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Abstract. Progressively Filtering (PF) is a simple categorization technique
framed within the local classifier per node approach. In PF, each classifier is en-
trusted with deciding whether the input in hand can be forwarded or not to its
children. A simple way to implement PF consists of unfolding the given tax-
onomy into pipelines of classifiers. In so doing, each node of the pipeline is a
binary classifier able to recognize whether or not an input belongs to the cor-
responding class. In this chapter, we illustrate and discuss the results obtained
by assessing the PF technique, used to perform text categorization. Experiments,
on the Reuters Corpus (RCV1- v2) dataset, are focused on the ability of PF to
deal with input imbalance. In particular, the baseline is: (i) comparing the re-
sults to those calculated resorting to the corresponding flat approach; (ii) cal-
culating the improvement of performance while augmenting the pipeline depth;
and (iii) measuring the performance in terms of generalization- / specialization-
/ misclassification-error and unknown-ratio. Experimental results show that, for
the adopted dataset, PF is able to counteract great imbalances between negative
and positive examples. We also present and discuss further experiments aimed
at assessing TSA, the greedy threshold selection algorithm adopted to perform
PF, against a relaxed brute-force algorithm and the most relevant state-of-the-art
algorithms.

Keywords: Progressive filtering, Threshold selection, Hierarchical text catego-
rization, Input imbalance.

1 Introduction

According to the “divide et impera” philosophy, the main advantage of the hierarchi-
cal perspective is that the problem is partitioned into smaller subproblems, each being
effectively and efficiently managed. Therefore, it is not surprising that in the Web 2.0
age people organize large collections of web pages, articles or emails in hierarchies of
topics or arrange a large body of knowledge in ontologies. Such organization allows
to focus on a specific level of details ignoring specialization at lower levels and gen-
eralization at upper levels. In this scenario, the main goal of automatic categorization
systems is to deal with reference taxonomies in an effective and efficient way.

In this chapter, we are aimed at assessing the effectiveness of the “Progressive Fil-
tering” (PF) technique, applied to text categorization in presence of input imbalance.
In its simplest setting, PF decomposes a given rooted taxonomy into pipelines, one for
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each path that exists between the root and any given node of the taxonomy, so that each
pipeline can be tuned in isolation. To this end, a Threshold Selection Algorithm (TSA)
has been devised, aimed at finding a sub-optimal combination of thresholds for each
pipeline. The chapter extends and revises our previous work [2]. The main extensions
consist of: (i) a more detailed presentation of TSA; and (ii) further experiments aimed
at assessing the effectiveness of TSA with respect to three state-of-the-art threshold
selection algorithms.

The chapter is organized as follows. In Section 2, we give a brief survey of relevant
work on: (i) hierarchical text categorization; (ii) threshold selection strategies; and (iii)
input imbalance. Section 3 concentrates on PF and TSA. In Section 4, we present and
discuss experimental results. Section 5 ends the chapter with conclusions.

2 Background

The most relevant issues that help to clarify the contextual setting of the chapter are: (i)
the work done on HTC, (ii) the work done on thresholding selection, and (iii) the work
done on the input imbalance.

2.1 Hierarchical Text Categorization

In recent years several researchers have investigated the use of hierarchies for text cat-
egorization.

Until the mid-1990s researchers mostly ignored the hierarchical structure of cate-
gories that occur in several domains. In 1997, Koller and Sahami [17] carry out the first
proper study about HTC on the Reuters-22173 collection. Documents are classified ac-
cording to the given hierarchy by filtering them through the best-matching first-level
class and then sending them to the appropriate second level. This approach shows that
hierarchical models perform well when a small number of features per class is used, as
no advantages were found using the hierarchical model for large numbers of features.
Mc Callum et al. [23] propose a method based on naı̈ve Bayes. The authors compare
two techniques: (i) exploring all possible paths in the given hierarchy and (ii) greedily
selecting at most two branches according to their probability, as done in [17]. Results
show that the latter is more error prone while computationally more efficient. Mladenic
and Grobelink [24] use the hierarchical structure to decompose a problem into a set of
subproblems, corresponding to categories (i.e., the nodes of the hierarchy). For each
subproblem, a naı̈ve Bayes classifier is generated, considering examples belonging to
the given category, including all examples classified in its subtrees. The classification
applies to all nodes in parallel; a document is passed down to a category only if the pos-
terior probability for that category is higher than a user-defined threshold. D’Alessio et
al. [12] propose a system in which, for a given category, the classification is based on a
weighted sum of feature occurrences that should be greater than the category threshold.
Both single and multiple classifications are possible for each document to be tested.
The classification of a document proceeds top-down possibly through multiple paths.
An innovative contribution of this work is the possibility of restructuring a given hier-
archy or building a new one from scratch. Dumas and Chen [13] use the hierarchical
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structure for two purposes: (i) training several SVMs, one for each intermediate node
and (ii) classifying documents by combining scores from SVMs at different levels. The
sets of positive and negative examples are built considering documents that belong to
categories at the same level, and different feature sets are built, one for each category.
Several combination rules have also been assessed. In the work of Ruiz and Srinivasan
[26], a variant of the Hierarchical Mixture of Experts model is used. A hierarchical clas-
sifier combining several neural networks is also proposed in [30]. Gaussier et al. [15]
propose a hierarchical generative model for textual data, i.e., a model for hierarchical
clustering and categorization of co-occurrence data, focused on documents organiza-
tion. In [25], a kernel-based approach for hierarchical text classification in a multi-label
context is presented. The work demonstrates that the use of the dependency structure
of microlabels (i.e., unions of partial paths in the tree) in a Markovian Network frame-
work leads to improved prediction accuracy on deep hierarchies. Optimization is made
feasible by utilizing decomposition of the original problem and making incremental
conditional gradient search in the subproblems. Ceci and Malerba [9] present a com-
prehensive study on hierarchical classification of Web documents. They extend a pre-
vious work [8] considering: (i) hierarchical feature selection mechanisms; (ii) a naı̈ve
Bayes algorithm aimed at avoiding problems related to different document lengths; (iii)
the validation of their framework for a probabilistic SVM-based classifier; and (iv) an
automated threshold selection algorithm. More recently, in [14], the authors propose a
multi-label hierarchical text categorization algorithm consisting of a hierarchical vari-
ant of ADABOOST.MH, a well-known member of the family of “boosting” learning
algorithms. Bennet and Nguyen [6] study the problem of the error propagation under
the assumption that the “higher” the node is in the hierarchy, the worse the mistake
is. The authors also study the problem of dealing with increasingly complex decision
surfaces. Brank et al. [7] deal with the problem of classifying textual documents into a
topical hierarchy of categories. They construct a coding matrix gradually, one column
at a time, each new column being defined in a way that the corresponding binary clas-
sifier attempts to correct the most common mistakes of the current ensemble of binary
classifiers. The goal is to achieve good performance while keeping reasonably low the
number of binary classifiers.

2.2 Threshold Selection Strategies

In TC, the three most commonly used thresholding strategies are RCut, PCut, and SCut
[35]. For each document, RCut sorts categories by score and selects the t top-ranking
categories, with t ≥ 1 (however, as noted in [28], RCut is not a strict thresholding
policy). For each category Cj , PCut sorts the documents by score and sets the threshold
of Cj so that the number of documents accepted by Cj corresponds to the number
of documents assigned to Cj . For each category Cj , SCut scores a validation set of
documents and tunes the threshold over the local pool of scores, until a suboptimal,
though satisfactory, performance of the classifier is obtained for Cj .

Few threshold selection algorithms have been proposed for HTC [12] [27] [9]. The
algorithm proposed by D’Alessio et al. [12] tunes the thresholds by considering cat-
egories in a top-down fashion. For each category Cj , the search space is visited by
incrementing the corresponding threshold with steps of 0.1. For each threshold value,
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the number of True Positives (TP ) and False Positives (FP ), i.e., the number of doc-
uments that would be correctly and incorrectly placed in Cj , is calculated. The util-
ity function, i.e., the goodness measure that must be maximized for each threshold,
is TP − FP (in the event that the same value of the utility function occurs multi-
ple times, the lowest threshold with that value is selected). Ruiz [27] selects thresh-
olds that optimize the F1 values for the categories, using the whole training set to
identify the (sub)optimal thresholds. His expert-based system takes a binary decision
at each expert gate and then optimizes the thresholds using only examples that reach
leaf nodes. This task is performed by grouping experts into levels and finding the
thresholds that maximize F1. The best results are selected upon trials performed with
each combination of thresholds from the vector [0.005, 0.01, 0.05, 0.10] for level 1 and
[0.005, 0.01, 0.05, 0.10, 0.15, . . . , 0.95] for levels 2, 3, 4. The algorithm proposed by
Ceci and Malerba [9] is based on a recursive bottom-up threshold determination. The
algorithm takes as input a category C and the set of thresholds already computed for
some siblings of C and their descendants. It returns the union of the input set with the
set of thresholds computed for all descendants of C. In particular, if C′ is a direct sub-
category of C, the threshold associated to C′ is determined by examining the sorted
list of classification scores and by selecting the middle point between two values in the
list, to minimize the expected error. The error function is estimated on the basis of the
distance between two nodes in a tree structure (TD), the distance being computed as
the sum of the weights of all edges of the unique path connecting the two categories in
the hierarchy (a unit weight is associated to each edge).

2.3 Input Imbalance

High imbalance occurs in real-world domains where the decision system is aimed at de-
tecting rare but important cases [18]. Imbalanced datasets exist in many real-world do-
mains, such as spotting unreliable telecommunication customers, detection of oil spills
in satellite radar images, learning word pronunciations, text classification, detection of
fraudulent telephone calls, information retrieval and filtering tasks, and so on [32] [34].
Japkowicz [16] contributed to study the class imbalance problem in the context of bi-
nary classification, the author studied the problem related to domains in which one class
is represented by a large number of examples whereas the other is represented by only
a few.

A number of solutions to the class imbalance problem have been proposed both at the
data- and algorithmic-level [20] [10] [19]. Data-level solutions include many different
forms of resampling such as random oversampling with replacement, random under-
sampling, directed oversampling, directed undersampling, oversampling with informed
generation of new samples, and combinations of the above techniques. To counteract the
class imbalance, algorithmic-level solutions include adjusting the costs of the various
classes, adjusting the decision threshold, and adopting recognition-based, rather than
discrimination-based, learning. Hybrid approaches have also been used to deal with the
class imbalance problem.
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3 Progressive Filtering

Progressive Filtering (PF) is a simple categorization technique framed within the local
classifier per node approach, which admits only binary decisions. In PF, each classi-
fier is entrusted with deciding whether the input in hand can be forwarded or not to
its children. The first proposals in which sequential boolean decisions are applied in
combination with local classifiers per node can be found in [12], [13], and [29]. In
[31], the idea of mirroring the taxonomy structure through binary classifiers is clearly
highlighted; the authors call this technique “binarized structured label learning”.

Fig. 1. An example of PF (highlighted with bold-dashed lines)

In PF, given a taxonomy, where each node represents a classifier entrusted with rec-
ognizing all corresponding positive inputs (i.e., interesting documents), each input tra-
verses the taxonomy as a “token”, starting from the root. If the current classifier recog-
nizes the token as positive, it is passed on to all its children (if any), and so on. A typical
result consists of activating one or more branches within the taxonomy, in which the
corresponding classifiers have accepted the token. Figure 1 gives an example of how
PF works. A theoretical study of the approach is beyond the scope of this chapter, the
interested reader could refer to [4] for further details.

3.1 The Approach

A simple way to implement PF consists of unfolding the given taxonomy into pipelines
of classifiers, as depicted in Figure 2. Each node of the pipeline is a binary classifier
able to recognize whether or not an input belongs to the corresponding class (i.e., to the
corresponding node of the taxonomy). Partitioning the taxonomy in pipelines gives rise
to a set of new classifiers, each represented by a pipeline.

Finally, let us note that the implementation of PF described in this chapter performs
a sort of “flattening” though preserving the information about the hierarchical relation-
ships embedded in a pipeline. For instance, the pipeline 〈ECAT,E21, E211〉 actually
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Fig. 2. The pipelines corresponding to the taxonomy in Figure 1

represents the classifier E211, although the information about the existing subsumption
relationships are preserved (i.e., E211 ≺ E21 ≺ ECAT , where “≺” denotes the usual
covering relation).

3.2 The Adopted Threshold Selection Algorithm

According to classical text categorization, given a set of documents D and a set of
labels C, a function CSVi : D → [0, 1] exists for each ci ∈ C. The behavior of ci
is controlled by a threshold θi, responsible for relaxing or restricting the acceptance
rate of the corresponding classifier. Let us recall that, with d ∈ D, CSVi(d) ≥ θi is
interpreted as a decision to categorize d under ci, whereas CSVi(d) < θi is interpreted
as a decision not to categorize d under ci.

In PF, we assume that CSVi exists, with the same semantics adopted by the classi-
cal setting. Considering a pipeline π, composed by n classifiers, the acceptance policy
strictly depends on the vector of thresholds θ = 〈θ1, θ2, . . . , θn〉 that embodies the
thresholds of all classifiers in π. In order to categorize d under π, the following con-
straint must be satisfied: for k = 1 . . . n, CSVi(d) ≥ θk. On the contrary, d is not
categorized under ci in the event that a classifier in π rejects it. Let us point out that we
allow different behaviors for a classifier, depending on which pipeline it is embedded
in. As a consequence, each pipeline can be considered in isolation from the others. For
instance, given π1 = 〈ECAT,E21, E211〉 and π2 = 〈ECAT,E21, E212〉, the clas-
sifier ECAT is not compelled to have the same threshold in π1 and in π2 (the same
holds for E21).

In PF, given a utility function1, we are interested in finding an effective and com-
putationally “light” way to reach a sub-optimum in the task of determining the best
vector of thresholds. Unfortunately, finding the best acceptance thresholds is a difficult
task. In fact, exhaustively trying each possible combination of thresholds (brute-force
approach) is unfeasible, the number of thresholds being virtually infinite. However, the
brute-force approach can be approximated by defining a granularity step that requires
to check only a finite number of points in the range [0, 1], in which the thresholds are
permitted to vary with step δ. Although potentially useful, this “relaxed” brute force

1 Different utility functions (e.g., precision, recall, Fβ , user-defined) can be adopted, depending
on the constraint imposed by the underlying scenario.
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algorithm for calibrating thresholds (RBF for short) is still too heavy from a compu-
tational point of view. On the contrary, the threshold selection algorithm described in
this chapter is characterized by low time complexity while maintaining the capability
of finding near-optimum solutions.

Utility functions typically adopted in TC and in HTC are nearly-convex with respect
to the acceptance threshold. Due to the shape of the utility function and to its depen-
dence on false positives and false negatives, it becomes feasible to search its maximum
around a subrange of [0, 1]. Bearing in mind that the lower the threshold the less restric-
tive is the classifier, we propose a greedy bottom-up algorithm for selecting decision
threshold that relies on two functions [3]:

– Repair (R), which operates on a classifier C by increasing or decreasing its thresh-
old –i.e., R(up, C) and R(down,C), respectively– until the selected utility func-
tion reaches and maintains a local maximum.

– Calibrate (C), which operates going downwards from the given classifier to its off-
spring by repeatedly calling R. It is intrinsically recursive and, at each step, calls
R to calibrate the current classifier.

Given a pipeline π = 〈C1, C2, . . . , CL〉, TSA is defined as follows (all thresholds are
initially set to 0):

TSA(π) := for k = L downto 1 do C(up, Ck) (1)

which asserts that C is applied to each node of the pipeline, starting from the leaf
(k = L).

Under the assumption that p is a structure that contains all information about a
pipeline, including the corresponding vector of thresholds and the utility function to
be optimized, the pseudo-code of TSA is:

function TSA(p:pipeline):
for k := 1 to p.length do p.thresholds[i] = 0
for k := p.length downto 1 do Calibrate(up,p,k)
return p.thresholds

end TSA

The Calibrate function is defined as follows:

C(up, Ck) := R(up, Ck), k = L
C(up, Ck) := R(up, Ck); C(down,Ck+1), k < L

(2)

and
C(down,Ck) := R(down,Ck), k = L
C(down,Ck) := R(down,Ck); C(up, Ck+1), k < L

(3)

where “;” denotes a sequence operator, meaning that in “a;b” action a is performed
before action b.
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The pseudo-code of Calibrate is:

function Calibrate(dir:{up,down}, p:pipeline, level:integer):
Repair(dir,p,level)
if level < p.length

then Calibrate(toggle(dir),p,level+1)
end Calibrate

where toggle is a function that reverses the current direction (from up to down and
vice versa). The reason why the direction of threshold optimization changes at each
call of Calibrate (and hence of Repair) lies in the fact that increasing the threshold
θk−1 is expected to forward less FP to Ck, which allows to decrease θk. Conversely,
decreasing the threshold θk−1 is expected to forward more FP to Ck , which must react
by increasing θk.

The pseudo-code of Repair is:

function Repair(dir:{up,down}, p:pipeline, level:integer):
delta := (dir = up) ? p.delta : -p.delta
best_threshold := p.thresholds[level]
max_uf := p.utility_function()
uf := max_uf
while uf >= max_uf * p.sf and p.thresholds[level] in [0,1]

do p.thresholds[level] += delta
uf := p.utility_function()
if uf < max_uf then continue
max_uf := uf
best_threshold := p.thresholds[level]

p.thresholds[level] := best_threshold
end Repair

The scale factor (p.sf ) is used to limit the impact of local minima during the search,
depending on the adopted utility function (e.g., a typical value of p.sf for F1 is 0.8).

It is worth pointing out that, as also noted in [21], the sub-optimal combination
of thresholds depends on the adopted dataset, hence the sub-optimal combination of
thresholds need to be recalculated for each dataset.

Searching for a sub-optimal combination of thresholds in a pipeline π is character-
ized by high time complexity. In particular, two sources of intractability hold: (i) the
optimization problem that involves the thresholds and (ii) the need of retraining classi-
fiers after modifying thresholds. In this work, we concentrate on the former issue while
deciding not to retrain the classifiers. In any case, it is clear that the task of optimizing
thresholds requires a solution that is computationally light. To calculate the computa-
tional complexity of TSA, let us define a granularity step that requires to visit only a
finite number of points in a range [ρmin, ρmax], 0 ≤ ρmin < ρmax ≤ 1, in which
the thresholds vary with step δ. As a consequence, p = 	δ−1 · (ρmax − ρmin)
 is
the maximum number of points to be checked for each classifier in a pipeline. For a
pipeline π of length L, the expected running time for TSA, say TTSA(π), is propor-
tional to (L + L2) · p · (ρmax − ρmin). This implies that TSA has complexity O(L2),
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Precision

Recall

Fig. 3. Comparison of precision and recall between PF and flat classification

i.e., quadratic with the number of classifiers embedded by a pipeline. A comparison be-
tween TSA and the brute-force approach is unfeasible, as the elements of the threshold
vector are real numbers. However, a comparison between TSA and RBF is feasible, al-
though RBF is still computationally heavy. Assuming that p points are checked for each
classifier in a pipeline, the expected running time for RBF , TRBF (π), is proportional
to pL, which implies that its computational complexity is O(pL).

4 Experiments and Results

The Reuters Corpus Volume I (RCV1-v2) [22] has been chosen as benchmark dataset.
In this corpus, stories are coded into four hierarchical groups (a fragment of the taxon-
omy is reported in Figure 1: Corporate/Industrial (CCAT), Economics (ECAT), Gov-
ernment/Social (GCAT), and Markets (MCAT). Although the complete list consists of
126 categories, only some of them have been used to test our hierarchical approach. The
total number of codes actually assigned to the data is 93, whereas the overall number
of documents is about 803,000. Each document belongs to at least one category and, on
average, to 3.8 categories.
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Reuters dataset has been chosen because it allows us to perform experiments with
pipelines up to level 4 while maintaining a substantial number of documents along the
pipeline. To perform experiments, we used, about 2,000 documents pereach leaf category.
We considered the 24 pipelines of depth 4 yielding a total of about 48,000 documents.

Experiments have been performed on a SUN Workstation with two Opteron 280,
2Ghz+ and 8Gb Ram. The system used to perform benchmarks has been implemented
using X.MAS [1], a generic multiagent architecture built upon JADE [5] and devised to
make it easier the implementation of information retrieval/filtering applications.

Experiments have been carried out by using classifiers based on the wk-NN technol-
ogy [11], which do not require specific training and are very robust with respect to noisy
data. As for document representation, we adopted the bag of words approach, a typical
method for representing texts in which each word from a vocabulary corresponds to a
feature and a document to a feature vector. After determining the overall sets of fea-
tures, their values are computed for each document resorting to the well-known TFIDF
method. To reduce the high dimensionality of the feature space, we select the features
that represent a node by adopting the information gain method.

Experiments have been performed to validate the proposed approach with respect to
the impact of PF in the input imbalance. To this end, three series of experiments have
been performed: first, performances calculated resorting to PF have been compared with
those calculated by resorting to the corresponding flat approach. Then, PF has been
tested to assess the improvement of performances while augmenting the pipeline depth.
Finally, performances have been calculated in terms of generalization- / specialization-
/ misclassification-error and unknown-ratio.

Furthermore, to show that the overall performances of PF are not worsened by the
adoption of TSA, we performed further experiments, on a balanced dataset of 2000
documents for each class, focused on (i) comparing the running time and F1 of TSA
vs. RBF, and on (ii) comparing TSA with the selected state-of-the-art algorithms, i.e.,
those proposed by D’Alessio et al. [12], by Ruiz [27], and by Ceci and Malerba [9].

4.1 Experimenting Progressive Filtering in Presence of Input Imbalance

The main issue being investigated is the effectiveness of PF with respect to flat clas-
sification. In order to make a fair comparison, the same classification system has been
adopted, i.e., a classifier based on the wk-NN technology [11]. The motivation for the
adoption of this particular technique stems from the fact that it does not require specific
training and is very robust with respect to noisy data. In fact, as demonstrate in [33]
wk-NN-based approaches can reduce the error rate due to robustness against outliers.

During the training activity, first, each classifier is trained with a balanced data set
of 1000 documents by using 200 (TFIDF) features selected in accordance with their
information gain. For any given node, the training set contains documents taken from
the corresponding subtree and documents of the sibling subtrees –as positive and nega-
tive examples, respectively. Then, the best thresholds are selected. Both the thresholds
of the pipelines and of the flat classifiers have been chosen by adopting F1 as utility
function2. As for pipelines, we used a step δ of 10−4 for TSA.

2 The utility function can be adopted depending on the constraint imposed by the given scenario.
For instance, F1 is suitable if one wants to give equal importance to precision and recall.
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Fig. 4. Performance improvement

Experiments have been performed by assessing the behavior of the proposed hier-
archical approach in presence of different ratios of positive examples versus negative
examples, i.e., from 2−1 to 2−7. We considered only pipelines that end with a leaf node
of the taxonomy. Accordingly, for the flat approach, we considered only classifiers that
correspond to a leaf.

PF vs Flat Classification. Figure 3 shows macro-averaging of precision and recall.
Precision and recall have been calculated for both the flat classifiers and the pipelines
by varying the input imbalance. As pointed out by experimental results (for precision),
the distributed solution based on pipelines has reported better results than those obtained
with the flat model. On the contrary, results on recall are worse than those obtained with
the flat model.

Improving Performance along the Pipeline. Figure 4 shows the performance im-
provements in terms of F1 of the proposed approach with respect to the flat one. The
improvement has been calculated in percentage with the formula (F1(pipeline) −
F1(flat)) × 100. Experimental results –having the adopted taxonomies a maximum
depth of five– show that PF performs always better than the flat approach.

Hierarchical Metrics. Figure 5 depicts the results obtained varying the imbalance. Ana-
lyzing the results, it is easy to note that the generalization-error and the misclassification-
error grow with the imbalance, whereas the specialization-error and the unknown-ratio
decrease. As for the generalization-error, it depends on the overall number of false
negatives (FNs), the greater the imbalance the greater the amount of FNs. Hence, the
generalization-error increases with the imbalance. In presence of input imbalance, the
trend of the generalization-error is similar to the trend of the recall measure. As for
the specialization-error, it depends on the overall number of false positives (FPs), the
greater the imbalance, the lower the amount of FPs. Hence, the specialization-error
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Fig. 5. Hierarchical measures

decreases with the imbalance. In presence of input imbalance, the trend of the special-
ization-error is similar to the trend of the precision. As final remark, let us note that dif-
ferent utility functions can be adopted, depending on which aspect or unwanted effect
one wants to improve or mitigate. For instance, recall could be adopted as utility function
while trying to reduce the number of FNs. This is due to the fact that recall optimization
is biased against FNs (with the typical unwanted effect of increasing FPs). In this way,
the unknown-ratio (which depends on FNs) decreases, while the misclassification-error
(which depends on FPs) increases.

4.2 Comparative Experiments of Threshold Selection Strategies

TSA vs. RBF. Experiments performed to compare TSA with RBF have been carried
out calculating the time (in milliseconds) required to set the optimal vector of thresh-
olds for both algorithms, i.e., the one that reaches the optimal value in term of F1, the
selected utility function. Different values of δ (i.e., 0.1, 0.05, 0.01) have been adopted to
increment thresholds during the search. Each pair of rows in Table 1 reports the compar-
ison in terms of the time spent to complete each calibrate step (tlev4 . . . tlev1), together
with the corresponding F1. Results clearly show that the cumulative running time for
RBF tends to rapidly become intractable3, whereas the values of F1 are comparable.

TSA vs. State-of-the-art Algorithms. As already pointed out, to compare TSA we
considered the algorithms proposed by D’Alessio et al. [12], by Ruiz [27], and by Ceci
and Malerba [9]. We used δ = 10−3 for TSA. Let us note that Ruiz uses the same
threshold value for level 3 and level 4, whereas we let its algorithm to search on the
entire space of thresholds. In so doing, the results in terms of utility functions cannot be

3 Note that 1.9E+8 millisecond are about 54.6 hours.
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Table 1. Comparisons between TSA and RBF (in milliseconds), averaged on pipelines with
L = 4

Algorithm tlev4 tlev3 tlev2 tlev1 F1

experiments with δ = 0.1, (p = 10)

TSA 33 81 131 194 0.8943

RBF 23 282 3,394 43,845 0.8952

experiments with δ = 0.05, (p = 20)

TSA 50 120 179 266 0.8953

RBF 35 737 17,860 405,913 0.8958

experiments with δ = 0.01, (p = 100)

TSA 261 656 1,018 1,625 0.8926

RBF 198 17,633 3.1E+6 1.96E+8 0.9077

Table 2. Comparisons between TSA and three state-of-the-art algorithms (UF stands for Utility
Function)

UF: F1 F1 TP-FP TD Time (s)
TSA 0.9080 814.80 532.24 1.74

Ceci & Malerba 0.0927 801.36 545.44 0.65
Ruiz 0.8809 766.72 695.32 29.39

D’Alessio et al. 0.9075 812.88 546.16 14.42

UF: TP-FP F1 TP-FP TD Time (s)
TSA 0.9050 813.36 521.48 1.2

Ceci & Malerba 0.9015 802.48 500.88 1.14
Ruiz 0.8770 764.08 675.20 24.4

D’Alessio at al. 0.9065 812.88 537.48 11.77

UF: TD F1 TP-FP TD Time (s)
TSA 0.8270 704.40 403.76 1.48

Ceci & Malerba 0.8202 694.96 404.96 0.62
Ruiz 0.7807 654.72 597.32 26.31

D’Alessio et al. 0.8107 684.78 415.60 13.06

worse than those calculated by means of the original algorithm. However, the running
time is an order of magnitude greater than the original algorithm.

For each algorithm, we performed three sets of experiments in which a different
utility function has been adopted. The baseline of our experiments is a comparison
among the four algorithms. In particular, we used: F1, according to the metric adopted
in a previous work on PF [2] and in [27]; TP −FP , according to the metric adopted in
[12]; and TD, according to the metric adopted in [9].

As reported in Table 2, for each experimental setting, we calculated the performance
and the time spent for each selected metric. Table 2 summarizes the results. For each
experimental setting, the most relevant results (highlighted in bold in the table) corre-
spond to the metric used as utility function. As shown, TSA always performs better in
terms of F1, TP − FP , and TD. As for the running time, the algorithm proposed by
Ceci and Malerba shows the best performance.
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5 Conclusions

In this chapter, we made experiments on PF to investigate how the ratio between posi-
tive and negative examples affects the performances of a classifier system and how these
performances can be improved by adopting PF instead of a classical flat approach. Re-
sults show that the proposed approach is able to deal with high imbalance between
negative and positive examples.

Acknowledgements. This research was partly sponsored by the Autonomous Region
of Sardinia (RAS), through a grant financed with the “Sardinia POR FSE 2007-2013”
funds and provided according to the L.R. 7/2007 “Promotion of the Scientific Research
and of the Technological Innovation in Sardinia”.

References

1. Addis, A., Armano, G., Vargiu, E.: From a generic multiagent architecture to multiagent in-
formation retrieval systems. In: AT2AI-6, Sixth International Workshop, From Agent Theory
to Agent Implementation, pp. 3–9 (2008)

2. Addis, A., Armano, G., Vargiu, E.: Assessing progressive filtering to perform hierarchical
text categorization in presence of input imbalance. In: Proceedings of International Confer-
ence on Knowledge Discovery and Information Retrieval, KDIR 2010 (2010)

3. Addis, A., Armano, G., Vargiu, E.: A Comparative Experimental Assessment of a Threshold
Selection Algorithm in Hierarchical Text Categorization. In: Clough, P., Foley, C., Gurrin,
C., Jones, G.J.F., Kraaij, W., Lee, H., Mudoch, V. (eds.) ECIR 2011. LNCS, vol. 6611, pp.
32–42. Springer, Heidelberg (2011)

4. Armano, G.: On the progressive filtering approach to hierarchical text categorization. Tech.
rep., DIEE - University of Cagliari (2009)

5. Bellifemine, F., Caire, G., Greenwood, D. (eds.): Developing Multi-Agent Systems with
JADE (Wiley Series in Agent Technology). John Wiley and Sons (2007)

6. Bennett, P.N., Nguyen, N.: Refined experts: improving classification in large taxonomies. In:
SIGIR 2009: Proceedings of the 32nd international ACM SIGIR conference on Research and
development in information retrieval, pp. 11–18. ACM, New York (2009)

7. Brank, J., Mladenic, D., Grobelnik, M.: Large-scale hierarchical text classification using svm
and coding matrices. In: Large-Scale Hierarchical Classification Workshop (2010)

8. Ceci, M., Malerba, D.: Hierarchical Classification of HTML Documents with WebClassII.
In: Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 57–72. Springer, Heidelberg (2003)

9. Ceci, M., Malerba, D.: Classifying web documents in a hierarchy of categories: a compre-
hensive study. Journal of Intelligent Information Systems 28(1), 37–78 (2007)

10. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357 (2002)

11. Cost, R.S., Salzberg, S.: A weighted nearest neighbor algorithm for learning with symbolic
features. Machine Learning 10, 57–78 (1993)

12. D’Alessio, S., Murray, K., Schiaffino, R.: The effect of using hierarchical classifiers in text
categorization. In: Proceedings of of the 6th International Conference on Recherche dInfor-
mation Assiste par Ordinateur (RIAO), pp. 302–313 (2000)

13. Dumais, S.T., Chen, H.: Hierarchical classification of Web content. In: Belkin, N.J., Ingw-
ersen, P., Leong, M.K. (eds.) Proceedings of 23rd ACM International Conference on Re-
search and Development in Information Retrieval, SIGIR 2000, pp. 256–263. ACM Press,
New York (2000)



70 A. Addis, G. Armano, and E. Vargiu

14. Esuli, A., Fagni, T., Sebastiani, F.: Boosting multi-label hierarchical text categorization. Inf.
Retr. 11(4), 287–313 (2008)
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