
Automated Reasoning Support for Ontology
Development

Megan Katsumi and Michael Grüninger

Department of Mechanical and Industrial Engineering,
University of Toronto Toronto, Ontario, Canada M5S 3G8

Abstract. The design and evaluation of ontologies in first-order logic poses
many challenges, many of which focus on the specification of the intended mod-
els for the ontology’s concepts and the relationship between these models and
the models of the ontology’s axioms. In this paper we present a methodology for
the verification of first-order logic ontologies, and provide a lifecycle in which it
may be implemented to develop a correct ontology. Automated reasoning plays
a critical role in the specification of requirements, design, and verification of the
ontology. The application of automated reasoning in the lifecycle is illustrated by
examples from the PSL Ontology.

1 Introduction

The design of ontologies is a complicated process, and there has been much work in the
literature devoted to the development of methodologies to assist the ontology engineer
in this respect. In this paper we present an approach to the semiautomatic verification
of first-order logic ontologies, and describe a lifecycle in which it may be implemented
to develop a correct ontology. Our objective is to use automated reasoning as the basis
for formally defining the steps within a development methodology that focuses on the
model-theoretic properties of the ontology. Although the ontology lifecycle described
in this paper was developed to address issues that arise as a result of the semidecidable
nature of first-order logic, the methodology and lifecycle is applicable to automated
reasoning with less expressive languages.

We will discuss some existing methodologies for ontology development, and provide
motivation for the methodology presented here. This work is a result of experiences in
the development of an extension of the PSL ontology [1,7] that is sufficient to represent
flow modelling notations such as UML, BPMN, and IDEF3. The focus of the paper
will be a discussion of the role that theorem proving plays in each phase of the life-
cycle, with an emphasis on pragmatic guidance for the semiautomatic verification of
ontologies.

2 Ontology Development in Literature

High-level methodologies for ontology development tend to cover the breadth of the de-
velopment process, however they do not provide techniques at the more detailed level.

A. Fred et al. (Eds.): IC3K 2010, CCIS 272, pp. 208–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Automated Reasoning Support for Ontology Development 209

The On-To-Knowledge Management (OTKM) [11] methodology covers the full lifecy-
cle of ontology development. It provides useful insights into the steps required both pre-
and post- application, but it does not provide exact details on how activities like testing
should be performed, or what is to be done if an ontology fails to satisfy a requirement.
METHONTOLOGY [2] covers areas of the lifecycle similar to what is presented in the
OTKM methodology, with a focus on the explanation of the concepts at each stage in
development. DILIGENT [10] provides guidance to support the distributed (geograph-
ically or organizationally) development of ontologies; in particular, the authors present
a method to enable the adaptation of an ontology from different parties.

Low-level ontology design methodologies provide detailed instruction, concentrat-
ing on means to accomplish some necessary step in ontology development. The method-
ology that was used in the design of the TOVE Ontology for enterprise modelling [5]
introduced the notion of competency questions to define the requirements of an ontol-
ogy and to guide the formal definition of a set of axioms for the ontology. The Enterprise
Ontology [13], also arising from work with enterprise ontologies, presents an approach
for ontology capture that emphasizes the notion of “middle-out” design, giving equal
weight to top-down issues (such as requirements) and bottom-up issues (such as reuse).

The evaluation of an ontology is generally accepted as a key process in its devel-
opment. The main efforts in this area focus on taxonomy evaluation [3]; to the best
of our knowledge, there have been no efforts towards evaluation methodologies that
are semantically deeper than this. This is possibly due to the issue of semidecidabil-
ity of first-order logic and the inherent intractability of theorem provers that presents a
challenge for the evaluation of test results. High level methodologies typically do not
specify the requirements in a verifiable form. In any case, the existing methodologies
do not sufficiently address the issue of ontology verification, and our goal is to address
this hole, in particular, the challenges encountered in first-order logic development.

3 The Ontology Lifecycle

The lifecycle presented in Figure 1 is intended to serve as a structured framework that
provides guidance during the ontology development process. This lifecycle addresses
the limitations of existing verification techniques while providing a structure within
which existing techniques for ontology design and requirements identification may be
applied. The feedback and interactions between the various phases illustrates the tight
integration between the design and the verification of the ontology. Throughout this
section, we illustrate the efficacy of this lifecycle framework using examples from the
design and maintenance of the PSL Ontology 1.

1 The Process Specification Language (PSL) [1,7] has been designed to facilitate correct and
complete exchange of process information. PSL has been published as an International Stan-
dard (ISO 18629) within the International Organisation of Standardisation and the full set
of axioms (which we call Tpsl) in the Common Logic Interchange Format is available at
http://www.mel.nist.gov/psl/ontology.html. This paper only uses the PSL Ontology as the con-
text of a case study in ontology development; the focus is not on the content of the PSL On-
tology, but rather on how various axioms were proposed and revised at different stages of the
ontology lifecycle.

210 M. Katsumi and M. Grüninger

Requirements Design

Verifica on

Tuning Applica on

Fig. 1. The Ontology Lifecycle

We define five phases in the ontology lifecycle:

– The Requirements Phase produces a specification of the intended models of the
ontology.

– The Design Phase produces an ontology to axiomatize the class of models that
captures the requirements. The feedback loop that is shown in Figure 1 between
the Design Phase and the Requirements Phase occurs as the ontology develops. In
the Requirements Phase the intended models must initially be specified informally,
until the design of the ontology has matured such that its requirements may be
specified using its vocabulary.

– The Verification Phase guarantees that the intended models of the ontology which
are specified in the Requirements Phase are equivalent to the models of the axioms
which are produced in the Design Phase.

– The Tuning Phase addresses the pragmatic issue of dealing with cases in which the
theorem provers used in the Verification Phase fail to return a definitive answer.

– The Application Phase covers the different ways in which the ontology is used,
such as decision support systems, semantic integration, and search.

Each phase in the ontology lifecycle is associated with a set of reasoning problems that
are defined with respect to the axioms of the ontology Tonto, a domain theory Σdomain

that uses the ontology, and a query Φ that formalizes the competency questions, and/or
intended models produced in the Requirements Phase. Since these reasoning problems
are entailment problems of the form:

Tonto ∪Σdomain |= Φ

we can utilize theorem provers to verify that the axiomatization of the ontology satisfies
its requirements. The relationships between the stages of the ontology lifecycle and the
different aspects of the reasoning problems are shown in Figure 2.

The Design Phase provides the axioms Tonto ∪Σdomain that form the antecedent of
the reasoning problem. In the Verification Phase, we use theorem provers to determine
whether or not the sentences that capture the requirements are indeed entailed by the
axioms of the ontology.

Automated Reasoning Support for Ontology Development 211

Design
︷ ︸︸ ︷

Tonto ∪Σdomain |=
Requirements

︷︸︸︷

Φ
︸ ︷︷ ︸

V erification

Fig. 2. Reasoning problems and stages of the ontology lifecycle

3.1 Requirements

Requirements for an ontology are specified with respect to the intended semantics of
the terminology, and the challenge of the initial phase of the ontology lifecycle is to
cast these requirements in a testable form. From a mathematical perspective the re-
quirements may be characterized by their intended models; to allow for semiautomatic
verification we can specify these semantic requirements as entailment problems with
the use of competency questions. From a reasoning problem perspective the output of
the Requirements Phase is a set of consequents for the entailment problems described
above.

For more mature ontologies, we may be able to use the representation theorem, to
completely characterize the requirements with the use of a relative interpretation. In
this case, the output of the Requirements Phase is the set of resulting entailment prob-
lems stating the necessary and sufficient conditions for the relative interpretation; these
entailment problems differ slightly from Figure 2 and will be presented later in more
detail.

Intended Models. In current ontology research, the languages for formal ontologies
(such as RDFS, OWL, and Common Logic) are closely related to mathematical logic,
in which the semantics are based on the notion of an interpretation. If a sentence is true
in the interpretation, we say that the sentence is satisfied by the interpretation. If every
axiom in the ontology is satisfied by the interpretation, then the interpretation is called a
model of the ontology. With a formal ontology, the content of the ontology is specified
as a theory, so that a sentence is consistent with that theory if there exists a model of
the theory that satisfies the sentence; a sentence can be deduced if it is satisfied by all
models of the theory. Therefore, the semantics of the ontology’s terminology can be
characterized by this implicit set of models, which we refer to as the set of intended
models.

We aim to define the requirements for a semantically correct ontology with the re-
lationship between the intended models for the ontology, and the actual models of its
axiomatization, (see Figure 3). An axiomatization is semantically correct if and only if
it does not include any unintended models, and it does not omit any intended models.
Formally, we define these potential semantic errors as follows:

Definition 1. An error of unintended models is present in the ontology if and only if
there exists any model M such that

M ∈ Mod(Tonto) ⇒ M �∈ Mintended

212 M. Katsumi and M. Grüninger

Conceptualization C

Logical language L

Models
MD(L)

Intended models
IK(L)

Ontology models
OK

Unintended models

Omitted models

Fig. 3. The relationship between intended models for an ontology and the models of the ontol-
ogy’s axioms (from [9]). In this paper we refer to the models of the ontology Ok as Mod(Tonto),
and we refer to the intended models Ik(L) as Mintended.

Definition 2. An error of model omission is present in the ontology if and only if there
exists any model M such that

M ∈ Mintended ⇒ M �∈ Mod(Tonto)

Intended models are specified with respect to some well-understood class of mathemat-
ical structures (such as partial orderings, graph theory, and geometry). The extensions
of the relations in the model are then specified with respect to properties of these math-
ematical structures.

For example, the intended models for the subactivity occurrence ordering extension
to the PSL Ontology are intuitively specified by two properties:

1. the partial ordering over the subactivity occurrences;
2. the mapping that embeds the partial ordering into the activity tree.

Formally, the intended models for the subactivity occurrence ordering extension are
defined by

Definition 3. Let Msoo be the following class of structures such that for any M ∈
Msoo,

1. M is an extension of a model of Tpsl (i.e. the PSL Ontology);
2. for each activity tree τi, there exists a unique partial ordering �i = (Pi,≺) and a

mapping
θ : τi → �i such that
(a) 〈s1, s2, a〉 ∈ min precedes ⇒ θ(s2) �≺ θ(s1)
(b) 〈θ(s), s, a〉 ∈ mono;
(c) comparable elements in � are the image of comparable elements in τ .

3. 〈s, a〉 ∈ soo iff s ∈ Pi;
4. 〈s1, s2, a〉 ∈ soo precedes iff s1 ≺ s2.

Automated Reasoning Support for Ontology Development 213

One can take this approach to explicitly specify the intended models as a class of math-
ematical structures- however, early in development we often lack the knowledge to do
so. Therefore, in practice initially the specification of the intended models is based on
use cases for the application of the ontology. The two primary application areas for the
PSL Ontology have been in semantic integration and decision support systems. In this
approach, the intended models are defined implicitly with respect either to the set of
sentences that are satisfied by all of the intended models or to sets of sentences that
should be satisfied by some model. If we recall that sentences satisfied by all models
are entailed by the axiomatization, then this leads us to the idea of implicitly defining
the intended models of the ontology with respect to reasoning problems. The reasoning
problems that are associated with the Requirements Phase are competency questions
(which arise primarily from decision support use cases), and relative interpretations
(derived from the specification of intended models).

Representation Theorems. We use representation theorems to formalize the definition
of semantic correctness for our ontology. They are proven in two parts – we first prove
every structure in the class is a model of the ontology and then prove that every model
of the ontology is elementary equivalent to some structure in the class.

For the new extension Tsoo to the PSL Ontology, the representation theorem is stated
as follows:

Theorem 1. Any structure M ∈ Msoo is isomorphic to a model of Tsoo ∪ Tpsl.
Any model of Tsoo ∪ Tpsl is isomorphic to a structure in Msoo.

The characterization up to isomorphism of the models of an ontology through a rep-
resentation theorem has several distinct advantages. First, unintended models are more
easily identified, since the representation theorems characterize all models of the on-
tology. We also gain insight into any implicit assumptions within the axiomatization
which may actually eliminate models that were intended. Second, any decidability and
complexity results that have been established for the classes of mathematical structures
in the representation theorems can be extended to the ontology itself. Finally, the char-
acterization of models supports the specification of semantic mappings to other ontolo-
gies, since such mappings between ontologies preserve substructures of their models.

Representation theorems are distinct from the notion of the completeness of an on-
tology. A logical theory T is complete if and only if for any sentence Φ, either T |= Φ or
T �|= Φ. The ontologies that we develop are almost never complete in this sense. Never-
theless, we can consider representation theorems to be demonstration that the ontology
Tonto is complete with respect to its requirements (i.e. set of intended models Monto).
This allows us to say that Tonto |= Φ if and only if Monto |= Φ (that is, the ontology
entails a sentence if and only if the class of intended models entails the sentence).

The typical way to prove the Representation Theorem for an ontology is to explic-
itly construct the models of the ontology in the metatheory and then show that these
models are equivalent to the specification of the intended models of the ontology using
classes of mathematical structures. An alternative to the mathematical specification of
the representation theorem is to employ a theorem prover to verify that the models of
the ontology are equivalent to the intended models. Depending on the maturity of the

214 M. Katsumi and M. Grüninger

ontology, this can be accomplished in two ways - with the use of competency questions
or a relative interpretation.

Competency Questions. Following [5,8,12], competency questions are queries that
impose demands on the expressiveness of the underlying ontology. Intuitively, the on-
tology must be able to represent these questions and characterize the answers using the
terminology. Examples of competency questions for the subactivity occurrence order-
ing extension include the following:

Which subactivities can possibly occur next after an occurrence of the activity a1?

(∀o, s1) occurrence(s1, a1) ∧ occurrence(o, a) (1)

∧ subactivity occurrence(s1, o)

⊃ (∃a2, s2) occurrence(s2, a2) ∧ next subocc(s1, s2, a))

Does there exist a point in an activity tree for a after which the same subactivities
occur?

(∃a, a1, s1) subactivity(a1, a) ∧ occurrence of(s1, a1)

∧ ((∀o1, o2) occurrence of(o1, a) ∧ occurrence of(o2, a)

∧ subactivity occurrence(s1, o1)

∧ subactivity occurrence(s1, o2)

∧min precedes(s1, s2, a)

⊃ (∃s3) subactivity occurrence(s3, o2)

∧min precedes(s1, s3, a) ∧mono(s2, s3, a) (2)

Recall that sentences such as these constitute the consequent Φ of a reasoning problem
(see Figure 2), and that they are supposed to be entailed by the axioms of the ontology
Tonto together with a domain theory Tdomain (which in this case is a process description
that formalizes a specific UML activity diagram). It is in this sense that competency
questions are requirements for the ontology – there must be sufficient axioms in Tonto∪
Tdomain to entail the sentences that formalize the competency questions.

In the area of decision support, the verification of an ontology allows us to make
the claim that any inferences drawn by a reasoning engine using the ontology are ac-
tually entailed by the ontology’s intended models. If an ontology’s axiomatization has
unintended models, then it is possible to find sentences that are entailed by the intended
models, but which are not provable from the axioms of the ontology.

To specify requirements, competency questions can be developed from use cases (as
above), or with the goal of approximating the Representation Theorem. The relationship
between competency questions and the requirements is that the associated query must
be provable from the axioms of the ontology alone. Since a sentence is provable if and
only if it is satisfied by all models, competency questions implicitly specify the intended
models of the ontology. Rather than proving the Representation Theorem directly, we
can utilize competency questions for the specification of the requirements for the on-
tology. We can do this by proving that the extensions of the relations in the models of

Automated Reasoning Support for Ontology Development 215

the ontology have properties that are equivalent to those satisfied by the extensions of
the relations in the intended models. For example, the subactivity occurrence ordering �
introduced in the definition of the intended models Msoo is a partial ordering, and this
corresponds to the competency questions which asserts that the soo precedes relation
is also a partial ordering, and hence is a transitive relation:

(∀s1, s2, s3, a) soo precedes(s1, s2, a) (3)

∧ soo precedes(s2, s3, a) ⊃ soo precedes(s1, s3, a)

This illustrates the technique of identifying competency questions directly from the
mathematical definition of the intended models.

Relative Interpretation. With more mature ontologies, we may have a better under-
standing of both the ontology, and its intended models. If we are able to identify and
axiomatize the class of intended models, a theorem about the relationship between the
class of the ontology’s models and the class of intended models can be replaced by a
theorem about the relationship between the ontology (a theory) and the theory axiom-
atizing the intended models (assuming that such axiomatization is known). We can use
automated reasoners to prove the latter relationship and thus verify an ontology in a
(semi-)automated way. The relationship between two theories, TA and TB , is the no-
tion of interpretation, which is a mapping from the language of TA to the language of
TB that preserves the theorems of TA. We will say that two theories TA and TB are
definably equivalent iff they are mutually interpretable, i.e. TA is interpretable in TB

and TB is interpretable in TA. The key to representing the requirements for a relative
interpretation as entailment problems is the following theorem of reducibility from [6]:

Theorem 2. A theory T is definably equivalent with a set of theories T1, ..., Tn iff the
class of models Mod(T) can be represented by Mod(T1) ∪ ... ∪Mod(Tn).

The necessary direction of a representation theorem (i.e. if a structure is intended, then
it is a model of the ontology’s axiomatization) can be stated as

M ∈ Mintended ⇒ M ∈ Mod(Tonto)

If we suppose that the theory that axiomatizes Mintended is the union of some previ-
ously known theories T1, ..., Tn, then by Theorem 2 we need to show that Tonto inter-
prets T1∪ ...∪Tn. If Δ is the set of translation definitions for this relative interpretation,
then the necessary direction of the representation theorem is equivalent to the following
reasoning task:

Tonto ∪Δ |= T1 ∪ ... ∪ Tn (Rep-1)

The sufficient direction of a representation theorem (any model of the ontology’s ax-
iomatization is also an intended model) can be stated as

M ∈ Mod(Tonto) ⇒ M ∈ Mintended

In this case, we need to show that T1 ∪ ... ∪ Tn interprets Tonto. If Π is the set of
translation definitions for this relative interpretation, the sufficient direction of the rep-
resentation theorem is equivalent to the following reasoning task:

T1 ∪ ... ∪ Tn ∪Π |= Tonto (Rep-2)

216 M. Katsumi and M. Grüninger

By Theorem 2, Mod(Tonto) is representable by Mintended iff T1∪· · ·∪Tn is definably
equivalent to Tonto, which we can show by proving both of the above reasoning tasks.
Note that the requirement Rep-2 varies from Figure 2 in that the axioms being designed
for the ontology form the consequent of the reasoning problem. Also both Rep-1 and
Rep-2 differ in that they include a set of translation definitions as opposed (or in addi-
tion) to a domain theory. Regardless, all requirements specified as entailment problems
are verified in the same way with the use of an automated theorem prover.

3.2 Design

Recall that the Requirements Phase specified intended models either implicitly or ex-
plicity. The task of the Design Phase is to produce a set of axioms that will entail exactly
these intended models. The reasoning problems associated with the Design Phase focus
on the notion of the design rationale for axioms. The task in this case is to characterize
why specific axioms are required, tracing each axiom back to the original set of re-
quirements for the ontology. While we do not prescribe a specific methodology for the
design of the axioms, a key task to assist the process of axiom design in early stages of
development is model exploration.

In early phases of the ontology lifecycle, we often lack a complete understanding
of the models of the ontology; in fact, we may not even possess sufficient knowledge
to formally express our requirements. In model exploration, we can use an automated
model builder to generate models of the axioms in an effort to develop an understanding
of both the intended structures and the models of the ontology. We attempt to generate
models with specific sizes and/or properties. These specific properties are specified by
asserting the existence of elements satisfying certain relations in the ontology.

For example, if Tonto is a satisfiable axiomatization of an ontology with some n-ary
predicate P (a1, a2, . . . , an) with finite n ≥ 1 in the language of Tonto. Then, we might
generate a model for T∃, where:

T∃ = T ∪ {∃x1, x2, . . . , xn[all xk distinct ∧ P (x1, x2, . . . , xn)]

Models generated in this way serve to illustrate the semantics of the ontology’s axioms.

3.3 Verification

As we saw earlier, existing approaches to ontology verification focus on taxonomic
relationships and obvious logical criteria for ontology evaluation such as consistency.
Strictly speaking, we only need to show that a model exists in order to demonstrate that
a first-order theory is consistent. Constructing a single model, however, runs the risk of
having demonstrated satisfiability for a restricted case; for example, one could construct
a model of a process ontology in which no processes occur, without realizing that the
axiomatization might mistakenly be inconsistent with any theory in which processes do
occur. We therefore need a complete characterization of all models of the ontology up
to isomorphism.

In general, verification is concerned with the relationship between the intended mod-
els of an ontology and the models of the axiomatization of the ontology. From a mathe-
matical perspective this is formalized by the notion of representation theorems. From a

Automated Reasoning Support for Ontology Development 217

reasoning problem perspective this amounts to evaluating the entailment problems, and
we are able to perform this verification semiautomatically with the use of a theorem
prover.

Outcomes of Verification. As we have just seen, the reasoning problems associated
with Verification support the proofs of the Representation Theorem. When verifying
any semantic requirement there are three possible outcomes, as illustrated in Figure 4.
Each outcome is discussed in more detail below.

Case 1:
Unintended
Proof

Axiom design
error

Requirement
specification

error

Case 2:
No Proof

No proof exists
Provable

(intractability
issues)

Requirement too
strong

Axiomatization
too weak

Case 3:
Proof found

Proceed to next
entailment
problem

Return to Design
Phase

Return to Design
Phase

Return to
Requirements

Phase

Return to
Requirements

Phase
Tuning Phase

Fig. 4. Outcomes of Semantic Requirement Verification

Case 1: Unintended Proof Found. In this case, a proof was found of a sentence that
contradicts the intended semantics of the ontology. This is often encountered when
the theorem prover finds a proof without using all, or any clauses from the proposi-
tion or query. Given this possibility, a thorough inspection of all proofs found must
be performed; if this case is detected, it is indicative of at least one of two possible
errors with the ontology:
1. An examination of the proof may lead to the identification of some axiom in

the ontology which is not entailed by the intended models; in this case we must
return to the Design Phase.

One such result with the design of the subactivity occurrence ordering ex-
tension Tsoo to the PSL ontology arose when testing its consistency with the
first addition of Tsoo. A proof was found, and normally this would indicate an
error in the set of definitions that was being tested. However, upon examination
we realized that the definition of the same tree relation made it inconsistent
for any model of the ontology to have an occurrence in the same activity tree
as the root of the tree:

Tsoo ∪ Tpsl |= (∀s1, a) root(s1, a) ⊃ ¬(∃s2) same tree(s1, s2, a)

This sentence should not be entailed by the intended models of the PSL On-
tology itself, yet it was only identified when using the axioms of Tsoo; it was a
hidden consequence of the PSL Ontology. In particular, it was the axiom below
from Tsoo that played the critical role in deriving the unintended sentence:

218 M. Katsumi and M. Grüninger

(∀s1, a)root(s1, a) ⊃ (∃s2) same tree(s1, s2, a)

∧mono(s1, s2, a) ∧ soo(s2, a) (4)

As a result of this discovery, the axiom for same tree was modified.
It is interesting to see the relationship between this case and the failure of

a potential representation theorem for the ontology. Part of the representation
theorem shows that a sentence that is entailed by axioms is also entailed by the
set of intended models. Hidden consequences such as we have just considered
are counterexamples to this part of the representation, since it is a sentence that
is provable from the axioms, yet it is not entailed by the intended models. One
can either weaken the axioms (so that the sentence is no longer provable), or
one can strengthen the requirements by restricting the class of intended models
(so that the sentence is entailed by all intended models).

2. An examination of the proof may lead to the detection of some error in the
definition of the requirements; in this case we must return to the Requirements
Phase. It is important to devote considerable attention to the detection of this
possibility so that the ontology is not revised to satisfy incorrect requirements.
We did not encounter an example of this in our experiences, however it would
be possible for an error in the requirements specification to lead to an unin-
tended proof. As discussed above, this type of error could be addressed by
strengthening the requirements.

Case 2: No Proof Found. As a result of the semi-decidability of first-order logic and
the inherent intractability of automated theorem proving, if no proof is found when
testing for a particular requirement then a heuristic decision regarding the state of
the lifecycle must be made. It could be the case that no proof is found because the
sentence really is not provable; there may be a mistake in the definition of the re-
quirement that we are testing, or there may be an error in the axiomatization of the
ontology, (i.e. we cannot prove that the requirement is met because it is not met).
However, it could be the case that due to the intractability of automated theorem
provers, a proof exists but the theorem prover is unable to find it (at least within
some time limit). To avoid unnecessary work, some effort must be made to ensure
that we are as informed as possible when making this decision; in particular, previ-
ously encountered errors and the nature of the requirement that we are attempting
to prove is satisfied must be taken into account. In some cases, we may be able to
use a model building tool to search for a counter-example, potentially resolving the
uncertainty in this case. We discuss this possibility further in the following section;
regardless, if no proof is found we must choose between the following options:
1. If we believe there may be some error in the requirements or the design of the

ontology, then we must revisit the Requirements Phase or the Design Phase, re-
spectively. It is recommended that the Requirements Phase is revisited first, as
generally a much smaller investment is required to investigate the correctness
of a requirement, rather than that of the ontology.

In the course of proving the representation theorem for Tsoo, the theorem
prover failed to entail a property regarding the mono relation, namely, that the
mono relation should only hold between different occurrences of the same sub-
activity. This requirement was initially expressed as the following proposition:

Automated Reasoning Support for Ontology Development 219

(∀s1, s2, o, a)mono(s1, s2, a) ∧ occurrence of(o, a)

∧ subactivity occurrence(s1, o)

⊃ ¬subactivity occurrence(s2, o) (5)

It seemed clear that the axiomatizations of the mono relation should have re-
stricted all satisfying models to instances where s1 and s2 were not in the same
activity tree. Returning to the Requirements Phase, an examination of the above
sentence led to the realization that the axiomatization of the proposition had
been incorrect. We had neglected to specify the condition that s1 was not the
same occurrence as s2, (in which case the subactivity occurrence relation
clearly holds for s2 if it holds for s1). Once this issue was addressed, we con-
tinued to the Verification Phase (no revisions were required to the ontology’s
design) and the theorem prover was able to show that the ontology entailed the
corrected property, shown below.

(∀s1, s2, o, a)mono(s1, s2, a) ∧ occurrence of(o, a)

∧ subactivity occurrence(s1, o) ∧ (s1 �= s2)

⊃ ¬subactivity occurrence(s2, o) (6)

The previous example was a case where the error that was corrected resulted
from a misrepresentation of the intended semantics of the requirements. An-
other interesting situation was encountered where the requirements’ semantics
were redefined following a series of inconclusive test results. Originally, Tsoo

was to be a conservative extension of PSL2. In part, this meant that the axiom-
atization of Tsoo had to account for all of the kinds of activity trees that were
represented in PSL. One particular class of activity trees was represented by
the zigzag relation, defined below.

(∀s1, s3, a) zigzag(s1, s3, a) (7)

≡ (∃s2)preserve(s1, s2, a)
∧ preserve(s2, s3, a) ∧ ¬preserve(s1, s3, a)

With the inclusion of the zigzag class in Tsoo we were unable to entail the
transitivity of the preserve relation. Review of the inconclusive test results led
to the belief that with the inclusion of the zigzag class of activity trees there
was in fact, no proof of the transitivity of the preserve relation:

Tsoo ∪ Tpsl �|= (∀s1, s2, s3, a) preserve(s1, s2, a)
∧ preserve(s2, s3, a) ⊃ preserve(s1, s3, a) (8)

Careful consideration of the situation led to the decision that the ability of Tsoo

to entail the transitivity of the preserve relation was more important than de-
veloping it as a non-conservative extension of PSL. This decision resulted in a

2 A detailed discussion of conservative extensions and the role that they play in ontology devel-
opment can be found in [4].

220 M. Katsumi and M. Grüninger

change in the axiomatization of Tsoo, however this change represented a change
in the requirements. We were no longer considering the zigzag class, because
we had revised the requirements such that Tsoo did not have to be a conser-
vative extension of PSL. After this change was implemented, we were able to
successfully prove that the axioms of the ontology entailed the transitivity of
the preserve relation.

2. If we are strongly confident about the correctness of both the requirements
and the design of the ontology, then we consider the possibility that it is the
intractable nature of the theorem prover that is preventing a proof from being
found. In this case, we proceed to the Tuning Phase and attempt to adapt the
ontology so that the theorem prover performance is improved to a level where
the requirements can be verified.

In another case, we were unsuccessful in proving a particular property about
the min precedes and the preserve relations. Based on the intended seman-
tics of the two relations, it would appear straightforward that in any model
where min precedes holds for two occurrences, preserve must hold as well.
We attempted to verify this by proving that we could entail the following propo-
sition from the ontology with the theorem prover, however the results were
inconclusive:

(∀s1, s2, a)min precedes(s1, s2, a)

⊃ preserve(s1, s2, a) (9)

Being fairly certain about the correctness of the ontology and specification of
the property, we moved to the Tuning Phase. In consideration of the definition
of the preserve relation and the proposition we were attempting to verify, the
reflexivity of the preserve relation was an intuitively important property. Two
lemmas regarding the reflexivity of the mono relation that had already been
shown to satisfy the models of the ontology were:

(∀s1, s2, a)min precedes(s1, s2, a)

⊃ mono(s2, s2, a) (10)

and

(∀s, o, a)subactivity occurrence(s, o) ∧ legal(s)

∧ occurrence of(o, a) ⊃ mono(s, s, a) (11)

The addition of these lemmas to the original reasoning problem aided the theo-
rem prover sufficiently so that the property was proved and we could continue
testing the other requirements.

This example illustrates a phenomenon that distinguishes theorem proving
with ontologies from more traditional theorem proving – we are not certain that
a particular sentence is actually provable. Effectively, every theorem proving
task with an ontology is an open problem.

Automated Reasoning Support for Ontology Development 221

Case 3: All Requirements Met. If we obtain a proof that a requirement is satisfied,
and it is consistent with the intended semantics of the ontology, then we may pro-
ceed with testing the remaining requirements. Once we obtain such proofs for each
requirement, the ontology we have developed satisfies our requirements and we can
proceed to the Application Phase.

The results of the Verification Phase may lead to revisions of either the design or the
requirements of the ontology. The Design Phase is revisited in the case that an error is
detected or suspected in the Verification Phase. If an error in the design is identified, it is
noted that the developer must be cautious and consider the entire design when making
the correction so that further errors are not created. Additionally, when a correction is
made to the design, all previous test results should be reviewed, and any tests (proofs)
that were related to the error should be rerun; an error in the design has the potential to
positively or negatively impact the results of any tests run prior to its identification and
correction. The Requirements Phase is revisited in the case that an error in the require-
ments is found or suspected during the Verification Phase. It may also be revisited if
revisions to the requirements are necessary because of corrections to the ontology that
were implemented in the Design Phase.

Note that due to the structure of the entailment problem Rep-2, verification results
may require a slightly different interpretation. When attempting to diagnose an error,
we should take into account that we are likely reasoning with a well-established axiom-
atization of some mathematical theory.

Generation of Counter-Examples. Although the theorem prover’s results are incon-
clusive in Case 2, we have the potential to use an automated model building tool to
determine whether or not a proof exists. If an ontology’s axiomatization has unintended
models, then it is possible to find sentences ϕ that are entailed by the intended struc-
tures, but which are not provable from the axioms of the ontology. Therefore we can
address the ambiguity of Case 2 by evaluating the satisfiability3, of

Tonto ∪ ¬ϕ

where ϕ is the requirement we are attempting to prove. In other words, if we are unable
to find a proof for a particular requirement, we search for a model that is a counter-
example of the requirement. The (non-)existence of such a model will tell us the cause
of Case 2 with certainty. If a counter-example is found, it can then be examined (and
evaluated) to determine the course of corrective action required. In other words if the
counter-example is a desired model then the requirements are too strong should be
corrected accordingly, otherwise this indicates that the axiomatization is too weak and
must be corrected to exclude the counter-example. In the latter case, we may attempt to
generate multiple counter-examples to improve our understanding of the error. In this
way, model generation may be used not only to resolve the uncertainty of Case 2, but
to assist in the decision-making process required if a proof does not exist.

3 We would be evaluating the satisfiability of T1∪ ...Tn∪¬ϕ if the requirement in question was
from Rep-2.

222 M. Katsumi and M. Grüninger

3.4 Tuning

The Tuning Phase focuses on the mitigation of theorem prover intractability. Similar to
the Design Phase, the Tuning Phase develops a set of axioms, however the input and
the function of each phase makes the two distinct. In contrast to the Design Phase, the
input of the Tuning Phase is a version of the ontology that we believe to be correct, but
have not been able to conclusively test. Automated theorem provers sometimes have
difficulty finding a proof, though one exists; the aim of this phase is to apply techniques
to streamline the ontology in an effort to mitigate theorem prover intractability. This
can be accomplished with the development of subsets and the use of lemmas, discussed
in further detail below.

Subsets. To develop a subset requires that we remove some of the axioms of the on-
tology that are not relevant (in the axiomatization of the ontology) to the particular
reasoning problem we are considering. The idea is that by excluding these axioms from
the reasoning problem, we can increase the efficiency of the theorem prover, as it will
not be considering axioms that would not be used for the proof. By reducing the num-
ber of clauses that must be considered by the theorem prover, there is the potential to
reduce the time required to find a solution, if one exists. The selection of a subset could
be, but is not necessarily based on the modules of an ontology. We have currently not
explored all aspects of this technique in depth, however it appears that subset selection
introduces a new complication that must be considered. When selecting a subset of the
ontology, we must ensure that all of the necessary axioms have been included. If any
related axiom is excluded, this could allow for an inconclusive test result (we might not
prove a sentence because some of the axioms required to prove it have been excluded).
At this point, we do not provide any methodology to address this challenge; a clear and
complete understanding of the ontology is required to be certain of what axioms must
be selected for a subset for a particular reasoning problem.

For example, when working with the PSL ontology, we could exclude axioms from
PSL-Core that had to do with timepoints when testing reasoning problems that were
related to the composition of activities. This was possible because of our understanding
of the concepts of the ontology. The size of the PSL ontology makes the use of subsets
necessary for most reasoning problems, however we have observed that these subsets
are often successfully reused for other related reasoning problems. While testing the on-
tology, we were able to use the same subset4 to successfully entail 14 of 16 propositions
related to the ordering of subactivity occurrences.

Lemmas. We use the term lemma in its traditional, mathematical sense. Their use to
improve theorem prover performance is a commonly accepted technique. In the Tuning
Phase, we can apply this technique to assist in obtaining conclusive test results. Lemmas
may be used (in conjunction or independent of subsets) to improve performance as a
means of reducing the number of steps required to obtain a proof. By adding a lemma,
we hope to provide the theorem prover with a sentence that will be used in the proof; in
this case the number of steps required to obtain the proof is reduced (since the theorem

4 This subset can be found at http://stl.mie.utoronto.ca/colore/process/psl-subset-519.clif.

Automated Reasoning Support for Ontology Development 223

prover no longer needs to prove the lemma before using it). We also speculate that the
addition of such a lemma provides a sort of guidance for the search, in the direction of
the desired proof. Lemmas should be developed intelligently, with some idea of how
the addition of the sentence to the ontology will assist in finding a proof. Another point
to consider is that of reusability. Some effort should be made to design a lemma that is
general enough to be applied for other reasoning problems. In the event that we have
already developed a lemma for one reasoning problem, we should consider its potential
use in the Tuning Phase for a related reasoning problem.

An example of the use of a lemma while testing the PSL ontology is discussed in
Case 2 in the previous section.

4 Discussion

The description of the Verification Phase highlighted the heuristic decisions in the
methodology that result from the semidecidability of first-order logic, and the intractabil-
ity of theorem proving in this case. As discussed, if we do not obtain a proof when
testing a requirement, then we cannot always be certain if this is because a proof does
not exist (if this is the case, then we know that our current ontology does not satisfy the
requirement, unless it was incorrectly specified) or if a proof does exist but the theorem
prover reaches a specified time limit before it is able to find it. We suspect that it is
this issue of uncertain paths resulting from Case 2 that will stimulate some criticism of
our verification methodology and the lifecycle as it is proposed here. We address this
concern with the following remarks:

– In two of the three possible cases that we have identified, we can be certain of the
direction we must proceed in (the cases when a proof is found).

– In Case 2, when a proof is not found and there is uncertainty about the cause, we can
be certain that the requirements for the ontology’s application have not been met.
Applications of the ontology that utilize a theorem prover must be able to answer
a query (competency questions) or entail a proposition (infer a property). In other
words a theorem prover must be able to find a proof of the requirements in some
reasonable amount of time. Therefore, we can say that in all cases the verification
methodology is capable of testing if the requirements are met; the uncertainty exists
in how to proceed in development when a requirement is not met.

– The uncertainty of which path should be followed when a requirement is not met
may be mitigated. If thorough documentation practices are followed through devel-
opment, we may seek out trends to indicate the most likely source of the error. We
also presented an application of model generation to search for counter-examples;
this has the potential to completely resolve any uncertainty for this case.

– Furthermore, we have demonstrated the feasibility and effectiveness of our method-
ology in practice with examples of each possible case in the Verification Phase.

5 Future Work

One direction of future work that arose from the development of the subactivity occur-
rence ordering extension of PSL is in the area of development environments.

224 M. Katsumi and M. Grüninger

Specifically, an environment capable of capturing the development history of an ontol-
ogy - including test results, changes made to axioms and requirements, and different
versions of the ontology developed in the Tuning Phase. This would be valuable not
only from a documentation perspective, but as a potential aid to heuristic decisions. A
summary of test results could indicate trends (design errors, or lemmas required) that
would assist the decision process in the case that no proof is found. Also, if a particular
test remains inconclusive after considerable effort, an environment capable of tracking
test details could allow the developer to temporarily leave the test unresolved and return
to it after additional tests have been performed. With the necessary test history informa-
tion available, the developer could easily and efficiently apply any corrections, subsets,
or lemmas discovered in subsequent tests to the “problem” test. An environment dedi-
cated to this type of documentation has the potential to be theorem prover independent.
This would be beneficial since different theorem provers may be more useful for dif-
ferent applications or with different ontologies, so committing to one theorem prover
restricts the potential application of the methodology presented here.

Additional areas for future work that we have identified are briefly described below:

– Perform experiments to identify the possibility of problem-general heuristics or
techniques to reduce uncertainty in the heuristic decision following a Case 2 of the
Verification Phase.

– We acknowledge that techniques involving model generation are not possible with
all ontologies, i.e. when all models are infinite. An interesting question to investi-
gate in this case is if it is possible to identify a “finite version” of the ontology that
is able to preserve the semantics, without forcing infinite models.

– Include maintenance considerations in the lifecycle phases. Different types of main-
tenance activities (bug fixes, changes in the ontology’s domain) should be per-
formed differently within the lifecycle.

– Investigate the role of non-functional requirements in the ontology lifecycle. In
keeping with the analogy typically drawn between software and ontology develop-
ment, we identify the specification of intended models as the functional require-
ments of an ontology. This leaves the design and evaluation of non-functional
requirements to be explored: how can these qualities be identified and measured?
and how can they be integrated in the development lifecycle of ontologies?

6 Conclusions

Existing ontology development methodologies do not provide an account of ontology
evaluation that is adequate for verifying ontologies with respect to their model-theoretic
properties. In this paper, we have provided an approach to the ontology lifecycle that
focuses on support for semiautomatic verification of ontologies, including a methodol-
ogy that takes into account the pragmatic issues of semi-decidability in first-order logic.
The effective use of such a methodology addresses the challenges posed by ontologies
that use more expressive languages, such as first-order logic.

Our presentation of the ontology lifecycle rests on the connection between the math-
ematical definition of the intended models of an ontology and the reasoning problems

Automated Reasoning Support for Ontology Development 225

that are equivalent to the verification of these intended models with respect to the ax-
iomatization of the ontology. It is this connection which allows theorem provers to play
a pivotal role in ontology design, analysis, and evaluation.

Nothing in the methodology presented here is specific to the PSL ontology, or to first-
order logic. The lifecycle accounts for the difficulties of development with first-order
logic; however, since the semiautomatic verification of requirements satisfaction could
be beneficial in any application of ontology development, we close with an invitation
for the techniques presented here to be applied with other ontologies.

References

1. Bock, C., Grüninger, M.: PSL: A semantic domain for flow models. Software and Systems
Modeling 4, 209–231 (2004)

2. Fernández, M., Gómez-Pérez, A., Juristo, N.: Methontology from ontological art towards
ontological engineering. In: Symposium on Ontological Engineering of AAAI (1997)

3. Gómez-Pérez, A., Corcho, O., Fernández-Lopez, M.: Ontological Engineering: with exam-
ples from the areas of Knowledge Management. In: e-Commerce and the Semantic Web,
1st edn. Advanced Information and Knowledge Processing. Springer, Heidelberg (2004),
http://www.worldcat.org/isbn/1852335513

4. Cuenca Grau, B., Parsia, B., Sirin, E.: Ontology Integration using ε-Connections. In: Stuck-
enschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp.
293–320. Springer, Heidelberg (2009)

5. Grüninger, M., Fox, M.S.: Methodology for the design and evaluation of ontologies. In:
International Joint Conference on Artificial Inteligence (IJCAI 1995), Workshop on Basic
Ontological Issues in Knowledge Sharing (1995)

6. Grüninger, M., Hahmann, T., Hashemi, A., Ong, D.: Ontology verification with repositories.
In: Conference on Formal Ontology in Information Systems (FOIS 2010), pp. 317–333. IOS
Press (2010)

7. Grüninger, M.: Using the PSL ontology. In: Handbook of Ontologies, pp. 419–431. Springer,
Berlin (2009)

8. Gruninger, M., Fox, M.S.: The role of competency questions in enterprise engineering. In:
Proceedings of the IFIP WG5.7 Workshop on Benchmarking – Theory and Practice (1994)

9. Guarino, N., Oberle, D., Staab, S.: What is an ontology? In: Handbook of Ontologies, pp.
1–17. Springer, Berlin (2009)

10. Pinto, H.S., Tempich, C., Staab, S.: Ontology engineering and evolution in a distributed world
using diligent. In: Handbook on Ontologies, International Handbooks on Information Sys-
tems, pp. 153–176. Springer, Heidelberg (2003)

11. Sure, Y., Staab, S., Studer, R., Gmbh, O.: On-to-knowledge methodology (otkm). In:
Handbook on Ontologies, International Handbooks on Information Systems, pp. 117–132.
Springer, Heidelberg (2003)

12. Uschold, M., Grüninger, M.: Ontologies: Principles, methods and applications. Knowledge
Engineering Review 11, 93–136 (1996)

13. Uschold, M., King, M.: Towards a methodology for building ontologies. In: Workshop on
Basic Ontological Issues in Knowledge Sharing, held in conjunction with IJCAI 1995 (1995)

http://www.worldcat.org/isbn/1852335513

	Automated Reasoning Support for OntologyDevelopment
	Introduction
	Ontology Development in Literature
	The Ontology Lifecycle
	Requirements
	Design
	Verification
	Tuning

	Discussion
	Future Work
	Conclusions
	References

