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Abstract. The performance of Mel-frequency cepstrum based automatic speech
recognition system significantly degrade in noisy environments. In this article,
the feasibility of utilizing the bio-inspired auditory features to improve noise ro-
bustness is investigated. The features are based on auditory characteristics, which
include gammatone filtering and modulation spectral processing to emulate the
mechanisms performed in the cochlea and middle ear aimed to improve robust-
ness in human ear. The robust noise resistant features that emulate cochlea fre-
quency resolution are extracted by gammatone filtering. And then a long-term
modulation spectral processing, which preserves speech intelligibility in the sig-
nal is performed. Compared and discussed are the features based on the perfor-
mance on Aurora5 database, comprising the meeting recorder digit task recorded
with four different microphones in a hands-free mode at a real meeting room and
living room and office room simulated data corrupted with different levels of ad-
ditive noises. The performance of these features is also investigated for CHIME
challenge, aiming at speech separation and recognition in noise background that
has been collected from a real family room using binaural microphones. The
experimental results show that the proposed features provide considerable im-
provement with respect to the standard feature extraction techniques for both the
versions of the database.

1 Introduction

A significant trend in ubiquitous computing is to facilitate the user to communicate and
interact naturally with concerned applications. Speech is an appealing mode of commu-
nication for such applications. The human-machine interaction using automatic speech
processing technologies is a diversified research area, which has been investigated ac-
tively [[14203]].

Speech acquisition, processing and recognition in a non-ideal acoustic environments
are complex tasks due to presence of unknown additive noise, reverberation and inter-
fering speakers. Additive noise from interfering noise sources, and convolutive noise
arising from acoustic environment and transmission channel characteristics contribute
to a degradation of performance in speech recognition systems. This article addresses
the problem of robustness of automatic speech recognition (ASR) systems due to con-
volutive noise by modeling techniques performed by cochlea in human auditory pro-
cessing system.

The influence of additive background noise on the speech signal can be expressed as

y(t) = 2(t) +n(t) (D
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where y(t) is the degraded speech signal, x(t) represents the clean signal, n(t) is the
additive noise, which is uncorrelated with the speech signal and unknown. Different
techniques have been proposed based on voice activity detection based noise estima-
tion, minimum statistics noise estimation, histogram and quantile based methods, and
estimation of the posteriori and a priori signal-to-noise ratio [4]]. In Ephraim and Cohen
[5l], various approaches to speech enhancement based on noise estimation and spectral
subtraction are discussed.

Apart from the stationary background noise, another important source of degrada-
tion is caused by reverberation produced in acoustic environment. The speech signal
acquired in a reverberant room can be modeled as convolution of the speech signal with
the room impulse response,

y(t) = =(t) * h(?) 2

where y(t) is the degraded speech signal, x(t) represents the clean signal, h(t) is the
impulse response of the room. The impulse response depends upon the distance between
the speaker and the microphone, and room conditions, such as movement of people
in the room, clapping, opening or closing doors, etc. Thus extracting robust features
which can handle various room impulse responses is a complex and challenging task.
A variant of spectral subtraction has been proposed in [6] to enhance speech degraded
by reverberation.

In general to improve robustness of the noisy speech, processing can be performed
at signal, feature or model level. Speech enhancement techniques aim at improving the
quality of speech signal captured through single microphone or microphone array [[78]].
Robust acoustic features attempt to represent parameters less sensitive to noise by mod-
ifying the extracted features. Common techniques include cepstral mean normalization
(CMN) and cepstral mean subtraction and variance normalization (CMSVN) and rela-
tive spectral (RASTA) filtering [29]. Model adaptation approach modify the acoustic
model parameters to fit better with the observed speech features [7410]].

Performance of the human auditory system is more adept at noisy speech recogni-
tion. Auditory modeling, which simulates some properties of the human auditory sys-
tem have been applied to speech recognition system to enhance its robustness. The
information coded in auditory spike trains and the information transfer processing prin-
ciples found in the auditory pathway are used in [11112]. The neural synchrony is used
for creating noise-robust representations of speech [[12]]. The model parameters are fine-
tuned to conform to the population discharge patterns in the auditory nerve which are
then used to derive estimates of the spectrum on a frame-by-frame basis. This was ex-
tremely effective in noise and improved performance of the ASR dramatically. Various
auditory processing based approaches were proposed to improve robustness [[13114)15]]
and in particular, the works described in [12J16] were focused to address the additive
noise problem. Further, in [17] a model of auditory perception (PEMO) developed by
Dau et al. [[15] is used as a front end for ASR, which performed better than the standard
Mel-frequency based cepstral coefficients (MFCC) for an isolated word recognition
task. Principles and models relating to auditory processing, which attempt to model
human hearing to some extent have been applied for speech recognition in [9l18]].
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The important aspect in a speech recognition system is to have abstract representa-
tion of highly redundant speech signal, which is achieved by frequency analysis. The
cochlea and hair cells of the inner ear perform spectrum analysis to extract relevant fea-
tures. The models for auditory spectrum analysis are based on filterbank design, which
are usually characterized by non-uniform frequency resolution and non-uniform band-
width on linear scale. Examples include popular speech analysis techniques, namely
Mel frequency cepstrum and perceptual linear prediction which try to emulate human
auditory perception. Other important processing is based upon Gammatone filter bank,
which is designed to model human cochlear filtering and is shown to provide robustness
in adverse noise conditions for speech recognition tasks [[16419]. In [16], gammatone
based auditory front-end exhibited robust performance compared to traditional front-
ends based on MFCC, PLP and standard ETSI frontend. For large vocabulary speech
recognition tasks, the performance of these features have been competitive with stan-
dard features like MFCC and PLP [19]. Another important psychoacoustic property
is modulation spectrum of speech, which is important for speech intelligibility. The
relative prominence of slow temporal modulations is different at various frequencies,
similar to perceptual ability of human auditory system. Particularly, most of the use-
ful linguistic information is in the modulation frequency components from the range
between 2 and 16 Hz, with dominant component at around 4 Hz [20121/18]. Modu-
lation spectrum based features computed over longer windows have been effective in
measuring speech intelligibility in noisy environments and speech detection [22/23124].

In this work, an alternate approach based on psychoacoustic properties combining
gammatone filtering and modulation spectrum of speech, to preserve both quality and
intelligibility for feature extraction is presented. Gammatone frequency resolution re-
duces the ASR system sensitivity to environmental reverberant signal attributes and
improve the speech signal characteristics. Further, long-term modulation preserves the
linguistic information in the speech signal, improving the accuracy of the system. The
features derived from the combination are used to provide robustness, particularly in
the context of mismatch between training and testing reverberant environments. The
studied features are shown to be reliable and robust to the effects of the hands-free
recordings in the reverberant meeting room. The effectiveness of the proposed fea-
tures is demonstrated with experiments which use real-time reverberant speech ac-
quired through four different microphones. For comparison purposes the recognition
results obtained using conventional features are tested, and usage of the proposed fea-
tures proved to be efficient.

The paper is organized as follows: Section 2 gives an overview of the auditory
inspired features, including gammatone filter bank processing and modulation spec-
trum processing. Section 3 describes the methodology for feature extraction. Section 4
presents database description, experiments and results. Section 5 discusses the results.
Finally, Section 6 concludes the paper.

2 Feature Description

In this section, a brief introduction and general overview of auditory features based on
gammatone filter bank and modulation spectrum is presented.
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2.1 Gammatone Filter Bank

The gammatone filter was first conceptualized by Flanagan as a model of the basilar
membrane displacement in the human ear [25]. Johannesma used it to approximate
responses recorded from the cochlear nucleus in the cat [26]]. de Boer and de Jongh used
a gammatone function to model impulse responses from auditory nerve fiber recordings,
which have been estimated using a linear reverse-correlation technique [27]. Patterson
et al. showed that the gammatone filter also delineates psychoacoustically determined
auditory filters in humans [28]].

Gammatone filters are linear approximation of physiologically motivated process-
ing performed by the cochlea[29], comprise series of bandpass filters, whose impulse
response is defined by:

g(t) = at"—lcos(Qﬂ'fct + ¢)e—27rbt 3)

where n is the order of the filter, b is the bandwidth of the filter, a is the amplitude, f.
is the filter center frequency and ¢ is the phase.
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Fig. 1. Frequency response for the 32-channel gammatone filterbank

The filter center frequencies and bandwidths are derived from the filter’s Equivalent
Rectangular Bandwidth (ERB) as detailed in [29]]. In [30], Glasberg and Moore relate
center frequency and the ERB of an auditory filter as

4.37f.

ERB(f.) =247("

+1) )
The filter output of the m!* gammatone filter , X,,, can be expressed by

X (1) = 2(t) * hyn(t) ©)
where h,, () is the impulse response of the filter.

The frequency response of the 32-channel gammatone filterbank is as shown in
Fig.[T
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Fig. 2. Processing stages of the gammatone modulation spectral feature

2.2 Modulation Spectrum

The temporal evolution of speech spectral parameters, which describe slow variation in
energy represent important information associated with phonetic segments [31]. The
low-frequency modulations encode information pertaining to syllables, by virtue of
variation in the modulation pattern across the acoustic spectrum. Dudley showed that
essential information in speech is embedded in modulation patterns lower than 25 Hz
distributed over a few as 10 discrete spectral channels [32]. Further, studies by Drull-
man et al. confirmed the importance of amplitude modulation frequencies on speech
intelligibility, particularly modulation frequencies below 16Hz contributing to speech
intelligibility [33]. Houtgast and Steeneeken demonstrated that modulation frequencies
between 2 and 10 Hz can be used as an objective measure of speech intelligibility, for
assessing quality of speech over wide range of acoustic environments [22]].

The long-term modulations examine the slow temporal evolution of the speech en-
ergy with time windows in the range of 160 - 800 ms, contrary to the conventional
short-term modulations studied with time windows of 10 -30 ms which capture rapid
changes of the speech signals. Generally, the modulation spectrum is computed as fol-
lowing: speech signal X (k) is segmented into frames by a window function w(k, t),
where ¢ is frame number. Short-time Fourier transform of the windowed speech signal
X(t, f) is calculated as

oo

Y(t, )= Y, X(f—i)W(,t) 6)

i=—00

The modulation spectrum Y, (f, g) is obtained by applying Fourier transform on the
running spectra, obtained by taking absolute values |Y (¢, f)| at each frequency, ex-
pressed as

V(S 9) = FTIY (&, P)llli=1,..7 )

where T is the total number of frames and g is the modulation frequency. The relative
prominence of slow temporal modulations is different at various frequencies, similar to
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Fig. 3. Waveform, spectrogram, gammatonegram, and modulation spectrum density plots for the
(a)clean, (b)reverberant and (c)additive noise corrupted speech

perceptual ability of human auditory system. Most of the useful linguistic information
is in the modulation frequency components from the range between 2 and 16 Hz, with
dominant component at around 4 Hz [33I21]]. In [21], it has been shown that for noisy
environments, the components of the modulation spectrum below 2 Hz and above 10 Hz
are less important for speech intelligibility, particularly the band below 1 Hz contains
mostly information about the environment. Therefore the recognition performance can
be improved by suppressing this band in the feature extraction.

The comparative waveforms, spectrograms, gammatonegrams and modulation spec-
trum density plots of the clean and noisy versions corrupted with convolutive and ad-
ditive noises of the same speech utterance are as shown in Fig.[3] The example is from
Aurora 5 and as following:
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(a) clean sentence "4966097” from TI-DIGITS

(b) sentence in reverberant environment (living room, T60 appr. 0.5s)

(c) sentence in reverberant environment (living room, T60 appr. 0.5s) + additive noise
(interior noise at 10dB).

From modulation spectrum density plots, some of the important characteristics of the
modulation spectrum can be observed. The important information of speech is concen-
trated in the area from 2 Hz and 16 Hz, particularly 2 Hz and 4 Hz contain crucial
information related to the variation of phonemes.

3 Methodology

The block schematic for the gammatone modulation spectrum based feature extraction
technique is shown in Fig.[Al The speech signal first undergoes pre-emphasis, which
flatten the frequency characteristics of the speech signal. The signal is then processed
by a gammatone filterbank which uses 32 frequency channels equally spaced on the
equivalent ERB scale as shown in Fig. [Il The impulse responses of the gammatone
filterbank are similar to the impulse responses of the auditory system found in phys-
iological measurements [27]. The filterbank is linear and does not consider nonlinear
effects such as level-dependent upward spread of masking and combination tones. The
computationally effective gammatone filter bank implementation as described in [34]]
is used. The gammatone filter bank transform is computed over L ms and the segment
is shifted by n ms. The log magnitude resulting coefficients are then decorrelated by
applying a discrete cosine transform (DCT). The computations are made over all the in-
coming signal, resulting in a sequence of energy magnitudes for each band sampled at
1/n Hz. Then, frame by frame analysis is performed and a N-dimensional parameter is
obtained for each frame. The modulation spectrum of each coefficient which is defined
as the Fourier transform of its temporal evolution is computed. In each band, the modu-
lations of the signal are analyzed by computing FFT over the P ms Hamming window
and the segment is shifted by p ms. The energies for the frequencies between the 2 - 16
Hz, which represent the important components for the speech signal are computed.

For example, if the given signal z:(t) is sampled at 8 kHz, a first-order high pass pre-
emphasis filter is applied and short segments of speech are extracted with a 25 window.
The window is shifted by 10 ms which corresponds to a frame rate of 100 Hz. Each
speech frame is then processed by a 32-channel gammatone filterbank. The 32 logarith-
mic gammatone spectral values are transformed to the cepstral domain by means of a
DCT. Thirteen cepstral coefficients C'0 to C'12 are calculated. The modulation spectrum
of each coefficient, (sampled at 100Hz) is calculated with a 160 ms window, shifted by
10 ms. Thirteen coefficients C'13 to C26 which are first-order derivatives are further
extracted. The features are named gammatone filterbank modulation cepstral (GFMC)
features.

The same processing is also performed by replacing gammatone filterbank with Mel
filterbank in the Figure Bl resulting in Mel-frequency modulation cepstral (MFMC) fea-
tures. The performance of these features in comparison to GFMC features are discussed
in Section 4.
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4 Experiments and Results

To evaluate the performance, a full HTK based recognition system is used. The HMM-
based recognizer architecture specified for use with the Aurora 5 database is used [35].
The training data is downsampled version of clean TIDIGITS at a sampling frequency
of 8 kHz, with 8623 utterances. There are eleven whole word HMMs each with 16 states
and with each state having four Gaussian mixtures. The si¢/ model has three states and
each state has four mixtures.

4.1 Convolutive Noise

The experiments are conducted on a subset of the Aurora-5 corpus - meeting recorder
digits. The data comprise real recordings in a meeting room, recorded in a hands-free
mode at the International Computer Science Institute in Berkeley. The dataset consists
of 2400 utterances from 24 speakers, with 7800 digits in total. The speech was captured
with four different microphones, placed at the middle of the table in the meeting room.
The recordings contain only a small amount of additive noise, but have the effects of
hands-free recording in the reverberant room. There are four different versions of all
utterances recorded with four different microphones, with recording levels kept low.

Table 1 shows the results in % word accuracies for meeting recording digits recorded
with four different microphones, labeled as 6, 7, E and F. The average performance of
four microphones for different features is shown at the last column of the table. ETSI-2
correspond to the standard advanced front-end as described in [35)]. PLP and MFCC
are the standard 39-dimensional Perceptual linear prediction and Mel frequency fea-
tures along with their delta and acceleration derivatives. MFMC indicate Mel Frequency
Modulation Spectral based Cepstral (MFMC) features where the first thirteen features
are extracted in a traditional way, and the rest are the modulation features (13) and their
derivatives (13) derived as discussed in Section 3, except for Gammatone filterbank
being replaced with Mel filterbank. The GFCC features are extracted in a similar way
as reported in Section 3 with C'0 to C'12 being the corresponding cepstral coefficients.
GFMC indicate Gammatone Frequency Modulation Spectral based Cepstral (GFMC)
features derived in a same way as GFCC but appended with modulation spectral fea-
tures corresponding to C'13 to C'26 and their corresponding derivatives as discussed in
Section 3.

Table 1. Word recognition accuracies (%) for different feature extraction techniques on four
different microphones

Channel 6 7 E F Average

ETSI-2 64.3 47.6 58.1 62.7 58.1

PLP 73.863.868.171.4 69.2
MFCC 75.8 64.7 67.375.9 70.9
MFMC 75.6 61.0 70.8 77.9 71.3
GFCC 86.079.0 78.3 842 81.9
GFMC 87.8 82.7 82.2 86.9 84.9
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From Table 1, it is evident that the advanced ETSI front-end has highest error rates
compared to the MFCC and PLP. This demonstrates that for reverberant environments
the advanced ETSI front-end is not effective as compared to its performance in the pres-
ence of additive background noise. It can be inferred that the techniques applicable for
additive background noise removal are not suitable to handle reverberant conditions.
The MFMC features have better performance than MFCC, which in turn had better per-
formance than PLP. It can also be seen that the GFCC features were effective, perform-
ing better than any of the baseline systems (ETSI-2, PLP, MFCC). This is consistent
with the earlier studies which have shown that gammatone based features exhibit robust
performance compared to MFCC, PLP features and ETSI frontend [[L6/19].

It can also be observed that the performance of GFMC is the best among all the
baselines and features compared, and consistent across all the channels. However, the
combination of Mel filtering and modulation spectral features is not as beneficial as
gammatone filtering with modulation spectral features. This clearly demonstrates the
efficiency of this combination of these features in reverberation conditions.

4.2 Additive Noise

Further, to test the efficiency for practical conditions which contain additive noises
along with reverberation effects, experiments are conducted on hands free office and
hands free livingroom simulated data with clean and 15 dB, 10 dB, 5 dB, 0 dB SNR
additive noise corrupted signals. The data is from Aurora-5 database, where condition
is simulated as combination of additive noise and reverberation[35]. Aurora-5 covers
all effects of noises as they occur in realistic application scenarios. In this experiments,
hands free speech input in a office and in a living room is considered. The reverberation
time for the office room was randomly varied in the range of 0.3 to 0.4 s and for the liv-
ing room was in the range of 0.4 to 0.5 s. In Table 2, HFOffice, HFLroom, - represents
hands free office, hands free living room and no additive noise respectively.

Table 2. Word recognition accuracies (%) for clean, hands free office and hands free living room
conditions

Feature HFOffice HFLroom

- 15dB 10dB 5dB 0dB - 15dB 10dB 5dB 0dB
PLP 88.6 65.1 40.4 21.1 6.7 743 469 27.7 14.2 3.7
MFCC 90.1 61.6 41.5 18.0 4.0 75.8 40.2 23.8 86 1.9
MEMC 94.5 68.1 40.5 18.5 8.7 852 52 282 13.5 7.8
GFCC 89.1 65.6 39.5 18.4 8.3 73.8 48.9 29.1 13.7 6.2
GFMC 92.2 73.3 44.8 20.7 10.1 78.6 57.4 34.1 15.6 8.2

From Table 2, it can be observed that for all the features the performance degrades
significantly in additive noise compared to no additive noise case. Also, it can be seen
that GFCC has better performance than MFCC and PLP. It can also be observed that
MFMC has better performance than GFCC, showing that the combination of modula-
tion features in mel domain is beneficial for this task. It can be observed that GFMC
has better performance than GFCC, MFCC, MFMC and PLP indicating efficiency of
this features in additive noise and reverberant conditions.
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4.3 CHIME Challenge

The task of Computational Hearing in Multisource Environments (CHiME) challenge
is to separate the speech and recognise the commands being spoken using systems that
have been trained on noise-free commands and room noise recordings [36]]. The CHIME
background noise is recorded separately from the target speech. The target speech is
subsequently artificially added but in a manner that closely simulates the effect of the
speech being present in the room. This controls the target speech SNR, target talker
location, talker characteristics etc. For the background noise, a domestic environment
was considered, such as would be encountered in a home automation application. It
provides rich mix of sound sources, some of which may be easy to model (e.g. a washing
machine that remains in a fixed position and runs a predictable program) and some
which are not (e.g. children running around while talking, screaming and laughing).

The ASR task is speaker dependent and employs a small but phonetically confus-
able vocabulary. The recordings are from a genuine living room (in a house with two
small children) measured over a period of several weeks and the SNRs employed in the
challenge range between 18 dB down to -6 dB.

Figure 4 shows comparison of GFMC features and MFCC before separation of the
speech signals. It can be observed that GFMC is much effective than MFCC for all
ranges of SNRs, particularly at very low SNRs.
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Fig. 4. Comparison of the proposed GFMC features and MFCC before separation of the speech
signals

Figure 5 shows comparison of GFMC features and MFCC after separation of the
speech signals which is achieved through semi-blind source separation (SBSS). The
BSS algorithm is a modified Recursively Regularized Independent Component Analysis
[37] according to a semi-blind structure as in [38], where the used prior is the mixing
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Fig. 5. Comparison of the proposed GFMC features and MFCC after separation of the speech
signals achieved through semi-blind source separation

parameters of the target source (estimated beforehand). It can be observed that GFMC
is much efficient than MFCC for all ranges of SNRs, with significant performance at
very low SNRs.

5 Discussion

The results from both Table 1 and 2 and Figures 4 and 5 indicate that the gammatone
frequency resolution was effective in reducing system sensitivity to reverberation and
additive noise, and improved the speech signal characteristics. It can also be observed
from Table 1, that the combination of gammatone filtering with modulation spectral
features is beneficial than the combination of Mel filtering and modulation spectral
features. The emphasis on slow temporal changes in the spectral structure of long-
term modulations preserved the required speech intelligibility information in the signal
which further improved the accuracy of the system. Thus, by extracting features that
model human hearing to some extent mimicking the processing performed by cochlea,
particularly emulating cochlea frequency resolution was beneficial for speech feature
enhancement.

6 Conclusions

The paper has presented auditory inspired modulation spectral features for improv-
ing ASR performance in presence of room reverberation. The proposed features were
derived from features based on emulating the processing performed by cochlea to im-
prove the robustness, specifically gammatone frequency filtering and long-term modu-
lations of the speech signal. The features were evaluated on Aurora-5 database, meeting



216 H.K. Maganti and M. Matassoni

recorder digit task and living room and office room simulated data corrupted with dif-
ferent levels of additive noises. Results were compared with standard ETSI advanced
front-end and conventional features. The results show that the proposed features per-
form consistently better both in terms of robustness and reliability. The work presented
results in both additive noise and reverberant scenario where the speech signal was
corrupted with 15 dB, 10dB, 5 dB and 0dB SNR noise, simulated with hands-free of-
fice and hands-free living room conditions. The work also presented performance of
these features on CHiME challenge before and after separation of acoustic sources. The
results are promising, performing better than the conventional features, indicating the
efficiency of this features in practical scenarios.

Our study raised number of issues, including study of auditory inspired techniques
for improvement of standard additive noise removal techniques to deal with reverbera-
tion condition. The gammatone filter implemented in this work is linear and does not
consider nonlinear effects such as level-dependent upward spread of masking and com-
bination tones. For the future, we like to investigate these issues to efficiently deal with
real world noisy speech, and evaluate these features on large vocabulary tasks.
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