-MM [54], KLAPER (Kernel LAnguage for PErformance and
Reliability analysis) [17] and CSM (Core Scenario Model) [50].

4 Run-Time Performance Management

With the increasing adoption of virtualization and the transition towards Cloud
Computing platforms, modern business information systems are becoming in-
creasingly complex and dynamic. The increased complexity is caused by the in-
troduction of virtual resources and the resulting gap between logical and physical
resource allocations. The increased dynamicity is caused by the complex interac-
tions between the applications and services sharing the physical infrastructure.
In a virtualized service-oriented environment changes are common during opera-
tion, e.g., new services and applications can be deployed on-the-fly, service work-
flows and business processes can be modified dynamically, hardware resources
can be added and removed from the system, virtual machines (VMs) can be
migrated between servers, resources allocated to VMs can be modified to reflect
changes in service workloads and usage profiles. To ensure adequate performance
and efficient resource utilization in such environments, capacity planning needs
to be done on a regular basis during operation. This calls for online performance
prediction mechanisms.

Service A
Service B

Service C Service D Service E
Service F

1 2 3 4

Server Utilization
85% 55% 60% 70%20%

Stand-By
Mode

Service A
Service B

Service C
Service E

Service D
Service F

1 2 3 4

Server Utilization
85% 0%

Service A
Service B

Stand-By
Mode

Service D

1 2 3 4

Service E
Service F
Service C

Server Utilization
85% 0%

Average Service Response Times (sec)

Service A B C D E F

Before Reconfiguration 2 3 1 2 2 3

After Reconfiguration 1 2 3

After Reconfiguration 2 2 3 2

Service Level Agreement 4 3 5 5 6 6

? ?

? ?

?
?
? ? ?
? ?

Fig. 4. Online performance prediction scenario

Model-Based Techniques for Performance Engineering of BIS 31

An example of a scenario where online performance prediction is needed is
depicted in Figure 4. A service-oriented system made of four servers hosting six
different services is shown including information on the average service response
times, the response time service level agreements (SLAs) and the server utiliza-
tion. Now assume that due to a change in the demand for services E and F,
the average utilization of the fourth server has dropped down to 20% over an
extended period of time. To improve the system’s efficiency, it is considered to
switch one of the servers to stand-by mode after migrating its services to other
servers. Two possible ways to reconfigure the system are shown. To ensure that
reconfiguring the system would not break the SLAs, the system needs a mecha-
nism to predict the effect of the reconfiguration on the service response times.

Given the variety of changes that occur in modern service-oriented environ-
ments, online performance prediction techniques must support variations at all
levels of the system including variations in service workloads and usage profiles,
variations in the system architecture, as well as variations in the deployment and
execution environment (virtualization, middleware, etc). To predict the impact
of such variations, architecture-level performance models are needed at run-time
that explicitly capture the influences of the system architecture, its configura-
tion, and its workload and usage profiles.

While many architecture-level performance prediction techniques exist in the
literature, most of them suffer from two significant drawbacks which render them
impractical for use at run-time: i) performance models provide limited support
for reusability and customization, ii) performance models are static, creating and
maintaining them manually during operation is prohibitively expensive [59].

While techniques for component-based performance engineering have con-
tributed a lot to facilitate model reusability, there is still much work to be done
on further parameterizing component models before they can be used for online
performance prediction. In particular, current techniques do not provide means
to model the layers of the component execution environment explicitly. The
performance influences of the individual layers, the dependencies among them,
as well as the resource allocations at each layer should be captured as part of
the models. This is necessary in order to be able to predict at run-time how a
change in the execution environment (e.g., modifying resource allocations at the
virtualization layer) would affect the overall system performance.

As to the second issue indicated above, building architecture-level perfor-
mance models that accurately capture the different aspects of system behavior
is a challenging task and requires a lot of time when applied manually to large
and complex real-world systems. Often, no explicit architecture documentation
of the system exists and hence, the model must be built from scratch. Addi-
tionally, experiments and measurements must be conducted to parameterize the
model such that it reflects the system behavior accurately.

Current performance analysis tools used in industry mostly focus on profiling
and monitoring transaction response times and resource consumption. They of-
ten provide large amounts of low-level data while important information about

32 S. Kounev et al.

the end-to-end performance behavior is missing (e.g., service control flow and
resource demands).

In research, approaches such as [58,13] use systematic measurements to build
black-box mathematical models or models obtained with genetic optimization.
However, these approaches are purely measurement-based, the models serve as
interpolation of the measurements, and neither a representation of the system
architecture nor its performance-relevant factors are extracted. Services are mod-
eled as black boxes and many restrictive assumptions are often imposed such as
a single workload class, single-threaded components, homogeneous servers or ex-
ponential request interarrival times. Given these limitations, such models are
rarely applied in practice and instead ad hoc mechanisms for performance and
resource management are employed. Performance-relevant details of the virtual-
ization platform and the applications running inside the hosted virtual machines
are not considered explicitly preventing detailed performance predictions which
are necessary for efficient resource management. Approaches aiming at the ex-
traction of architectural information are presented in, e.g., [21,22,12]. They use
call path tracing, a form of dynamic analysis to gain reliable data on the ac-
tual execution of an application. However, the model extraction techniques for
architecture-level performance models are usually not automated or applicable at
run-time [21,22] and they do not consider the virtualization layer explicitly [12].

Existing work concerning the quantification of virtualization overheads is
mainly based on system benchmarking. The performance of several virtualization
solutions such as Xen, VMware workstation, Linux-VServer, OpenVZ, etc. are
compared. However, the focus is on the overall performance overhead, individ-
ual performance-influencing factors are not analyzed. In contrast, Lu et al. [36]
present a calibration process based on application usage traces that covers the
main resource types CPU, memory, network and disk I/O and is applicable at
run-time. Approaches to automatically extract performance models of the virtu-
alization layer are normally very specific and do not provide models which can
be used for performance predictions at the application level. Therefore, there
is a major need for an approach which addresses these deficiencies and com-
bines methods for automated model extraction and performance prediction in
virtualized environments at run-time.

The heart of the problem is in the fact that architecture-level performance
models are normally designed for offline use and as such they are decoupled from
the system components they represent. Models do not capture dynamic aspects
of the environment and therefore they need to be updated manually after every
change in the system configuration or workload. Given the frequency of such
changes, the amount of effort involved in maintaining performance models is
prohibitive and therefore in practice such models are rarely used after deploy-
ment.

Research Challenges. The described limitations of the existing work lead to
the following two general research challenges:

– Designing abstractions for modeling performance-relevant aspects of services
in dynamic virtualized environments. The abstractions should be structured

Model-Based Techniques for Performance Engineering of BIS 33

around the system components involved in processing service requests. Indi-
vidual layers of the software architecture and execution environment, context
dependencies and dynamic system parameters should be modeled explicitly.

– Developing methods for the automatic online model extraction, maintenance,
refinement and calibration during operation. This includes the efficient res-
olution of service context dependencies including dependencies between ser-
vice input parameters, resource demands, invoked third-party services and
control flow of underlying components.

To address these challenges, current research efforts are focusing on develop-
ing online architecture-level performance models designed specifically for use at
run-time, e.g., the Descartes Meta-Model [14,27]. Such models aim at capturing
all information, both static and dynamic, relevant to predicting the system’s
performance on-the-fly. They are intended to be integrated into the system com-
ponents and to be maintained and updated automatically by the underlying
execution platform (virtualization and middleware) reflecting the evolving sys-
tem environment.

Online performance models will make it possible to answer performance-
related queries that arise during operation such as: What would be the effect
on the performance of running applications if a new application is deployed in
the virtualized infrastructure or an existing application is migrated from one
physical server to another? How much resources need to be allocated to a newly
deployed application to ensure that SLAs are satisfied? How should the sys-
tem configuration be adapted to avoid performance issues or inefficient resource
usage arising from changing customer workloads?

The ability to answer queries such as the above provides the basis for imple-
menting techniques for self-aware performance and resource management [27].
Such techniques will be triggered automatically during operation in response
to observed or forecast changes in application workloads. The goal will be to
proactively adapt the system to such changes in order to avoid anticipated QoS
problems or inefficient resource usage. The adaptation will be performed in an
autonomic fashion by considering a set of possible system reconfiguration scenar-
ios (e.g, changing VM placement and/or resource allocations) and exploiting the
online performance models to predict the effect of such reconfigurations before
making a decision.

Self-aware systems engineering [14,26] is currently emerging as a new research
area at the intersection of several computer science disciplines including software
architecture, computer systems modeling, autonomic computing, distributed sys-
tems, and more recently, Cloud Computing and Green IT. It raises a number
of big challenges that represent emerging hot topics in the systems engineering
community and will be subject of long-term fundamental research in the years
to come. The resolution of these challenges promises to revolutionize the field
of systems engineering by enabling guaranteed QoS, lower operating costs and
improved energy efficiency.

34 S. Kounev et al.

5 Concluding Remarks

We presented a historical perspective on the evolution of model-based perfor-
mance engineering techniques for business information systems, focusing on the
major developments over the past four decades that have shaped the field, such as
the increasing integration of software-related aspects into performance models,
the increasing parametrization of models to foster model reuse, the increasing use
of automated model-to-model transformations to bridge the gap between mod-
els at different levels of abstraction, and finally the increasing use of models at
run-time for online performance management. We surveyed the state-of-the-art
on performance modeling and management approaches discussing the ongoing
efforts in the community to increasingly bridge the gap between high-level busi-
ness services and low level performance models. Finally, we concluded with an
outlook on the emergence of self-aware systems engineering as a new research
area at the intersection of several computer science disciplines.

References

1. Computing missing service demand parameters for performance models. In: CMG
2008, pp. 241–248 (2008)

2. Banks, J., Carson, J.S., Nelson, B.L., Nicol, D.M.: Discrete-Event System Simula-
tion, 3rd edn. Prentice Hall, Upper Saddle River (2001)

3. Bard, Y., Shatzoff, M.: Statistical methods in computer performance analysis. Cur-
rent Trends in Programming Methodology, III (1978)

4. Bause, F.: Queueing Petri Nets - A formalism for the combined qualitative and
quantitative analysis of systems. In: Proceedings of the 5th International Workshop
on Petri Nets and Performance Models, Toulouse, France, October 19-22 (1993)

5. Bause, F., Kritzinger, F.: Stochastic Petri Nets - An Introduction to the Theory,
2nd edn. Vieweg Verlag (2002)

6. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. Journal of Syst. and Softw. 82, 3–22 (2009)

7. Bernardi, S., Donatelli, S., Merseguer, J.: From UML sequence diagrams and stat-
echarts to analysable petri net models. In: Proc. on WOSP 2002, pp. 35–45 (2002)

8. Bertolino, A., Mirandola, R.: CB-SPE Tool: Putting Component-Based Perfor-
mance Engineering into Practice. In: Crnković, I., Stafford, J.A., Schmidt, H.W.,
Wallnau, K. (eds.) CBSE 2004. LNCS, vol. 3054, pp. 233–248. Springer, Heidelberg
(2004)

9. Bolch, G., Greiner, S., Meer, H.D., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd edn. John Wiley & Sons, Inc. (April 2006)

10. Bondarev, E., de With, P., Chaudron, M., Muskens, J.: Modelling of input-
parameter dependency for performance predictions of component-based embedded
systems. In: Proc. on EUROMICRO 2005, pp. 36–43 (2005)

11. Bondarev, E., Muskens, J., de With, P., Chaudron, M., Lukkien, J.: Predicting
real-time properties of component assemblies: a scenario-simulation approach. In:
Proc. of the 30th Euromicro Conference, pp. 40–47 (2004)

Model-Based Techniques for Performance Engineering of BIS 35

12. Brosig, F., Huber, N., Kounev, S.: Automated Extraction of Architecture-
Level Performance Models of Distributed Component-Based Systems. In: 26th
IEEE/ACM International Conference On Automated Software Engineering (ASE
2011), Oread, Lawrence, Kansas (November 2011)

13. Courtois, M., Woodside, M.: Using regression splines for software performance anal-
ysis. In: Proceedings of the International Workshop on Software and Performance
(2000)

14. Descartes Research Group (December 2011),
http://www.descartes-research.net

15. Eskenazi, E., Fioukov, A., Hammer, D.: Performance Prediction for Component
Compositions. In: Crnković, I., Stafford, J.A., Schmidt, H.W., Wallnau, K. (eds.)
CBSE 2004. LNCS, vol. 3054, pp. 280–293. Springer, Heidelberg (2004)

16. Gomaa, H., Menascé, D.: Performance Engineering of Component-Based Dis-
tributed Software Systems. In: Dumke, R.R., Rautenstrauch, C., Schmietendorf,
A., Scholz, A. (eds.) WOSP 2000 and GWPESD 2000. LNCS, vol. 2047, pp. 40–55.
Springer, Heidelberg (2001)

17. Grassi, V., Mirandola, R., Sabetta, A.: Filling the gap between design and perfor-
mance/reliability models of component-based systems: A model-driven approach.
Journal of Systems and Software 80(4), 528–558 (2007)

18. Gu, G.P., Petriu, D.C.: XSLT transformation from UML models to LQN perfor-
mance models. In: Proc. on WOSP 2002, pp. 227–234 (2002)

19. Henss, J.: Performance prediction for highly distributed systems. In: Proc. on
WCOP 2010, vol. 14, pp. 39–46. Karlsruhe Institue of Technology (2010)

20. Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Packaging Predictable Assembly.
In: Bishop, J.M. (ed.) CD 2002. LNCS, vol. 2370, pp. 108–124. Springer, Heidelberg
(2002)

21. Hrischuk, C.E., Woodside, M., Rolia, J.A., Iversen, R.: Trace-Based Load Char-
acterization for Generating Performance Software Models. IEEE Trans. on Softw.
Eng. (1999)

22. Israr, T., Woodside, M., Franks, G.: Interaction tree algorithms to extract effective
architecture and layered performance models from traces. J. Syst. Softw. (2007)

23. Kounev, S.: Performance Engineering of Distributed Component-Based Systems -
Benchmarking, Modeling and Performance Prediction. PhD Thesis. Shaker Verlag
(December 2005)

24. Kounev, S.: Performance Modeling and Evaluation of Distributed Component-
Based Systems using Queueing Petri Nets. IEEE Transactions on Software Engi-
neering 32(7), 486–502 (2006)

25. Kounev, S.: Software Performance Evaluation. In: Wiley Encyclopedia of Computer
Science and Engineering, Wiley-Interscience, John Wiley & Sons Inc. (September
2008) ISBN-10: 0471383937, ISBN-13: 978-0471383932

26. Kounev, S.: Self-Aware Software and Systems Engineering: A Vision and Research
Roadmap. GI Softwaretechnik-Trends 31(4) (November 2011)

27. Kounev, S., Brosig, F., Huber, N., Reussner, R.: Towards self-aware performance
and resource management in modern service-oriented systems. In: Proc. of the
7th IEEE Intl. Conf. on Services Computing (SCC 2010). IEEE Computer Society
(2010)

28. Kounev, S., Buchmann, A.: Performance Modelling of Distributed E-Business Ap-
plications using Queuing Petri Nets. In: Proceedings of the 2003 IEEE International
Symposium on Performance Analysis of Systems and Software (2003)

http://www.descartes-research.net

36 S. Kounev et al.

29. Kounev, S., Buchmann, A.: SimQPN - a tool and methodology for analyzing queue-
ing Petri net models by means of simulation. Performance Evaluation 63(4-5),
364–394 (2006)

30. Koziolek, H.: Parameter dependencies for reusable performance specifications of
software components. PhD thesis, University of Karlsruhe, TH (2008)

31. Koziolek, H.: Performance evaluation of component-based software systems: A sur-
vey. Performance Evaluation 67(8), 634–658 (2009)

32. Koziolek, H., Reussner, R.: A Model Transformation from the Palladio Component
Model to Layered Queueing Networks. In: Kounev, S., Gorton, I., Sachs, K. (eds.)
SIPEW 2008. LNCS, vol. 5119, pp. 58–78. Springer, Heidelberg (2008)

33. Kumar, D., Tantawi, A., Zhang, L.: Real-time performance modeling for adap-
tive software systems. In: VALUETOOLS 2009: Proceedings of the Fourth Inter-
national ICST Conference on Performance Evaluation Methodologies and Tools,
pp. 1–10. ICST (Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), Brussels (2009)

34. Law, A., Kelton, D.W.: Simulation Modeling and Analysis, 3rd edn. McGraw Hill
Companies, Inc. (2000)

35. Liu, Z., Wynter, L., Xia, C.H., Zhang, F.: Parameter inference of queueing models
for IT systems using end-to-end measurements. Performance Evaluation 63(1), 36–
60 (2006)

36. Lu, L., Zhang, H., Jiang, G., Chen, H., Yoshihira, K., Smirni, E.: Untangling mixed
information to calibrate resource utilization in virtual machines. In: Proceedings
of the 8th ACM International Conference on Autonomic Computing, ICAC 2011,
pp. 151–160. ACM, New York (2011)

37. MacNair, E.A.: An introduction to the Research Queueing Package. In: WSC 1985:
Proceedings of the 17th Conference on Winter Simulation, pp. 257–262. ACM
Press, New York (1985)

38. Di Marco, A., Inverardi, P.: Compositional generation of software architecture per-
formance QN models. In: Working IEEE/IFIP Conf. on Software Architecture,
p. 37 (2004)

39. Di Marco, A., Mirandola, R.: Model Transformation in Software Performance En-
gineering. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.) QoSA 2006. LNCS,
vol. 4214, pp. 95–110. Springer, Heidelberg (2006)

40. Marzolla, M., Balsamo, S.: UML-PSI: The UML performance simulator. Quanti-
tative Eval. of Syst., 340–341 (2004)

41. Meier, P., Kounev, S., Koziolek, H.: Automated Transformation of Palladio Com-
ponent Models to Queueing Petri Nets. In: 19th IEEE/ACM International Sympo-
sium on Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS 2011), Singapore, July 25-27 (2011)

42. Menascé, D., Almeida, V.: Capacity Planning for Web Performance: Metrics, Mod-
els and Methods. Prentice Hall, Upper Saddle River (1998)

43. Menascé, D., Almeida, V.: Scaling for E-Business - Technologies, Models, Perfor-
mance and Capacity Planning. Prentice Hall, Upper Saddle River (2000)

44. Menascé, D., Almeida, V., Fonseca, R., Mendes, M.: A Methodology for Workload
Characterization of E-commerce Sites. In: Proceedings of the 1st ACM Conference
on Electronic Commerce, Denver, Colorado, United States, pp. 119–128 (November
1999)

45. Menascé, D.A., Almeida, V., Dowdy, L.W.: Capacity Planning and Performance
Modeling - From Mainframes to Client-Server Systems. Prentice Hall, Englewood
Cliffs (1994)

Model-Based Techniques for Performance Engineering of BIS 37

46. Menascé, D.A., Almeida, V., Dowdy, L.W.: Performance by Design. Prentice Hall
(2004)

47. Menascé, D.A., Gomaa, H.: A Method for Desigh and Performance Modeling
of Client/Server Systems. IEEE Transactions on Software Engineering 26(11)
(November 2000)

48. Mohr, J., Penansky, S.: A forecasting oriented workload characterization method-
ology. CMG Transactions 36 (June 1982)

49. Pacifici, G., Segmuller, W., Spreitzer, M., Tantawi, A.: CPU demand for web serv-
ing: Measurement analysis and dynamic estimation. Performance Evaluation 65(6-
7), 531–553 (2008)

50. Petriu, D., Woodside, M.: An intermediate metamodel with scenarios and resources
for generating performance models from UML designs. Software and Systems Mod-
eling (SoSyM) 6(2), 163–184 (2007)

51. Rolia, J., Vetland, V.: Parameter estimation for performance models of distributed
application systems. In: CASCON 1995: Proceedings of the 1995 Conference of the
Centre for Advanced Studies on Collaborative Research, p. 54. IBM Press (1995)

52. Sitaraman, M., Kulczycki, G., Krone, J., Ogden, W.F., Reddy, A.L.N.: Performance
specification of software components. SIGSOFT Softw. Eng. Notes 26(3), 3–10
(2001)

53. Smith, C.U.: Performance Engineering of Software Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston (1990)

54. Smith, C.U., Lladó, C.M., Cortellessa, V., Di Marco, A., Williams, L.G.: From
UML models to software performance results: an SPE process based on XML in-
terchange formats. In: WOSP 2005: Proceedings of the 5th International Workshop
on Software and Performance, pp. 87–98. ACM Press, New York (2005)

55. Smith, C.U., Williams, L.G.: Performance Solutions - A Practical Guide to Creat-
ing Responsive, Scalable Software. Addison-Wesley (2002)

56. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proc. on
WOSP 2008 (2008)

57. Trivedi, K.S.: Probability and Statistics with Reliability, Queueing and Computer
Science Applications, 2nd edn. John Wiley & Sons, Inc. (2002)

58. Westermann, D., Happe, J.: Towards performance prediction of large enterprise
applications based on systematic measurements. In: WCOP (2010)

59. Woodside, M., Franks, G., Petriu, D.: The future of software performance engineer-
ing. In: Future of Software Engineering (FOSE 2007), pp. 171–187. IEEE Computer
Society, Los Alamitos (2007)

60. Woodside, M., Neilson, J., Petriu, D., Majumdar, S.: The Stochastic Rendezvous
Network Model for Performance of Synchronous Client-Server-Like Distributed
Software. IEEE Transactions on Computers 44(1), 20–34 (1995)

61. Wu, X., Woodside, M.: Performance modeling from software components. SIG-
SOFT Softw. E. Notes 29(1), 290–301 (2004)

62. Zhang, L., Xia, C.H., Squillante, M.S., Iii, W.N.M.: Workload service requirements
analysis: A queueing network optimization approach. In: Proceedings of the 10th
IEEE International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems, MASCOTS 2002, p. 23. IEEE Computer
Society, Washington, DC (2002)

63. Zheng, T., Woodside, C.M., Litoiu, M.: Performance model estimation and tracking
using optimal filters. IEEE Transactions on Software Engineering 34(3), 391–406
(2008)

Enabling Enterprise Collaboration

Using Service Source Descriptions

Brahmanadna Sapkota and Marten van Sinderen

University of Twente, The Netherlands
{b.sapkota,m.j.vansinderen}@utwente.nl

Abstract. We witness an increasing need for cross-enterprise collabo-
ration to respond to continuous changes in market demands and oppor-
tunities. Approaches based on Web services have been proposed, mainly
because they provide standards-based service abstractions which can be
combined into business-oriented functions. Collaboration requirements
are expressed as business processes representing the coordination of sev-
eral services whose descriptions are published in service registries. Cur-
rent service registries are passive and, consequently, the published service
descriptions may become readily outdated. In this paper, we present an
approach to guarantee the freshness and correctness of published service
descriptions. Unlike existing approaches, which use a service description
for each individual service, our approach uses so-called service source
descriptions which specify the collection of service functionalities and
contain only the information required for finding services. This descrip-
tion is published in the public service registry to facilitate discovery of
service providers whereas the detailed information remains at the source.

Keywords: Service Oriented Architecture, Web services, Enterprise Ap-
plication Integration, Cross-organisational Collaboration, Business Re-
quirements, Business Processes, Business-IT alignment.

1 Introduction

In order to respond effectively and efficiently to changes in market demands
and to seize opportunities that inevitably occur due to such changes, enterprise
collaboration has become increasingly important. Service Oriented Architecture
(SOA) [1] has been widely recognized as one of the enablers of enterprise col-
laboration because of its support for service abstractions. SOA provides flexible
support for enterprise collaboration based on service abstractions and Internet
standards. Collaboration requirements are expressed as business processes, which
represent the coordination of several published services as well as the implemen-
tation of a composite value-added service. In this way, enterprise functions are
aggregated using multi-stage business processes fulfilling the specific require-
ments of an enterprise [2]. In addition to supporting enterprise function aggre-
gation, such solutions must be flexible enough to allow adaptation in a timely

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 38–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enabling Enterprise Collaboration 39

and cost-effective manner to support continuously evolving enterprise collabo-
ration. SOA based technologies such as Web services [3] support adaptation of
such an evolution through the concept of service composition.

Core elements of service composition for supporting enterprise collaboration
are the discovery of services and the exchange of information between these ser-
vices. In reaslising the enterprise functions, suitable services are searched and
selected based on the published information on the available services. The ser-
vice discovery thus plays a central role in enterprise collaboration and application
integration. Service discovery is performed based on the notion of service descrip-
tion and service registry. In general, service descriptions are used for specifying:
1) what functionalities are offered by the service to its users (i.e., the inter-
face definition); 2) how the service is provided (i.e., the service binding); and
3) where the service can be accessed (i.e., the service endpoint information).
The service registries are thus used to announce the offered services. In a typ-
ical scenario, service providers publish their service descriptions to a publicly
accessible service registry. The service users search over these registries and find
the information needed to select and use the required services. This approach
of publishing, finding and using the services forms the so called SOA triangular
operational model which clearly separates the role of service provider, service
user and service registry [4]. SOA, thus, enables flexible on-demand enterprise
collaboration and application integration. Despite these sound principles of SOA,
a number of practical complexities still exists, which are preventing enterprises
to fully exploit the potential benefits of SOA.

With the increase in user-centric service provisioning, enterprises are increas-
ingly required to engage in on-demand collaborations. An on-demand collabo-
ration can only be achieved if 1) the participants required for the collabora-
tion can be found when needed and 2) the participants can communicate with
each other. In the SOA based approach, the former requirement is supported
by defining the service functionality and the later requirement is supported by
defining the messages being sent. These definitions are combined together and
are published as service description. This can be realised relatively easily by
using pre-meditated message structures and function libraries, if the enterprises
collaborate in a closed environment. If autonomous enterprises are to collabo-
rate on-demand, pre-meditated message structures or function libraries cannot
be used. Therefore, semantics of the information provided through the service
descriptions should be well defined and the service registry should contain valid
service descriptions. While the initiatives around Semantic Web services have
defined formalisms such as WSMO [5], OWL-S [6] and SAWSDL [7], to de-
fine service descriptions semantically, they cannot ensure that the published
descriptions correctly reflect the offered services at the time of their discovery.
Therefore, a mechanism is required for ensuring the correctness of the service
descriptions during the complete life cycle of SOA-based enterprise collaboration
and application integration.

40 B. Sapkota and M. van Sinderen

In this paper, we present a new approach to guarantee the correctness and
freshness of the published service descriptions. Unlike in the existing approaches,
which use a service description for each individual service, the proposed approach
uses so-called service source descriptions. A service source description specifies
the collection of service functionalities. It specifies what type of services are
offered by a particular service provider. The service source description clearly
separates the detailed information required for invoking a service and the more
coarse information required for finding a service that can be provided by a spe-
cific service provider. The service source description is encoded following the
LinkedData principles [8], which encourages storage of data at its source. In the
proposed approach, we assume that the services are described using Web Ser-
vice Definition Language [9] and stored in the local repositories of the service
providers. We also assume that these repositories are exposed as services and
can be queried to retrieve detailed information required to invoke a particular
service. With these assumptions, we provide a mechanism to generate a service
source description based on the WSDL documents stored at the local service
registry of a service provider. Each service source description is published in the
public service registry to facilitate discovery of service providers whereas the de-
tailed service descriptions remain at their sources relieving the service providers
of the burden of updating the published descriptions when corresponding ser-
vices are changed due to market developments. Though a service provider still
has to generate and publish the service source descriptions (based on the indi-
vidual service descriptions at the source, which in turn are manually provided),
it can be automated.

The major design goals of the proposed approach is simplicity and extensi-
bility. The service source description is essentially the collection of summaries
of the WSDL files stored in the local registry of the provider which simplifies
the process of service description updates. The service providers need to update
only the local registry. If the new service providers arise, they can simply publish
the service source description to the public service registry. We do not introduce
a new technology but built upon existing technologies following the SOA trian-
gular operational model except that service source descriptions are published to
the service registry instead of publishing the individual service descriptions.

The rest of the paper is structured as follows: Background technologies based
on which the solution proposed in this paper is developed is briefly discussed in
Section 2. The service discovery challenges are discussed in Section 3. The pro-
posed solution is presented in Section 4 and its use to support cross-organisational
collaboration is presented in Section 5. Some of the relevant existing works are
discussed in Section 6. Finally, the work presented in this paper is concluded in
Section 7 by highlighting possible future directions.

2 Background

We briefly introduce the tools and technologies based on which the solution
presented in this paper is developed.

Enabling Enterprise Collaboration 41

2.1 Web Service Description Language

WSDL is a commonly used XML-based language for describing Web services.
As shown pictorially in Figure 1, the newer version of WSDL, i.e., WSDL 2.0 is
structured into five main elements which are description, interface, service, bind-
ing, and types. The description element is used to specify the root element of
the WSDL file and contains the remaining four elements as its sub elements. The
interface element is used to describe operations that a web service provides, mes-
sages that these operations consume or produce, and the mechanisms for fault
handling. The service element describes a collection of endpoints (i.e., URLs)
specifying the location of invoking the service operations. The binding element
describes how to invoke the service by specifying required communication proto-
cols. The data types used in messages exchanged between the user and the Web
service as well as in the fault messages are specified in the types element.

<interface>
<operation>

<input />
<output />

</operation>
</interface>

<types>
<!- element declaration -->
<!- type definition -->

</types>

<binding> </binding>

<service>
<endpoint />

</service>

<description>

</description>

Ab
st

ra
ct

 P
ar

t
Co

nc
re

te
 P

ar
t

Fig. 1. WSDL 2.0 document structure

In addition, WSDL 2.0 also contains documentation and import elements
which can be used to specify additional textual information regarding the ser-
vice and to use externally defined XML Schema respectively. A WSDL document
contains both the abstract information describing the functionality offered by a
service and the concrete information describing how to use these functionalities.
The service functionality is described in terms of the messages it sends and re-
ceives. These messages are associated to an operation which are grouped together
under an interface. The concrete information required for using the functionality
of a service is described in terms of transport protocol binding for interfaces.

42 B. Sapkota and M. van Sinderen

2.2 Resource Description Framework

Resource Description Framework (RDF) [10] is an application neutral data
model for describing knowledge that needs to be shared between applications. In
RDF, information is presented in a directed labeled graphs as shown in Figure 2.
In this model, nodes represent resources or values and arrows represent the re-
lationship between the connected nodes. In the graph, ovals are used to denote

http://www.utwente.nl/ewi/is/Information Systems Group University of Twentetitle publisher

Fig. 2. Example RDF Graph

resources whereas rectangles are used to represent values. Two nodes connected
with an arrow is called an RDF statement in which the nodes connected to the
tail and the head of the arrow are called subject and object of the statement
respectively whereas the label of the arrow is called its predicate. Therefore,
RDF statements contain triples and are encoded in the form <subject, predicate,
object>. This graph-based data model can be serialised in different formats such
as RDF/XML, Notation 3, and Turtle. Using Turtle format, Listing 1 presents
same information given in Figure 2

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .

<http://www.utwente.nl/ewi/is/>
dc:title ‘‘Information Systems Group’’ ;
dc:publisher ‘‘University of Twente’’ .

Listing 1. Example RDF graph in Turtle format

Though RDF is originally designed to describe Web resources, it can be used
to describe anything with URIs.

2.3 Linked Data

Linked Data [8] is a set of guidelines or principles defined for publishing data
on the Web. It advocates the use of URI as the identifier of published data
and RDF as the model for describing the data. It also encourages to include
URIs pointing to the external information such that the relevant information
could be looked upon when needed. Because the data is described using RDF,
the standard query language SPARQL [11] can be used to retrieve the useful
information. In addition, the use of URI for linking different information allows
applications to navigate through different sources to discover the required infor-
mation. Figure 3 illustrates interconnection of data from three different sources.
In the figure, the dotted arrows indicate that the information stored in different
sources are indicated because of the use of same URIs. One of the benefits of
such an interconnection is the better reuse and lesser redundancies of data.

Enabling Enterprise Collaboration 43

http://www.utwente.nl/

http://www.sapkota.org/
foaf.rdf#me

Brahmananda
Sapkota

foaf:name

foaf:Person

rdf:type
org:memberOf

dbpedia:Enschede

http://www.utwente.nl/

University of
Twente

foaf:name

org.Organisation

rdf:type
foaf:based_near

http://sws.geonames.org/
2750405/

dbpedia:Enschede

gn:wikipediaArticle

gn:locatedIn

http://en.wikipedia.org/wiki/
Netherlands/

Fig. 3. Example Linked Data

The URIs used in connecting different sources are called RDF links. A RDF
link is a RDF triple where the subject is a URI reference in the namespace of
one source, the predicate and or the object are URI references pointing to the
namespaces of other source. Therefore RDF links have types. Such a typed link
allows for describing the relationship between the sources that are connected. A
RDF link of type org:memberOf, for example, may be used to connect a person
to an organisation. It makes integration of data from different sources easier be-
cause of the connection that a RDF link makes between different namespaces. In
the example shown in Figure 3, since the link www.utwente.nl appears in a triple
<http://sapkota.org/foaf.rdf#me org:memberOf http://www.utwente.nl>, any-
one looking for information about http://sapkota.org/foaf.rdf#me can navigate
through the link and get extra information such as Brahmananda Sapkota works
at the University of Twente which is located in Enschede and Enschede is in the
Netherlands. The Linked Data, thus provides a simple and flexible mechanism
for integrating information from different sources.

3 Service Discovery Challenges

In an open environment, it is difficult to support on-demand collaboration if
the published service descriptions are outdated consequently providing incorrect
information. This difficulty escalates when service descriptions contain limited
information, i.e., some information may be relevant for the discovery of services,
but since this information depends on the runtime state, it cannot be included
in the service descriptions [12,13]. So, besides the “correctness” (or “outdated

44 B. Sapkota and M. van Sinderen

information”) problem, we also have the “state-dependency” (or “dynamic in-
formation”) problem that leads to a poor discovery results.

The correctness problem arises due to the fact that service registries are pas-
sive. If the functionalities of the offered services are changed, service providers
should take the initiative to update the corresponding descriptions published in
the service registry. In practice, the published descriptions are rarely updated.
Instead of publishing the service descriptions to the service registries, they are
published on the Web [14]. Such a practice, violates the original SOA model (i.e.,
the triangular operational model) and consequently undermines the role of ser-
vice registries in SOA [15]. This shift in practice is due to the lack of efficient and
elegant support to update a service description in the service registry whenever
the corresponding service is changed. The latter essentially requires an additional
effort on the part of the service providers. It becomes more problematic because
new service registries emerge and the existing one disappear [16] and therefore
service registries cannot be fully relied upon for service discovery. The results of
the investigation of Web services on the Web published in [17] reveals that only
around 63% of the discovered Web services are in fact active. This lack of reli-
able and persistent service repositories makes on-demand collaboration between
autonomous enterprises difficult, if not impossible.

Besides these technical difficulties, there are other reasons why public service
registries have not been successful so far. One of the reasons is that a consider-
able amount of the published service descriptions are unusable [12]. Some of the
information (e.g., the information that depends on the change in state) which
might be important for discovery purposes cannot be included in the service
descriptions in a simple way. In addition, some providers may not be willing
to disclose information related to non-functional properties because of the fear
of bargain or competition from other providers [13]. This introduces the “sen-
sitive information” problem and contributes to the retrieval of imprecise or at
least incomplete service descriptions leading to false positives and consequently
reducing the usability and the reliability of service registries.

The sensitive information problems could be resolved if a service provider is
allowed to store its service descriptions locally. The locally stored descriptions
can then be requested at the time of service discovery. If the service descriptions
are stored locally, the correctness and state-dependency problems can also be
tackled since any changes on the service can be quickly updated locally. This
can be achieved, if service providers are equipped with a tool that extract sum-
mary information of the offered functionalities from their own registry, builds an
service source description and publishes it a public service registry. In this way,
only the part of the description that is needed to find the required functionality
is published in the public registry whereas the part of the description which
specifies what detailed information is needed for invoking the service is kept in
the local registry.

Enabling Enterprise Collaboration 45

4 Service Discovery Solution

We describe a two step mechanism for the publication of service source descrip-
tion and the discovery of services. In the first step, we generate the service source
description and publish it to a public service registry. In the second step, we use
the published information to discover required services. Since the abstract infor-
mation is sufficient to discover services [18], we only include this information in
the service source description. The overall approach for publishing the service
source description is depicted in Figure 4.

The benefits of this approach are: 1) service providers do not have to publish
all the information. It will also reduce the extra effort required for maintaining
and updating the service registry. Service providers do not need to update service
registry every time the service description is updated, updates are done locally.
2) service users can use these SSP descriptions to find the potential providers,
and finally obtain the up-to-date information.

Public
Repository

User

Provider

Provider

WSDLService Type SSD

Request

123

Fig. 4. Overall approach for publishing service source descripting

As indicated in the figure, first we extract the service type information form
the WSDL files stored in the service provider’s local registry. Then we use this
information to generate service source description. Finally, the service source
description is published in the public service registry. These steps and their
results are presented in detail in the following subsections.

4.1 Service Types

One of the purposes of using service type information, in the proposed approach, is
to provide indication of what types of services are offered by a service provider. It
is generally the case that a service provider does not necessarily provide one type of

46 B. Sapkota and M. van Sinderen

service. This kind of information serves the purpose of guiding service requests to-
wards the potential service providers. This approach is expected to help in narrow-
ing down the search space and allowing applications to dealwith the ever increasing
number ofWeb services.We extract this information from service descriptions en-
coded in WSDL, which is a commonly used service description language.

In WSDL, types element specifies the data type of input output messages
in terms of XML Schema definition. The types element essentially models the
domain knowledge and is thus used for creating local domain ontology. We use
XML Schema to RDF Schema [19] mapping techniques presented in [20] and [21]
to generate local domain model. Using their mapping techniques, given an input
shown in Listing 2, we obtain the semantic domain model shown in Listing 3.

<wsdl:types>
<xsd:schema targetNamespace=”http://org.example.com/resources/AvailabilityService”>
<xsd:element name=”ServiceRequest”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name=”product” type=”xsd:string”/>
<xsd:element name=”date” type=”xsd:string”/>
<xsd:element name=”quantity” type=”xsd:float”/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name=”ServiceResponse” type=”response”/>
<xsd:simpleType name=”response”>
<xsd:restriction base=”xsd:boolean”/>

</xsd:simpleType>
</xsd:schema>

</wsdl:types>

Listing 2. WSDL Types definition

Representing the data type definitions in RDF has several advantages. RDF
provides an abstract model for describing resources with properties, scoping
them to a particular application domain through RDF Schema and defining
relationships between these resources. In addition, standard RDF query language
SPARQL [11] can be used to provide flexible means to allow users to express
their requests.

<rdfs:Class rdf:ID=”http://org.example.com/resources/AvailabilityService#ServiceRequest”/>
<rdfs:Class rdf:ID=”http://org.example.com/resources/AvailabilityService#ServiceResponse”/>

<rdf:Property rdf:about=”http://org.example.com/resources/AvailabilityService#response”>
<rdfs:domain rdf:resource=”http://org.example.com/resources/AvailabilityService#ServiceResponse”/>
<rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#boolean”/>

</rdf:Property>
<rdf:Property rdf:ID=”http://org.example.com/resources/AvailabilityService#product”>
<rdfs:domain rdf:resource=”http://org.example.com/resources/AvailabilityService#ServiceRequest”/>
<rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

</rdf:Property>
<rdf:Property rdf:ID=”http://org.example.com/resources/AvailabilityService#date”>
<rdfs:domain rdf:resource=”http://org.example.com/resources/AvailabilityService#ServiceRequest”/>
<rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#string”/>

</rdf:Property>
<rdf:Property rdf:ID=”http://org.example.com/resources/AvailabilityService#quantity”>
<rdfs:domain rdf:resource=”http://org.example.com/resources/AvailabilityService#ServiceRequest”/>
<rdfs:range rdf:resource=”http://www.w3.org/2001/XMLSchema#int”/>

</rdf:Property>

Listing 3. RDF representation of WSDL types

In Listing 3, the attribute data, for example, is represented as the property of
the class ServiceRequest whose value is of the type string.

Enabling Enterprise Collaboration 47

4.2 Service Source Description

A service source description models the service provider as a collection of ser-
vices and enumerates all the offered services. In particular, the service source
description specifies the types of services that are offered by a particular service
provider. These descriptions provide information sufficient enough to filter out
the completely irrelevant service providers. In WSDL, as shown in Listing 4,
the interface element specifies the operations that can be invoked from the ser-
vice. We use these information from a given WSDL document to specify the
functionality of a service in the service source description. We use the service
types information to describe domain specific concepts and to avoid ambiguities
between services from different application domains.

<wsdl:description
targetNamespace=”http://org.example.com/services/AvailabilityService/”
xmlns=”http://org.example.com/services/AvailabilityService/”
xmlns:wsdl=”http://www.w3.org/ns/wsdl”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>
.
.
<wsdl:interface name=”AvailabilityServiceInterface”>
<wsdl:operation name=”RequestOperation” pattern=”http://www.w3.org/ns/wsdl/in−out”>
<wsdl:input element=”ServiceRequest”/>
<wsdl:output element=”ServiceResponse”/>

</wsdl:operation>
</wsdl:interface>
.
.

</wsdl:description>

Listing 4. WSDL Interface definition

We define a service source description as <n, e, Q>, where n is the URL
of the service provider, e is the endpoint of the service provider through with
the detailed service description can be queried and Q is a collection of (<op(i,
o), l>) pairs, where i and o represents the input and output types associated
with the operation op whereas l represents the interface to which the operation
op is associated with. This combination of interface and operation allows one
to determine through which interface a particular operation of service is made
available and is sufficient to look for a corresponding WSDL file from the local
registry of the service provider. Listing 5 illustrates a service source description
containing a service definition shown in Listing 4.

@prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
@prefix ex: <http://www.example.org/ontology#> .
@prefix dc: <http://www.w3.org/2001/XMLSchema#> .
@prefix p: <http://org.example.com/ontology#> .

<http://org.example.com> rdf:type ex:ServiceProvider ;
ex:localRegistry <http://org.example.com/services/sparql> ;
ex:functionality [ex:operation p:RequestOperation> ;

ex:input p:ServiceRequest> ;
ex:output p:ServiceResponse> ;
ex:interface p:AvailabilityServiceInterface>].

Listing 5. Example service source description

We assume that the service provider allows to query its local registry during
the discovery process through a web service endpoint. This endpoint is linked in

48 B. Sapkota and M. van Sinderen

the service source description via localRegistry property. The number of instances
of functionalities provided by a service provider in its local registry is typically
far larger than the number of distinct interfaces. Inclusion of all instances in
the service source description is therefore likely to increase its size as close to as
the size of the local registry. In order to avoid such problems, the service source
description includes only the functionality types and not their instances. This
allows to select the relevant service provider based on this type information. For
example, if there are a large number of printing service providers and only few of
them are providing book printing services it is much more efficient to send a book
printing service requests only to those that provide the book printing services.
This type of service source description will be helpful in selecting the service
providers in situations where fine grained information is needed for answering
the service requests.

4.3 Finding Potential Services

In order to find the required service we follow two step discovery mechanism.
In the first step, the discovery request is sent to the service registry from which
a list of potential service providers are identified. In the second step, direct
communication with the potential service providers is established to find the
most appropriate service provider. The goal of the first step is to reduce the
search space whereas the second step is intended to select the right service at
the most appropriate service provider based on up-to-date information.

We assume that the service providers employ the mechanisms discussed above
for extracting the information needed for generating service source descriptions.
In order to find the potential services, the service requester initiates the lookup
over service source descriptions. The required functionalities are matched against
the functionalities offered by different service providers. The endpoints of the
service providers whose offer matching functionality is returned to the user. In
this step, only the functionality of the service is queried and hence it cannot
be expected that the service indeed matches the request. Therefore, detailed
information is required for finding the required service. The request is then issued
to these endpoints so that the detailed information can be obtained. The overall
approach for finding the potential services is illustrated in Figure 5.

When the detailed information is obtained, existing service discovery mech-
anism can be applied to find the potential services. When a list of potential
services are found, an appropriate service can be selected using the existing ser-
vice selection mechanism. In the figure, we showed that the local registry of only
one service provider is queried to find the detailed information. It was only for
the illustration purposes and there can be multiple service providers and it is
possible that the local registry of more than one service provider is queried.

Enabling Enterprise Collaboration 49

Public
Repository

User

Provider

Provider

WSDL

Request

1

List of Potential Providers

3

2

4

SSD

Fig. 5. Overall approach for service discovery

5 Enterprise Collaboration

Let us now return to our original goal of facilitating enterprise collaboration us-
ing SOA. We previously concluded that the SOA architectural triangle with its
‘publish-find-use’ paradigm is in principle very convenient to enterprises to uti-
lize distributed capabilities that may be under the control of different ownership
domains. The convenience stems from the loose coupling of services - support-
ing flexible composition - and the external-oriented representation of services -
allowing interactions between users and providers irrespective of their internal
implementation. However, we also concluded that the ‘publish-find’ part of the
triangle has practical limitations, which so far has prevented the successful up-
take of public-registry/open-discovery based enterprise collaboration. The main
limitations are: (a) it is hard to find and compose services based on current
service descriptions, since the descriptions lack unambiguous and precise seman-
tics; (b) it is expensive and laborious to maintain service descriptions, as the
corresponding services continuously evolve and therefore the descriptions require
frequent and manually managed updates; (c) trust is a hindrance for publishing
service descriptions and using services discovered with public registries.

We propose to leverage the publish-find-use paradigm by using public descrip-
tions that are automatically generated and semantically enhanced, as described
in Section 4. In the following, we first show which interactions are necessary
for enterprise collaboration using our approach, and subsequently discuss the
potential benefits of our approach.

Figure 6 illustrates the basic interactions:

1. A business organisation acting as a service provider can publish relevant
information on all its services using a single keyword-based description (ser-
vice source description) at a service broker that maintains a public registry.
If services offered by the business organization evolve, the service source

50 B. Sapkota and M. van Sinderen

Service User

Public
Service
Registry

Service
Provider

Local
Service
Registry

Mediator

Find

Find Provider

Publish Service Source Description

Store Service Description

Use

Find Service

Fig. 6. Proposed service discovery approach

description is re-generated or incrementally updated, depending on the na-
ture of the change. The updated service source description can be pushed to
the service broker, in similar to the original publication, where it is used to
replace the old service source description. Alternatively, the service broker
periodically asks the service provider for updates.

2. A business organisation looking for partners that can offer certain services
can contact the service broker and find service source descriptions based on
keyword matching. Although keyword matching can already be reasonable
efficient [22], we can further improve the recall and precision of service dis-
covery by exploiting the RDF-based semantics of service source descriptions.

3. If a service source description fulfills the search criteria, the service provider
is contacted via the endpoint that is part of the service source description.
Then the local registry of the service provider is used to find available ser-
vices. Both step (2) and step (3) may be performed via an intermediary,
making the two-step service discovery transparent to the requesting business
organization. For example, the service broker may take the intermediary role.
Possibly, the requested services are not available as single services or are not
available from a single service provider. In that case, the services have to
be offered as a bundle or must be composed. Again, an intermediary may
automate or support this process [23].

4. Once the (composed) services are found, the requesting business organi-
zation can start using them, effectively entering collaborations with one or
more partner business organizations that are involved in the offering of these
services.

Enabling Enterprise Collaboration 51

Comparing this with the enterprise collaboration through public UDDI registries,
we observe the following benefits:

– The service source description is based on extracting keywords from WSDL
type definitions, and represents these keywords and their relationships with
RDF. In this way, the semantic properties of keywords can be captured [21,20].
This addresses the limitation (a) mentioned above.

– Since the extraction is automatic, the burden for service providers to update
descriptions is dramatically lowered. Moreover, if the service broker is able
to poll for updates, the problem of ‘disappearing’ business organizations
and ‘ghost’ services can be tackled. If a business organization no longer
supports its previously published services, e.g. because it no longer exists, a
poll for updates by the service broker gets no reaction and the service broker
can decide to remove the service source description from its registry. This
addresses the limitation (b) mentioned above.

– The two-step service discovery approach has the advantage that it first de-
termines the services providers that offer potentially relevant services, and
then limits the search for services to those of the selected service providers.
Although we still have to confirm this with experiments, we believe that this
approach has a better scalability than one-level semantic search. Further-
more, by favoring services from the same or a few providers, it is more likely
that these services are defined and implemented in a consistent way, making
search and composition easier and more efficient [24].

– In order to address limitation (c) mentioned above, the local registry of a ser-
vice provider may be enhanced in two ways. First, the service provider may
monitor who wants to access the local registry, and expose information on its
services depending on some trust classification scheme (e.g., based on pre-
vious collaborations). Secondly, the service provider may provide additional
information through the local registry, which facilitates the (non-) selection
of services. For example, non-functional properties based on resource avail-
ability or historical data may be published, including information on trust,
security or privacy aspects.

– The implications for existing standards, most notably UDDI, is minimal.
Most of the interactions described above can be supported with UDDI as is.

6 Related Work

The problem of guaranteeing correctness of the published service descriptions
and reducing the effort required for providing such guarantees is starting to at-
tract attention from the research communities. In this section several approaches
are briefly presented and compared to our approach. The characteristics of in-
terest (and which are thus subject of comparison) are: effort to keep service
descriptions up to date, deal with state-dependent information, build on exist-
ing infrastructure (e.g., re-incorporate use of existing WSDLs, and not replace
them), complexity of finding services.

52 B. Sapkota and M. van Sinderen

The work presented in [13] is in may respects similar to our approach. The
focus of the work in that paper is to ensure that the published service descrip-
tion indeed represents the offered service. In order to support this, an estimation
step followed by a single execution step is proposed. In the estimation step, ad-
ditional information compared to the information that is available in the service
description is gathered from the service provider whereas in the execution step,
the actual invocation of the service is performed. The approach proposed by the
authors is similar to our approach except their focus is on semantic services and
do not support non-semantic services.

A preference-based selection of highly configurable web services is presented
in [25]. It focuses on defining algorithms required for finding optimal service con-
figurations while selecting the services. Unlike our approach, it neither considers
minimisation of the effort required to update the service registry when service
descriptions are changed nor maximising the correctness of the published service
descriptions. To address the problem due to changes in service descriptions, a
RSS-based mechanism to announce such changes is proposed in [12]. The RSS-
based approach is service provider dependent because the changing information
should come from the provider.

Treating services from an economical point of view, [26] defines what is re-
ferred to as the universal service description language. The proposed language
is defined to describe both the IT and non-IT services. Provisions for defining
dynamic information are however poorly defined in that language. The approach
presented in [27] defines a mechanism for identifying and reducing irrelevant in-
formation in service composition and execution. It targets increased efficiency
and correctness of the composition and execution. Consequently, it works only
after the services are discovered and does not eliminate the possibility of discov-
ering services with incorrect information, which is the focus of our approach.

In contrast to many other traditional approaches, [28] proposes a LinkedData
based approach for integrating data providing services. The approach in that pa-
per is suitable for sharing data which might change over time. In comparison to
our approach, it requires the service providers to describe the offered services us-
ing LinkedData principles and does not support sharing of already existing service
descriptions which are described using WSDL. We propose mechanisms to allow
usage of WSDL while still dealing with changing and state-dependent data.

A crawl based approach for collecting, annotating and classifying public Web
services has been proposed in [15]. It entails an attempt to increase the role of
service registry in service-oriented architecture by providing correct information.
Publicly available web service descriptions are crawled, annotation information
is gathered, Web services are annotated and classified based on this information.
Through such classification, the authors aim at supporting better discovery of
services. In this direction, the work presented in [22] aims at enabling rich discov-
ery of Web services by projecting weak semantics from structural specifications.
Similarly, a clustering scheme is proposed in [29] to facilitate discovery of service
described in WSDL. In comparison to our approach, the approaches presented

Enabling Enterprise Collaboration 53

in [22,29] are however unable to deal with the sensitive and state-dependent
information problem.

A combination of document classification and ontology alignment schemes is
proposed in [21] to semantically enrich Web services. Though this scheme helps
in efficiently discovering required services, it does not tackle the problem of out-
dated service descriptions. The work presented in [23] specifies mechanisms for
runtime discovery, selection and composition of semantic services. The proposed
approach supports semantic descriptions of the services but lacks support for
dealing with outdated service descriptions. An approach presented in [30] uses
SPARQL query pattern to describe user goals and service descriptions with an
aim to improve service discovery result. It describes service functionality in terms
of pre- and post-conditions. The pre- and post-condition is important for finding
services only if the service descriptions are static.

We summarise the mentioned approaches with respect to the characteristics
stated above in Table 1.

Table 1. Related Works

update effort state-dependent info. Use of WSDL discovery complexity

[13] - Yes No Low
[25] No No Yes High
[12] Medium No Yes Medium
[26] High No No High
[27] High No Yes -
[28] - Yes No Medium
[15] High No Yes Medium
[22] Low No Yes Medium
[29] Medium No Yes High
[21] High No No Medium
[23] - No No Medium
[30] - No No Medium

7 Conclusions

Our research demonstrates how service source descriptions allows us to reduce
maintainability cost at the service providers’ side while still providing the rele-
vant information required for service discovery. This type of approach has the
ability to guarantee better service results due to the separation of abstract de-
scriptions and detailed descriptions. Current approaches either do not provide
adequate support for publishing accurate information of the offered services or
the offered solutions are too restrictive in terms of cost and time required for
maintaining the published descriptions. This is mainly because the service de-
scriptions are valid only at the time they are created and subject to frequent
change caused by in market developments. In the proposed work, we generate

54 B. Sapkota and M. van Sinderen

service type information from the given WSDL information. The service type
information is currently treated separately per services. It is possible that some of
the concepts used in the service type information is used across multiple services.
It would therefore be appropriate to merge these items of type information. We
aim at looking at this direction in our future research.

Acknowledgments. This material is based upon works jointly supported by
the IOP GenCom U-Care project (http://ucare.ewi.utwente.nl) sponsored by
the Dutch Ministry of Economic Affairs under contract IGC0816 and by the
DySCoTec project sponsored by the Centre for Telematics and Information Tech-
nology (CTIT), University of Twente, The Netherlands.

References

1. Erl, T.: Service-Oriented Architecture Concepts, Technology, and Design. Prentice
Hall Professional Technical Reference (2005)

2. van Sinderen, M., Almeida, J.P.A.: Empowering Enterprises through Next-
Generation Enterprise Computing. Enterprise Information Systems 5(1), 1–8
(2011)

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services. Springer, Heidelberg
(2004)

4. van Sinderen, M.: From Service-Oriented Architecture to Service-Oriented Enter-
prise. In: Proc. of the Third International Workshop on Enterprise Systems, pp.
3–16 (2009)

5. Roman, D., Lausen, H., Keller, U. (eds.): Web Service Modeling Ontology
(WSMO). WSMO Working Group (October 2006)

6. Martin, D. (ed.): OWL-S: Semantic Markup for Web Services. W3C Member Sub-
mission (November 2004)

7. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema (August
2007)

8. Heath, T., Bizer, C.: Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web: Theory and Technology. Morgan & Clay-
pool (2011)

9. Chinnici, R., Moreau, J.J., Ryman, A., Weerawarana, S.: Web Services Description
Language (WSDL) Version 2.0 (June 2007)

10. Klyne, G., Carroll, J.J. (eds.): Resource Description Framework: Concepts and
Abstract Syntax. W3C Recommendation (February 2004)

11. Prud’hommeaux, E., Seaborne, A. (eds.): SPARQLQuery Language for RDF.W3C
Candidate Recommendation (June 2007)

12. Treiber, M., Dustdar, S.: Active Web Service Registries. IEEE Internet Comput-
ing 11(5), 66–71 (2007)

13. Küster, U., König-Ries, B.: Supporting Dynamics in Service Descriptions - The
Key to Automatic Service Usage. In: Krämer, B.J., Lin, K.-J., Narasimhan, P.
(eds.) ICSOC 2007. LNCS, vol. 4749, pp. 220–232. Springer, Heidelberg (2007)

14. Michlmayr, A., Rosenberg, F., Platzer, C., Treiber, M., Dustdar, S.: Towards Re-
covering the Broken SOA Triangle: A Software Engineering Perspective. In: Proc.
of the 2nd International Workshop on Service Oriented Software Engineering, pp.
22–28 (2007)

Enabling Enterprise Collaboration 55

15. AbuJarour, M., Naumann, F., Craculeac, M.: Collecting, Annotating, and Classi-
fying Public Web Services. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM
2010. LNCS, vol. 6426, pp. 256–272. Springer, Heidelberg (2010)

16. Sabou, M., Pan, J.: Towards semantically enhanced Web service repositories. Web
Semantics: Science, Services and Agents on the World Wide Web 5(2), 142–150
(2007)

17. Al-Masri, E., Mahmoud, Q.H.: Investigating Web Services on the World Wide Web.
In: Proc. of the World Wide Web Conference, pp. 759–804 (2008)

18. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: Proc. of the 30th VLDB Conference, pp. 372–383 (2004)

19. Hayes, P. (ed.): RDF Semantics. W3C Recommendation (February 2004)
20. Thuy, P.T.T., Lee, Y.K., Lee, S., Jeong, B.S.: Exploiting XML Schema for In-

terpreting XML Documents as RDF. In: Proc. of the 2008 IEEE International
Conference on Services Computing, pp. 555–558 (2008)

21. Crasso, M., Zunino, A., Campo, M.: Combining Document Classification and On-
tology Alignment for Semantically Enriching Web Services. New Generation Com-
puting 28, 371–403 (2010)

22. Obrst, L., McCandless, D., Bankston, M.: Enabling Rich Discovery of Web Services
by Projecting Weak Semantics from Structural Specifications. In: Proc. of Semantic
Technology for Intelligence, Defense, and Security (2010)

23. da Silva, E.G., Pires, L.F., van Sinderen, M.: Towards runtime discovery, selection
and composition of semantic services. Computer Communications 34(2), 159–168
(2011)

24. Forestiero, A., Mastroianni, C., Papuzzo, G., Spezzano, G.: A Proximity-Based
Self-Organizing Framework for Service Composition and Discovery. In: Proc. of the
10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing,
pp. 428–437 (2010)

25. Lamparter, S., Ankolekar, A., Grimm, S.: Preference-based Selection of Highly
Configurable Web Services. In: Proc. of the 16th International Conference on World
Wide Web, pp. 1013–1022 (2007)

26. Cardoso, J., Winkler, M., Voigt, K.: A Service Description Language for the In-
ternet of Services. In: Proc. of the International Symposium on Services Science
(2009)

27. Truong, H.-L., Comerio, M., Maurino, A., Dustdar, S., De Paoli, F., Panziera,
L.: On Identifying and Reducing Irrelevant Information in Service Composition
and Execution. In: Chen, L., Triantafillou, P., Suel, T. (eds.) WISE 2010. LNCS,
vol. 6488, pp. 52–66. Springer, Heidelberg (2010)

28. Speiser, S., Harth, A.: Integrating Linked Data and Services with Linked Data
Services. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D.,
De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 170–184.
Springer, Heidelberg (2011)

29. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering WSDL Documents to Bootstrap
the Discovery of Web Services. In: Proc. of the 2010 IEEE International Conference
on Web Services, pp. 147–154 (2010)

30. Iqbal, K., Sbodio, M.L., Peristeras, V., Giuliani, G.: Semantic Service Discovery
using SAWSDL and SPARQL. In: Proc. of the Fourth International Conference on
Semantics, Knowledge and Grid, pp. 205–212 (2008)

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 56–69, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Revisiting Goal-Oriented Requirements Engineering
with a Regulation View

Gil Regev1,2 and Alain Wegmann1

1 Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland

{Gil.Regev,Alain.Wegmann}@epfl.ch
2 Itecor, Av. Paul Cérésole 24, cp 568, CH-1800 Vevey 1, Switzerland

g.regev@itecor.com

Abstract. Goal-Oriented Requirements Engineering (GORE) is considered to
be one of the main achievements that the Requirements Engineering field has
produced since its inception. Several GORE methods were designed in the last
twenty years in both research and industry. In analyzing individual and
organizational behavior, goals appear as a natural element. There are other
organizational models that may better explain human behavior, albeit at the
expense of more complex models. We present one such alternative model that
explains individual and organizational survival through continuous regulation.
We give our point of view of the changes needed in GORE methods in order to
support this alternative view through the use of maintenance goals and beliefs.
We illustrate our discussion with the real example of a family practitioner
association that needed a new information system.

Keywords: Goals, Requirements, Regulation, Survival, Appreciative System,
Norms, Beliefs.

1 Introduction

Since the advent of requirements engineering (RE) research as an academic
discipline, its flagship methods have been Goal-Oriented Requirements Engineering
(GORE). GORE methods have been lauded as one of the main achievements of the
RE community [31, 19]. GORE is still a very active field of research with dedicated
workshops and conference tracks (e.g. the i* International workshop series,
International Workshop on Requirements, Intentions and Goals in Conceptual
Modeling). Some prominent GORE methods were also developed by RE
practitioners, e.g. Goal-Oriented Use Cases [7] and Essential Use Cases [8].

The emergence of GORE methods coincides with a less software centric view of
requirements. RE evolved out of software specification methods by capturing more
and more of the environment of the envisioned software system [21], i.e. the
composite system [31]. GORE methods are based on the understanding that goals
justify and explain requirements that are assigned to agents in the composite system
(software system and its environment), and that they help detect and resolve conflicts

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 57

among different stakeholder viewpoints [9]. In GORE methods and subsequently in
RE, it is assumed that the behavior of the stakeholders in the environment of the
software system is predominantly goal-oriented, see for example [16, 21]. Very few
RE researchers have challenged this assumption and there is little debate concerning
the epistemological roots of GORE methods.

We take Gause and Weinberg’s view that RE is about discovering what is desired
[12]. In this paper, we show that what people desire has more to do with the way they
regulate their affairs than with the goals they pursue. We base our proposal mostly on
Vickers’ concept of Appreciative System [26, 32, 33]. Vickers believed that goal
achievement was not the ultimate explanation for individual and organizational
behavior. He argued that [33]:

to explain a doing solely by reference to its intended results would
seem to raise insoluble pseudo-conflicts between ends and means,
rules and purposes, while it leaves the ongoing activities of norm-
holding with their inherent, ongoing satisfactions hanging in the air as
a psychological anomaly called action done for its own sake.

We show that goals are only the visible part of the way individuals and organizations
regulate their norms in order to survive.

GORE methods have most of the necessary constructs to model this behavior, e.g.
maintenance goals and beliefs. We advocate a more systematic and widespread use of
these concepts for better understanding regulation and for improving GORE methods.

For Nuseibeh and Easterbrook there is a type of RE for each end product [21].
They give the following examples: RE for information systems, RE for embedded
control systems and RE for generic services e.g. networking and operating systems. In
this classification our discussion applies mostly to RE for information systems. In this
type of RE, the composite system is the organization that the envisioned computer-
based system serves. Nuseibeh and Easterbrook further state that the context of most
RE and software activities is in this field of information systems development. Hence
our discussion is applicable to many RE projects.

We explain our proposal with the data we gathered during a recent project we were
involved in. The project began with the goal of replacing a spreadsheet (for tracking
interns specializing as family doctors) with an on-line application, but it turned out to
be about the maintenance of the community of family doctors.

We begin by presenting the family doctor project (Section 2). We proceed by
reviewing the relevant GORE research (Section 3). We then introduce the regulation
organizational model and show that it can be used as the underlying mechanism, of
which goal-oriented behavior is but the visible part (Section 4). We propose
improvements to GORE methods based on the regulation-oriented view (Section 5).
We review the related work in Section 6.

2 The Family Practitioner Example

The project we were involved in was initiated when we were approached by a Family
Practitioner (FP) we call Mark. Mark is the president of an association of family

58 G. Regev and A. Wegmann

practitioners that we will call the FPA (for Family Practitioner Association). All
discussions of the FPA in this paper represent our own partial understanding of this case.

To earn a license to practice, freshly graduated medical doctors need to do six
years of internships in domains related to their specialty. For the specialty of family
practitioner, however, there is no specifically related internship. For example, a
surgery intern might do 3 internships in surgery and 3 in other domains. An FP intern
may do internships in 6 different domains. Selecting the right set of internships for FP
interns is difficult. FPA members advise FP interns on the internships that will qualify
them for a license in family practice.

The FPA has a list of interns who are interested in becoming FPs. To record
information about these FP interns and available internships, the FPA uses a non-
centralized, paper-based system.

The FPA secretary records on a spreadsheet the available internships and tracks the
internships of each intern. The secretary connects the FP interns with FPA members
who act as advisors. The advisors meet with the interns and explain which internships
should be completed in order to qualify as an FP. The interns walk away from these
meetings with a hand-written paper containing their personalized internship plan.
During their internship period, the interns will meet with several advisors in different
regions.

Mark explained that the previous president systematically compiled internship
positions and reserved certain positions for FP interns. This represented a lot of work
for his secretary and did not guarantee internships to all FP interns. Because of these
difficulties, Mark decided to stop providing this service and focus on the advice given
to FP interns concerning their internships. His goal is to improve the consistency of
the recommendations given to the interns by the various advisors they meet during
their internship period. He is therefore interested in a web-based system that FPA
members and FP interns can use concurrently.

3 An Overview of GORE Methods

GORE methods use the concept of goal as the main construct for defining
requirements. The use of the concept of goal in RE has emerged from research in
software engineering where requirements began to supplant specifications as a way to
describe the envisioned system. Researchers needed to analyze the environment of the
envisioned system, because the system by itself could not guarantee the results
expected by its stakeholders. The first papers linking goals and requirements date
back to the beginning of the RE discipline, e.g. [9, 11, 27]. The seminal GORE paper
was written by Dardenne et al. [10]. It introduced vocabulary inherited from Artificial
Intelligence [20], e.g., goals, agents, roles, objectives, constraints, obstacles, and
and/or graphs. Goals have been found to enable requirements engineers to: provide a
higher-level and more stable view than requirements that implement them; to generate
alternative solutions and select among them; and to analyze the requirements
completeness and traceability [24].

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 59

Many GORE methods have been defined over the years. The most prominent are:
KAOS, GBRAM [1], i* [37], GRL [13], TROPOS [18], ESPRIT CREWS [28], MAP
[29] and Goal-oriented Use Cases [7]. Numerous goal types have been defined in
these methods. The following is a partial list of goal types: achievement, maintenance,
softgoal, feedback and satisfaction goals.

Goals very quickly became a central concept in RE. Zave and Jackson, for
example, describe RE as, “Requirements Engineering is about the satisfaction of
goals” [38]. Zave [39] defines RE as “the branch of software engineering concerned
with the real-world goals for functions of and constraints on software systems.” The
call for papers of the Requirements Engineering conference series also strongly links
requirements and goals, e.g. Requirements Engineering Conference 2004 [22]:

Requirements Engineering (RE) is the branch of systems engineering
concerned with the goals, desired properties and constraints of
complex systems, ranging from embedded software systems and
software-based products to large enterprise and socio-technical
systems that involve software systems, organizations and people.

3.1 The Assumptions behind GORE

The focus on goals is understandable because it relates with the goal-seeking
organizational model prevalent in the neighboring discipline of Information System
[5]. Many GORE methods take for granted this goal-seeking model. Enterprise
Modeling, for example, is said to include the goals of its agents [16] or members [21].

The base assumption underlying most GORE methods is that high-level enterprise
goals can be gradually refined into requirements that can be assigned to the
envisioned system [10, 31]. This refinement is most often done with the help of
and/or goal graphs inherited from [20].

Although many types of goals have been defined in GORE methods, the most
popular goal type is the achievement goals; a goal that is to be achieved once and for
all. The next most popular goal type is the softgoal. Both KAOS and GBRAM
introduced the concept of maintenance goal, a goal that “is satisfied as long as its
target condition remains true” (Anton and Potts, 1998). Maintenance goals have not
received much attention and remain largely unused. This is particularly unfortunate
because maintenance goals have been identified as “high-level goals with which
achievement goals should comply” [2]. However, no explanation has been given to
this high-level status of maintenance goals or to their relation with achievement goals.

3.2 The Lack of Theoretical Grounding

Several RE researchers have reported problems with the application of GORE
methods, Goal discovery and goal refinement do not seem to be straightforward tasks.
In particular, [1, 28, 38] note that “goals by themselves do not make a good starting
point for requirements engineering.” and that “Almost every goal is a subgoal with
some higher purpose.” They show that goal abstraction may lead to unrealistic or
unwanted alternatives.

60 G. Regev and A. Wegmann

The proposed remedies are to bound goal abstraction and refinement with the
subject matter of the organization [38], to use interview transcripts and organizational
documents for goal discovery [1] and to use scenario and goal reasoning together so
that they inform one another [28].

We believe that the problems identified by RE researchers are a sign of a deeper
issue, necessitating a broader view of GORE and its relationships to individual and
organizational behavior In their suggested roadmap for RE, Nuseibeh and Easterbrook
[21] provide a very broad perspective on RE research. They explain that “RE is a
multi-disciplinary, human-centered process”; that it uses cognitive and social sciences
as theoretical grounding; and that [21]:

RE must concern itself with an understanding of beliefs of
stakeholders (epistemology), the question of what is observable in the
world (phenomenology), and the question of what can be agreed on as
objectively true (ontology).

There has been very little theoretical grounding of GORE, and the three concerns
identified by Nuseibeh and Easterbrook are missing in most GORE research.
Questions such as the following receive little attention in this stream of research: what
is the nature of goal-oriented behavior. Are goals the ultimate explanation of human
and organizational behavior (as often assumed in RE)? Is there an explanation to the
source of goals themselves (apart from scenarios, interviews and transcripts)? What is
the relationship between goals, beliefs, observations and agreements?

3.3 Goal Refinement and Abstraction

Most GORE methods place goals in some hierarchy. Goal refinement is used to
identify lower-level goals by asking how a given goal is achieved. Goal abstraction is
used to identify higher-level goals by asking why a given goal needs to be achieved.

Although both why and how questions are encouraged by GORE methods, the how
is much more prevalent in GORE publications. Most often, a so-called high-level goal
is postulated to be strategic for the organization under analysis and is refined into
subgoals. For example, van Lamsweerde gives the following examples for “high-
level, strategic concern”: “serve more passengers” for a train transportation system”
and “provide ubiquitous cash service for an ATM network system.” [31]. It is not
clear why these should be considered as high-level, strategic goals and how they can
be satisfied. If the train transportation system serves a few more passengers, is this
goal achieved? How many passengers are considered to be enough? Is there a limit to
the number of passengers? Should the transportation system be designed to serve an
infinite number of passengers? What will the system do next once this goal is
achieved? What if this goal is never achieved? What would the ATM network system
do once the ubiquitous cash service is provided? What are the criteria of achievement
for a ubiquitous cash service? Similarly, i* highest-level diagram is called a “strategic
dependency model” but nowhere is it explained what makes the goals expressed in
this diagram strategic.

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 61

Applying the same pattern to the FPA example, we would begin with the goal of
maintaining advice consistency. We would then refine this goal into achievement
subgoals: all advisors to an FP intern use FP intern record and Each FP intern uses
own FP intern record. These goals in turn will be supported by system level goals
such as, FP intern record available to FP intern advisors and FP intern record
available to FP intern. Goal abstraction is even more difficult. To paraphrase Zave
and Jackson [38]: what is the goal of maintaining the advice consistency? Is it to keep
the FP interns comfortable? Is it to improve family practice? Shouldn’t the goal of the
FPA be to improve medical practice in general? To satisfy this latter goal, should the
FPA consider to become the medical practice association (MPA)?

As can be seen in this example, no rationale is given to the goal refinement and
abstraction. Why would the use of the same record guarantee the consistency of the
advice? Should the FPA change to the MPA? In agent programming, this rationale is
often provided with the use of beliefs. In KAOS, GBRAM, ESPRIT CREWS and
MAP, goals are not embodied in an agent and they do not have a concept
corresponding to a belief. In i* goals are embodied within agents and the concept of
belief is defined, but is very seldom used.

4 Survival and Regulation as the Source of Goals

In this section we describe an epistemological view that explains the source of goals
as emerging from the regulation mechanisms that are at the base of the survival of an
organization in a changing environment. We present Vickers’ appreciative system as
a possible base for thinking about GORE methods.

4.1 Survival as the Maintenance of Norms

As we have seen, GORE methods seek to define the highest-level goals that are
adequate for defining requirements for an envisioned system. Despite their important
advancement, this is one aspect that the mainstream GORE methods (e.g. i*, KAOS)
have not defined yet. So-called high-level goals are often described as strategic goals
in GORE papers. It is therefore important to understand what a strategic goal is. In the
most general case, the highest-level goal that can be ascribed to an organization is to
survive. We then have to define what we mean by survival. We have shown
elsewhere, e.g. [24, 25], that survival can be understood in terms of the maintenance
of an identity for a given observer. Maintaining this identity requires the maintenance
of stable states within the boundaries defined by the observer [24]. These stable states
are often called norms. Observers use the norms maintained by an organization to
identify it as a separate entity from other organizations. Survival is therefore not an
absolute measurement. It depends as much on the observer as on the observed. This
means that some observers will select some norms as defining the organization and
others will select other norms.

It is crucial that norms remain stable for an observer to recognize the organization
over time. If a given feature of the organization changes its state beyond some
threshold, the observer will not be able to identify it as the same feature as before the

62 G. Regev and A. Wegmann

change and will therefore fail to recognize the feature and the organization. When two
organizations merge, their norms become indistinguishable for observers.

The FPA, for example, has norms that separate it from other similar associations,
such as, a unique name, mission, statutes, a logo and offices. It also has members, a
president and a secretary. The individuals who fill these positions change over time,
but relatively slowly. The FPA remains more or less the same (most of its norms
remain the same) even when some individuals leave the association and some others
join it.

4.2 Regulation as a Source of Goals

In a changing environment, organizational norms remain stable due to incessant effort
to counter change [35, 36]. This is often called regulation. Regulation is therefore a
powerful source of action designed to bring a state closer to the norm. Norms also
place constraints on possible actions by defining what is permissible and what is not.

The FPA attempts to maintain some norms that it deems important for the survival
of the family practitioner practice, e.g. the number of family practitioners in its
region, their level of expertise, their sense of community, their recognition among
other MDs, among politicians and the general population. To maintain these norms,
the FPA may take many actions, such as: presenting the FP practice to students;
promote FP courses in the curriculum; provide advice to FP interns; Create FP
communities in different regions.

4.3 Organizations as Open Systems

An organization needs energy in order to track the stability of norms, to spawn
regulative actions when needed and to change norms when needed. In a closed
system, energy is finite. When it is spent, the organization will lose its ability to
maintain its norms and will disintegrate. The organization needs to have relationships
with individuals and organizations in its environment in order to exchange energy
with them and therefore have the means to maintain its norms. This is a consequence
of the open system model of organizations [24]. These relationships must themselves
be maintained within very specific threshold associated with a norm for the
organization to be able to leverage them for maintaining its norms.

The FPA needs a continuous flow of FP interns either to replace retiring FPA
members or to increase the number of FPs. The FPA also needs a steady stream of FP
interns that it must convert into FPA members. FP interns must fit very stringent
quality levels, which means that they need to be within the threshold range of the
family practitioner norm. Internships must fit the tolerance range for qualifying
interns for their FP license.

To promote the FP practice, the FPA has to be representative of this practice. This
means that it has to insure that its members represent the majority of the FPs. The
FPA needs as many members as possible, however, the members must be FPs or else
the FPA will lose its FP identity.

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 63

4.4 Changing Norms to Fit the Environment

The environment around the organizations continually changes and this induces
changes to the organization’s norms. Hence, to maintain its norms relatively stable
does not mean that the norms do not change at all. Organizations that survive over the
long-run make changes to their norms to fit the environment, but in a very controlled
way. This means that changes must be maintained within the boundaries defined by
its stakeholders in order for the organization to maintain its identity for these
stakeholders.

The FPA remains the association for family practitioners. It does not become the
association for surgeons or other specialty. However, it does change some of its
norms over time. The new president is not interested in some of his predecessor’s
ways of operating, e.g., tracking and reserving internships, but is more concerned with
the consistency of the advice given to FP interns.

4.5 Vickers’ Appreciative System and Goal Concepts

A feedback regulator, for example, a thermostat or an automatic pilot, maintains a
given state stable, the temperature or the course, by sensing the current state
comparing it with the given state, and applying some action if the difference is above
the tolerance level. Vickers [32, 33] proposes the concept of the appreciative system,
by extending this model of a feedback regulation to human and organizational
regulation. Vickers’s appreciative system has three components [6, 26, 32, 33]: reality
judgments, value judgments and action judgments. With reality judgments, some
aspect of reality is singled out to be the study of attention. In value judgments, this
reality judgment is matched to a category within which it is then compared to the
norm (what ought to be). In Action judgment, some action might be taken to bring the
reality judgment closer to the norm. The three judgments function as a complete
system so that change to one of them requires change to the others. Hence, the way
we view and judge the world affects our actions and our actions affect our view and
judgments [32, 33].

Action judgments are exercised when the reality judgment is considered to be
outside the threshold associated with a relevant norm within the category in which the
reality judgment was placed. This comparison brings about a host of debates about the
course of action taken by the organization. For example, is the FPA promoting the FP
practice enough, too much or too little? How important is the consistency of the
advice? Should the FPA track the available internships? Is it useful to have a central
registry of FP interns?

In a simple automaton the information to be sensed, the norm, the threshold to
compare with and the kind of actions to be taken are all given by its designer. In an
appreciative system, they are all subject to continuous change; nothing is set once and
for all by a designer. Hence, an appreciative system creates its own dynamics, which
an automaton does not.

Even though the appreciative system creates its own judgments, it is nevertheless a
rather stable construct, i.e. it creates its own norms. Vickers calls these norms
readiness. An individual or an organization has a readiness (a tendency) to see things

64 G. Regev and A. Wegmann

in certain ways, to value them in certain ways and to act in certain ways. All these are
rather stable in time. It is often the role of the analyst to try and shake-up these
readinesses.

Vickers [33] insists on the fact that when a current state of affairs is outside of the
tolerance level, no (externally visible) action is necessarily taken. It may very well be
that either the reality judgments, the value judgments or both may change. Changing
these judgments leads to the acceptance of the state of affairs rather than an attempt to
change it. Likewise, action judgments can also change when the organization changes
its behavior when dealing with similar situations. These changes to the appreciative
system result in an adaptation of the organization to its environment. Changes to
action judgments are much more visible because they result in changes to visible
behavior. Changes to reality and value judgments are often much less visible,

This adaptation is visible in the FPA example. Recall that Mark revised his view of
the FP intern problem during the project. He gave much less importance to the advice
consistency problem and much more importance to the maintenance of a sense of
community between FP interns and FPA members. In the appreciative system model,
this means that he changed his value judgments. The reality judgment saying that the
advices were inconsistent didn’t change, but this inconsistency is now given much
less value. However, maintaining the community is given much more value.

5 Improving GORE Methods

Based on the regulation view we have proposed in the previous section, we propose a
number of improvements to GORE methods.

5.1 Maintenance Is Higher-Level Than Achievement

As we have shown, the concept of maintenance goal is an approximation of the
concept of norms, and norms relate directly to the survival of the organization for
different stakeholders. Achievement goals model actions that are taken most often to
maintain a related norm (modeled by a maintenance goal). This clarifies the status of
maintenance goals as being higher-level than related achievement goals.

Mark’s description of the system he was looking for made us focus on the
following maintenance goal: Maintain the consistency of the advice given to FP
interns. The lower level achievement goals can be: All advisors to an FP intern use
FP intern record and Each FP intern uses own FP intern record.

5.2 Maintenance Goals and Tolerance Levels

The threshold associated with a norm defines the tolerance level of stakeholders.
What they define as a problem or what they can live with. Maintenance goals are an
approximation of norms because they lack the concept of tolerance levels. When does
it become clear that a certain state does not satisfy the related maintenance goal?
Maintenance goals should be augmented with tolerance levels so that they are better
suited for modeling norms.

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 65

In the FPA example, this means that we need to augment the maintenance goal of
maintaining the advice consistency with tolerances about the consistency. When are
two advices considered to be inconsistent? How would different advisors consider the
consistency of their advices?

5.3 High-Level Goals and Alternatives

Understanding that high-level goals model norms can help requirements engineering
to seek the norms that different stakeholders consider as identifying the organization.
This can lead to a more widespread use of maintenance goals, as the highest-level
goals that model an organization survival are therefore necessary.

Identifying the norms that are considered essential for survival helps us solve the
unacceptable goal alternatives identified by Zave and Jackson [38]. Identifying these
strategic norms places the appropriate bounds on what alternatives are acceptable and
not acceptable.

For the FPA, instead of simply taking the expressed goals of maintaining the
consistency among advisors, it is interesting to understand what norms are essential
for the survival of the FPA for different stakeholders. As we have seen, for Mark, the
most important norm is the maintenance of a community of FPs. A higher-level goal
to maintaining the advice consistency is therefore to maintain a sense of community
between FP interns and their advisors. This goal can be refined into the maintenance
goal of maintaining regular dinners between FP interns and advisors. This goal
refinement is connected by beliefs as described below.

5.4 The Appreciative System and GORE Concepts

Linking the appreciative system and GORE aspects, we suggest to refine the
framework we proposed in [24] by considering maintenance goals as a reflection of
norms, beliefs can be as a reflection of reality and value judgments, and achievement
goals as a reflection of action judgments.

From this point of view, GORE methods have mainly concentrated on the third
stage, action judgments (achievement goals), and neglected the other two, norms
(maintenance goals), and reality and value judgments (beliefs). This is easily
understandable, if we consider that action judgments are much more visible than
reality and value judgments.

Considering beliefs as reflecting reality and value judgments, means that beliefs
should become a major concept in GORE methods. Because the three judgments of
Vickers’ appreciative system are interlocked, goals cannot be changed without
changing the beliefs that justify them. This means as much as possible, stakeholders
goals must be justified by corresponding beliefs. Alternative goal refinements (i.e.,
the or part of the and/or graph) must be justified by different sets of beliefs. Goal
abstraction, likewise, leads to beliefs rather than directly to higher-level goals.

For the FPA, asking Mark why he wants a centralized system elicited the answer
that FP interns were receiving inconsistent advice from the advisors they met. Mark
believed that this inconsistency might distance FP interns from the FP practice and

66 G. Regev and A. Wegmann

from the FPA. A relevant higher-level goal is to keep the FP interns within the FPA
community. A subgoal is to maintain a sense of community between FP interns and
their advisors. The underlying belief is that a sense of community keeps people
together). Mark has now the subgoal of putting in place community building
mechanisms, such as regular dinners bringing together FP interns and their advisors.
The underlying belief is that these regular dinners will strengthen the sense of
community between the FP interns and their advisors and will therefore reduce the
risk of FP interns leaving the FP practice because of the inconsistency of the advice
they receive.

The following example shows other goals that were influenced by beliefs during
this project. To stop tracking internship information, Mark and his secretary must
believe that it is not necessary anymore. An interview with the secretary showed that
she believed that tracking available internships was still necessary, even though Mark
believed that it was not.

6 Related Work

Several conceptual studies of GORE methods have been published over the years, e.g.
[14, 15]. These studies assume a viewpoint from within the RE research paradigm. They
do not ground their research in an external body of knowledge, which limits their
explanatory power of goals. In recent years, i* has become the main GORE method.
Much research has applied i* in different contexts. Recently, a well received study of
the i* graphical notation was published [17], noting that major improvements are
needed in order to make i* user friendly. The study, however, was limited to the
graphical level and did not investigate the epistemological or ontological aspects of i*.

Our work is similar in nature to Checkland and Holwell’s conceptual cleansing [5]
of the field of information systems. Checkland [4] has worked extensively to
popularize Vickers’s work with Soft System Methodology (SSM). Ours is a very
short description of Vickers’s appreciative system. More elaborate descriptions are
available in Vickers’s writings [32, 33], and in [4, 6, 26]. We proposed an explanation
of goals based on General Systems Thinking and Vickers’s work in [24].

Sutcliffe and Maiden [30] proposed a notable kind of goal in a paper that seems to
have received little attention by GORE researchers. They proposed 6 classes of goals.
One of the classes is called “feedback goals.” They describe these goals as
maintaining a desired state with a related tolerance range, spawning corrective actions
when the state is considered to be outside the tolerance range [30]. This class of goals
seems to have gone unnoticed by subsequent GORE research. We have ourselves
added feedback into GORE research about 10 years later [23, 24] without noticing the
significance of Sutcliffe and Maiden’s feedback goal class at the time.

7 Conclusions

RE is about understanding peoples’ desires and maybe designing some automated
system to help them to obtain or maintain them. RE must therefore find the balance

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 67

between what is desired and what is feasible. To understand what is desired, it is
necessary above all to understand individual and organizational behavior. GORE
methods have made major contributions to the practice of RE but have modeled this
behavior in too simplified terms, mostly as goals to be achieved. In this paper, we
have shown that goals can be seen as the visible part of regulation. Regulation models
the way individuals and organizations attempt to survive in a changing environment.

Regulation results in the establishment of norms, stable states that define the
identity and therefore the survival for a given observer. A long lasting organization
manages its internal and external relationships in a way that controls the changes to
these norms but still allows them to change when needed. Looking at regulation rather
than goals shifts the attention to the way people manage stability and change by
managing relationships.

GORE methods already have useful concepts needed for the study of regulation,
e.g. maintenance goals, and beliefs. These concepts need to be used much more than
they have been until now and they need to be extended with more regulation concepts.
We have shown some of these concepts, e.g., the threshold that defines the tolerance
of deviations from a norm, reality judgments and value judgments. Obviously, much
more research can be done on modeling reality and value judgments as beliefs. Many
regulation concepts are described in [35 and 36]. It will be useful to add them to
GORE methods.

In this paper we limited our epistemological discussion to Vickers’ appreciative
system. There are many other conceptual frameworks that can be used, for example,
Weick [34] and the Viable System Model (VSM) [3].

References

1. Anton, A.I.: Goal-based requirements analysis. In: Proc. ICRE 1996 Second International
Conference on Requirements Engineering. IEEE (1996)

2. Anton, A.I., Potts, C.: The use of goals to surface requirements for evolving systems. In:
International Conference on Software Engineering, ICSE 1998. IEEE (1998)

3. Beer, S.: The viable system model: its provenance, development, methodology and
pathology. Journal of the Operational Research Society 35(1), 7–25 (1984)

4. Checkland, P.: Soft System Methodology: a 30-year retrospective. Wiley, Chichester
(1999)

5. Checkland, P., Holwell, S.: Information, systems and information systems - making sense
of the field. Wiley, Chichester (1998)

6. Checkland, P.: Webs of significance: the work of Geoffrey Vickers. Systems Research and
Behavioral Science 22(4) (2005)

7. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2001)
8. Constantine, L.: Essential modeling: Use cases for user interfaces. ACM Interactions 2(2),

34–46 (1995)
9. Dardenne, A., Fickas, S., van Lamsweerde, A.: Goal-directed concept acquisition in

requirements elicitation. In: Sixth International Workshop on Software Specification and
Design, IWSSD 1991. ACM (1991)

10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal Directed Requirements Acquisition.
Science of Computer Programming 20(1-2), 3–50 (1993)

68 G. Regev and A. Wegmann

11. Dubois, E.: A Logic of Action for Supporting Goal-oriented Elaborations of Requirements.
In: Fifth International Workshop on Software Specification and Design, IWSSD 1989.
ACM (1989)

12. Gause, D.C., Weinberg, G.M.: Exploring Requirements: Quality BEFORE Design. Dorset
House, N.Y. (1989)

13. ITU-T, Telecommunication Standardization Sector of ITU: User requirements notation
(URN) – Language definition (Z.151) (2008)

14. Kavakli, E.: Goal-Oriented Requirements Engineering: A Unifying Framework.
Requirements Engineering 6(4), 237–251 (2002)

15. Kavakli, E., Loucopoulos, P.: Goal Modeling in Requirements Engineering: Analysis and
Critique of Current Methods. Information Modeling Methods and Methodologies, 102–124
(2005)

16. Loucopoulos, P., Kavakli, E.: Enterprise Modelling and the Teleological Approach to
Requirements Engineering. Intelligent and Cooperative Information Systems 4(1), 45–79
(1995)

17. Moody, D., Heymans, P., Matulevičius, R.: Visual syntax does matter: improving the
cognitive effectiveness of the i* visual notation. Requirements Engineering 15(2), 141–
175 (2010)

18. Mylopoulos, J., Kolp, M., Castro, J.: UML for Agent-Oriented Software Development:
The Tropos Proposal. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp.
422–441. Springer, Heidelberg (2001)

19. Mylopoulos, J.: Goal-Oriented Requirements Engineering: Part II. Keynote Talk. In: 14th
IEEE Requirements Engineering Conference, RE 2006, Minneapolis, MS (September 2006),
http://www.ifi.uzh.ch/req/events/RE06/ConferenceProgram/RE06
_slides_Mylopoulos.pdf (accessed May 2011)

20. Nilsson, N.J.: Problem Solving Methods in Artificial Intelligence. McGraw-Hill (1971)
21. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: International

Conference on The Future of Software Engineering, ICSE 2000. ACM (2000)
22. RE04, 2004. Requirements Engineering International Conference (2004),

http://www.re04.org/ (accessed May 2011)
23. Regev, G., Wegmann, A.: Defining Early IT System Requirements with Regulation

Principles: the Lightswitch Approach. In: Proc. 12th IEEE International Requirements
Engineering Conference (RE 2005), Kyoto, Japan (2004)

24. Regev, G., Wegmann, A.: Where do Goals Come From: the Underlying Principles of
Goal-Oriented Requirements Engineering. In: Proc. 13th IEEE International Requirements
Engineering Conference (RE 2005), Paris (2005)

25. Regev, G., Gause, D.C., Wegmann, A.: Creativity and the Age-Old Resistance to Change
Problem in RE. In: Proc. 14th IEEE International Requirements Engineering Conference
(RE 2006), Minneapolis, MN (2006)

26. Regev, G., Hayard, O., Wegmann, A.: Service Systems and Value Modeling from an
Appreciative System Perspective. In: IESS1.1, Second International Conference on
Exploring Services Sciences. Springer, Heidelberg (2011)

27. Robinson, W.N.: Integrating multiple specifications using domain goals. In: Fifth
International Workshop on Software Specification and Design, IWSSD 1989. ACM (1989)

28. Rolland, C., Souveyet, C., Ben Achour, C.: Guiding goal modeling using scenarios. IEEE
Trans. Software Eng. 24, 1055–1071 (1998)

29. Rolland, C., Salinesi, C.: Modeling Goals and Reasoning with Them. In: Aurum, A.,
Wohlin, C. (eds.) Engineering and Managing Software Requirements (EMSR). Springer
(2005)

 Revisiting Goal-Oriented Requirements Engineering with a Regulation View 69

30. Sutcliffe, A.G., Maiden, N.A.M.: Bridging the Requirements Gap: Policies, Goals and
Domains. In: 7th International Workshop on Software Specification and Design, IWSSD
1993. IEEE (1993)

31. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: 5th
IEEE International Symposium on Requirements Engineering, RE 2001. IEEE (2001)

32. Vickers, S.G.: Value Systems and Social Process. Tavistock, London (1968)
33. Vickers, S.G.: Policymaking, Communication, and Social Learning. In: Adams, G.B.,

Forester, J., Catron, B.L. (eds.), Transaction Books, New Brunswick, NJ (1987)
34. Weick, K.E.: The Social Psychology of Organizing, 2nd edn. McGraw-Hill (1979)
35. Weinberg, G.M.: An Introduction to General Systems Thinking. Wiley & Sons, New York

(1975)
36. Weinberg, G.M., Weinberg, D.: General Principles of Systems Design. Dorset House, New

York (1988)
37. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements

engineering. In: Third IEEE International Symposium on Requirements Engineering, RE
1997. IEEE (1997)

38. Zave, P., Jackson, M.: Four Dark Corners of Requirements Engineering. ACM
Transactions on Software Engineering and Methodology 6(1), 1–30 (1997)

39. Zave, P.: Classification of Research Efforts in Requirements Engineering. ACM
Computing Surveys 29(4) (1997)

On the Impact of Modular Dependencies

on Innovation in Organizations

Philip Huysmans

University of Antwerp,
Department of Management Information Systems,

Prinsstraat 13, Antwerp, Belgium
philip.huysmans@ua.ac.be

Abstract. In volatile and customer-driven markets, the ability to inno-
vate is a key success factor. It has been claimed that innovations need to
be implemented at a steady pace to ensure business sustainability. How-
ever, the successful implementation of innovations is only poorly under-
stood. As a result, many organizations and governments have difficulties
stimulating and managing innovation. Several authors have proposed or-
ganizational modularity as a theoretical basis to better understand and
manage innovation. Their main argument is that a modular structure en-
ables parallel evolution of different organizational modules. Consequently,
innovations can be implemented without being limited by implementation
aspects of other organizational modules. Similarly, an imperfect modular
structure will exhibit obstacles when implementing innovations. Such a
modularity analysis has been applied by various authors on different lev-
els of the organization, such as products, processes, departments, and sup-
porting IT systems. Often, an enterprise architecture framework is used to
model these different levels. However, these frameworks do not
adequately support the modeling of modularity characteristics. In this pa-
per, we present three case studies to demonstrate (1) how modular de-
pendencies impact enterprise architecture projects, and (2) how modeling
modular dependencies can be used to complement existing modeling ap-
proaches.

Keywords: Enterprise Architecture, Business Innovation and Software
Evolution, Business-IT Alignment and Traceability.

1 Introduction

Contemporary organizations are faced with rapidly changing environments. As a
result, innovations need to be introduced in the organization in order to remain
competitive in these markets. The introduction of innovations often impacts
many different aspects of the organization. For example, Barjis and Wamba
describe the impact on organizations caused by the introduction of Radio Fre-
quency Identification (RFID) technology [1]. Besides the adaptation of the busi-
ness processes through, for example, Business Process Reengineering (BPR), it
can be expected that other organizational artifacts need to be adapted as well.

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 70–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Impact of Modular Dependencies on Innovation 71

Data management systems need to able to handle “enormous” data volumes [1],
hardware infrastructure and software applications need to be purchased to han-
dle accurate tracking, and customer acceptance needs to be handled by privacy
commissions and marketing departments.

Enterprise architecture projects are frequently initiated to guide the change
process needed to implement such innovations [2]. Enterprise architecture frame-
works help to identify the different artifacts to which changes need to be applied.
In such frameworks, models are created from different perspectives or viewpoints.
Complexity from other viewpoints is abstracted away to be able to focus on the
relevant aspects of a specific viewpoint. While this approach aids understand-
ability of different aspects of the organization, it can lead to unexpected results
when artifacts from different viewpoints impact each other. This can be observed
in the case of RFID, where changes to processes can be hindered by the data
structures on which they operate. When innovative processes are designed using
a BPR approach, implementation of the new processes can be problematic be-
cause, for example, data systems are unable to support the required data types.
Possibly, the redesigned processes will then need to be altered in order to be
supportable. Consequently, adapting processes can be impacted by the concrete
data implementation, which is not completely visible in the models which are
created in a process viewpoint. While aspects of this implementation are not
visible in these models, they do impact the way these models can be used, and
therefore need to be considered.

In this paper, we argue that modular dependencies can be used to explicitly
identify such impacts. This approach can be applied complementary to existing
enterprise architecture modeling. We introduce relevant literature for this ap-
proach concerning modularity and enterprise architecture (EA) frameworks in
Section 2. In this section, we will argue that the issues represented by modu-
lar dependencies cannot be adequately represented in current EA frameworks.
We then present three case studies in Section 3 to illustrate the application of
modular dependencies in organizations which are faced with innovations which
require changes in several viewpoints. In the first case study, we describe how
dependencies between enterprise architecture layers limit the ability to react to
market changes in a public broadcasting company. In the second case study,
we elaborate on a previously published case study to show the importance of
eliminating such dependencies in order to design a structure which allows the
implementation of innovations. In the third case study, we demonstrate in more
detail how an approach using modular dependencies can be applied during an
enterprise architecture project. In Section 4, we discuss the goal of resolving
modular dependencies, and how this paper contributes towards reaching that
goal. Finally, we present our conclusions on these cases in Section 5.

2 Research Background

In this section, we introduce a necessary background of modularity and enterprise
architecture research literature.

72 P. Huysmans

2.1 Modularity

Organizational modularity recently receives much attention in both research
and practice. Campagnolo and Camuffo provide a literature overview of 125
management studies which use the modularity concept [3]. They define modu-
larity as “an attribute of a complex system that advocates designing structures
based on minimizing interdependence between modules and maximizing inter-
dependence within them” [3]. They argue that organizational artifacts such as
products, production systems, and organizational structures can be regarded as
modular structures. A characteristic of a perfect modular structure is that it
enables parallel evolution of different modules. Baldwin and Clark introduced
modular operators through which this evolution can occur [4]. These operators
describe how modules can be (1) split into new modules; (2) substituted for
other modules; (3) excluded from a system; (4) added to a system; (5) orga-
nized in a new structure (modular inversion); and (6) applied in another system
(ported). However, dependencies between the modules of such a structure limit
the ability of the individual modules to perform these operators. Baldwin and
Clark state that “[b]ecause of these dependencies, there will be consequences
and ramifications of any choice” made during the design of the artifact [4]. A
design choice for a given parameter can limit or affect the possible design choices
concerning other parameters. In traditional modularity approaches (e.g., prod-
uct modularity), dependencies between and within modules are visualized by
Design Structure Matrices (DSM). In a DSM, an artifact is described by a set
of design parameters. The matrix is then filled by checking for each parameter
by which other parameters it is affected and which parameters are affected by
it. The result is a map of dependencies that represent the detailed structure of
the artifact. An example design structure matrix is shown in Figure 1. Depen-
dencies are represented by an “x”. The intersection of identical design options is
marked with a “.”. Consider the design dependency which is represented by the
“x” in the intersection of the column of design option A2 and the row of design
option A1. This signifies that design option A2 influences design option A1: the
design decision for design option A1 will be dependent on the decision taken
for design option A2. This dependency does not break the modular structure of
the artifact, since design options A1 and A2 both belong to the same module.
Now consider the dependency of design option B1 on design option A2. Since
these design options belong to different modules, it can be concluded that these
modules are directly dependent on each other. Therefore, this dependency does
violate the modular structure. Indirect or chained dependencies can occur as
well. While design option B2 does not seem to affect any design options of mod-
ule A, it does affect design option B1. As we discussed before, design option B1
does affect design option A1. Therefore, a so-called chained dependency exists
between design options B2 and A2.

Originally, DSMs were used to model modular products. In later publications,
a DSM was also applied to model organizational departments [5]. This indicates
that similar tools can be used for analyzing modularity on various levels. In this
paper, we will focus on modularity on the organizational and software levels.

The Impact of Modular Dependencies on Innovation 73

Fig. 1. An example Design Structure Matrix

Organizational modularity focuses on other artifacts than product modularity
within the same organization. Research on this level has been performed by, for
example, Galunic and Eisenhardt [6]. Galunic and Eisenhardt consider organiza-
tional divisions as modular organizational building blocks. These divisions, which
have independent decision power, cost structures and profit responsibility, are
a combination of capabilities and charters. Charters represent the task, market
and customer a division is concerned with. Charters need to be able to change
as markets evolve. By dynamically attributing these charters to organizational
divisions, a flexible organization is created which can adapt to changing market
conditions. This kind of modularity therefore enables the flexibility required on
a business level. On the software level, modularity is used to achieve a flexible
structure as well. For example, Parnas argued that a modular decomposition in
software systems should be made to isolate the impact of changes [7]. When the
impact of a change remains within a module, changes can be applied to individ-
ual modules without requiring changes in other parts of the system. Mannaert et
al. proved that the impact of such changes is an essential obstacle for achieving
evolvability [8,9]. While modularity is applied to both the organizational and
software level by various researchers, most research project focus on a single
level. However, interactions between a modular approach on the organizational
and the software level remain an important issue. Given the high dependence
on IT systems, it is important that a change on the organizational level (e.g.,
changing chapters) can be handled by the supporting IT systems as well. Oth-
erwise, the inability to change the IT systems will restrict the ability to change
organizational modules. Indeed, modularity needs to be considered as a relative
attribute of complex systems (such as organizations), meaning that within a
single artifact, different levels of modularity can exist [10]. As discussed, mod-
ularity has already been applied separately on the level of products, processes
and organizational structures.

74 P. Huysmans

2.2 Enterprise Architecture

Enterprise Architecture (EA) frameworks provide insight to the structure of or-
ganizational goals, divisions, and supporting IT systems. By specifying separated
viewpoints on organizational artifacts, an overview is provided of specialized
models created by different stakeholders [11]. These models are grouped in dif-
ferent layers. Currently, no consensus has been reached on a specific classification
of layers: different classifications are used by different researchers or frameworks.
Based on a review of 126 papers, Schöenherr claims that the following layers oc-
cur most often [12]:

– Strategy layer
– Business layer
– Functional layer
– Information layer
– Application layer
– Infrastructure layer

While we do not claim that this classification of layers is the most comprehensive
or correct, we will follow this classification. The analysis made in this paper will
apply to other classifications as well.

Current enterprise architecture frameworks do not explicitly focus on depen-
dencies or interactions between different architectural layers. Most frameworks
use a top-down perspective. They start by defining business goals and high-level
artifacts to realize these goals (e.g., the organizational structure). Based on these
artifacts, lower-level artifacts are defined which offer services to support the busi-
ness level. For example, TOGAF suggests to use an iterative process consisting of
eight phases to develop an enterprise architecture. Based on the business goals
which are defined in the first phase, different architectures need to be devel-
oped in the following order: business architecture (second phase), information
systems architecture (third phase), and technology architecture (fourth phase).
These architecture correspond to the defined layers. The business architecture
is defined on the business layer. The information systems architecture consist
of both the functional and information layer. The technology architecture is
addressed on the infrastructure layer. Such a top-down approach assumes that
(a) business requirements can be developed without being constrained by the
concrete implementation or operationalization, and (b) supporting services can
be created straightforwardly based on business requirements. However, when
implementation-focused approaches are described (e.g., Service-Oriented Archi-
tecture), the existing infrastructure is often an important restriction on the ser-
vices which can be provided. Consequently, the focus of such approaches is often
on subjects such as legacy integration. Approaches which explicitly integrate
an implementation approach with business goals (e.g., SOMA) therefore use a
middle-out approach [13]. Such an approach takes into account the capabilities
of the supporting systems, and attempts to find the best solution for the business
requirements.

The Impact of Modular Dependencies on Innovation 75

Indeed, the use of additional methods illustrates that a top-down approach in
enterprise architectures needs complementary approaches to deal with complex
environments. In a literature review on enterprise architecture projects, Lucke
et al. identify several issues which motivate this need [14]. First, complexity is
referred to as an underestimated issue. Not only the complexity of the models
themselves, but also the dependencies between the different layers remain prob-
lematic [15,16,17,18]. Second, rapidly changing conditions imply that a top-down
specification of an enterprise-wide architecture can become out-dated before it is
even implemented [19,20,21]. Third, a top-down specification of the architectural
layers results in issues regarding scoping of architectural descriptions. Rather
than being straightforward, the identification of organizational and technical
services to support business requirements is often considered to be problematic
[17,20,22].

These empirical observations do not come as a surprise. Wide-spread enter-
prise architecture frameworks acknowledge the issue of dependencies between
architectural layers. Nevertheless, they do not address this issue. For example,
the Zachman framework acknowledges that the different cells describe abstrac-
tions of the same underlying organization, and that dependencies between the
cells have an impact [23,24]. At a minimum, the cells are considered to be re-
lated to every other cell in the same row [24]. If a change in the structure of
one cell affects the structure of another cell, a dependency between these cells
exists. Moreover, such dependencies can occur not only within a row, but also
between rows. The framework however does not provide guidance on how to
determine the possible impacts between models from different cells. It is how-
ever acknowledged that the challenge during designing a model “is to design
each while understanding the integrity of all others to avoid being surprised by
undesirable side effects appearing long after it is possible to contain them” [24,
p.595], and that understanding and storing the dependencies would “constitute
a very powerful capability for understanding the total impact of a change” [24,
p.603].

Moreover, the Zachman framework also introduces constraints, which repre-
sent the limitations lower-level layers impose on higher-level layers. The models
from each perspective (i.e., each row) have a different set of constraints they need
to adhere to [24]. For example, the models in the scope row are subjected to us-
ability constraints (e.g., utility of the artifact), while models in the technology
row are subjected to constraints from the state of the art of the used implemen-
tation platform. These constraints are additive across the different perspectives:
constraints of a lower row also limit the models from higher rows. For example,
the technological constraints on the technology models (e.g., only webservices
are allowed) will also impact the system model, which will need to structure the
system using services. When a constraint in a lower row is inconsistent with a
model defined in a higher row, “the designers who are responsible for the two
rows must initiate a dialog to determine what must be changed and to ensure
that no gap in expectations exists between the different perspectives” [24]. Con-
sequently, it is argued that the issue of conflicting constraints can be handled by

76 P. Huysmans

communication. Based on the reported empirical observations discussed above,
this solution does not seems satisfactory. Moreover, the implications of adhering
to an additional set of constraints are not expected to add complexity. When
discussing the model transformation between adjacent rows, it is claimed that
“as each model is structurally changed through the successive application of ad-
ditional constraints, the original purpose of the business is not so obscured that
the business requirements are not recognizable in the end product” [24]. Huys-
mans presents similar observations with regard to other wide-spread enterprise
architecture frameworks, such as TOGAF and ArchiMate [25]. Therefore, a com-
plementary approach is required to represent the impact of lower-level layers on
higher-level layers.

Our suggestion to use modularity theory for this goal is not isolated. Several
authors link the explicit decomposition of viewpoints in enterprise architecture
frameworks to the ability to independently change artifacts. This indicates how
enterprise architecture frameworks can be linked to the modularization of organi-
zations. For example, business modularity is considered to be the highest level of
enterprise architecture maturity [26]. On this maturity level, the role of IT in an
enterprise architecture is to “provide seamless linkages between business process
modules” [26]. Such business process modules allow “strategic experiments that
respond to changing market conditions” [26]. Indeed, a modular business process
should enable the execution of themodular operators described above. Based on a
practitioners survey, it seems thatmany business users indeed expect an enterprise
architecture to enable their ability to change in response to market conditions [2].
A modularity perspective can aid to specifically focus on the issues specified by
Lucke et al. [14], which have been discussed above: identifying modular depen-
dencies reveals how complexity is introduced when modules are added; the par-
allel evolution of modules limits the impact of rapidly changing conditions; the
explicit specification of modules aids scoping architectural descriptions.

Consequently, modularity or independence between enterprise architecture
layers should be achieved by defining business components and standardized
interfaces based on the artifacts modeled in the different layers. This shows that
an explicit focus on the coupling of artifacts from different enterprise architecture
layers is required to gain insight in the kind of changes which can be supported.
In the case studies we performed, adequately dealing with this kind of coupling
often seemed to be an important success factor. An approach which explicitly
shows these impacts can therefore help to improve insight in the change process.

3 Case Study Observations

In this section, we illustrate the occurrence and impact of modular dependen-
cies between artifacts from different levels in an enterprise architecture. For our
research intentions, we believe that a qualitative research approach using case
studies is required. In order to study modular dependencies, profound insight
in the organization is required, which cannot be obtained by quantitative de-
scriptions. A qualitative approach is wide-spread in organizational modularity

The Impact of Modular Dependencies on Innovation 77

research [27,28,29,30,31]. Argyres even argues that “insights generated from case
studies, in many cases, outstrip the insights that have been generated by earlier
work” [32]. The presented case studies are part of a larger group of case studies
which aim to apply insights from modularity to enterprise architectures. These
case studies have been performed adhering to the case study methodology [33].
Given the ambiguity of the definition of enterprise architecture in both practice
and academic literature, and the large scope of enterprise architecture frame-
works, it is difficult to clearly distinguish between the research subject itself and
the organizational environment. Therefore, we selected an exploratory case study
approach, since it is well suited for research goals where the boundaries between
phenomenon and context are not clearly defined [33]. In the various cases, we
have used the key informant method to identify informants who were highly
knowledgeable about and involved in the enterprise architecture projects. The
primary mode of data collection consisted of face-to-face interviews. In prepara-
tion for these interviews, various documents (e.g., documentation and presenta-
tion materials, documents on the organizational structure) have been consulted
to gain an initial understanding of the organization and the project itself. A case
study protocol was crafted, including an initial set of questions. These questions
concerned various topics (e.g., architecture definition, expected benefits and bar-
riers), in order to obtain a thorough description of the project. Follow-up ques-
tions took place via e-mail. During the interview, additional sources of evidence
were collected, such as articles and internal documentation. The interview was
digitally recorded and transcribed for future reference.

3.1 Case Study 1: Public Broadcasting Company

In a first case study, we observe a public broadcasting company (PBC) which
is faced with changing customer demands. We focus on the division which is
responsible for broadcasting news journals. Traditionally, this organization offers
radio and television transmissions, which follow a clearly defined schedule. The
radio and television business units import news items from different sources,
such as feeds from external agencies, or items made by reporters. Items can be
imported using physical tapes, digital files or through satellite transfers. The
items are then edited and transmitted in the form of a news journal. However,
since the introduction of the internet, customers demand personalized and real-
time access to transmissions. Therefore, the content of news journals needs to
be approached differently. The PBC decided to create a dedicated business unit
to create an online channel, next to the existing radio and television units. This
new business unit could reuse content from both the radio and television units,
and create dedicated online news items as well. Adding the online channel was
considered to be a necessary strategic move in order to serve a changing market.
For the PBC, the radio, television and online business units are therefore situated
on the business layer of their enterprise architecture.

In modularity terminology, this can be considered to be a modular opera-
tor, i.e., adding a module. Adding this additional business unit posed serious
problems due to the supporting structure of the PBC on the lower enterprise

78 P. Huysmans

architecture levels. Here, we will discuss one aspect of an impact of the support-
ing structure. For example, accessing existing radio and television items proved
to be complex, since they were stored in specialized applications. For every im-
port channel (tape, digital or satellite), different applications needed to be used.
This is a direct result of the principles used to develop the application portfolio,
which was located on the application layer in the enterprise architecture. As a
general principle, the organization always selects best-in-class software solutions
for specialized media editing. This principle ensured the most efficient editing
process. However, this results in an application portfolio which is not well in-
tegrated. Employees with specialized competences are required to operate these
software packages. Therefore, in order to reuse audio and video fragments for the
online channel, employees with these competences needed to be made available
for the online business unit. This resulted in a duplication of skill sets, which
was not efficient. The inclusion of employees with the competence to use the
specialized software packages was not foreseen when the new business unit was
defined. However, the coupling between software packages on the application
layer and employee competence on the business layer necessitates this inclusion.
Put differently, the required competences defined on the business layer need to
be adapted to account for a dependency on the application level. It should be
noted that coupling on the application layer is solved by adapting the artifacts
which are defined on the business layer. Consequently, the ability to take strate-
gic decisions to serve an emerging market are impacted by decisions made on
the application layer. While the principle to select best-in-class applications may
be justified for this sector and the performance of the organization, the lack of
integration which it causes and the restrictions it places on business flexibility
need to be understood as well. When considered as a modular structure, this
dependency can be represented using a DSM. The DSM is presented in Fig-
ure 2. It shows how design parameters from the applications, which are part of
the application layer, affect the design parameters of the business unit, which is
part of the business layer. The discussed dependency of the competence for the
applications on the organizational chart is highlighted in grey.

Since the PBC was unable to motivate the costs of specialized employees for
the new channel, a structural solution was proposed. The dependency on the re-
quired application capabilities forces the the organization to deal with concerns
from the application layer on the business layer, i.e., the different handling of
tape, digital and satellite items. This dependency was removed by developing an
abstraction layer on top of the application layer, which provided only the func-
tionality needed on the business layer. This abstraction layer was defined based
on concepts known in the business layer: the basic entity on this abstraction
layer was a news item. A news items entity abstracts from the method which
was used to import the source material. Therefore, it served as a kind of interface
to the specialized software applications. For every application, audio and video
fragments can be extracted, together with the required meta-data, in a uniform
way. The specific functionality of the editing programs is not available through
this interface. In order to use the editing functionalities, specialized competences

The Impact of Modular Dependencies on Innovation 79

O
rg

an
iz

at
io

na
l c

ha
rt

C
ha

rt
er

M
ed

ia
 r

eu
se

 r
at

e

N
ew

s
it

em
 g

ra
nu

la
ri

ty

C
om

pe
te

nc
e

P
la

tf
or

m

St
or

ag
e

m
ed

iu
m

E
ss

en
ce

 d
at

a
co

lle
ct

io
ns

Organization chart . x x
Charter x .
Media reuse rate x . x x
News item granularity x x . x x
Competence . x
Platform . x
Storage medium x .
Essence data collections x .

B
us

in
es

s
U

ni
t

A
pp

lic
at

io
n

Business Unit Application

Fig. 2. The DSM for PBC

remain necessary. However, the need for employees with these competences is
now not imposed on the business layer, only on the application layer.

This first case shows that decisions taken on the application layer of enter-
prise architectures can make changes to the business layer more complex. By
adequately encapsulating the complexity from the application layer, dependen-
cies between the different layers can be removed, and necessary services can still
be offered. As a result, decisions on the business layer only need to deal with
the inherent complexity imposed by the business environment, instead of dealing
with complexity originating from the supporting layers as well. In this case, the
number of modules is low and the dependency which limits the business layer is
clear. However, this case provides a clear illustration of the issue we address in
this paper.

3.2 Case Study 2: Gas Flow Manager Company

In a second case study, we observe an enterprise architecture project at a gas flow
manager company. Here, we focus on a possible approach to resolve modular de-
pendencies. The company offers gas transport services to its customers based on
a grid consisting of entry points, nodes, and pipelines connecting the nodes. The
functional and information layer of the enterprise architecture had to be rebuilt
after the company was separated from a gas trading company. The legislation
concerning liberalization of the energy market demanded this separation, as the
company had to offer its gas transport services to other gas trading companies
as well. Prior to the architectural redesign, IT was generally considered to be
a bottleneck during the implementation of changes by business users. The new

80 P. Huysmans

architecture needed to be able to respond better and more quickly to chang-
ing business requirements and had to be understandable for business users, so
they could more realistically estimate the impact of the changes they requested.
Therefore, it was decided to clearly align the functional architecture with a high-
level enterprise architecture model on the business level. This model needed to
be constructed in such a way that the stable operation and stakeholders of the
organization are represented. If the subsequent changes required changes in the
high-level model, it would not be useful as a basis for the functional architecture.
The issue of rapidly changing conditions has indeed been addressed as an impor-
tant enterprise architecture issue by Lucke et al. [14]. Put differently, business
changes need to be attributed to the implementation of the model elements, not
on the nature of the elements itself. The model which was designed is shown in
Figure 3 as a Role-Activity Diagram (RAD). The modeled activities represent
generic descriptions of the business-level construction of the organization (e.g.,
Define commercial services). An abstract RAD model describes how the organi-
zation works, without detailing how the specific activities are implemented [34,
p. 234]. Internally executed activities are represented by gray boxes. Activities
which require collaboration with external partners are represented using white
boxes in the collaborating entities, which are connected by a solid line. The ar-
rows represent the process flow. In order to achieve a well-aligned business and
functional architecture, a separate application has been developed to support
the scope of exactly one activity in this model.

In a previous publication, we focused on a repeatable and reproducible method
to design suchmodels [35], and the benefits which can be achievedwith such an ap-
proach. That description was limited to the top layers of the enterprise

Fig. 3. Stable GFMC model

The Impact of Modular Dependencies on Innovation 81

architecture, i.e., the business and functional layers. In this paper, we focus on
the preconditions for applying this approach, which are situated on the functional
and information layers. For this approach to work, the specification the functional
layer may not be restricted by the information layer. Modular dependencies be-
tween artifacts from the information layer and artifacts from the functional layer
can be used as an indication for such restrictions. Before the organizational split,
applications had separate data sources, which impacted the specification of ap-
plication scope. Put differently, dependencies existed between the functional and
information layers. Because the semantic differences between entities in these data
sources, it was not feasible to design applications which relied on data from differ-
ent sources without creating complexity within the application. In the enterprise
architecture maturity model, this indicates an architecture which is not
correctly modularized [26]. For example, the entity “customer” existed in differ-
ent data sources. In some sources, this entity referred to end consumers of the gas
which is transported. In other sources, it contained the customers of the gas flow
manager company (i.e., the gas traders). As a result, the scope of applications was
defined based on the scope in the data sources. During the enterprise architecture
project, a glossary was developed iteratively with business users from different ar-
eas to ensure consistent terminology across the organization. The glossary defines
the entities, such as customers, and the relationships between each other. Based
on this glossary, a database scheme was developed and imposed on the different
data sources. Consequently, the dependency of the application scope on the data
source scope was resolved. The coupling between the functional and information
layer was thus removed. As a result, the modules on the functional layer could be
designed to be well-aligned with the business layer, without being restricted by
aspects from the information layer.

Moreover, the solution applied in this case follows the solution presented in
modularity theory. In order to resolve modular dependencies, modularity theory
proposes to specify an architectural rule [4]. Such a rule limits the design free-
dom for the implementation aspects of modules by prescribing a certain design
choice. In this case, the glossary limits the allowed interpretation of, for exam-
ple, the “customer” entity. As a result, no conversions need to be performed
to ensure a correct use of data entities. Other solutions are possible to resolve
dependencies as well. Currently, we focus on the ability of modular dependen-
cies to identify coupling between modules of different architectural layers as
a cause for restrictions on higher-level layers. In future research, we elaborate
on different methods to deal with this kind of coupling. We elaborate on this
approach in Section 4. However, the current case illustrates how a modularity
approach can be complementary to enterprise architecture frameworks. While
the different applications and data sources can be represented in an enterprise
architecture, no indications of the coupling between the different viewpoints can
be represented. When we consider the applications and data sources as modules,
we can use a Design Structure Matrix (DSM) to represent aspects of the module
implementation which affect each other.

82 P. Huysmans

3.3 Case Study 3: Data Usage in Governmental Processes

In the previous case studies, we illustrated the relevance of modular dependen-
cies in enterprise architecture projects and how they could be resolved. We now
apply the insights gained from the analysis described above to a case study in a
governmental organization. The mission of the organization is to introduce and
implement e-government solutions. To achieve this goal, it undertakes projects
in the field of back-office reengineering, and tries to leverage these improvements
by supporting projects with governmental partners. In this paper, we focus on a
project that improves the way data from various sources is used in governmental
processes. We will refer to this project as the Data Usage in Governmental Pro-
cesses (DUGP) project. Similar to the description in Section 3.2, the structure
of the data sources limits the design of governmental processes. Because of the
political situation, different data sources are controlled by different governmental
entities, which belong to governments on different levels (e.g., federal, regional,
local level). As a result, different implementations exist for a large amount of
design parameters. For example, the data delivery design parameter may be im-
plemented by an online web interface, an FTP transfer, or through web services.
Consider the partial Design Structure Matrix represented in Figure 4, which has
been developed to describe the situation before the DUGP project. In this DSM,
multiple design parameters are considered simultaneously. Compare this to the
coupling in the GFMC enterprise architecture, where we focused on a single de-
sign parameter (i.e., data semantics). Dealing with multiple design parameters
concurrently greatly increases the complexity of resolving dependencies.

The “x”-es with the grey background represent (1) the dependency of the data
retrieval design parameter of the processes on the data delivery design parame-
ter of the data sources, and (2) the dependency of the data syntax used in the
processes on the data syntax used in the data sources. Consider the impact of
these two design parameters in the following example. A process to request con-
struction premiums requires personal data of the citizen requesting the premium
(from data source A) as well as geographical data of the construction site (from
data source B). Since the databases which contain the personal and geographical
data are not integrated or standardized, various conversions between the imple-
mented data parameters of these data sources may be necessary. Suppose that
the information required from data source A needs to be obtained by invoking a
single web service call, providing the address from the end user using four data
fields (street name, street number, bus number, city name). In order to query
geographical information in data source B, a request file containing two data
fields (street name and street number, and ZIP code) has to be transferred us-
ing the FTP protocol. Since the construction premium process depends on both
data sources, it needs to be able to communicate using two different versions of
address data syntax, and two different versions of data retrieval technology. If
the construction premium process needs to be changed, and an additional data
source is required, the process owner needs to be aware of the data syntax and
data retrieval method offered by the new data source. Moreover, when changes
are made to these implementation aspects of data sources, additional versions

The Impact of Modular Dependencies on Innovation 83

Pr
oc

es
s

T
hr

ou
gh

pu
t

D
at

a
R

et
ri

ev
al

D
at

a
Sy

nt
ax

D
at

a
D

ic
tio

na
ry

C
ap

ac
ity

D
at

a
D

el
iv

er
y

D
at

a
Sy

nt
ax

D
at

a
D

ic
tio

na
ry

Process Throughput . x x
Data Retrieval x . x x x
Data Syntax x . x x x
Data Dictionary . x x
Capacity . x x
Data Delivery x . x

Data Syntax x . x

Data Dictionary x .

Pr
oc

es
s

D
at

a
So

ur
ce

Process Data Source

Fig. 4. DSM before the DUGP project

need to be supported by the processes. The resulting complexity of these conver-
sions is a barrier for the use of these data sources. Moreover, this example shows
that different design parameters are intertwined in a certain implementation. As
a result, it is hard to resolve these dependencies individually. The goal of the
DUGP project is therefore to eliminate these dependencies at once in order to
reduce the complexity of using data sources in governmental processes. How-
ever, the solution which is suggested by modularity theory, i.e., the definition
of architectural rules, was not feasible because of the governmental structure.
The different data sources are controlled by different governmental entities, who
can decide independently on the implementation of design parameters. Declar-
ing an architectural rule for a design parameter therefore requires an agreement
between all governmental units responsible for a data source. However, since
most units rely heavily on legacy systems to provide data services, changes to
the implementation of design parameters are not easily realized. Therefore, it is
difficult to reach such an agreement if an organization which can impose rules
to these governmental units is not in place.

Consequently, the e-government organization developed a platform to consol-
idate data sources and provide uniform data access. Similar to the PBC case
discussed in Section 3.1, an abstraction layer was developed to offer the required
functionality without exposing the complexity of the layer offering these services.
This abstraction layer provides services from the information layer to governmen-
tal processes, which are considered to be on the functional layer. The platform is
based on two existing data sources from the federal government. Data from these
data sources will be augmented with data available in data sources from other
governments (e.g., geographical data, which is offered by regional governments).

84 P. Huysmans

The first data source which is used focuses on data concerning organizations. In
this data source, data such as registration number, official addresses and legal
statute of enterprises can be obtained. We will refer to this data source as the
Data Source for Organizations (DSO). The Federal Public Service Economy is
responsible for this data source. The second data source offers data concerning
individuals. It refers to data such as employment and social status of citizens. We
will refer to this data source as the Data Source for Individuals (DSI). This data
source is governed by a separate organization created by the federal government.
The platform will maintain this distinction, and offer its data services grouped
in an Enhanced Data Source for Organizations (EDSO) and an Enhanced Data
Source for Individuals (EDSI).

Since the EDSO relies on the DSO for its data, and the EDSI relies on the
DSI, they need to consider the implementation of these data sources. Many im-
plementations of design parameters are quite different. For example, the DSI
has webservices available to query its data. As a result, these webservices can
be used to develop webservices in the EDSI. These webservices are not directly
offered in their original form. Instead, a facade pattern is used. This enables
the creation of a uniform web service syntax throughout the platform. Other-
wise, a dependency on the data syntax design parameter would be introduced.
In contrast, the DSO has no webservices available. It is a mainframe which op-
erates using batch requests. Therefore, a copy is made from the original DSO
every night. This copy is then augmented with data from other governmental
authorities, and used as a central database on which the services from the EDSO
are provided. In order to simplify data access, the new platform provides three
data delivery methods which will be available for all data sources: data reposi-
tories, an online application and webservices. Customized data repositories are
large data files, which are copied to the process owner. After this initial data
provision, automatic updates are transferred when data changes. These reposi-
tories are offered to enable process owners to incorporate the data from the new
platform in their processes, without having to implement a webservices-based
data access. Since many organizations are accustomed to using their own data
sources in their processes, a customized data repository can be implemented
without many changes in the processes. However, the unauthorized data sources
which have been collected by the organizations themselves will then be replaced
with authentic data. The online application allows for manual consultation of
the data with a much smaller granularity: instead of a single large data file,
only the result of a single query is returned. The same result can be obtained
automatically through the use of webservices. Webservices offer the same data
granularity, but can be implemented to automate processes.

From a modularity perspective, the platform can be considered as an addi-
tional module to eliminate dependencies between data and process modules. The
DSM for the DUGP project is shown in Figure 5. When comparing DSM of the
platform in Figure 5 with the DSM in Figure 4, we can conclude that some of
these dependencies are indeed eliminated. Consider for example the data syntax
and data delivery. We included an empty grey background to mark the previous

The Impact of Modular Dependencies on Innovation 85

Pr
oc

es
s

T
hr

ou
gh

pu
t

D
at

a
R

et
ri

ev
al

D
at

a
Sy

nt
ax

D
at

a
D

ic
tio

na
ry

C
ap

ac
ity

D
at

a
D

el
iv

er
y

D
at

a
Sy

nt
ax

D
at

a
D

ic
tio

na
ry

C
ap

ac
ity

D
at

a
D

el
iv

er
y

D
at

a
Sy

nt
ax

D
at

a
D

ic
tio

na
ry

Process Throughput . x x
Data Retrieval x . x x
Data Syntax x . x x
Data Dictionary . x x
Capacity . x
Data Delivery x . x
Data Syntax x . x
Data Dictionary x x .
Capacity . x x
Data Delivery x . x
Data Syntax x . x
Data Dictionary x .

Pr
oc

es
s

D
at

a
So

ur
ce

Process Data SourcePlatform
Pl

at
fo

rm

Fig. 5. DSM of the DUGP project

existence of these dependencies. The syntax of webservices offered by EDSI is
decoupled from the naming conventions of the DSI by using a facade pattern. As
a result, naming conventions can be kept internally consistent with custom-built
webservices for EDSO. The data syntax can be considered as an architectural
rule which is maintained by the e-government organization. By adhering to this
data syntax, process owners no longer need conversions between different data
syntax versions. Another example is the data delivery design. In data sources
from the platform, data can be provided through customized data repositories,
an online application or webservices. Here, a single design option has not been
selected, but the consistent offering of all data delivery techniques allows pro-
cess owners to implement a single design for data delivery. Again, process owners
no longer depend on the specific data delivery technique of the individual data
sources. Consequently, it seems that the platform aids to decouple the process
owners from the design decision of the data sources.

However, as stated by Baldwin and Clark, eliminating all dependencies in a
modular structure is not a trivial task [4]. Consider the design option process
throughput in the case of an automated process. Our respondents indicated that
the number of processes which can be supported is limited by, amongst others,
the capacity of the data delivery implementation. In Figure 5, this is visualized
by the “x” where the column of the capacity of the platform intersects with
the row of process throughput. A possible data delivery implementation in the

86 P. Huysmans

platform are webservices. As described above, webservices from the platform can
be either custom-built by the e-government organization (e.g., webservices for
EDSO), or can be part of a facade-pattern, calling underlying webservices (e.g.,
webservices for EDSI). The custom-built webservices operate on a local database.
Consequently, their capacity is limited by the servers of the e-government orga-
nization itself. However, webservices which are part of the facade pattern are
dependent on the capacity of the underlying services of DSI. Based on the im-
plementation, issues with webservice capacity need to be discussed with the
e-government organization or with the organization responsible for the original
data source. The difference between the implementation of webservices in the
platform is based on the available data delivery techniques from the original data
sources. In Figure 5, this is visualized by the “x” where the column of the data
delivery of a data source intersects with row of the capacity of the platform.
It therefore seems that an unexpected dependency can be identified: when the
platform is used, the process throughput design decision is impacted by the data
delivery technique of the original date source. When the data delivery of DSO is
changed (e.g., webservices become available) and used by the platform, process
performance may be impacted. This is an example of a chained design depen-
dency which propagates through the design structure matrix. Such dependencies
are difficult to trace and to account for in change projects.

4 Towards Resolving Modular Dependencies

In this paper, we use design structure matrices to represent modular depen-
dencies in order to understand which artifacts can be an obstacle during orga-
nizational changes. We already described how the organizations in these cases
handled the identified issues. While modular dependencies can be resolved indi-
vidually (as shown in Section 3.1), or by following solutions proposed in modular-
ity (as shown in Section 3.2), it is clear no generalizable approach to dealing with
modular dependencies has emerged yet. Because of the organizational context,
traditional modularity solutions cannot always be applied. For example, polit-
ical influences prevented the introduction of architectural rules in the DUGP
case study in Section 3.3. It is clear that organizational modularity cannot al-
ways be approached similarly as in, for example, product modularity. Moreover,
the wide variety of aspects which need to be considered increases the impact
of chained dependencies, as shown in Section 3.3. Such chained dependencies
greatly increase the complexity of a modularity analysis.

In the three case studies presented in this paper, it has been shown that by
itself, the identification of modular dependencies allowed a deep understanding
of phenomena concerning organizational changes. Interpretations are not lim-
ited to superficial models indicating a number of modules and their interfaces.
Rather, modular dependencies have been shown to be far more complex at the
organizational level than accounted for in current enterprise architecture frame-
works. Indications from the cases are that they exist both in top-level models,

The Impact of Modular Dependencies on Innovation 87

and in transformations or mappings to lower levels. However, the overall impor-
tance of modular dependencies is not yet completely clear at the organizational
level: we do not know how many dependencies are present, and to which ex-
tent it is desirable to eliminate them. Nevertheless, the identification of modular
dependencies by itself has already resulted in some practical applications. For
example, a research project is currently being performed in which anticipated
changes are defined and evaluated in the current enterprise architecture using
scenarios. In software engineering, this is a well-known principle, and method-
ologies for analyzing the evolvability of software architectures such as SAAM
are based on this. SAAM uses scenarios to analyze architectures with respect to
achieving quality attributes, such as evolvability. The three important steps in
SAAM are: (1) scenario and architecture description; (2) indirect scenario anal-
ysis; (3) scenario interaction. Direct scenarios are scenarios which are handled
adequately (with regard to the required quality attributes) by the architecture
without modifications. Anticipated changes are a way of describing these sce-
narios. Indirect scenarios are scenarios that cannot be handled by the analyzed
architecture. Therefore, changes will have to be made to certain components.
Scenario interaction occurs when different scenarios have to perform changes on
the same components. Design structure matrices of relevant organizational mod-
ules help identify indirect scenarios and scenario interactions. Structured DSM
walkthroughs with relevant stakeholders seem be an efficient means to achieve
this. Similar approaches have already been used to test quality attributes of en-
terprise architectures [36]. However, these approaches lack a representation of
modular dependencies.

Moreover, research efforts are currently ongoing on how to prevent modular de-
pendencies. However, this is a very difficult task, and cannot be performed across
all the levels of an enterprise architecture at once. Therefore, research focuses on
different subdivisions of enterprise architectures. Currently, results are already
published on the software and process levels. On the process level, different guide-
lines are proposed which are proven to prevent certain dependencies [37]. On the
software level, such guidelines are available as well [9]. Moreover, software patterns
which are free of so-called combinatorial effects (i.e., a more specific kind of mod-
ular dependencies) are already available [8]. The long-term goal of this research is
to present organizational patterns which do not contain unknownmodular depen-
dencies. However, many different aspects have to be considered in such a pattern.
It has already been described that organizational patterns should deal with (a)
supporting technologies; (b) knowledge, skills and competences; (c) money and
financial resources; (d) human resources, personnel and time; (e) infrastructure;
and (f) other modules or information [38]. The approach for representing modular
dependencies presented in this paper contributes to this approach by identifying
problematic aspects in organizational modules.

5 Conclusions

In this paper, we explored a concrete application of modularity on the orga-
nizational level. We have shown that by modeling modular dependencies, in-

88 P. Huysmans

teractions between layers in enterprise architecture models can be represented.
Such interactions are not explicitly focused on in enterprise architecture frame-
works. Therefore, this approach is complementary to existing frameworks. These
frameworks usually focus on the top-down specification of different viewpoints.
However, these viewpoints can not be considered to be independent from each
other in complex organizations. As a result, one needs to be aware of the impacts
and restrictions imposed by lower-level layers during a top-down specification of
enterprise architecture models. Therefore, research on this subject should be
based on observations in real-life case studies instead of on theoretical exam-
ples. We focused on the restrictions of modeling artifacts on higher-level layers
based on dependencies on the implementation of design parameters of lower-
level artifacts. First, we demonstrated how this effect occurs in the PBC case
study. Second, we discussed how the elimination of such dependencies can be
a prerequisite in successful enterprise architecture projects. We illustrated this
prerequisite in the context of the GFMC case study, which was published earlier.
Moreover, we explored the applicability of dealing with modular dependencies
as suggested by modularity literature. This solution implies the definition of ar-
chitectural rules to limit the implementation possibilities of design parameters.
Consequently, artifacts which are dependent on these design parameters can as-
sume that a fixed implementation will always be supported. Third, we applied
the insights from the observations in these case studies more concretely to the
DUGP project. We showed that a DSM can be used to represent relevant issues
for the enterprise architecture project as modular dependencies. This perspec-
tive allows to objectivate the issues which are resolved by the project. Moreover,
a structured analysis can lead to the discovery of remaining issues after the
project. Remaining issues can be unresolved dependencies, or newly introduced
dependencies. This was illustrated by identifying the capacity design parameter
as a chained dependency.

Future research needs to be conducted to gain insight on how modular depen-
dencies on this level can be dealt with. In some cases, the definition of architec-
tural rules seems appropriate. However, instead of choosing a single implemen-
tation option, it has already been observed that a consistent offering of multiple
implementations can be required as well. Moreover, in some cases, imposing ar-
chitectural rules does not seem feasible, because of the organizational structure.
In the DUGP project, it was impossible to impose architectural rules to different
organizational units. Therefore, an additional module was added. This approach
resembles a bus pattern which is frequently used in the design of, for example,
IT systems. However, the introduction of new dependencies using this bus pat-
tern shows that a structured approach is required to adequately resolve modular
dependencies. Therefore, we elaborated on future research, which will focus on
a structured approach to resolve modular dependencies.

The Impact of Modular Dependencies on Innovation 89

References

1. Barjis, J., Wamba, S.F.: Organizational and business impacts of rfid technology.
Business Process Management Journal 16(6), 897–903 (2010)

2. Schekkerman, J.: Trends in enterprise architecture: How are organizations progress-
ing? Technical report, Institute For Enterprise Architecture Developments (2005)

3. Campagnolo, D., Camuffo, A.: The concept of modularity in management studies:
A literature review. International Journal of Management Reviews 12(3), 259–283
(2010)

4. Baldwin, C.Y., Clark, K.B.: Design Rules. MIT Press Books, vol. 1. The MIT Press
(January 2000)

5. Baldwin, C.Y., Clark, K.B.: The value, costs and organizational consequences of
modularity. Working Paper (May 2003)

6. Galunic, D.C., Eisenhardt, K.M.: Architectural innovation and modular corporate
forms. The Academy of Management Journal 44(6), 1229–1249 (2001)

7. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

8. Mannaert, H., Verelst, J., Ven, K.: The transformation of requirements into soft-
ware primitives: Studying evolvability based on systems theoretic stability. Science
of Computer Programming 76(12), 1210–1222 (2011)

9. Mannaert, H., Verelst, J., Ven, K.: Towards evolvable software architectures based
on systems theoretic stability. Software: Practice and Experience 42(1), 89–116
(2011)

10. Simon, H.A.: The architecture of complexity. Proceedings of the American Philo-
sophical Society 106(6), 467–482 (1962)

11. The Open Group: The open group architecture framework (togaf) version 9 (2009),
http://www.opengroup.org/togaf/

12. Schöenherr, M.: Towards a Common Terminology in the Discipline of Enter-
prise Architecture. In: Feuerlicht, G., Lamersdorf, W. (eds.) ICSOC 2008. LNCS,
vol. 5472, pp. 400–413. Springer, Heidelberg (2009)

13. Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Gariapathy, S., Holley, K.: Soma:
a method for developing service-oriented solutions. IBM Syst. J. 47, 377–396 (2008)

14. Lucke, C., Krell, S., Lechner, U.: Critical issues in enterprise architecting - a liter-
ature review. In: Proceedings of AMCIS 2010 (2010)

15. Delic, K., Riley, J., Faihe, Y.: Architecting principles for self-managing enterprise
it systems. In: Proceedings of the Third International Conference on Autonomic
and Autonomous Systems (2007)

16. Lam, W.: Technical risk management on enterprise integration projects. Commu-
nications of the Association for Information Systems 13, 290–315 (2004)

17. Meilich, A.: System of systems (sos) engineering and architecture challenges in a
net centric environment. In: Proceedings of the International Conference on System
of Systems Engineering (2006)

18. Rhodes, D., Ross, A., Nightingale, D.: Architecting the system of systems enter-
prise: Enabling constructs and methods from the field of engineering systems. In:
Proceedings of the 3rd Annual IEEE Systems Conference (2009)

19. Dreyfus, D.: Information system architecture: Toward a distributed cognition per-
spective. In: Proceedings of ICIS 2007 (2007)

20. Kaisler, S.H., Armour, F., Valivullah, M.: Enterprise architecting: Critical prob-
lems. In: Proceedings of the 38th Hawaii International Conference on System Sci-
ences, vol. 8. IEEE Computer Society, Los Alamitos (2005)

http://www.opengroup.org/togaf/

90 P. Huysmans

21. Shah, H., Kourdi, M.: Frameworks for enterprise architecture. IT Professional 9(5),
36–41 (2007)

22. Armour, F., Kaisler, S., Getter, J., Pippin, D.: A uml-driven enterprise architecture
case study. In: Hawaii International Conference on System Sciences, vol. 3, p. 72b
(2003)

23. Zachman, J.A.: A framework for information systems architecture. IBM Syst.
J. 26(3), 276–292 (1987)

24. Sowa, J.F., Zachman, J.A.: Extending and formalizing the framework for informa-
tion systems architecture. IBM Syst. J. 31(3), 590–616 (1992)

25. Huysmans, P.: On the Feasibility of Normalized Enterprises: Applying Normalized
Systems Theory to the High-Level Design of Enterprises. PhD thesis, University
of Antwerp (2011)

26. Ross, J., Beath, C.M.: Sustainable it outsourcing success: Let enterprise architec-
ture be your guide. MIS Quarterly Executive 5(4), 181–192 (2006)

27. Camuffo, A.: Rolling out a “world car”: globalization, outsourcing and modularity
in the auto industry. Korean Journal of Political Economy 2, 183–224 (2004)

28. Djelic, M.L., Ainamo, A.: The coevolution of new organizational forms in the fash-
ion industry: A historical and comparative study of france, italy, and the united
states. Organization Science 10(5), 622–637 (1999)

29. Miozzo, M., Grimshaw, D.: Modularity and innovation in knowledge-intensive busi-
ness services: It outsourcing in germany and the uk. Research Policy 34(9), 1419–
1439 (2005)

30. Salvador, F., Forza, C., Rungtusanatham, M.: Modularity, product variety, pro-
duction volume, and component sourcing: theorizing beyond generic prescriptions.
Journal of Operations Management 20(5), 549–575 (2002)

31. Thyssen, J., Israelsen, P., Jørgensen, B.: Activity-based costing as a method for
assessing the economics of modularization–a case study and beyond. International
Journal of Production Economics 103(1), 252–270 (2006)

32. Argyres, N.S.: The impact of information technology on coordination: Evidence
from the b-2 “stealth” bomber. Organization Science 10(2), 162–180 (1999)

33. Yin, R.K.: Case Study Research: Design and Methods, 3rd edn. Sage Publications,
Newbury Park (2003)

34. Ould, M.: Business Process Management, a Rigorous Approach. The British Com-
puter Society, Swindon (2005)

35. Huysmans, P., Ven, K., Verelst, J.: Designing for innovation: using enterprise on-
tology theory to improve business-it alignment. In: Proceedings of the 1st In-
ternational Conference on IT-enabled Innovation in Enterprise (ICITIE 2010),
pp. 177–186 (2010)

36. Johnson, P., Johansson, E., Sommestad, T., Ullberg, J.: A tool for enterprise archi-
tecture analysis. In: IEEE International Enterprise Distributed Object Computing
Conference, pp. 142–154. IEEE Computer Society, Los Alamitos (2007)

37. Van Nuffel, D.: Towards Designing Modular and Evolvable Business Processes.
PhD thesis, University of Antwerp (2011)

38. De Bruyn, P., Mannaert, H.: Towards applying normalized systems concepts to
modularity and the systems engineering process. In: Proceedings of the Seventh
International Conference on Systems, ICONS (2012)

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 91–112, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Calculating the Application Criticality
and Business Risk from Technology Obsolescence

Cameron Spence1,*, Vaughan Michell2, and Daniel Spence3

1 Capgemini, 1 Forge End, Woking, Surrey, UK
cameron.spence@capgemini.com

2 Informatics Research Centre, Henley Business School, University of Reading, UK
v.a.michell@reading.ac.uk

3 Independent Consultant
dj.spence88@gmail.com

Abstract. The problem of technology obsolescence in information intensive
businesses (software and hardware no longer being supported and replaced by
improved and different solutions) and a cost constrained market can severely
increase costs and operational, and ultimately reputation risk. Although many
businesses recognise technological obsolescence, the pervasive nature of
technology often means they have little information to identify the risk and
location of pending obsolescence and little money to apply to the solution. This
paper presents a low cost structured method to identify obsolete software and
the risk of their obsolescence where the structure of a business and its
supporting IT resources can be captured, modelled, analysed and the risk to the
business of technology obsolescence identified to enable remedial action using
qualified obsolescence information. The technique is based on a structured
modelling approach using enterprise architecture models and a heatmap
algorithm to highlight high risk obsolescent elements. The method has been
tested and applied in practice in three consulting studies carried out by
Capgemini involving four UK police forces. However the generic technique
could be applied to any industry based on plans to improve it using ontology
framework methods. This paper contains details of enterprise architecture meta-
models and related modelling.

Keywords: Enterprise Architecture, Application Criticality, Obsolescence,
Risk, Modelling.

1 Introduction

As the pace of technology introduction quickens and IS becomes more pervasive the
rate of change of technology and the forced obsolescence has also increased [1]. This
very pervasiveness increases the connectedness and reliance on specific technology
which can quickly become obsolete [2]. This increases both the cost of maintaining
existing and or replacing the technology [3]. Doing nothing is not possible due to risk

* Corresponding author.

92 C. Spence, V. Michell, and D. Spence

of loss of service provision and hence the management of obsolescent technology is
becoming critical. The current economic focus on austerity has increased the need for
better obsolescence awareness and management as businesses seek to consolidate and
reduce their costs whilst maintaining their technology competitiveness.

Much of the existing literature regarding obsolescence has focused on its definition
and relationship to specific business contexts. [4] has focused on evaluation of the
performance and eventual failure of obsolescent infrastructure facilities (e.g. public
works, sewers, pavements etc) and the need to establish reliable design service life
metrics. [3] explores the obsolescence of electronic integrated circuit components
such as DRAMs, via an adapted stages of growth model that includes obsolescence.
Whelan [2] discusses the impact of obsolescence on stock management and the value
and effective mathematical productivity of stock ranging from computers to industrial
machinery and its relationship to computer usage. Feldman [5] looked into the
problems of obsolescence with respect to the parts procurement lifecycle to improve
algorithms for parts forecasting and management. [6] examined strategies for
evolving existing software and included obsolescence as a factor along with quality,
economic and data value in their metrics. Similarly [7] includes technical
obsolescence as a factor in a similar paper on software productivity and reuse. Little
work has been conducted to develop a practical methodologies approach to finding
obsolete software and related components.

Obsolescence results in an inability to meet performance criteria [4], for example
when the requirement has moved on, or the technology has been superseded. Our
concern is with the former. We propose an approach to identifying and managing
obsolescence and risk using a simplified enterprise architecture and heat map
approach that can be scaled to different size companies. The approach has also been
successfully trialled to identify and manage IS infrastructure obsolescence in a
specific business case of a police service where low cost obsolescence risk assessment
was required to support change decisions.

There are three main issues to address when considering the impact of technology
obsolescence on a business: we need to define obsolescence and its impact factors; we
need a way of identifying the other aspects of technology and services impacted by
that obsolescence; and finally, we need a way of identifying the greatest risk to the
business from those obsolete technologies and services. These three issues are
addressed sequentially in the next section on approach.

2 Approach

2.1 Obsolescence and Impact

What Is Obsolescence?
As Sandborn [8] suggests definitions of software obsolescence for commercial off the
shelf (COTS) products vary, as there is often a big gap between the end of the product
sale date and the date of the end of the support for the product. The withdrawal of
support however, may not lead to immediate loss or degradation, but acts as a trigger
for the business to make the necessary decisions to preserve the capability provided

Calculating the Application Criticality and Business Risk from Technology Obsolescence 93

by the technology, subject to its criticality. For our purposes we will define
obsolescence as the loss or impending loss of support for technology that reduces its
ability to continue to function in the organisation [5]. Whilst the date of end of
production of the technology and the date of end of support is reasonable to identify,
the way in which the technology will be affected by degraded or no further support is
more difficult to determine and will depend on the capabilities and resources of the
organisation as well as the technology being considered [4].

The Impact of Obsolescence
Many organisations are running with a technology estate that is substantially obsolete.
This causes problems of cost and risk. Increased costs are introduced by (a) the
requirement for special support arrangements; (b) the extra development required to
provide applications that can cope with obsolete technology (a notable case in point is
the continued use of Internet Explorer 6 and Windows 2000 in the UK public sector);
and (c) difficulty/high cost of obtaining support for very out-of-date technologies
(both hardware and software).

Many factors may contribute to a high cost of ownership of an IT estate; it is often
instructive to keep recursively asking the typical root cause analysis question “why” to
determine root causes [9]. For example, high costs associated with running applications
in data centres could be traced back to costs for the actual infrastructure (servers,
switches etc.) and costs for the datacentres themselves (cooling, power, rent etc.) For the
servers, then costs could be associated with both software and hardware – and the costs
for both of these are likely to go up over time as the products on which they are based
start to become obsolete and thus the subject of special (custom) support arrangements.
Eventually the products involved will become unsupportable, which transforms an issue
with high cost into an operational risk to the business. A root cause analysis in graphical
format made this very apparent and understandable to the client:

Fig. 1. TCO Root Cause Analysis

94 C. Spence, V. Michell, and D. Spence

The increased costs and the lack of knowledge results in increased operational risk of
service failure, especially where obsolete technology is a key part of the core service
delivery capability of the business. This operational risk if not attended to can then
result in reputational risk where business service performance is badly impacted by
IS/IT failure. With no action there is a risk of degradation of business service capability
through the inability to process and disseminate quality (correct, complete and timely)
data and information through the enterprise. However, it is not enough simply to
identify the technology components that are subject to obsolescence. We also need to
understand how the technology supports the business and specifically the processes and
services delivered by it. Critically we also need to quantify the importance of the
relationship between in order to understand the impact of the obsolescence.

Open Source
Where a particular technology (typically software) is ‘open source’, this can lead to
complications in the availability of support. The key question to consider however
remains the same. If there is an issue with the technology, then who, if anyone, is
obligated to address that issue. Some open source technology can be obtained from
organisations who then offer support for that technology (for example, Red Hat offer
support for their distribution of Linux). In this situation, arguable the situation with
that open source technology is not really any different from a commercial product.

Where an open source technology has been adopted without a support contract as
described above, then the organisation using that technology should then be asking
the question: “what happens if we find a problem with it?”. It might be that the
organisation may have its own developers capable of rectifying the problem directly,
perhaps in source code, in which case the organisation is support the technology
directly, and the situation is the same as for any other technology (such as an
application) developed and supported in-house.

If the technology is not supported externally or internally then one could argue that
the technology is therefore already unsupported, and that as a consequence it should
be seen as at risk.

Chain of Factors
A near obsolete IS component will be dependent on a cascade or chain of factors that
determine the level of risk and impact of the obsolescence as seen in the four step
chain in Figure 2.

To characterise the risk impact of the obsolescence we need to consider a number
of factors. In the following discussion we will use the notation as follows:

Number of applications in total is denoted by M, thus ∃ applications A1, A2, A3, ... , AM-1, AM (1)

Number of business services in total is denoted by N, thus ∃ business services S1, S2, S3, ... , SN-1, SN (2)

We start the analysis by focusing on the business services that give context to the
analysis of the supporting applications.

Calculating the Application Criticality and Business Risk from Technology Obsolescence 95

Criticality of the Business Service
We denote this by CSn where 1 ≤ n ≤ N.

This measure reflects how important a specific business service is in delivering
value to a customer. Whilst many services provided by the business to the customer
may be related as critical as they relate to the core business offering of the company
others may be less critical. We need a measure of the criticality to the business
that will reflect an impact on the potential obsolescence of the application/technology
that supports it. This measure we will choose to make numeric, in the range 0 to 1, so
that the most critical business services have the highest rating.

For example, in the policing sector, perhaps one of the most important services
provide by the police is the ability to respond to an incident (perhaps a member of the
public calling 999, for a life-or-death situation). This might be rated as having a
criticality of 0.9 or 1.0 (or could be expressed as a percentage, i.e. 90% or 100%).
Therefore, we have:

 ∀ n where 1 ≤ n ≤ N, 0 ≤ CSn ≤ 1 (3)

Clearly we would not expect to find any services that had a criticality value of 0 as
that would be imply that the customers (internal or external) derived no value
whatsoever from the provision of that service. For reasons that will become clear
shortly, it is worth also viewing this as a simple one-dimensional matrix of business
service criticality values:

Fig. 2. Matrix of business service criticality values

Criticality of the Application to the Business Service
This is a relative criticality value – it depends on which business service is being
referred to, and so we will denote this by

CRm,n where 1 ≤ m ≤ M and 1 ≤ n ≤ N

In order to understand the impact of any obsolescence on the business we must
understand how important the application/IS service is to the provision of specific
services to the end customer of the business. For example if the service to the end
customer is entirely provided by an IS application, and there is no possibility of the
service continuing in the absence of the application (for example, by a manual
workaround), then obviously the application is completely critical to the provision of
that service.

96 C. Spence, V. Michell, and D. Spence

Where a workaround is possible, but that might result in a degradation of service
of, say, 60%, then we might choose to assign a criticality value of 60% (or 0.6) to the
relationship between the service and the application. Generally speaking, the more
important an application is to a business service, the higher value we would expect to
see.

If the application is useful to the provision of the service, but only plays a minor
role (a typical example would be email, which would be used by many business
services), then a lower criticality value would be used, for example 0.2.

Clearly, not every application will be required by every business service, and so
there will be many instances (ordered pairs of m and n) where CAm,n is 0 (meaning no
correlation between the particular pair of application and business service).

Therefore, we have: ∀ m where 1 ≤ m ≤ M and ∀ n where 1 ≤ n ≤ N, 0 ≤ CSm,n ≤ 1 (4)

This can be viewed in a matrix representation, where each cell in the matrix
represents the correlation between a business service (the columns) and the
applications (the rows):

Fig. 3. Matrix representation of application criticality values relative to the business services

It should be noted that this kind of mathematical treatment of the criticality of the
applications in the context of the various business services that they support
represents at this stage a theory as to how the method used thus far in practice may be
further developed; the case studies discussed below have not in practice used this kind
of algorithm (because the mathematics was developed afterwards), but have instead
used a much simpler treatment that assigns a simple “High / Medium / Low”
criticality rating to each application.

The combination of the criticality of a business service and the criticality of a
particular application to that business service can be combined to give a view as to the
overall criticality of the applications to the business. As a simple example, if
application Am is used in the provision of business services Sa and Sb, and no other
business services, then we can see that

 CRm,a > 0 and CRm,b > 0 and CRm,n = 0 ∀ n ≠ a and n ≠ b (5)

Calculating the Application Criticality and Business Risk from Technology Obsolescence 97

We can then calculate a contextual criticality value of application Am from these two
business services, which we will denote as CAm:

 CAm = CRm,a . CSa + CRm,b . CSb (6)

For example:

If business service Sa is deemed to have a criticality of 80%; and
application Am is deemed to be 70% critical to that service; and
business service Sb is deemed to have a criticality of 30%; and
application Am is deemed to be 90% critical to that service;

we would then calculate the criticality of application Am to be:

0.8 x 0.7 + 0.3 x 0.9 = 0.56 + 0.27 = 0.83

It can be seen from the above example that the highest contributions to the criticality
value come from products where both multiplicands are close to unity; in other words,
where a service is very important, and an application is very important to that service.
This is the reason why we have selected this particular treatment.

This can be generalised to include all the business services that may (or may not)
rely to an extent on a particular application, to produce the following definition for the
criticality to the business of a particular application:

CA CR , . CSN

(7)

This can also be viewed as the product of the two matrices shown above, symbolically
as correlation times service list equals service risk, in matrix form as:

Fig. 4. Refined application criticality calculated as the product of the application/service
correlation values and the service criticality values

The product of these two matrices yields a list of the criticality to the business of each
of the applications (A1 has criticality CA1, A2 has criticality CA2, and so on).

Thus, instead of what has been done to date in the studies mentioned below, where
an absolute criticality value has been assigned to individual applications (based perhaps
upon the perception of one individual), we have been able to produce a numerical value
that sums the contribution made of that application across the whole set of services

98 C. Spence, V. Michell, and D. Spence

provided by the business. This recognises the fact that although applications may be
important in providing a service, they are not necessarily essential.

There are also other factors that could play a part in this, although further work is
necessary to determine the best way of doing this:

Criticality of the Obsolescence, Co
Even if the obsolete technology is supported after obsolescence the service provided
by it might be degraded, as it may not be able to provide the IS service performance
of newer or competitor products. Hence we need a metric to define the level of
degradation in some way, either as high/medium/low, or ideally in numeric form so
that it can be added to the above mathematical treatment. The factors affecting risk
can be divided into a number of areas:

• Increased risk of technology/application failure due to incompatibility and
reliability issues due to obsolescence

• Lack of effectiveness e.g. due to lack of functionality compared with non
obsolete technology (relates to effectiveness of service provision)

• Lack of problem solving and knowledge support due to withdrawing of
supplier/manufacturer resources and skills necessary to provide them

Further work is required to determine a way in which this particular factor can be
factored into an algorithm for business impact.

Proximity to Obsolescence, Po
The proximity of the technology component to obsolescence will depend on both the
vendor support and maintenance to allow the product to function after obsolescence,
although an upgrade path from a manufacturer or provider may allow the degradation
to be reduced. We need factor in the degree of risk associated with the closeness to
obsolescence. For example an announcement of pending replacement of a technology
from a provider may be a starting point, with gradual reduction in support and perhaps
eventual complete deletion of the product and its support.

Application Obsolescence Risk Factor, Af
We propose that the overall risk factor for the obsolescence of a specific application is
therefore the combination of the relevant metrics Po, Co, and CAm, possibly a product
of them, although the method has not been developed sufficiently to indicate how best
to do this.

Calculating the Application Criticality and Business Risk from Technology Obsolescence 99

Fig. 5. Obsolescence Impact Factor Chain

2.2 Services and Technology Impacted

Identifying the Services and Technology Impacted
Information-intensive industries have very large amounts of IS/IT with attendant
software and technology hardware and component risks. If the maturity of the
architectural and operational processes have not kept track with the size of their IT
estate, then there may be a lack of understanding of exactly what technology the
organisation has, who is using it, and what its vulnerabilities are.

Understanding the IT Estate
The term “IT Estate” is generally used to refer to the complete portfolio of technology
used within a business – including applications and infrastructure. If the knowledge of
such an IT Estate is not encapsulated and maintained in some kind of ‘living
repository’, then the lack of corporate knowledge can be exacerbated over time by
changes to personnel within the organisation, so that key knowledge as to what exists
and for what purpose, is lost as people’s roles change. The federated nature of some
large organisations can make this problem worse, because from the outset, no one part
of the organisation ever has a complete picture of the business and technology
architecture. The best that can be achieved in these circumstances is that individual
parts of the organisation try to document solution architectures that capture their piece
of the picture. A lack of knowledge of an Enterprise Architecture can make it hard to
plan for the future, because without knowing the ‘as-is’ state, it is difficult to know
what needs to change in order to achieve a ‘to-be’ state. Thus, it is possible to view
the ‘status quo’ as a safer option, putting off the required upgrade and modernisation
projects. Without knowledge of what applications are being used, by whom, and their
underlying technologies, it is not possible to get a view as to the risks being posed to
the business due to this obsolescence.

100 C. Spence, V. Michell, and D. Spence

Case Studies
The aims of the first project, from the client’s perspective, was (a) to understand the
potential cost savings associated with rationalising the application platforms, and (b)
understand the degree of risk associated with technology, and provide a roadmap for
addressing it. Thus, the idea of heat-mapping the business risk is highly relevant
because it provides part of the ‘business case’ for making the relevant upgrade /
replacement projects to address the risks thus identified.

The aim of the second and third projects was to seek cost savings by identifying
duplicate applications. However, the heatmaps were also relevant here, both in pointing
out risks to the businesses, as well as assisting in the choice of applications to retain.

Enterprise Architecture Meta Model
It is necessary to gain an understanding of the business technology architecture estate
in enough detail so that, obsolete technology types can be traced through to the
applications relying upon them, and thence through to the business services and
functions that in turn rely upon those applications. Many enterprise architecture
models have been developed to make sense of business and technology components
found across a variety of businesses [10] and aligning business services with IT
capability [11]. Our specific issue requires a focused model that is easy for business
and technical users to understand, but also shows dependencies between components.
For this reason we have adapted and extended part of the TOGAF [12] content meta-
model to build a set of artefacts and inter-relationships that are particularly relevant to
our area of interest.

Fig. 6. Infrastructure-focused metamodel

Calculating the Application Criticality and Business Risk from Technology Obsolescence 101

Although standards exist for modelling Enterprise Architectures, it is frequently
necessary to adapt those standards for different client situations. Reasons for this
include: (a) the client prefers a particular standard (e.g. TOGAF or Zachman [13] or
one of their own frameworks and (b) there are requirements for a particular
engagement that demand a change to the standard model. In the first example
discussed in this paper, the client was particularly interested in rationalising the
application platforms rather than the applications themselves. Therefore, there was a
heavy focus on infrastructure. The model used in the first project is illustrated below:

Figure 3 represents the actual model that was used to capture, analyse and report
on various aspects of the IT portfolio for the first police force. With this particular
client, two aspects of the model (shown in grey) were not used. For the other studies,
heavy use was made of the IS Services component, critical for application de-
duplication, and in the final study, an additional element was added for modelling the
information stored within the applications (related to Master Data Management).

Parts of this model had previously been used with another client to carry out an
analysis of their application portfolio with a view to rationalising that portfolio (removing
duplication). This gave rise to the two elements focusing on Applications (or
Application Instances) and IS Services (both taken from TOGAF). By definition, any
two applications that are labelled as offering the same IS Services are duplicates; and one
of the aims of that study was to aim for a ‘minimum set’ of applications that gave the full
range of required IS Services (functionality).Part of the business case for rationalising
applications is of course the cost of running those applications, and part of the cost of an
application comes from the servers hosting that application. Servers are of course a
particular kind of infrastructure, which is why the model includes infrastructure. This
infrastructure resides in physical locations, which are important to know for a number of
reasons, especially when part of the rationalisation design includes closing one or more
data centres. This has no bearing on the question of obsolete technologies, but was
critical to the analysis and creation of the rationalisation design.

The servers in the IT estate for any client will have installed on it a number of
software products, for example applications, databases, middleware, operating
systems, monitoring and so on. In addition, the servers themselves are of course
products from a hardware manufacturer. Thus, the products need to include a list of
all software and hardware in the IT estate. In practice, the terminology used to
describe a particular product may be very different to the terminology used by auto-
discovery software, which sometimes goes to the extent of looking at versions of
libraries installed on the servers (for example, Dynamic Link Libraries, or DLL files,
on Windows platforms). Examples of this are:

Table 1. Sample Product – Product Alias Mappings

Product Product Alias
Windows Server 2003
Enterprise x64 (SP2)

Microsoft(R) Windows(R) Server 2003
Enterprise x64 Edition Version 5.2.3790
Build 3790 SP2

RDBMS 10g Release 2 Oracle Database Server 10.2.0.4.0
Solaris 10 SunOS 5.10

102 C. Spence, V. Michell, and D. Spence

When looking up products on manufacturers’ websites, the term in the left column
needs to be used. However, when auto-discovery tools are run, the terms in the right
column are those that are generated.

With this particular client, there were several thousand servers that needed to be
matched up to products. Using this intermediate mapping meant that this could be
done largely automatically. Once it had been calculated to which product a particular
‘product alias’ corresponded, then that mapping was automatically applied to all
instances of that technology.

Another reason for the use of this intermediate layer was the fact that in many
cases, there were multiple pieces of software that corresponded to the same product,
which were ‘discovered’ separately. For example, two separate pieces of software
were discovered (“Oracle Net Services (TNS) Listener 9.0.1” and “Oracle Database
Server 9.0.1.0.0”) that both corresponded to the same product (“RDBMS 9i Release
1”).This intermediate mapping of product aliases provides the ability to cope with
multiple synonyms and multiple pieces of technology that belong to a single product.

The intention of the elements artefact was to allow the modelling of major
components of the application (e.g. web tiers, database tiers, business logic tiers,
storage allocations) so that they could then be rationalised. This is not relevant to the
obsolescence discussion, and was in fact only used (and renamed to application
components) in the final study.

The final pieces of the model are both drawn from TOGAF. The organisation
information allows us to represent the structure of an organisation, which is where the
users of the applications reside. This is also useful for representing external
organisations, for example the vendors of the products, or those involved in some way
in supporting the applications.

The business services are the services provided by the business to its client.
Clearly defining business services is necessary in order to be able to make a
correlation between the services provided by the business and the IT that supports
those services. Also the criticality of the service to the end client, will in turn affect
the importance of the IT service and hence the impact and risk associated with the
obsolescence of the technologies and components.

Populating the Model
The model was implemented using a particular modelling tool, MooD®. The
functionality provided by this tool was critical to our ability to import, analyse and
report on the data that was captured.

Many different information sources were used to populate this model, including
but not limited to Active Directory, Tideway (auto-discovery software), a
Configuration Management DataBase (CMDB) product and various spreadsheets
populated manually.

The applications were populated using a combination of reports from the CMDB
and spreadsheets provided by the client. The infrastructure was populated using a set
of spreadsheets from various sources. The product aliases were populated using
spreadsheets from the auto-discovery software. The products were populated partially
manually, interpreting the product alias lists in the light of the team’s knowledge of
the marketplace, and partially using data from the CMDB.

Calculating the Application Criticality and Business Risk from Technology Obsolescence 103

The organisation was populated using information on the client’s public web site.
The business services were populated from a generic UK police business service

architecture published by the National Police Improvement Agency, called the
“Policing Activities Glossary” [14]. This provided a hierarchical representation of
the services provided by UK police forces, which we represented graphically in the
modelling tool.

Tracing Obsolescence to Applications
Obsolescence as applied to technology (such as hardware and software products),
using the definition previously offered, means “loss or impending loss of support for
hardware or software products that reduces their ability to continue to function in the
organisation”. These products are produced by various organisations (vendors /
manufacturers), who often specify a date beyond which support for their products will
either cease, or become more restricted (and perhaps substantially more expensive).
Some manufacturers specify “End of Support” (EOS) and “End of Extended Support”
(EOES) dates for their products.

Fig. 7. Obsolescence from Products to Infrastructure

Starting from the products, therefore, and knowing that several products may relate
(via the Product Alias intermediate layer) to a piece of Infrastructure (a server), then it
is possible to say, for each piece of infrastructure, what is the earliest EOES date for
any product that relates to that piece of infrastructure. For example, if that
infrastructure was based upon a server model that had an EOES date of February
2013, but ran Windows 2000 that had an EOES date of 13th July 2010, then we can
say that the earliest EOES date of these is the latter – so give the infrastructure as a
whole, an EOES date of 13th July 2010. In other words, there is something about this
piece of infrastructure that will be difficult and/or costly to support beyond that date.

The next step is to roll this up into the application layer:

Fig. 8. Obsolescence from Infrastructure to Application Instances

104 C. Spence, V. Michell, and D. Spence

Following the same approach, we can look at all the servers that are associated
with a particular application (or instance of an application), and pick the earliest
EOES date for each of these servers. In other words, we are saying that for a
particular application, there is a particular piece of technology (software or hardware
product) somewhere in the supporting infrastructure that will make application
difficult and/or costly to support beyond that date.

2.3 Identifying Business Risk

An approach to identifying business risk from IT in general is discussed in [15]. This
paper suggests a four-quadrant model for categorising risk, including notably the
“avoid/prevent risks” which are viewed as being most critical because of the impact to
the business should they be triggered, as well as the probability of them occurring. In
this particular paper, we are focusing on the risk to the business from technology
obsolescence that would fall within this particular quadrant. In other words, these are
risks that a business can and should manage down to an acceptable level, and perhaps
would if those business stakeholders were actually aware of their existence in the first
place.

The use of ‘heatmaps’ is appropriate to demonstrate business risk, if backed up by
proper evidence.

Algorithm for Generating a Risk Heatmap
The heat map, a colour-coded display of the intensity of a result has been used in
various forms [16] to provide immediate visual understanding of multi-objective
optimisation processes. It has been widely used in consultancy and problem solving as
a means of highlighting critical obsolescence information in an easy to understand
form [17] [18].

As discussed in the risk section, whilst the Obsolescence Impact Factor Chain
helps to cover a range of appropriate factors, this can quickly become complex and
costly and hence we adopt a simplified approach that assumes full support is provided
by the IT service and focuses only on the criticality of the service and whether the
technology is deemed obsolescent as defined by the client.

Continuing the algorithm started in the IT domain, it is possible to look at all the
applications used to support a particular business service, at each of their EOES dates,
which in turn are rolled up from infrastructure and products. We ask the question “are
there any applications required by this service where the EOES date has already
passed?”. Where this is true, this obviously indicates that there is a degree of risk
associated with the continued operation of that business service. The mapping of
applications to business services can either be done via the organisation structure (i.e.
for each organisational unit, determine which applications they use; and also which
business services they provide) – used for our second study with the two police
forces; or in the case of first study for a single police force, they were able to provide
a direct correlation between applications and business services, as shown below.

However the mapping is done, the following algorithm was then used, which relies
upon knowing the EOES dates for all the support applications, along with an
indication of their criticality to the business (1 being the most important).

Calculating the Application Criticality and Business Risk from Technology Obsolescence 105

Fig. 9. Obsolescence from Applications to Business Services

FOR each business service
IF ∃ supporting applications of criticality 1 and EOES
date in the past
THEN
 SET risk to MAJOR RISK
ELSE
 IF ∃ supporting applications of criticality > 1 and
EOES date in the past
 THEN
 SET risk to SOME RISK
 ELSE
 IF we cannot associate any infrastructure with this
service
 THEN
 SET risk to UNKNOWN RISK
 ELSE
 SET risk to NOT AT RISK
 ENDIF
 ENDIF
ENDIF

Fig. 10. Algorithm for Calculating Business Risk in a Heatmap

It should be stressed here that the criticality of each application used in the above
algorithm is a non-contextual, non-numeric one, and ignores the criticality of the
application to all the business services that it supports. The contextual criticality
values discussed previously represent new thinking carried out added after these
particular case studies were carried out.

106 C. Spence, V. Michell, and D. Spence

Like all of the algorithms in the model, this calculation was automated for all of the
business services using the tool’s ability to calculate and store intermediate results,
including where necessary the ability to ‘call out’ to Excel. For example, the above
algorithm looks like:

Fig. 11. Automated calculation of business risk using MooD

Risk Heatmap for a Police Force Requirement
By applying the above algorithm to each business service (from the PAG) in turn, it
was possible to assign a risk value to each business service. The modelling tool was
able to assign a colour to the business services dependent upon the risk value, and so
the resulting heatmap looked like the following:

Fig. 12. Business Risk Heatmap (1)

Calculating the Application Criticality and Business Risk from Technology Obsolescence 107

This is for the first of the three studies: for a single police force, using a direct
mapping from applications to business services. Every application was either at risk
through some obsolete technology, or there was insufficient knowledge of the IT
portfolio to determine whether there was any risk or not.

For the second study, an indirect mapping was used, via the organisation structure.
The results obtained from this were:

Fig. 13. Business Risk Heatmap (2)

This was caused by a “corporate application“ – an application used, or at least
available for use, by the whole of the organisation: in this case, a corporate gazetteer,
considered to be a top-priority application. What the current model (i.e. the one used
when these studies were carried out) does not take into account is the fact that an
application may be essential to one business service but only useful to another (a
concept that features in the mathematical treatment explored earlier in this paper,
carried out after the studies had been completed).

To avoid the issue of a ‘corporate application’ causing the whole of a heatmap to
snap to a single colour1 in this fashion, for the third study we resorted to a direct
mapping from applications to business services. The heatmap thus obtained is as
follows:

1 For the purposes of this paper, the colours originally used in the studies have been converted

to grayscale; the original studies used red to denote large risk, green for no risk and other
colours for intermediate levels of risk.

108 C. Spence, V. Michell, and D. Spence

Fig. 14. Business Risk Heatmap (3)

The metamodel used in the third study was significantly enhanced from that used
in previous studies, including the concepts of information (addressing Master Data
Management) and also application tiers (components).

The ‘white’ or ‘unknown’ areas in the heatmap are as valuable as the ‘shaded’ or
‘known’ ones. This is because they highlight areas where the organisation does not
have sufficient knowledge of their IT estate even to have a view as to the potential
risk to their business.

The value of these models lies in their ability to convey a technical concept (out-

of-date products) and the link through the Enterprise Architecture model to business
stakeholders in terms that are easy to understand and completely non-technical. Thus,
this is a useful tool in demonstrating the risk component of the business case for
making the necessary changes to the IT portfolio, to remove this risk.

3 Lessons Learnt

3.1 Building the Model

In order to carry out this kind of analysis, two things are needed: firstly, the raw
information, with consistent terminology and all the relationships between the various
kinds of information; and secondly, some kind of toolset to enable the import,
analysis and reporting of that information. For organisations with a relatively mature
EA function, the first of these should not present a huge challenge, however in many

Calculating the Application Criticality and Business Risk from Technology Obsolescence 109

cases even getting the client to produce a single definitive list of applications is
difficult. It is also difficult to see how this could be done without some kind of
modelling and requirements capture tool. However, one approach we are exploring is
the development of an ontology chart based on organisational semiotics principles.

The MEASUR [19] model approach offers a structured method to interview and
model the ontology of an organisation and has been used in related work applying the
techniques to enterprise architecture and consulting modelling frameworks [20].
Excel can handle two- or perhaps three-dimensional data with the help of pivot data;
complex meta-models such as Figure 3 are probably beyond the ability of such tools
to handle. A more robust technology is required, ideally layered over some kind of
relational database to ensure the integrity of the data. Some candidate tools can be
seen in [21].

3.2 What We Got Out of It

The teams involved in each of the projects felt that by the end, a good deal of
evidence had been collected that gave a very strong business case to continue work
with each respective client, to address the cost and risk issues identified so clearly by
the work so far. In the second and third studies, the approach from the first study was
readily re-usable, using the easy to understand heat-map, even though the meta-model
was significantly different for subsequent studies. The resulting heat-map for the pair
of police forces was all red (second study), due to a critical corporate application,
used across the whole of the organisations that uses Oracle 8. This ‘all-red’ picture
gave a very powerful and well-received message to the client about the urgency of the
situation. The meta-model used for the second case study, built using lessons learnt
from the first, omitted the infrastructure and technology catalogues, relating
applications directly to underlying products. It also differed in that the linkage from
applications to business services went via the organisation structure. This linkage was
much simpler in the first study, going directly from applications to business services.
Nevertheless, the heat-map was still able to be calculated in a similar fashion. The
third study learnt from the second in that the linkage was made directly from
applications to business services in order to avoid a problem with a corporate
application presenting an unnecessarily pessimistic picture.

3.3 Illustration of Extending the Studies to Incorporate In-Context
Application Criticality Values

The following discussion gives a brief example of how the above client data might be
modified to use a more complex algorithm, described previously, that takes into
account the correlation between applications and the services in which they are used.

For corporate applications (applications used in every business service), there is a
likelihood that many such applications (for example, email, corporate intranet) are not
absolutely key to many services, and as such may have a criticality correlation value
of something low like 0.1. Given that the majority of the services will themselves
have relatively low criticality values (let’s assume an average of 0.2), then with a total

110 C. Spence, V. Michell, and D. Spence

of 45 business services (in the policing sector), we would end up with something in
the region of 0.1 x 0.2 x 45, which is close to 0.5.

By contrast, consider a specialised application such as command and control,
which might support critical services (CS≈1) like ‘respond to incidents’ and perhaps
two more. These kind of applications are likely to have high correlation values (very
hard to run a police control room efficiently using bits of paper, although not totally
impossible), and so the criticality is likely to be, say, 2 or 3 services, perhaps with a
total CS value of 2, with applications that are very important to it (say, 0.8), yielding a
criticality value of 1.6.

Thus, the combination of a highly critical service accompanied by an application
that is highly critical to that service is more than capable (assuming we don’t have too
many business services defined!) of avoiding getting swamped, in terms of the
magnitude of the result thus obtained, by a multitude of non-critical applications
supporting non-critical services. However, the utility of this enhanced method would
undoubtedly benefit from testing with a real client.

3.4 What the Clients Got Out of It

The main deliverable being sought by the clients, regarding obsolescence, was a view
as to the motivation (business case) for making change. The use of the business
heatmap, along with the TCO root cause analysis (shown above) and other financial
information outside the scope of this paper, provided a clear business case at low cost.
The approach and model are capable of being extended to accommodate increased
technology and risk complexity if required.

4 Conclusions

Having used the approach successfully in three separate cases with very different
meta-models, albeit only in a single industry sector, we have concluded that the
approach is readily re-usable.

The library of product obsolescence data captured during the first engagement was
very useful in terms of shortening the research required during the subsequent
engagements to produce the obsolescence heat-maps.

5 Future Work

In retrospect, the terminology used for some of the artefacts in the meta-model need
further work. In particular, the word ‘technologies’ is perhaps misleading in the way it
is being used in this kind of analysis. Further research is required of existing
architecture frameworks and methods to identify more commonly used and industry
accepted terms that enable new clients to quickly come up to speed. As mentioned we
are considering ontological analysis for specific industry terminologies to identify the
relevant terms [22]. Also we intend to review and expand the obsolescence impact
factor chain and investigate how this could be embedded in developing architecture

Calculating the Application Criticality and Business Risk from Technology Obsolescence 111

based consulting analysis frameworks, potentially using the Capgemini Integrated
Architecture Framework or the BTS analysis framework [20] which has embedded
structures for identifying the relationships between business services and IS services
and their criticality.

In particular, more work is called for in terms of perhaps quantifying the extra
factors in the obsolescence chain discussed earlier, and it would be helpful to test the
enhanced method (mathematical treatment of contextual application criticalities) in
real client scenarios.

Trademarks
MooD is a registered trademark of MooD Enterprises Ltd. in the United Kingdom
and/or other countries.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States and/or other countries.

Oracle and Solaris are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

References

1. Bulow, J.: An Economic Theory of Planned Obsolescence. The Quarterly Journal of
Economics 101(4), 729–749 (1986)

2. Whelan, K.: Computers, Obsolescence, and Productivity. SSRN eLibrary (2000)
3. Solomon, R., Sandborn, P.A., Pecht, M.G.: Electronic part life cycle concepts and

obsolescence forecasting. IEEE Transactions on Components and Packaging
Technologies 23(4), 707–717 (2000)

4. Lemer, A.C.: Infrastructure Obsolescence and Design Service Life. Journal of
Infrastructure Systems (December 1996)

5. Feldman, K., Sandborn, P.: Integrating technology obsolescence considerations into
product design planning. In: Proceedings of the ASME 2007 International Design
Engineering Technical Conferences & Computers and Information in Engineering
Conference, IDETC/CIE 2007 (DETC2007/DFMLC-35881) (2007)

6. Aversano, L., et al.: Supporting Decisions on the Adoption of Re-engineering
Technologies. In: Eighth Euromicro Working Conference on Software Maintenance and
Reengineering (CSMR 2004), Tampere, Finland (2004)

7. Boehm, B.: Managing software productivity and reuse. Computer 32(9), 111–113 (1999)
8. Sandborn, P.: Software Obsolescence - Complicating the Part and Technology

Obsolescence Management Problem. IEEE Trans. on Components and Packaging
Technologies 30(4), 886–888 (2007)

9. Ginn, D., Streibel, B., Varner, E.: The design for six sigma memory jogger: tools and
methods for robust processes and products, 1st edn. Goal/QPC, Cop., Salem (2004)

10. Lagerstrom, R., et al.: A method for creating Enterprise Architecture metamodels - applied
to systems modifiability analysis. International Journal of Computer Science and
Applications 6(5), 98–120 (2009)

11. Strnadl, G.F.: Aligning Business and IT: The Process-Driven Architecture Model. In: The
International Conference on Computer as a Tool, EUROCON 2005 (2005)

12. OpenGroup, The Open Group Architectural Framework (TOGAF 9) (2009)

112 C. Spence, V. Michell, and D. Spence

13. Noran, O.: An analysis of the Zachman framework for enterprise architecture from the
GERAM perspective. Annual Reviews in Control 27(2), 163–183 (2003)

14. NPIA. Police Activities Glossary (2011), http://pra.npia.police.uk/ (cited
April 7, 2011)

15. Halliday, S., Badenhorst, K., von Solms, R.: A business approach to effective information
technology risk analysis and management. Information Management & Computer
Security 4(1), 19–31 (1996)

16. Wilkinson, L., Friendly, M.: The History of the Cluster Heat Map. The American
Statistician 63(2), 179–184 (2009)

17. Miyake, M., Mune, Y., Himeno, K.: Strategic intellectual property portfolio management-
Technology appraisal by using the technology heat map, in NRI Papers, Nomura Research
Institute, p. 15 (2004)

18. Detre, J., et al.: Scorecarding and Heat Mapping: Tools and Concepts for Assessing
Strategic Uncertainty. International Food and Agribusiness Management Review 9(1)
(2006)

19. Stamper, R.: Social norms in requirements analysis: an outline of MEASUR. In:
Requirements Engineering 1994, pp. 107–139. Academic Press Professional, Inc. (1994)

20. Liu, K., Sun, L., Jambari, D., Michell, V., Chong, S.: A Design of Business-Technology
Alignment Consulting Framework. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 422–435. Springer, Heidelberg (2011)

21. Short, J. Wilson, C.: Gartner Assessment of Enterprise Architecture Tool Capabilities,
Gartner (2011)

22. Guarino, N.: Formal Ontology and Information Systems. In: Proceedings of FOIS 1998,
Trento, Italy. IOS Press, Amsterdam (1998)

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 113–129, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Method for Business Model Development

Lucas O. Meertens, Maria-Eugenia Iacob, and Lambert (Bart) J.M. Nieuwenhuis

University of Twente, PO Box 217, Enschede, The Netherlands
{l.o.meertens,m.e.iacob,l.j.m.nieuwenhuis}@utwente.nl

Abstract. Currently, business modelling is more an art, than a science, as no
widely accepted method exist for the design and specification of business
models. This could be an important reason why many IT innovation projects
fail to be absorbed in a real life setting. We propose a structured method to
create “as-is” business models in a repeatable manner. The method consists of
the following steps: identify the involved roles, recognize relations among
roles, specify the main activities, and quantify using realistic estimates of the
model. The resulting business model reflects the current situation. This is the
basis for further analysis of possible business cases, scenarios, and alternative
innovations, which may enable successful projects to be implemented, instead
of ending on a shelf after the pilot stage. We illustrate the proposed method by
means of a case in the healthcare sector.

Keywords: Business modelling, modelling method, business models.

1 Introduction: Business Modelling Background

A business model is critical for any company, and especially for any e-business. Its
importance has been recognized over the past few years by several authors that have
created different business model frameworks aimed at identifying the main components
of a business model (for example, Osterwalder [1]; for an overview, see Pateli & Giaglis
[2], and Vermolen [3]). However, the state in which this field finds itself is one of
“prescientific chaos” [4]: several competing schools of thought exist, and progress is
limited because of a lack of cumulative progress. Because of this, no clear and unique
semantics are agreed upon in the research related to business models. The very concept
of “business model” is associated with many different definitions [3]. The components
of such a business model differ significantly from one approach to another.
Furthermore, to the best of our knowledge, no widely accepted methodological
approaches exist in the literature for the design and specification of business models [3].
This is in contrast with well-established approaches, such as TOGAF [5], and Unified
Process [6], which have emerged in the other, yet closely related, areas of enterprise
architecture and information system design.

This lack of cohesion in the field clearly diminishes the added value of business
models for organizations and makes business modelling an art, rather than a science.
This, and not using business models altogether, are two of the most important reasons
why many IT projects end after the pilot stage, and fail to be absorbed in a real life

114 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

setting, which makes them unable to fulfil their apparent promise. Since the context of
our research is the design and implementation of services in the healthcare sector, we
particularly look at this issue in relation with healthcare IT projects. A majority of them
fail in some sense, according to Kaplan and Harris-Salmone [7]. They recognize that,
for systems to be successful, design methods must include organizational, behavioural,
cognitive, and social factors. Also, a systematic review of cost effectiveness of
telemedicine by Whitten et al. [8] concludes that "there is no good evidence that
telemedicine is a cost effective means of delivering health care" (neither do they present
evidence that it is not cost effective). While we do not go into any further detail whether
or not telemedicine is cost effective, their review also shows that only a low ratio (55
out of 612) of studies present cost/benefit data. Even from this small amount, only a few
did this according to the standards otherwise applied in medicine. This shows the lack of
attention the financial aspect of innovations is getting.

In the case of telemedicine, previously published research by Broens et al. [9]
indicates one of the reasons for the pilot-illness, namely that financial aspects and
organizational aspects are considered only after the pilot phase.

While IT in healthcare is a special case, success of IT implementation projects in
other sectors is not much higher. Several studies have reported failure rates between
40% and 84% [7] [10]. The CHAOS reports of the Standish Group are the most well-
known ones these, especially as the report from 1994 reported the highest failure
rates [11]. It reported that only 16.2% of projects were completed on time, on budget,
and met user requirements, while 31.1% of projects failed outright.

This state of affairs motivates us to propose a method, which enables the
development of business models in a structured and repeatable manner. Thus, the
contribution of this paper is three-fold:

• A business model development method;
• A definition of the concept of business model and the identification of its core

elements, captured by the deliverables of the method steps;
• An illustration of the method, by means of a case study from the healthcare

domain.

The structure of the paper is as follows. Section 2 focuses on the discussion of the
main concepts addressed in the paper, and positions our approach with respect to the
existing design science and method engineering literature. In Section 3, we describe
the steps of our business model development method. In Section 4, we demonstrate
the method by means of a case study concerning the development of a quantitative
business model of the elderly care in the Netherlands. Finally, we conclude our paper
and give pointers to future work in Section 5.

2 Theoretical Background

A simple analysis of the two words “business model” already gives an idea of what a
business model is about. On the one hand, there is “business”: the way a company
does business or creates value. On the other hand, there is “model”: a
conceptualization of something – in this case, of how a company does business.

 A Method for Business Model Development 115

We extend this common and simplistic interpretation of a business model as “the
way a company earns money”, into a broader and more general definition of the
concept: “a simplified representation that accounts for the known and inferred properties
of the business or industry as a whole, which may be used to study its characteristics
further, for example, to support calculations, predictions, and business transformation.”

The last part of the definition above, namely the indication of the possible uses of a
business model is of particular importance in the context of this paper. The method
we propose not only facilitates the development of such a design artefact – a business
model – but also takes a business engineering perspective. Thus, its application will
result in two (or more) business models: one that reflects the “as-is” situation of the
business and one or more alternative “to-be” business models that represents possible
modifications of the business as result of, for example, adoption of innovative
technologies or more efficient business processes.

To the best of our knowledge, such a method does not exist yet for what we define
as business models [3]. In the remainder of this section, we position our work in the
context of design science, method engineering, and methodology-related
contributions in the field of business modelling.

2.1 Design Science

A business modelling method can be seen as a design-science artefact. It is the
process of creating a product, the business model. We use the seven guidelines of
Hevner et al. [12] to frame how we use the methodology engineering approach from
Kumar & Welke [13] to create our method.

The first guideline advises to design as an artefact. Design-science research must
produce a viable artefact in the form of a construct, a model, a method, or an
instantiation. As said, we produce a method.

The second guideline tackles relevance. The objective of design-science research is
to develop technology-based solutions to important and relevant business problems.
Viable business models lie at the heart of business problems. However, our solution is
not yet technology-based. Partial automation of the method is left for future research.

The utility, quality, and efficacy of a design artefact must be rigorously
demonstrated via well-executed evaluation methods. We demonstrate the business
modelling method using a case study.

Research contribution is the topic of the fourth guideline. Effective design-science
research must provide clear and verifiable contributions in the areas of the design
artefact, design foundations, and/or design methodologies. We provide a new artefact
to use and study for the academic world. The methodology may be extended,
improved, and specialized.

Guideline five expresses the scientific rigour: Design-science research relies upon
the application of rigorous methods in both the construction and evaluation of the
design artefact. We aim to be rigorous through using the methodology engineering
approach. Existing, proven methods are used as foundation and methods where
applicable. Evaluation was handled in the third guideline.

The sixth guideline positions design as a search process. The search for an
effective artefact requires using available means to reach desired ends while satisfying

116 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

laws in the problem environment. Whenever possible, we use available methods for
each of the steps. Following the methodology engineering approach helps us to satisfy
the laws for creating a new methodology.

The final guideline instructs us to communicate our research. Design-science research
must be presented effectively both to technology-oriented as well as management-
oriented audiences. This article is one of the outlets where we present our research.

2.2 Methodology Engineering

Methodologies serve as a guarantor to achieve a specific outcome. In our case, this
outcome is a consistent and better-informed business model. We aim to understand (and
improve) how business models are created. With this understanding, one can explain the
way business models help solve problems. We provide a baseline methodology only,
with a limited amount of concepts. Later, we can extend, improve, and tailor the
methodology to specific situations or specific business model frameworks.

The business modelling method has both aspects from the methodology
engineering viewpoint: representational and procedural [13]. The representational
aspect explains what artefacts a business modeller looks at. The artefacts are the input
and deliverables of steps in the method. The procedural aspect shows how these are
created and used. This includes the activities in each step, tools or techniques, and the
sequence of steps.

2.3 Business Modelling Related Work

Several contributions in the area of business modelling are related and relevant in the
context of this research. Montilva and Barrios [14] recognize the idea that information
system design should consider the enterprise context of these systems, and that it should
be enhanced with business modelling elements. They propose three types of models,
two of which we discuss as well, namely that of a business model (the “BMM product
model”), and that of a process model that specifies the steps to be taken to produce the
business model. However, a significant difference exists between these results and our
research, caused by the very definition of the business model concept. Thus, Montilva
and Barrios’ business model concept is closer to that of an enterprise architecture model
than to our understanding of the business model concept, both in terms of content and in
level of detail. Montilva and Barrios’ business model contains rather detailed
specifications of elements such as goals, events, business rules and processes, business
objects, and technologies, which are typically captured by enterprise modelling
languages, such as ArchiMate [15]. Furthermore, the process model that Montilva and
Barrios propose only focuses on the design of a business model with the sole purpose of
serving as source of requirements for the future IS design.

Barrios and Nurcan [16] follow the same line of thinking in another paper, which
focuses on the relationship between business models and enterprise information
systems in a changing environment. Nevertheless, neither of the papers mentioned
above addresses the issue of quantifying business models and using them to evaluate
the business value of the future system by means of one or more business cases or
cost/benefit analysis.

 A Method for Business Model Development 117

3 Defining the Business Modelling Method

We define five individual steps of business modelling, which the rest of this section
elaborates. To describe each step, we use the following elements:

• inputs of the steps,
• activities to perform during the steps,
• possible techniques to use during the steps’ activities, and
• deliverables resulting from the steps.

Each step in the proposed method requires specific methods, techniques, or tools that
are suitable for realizing the deliverables. We will mention examples of those.
However, others may also be useful and applicable, and it is not our aim to be
exhaustive in this respect. Table 1 shows an overview of our method.

3.1 Create As-Is Model

As mentioned in the previous section, our business model development method takes
a business engineering perspective. Thus, the first four steps of our method focus on
creating a business model that reflects the current state of the business. Therefore,
steps one through four create an as-is model.

Step 1: Identify Roles. Identifying the relevant parties (which we refer to as roles)
involved in a business model should be done as systematically as possible. The aim is
completeness in this case. The business modeller must carry out a stakeholder analysis, to
identify all roles. The input to this step includes for example, documentation, domain
literature, interviews, experience, and previous research. The output is a list of roles.

Table 1. Business Modelling Method.

Step Inputs Techniques or Tools Deliverables

Identify
Roles

Documentation, domain
literature, interviews,
experience, previous
research

Stakeholder analysis [17] Role list

Recognize
Relations

Role list, Stakeholder
map, value exchanges

e3-value [18] Role-relation
matrix

Specify
Activities

Role-relation matrix,
Role list, business
process specifications

BPM methods, languages and
tools

List of activities

Quantify
Model

Process specifications,
accounting systems and
annual reports

Activity based costing Total cost of the
business “as-is”

Design
Alternatives

As-is business model,
Ideas for innovations
and changes

Business modelling method
(steps 1 to 4), Brainstorming

One or more
alternative
business models

Analyse
Alternatives

Alternative business
models

Sensitivity analysis,
technology assessment,
interpolation, best/worst case
scenarios

Business case
for each
alternative

118 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

For an example stakeholder analysis method, we refer to Pouloudi & Whitley [17].
They provide an interpretive research method for stakeholder analysis aimed at inter-
organizational systems, such as most systems where business modelling is useful. The
method consists of the following steps:

1. Identify obvious groups of stakeholders.
2. Contact representatives from these groups.
3. (In-depth) interview them.
4. Revise stakeholder map.
5. Repeat steps two to four, until...

Pouloudi and Whitley do not list the fifth step, but mention that stakeholder analysis
is a cumulative and iterative approach. This may cause the number of stakeholders to
grow exponentially, and the question remains when to stop. Lack of resources may be
the reason to stop the iterative process at some point. Closure would be good, but
seems hard to achieve when the model is more complex. Probably, the modeller has
to make an arbitrary decision. Nevertheless, one should choose stop criteria (a
quantifiable measure of the stakeholder’s relevance for the respective business model
and a threshold for the measure) before starting the process [19].

“Revising the stakeholder map” (step four) could use extra explanation, which can
be found in the description of the case Pouloudi and Whitley use to explain the
method. The stakeholders gathered from interviews can be complemented with
information found in the literature. The business modeller then refines the list of
stakeholders by focussing, aggregating, and categorizing.

Step 2: Recognize Relations. The second step of our method aims to discover the
relations among roles. The nature of these relations may vary substantially, but it
always involves some interaction between the two roles, and may assume some
exchange of value of some kind. Much of the work and results from the previous step
can be reused for this as input. In theory, all roles could have relations with all other
roles. However, in practice, most roles only have relations with a limited number of
other roles. Usually, these relations are captured in a stakeholder map, which often
follows a hub-and-spoke pattern, as the focus is on one of the roles. This pattern may
be inherent to the approach used, for example if the scope is defined as a maximum
distance from the focal role.

To specify all relations, we suggest the use of a role-relation matrix with all roles
on both axes as technique. Of this matrix, the cells point out all possible relations
among the roles. Each of the cells could hold one or more relations between two roles.
Assuming that roles have a limited number of relations, the role-relation matrix will
be partially empty. However, one can question for each empty cell whether a relation
is missing or not.

Cells above and below the diagonal can represent the directional character of
relations. Usually, relations have a providing and consuming part. The providing part
goes in the upper half of the matrix, and the consuming part in the bottom half. This
especially helps with constructions that are more complex, such as loops including
more than two roles.

The output of this step is a set of relations.

 A Method for Business Model Development 119

Step 3: Specify Activities. For a first qualitative specification of the business model,
the next step is to determine the main activities. Relations alone are not sufficient: the
qualitative model consists of these main business activities (business processes) too.
These activities originate from the relations identified in the previous step. Each of
the relations in the role-relation matrix consists of at least one interaction between two
roles, requiring activities by both roles. Besides work and results from the previous
steps, existing process descriptions can be valuable input. Techniques from business
process management may be used.

The output from these first three steps is a first qualitative business model,
including roles, relations, and activities. It reveals what must happen for the business
to function properly.

Step 4: Quantify the Model. Quantifying the business model helps us to see what is
happening in more detail and compare innovations to the current situation. To turn the
qualitative model into a quantitative model, numbers are needed. The numbers are
cost and volume of activities (how often they occur). Together, these numbers form a
complete view of the costs captured by the business model.

Several sources for costs and volumes are possible, such as accessing accounting
systems or (annual) reports. The resulting quantitative business model shows the as-is
situation.

3.2 Develop the To-Be Model

The as-is model, created in previous steps, is suitable for analysis of the current state
only. However, from the as-is model, it is possible to derive alternatives. Such
alternatives can be created to assess how reorganisations, innovations, or other
changes influence the business. These are the to-be models.

Step 5: Design Alternatives. From here on, we aim to capture a future state of the
business in a business model. To make predictions, the model may need further
instantiations. Each instantiation is an alternative development that may happen (to-
be). Using techniques such as brainstorming and generating scenarios, business
modellers create alternative, qualitative, future business models. These alternatives
are used to make predictions. Usually, such alternatives are built around a (technical)
innovation. This may include allocating specific roles to various stakeholders. A base
alternative, which only continues an existing trend without interventions, may help
comparing the innovations. Next to the business model, ideas for innovations serve as
input. The resulting alternative business models show future (to-be) possibilities.

Step 6: Analyse Alternatives. The final step for a business modeller is to analyse the
alternative business models. Besides the qualitative business models, several sources of
input are possible to quantify the alternatives. Applicable techniques include sensitivity
analysis, technology assessment, interpolation, and using best/worst case scenarios.
Each alternative can be tested against several scenarios, in which factors change that are
not controllable. We can use the models to predict the impact. This step and the
previous one can be repeated several times to achieve the best results. The final output is
a business case (including expected loss or profit) for each alternative.

120 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

4 The U*Care Case: Demonstrating the Business Modelling
Method

U*Care is a project aimed at developing an integrated (software) service platform for
elderly care [20]. Due to the aging population and subsequently increasing costs,
elderly care - and healthcare in general - is one of the areas where governments fund
research. However, many projects never get further than pilot testing. Even if the pilot
is successful, the report often ends on a shelf. By applying the business modelling
method, we aim at avoiding this, and putting the U*Care platform into practice.
Specifically, our goal is to show how the technological innovations built in the
U*Care platform influence the business model for elderly care.

4.1 Identify Roles

The first step of the stakeholder analysis, leads to the identification of several groups
of obvious stakeholders. The groups include all the project partners, as their
participation in the project indicates their stake. Another group includes the main
users of the platform: the clients and employees of the elderly care centre.

After identifying the obvious stakeholders, we contacted and interviewed
representatives from all the project partners and several people in the care centre.
These interviews did not explicitly focus on stakeholder analysis, but served as a
general step in requirements engineering. Table 2 displays a partial list of identified
stakeholders after steps two and three of Pouloudi and Whitley’s method for
stakeholder analysis have been performed [17].

Table 2. Partial list of stakeholders after step three of Pouloudi and Whitley's method for
stakeholder analysis [17]

Clients Care (& wellness) providers
Volunteer aid Hospitals
Nurses Elderly care centres
Doctors Psychiatric healthcare
Administrative employees Homecare
General practitioners Technology providers
Federal government User organizations
Local government Insurance companies

The fourth step includes a search for stakeholders in the literature. Besides

identifying the extra stakeholders, the literature mentioned the important issue that some
actors in the list are individual players, while other actors are organizations or other
forms of aggregations (groups). Consequently, overlap can occur in the list of actors.

The final action of the first iteration is not a trivial one. Refining the stakeholder list
requires interpretation from the researcher. Different stakeholder theories (for example,
from E. J. Emanuel & L. L. Emanuel [21], J. Robertson & S. Robertson [22], and
Wolper [23]) act as tools to minimize subjectivity.

 A Method for Business Model Development 121

The long list of identified stakeholders is not practical to continue with and has
much overlap. Therefore, we grouped the stakeholders into a limited set of roles,
shown in Table 3. This set of high-level roles is an interpretive choice. The small
set helps to keep the rest of case clear instead of overcrowded. The larger set is kept
in mind for the to-be situation to find potential “snail darters”: stakeholders with
only a small chance of upsetting a plan for the worse, but with huge results if they
do [24]. The small set of stakeholders was subject to prioritization based on
Mitchell et al [25]. While the prioritization is subjective, it shows that all roles in
the list are important.

4.2 Recognize Relations

The current situation consists of five categories of interacting roles. Table 3 shows
them on both axes. The cells show relations between the roles. While the care
provider has relations with all the other roles, it is not a clear hub-and-spoke pattern.
Several of the other roles have relations outside the care provider.

Table 3. Role-relation matrix

 Consumer

Provider

Care
consumers

Care
providers

Technology
providers

Government Insurers

Care
consumers

X
Pay for care

 Pay for AWBZ
Pay for WMO

Pay for
insurance

Care
providers

Provide ZVW
care
Provide
WMO care
Provide
AWBZ care

X Pay for (use
of)
technology
or service

Provide care
to citizens

Provide
care to
insured

Technology
providers

 Provide
technology or
service

X

Government Provide
AWBZ
insurance
Provide WMO
insurance

Pay for
WMO care to
citizens

 X Pay for
AWBZ
care to
citizens

Insurers Provide
insurance
Refund AWBZ
and ZVW care

 Ensure AWBZ
care for
citizens

X

122 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

The relations show that a main goal of the business is to provide care to the care
consumer. The insurers and government handle much of the payment. Other
(regulating) roles of the government remain out of scope, as the case is complex
enough as it is.

The insurers handle most of the payments. The patient has to pay the care provider
after receiving care. The patient can then declare the costs to the insurance company,
which refunds the patient. The patient pays a premium to the insurance company.
According to the Dutch Healthcare Insurance Act (Zorgverzekeringswet, ZVW),
every citizen has to have basic care insurance (ZVW). For “uninsurable care”
(including most home healthcare, similar to USA Medicare), the Dutch government
set up a social insurance fund, termed General Exceptional Medical Expenses Act
(Algemene Wet Bijzondere Ziektekosten, AWBZ). All employees and their
employers contribute towards this fund. The AWBZ is similar to the regular insurance
companies, except for collecting the premium. The premium is paid through taxation
by the government, which outsources most of the further actions to insurers. A similar
system is set up for wellness homecare, such as cleaning. This is the Social Support
Act (Wet Maatschappelijke Ondersteuning, WMO). In contrast to the AWBZ, the
government takes care of all WMO actions itself, through its municipalities.

Several issues exist, which we do not handle in detail here. For example, it is
inherent to insurance that not all people who pay premium are also (currently) care
consumers.

4.3 Specify Activities

Most of the relations between the roles in Table 3 are described using verbs. This
signals that they are (part of) behaviour. Any relation not beginning with a verb is a
candidate for rephrasing or being split into smaller parts.

Besides the relations, we focus on AWBZ to identify the main activities of the care
providers. “Providing care” has four top-level activities: personal care, nursing,
guidance/assistance, and accommodation. Each of these activities consists of many
detailed activities. Table 5 provides an example of a further refinement and specification
of the personal care activities. We obtained these activities from documents made
available by the government for reimbursement purposes [26]. Fig. 1 shows the
qualitative model for AWBZ care in the Netherlands, as described above.

4.4 Quantify the Model

As we are interested in the actual healthcare and not so much in the insurance
business, we zoom into the care provided by the care providers to the care consumers,
as Fig. 1 highlights. We scope this further to the AWBZ care that a home for the
elderly provides. This is mainly personal care, and accommodation. Accommodation
has two components, similar to those you would find in a hotel: food-related and
living quarters. Personal care consists of more activities, which Table 5 shows.

Fig. 1. A model for healthca

For the U*Care case, w
elderly from Orbis Medisc
manipulated the numbers.
department houses 63 peo
AWBZ care. This means th
per day. Therefore, the ann
million (= 63 people x 365

The total costs, which ca
€1.8 million. This include
living quarters), as well as
The difference, of €0.5 mil
costs that cannot be related
the overarching organizatio

Indications of volume (
uses for reimbursement pu
With this information, we

A Method for Business Model Development

are in the Netherlands, including actors, relations, and activitie

we use the numbers of one department of a home for
ch en Zorgconcern. For confidentiality reasons, we h

However, they still represent such a department. T
ople, with an average care indication of “four” for
hat the care provider gets approximately €100 per per
nual revenues of this department are approximately €
days x €100).
an be related directly to this department, are approximat
es personal care, accommodation (both food-related
s management. Table 4 shows these costs per compon
llion between the revenues and the total costs, comes fr
d directly to the department. It includes costs incurred

on, such as cost of capital and other overhead costs.
(times a day, and minutes spend), which the governm
urposes, provide a further step to quantifying the mod
e can assign costs to each of these activities, which

123

es

the
have
The
the

rson
2.3

tely
and
ent.
rom

d by

ment
del.
the

124 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

Table 4. Costs for a department in a home for the elderly (x €1,000)

Food-related 250

Living quarters 510

Management 100

Personal care 910

Total costs 1,770

caregivers perform. We focus on this, as it is the largest part of the costs (95% of the
personal care costs arise from human resources), and this is the area on which
innovations can have the greatest influence.

The caregivers in this department combined work for approximately 30 FTE (Full
Time Equivalent, which is 36 hours per week in the Dutch healthcare). So a total of
approximately 154 hours can be spent per day (= 30 FTE x 36 hours / 7 days per
week). The last column in Table 5 is the amount of hours caregivers spend on each
activity per day. Adding up the hours in this last column leads to approximately 145
hours. This leaves 9 hours per day for things not included in Table 5, such as
administration and changing rooms.

Table 5. Personal care activities according to [26], extended with the amount of elderly in need
of each activity, leads to the total amount of time spend on each activity daily

Activity Actions Time in
minutes

Frequency
per day

Elderly
in need

Hours
per day

Washing Whole body 20 1x 21 7

Parts of body 10 1x 21 3,5

Dressing (Un)dress completely 15 2x 21 10,5

Undress partially 10 1x 21 3.5

Dress partially 10 1x 21 3.5

Put on compression stockings 10 1x 21 3.5

Take off compression
stockings

7 1x 21 2.45

Getting in and out
of bed

Help getting out of bed 10 1x 21 3.5

Help getting into bed 10 1x 21 3.5

Help with afternoon rest (for
example, get onto the couch)

10 1x 21 3.5

Help with afternoon rest (for
example, get off the couch)

10 1x 21 3.5

 A Method for Business Model Development 125

Table 5. (Continued)

Eating and drinking Help with eating cold meals
(excluding drinking)

10 2x 10 3.33

Help with eating warm meal
(excluding drinking)

15 1x 21 5.25

Help with drinking 10 6x 10 10

Change position sitting/lying 20 3x 6 6

Going to toilet or changing incontinence material 15 4x 10 10

Support excretion Stoma 10-20 4x 10 10

Catheter 10 4x 10 6.7

CAPD/CCPD 30 4x 3 6

Tube feeding 20 2x 3 2

Medication Present medicine 5 3x 48 12

Administer medicine (oral) 5 3x 15 3.75

Apply medical patch 5 2x 10 1.7

Administer eye, ear, or nose
drops. Administer medicine
(non-oral)

10 2x 6 2

Nebulise medicine 20 1x 3 1

Personal care for
teeth, hair, nails,
and skin

Care for teeth 5 2x 21 3.5

Care for hair 5 1x 31 2.6

Care for nails 5 1x (per
week)

31 0.4

Inspect skin 10 1x 10 1.7

Care for skin 10 1x 6 1

Attaching and
removing prosthetic
limb

Attaching limb 15 1x 6 1.5

Removing limb 15 1x 6 1.5

Teaching and
supervising personal
care activities

Teaching the above activities 30 per
week

As above 10 0.7

Supervise to ensure quality of
self-care

30 per
week

Spread
over week

63 4.5

An average hour of care costs approximately €15 (=€910,000 x 95% / 30 FTE / 52

weeks per year / 36 hours per week). Together with the hours spent per day, we can
now calculate the costs of each activity. For example, the most expensive activity is
presenting medicines. A total of 12 hours is spend on this each day, therefore the costs
per day are approximately €180 (= 12 hours x €15 per hour). This is approximately
8% of the total costs of personal care each day.

126 L.O. Meertens, M.-E

The same calculations ca
the home for the elderly, su
business model of the curre

4.5 Design Alternatives

To come up with alterna
constructed several scenari
one or more innovations for

For this case, we focus o
medicine dispenser. This in
elderly on the right time and
the attention of the elderly
Optionally, it can notify a ca

Fig. 2. Alternative model f

The expectation of the s
medicine dispenser will dec
caregivers spend on presen
dispenser instead.

E. Iacob, and L.J.M. Nieuwenhuis

an be made for the other activities and for the other cost
uch as accommodation. It results in a complete quantitat
ent situation. For this case, we do not go into further deta

s

atives, we conducted interviews, held workshops,
ios for the U*Care project. Each of the scenarios featu
r a home for the elderly [27][28].
n the scenario that includes the introduction of an electro
nnovative dispenser can present pre-packaged medicine
d in the right dose. Using sound and light signals, it attra
y. Besides this, it registers when the medicine is tak
aregiver if the medicine is not taken on time.

for presenting medicine with an electronic medicine dispenser

scenario designers is that the introduction of the electro
crease the costs of care. To achieve this, it reduces the ti
nting medicine, as elderly can get the medicines from

s of
tive
ail.

and
ures

onic
e to
acts
ken.

r

onic
ime
the

 A Method for Business Model Development 127

Of course, the introduction of the dispenser also brings along new costs. The
dispenser has to be obtained, maintained, configured, and refilled. The dispenser will
be leased from and maintained by a technology provider. The caregivers get to do
extra activities in the form of configuring and refilling the dispenser for the elderly.
Fig. 2 shows a model of the new situation.

4.6 Analyse Alternatives

From a management perspective, the dispenser should only be introduced if the
benefits exceed the costs. For this case, we only include monetary benefits and costs,
as these can be quantified in a straightforward fashion. In contrast, potential benefits,
such as quality of care, are hard to quantify. We assume the introduction of the
electronic medicine dispenser does not result in a change in the quality of care.

The benefits arise from a reduction of the time spend on presenting medicine to the
elderly. It is estimated that 36 (75%) of the elderly that currently get their medicines
presented can make use of the dispenser. Therefore, the dispenser reduces the time
spend on presenting medicine by 9 hours per day (= 12 hours x 75%). This amounts to
€135 saved each day (= 9 hours x €15 per hour) or €49,275 per year.

The costs of the innovation come in two forms. First, a fee paid to the technology
provider for leasing and maintaining the dispenser. Second, time spend by the
caregivers on the extra activities of configuring and refilling the dispenser. The fee for
the technology provider is €750 per year per dispenser. This amounts to €27,000 per
year (=€750 x 36 dispensers). The time spend on the extra activities is estimated to be
on average about an hour per day. We base this on configuring and refilling of the
dispenser once a week, which takes twice the time that presenting the medicine
normally takes. Therefore, the costs of this time is approximately €5,475 (=€15 x
365 days). The total costs for introducing the electronic medicine dispenser are
approximately €32,475 (=€27,000 + €5,475).

As the (monetary) costs of the introduction (€32,475) are less than the benefits
(€49,275), the business case seems to be positive (by €16,800). Therefore, we can
recommend introducing the electronic medicine dispenser.

4.7 Evaluating the Case

The presented case shows how the business modelling method results in a quantitative
business model of the current situation, as well as the target situation.

The case first provides a high-level model of the elderly healthcare business in the
Netherlands. To assess the particular innovation, we went into depth on only a small
area, a single department of a home for the elderly. For other innovations, maintaining
a higher-level view may be necessary.

The case is simplified and it also contains estimations. For example, we simplified
the case by leaving out actors, such as the pharmacist, and start-up costs, such as
training costs for the dispenser. Estimations include numbers that were not available,
such as the amount of elderly that need an activity, or exact times spend on them.

128 L.O. Meertens, M.-E. Iacob, and L.J.M. Nieuwenhuis

5 Conclusions: A Future for Business Modelling

This paper makes three contributions. Primarily, we created a business model
development method. Secondarily, we defined the concept of business model and
identified its core elements, captured by the deliverables of the method steps. Finally,
we demonstrated the method by means of a case study from the healthcare domain.

The business modelling method provides a way to create business models.
Innovators can apply the steps to create business cases for their ideas systematically.
This helps them to show the viability and get things implemented.

We provide a new design-science artefact to use and study for the academic world.
As business modelling has several goals, conducting only the first few steps may be
enough. For example, if your goal is to achieve insight in the current state only, the
last two steps are not useful.

The business modelling method may be extended. Situational method engineering
seems suitable for this [29]. For example, for information system development, it is
interesting to research if steps towards enterprise architecture can be made from
business models. This can be seen as a higher-level form of, or preceding step to, the
BMM proposed by Montilva and Barrios [14]. On the other side, a step could be
added before identifying roles. Other domains may require different improvements.

In addition, the steps in the method can be further specified. The steps can be
detailed further. One of the ways to do this is to tailor the techniques at each of the
steps of this method. In the future, new tools and techniques may help provide partial
automation.

Acknowledgements. This work is part of the IOP GenCom U-CARE project, which
the Dutch Ministry of Economic Affairs sponsors under contract IGC0816.
Especially, we thank Orbis Medisch en Zorgconcern for their contributions.

References

1. Osterwalder, A.: The Business Model Ontology - a proposition in a design science
approach (2004),
http://www.hec.unil.ch/aosterwa/PhD/Osterwalder_PhD_BM_Ontol
ogy.pdf

2. Pateli, A.G., Giaglis, G.M.: A research framework for analysing eBusiness models. Eur. J.
Inf. Syst. 13, 302–314 (2004)

3. Vermolen, R.: Reflecting on IS Business Model Research: Current Gaps and Future
Directions. In: Proceedings of the 13th Twente Student Conference on IT, University of
Twente, Enschede, Netherlands (2010)

4. Kuhn, T.S.: The Structure of Scientific Revolutions. University of Chicago Press (1970)
5. The Open Group: TOGAF Version 9. Van Haren Publishing (2009)
6. Scott, K.: The unified process explained (2002)
7. Kaplan, B., Harris-Salamone, K.D.: Health IT Success and Failure: Recommendations

from Literature and an AMIA Workshop. Journal of the American Medical Informatics
Association 16, 291–299 (2009)

8. Whitten, P.S., Mair, F.S., Haycox, A., May, C.R., Williams, T.L., Hellmich, S.: Systematic
review of cost effectiveness studies of telemedicine interventions. British Medical
Journal 324, 1434 (2002)

 A Method for Business Model Development 129

9. Broens, T.H.F., Huis in’t Veld, R.M.H.A., Vollenbroek-Hutten, M.M.R., Hermens, H.J.,
van Halteren, A.T., Nieuwenhuis, L.J.M.: Determinants of successful telemedicine
implementations: a literature study. J. Telemed. Telecare 13, 303–309 (2007)

10. McManus, J., Wood-Harper, T.: Understanding the sources of information systems project
failure. Management Services 51, 38–43 (2007)

11. Johnson, J.: The CHAOS Report. The Standish Group International, Inc. (1994)
12. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Systems

Research. MIS Quarterly 28, 75–105 (2004)
13. Kumar, K., Welke, R.J.: Methodology Engineering: a proposal for situation-specific

methodology construction. In: Challenges and Strategies for Research in Systems
Development, pp. 257–269. Wiley, Chichester (1992)

14. Montilva, J.C., Barrios, J.A.: BMM: A Business Modeling Method for Information
Systems Development. CLEI Electronic Journal 7 (2004)

15. Iacob, M., Jonkers, H., Lankhorst, M., Proper, H.: ArchiMate 1.0 Specification. Van Haren
Publishing, Zaltbommel (2009)

16. Barrios, J., Nurcan, S.: Model Driven Architectures for Enterprise Information Systems.
In: Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 3–19. Springer,
Heidelberg (2004)

17. Pouloudi, A., Whitley, E.A.: Stakeholder identification in inter-organizational systems:
gaining insights for drug use management systems. European Journal of Information
Systems 6, 1–14 (1997)

18. Gordijn, J.: Value-based Requirements Engineering: Exploring Innovative e-Commerce
Ideas (2002)

19. Pouloudi, A.: Stakeholder Analysis for Interorganisational Information Systems in
Healthcare (1998)

20. U*Care Project: U*Care, http://www.utwente.nl/ewi/ucare/
21. Emanuel, E.J., Emanuel, L.L.: What is Accountability in Health Care? Ann. Intern.

Med. 124, 229–239 (1996)
22. Robertson, J., Robertson, S.: Volere: Requirements specification template. Technical

Report Edition 6.1, Atlantic Systems Guild (2000)
23. Wolper, L.F.: Health care administration: planning, implementing, and managing

organized delivery systems. Jones & Bartlett Publishers (2004)
24. Mason, R.O., Mitroff, I.I.: Challenging strategic planning assumptions: theory, cases, and

techniques. Wiley (1981)
25. Mitchell, R.K., Agle, B.R., Wood, D.J.: Toward a theory of stakeholder identification and

salience: Defining the principle of who and what really counts. Academy of Management
Review, 853–886 (1997)

26. Ministry of Health, Welfare and Sport: Beleidsregels indicatiestelling AWBZ 2009 (2008)
27. van’t Klooster, J.W., Beijnum, B.J.V., Pawar, P., Sikkel, K., Meertens, L., Hermens, H.:

Virtual communities for elderly healthcare: user-based requirements elicitation.
International Journal of Networking and Virtual Organisations 9, 214 (2011)

28. Zarifi Eslami, M., Zarghami, A., Van Sinderen, M.: Service Tailoring: Towards
Personalized homecare Systems. In: Proceedings of the 4th International Workshop on
Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC).
SciTePress, Athens (2010)

29. Henderson-Sellers, B., Ralyté, J.: Situational Method Engineering: State-of-the-Art
Review. Journal of Universal Computer Science 16, 424–478 (2010)

B. Shishkov (Ed.): BMSD 2011, LNBIP 109, pp. 130–146, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Administrations as Instruments
for Dealing with Organizational Complexity

Coen Suurmond

RBK Group, Keulenstraat 18,
7418 ET Deventer

csuurmond@rbk.nl

Abstract. The concept of administration can contribute much to both the quality
and the maintainability of information systems. Although the practical
connotation of the concept is traditionally primarily in the financial area, an
established definition of the administration gives a good foundation for the
application of the concept in other areas. It has every possibility to comply with
both organisational responsibilities and software structures. Decentralised, small,
local administrations, located close to the business processes, can contribute to
both process quality and to the maintainability of information systems. It supports
lower and middle management in their jobs, and reverses the trend to
centralisation and to the erosion of responsibilities of staff carrying out the work.

Keywords: Business Modelling, Software Architecture, Administrations.

1 Introduction

The development, implementation and operational use of information systems within
enterprises face certain persistent problems. These problems arise from
misconceptions about the nature and role of information systems within an enterprise.
I refer here firstly to the misconception that the role of the computer-based
information systems is to cover all of the information supply within an enterprise.
And I refer here secondly to the misconception that it is in the nature of an
information system to represent reality "as is".

These misconceptions shape the analysis and the design of IT systems mostly as
background assumptions, and go undiscussed. The nature and role of information
outside of the IT systems are often underexposed in IT projects, and such information
is considered peripheral to these systems. Once an IT system is in use, the
representations in the system are often considered as leading. E.g., a sales order is no
longer seen as an agreement between a buyer and a seller; a sales order is defined by
its representation in the system.

The result of these misconceptions is that IT systems often do not function
properly in practice. Unforeseen limitations are imposed on business processes and on
the commercial and logistic opportunities of the enterprise, as a consequence of the
use of IT systems. Limitations that might cost money internally and might cost
trading opportunities externally.

 Administrations as Instruments for Dealing with Organizational Complexity 131

This can produce various reactions that aim to absorb these unforeseen negative
consequences. First, the system can be expanded, to remove, to evade or to
circumvent the limitations. Second, practice might create its own way of working and
its own auxiliary systems for certain processes, alongside the IT systems that were
meant to do this. Third, practice might learn to live with the limitations.

At the basis of any solution for the problems at issue must be the awareness that it
is the task of computer-based information systems to facilitate business processes.
These systems thus have an instrumental nature and a serving role. They cannot be the
Archimedean point from which business processes are controlled. Neither should
these systems determine how the business must be done.

To meet these demands IT systems should be open in three meanings of the word:
(1) they have to be able to collaborate with other systems outside of their own
functional areas, (2) they have to be able to collaborate with other systems within
their own functional areas, when these systems have a lower-level execution task or a
higher-level controlling task, and (3) they have to be able to deal with events within
their functional area that (temporarily) circumvent the system.

If we want to achieve this openness, then I think it is useful, if not unavoidable, to
exploit the concept of "administration" as a core concept in the design of information
systems. The administration concept analyses the administrative processes in
separation of other processes, its operations are based on clearly defined services and
it implies clearly demarcated organisational responsibilities. Although the concept
originates in the financial domain, it is very well applicable outside of the financial
field; indeed, the concept should hold for all information that is used communally in
an organisation.

2 Route Planning as a Metaphor

2.1 A Car Navigation System

A car navigation system is an example of an information system that gives its user
proper and up-to-date information, leaving him the freedom to take his own decisions.
Such a system indicates the route to be followed, taking into account the current
position, possible routes and traffic intensity on the different routes. The driver is
informed about the current possibilities, and can combine this information with his
own experience and wishes. He can deviate from the route whenever he wants to do
so. The navigation system always works from the actual situation; what happened
before and what motivates the choices of the driver are completely irrelevant. The
information system is supportive, based on the actual situation, independent of earlier
plans or events, and does not force decisions upon the user. The only thing that seems
to be lacking is the presentation of alternative routes simultaneously.

2.2 Offline Route Planning

To describe a route by step-by-step directions is quite a different story. See for
example the directions given by the British AA for the trip from Corrie on Arran to
Bridgend on Islay:

132 C. Suurmond

Direction Miles
Start out on unnamed road 0.00
Turn left onto the A481 0.07
Turn right 8.78
Continue by vehicle ferry
 (Lochranza – Claonaig)

8.81

Turn right 13.47
Turn left onto the B8001 13.57
Turn right onto the A83
 (signposted Glasgow)

18.63

Turn left
 (signposted Islay ferry)

19.00

Continue by vehicle ferry
 (Port Askaig – Kennacraig)

19.25

Turn left onto the A846 48.82
Arrive on the A846 56.66

Section time 6:16, Total time 6:16

Such a description loses a lot of its value when the driver is forced off the indicated
route. Apart from that, these specific directions do not take into account that the
driver should take either the ferry to Port Askaig (as described), or the ferry to Port
Ellen (not described), depending on the time. And checking the miles travelled
against the odometer of the car won’t work either, because of the two ferries involved.

The information system is directive, based on a prefixed sequence of events,
dependent on earlier plans or events, and forces decisions upon the user.

2.3 Organisation and Information

Starreveld wrote in the early sixties about an information supply for making
judgements ex ante (for decisions in business processes) and ex post (for the
accountability of business processes) [1]. He observes that on lower levels of the
organisation there is primarily a need for all kinds of operational data that is required
for the correct and efficient execution of the tasks, accompanied by a need for the
information necessary to make professional assessments. According to Starreveld, the
main questions for determining the information needs for an employee are:

• Which decisions are to be made in the involved business processes, and what
information does he need in order to make these decisions?

• What operational data does he need in order to prepare and fulfil his tasks?

A few years later Robert Anthony writes: “Several authors state that the aim of
control is to assure that the results of operations conform as closely as possible to
plans. We emphasise that such a concept of control is basically inconsistent with the
concept used in this study. To the extent that middle management can make decisions

 Administrations as Instruments for Dealing with Organizational Complexity 133

that are better than those implied in the plans, top management wishes it to do so. And
the middle management can in fact make better decisions under certain
circumstances; to deny this possibility is implicitly to assume that top management is
either clairvoyant, or omniscient, or both, which is not so.” [2].

Especially in production organisations there is an increasing tendency to emphasise
a cycle of planning and control where plans are made higher-up in the organisation
and executed lower-down. Information from lower-down to higher-up is reduced to
reporting back on predefined tasks. This tendency is reflected in ERP systems with
their modules for planning and control. The shop floor is given production orders to
be executed, and can only report back on those production orders. Registration of
unplanned activities is difficult or even impossible, even if some problem on the shop
floor made those unplanned activities necessary. Professional judgement in the
fulfilment of jobs is eroded.

Current ERP systems are comparable to the directions given by the AA. The
individual steps are determined in detail in advance of the execution of a process,
and the employees involved in the execution of the process get pushed information
about the steps to be taken. This way of working is sensitive to disturbances by
deviations, the responsibilities are centralised and employees who perform the tasks
are regarded as just cogs in the machine. The approach described by Starreveld and
Anthony assumes a situation in which employees at every hierarchical level of the
organisation have tasks and responsibilities which are not frustrated by centralised
and bureaucratic information systems. They can get the information they need
whenever they request it, and they can make the decisions within their domain. As a
model this is more comparable to a driver assisted by a navigation system.

3 Example: Planning of Packaging of Perishable Consumer
Products

Consider a department for the packaging / labelling of perishable consumer products.
The products are collected several times each day for transport to a central warehouse
where the customer orders are picked and distributed. The lead time of the products
from ordering to delivery is 1 to 3 days, depending on the commercial agreements
about guaranteed shelf life of the products. The planning / execution cycle consists of
the following steps:

• Finished-Product-Planning: based on the current warehouse stocks and sales
forecasts the central organisation creates a volume plan for the packaging
department (volume per product per production date). This volume plan is
created in advance of the production week and then adjusted based on the
available data in advance of the production day.

• Site Planning: The planner on the location converts the volume plan into
production orders for each line, in processing sequence. The criteria used are
product characteristics and delivery schedules.

134 C. Suurmond

• Production Management: The department supervisor prepares the processing
of the production orders and checks whether the orders can be started and
processed, and he releases the orders for processing.

• Foreman: On each line the foreman sees to the processing itself and the data
collection involved.

The responsibilities in this planning / execution cycle are as follows:

• The planning in the central organisation is responsible for the service level
and for the loss incurred by products exceeding their sell-by date.

• The planning on the location is responsible for the realisation of the required
daily volume, the timely departure of the shipments with the right contents
and minimising the loss of run time of the lines because of change overs and
cleaning.

• The department supervisor is responsible for the efficiency (use of resources
per unit of product) and process quality.

• The foreman is responsible for the efficiency on his line and for the
processing of the packaging orders.

In a normal course of business, with only insignificant deviations within the actual
sales developments and the actual progress of the business processes, the picture
outlined above will give an adequate view of the flow of the business processes. Each
link in the planning chain translates the information of the preceding step into more
detailed information for the next step and everybody sees to his own job. Processes
and responsibilities are clearly demarcated.

However, significant disturbances will occur regularly. Examples are deviations in
sales, rejection of products, machine malfunctions, late supply of raw materials,
shortage of required resources. The question is how these larger and smaller
disturbances are dealt with. There is a trend of increasingly putting it on the plate of
the planners, partly because every deviation is viewed as a planning problem, partly
because adjusted or new orders are necessarily created via the planning system in
order to be able to produce and report.

The consequences of this trend of putting every adjustment to the planner are
twofold: erosion of the responsibilities of the department supervisor, who is
increasingly less able to make decisions, and an increasing need for detailed real-time
information from the primary processes to the planner.

The planner controls the production processes in detail and the department
supervisors and forepersons become his puppets. At the same time department
supervisors and forepersons lack the information to make adjustment for deviations,
an area that has traditionally been their strength and part of their added value in the
organisation.

 Administrations as Instruments for Dealing with Organizational Complexity 135

 Finished Product Planning

 Production volumes

 Site Planning

 Production Plan

 Production Management

 Production Orders

 Foreman

 Processing & Reporting

Compare this to an alternative way of organising the information, a way that is

aimed at allowing the employees to fulfil their responsibilities. The volume planner
indicates what the target volume per product is, what the required minimum is to
avoid endangering the service level and what the allowed maximum is to avoid the
risk of destruction. The target volume is determined through the normal planning
procedure and adjusted only in case of significant deviations. The minimum and
maximum are updated regularly based on actual production and sales numbers. In his
line planning the site planner can already take the given tolerances into account and
determine the length of his production runs on that basis. Here, the site planner states
with which shipment the different products should be transported to the warehouse at
the latest (default is the last lorry, earlier only if the stock position of the warehouse
demands so). At the moment of preparation for the processing of the production
orders the department supervisor will base himself on the production orders of the
location planner, but he will also take the tolerances of the volume planning into
account. In this way he can optimise the efficiency and the use of raw materials, while
limiting the number of batches of raw materials (because of traceability issues). And
during the production day he can accommodate for small deviations in production
speed by shortening or lengthening some production runs. The information regarding
his decisions about the use of raw materials and the consequences for the length of the

136 C. Suurmond

production runs and the expected output of finished product is available to both
the location planner and to the volume planner. In case of larger deviations it is firstly
the department supervisor that sees whether he can accommodate them given the
production orders, tolerances and departure times of the lorries. It becomes an issue
for the site and volume planners only if this is not possible. Judging the costs of being
unable to deliver the product is the responsibility of the volume planner, judging the
extra production and transport costs is the responsibility of the site planner.

The finished product planning determines the volumes to be produced, and
regularly updates the safety margins. The planning regularly receives updated
information about the expected output of production, as well as updated information
about the demand for finished products.

The site planning, production management and foreman are free to fine tune the
production quantities, taking into account the safety margins and the current situation
in production. They are required to use information from outside the computer
systems (by email or by phone) that is relevant to their decisions. They are
responsible for up to date feedback to the production administration about the
expected output of production.

In the first planning model every layer in the organisation does its job in isolation
and communicates only the standardised output to the next layer. But in the second
model every layer makes up to date information available to allow every other layer
to assess the situation and its margins; thus allowing every layer to observe its
responsibilities.

 Delivery planning

 Finished Products Planning

 Site Planning

 Production Management

 Foreman &
 Execution

 Output of finished product

Fi
ni

sh
ed

 P
ro

du
ct

s
A

m
in

is
tr

at
io

ns

-
Sa

le
s

(a
ct

ua
l &

 E
xp

ec
te

d)

-
D

el
iv

er
ie

s
 /

sh
ip

m
en

ts

-
St

oc
ks

 o
f

fi
ni

sh
ed

 p
ro

du
ct

s

Pr
od

uc
tio

n
A

dm
in

is
tr

at
io

ns

-
Pr

od
uc

tio
n

V
ol

um
es

 &
 S

af
et

y
M

ar
gi

ns

-
Pr

od
uc

tio
n

Pr
og

ra
m

-

Pr
od

uc
tio

n
O

rd
er

s
-

Pr
od

uc
tio

n
E

xe
cu

tio
n

&
 R

ea
liz

at
io

n
-

E
xp

ec
te

d
ou

tp
ut

 o
f

pr
od

uc
tio

n

 Administrations as Instruments for Dealing with Organizational Complexity 137

4 Criteria

4.1 Introduction

The quality of an information system within an organisation can be derived from the
contribution of the information system to the quality of the business processes (in
terms of effectiveness and efficiency) and the manageability of the information
system itself in terms of speed and costs of problem solving and costs of adjusting to
requested changes. The contribution to the quality of the business processes
presupposes that the employees and systems in the business processes get their
information correctly, in time and complete. This requires that the collecting,
checking, processing and storing of the information also happen correctly, in time and
at acceptable costs. The contribution to the process quality is directly dependent on
the data quality. Because of this, the responsibility for the data quality should lie with
people who are knowledgeable about the processes that produce the information.

4.2 Quality of Business Processes

The quality of the business processes should be determined in terms of effectiveness
and efficiency. Effectiveness is the degree to which the intended result is achieved
and efficiency is the consumption of resources to achieve the intended result. For the
efficiency of the business processes it is necessary that the information is supplied in
the right form so that the user does not have to waste time by (avoidable) additional
processing of information. The maxims for having a conversation formulated by the
British language philosopher Grice present a good practical guideline for the way in
which information should be presented to the user [3]:

• Maxim of Quality Be truthful and reliable
• Maxim of Quantity Be informative
• Maxim of Relation Be relevant
• Maxim of Manner Be brief and orderly

For the effectiveness of the business processes it is firstly necessary for the information
to be correct, timely and complete, and secondly that the user knows what the
presented information represents and thus is able to relate this information to
information from other sources. Detailed real time information from production
processes and from sales processes have little value when decisions about the volume
and the sequence of production orders are to be made. Here, what is needed is
aggregated information about any significant deviations that put the service level at
risk. In order to interpret the aggregated data, definitions are important. Suppose a
production company has divided the day into a number of production blocks of 2
hours. If a production block represents a fixed amount of time then the volume within
the block will vary. However, if a production block represents a normative production
volume then the finishing time will be variable while the volumes are fixed. In the first
case the production planning will have to relocate volumes between production blocks
regularly during a production day, but will have little reassigning of people to do.

138 C. Suurmond

In the second case this is reversed: little relocation of volumes, but regularly
reassigning people. In this second case it is easier to relate production volumes to
distribution and sales.

4.3 Maintainability

The maintainability of an information system can be determined by the speed and
costs of solving operational problems in the information supply, as well as the speed
and costs of adjusting the information supply to changing circumstances.

In the management and maintenance of information systems we are dealing with
several aspects: technical management, application management and a form of
management that I will here call the supervision of information. The technical
management can be more or less centralised as with other forms of technical
management; criterion here is the availability of the infrastructure and as such this is
not relevant here. Application management, which includes the configuration of the
systems, should be located close to the processes. The configuration of the systems
should be tuned to the operational processes. An application manager must be able to
translate the needs of the operational processes to the capabilities of the application
and to formulate the requirements for any changes to the applications. This requires
proximity to the process. Sometimes the distance between application management
and operational process can be overcome through a middle layer of key-users.

The third category of management, the supervision of information, is primarily
operational management like the other two forms, coupled with a responsibility for
continuous process improvement (in terms of effectiveness and efficiency). The
operational responsibility of information supervision is ensuring the continuous
availability of timely, correct and complete information from the operational
processes in the right form. Attention please: the responsibility is not for the
availability of information to the processes, but for the availability of information
from the processes. It is a responsibility to ensure that other processes have the right
information at their disposal, and to inform other processes of possible problems in
the information available.

The role of information supervisor is in general not a full time job, but a role that
should be assigned to an employee within the department. The final responsibility
always lies with the department supervisor and not somewhere far away in a central
body of the organisation. As a production supervisor bears responsibility for the
quality of his physical product, so does the information supervisor bear the
responsibility for the quality of information.

Organisations often do have an information manager function. This is a
professional whose job it is to link the business processes and the automated systems.
His role is mainly in setting up and configuring the systems and not so much in the
operational responsibility for the information within the systems. When adjustments
are made to the information supply the insights of the information manager about the
structures and about the general process knowledge will be combined with the insight
and experience of the information supervisors to arrive at good solutions that work
well in practice.

 Administrations as Instruments for Dealing with Organizational Complexity 139

5 Concepts

5.1 The Concept of Administration

Starreveld arrives in his original work in the early 60s about information processes in
organisations at this definition of administration: "The systematic collection,
recording, processing and supplying of information for purposes of the managing and
functioning of a household and for purposes of the accountability thereof" [1]. The
American Accounting Association defines accounting as follows: "the process of
identifying, measuring and communicating economic information to permit informed
judgements and decisions by users of the information” [4]. The definition of the
AICPA in 1961: “Accounting is the art of recording, classifying and summarising in a
significant manner and in terms of money, transactions and events which are, in part
at least, of a financial character, and interpreting the result thereof” [5]. The value of
these definitions is that they sketch a clear and normative view of the role of
administration in the business processes.

From the FASB, part 2: “The purpose of this Statement is to examine the
characteristics that make accounting information useful. …All financial reporting is
concerned in varying degrees with decision making (though decision makers also use
information obtained from other sources). …The usefulness of information must be
evaluated in relation to the purposes to be served, and the objectives of financial
reporting are focused on the use of accounting information in decision making ... Even
objectives that are oriented more towards stewardship are concerned with decisions.
Stewardship deals with the efficiency, effectiveness, and integrity of the steward. To say
that stewardship reporting is an aspect of accounting’s decision making role is simply to
say that its purpose is to guide actions that may need to be taken in relation to the
steward or in relation to the activity that is being monitored.” [6].

It is clear that the term administration traditionally has a strong connection to the
financial management and to internal and external financial reporting. At the same time
it becomes clear from the definition of Starreveld that this financial aspect is not an
essential element of the definitions given. The essential elements of the definitions are:
(1) the systematic nature of the collecting, processing and making available of data, (2)
the separation of the collecting, processing and making available of data on the one side
and the interpretation of the data on the other side, (3) the use for operational decisions,
and (4) the use for internal and external reporting, analysis and accountability.

Regarding the systematic nature I would like to draw attention to an element that is
only found explicitly in the definition of the AICPA: classifying and summarising. Boisot
has made an analysis of the nature of information and he defines three aspects of
information [7]. One aspect concerns the extent to which the information has been
codified, a second aspect concerns the degree of abstraction, and the third aspect concerns
the degree of diffusion. In an administration system information will have to be codified,
the users request information at different levels of abstraction and an administration
system is a mechanism for diffusion both within and outside of the organisation.

5.2 Administration and Organisation

Mintzberg defines the structure of an organisation as “the sum total of the ways in
which divides its labour into distinct tasks and then achieves coordination among

140 C. Suurmond

them” [8]. He distinguishes five different kinds of coordination mechanisms, namely:
(1) mutual adjustment, (2) direct supervision, (3) standardisation of work, (4)
standardisation of outputs, and (5) standardisation of skills. From an organisational
point of view an administration department can be considered both as a specialisation
of labour and as a coordination mechanism.

Administration departments are often specialised in the processing of either
financial data, employee data or production data. The justification of such
departments in an organisation is in the required competencies of the employees, as
well as in the sensitivity of data. The departments have to meet a variety of
requirements from a variety of stakeholders. They have to meet both the internal
requirements of the operational and management processes, and they have to meet the
requirements of external stakeholders. The head of the department is responsible for
the quality of the information supplied.

Administrative processes might also perform coordinating roles in an organisation.
When the meaning and use of administrative data are clearly defined, and when the
administration processes are specified as well, this will in effect be a coordination
mechanism by standardisation of output and by standardisation of skills. The required
skills are related to the ways and means of collecting and verifying the data in the
operational processes, and (equally important) to the interpretation of the information
supplied. The creation of big administrative departments may lead to autonomous
administrative worlds with their own language, separated from the operational and
managerial business processes. The advantages of specialisation are partially
counteracted by the disadvantages of compartmentalisation, especially when the
administrative officers are insufficiently aware of the supporting role of their jobs. As
an old joke says: the difference between a terrorist and an accountant is that the
terrorist might be susceptible to reason.

Directing information flows through an administration department or through an
administration system also implies formalising the language used. The language used
within an organisation is a mixture of everyday speech, jargon, and forms of more or
less formalised language. Different departments can have different interpretations of
the same concept. If an order is delivered to a customer in a lorry with a trailer, there
is one shipment. If two lorries arrive together for the same delivery, does this involve
one or two deliveries, and one or two shipments? If the customer demands that an
order is delivered as a whole, then the answer is clear for the commercial department:
in both cases one shipment is made. For the freight documents it is clear as well: in
the first case one shipment is made with the accompanying freight documents and in
the second case two shipments are made, each with their own documents. For the
receiving DC of the customer it is also clear: in both cases two deliveries are made
that must be docked and unloaded separately.

In practice people within an organisation use different kinds of sign systems
simultaneously. The everyday use of language is fairly free and unconfined, even
within the context of an organisation. For commercial and financial transactions the
language used is more formalised and ultimately is grounded in written law and case
law. The use of automated systems is another form of formalisation of sign use. Part
of it is formatting (type and size of the fields), part of it is predefined categorisation

 Administrations as Instruments for Dealing with Organizational Complexity 141

(tick the correct box) and part of it is capturing some part of the organisational reality
in IT artefacts.

To implement an administration system implies the advance creation of
conventions governing the terminology, relations and meaning. In this sense it is a
formalisation of the use of language. It can also be considered as a coordination
mechanism in the organisation: standardisation of meaning.

The concept of administration in an organisation can be summarised as a way of
organising information about a group of organisational phenomena directly linked to the
business processes involved. Each administration has a durable kernel determined by
the logic of the processes involved, in combination with a more pliable shell of
interfaces for categorisation of inputs and interpretation of outputs. Small, dedicated and
decentralised administrations, directly linked to the business processes, could prove to
be a highly flexible contribution to reliable and maintainable information systems.

5.3 Administration and Software Engineering

Like organisations, software engineering has its methods for managing complexity.
The multi-tier model, the client/server model and the service oriented architecture
model are three examples of the principle of 'separation of concerns'. Earlier forms are
the concept of structured programming, employing units (Pascal) or modules
(Modulo) and later on object-oriented programming.

The mentioned mechanisms in software engineering are each directly concerned
with the structure of the software as such. They do not or only tangentially concern
themselves with how the software is used. In the last few decennia the discussion is
increasingly about architecture. At first it was about the architecture of software, then
about the architecture of information systems and finally about the architecture of the
enterprise.

Within the software engineering as such Taylor states “By architecture we mean
the set of principle design decisions made about a system; it is a characterisation of
the essence and essentials of the application” [9]. The architecture consists of a
number of semi-autonomous parts and the connections between them (static
structure). Further there are the specific communication mechanisms between the
parts (dynamic structure). Both for the static and for the dynamic structure the
architect makes use of a repertoire of standard patterns. This way of working has first
been charted by the architect Christopher Alexander [10] and later on has spread
widely within software engineering.

However, that similar mechanisms for managing complexity (either called
organisation or architecture) have been developed both in organisations and in
software engineering does not mean that the mechanisms of both worlds should be
considered equal. In the case of software we are dealing with a strictly formal and
determined system, whereas in the case of an organisation we are dealing with a
system that is essentially open and social.

The Reference Model for Open Distributed Processing (RM-ODP) describes a
model for the collaboration of interconnected autonomous, heterogeneous information
processing systems. ”The objective of ODP standardization is the development of

142 C. Suurmond

standards that allow the benefits of distributing information processing services to be
realized in an environment of heterogeneous IT resources and multiple organizational
domains. These standards address constraints on system specification and the
provision of a system infrastructure that accommodate difficulties inherent in the
design and programming of distributed systems.” [11]. The concept of an
administrative subsystem should qualify as a fine example of the heterogeneous IT
resources mentioned above. At the same time we must realise that RM-ODP offers a
technical solution for automated information processing. It does not address questions
about the human part of information processing, or the organisational questions about
tasks and responsibilities.

The modern developments in software engineering, coupled with architectural
ideas such as those expressed in RM-ODP are a solid basis for representing
administrative subsystems in software. Such a separated administrative subsystem is
accessed exclusively through well-defined interfaces, which are clear from a software
perspective and the separate terms of which can be mapped clearly to definitions and
meaning in the business processes. Such separated administrative subsystems can
meet the demands of openness in structure and in management mentioned earlier.
Ideally, the administration system records just what actually is the case, regardless of
any plans or intentions. When someone takes stock from the warehouse, this should
be registered. The IT system should not forbid registration because of some rule or
constraint in the software. It happened and it is relevant to the representation of the
stock in the IT system, so it must be recorded in the administrative subsystem. Either
the physical removal is prohibited, or it must be captured.

In the same vein, employees and systems should be able to retrieve the information
they need for their tasks (within the boundaries of authorisation) from the
administrative subsystems involved and make their relevant facts available to the
administrative subsystems. These processes should be based on a pull model for
information retrieved and a push model for the information produced, all according to
the organisational tasks and responsibilities.

The alignment of organisational structure and software architecture can be a great
help in improving both data quality and maintainability. Decentralised, local
responsibility for the information in administrative subsystems can contribute to data
quality and the semi-autonomy of the subsystems in the software can contribute to
maintainability. The separation of process logic in the software functionality and of
meaning in the software interfaces (both to humans and to other parts of the software)
should improve the value of the information for the different kinds of use in the
organisation.

5.4 The REA Model

The REA Model, for which the foundations were laid around 1980, results from the
administrative practice and it is therefore interesting to compare this model with the
model presented here. The original model has been described by McCarthy in his
article: “The REA Accounting Model, a Generalized Framework for Accounting
Systems in a Shared Data Environment” [12]. A later development has been described

 Administrations as Instruments for Dealing with Organizational Complexity 143

in the book “Accounting, Information Technology and Business Solutions” by
Hollander, Denna and Cherrington [13]. Hruby has recently used the model as a basis
for his “Model-Driven Design Using Business Patterns” [14].

The acronym REA (REAL with Hollander) has been derived from the basic
concepts of Resource-Event-Agent (and Location with Hollander). The basic idea of
McCarthy is “This paper proposes a generalized framework designed to be used in a
shared data environment where both accountants and non-accountants are interested
in maintaining information about the same set of phenomena.”. The basis for the
model is in the concepts of economic resources, economic events, and economic
agents. Resources are nearly equal to assets, events here deal by definition with
mutations of resources, and agents are the participants in the events and those who
bear the responsibility for the events. Positive in this approach is that the economic
functioning is used as a basis in the analysis of an enterprise and that the
responsibility of an agent is named explicitly.

Hollander et al. [12] develop a concept of financial administration in their work
which is based on a real-time event-driven architecture for the Business. This
architecture falls into category 9 (Semantic Theory of the Firm) of a categorisation of
information systems by McCarthy, David and Summer which is characterised as
follows: “These systems enable designers to explicitly represent an enterprise’s full
economic plan for creating customer value, including full information disclosure
about all of the resources, agents, and locations of all events of interest. These
systems, if implemented completely, could enable organizations to trace 100% of
their economic processes from product inception to the final sale to the customer.”

To this architecture the following attributes are then ascribed (page 112):

• The architecture is based on business events (business activities) rather than
information customer views

• The architecture supports business process simplification and change
• The architecture integrates all business data
• The architecture integrates information processes and real-time controls.

In this approach many valuable elements can be found, especially decoupling the
processing of information from the specific views of certain users and attempting to
fit of the administration to the nature of the business processes. Further, the model of
financial administration lets events be recorded and has events as the basis for balance
mutations. Because of this everyone who needs to know about the state of affairs can
retrieve the required information from the administration. Hollander acknowledges
that the events must be recorded immediately so that the administration can present an
up-to-date view of the state of affairs.

In some essential respects, however, the model of Hollander is lacking. The model
attempts to cover every resource, event and agent that is relevant to the business, but
then focuses on one aspect in "business value" and thus purely on the financial
administration. From the generalised concept of administration this has two
shortcomings. Firstly, there are essential events which do not imply a balance
mutation. Think of a promise to a customer to deliver by a set date. This promise
should be present in the sales administration, but the REA model does not
accommodate this. Secondly, to other administrations it is not the financial aspect that

144 C. Suurmond

is central as they deal with material events and balances. The administration of raw
materials, work in progress and finished products deals with mutations and balances
of amounts and weights. The administration of a technical service is mainly
concerned with things like the operating hours of the installations and the history of
past malfunctions. Of course, they also have financial aspects, but while service levels
and operational reliability can be expressed in financial terms, they cannot be
measured financially. Discussions about intangible assets in accounting literature
indicate that valuation bases are not always clear cut and sometimes even arbitrary.
This is at odds with the criterion in the model presented here that an administration
should show things as they are and should as far as possible be free of subjective
elements.

A second criticism is the encompassing nature ("The architecture integrates all
business data") under the heading "Semantic Theory of the Firm". When
companywide unity of meaning is an illusion and when sites and departments each
use their own language (which of course also must include common elements), having
one central administration presents a big risk (the language of money is more
universal however and that is what Hollander focuses on). While the later work of
Hruby [14] tries to deal with commitments, it is even a more rigid attempt to model
based design. Conceptually it is weak, for example when it states that “The Sale event
means transfer of ownership of a product from the enterprise to the customer”. In my
view, that is a delivery. A sale event would be a mutually binding commitment
between supplier and customer to deliver some product or service, at some time, for
some price.

To conclude: although the model presents valuable insights in the nature of an
administration, its focus on financial aspects, its pretension of having an
encompassing nature and its disregard of meaning issues prevent the model from
providing the good reference for administrations that is searched for here.

6 Key Issues in the Deisgn of Administrative Systems

6.1 Organisational Issues

Each administrative process has to be clearly grounded in the organisation. It should
be clear who is responsible for the data. Administration processes should be located
as closely as possible to the operational processes involved, to ensure short
communication lines. Those responsible for the administration processes should have
a clear understanding of both the operational processes and of the administration
processes so that they are able to solve any problems occurring in the collecting,
processing or interpreting of data. They should actively monitor the use of the
administration processes and indicate when they should be adjusted because of
changing practices. This final point specifically concerns tracking change of meaning,
either abrupt or slowly evolving. Consider for example the concept "customer" when
an organisation first encounters the difference between the entity that places an order,
the entity to which they should be delivered and the entity that pays for the delivered
goods.

 Administrations as Instruments for Dealing with Organizational Complexity 145

6.2 Modelling Issues

The domain of each administrative subsystem is clearly defined, together with the
meaning of the main concepts. The rules for determining the identity of the individual
administrative entities are explicit. The way in which both systems and human users
refer to the separate administrative entities is defined and tested for practical
applicability. Categories and range of values of the attributes of the entities are
defined in advance.

The domain is determined by the question of what is it concerned with and of what
information is requested. Essentially this is the same question as the one asked about
objects in OO-thinking. An object is an identifiable unit with its own identity.
However, objects are no "ready-mades". They need to be carefully defined. See the
problem above of what constitutes one shipment.

Another issue is how involved parties can identify the administrative entities.
Systems use unique references, which must connect uniquely to physical or
conventional reality. This can happen by physical identification such as barcodes or
chips. It can also happen by conventional identification such as GTIN numbers for
products or GLN numbers for addresses and locations, managed by the international
organisation. Human users have to know what they are dealing with as well. Either
the references used are fit for both machine and human recognition, or different
references are used for machines and for human users.

6.3 Technical Issues

The administration processes can be supported by one or multiple IT subsystems with
the responsibility for their proper functioning lying with those responsible for the
involved administration processes (and not with a central IT department somewhere
far away in the organisation). Besides IT systems the administration processes can be
supported by locally developed solutions, in Excel for example, and by systematic
storage of forms, receipts, and lists. What medium is used to store data is less
important; that the data are collected and made available according to the agreed
procedures and in a correct, timely and complete manner is essential.

The interfaces of the IT subsystems supporting the administration processes are
explicit and complete. There is no tacit meaning and there are no hidden side effects.
From the defined interfaces and from the defined technical implementation of the IT
subsystem its behaviour can be fully explained. The technical interfaces of the
subsystem can be directly mapped to the organisational aspects of the administration
processes. The subsystems can deal with the key characteristics as mentioned in RM-
ODP 10746-1, paragraph 6.1: remoteness, concurrency, lack of global state, partial
failures, asynchrony, heterogeneity, autonomy, evolution and mobility.

7 Conclusion

In the introduction two misconceptions were identified as a source of many problems
in the use of IT systems, namely the idea that an information system would coincide
with the IT systems used and the idea that the information in IT systems would
represent the reality "as is". The need for open systems to facilitate business processes
instead of systems designed from closed and encompassing models was discussed.

146 C. Suurmond

It was then analysed that the administration concept as defined by Starreveld
should provide a good basis for open systems. Well-designed administrative
subsystems that provide their services to the organisation and to applications
independently of one another should make the systems more manageable. A condition
for this is that the independent administrative subsystems are well embedded into the
organisation, as closely as possible to the operational processes. Modern software
architectures like RM-ODP should provide a good technical basis for this.

The design of an administrative subsystem for a specified area starts with
abstracting and modelling it. This should be accompanied by a thorough analysis of
the process logic of the area, to arrive at an adequate and practical choice of entities
and references. This should also be accompanied by a certain formalisation and
standardisation of the use of language.

When the people involved are familiar with the ins and outs of the chosen model
they will be able to work well with the model in the interaction with the
administrative subsystem while retaining the freedom of interpretation of data from
the subsystem because they know what is not represented and because they are able to
combine the data with data from other sources autonomously.

In conclusion: adequate administration systems function semi real time, provide
crucial services to the business processes, and are driven by employees that have a
thorough practical knowledge of these processes.

References

1. Starreveld, R.W.: Leer van de administratieve organisatie. N. Samsom NV, Alphen aan
den Rijn, 2nd edn. (1963)

2. Anthony, R.: Planning and Control Systems. Graduate School of Business Administration
Harvard University, Boston (1965)

3. Grice, P.: Logic and Conversation. In: Grice, P. (ed.) Studies in the Way of Words, pp. 22–
40. Harvard University Press, Cambridge (1991)

4. Tutor2U, http://tutor2u.net/business/accounts/
intro_accounting.htm

5. Glautier, M.W.E., Underdown, B.: Accounting, Theory and Practice, 7th edn. FT Prentice
Hall, Harlow (2001)

6. FASB, http://www.fasb.org/home
7. Boisot, M.: Knowledge Assets. Oxford University Press, Oxford (1998)
8. Mintzberg, H.: The Structuring of Organizations. Prentice Hall Inc., Englewood Cliffs (1979)
9. Taylor, R.N., Medvidovic, N., Dashovy, E.M.: Software Architecture. John Wiley and

Sons, Hoboken (2010)
10. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Center for

Environmental Structure, Berkely (1977)
11. RM ODP, Information technology – Open Distributed Processing-Reference Model:

Overview. ISO/TEC 10746-1. ISO/TEC, Genève (1998)
12. McCarthy, W.: The REA Accounting Model: A Generalized Framework for Accounting

Systems in a Shared Data Environment. The Accounting Review, 554–578 (1982)
13. Hollander, A.S., Denna, E., Cherrington, O.J.: Accounting Information Technology and

Business Solutions. Irwin McGraw-Hill, Boston (1999)
14. Hruby, P.: Model-Driven Design Using Business Patterns. Springer, Berlin (2006)

Author Index

Brosig, Fabian 19

Huber, Nikolaus 19
Huysmans, Philip 70

Iacob, Maria-Eugenia 113

Kounev, Samuel 19

Meertens, Lucas O. 113
Michell, Vaughan 91

Nieuwenhuis, Lambert (Bart) J.M. 113

Regev, Gil 56
Roubtsova, Ella 1

Sapkota, Brahmanadna 38
Spence, Cameron 91
Spence, Daniel 91
Spinner, Simon 19
Suurmond, Coen 130

van Sinderen, Marten 38

Wegmann, Alain 56

	Title
	Preface
	Symposium Committee
	Table of Contents
	Reasoning on Models Combining Objects and Aspects
	Introduction
	Reasoning Logic and Local Reasoning
	Reasoning in Different Modelling Semantics
	Case Study
	Protocol Modelling - Modelling with Local Reasoning
	Visual Contract Language
	Sequence Diagrams with Joint Point Diagrams
	Workflows as Aspect-Oriented Notations
	Aspect-Oriented Extension of State Machines

	Conclusion
	References

	Model-Based Techniques for Performance Engineering of Business Information Systems
	Introduction
	Classical Performance Modeling
	Workload Characterization
	Stochastic Performance Models

	Software Performance Engineering
	Software Performance Meta-models
	Model-to-Model Transformations

	Run-Time Performance Management
	Concluding Remarks
	References

	Enabling Enterprise Collaboration Using Service Source Descriptions
	Introduction
	Background
	Web Service Description Language
	Resource Description Framework
	Linked Data

	Service Discovery Challenges
	Service Discovery Solution
	Service Types
	Service Source Description
	Finding Potential Services

	Enterprise Collaboration
	Related Work
	Conclusions
	References

	Revisiting Goal-Oriented Requirements Engineering with a Regulation View
	Introduction
	The Family Practitioner Example
	An Overview of GORE Methods
	The Assumptions behind GORE
	The Lack of Theoretical Grounding
	Goal Refinement and Abstraction

	Survival and Regulation as the Source of Goals
	Survival as the Maintenance of Norms
	Regulation as a Source of Goals
	Organizations as Open Systems
	Changing Norms to Fit the Environment
	Vickers’ Appreciative System and Goal Concepts

	Improving GORE Methods
	Maintenance Is Higher-Level Than Achievement
	Maintenance Goals and Tolerance Levels
	High-Level Goals and Alternatives
	The Appreciative System and GORE Concepts

	Related Work
	Conclusions
	References

	On the Impact of Modular Dependencies on Innovation in Organizations
	Introduction
	Research Background
	Modularity
	Enterprise Architecture

	Case Study Observations
	Case Study 1: Public Broadcasting Company
	Case Study 2: Gas Flow Manager Company
	Case Study 3: Data Usage in Governmental Processes

	Towards Resolving Modular Dependencies
	Conclusions
	References

	Calculating the Application Criticality and Business Risk from Technology Obsolescence
	Introduction
	Approach
	Obsolescence and Impact
	Services and Technology Impacted
	Identifying Business Risk

	Lessons Learnt
	Building the Model
	What We Got Out of It
	Illustration of Extending the Studies to Incorporate In-Context Application Criticality Values
	What the Clients Got Out of It

	Conclusions
	Future Work
	References

	A Method for Business Model Development
	Introduction: Business Modelling Background
	Theoretical Background
	Design Science
	Methodology Engineering
	Business Modelling Related Work

	Defining the Business Modelling Method
	Create As-Is Model
	Develop the To-Be Model

	The U*Care Case: Demonstrating the Business ModellingMethod
	Identify Roles
	Recognize Relations
	Specify Activities
	Quantify the Model
	Design Alternatives
	Analyse Alternatives
	Evaluating the Case

	Conclusions: A Future for Business Modelling
	References

	Administrations as Instruments for Dealing with Organizational Complexity
	Introduction
	Route Planning as a Metaphor
	A Car Navigation System
	Offline Route Planning
	Organisation and Information

	Example: Planning of Packaging of Perishable Consumer Products
	Criteria
	Introduction
	Quality of Business Processes
	Maintainability

	Concepts
	The Concept of Administration
	Administration and Organisation
	Administration and Software Engineering
	The REA Model

	Key Issues in the Deisgn of Administrative Systems
	Organisational Issues
	Modelling Issues
	Technical Issues

	Conclusion
	References

	Author Index

