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Abstract. Literature-based knowledge discovery generates potential discoveries 
from associations between specific concepts that have been previously reported 
in the literature. However, because the associations are generally between 
individual concepts, the knowledge of specific relationships between those 
concepts is lost. A description logic (DL) ontology adds a set of logically 
defined relationship types, called properties, to a classification of concepts for a 
particular knowledge domain. Properties can represent specific relationships 
between instances of concepts used to describe the things studied by a particular 
researcher. These relationships form a “triple” consisting of a domain instance, 
a range instance, and the property specifying the way those instances are 
related. A “relationship association” is a pair of relationship triples where one 
of the instances from each relationship can be determined to be semantically 
equivalent. In this paper, we report our work to structure a subset of more than 
1300 terms from the Medical Subject Headings (MeSH) controlled vocabulary 
into a DL ontology, and to use that DL ontology to create a corpus of A-Boxes, 
which we call “semantic statements”, each of which describes one of 392 
research articles that we selected from MEDLINE. Relationship associations 
were extracted from the corpus of semantic statements using a previously 
reported technique. Then, by making the assumption of the transitivity of 
association used in literature-based knowledge discovery, we generate 
hypothetical relationship associations by combining pairs of relationship 
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associations. We then evaluate the “interestingness” of those candidate 
knowledge discoveries from a life science perspective. 

Keywords: Relationship associations, Association rules, Semantic relationships, 
Semantic matching, Semantic web, Ontology, Logical inference, Life sciences, 
Literature-based knowledge discovery. 

1 Introduction 

Potentially interesting and valuable scientific discoveries can be made simply by 
following associations, such as co-occurrence, between terms describing particular 
concepts or entities that have been previously reported in the literature. For example, in 
the 1980’s Don Swanson noted that many research articles mentioned “Raynaud's 
syndrome”, which results in discoloration of extremities, together with medical terms 
such as “blood viscosity”. Other articles mentioned the same medical terms together 
with “fish oil”. However, no articles mentioned “fish oil” and “Raynaud’s syndrome” 
together. He therefore proposed the new hypothesis that fish oil is effective for treating 
Raynaud’s syndrome [1]. That hypothesis was later confirmed experimentally.  

Following this pioneering discovery, just by examining the current literature, of the 
relationship between Raynaud’s syndrome and fish oil, Swanson and other 
investigators made a few more interesting scientific discoveries by finding evidence 
in the existing literature for hitherto unreported associations between specific terms in 
the target domain [2], [3] ,[4], [5]. However, due to problems of polysemy and 
synonymy in natural language, the discovery process often produced a large number 
of false positives that had to be manually filtered out to find useful relationships.  

In order to address the issues of term ambiguity in natural language, several research 
communities have established controlled vocabularies (CVs) that provide a one-to-one 
mapping between terms and concepts. One of the most well known CV is the Medical 
Subject Headings or MeSH terms. Currently, curators at the National Library of 
Medicine assign specific MeSH terms to research articles in life sciences that are stored 
in the MEDLINE repository. Because there is a controlled one-to-one matching between 
MeSH terms and the corresponding concepts from life sciences, term association can be 
replaced with actual concept association which should generate more semantically 
accurate discovery candidates. However, attempts to improve the accuracy of literature-
based scientific discovery in life science by using the MeSH terms have been less 
successful than one might have hoped [6], [7], [8]. Some problems that have been noted 
include 1) the limited expressiveness of the MeSH vocabulary and 2) the inevitable 
mistakes in interpretation that are made by even the most careful curators. 

Ontologies based on Description Logics (DL) extend the expressiveness of CVs in 
at least two important ways. First, in DL knowledge bases a distinction is made 
between ontology classes, which describe sets of semantically similar things, and 
instances of those classes, which represent actual things that are being described e.g. 
in a particular research article. Because ontology instances can be given arbitrary 
labels, this separation makes it possible to combine the precision of a CV with the 
flexibility of free text. For example, to represent a newly discovered protein “XYZ”, 
an instance of the class Protein could be created and labeled “XYZ” (throughout this 
paper, we show class labels in bold, property labels in italics, and instance labels in 
quotes). Also, the DL instantiation mechanism makes it possible to describe multiple 
instances of a particular class, each having different attributes, and how they interact 
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in the particular study being described. For example, one could describe the 
interactions between an adolescent and adult mouse each having different attributes. 

The second important contribution of DL ontologies is a means for expressing un-
ambiguously the specific relationships between the instances that have been created to 
represent the key concepts and entities in the resource described. These relationships 
are expressed by using special terms, called properties, that connect a domain instance 
to a range instance, forming a semantic triple that consists of a domain instance, a 
range instance, and a connecting property expressing a specific directed relationship 
between the two instances. The properties can be assigned logical characteristics, such 
as transitivity. Then DL reasoners can be used to infer additional relationships 
between instances that are implied by the stated properties [9].  

Unfortunately, current text mining techniques cannot accurately extract semantic 
relationships between concepts from natural language text due to the complexity and 
ambiguity of natural language [10], [11]. Furthermore, annotations by third party 
curators suffer both from mistakes in interpretation and also the limited scalability of 
a small group of curators to the rate of research article publication [12], [13].  

A third alternative that is receiving interest recently is to get the original authors of 
research articles to create computer-readable descriptors of the objects of their 
research [14], [15]. Several initiatives have been made to get the scientific community 
to create wiki entries for biological entities such as proteins or to create structured 
digital abstracts for research articles [12], [16], [17]. The descriptors are made 
“computer-readable” by using specific templates to mitigate the problem of natural 
language ambiguity. This enables search engines, text mining systems and perhaps 
even human readers to more accurately establish the relationships between the entities 
that are described [18]. Furthermore, this approach has the additional benefit of 
putting the responsibility of correctly describing a research article in the hands of the 
author, who is clearly the person who best knows the main points of the article. 
However, even in structured digital abstracts or wiki entries, the granularity of 
expression for most of the descriptive information is still at the sentence or paragraph 
level [12]. Consequently, computers still need to make sense of the sentences in the 
delimited entries in the digital abstracts [19], [20], which is notoriously difficult due 
to the complexity and ambiguity of natural language [21], [22]. 

We suggest that by drawing on new techniques and standards for semantic 
representation of knowledge in a computer-interpretable form, such as description 
logics, it should be possible to enable human researchers to author descriptions of 
their shared knowledge that are not just “computer-readable”, but actually “computer-
understandable”. By “computer-understandable”, we mean that computers can reason 
with the semantics of the descriptors in reference to shared mental models or 
conceptualizations of the knowledge domain, e.g. the ontologies, and that they can 
infer new “facts” or “assertions” in the form of relationships between concepts and/or 
entities that are implied but not explicitly stated. In order to test this idea, we have 
developed a system, called EKOSS for Expert Knowledge Ontology-based Semantic 
Search, that enables researchers to author computer understandable descriptors in the 
form of “semantic statements”, which define the specific relationships between 
entities and concepts described by a research article [23]. The system provides a set of 
intuitive authoring tools that guide researchers who may not be experts in formal 
knowledge representation through the process of creating a semantic statement to 
represent their research work based on a shared DL ontology. 
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Here, we describe the process in which we developed a DL ontology from a subset 
of the MeSH vocabulary, and we present some statistics of the use of the ontology to 
create a corpus of semantic statements for 392 research articles that were chosen to 
represent the researchers in life sciences at the University of Tokyo. We then present 
an algorithm for discovering hypotheses based on associations between specific 
relationships, called “relationship associations”. The relationship associations are 
mined from the semantic statements using a previously reported technique. We 
attempt to demonstrate the effectiveness of this approach by applying the algorithm to 
the corpus of semantic statements, and we discuss some of the hypothetical 
relationship associations that are discovered. 

This paper is organized as follows. In Section 2, we describe the process of 
creating the UoT ontology by adding DL structure to a set of MeSH terms. In section 
3, we describe the process of building the corpus of semantic statements based on the 
UoT ontology. In Section 4, we describe our algorithm for generating hypothetical 
relationship associations that represent new and potentially meaningful associations of 
specific relationships. In Section 5, we report the results of an experiment applying 
this algorithm to the corpus of semantic statements created previously. In Section 6, 
we review related work. In section 7, we finish with a discussion of the effectiveness 
of our approach and suggestions for future research. 

2 Creating the UoT Ontology 

In previous work to link a textbook used by undergraduate students at the University 
of Tokyo to research articles written by researchers at the same university, we have 
developed a DL ontology, called UoT for “University on Textbooks” [24]. The 
purpose of the DL ontology is to provide a formal knowledge representation language 
for positioning a research article in the “knowledge space” of the specific knowledge 
domain in a form that a computer can “understand” well enough to accurately 
determine the semantic similarity of different descriptors, e.g. in order to link the 
textbook and the articles. The UoT ontology was constructed by disambiguating the 
relationships between a subset of MeSH terms that were selected to cover the range 
both of the topics of the textbook and of 392 research articles selected from PubMed 
to represent the researchers in life sciences at the University of Tokyo.  

Soualmia et al. reported initial efforts to add logical structure the entire MeSH CV 
[25]. However, they were only able to use a few heuristic methods to structure the 
terminology. Here, we focus our efforts on using various techniques to add logical 
structure to a relatively small subset of MeSH terms. This helps us to explore more 
thoroughly the possibilities for reframing the MeSH CV into a DL ontology that can 
function as a richly descriptive knowledge representation language.  

We have implemented the ontology in OWL-DL [26]. The textbook is in Japanese, 
so we developed links from concepts in the UoT ontology to both English and 
Japanese terms. Thus the ontology also functions to link the natural languages of 
English and Japanese.  

In the following subsections, we describe the details for the two main steps of the 
process of creating the UoT ontology: selecting the subset of MeSH terms to 
structure, and adding the logical structure to those MeSH terms using upper level 
classes and properties from other ontologies. 
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2.1 MeSH Term Selection Process  

For the work reported here, we have focused on a small subset of the MeSH CV.  
Our hope is that the methods described in the next subsection could later be applied to 
the entire MeSH CV. 

First, we used the 1997 version of the Japanese-English Life Science Dictionary 
(LSD) [27] and the UMLS (Unified Medical Language System) thesaurus to identify 
MeSH terms that match the 1078 Japanese terms in the index of the textbook. We 
identified a total of 883 MeSH terms (793 MeSH headings, 90 other MeSH terms) as 
possible matches with the terms in the index. Of those, 346 could be identified just by 
using the Japanese version of MeSH, 285 could be identified using the Japanese 
version of UMLS, and 252 were identified using the LSD. After manually filtering 
out false matches and choosing among candidate MeSH terms for each index term, 
we arrived at a list of 469 MeSH terms matching terms from the textbook index. 

Simultaneously, we identified a subset of the 2024 MeSH terms (both major and 
minor) that had been assigned by PubMed to the 392 research articles selected for 
linking to the textbook. The subset to be added to the ontology was determined using 
the following conditions. First, only MeSH terms that were subsumed by one or more 
of the MeSH terms that had been mapped to the textbook were used – this eliminated 
about 700 terms. Second, the MeSH term must appear in at least 2 articles, which 
eliminated about 900 terms. We checked that at least one MeSH term from each 
article was included in the list of remaining terms.   

The 297 MeSH terms that remained were added to the 469 MeSH terms from the 
textbook index, for a total of 766 MeSH terms mapped to either the textbook or the 
research articles. Next, we added all of the parent terms in the MeSH classification 
hierarchy, resulting in a grand total of 1360 MeSH terms. The total number of MeSH 
descriptors in 2011 was 26,142 [28], so our subset represents less than 10% of the 
entire MeSH CV. However, because our MeSH terms were selected based on the 
coverage of a general undergraduate textbook for life sciences and a set of research 
articles covering a wide range of topics, we believe that they represent much of the 
topic breadth of the MeSH CV and therefore the types of issues that would be 
involved in structuring the entire MeSH CV in a similar manner. 

2.2 Adding Logical Structure to the MeSH Terms 

In order to provide a higher-level logical structure for supporting logical reasoning to 
the set of 1360 MeSH terms, we added 45 upper level classes drawn from several 
popular upper-level ontologies. The most important upper level classes added to the 
basic MeSH categories are Physical Objects, Phenomena and Abstract Classes (we 
show classes in bold, properties in italics, and instances in quotes) – these correspond 
roughly to the ontological classifications used in the UMLS Semantic Network [29], 
ISO 15926 [30], SUMO [31] and GALEN [32].   

We also added 51 abstract classes for defining roles of Physical Objects and 
Phenomena, 32 abstract classes for defining types of things, 189 classes for chemical 
elements, and 85 classes for general biological concepts such as chemical compounds  
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and biological features. Most of these classes were reused from previous ontologies 
we had developed in other work [33]. The abstract classes were added to support 
faceted concept specification [34]. For example, the abstract class Abnormal can be 
used to specify the way in which a particular protein is reported to be abnormal in a 
research article. The other classes, such as the chemical elements and compounds, 
were added to increase the scope of the ontology. Thus the total number of classes in 
the ontology is 1762. 

We next added a set of ontology properties (the OWL-DL objectProperty) for 
relating the concepts represented by the ontology classes. Based on reference to the 
upper-level ontologies described above, we compiled a list of 151 properties. These 
include domain specific properties such as has homology and activates, drawn from 
the UMLS semantic network [29] and GALEN [32], as well as more generic 
properties such as has location and has part, drawn mainly from SUMO [31] and the 
upper ontology based on ISO 15926 [30]. For ontologies that are not based on a 
description logic, such as the UMLS semantic network, some interpretation is 
required in order to determine how to represent the properties logically [35]. We have 
drawn on recent work in making these interpretations [36], [37], [38]. 

As discussed in the introduction, these properties play two important roles in 
making computer-aided knowledge sharing more intelligent. First, we can use them to 
define the specific types of relationships between the concepts expressed by classes in 
the UoT ontology. In particular, as described in the next paragraph, properties can be 
used to disambiguate “thesaurus type” subsumption relationships such as “related to”, 
“narrower” and “broader”. Second, the properties provide a means for connecting the 
specific entities in a semantic description of a research article or search query. In 
other words, they give us the “verbs” for making simple grammatical statements 
expressing knowledge in a computer understandable form. 

The MeSH hierarchy is based on “thesaurus-type” subsumption relationships: the 
positioning of a term as a “child” of another term simply means that the child term 
somehow narrows the concept described by the parent term. The type of “narrowing” 
might be a set-theoretical is a relationship, but it can also be some other relationship 
such as composition, participation or location. For example, Binding Sites, 
Antibody, which is defined as “local surface sites on antibodies which react with 
antigen determinant sites on antigens”, is positioned in the tree structure as a 
narrowing of Antibodies, Binding Sites, and Antigen-Antibody Reactions [28]. 
Clearly, the strict is a subsumption only holds for the relationship with Binding Sites. 
The relationship of Binding Sites, Antibody with Antibodies is compositional, and 
the relationship with Antigen-Antibody Reactions is locational. 

We used the properties in the UoT ontology to disambiguate the subsumption 
relationships between MeSH terms in the MeSH term tree structure. For example, we 
define Binding Sites, Antibody in the DL ontology to be a subclass of Binding Sites, 
and we use existential restrictions (the OWL-DL “someValuesFrom” restriction) to 
specify that each instance of the class Binding Sites, Antibody is the part of an 
instance of the class Antibodies and the location of an instance of the class Antigen-
Antibody Reactions, as shown in Figure 1. 
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Fig. 1. Disambiguation of subsumption relationships in MeSH for the term “Binding Sites, 
Antibody” 

In this way, we disambiguated the subsumption relationships for all of the MeSH 
terms that are subsumed by more than one parent term in the MeSH tree structure. 
The disambiguation step resulted in the definition of about 800 specific relationships 
between MeSH terms, such as the locational relationship between Binding Sites, 
Antibody and Antigen-Antibody Reactions described in the previous paragraph. In 
addition, we specified relationships between MeSH terms and the additional classes, 
such as roles and types, in order to add more structure to the ontology for supporting 
logical inference. For example, the class Carrier Proteins is specified in the ontology 
as being connected to some values of Transport Roles via the property has role.  

A schematic diagram of the resultant knowledge model for the UoT ontology is 
shown in Figure 2. The figure shows the main upper classes that we have used to 
structure the MeSH terms, including Process, Physical Object, Role and 
Characteristic. In fact, the class Process is actually subsumed by a higher level class 
Phenomena, which subsumes a number of concepts from MeSH that we did not feel 
were actually processes in the context of the knowledge model that we constructed, 
such as Acclimatization and Genetic Speciation. Regulation is a class that reifies 
the regulation of a process by some physical object, such as an enzyme.  

The main properties in the UoT ontology that can connect different upper level 
classes are also shown in Figure 2. Instances of the class Process can be connected to 
each other temporally with occurs during, occurs before and occurs after. They can 
also be connected compositionally with process part of, and by similarity with has 
process homology. Instances of Physical Object can be connected structurally with 
has structure part, in contact and connects, functionally with interacts with and origin 
structure of, and by similarity with has structure homology. Both instances of Physical 
Object and Process can be specified as members of instances of the respective family 
classes, which can turn can be members of other family class instances.  

Physical Object instances can be described as active participants of particular 
Process instances by using regulating agent of or actor of and as passive participants 
by using transported agent of, consumed agent of, produced agent of, and unaffected 
agent of. In addition, process regulation can be reified using instances of the class 
Regulation linked to regulating Physical Objects with regulation actor of and 
regulated processes with regulation of. Reification of process regulation makes it 

Original version: 
 Binding Sites, Antibody is a specialization of  
  Binding Sites,  
  Antigen-Antibody Reactions, and  
  Antibodies 
 

Disambiguated version: 
 Binding Sites, Antibody is a kind of  
  Binding Sites  
  that is the location of some instances of Antigen-Antibody Reactions and  
  that is the structure part of some instances of Antibodies 
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possible to specify the manner in which the regulation occurs, e.g. the participation of 
cofactor molecules. Locations at specific Physical Objects can be specified for all 
instances of Process, Physical Object and Regulation using the has location 
property. Physical Objects and Processes can also be targets of Investigative 
Techniques using analysis object of.   

 

Fig. 2. Schematic diagram of the UoT ontology knowledge model showing top level classes 
and properties. Classes are shown in boxes. Physical objects, processes and analysis techniques 
are shown as green, yellow, and grey boxes. Directed arrows show properties that can connect a 
domain class to a range class. All boxes with the same name are interchangeable – e.g. all 
Physical Objects can be a passive agent of all Processes. 

All properties are subsumed by the top level property associated with, which 
provides a way to describe an undetermined relationship between two instances. 
Therefore, any assertion of a specific relationship between two instances also 
produces an undetermined relationship usable in query matching. The logical 
characteristics and restrictions for all of the properties are specified using standard 
mechanisms provided by OWL-DL. In addition, as described in the Methods section, 
the OWL-DL restrictions “someValuesFrom” and “allValuesFrom” are used to define 
the allowable and descriptional usage of properties with specific classes. 

3 Building the Corpus 

We used the UoT ontology to create a corpus of semantic statements for a set of 392 
research articles that were selected from MEDLINE for the UoT Project. The 
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statements were created by curators having at least undergraduate degrees in life 
sciences, using the EKOSS (Expert Knowledge Ontology-based Semantic Search) 
system [23]. Each statement took about 3 to 4 hours to create and contains on average 
26 class instances and 34 relationship triples of the form (domain instance, property, 
range instance). The entire corpus contains 13,283 semantic triples. An example of a 
complete semantic statement for the research article entitled “Oncogenic role of 
MPHOSPH1, a cancer-testis antigen specific to human bladder cancer” [39] is shown 
in Figure 3. Details on how to create semantic statements can be obtained at the 
EKOSS website at: www.ekoss.org. 

The segment of the graph shown in Figure 3 that is circled corresponds to the 
following simple DL statement, where we use the notation of [9]: 

 Gene Expression(colocalization) 

 Protein(PRC1) 

 has produced agent(colocalization, PRC1) 

We can paraphrase this statement in natural language as follows: 
“Colocalization” is a Gene Expression that produces a Protein called “PRC1.” 
As before, we show classes in bold font, properties in italics, and instance labels in 

quotes. The is a represents class instantiation, so “Colocalization” is an instance of the 
class Gene Expression. 

 

Fig. 3. Graph view of the semantic statement based on [39]. Boxes show instances of classes 
from the domain ontology. The text to the left of the colon in a box is the instance label, and the 
bold text to the right of the colon is the class name of that instance. Arrows show properties 
expressing the asserted relationships between instances. Colors are as described in Fig 2. The 
semantic relationship described in the text is circled. 
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Of the 1762 classes in the ontology, 906 were used in the corpus at least once, and 
210 classes were used 10 or more times. Of the 906 classes used, 751 were from the 
MeSH CV. Of the 210 commonly used classes, 156 were from the MeSH CV. The 
top 30 classes are listed in Table 1. The table shows that the most commonly used 
classes from the UoT ontology were high level classes that had been imported from 
other ontologies rather than from the MeSH CV. However, there were several MeSH 
terms that were used more than 40 times in the corpus. 

Table 1. Usage counts for the 30 most often used classes in the UoT ontology. Source is the 
CV or ontology from which the term was drawn: “MeSH” for MeSH, “scinthuman” for the 
previous version of the ontology “scinthuman”, “upper class” for a newly introduced upper 
level class, and “new concept” for a newly introduced domain level class. 

Class Name (source) Usage Count 
Regulation (scinthuman) 535 
characteristics (upper class) 376 
molecular processes (scinthuman) 360 
Activation (scinthuman) 274 
status (upper class) 269 
Genes (MeSH) 269 
Inhibition (scinthuman) 208 
Gene Expression (MeSH) 159 
molecule parts (scinthuman) 157 
organism processes (scinthuman) 155 
binding processes (scinthuman) 148 
Proteins (MeSH) 140 
Investigative Techniques (MeSH) 118 
quantity (upper class) 112 
cell processes (scinthuman) 107 
processes (upper class) 106 
Cells (MeSH) 90 
Humans (MeSH) 85 
Organic Chemicals (MeSH) 83 
absence (new concept) 78 
Diseases (MeSH) 76 
Mammals (MeSH) 72 
physical objects (upper class) 66 
Mice (MeSH) 66 
structure family (scinthuman) 65 
Neurons (MeSH) 61 
Enzymes (MeSH) 49 
Cellular Structures (MeSH) 48 
Metabolism (MeSH) 46 
Cells, Cultured (MeSH) 45 

 
Of the 151 properties in the ontology, 123 were used at least once, and 61 were 

used 50 or more times. The properties used most often were regulation actor of (932), 
has regulation (927), has structure part (834), has location (657), has passive agent 
(566), characteristic of (525), structure part of (500), and has analysis object (474). 

Finally, we extracted associations between specific relationships of concepts using 
the technique that we reported previously [40], [41]. A relationship association is 
analogous to concept association, such as that evidenced by term co-occurrence in 
article titles, except that instead of being between singleton concepts, the association 
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is between semantic relationships of the form “A has specific directed relationship X 
with B.”  Therefore, a relationship association is a special kind of association rule 
that states “if concept A has relationship R1 with concept B, then it is likely that 
concept A has relationship R2 with concept C.” 

4 Generating New Hypothetical Relationship Associations 

In order to generate new and potentially interesting scientific discoveries from the 
relationship associations described in the previous section, we use a modification of 
the ABC open discovery model developed by Swanson and his colleagues [2], [6]. 
We first choose a small number of the most potentially “interesting” relationship 
associations that were extracted from the semantic statements. Then, for each of the 
relationship associations, irrespective of the “interestingness” criteria, we create all of 
the possible A-C relationship associations from the (A-B, B-C) pairs where the B 
triples match. Finally, we check that they are indeed “new” discoveries by searching 
for a match for each of the A-C relationship associations in the corpus of semantic 
statements. We consider an A-C relationship association that did not match with any 
of the semantic statements to be a potential discovery. 

In the following subsections, we briefly describe each of the three main steps in 
generating potential knowledge discoveries: 1) matching the B triples of A-B and B-C 
relationship associations, 2) generating A-C relationship associations, and 3) 
searching for a match for each of the A-C relationship associations to the full set of 
semantic statements in the corpus. More detailed descriptions are given in [42]. 

4.1 Matching B Triples 

The basic assumption in Swanson’s literature-based knowledge discovery model is 
that associations between concepts are transitive: if there is an association between 
concept A and B and between concept B and C, we can infer that there may be an 
association between concept A and C via the intermediary concept B. We consider 
two specific relationship triples to be associated if they are collocated in a particular 
semantic statement and there is an instance from each relationship triple that belongs 
to the same class, which we call the “connecting class”. The defined classes for the 
two instances do not have to be the same; we only need to show that they are 
semantically equivalent. Furthermore, unlike the original Swanson ABC model, 
relationship associations support directionality in the form of “if Triple 1 occurs in a 
semantic statement, then it is likely that Triple 2 will occur” [41]. Therefore, we also 
include the inverses of the relationship associations in the B-C set, which doubles the 
size of the B-C set.  

4.2 Generating A-C Relationship Associations 

Next, we create a new A-C relationship association from each pair of matching A-B 
and B-C relationship associations by connecting the non-matching triples in the two 
relationship associations, the A and C triples, via the connecting class in each 
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relationship association. This means that in addition to having a matching B triple, the 
A-B and B-C relationship associations must also have matching connecting classes. 
We can think of this matching criterion as follows: a relationship association is 
essentially an association of two typed relationships that apply to one entity, which is 
represented by the connecting class. If two relationship associations can be found that 
describe two typed relationships for the same “connecting class” and one of those 
typed relationships are the same, we can create a new relationship association that 
associates the two non-matching typed relationships.  

For example, consider the A-B relationship association No 3 in Table 2, “if a 
neoplasm process involves a cell then the cell is likely to be the actor of a cell 
proliferation process.” The connecting class of this relationship association is cell, 
so this relationship association can only be matched to a B-C relationship association 
that also has cell (or a subclass or superclass of cell) as the connecting class. 
Therefore, the B-C relationship association “if a bone marrow cell is involved in a 
neoplasm process, then the bone marrow cell is likely to contain an oncogene 
protein” can match because it has bone marrow cell as the connecting class, which 
is a subclass of cell. However, the B-C relationship association “if a bone marrow 
cell is involved in a neoplasm process, then the neoplasm process is likely to 
involve an oncogene protein” cannot match because it has neoplasm process as the 
connecting class. In the case where the connecting class in one relationship 
association is a subclass of the connecting class of the other we create two new 
relationship associations using each class. Both of these are considered to be potential 
scientific discoveries. 

4.3 Matching A-C Relationship Associations to the Semantic Statement 
Corpus 

We look for matches for each of the A-C relationship associations in the entire 
semantic statement corpus using the standard semantic search algorithm based on 
RacerPro that we have reported in previous papers [23]. Note that the use of logic and 
rules makes it possible to find matches to relationship associations that are only 
implied at a semantic level because the reasoner can infer relationships between 
instances that are implied but not explicitly stated in the semantic statement. Any A-C 
relationship association that is found to match with at least one semantic statement is 
discarded from the set of knowledge discovery candidates. 

5 Case Study 

We have applied the process described above to the corpus of 392 semantic 
statements that we created using the UoT ontology. Because the corpus is small, our 
goal is only to demonstrate the potential effectiveness of the approach of generating 
hypotheses from relationship associations that could be realized with a larger set of 
semantic statements. The following subsections detail the application to the semantic 
statement set of each of the steps of the process for generating knowledge discovery 
candidates. 
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5.1 Selecting the A-B Set 

For the A-B set, we chose five of the 984 relationship associations that met the 
relevance criteria for “interestingness” that we specified in our previous work: the 
first criterion is that the first triple must occur in no more than 40 semantic 
statements, and second criterion is that the probability that the association query 
occurs when the first triple occurs must be twice the probability that the second triple 
occurs when the connecting class occurs [41]. The five relationship associations are 
shown in Table 2.  

Table 2. The five relationship associations we extracted previously [41]. Each triple is shown 
in the form “domain class | property | range class”. The conditional triple is separated from the 
consequent triple using “>”. The connecting class is shown in bold type. 

No. Relationship association 

1 
Flagella | has structure part | Cytoplasmic Structures 
 > physical objects | interacts with | Cytoplasmic Structures 

2 
Cytoplasmic Structures | has structure part | Microtubules 
> Chlamydomonas | has structure part | Cytoplasmic Structures 

3 
Cells | passive agent of | Neoplasms 
> Cell Proliferation | has active agent | Cells 

4 
Gene Expression | has passive agent | Receptors, Cell Surface 
> Gene Expression | has location | Neurons 

5 
organism parts | structure part of | Drosophila 
> Growth and Development | has passive agent | organism parts 

5.2 Creating the B-C Set 

As discussed in the previous section, we want to use as many relationship associations 
as possible for the B-C set, even ones that might not be so interesting. Therefore, we 
used all 4821 of the relationship associations extracted from the corpus of semantic 
statements together with their inverses, for a total of 9642 B-C relationship 
associations to match with the five A-B relationship associations shown in Table 2. 

5.3 Creating the Candidate Discovery A-C Set 

We created all of the A-C relationship associations that results from pairing each of 
the 9642 B-C relationship associations with each of the five A-B relationship 
associations, both from pairs where the A-B relationship association is first and from 
pairs where the B-C relationship association is first. The number of A-C relationship 
associations generated for each A-B varies from 18 to 29, with an average of 24. 
Therefore, on average, just 0.25 percent of the B-C relationship associations match 
with each A-B relationship association. We suggest that the small number of B-C 
relationship associations matching with each A-B relationship association together 
with the relatively small variance in the matches for each A-B relationship association 
may be indicative of the diversity of the triples making up the B-C relationship 
associations because each different A-B relationship association matched with at least 
18 B-C relationship associations. 
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5.4 Matching the A-C Relationship Associations to the Corpus of Semantic 
Statements 

On average, 53% of the A-C relationship associations were found to already exist in 
the initial set of semantic statements, which disqualifies them as knowledge discovery 
candidates. The remaining A-C relationship associations are potential “discoveries”. 
However, as we noted earlier, the number of semantic statements is far too small to 
cover all of the semantic relationships that have been reported in the literature. We 
expect that with a larger corpus of semantic statements, many more of the A-C 
candidate relationship associations will be found to occur in the existing literature. In 
the following, we examine some of the knowledge discovery candidates that were 
generated. 

One example of an A-C relationship association generated by the third A-B 
relationship association:  

Cells | passive agent of | Neoplasms > Cell Proliferation | has active agent | Cells 

and the B-C relationship association 

Cell Proliferation | has active agent | Cells, Cultured  
> Cell Differentiation | has passive agent | Cells, Cultured 

that did not appear in any of the statements is:  

Cells, Cultured | passive agent of | Neoplasms  
> Cell Differentiation | has passive agent | Cells, Cultured  

Here we express the relationship associations with the notation used in Table 2: 
“triple1 > triple2”, where each triple is expressed as “domain class | property | range 
class” and the connecting class is shown in bold type.  

We can interpret this relationship association to mean that if a researcher happens 
to be studying cells involved in neoplasm processes, then it might be interesting for 
that researcher to look at the cell differentiation processes of those cells.   

An example resulting from the fourth A-B relationship association:  

Gene Expression | has passive agent | Receptors, Cell Surface  
> Gene Expression | has location | Neurons 

combined with the B-C relationship association:  

Gene Expression | has location | Neurons  
> Gene Expression | has passive agent | Carboxy-Lyases 

is the hypothetical relationship association: 

Gene Expression | has passive agent | Receptors, Cell Surface  
> Gene Expression | has passive agent | Carboxy-Lyases 

The hypothesis generated here is that if a researcher is studying gene expression 
involving cell surface receptors, it might be interesting to look for carboxy-lyase 
enzymes also involved in the gene expression. 
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An example resulting from the fifth A-B relationship association: 

organism parts | structure part of | Drosophila  
> Growth and Development | has passive agent | organism parts 

combined with the B-C relationship association: 

Growth and Development | has passive agent | Synapses 
> Gene Expression | has location | Synapses 

is the hypothetical relationship association: 

Synapses | structure part of | Drosophila  
> Gene Expression | has location | Synapses 

The resulting hypothesis is that if a researcher is studying the synapses of Drosophila, 
it might be interesting to look at the gene expression located at those synapses. 

We hope that these three examples have provided a clear demonstration of the type 
of scientific hypotheses that can be generated using the approach of literature-based 
knowledge discovery from relationship associations. With a larger corpus of semantic 
statements, it should be possible to extract more interesting potential discoveries of 
new relationship associations and to check more thoroughly that those relationship 
associations do not already occur in the published literature. We are currently 
exploring ways to increase the size of the semantic statement corpus, e.g. by 
integrating the statement authoring tools into the scientific paper publication process. 

6 Related Work 

The goal of the work presented in this paper is to discover new knowledge or 
hypotheses from the literature. Several previous research studies have attempted to 
attain this goal as we mentioned earlier. However, there are only a few studies that 
look at knowledge discovery about specific relationships between concepts. 

Natarajan et al. (2006) used a combination of microarray experiments and NLP 
methods for extracting specific gene and protein relationships, such as inhibits and 
phosphorylates, from full-text research articles, in order to discover gene interactions 
linked to the protein S1P and the invasivity phenotype. However, their sentence-based 
text mining results had to be manually checked, and the problem of gene name 
polysemy was noted as being particularly difficult to resolve. They also did not 
appear to use any kind of inference. 

Hristovski et al. used the natural language processing tool, BioMedLEE, to extract 
relationships between genotypic and phenotypic concepts in research articles, 
expressed in the form of “associated with change” [43]. They also used another NLP 
system, SemRep, to extract semantic relationships in the form of “treats”. They then 
used the extracted relationships to construct a “discovery pattern”, which they defined 
as a “set of conditions to be satisfied for the discovery of new relations between 
concepts.” The conditions are given by combinations of relations between concepts 
that were automatically extracted from articles on MEDLINE. Finally, they conducted 
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a novelty check to find discovery patterns that actually do not occur in the medical 
literature.  However, their approach suffers from the low accuracy of automatically 
extracted semantic relationships and the limited number of relationship types that 
could be handled. 

Another technique for extracting and interconnecting knowledge at the relationship 
level is automatic text summarization based on relationship extraction. The CLEF 
(clinical e-sciences framework) project aims to generate summaries or “chronicles” of 
patient medical histories based on relationships that are extracted from individual 
medical records [44]. The authors indicate that inference is used in assembling 
individual events into chronicles, but it is not clear if the inference is done at the level 
of specific relationships between events and entities in the records. MIAKT (Medical 
Imaging and Advanced Knowledge Technologies) is another system for automatically 
summarizing knowledge in medical examination reports that focuses on image 
annotations [45]. 

7 Discussion and Future Directions 

Literature-based knowledge discovery is a technique that can be used to assist 
researchers in making scientific hypotheses that are well-based in the existing 
literature but have not been reported by any previous articles. A “discovery”, or more 
accurately a “potentially interesting hypothesis”, is generated in the form of an 
association between a pair of key terms in the literature that have not actually 
appeared together in any article but that have each occurred multiple times in the 
literature with the same intermediary concepts terms.  

Existing techniques for literature-based knowledge discovery only consider 
associations between singleton concepts. Because most scientific knowledge takes the 
form of specific binary relationships between concepts rather than just unnamed 
associations, hypotheses that are generated from the implied associations of pairs of 
relationship triples, consisting of two concept instances and a typed and directed 
relationship between them, are potentially more interesting and meaningful. 

A well formulated “heavy weight” ontology based on a description logic (DL) can 
function as a formalized knowledge representation language for expressing 
descriptions of knowledge resources that contain not only lists of key concepts, but 
also explicit assertions of specific relationships between pairs of concepts. Using a 
DL reasoner, one can even infer relationships that have not been explicitly stated but 
that are implied by the asserted relationships. 

In order to test the effectiveness of such an ontology to realize more accurate 
literature-based knowledge discovery, we have constructed a DL ontology from a 
subset of the MeSH CV. The “thesaurus-type” relationships specified between terms 
in the MeSH CV were disambiguated manually by human experts with only a limited 
amount of automatic preprocessing based on identification of multiple superclasses 
and use of simple regular expressions. We then used that DL ontology to create a 
corpus of 392 semantic statements describing research articles in life sciences. 
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Next, we described an algorithm that we have developed for generating potential 
discoveries in the form of relationship associations that are implied by the extracted 
relationship associations but that do not appear in any of the semantic statements in 
the corpus. A relationship association is analogous to concept association, such as that 
evidenced by term co-occurrence in article titles, except that instead of being between 
singleton concepts, the association is between relationship triples. We applied the 
algorithm to the relationship associations extracted previously from the 392 semantic 
statements [40], [41]. Each semantic statement contains an average of 34 properties, 
and the corpus contains more than 13,000 semantic triples, which is comparable to the 
size of other major corpora used for testing knowledge discovery applications. In fact, 
the number of triples that are logically entailed is easily more than 100,000. However, 
even this corpus is too small to provide a good guarantee that a new relationship 
association has not actually been reported in the literature. Therefore, the aim of this 
case study has been to provide a demonstration of the kind of knowledge discoveries 
that could be possible if more semantic statements become available. We were able to 
find several implied relationship associations that at least appear to be somewhat 
novel and of interest in life sciences.  

There are two major conditions for producing interesting knowledge discoveries 
using relationship associations. First, the classes and properties in the ontology must 
be sufficiently detailed to be able to express meaningful relationship associations. 
Second, the corpus of semantic statements must be large enough to check that a 
potential discovery has not already been reported in the literature. Unfortunately, we 
only have 392 semantic statements to work with, which is insufficient to satisfy the 
second condition. The EKOSS system is based on the idea that if the task of authoring 
the semantic statements could be distributed over the entire scientific community, the 
problem of scalability would be solved [12], [17]. However, here we have a typical 
“chicken and egg” problem: in order to convince scientists to make the effort to create 
the semantic statements, we must show their utility, but in order to show the utility of 
the semantic statements, we need a certain minimum number of statements to work 
with. Still, we believe that our corpus of 392 semantic statements will be sufficient to 
indicate the kind of discovery process that might be possible with a larger corpus of 
statements, thereby helping to “jump-start” a virtuous cycle of creating and applying 
semantic statements representing research articles.  

There are several areas in which to continue this research. First, it would be useful 
to expand the DL ontology to cover a larger part of the MeSH CV. Regular 
expressions have been used to resolve relationships between terms in the Gene 
Ontology (GO) [46]. That was possible in part due to the particular concept labeling 
convention in GO together with the highly specific focus of GO on genes and gene 
products. Unfortunately, the MeSH vocabulary, with its broader concept coverage, is 
less amendable to this kind of approach. An alternative might be to use our manually 
disambiguated results to train a machine algorithm for disambiguating similar 
relationships in MeSH by using grammatical expressions in the term definitions as 
features for machine learning. For example, application of a part-of-speech tagger, 
named entity recognition, and grammatical analysis to the definition of “Binding 
Sites, Antibody” can identify that the term refers to “sites” that are spatially related to 
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“antibodies” and that are participants of some “reaction” process involving antigens. 
This might be enough to enable a computer algorithm to disambiguate the 
relationships between some MeSH terms. However, applications to other terms may 
be less effective (for example “Antigen-Antibody Reactions” does not have any 
definition). 

Other future tasks include 1) establishing additional measures of “interestingness” 
for the generated relationship associations that mirror the measures that we developed 
in our previous work and 2) building a larger corpus of semantic statements. In order 
to facilitate the process of creating semantic statements and reduce the cognitive 
overhead for the human authors, we are developing semi-automatic methods, 
including incorporation of natural language processing and machine learning 
algorithms into the semantic statement authoring tools. Finally, we would like to 
investigate the possibility for integrating the semantic statement authoring approach 
into the research article publication process in order to leverage the potential for 
network effects in the scientific community [12], [17], [47]. 
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