
Creating Declarative Process Models

Using Test Driven Modeling Suite

Stefan Zugal, Jakob Pinggera, and Barbara Weber

University of Innsbruck, Austria
{stefan.zugal,jakob.pinggera,barbara.weber}@uibk.ac.at

Abstract. Declarative approaches to process modeling promise a high
degree of flexibility. However, current declarative state-of-the-art model-
ing notations are, while sound on a technical level, hard to understand.
To cater for this problem, in particular to improve the understandabil-
ity of declarative process models as well as the communication between
domain experts and model builders, Test Driven Modeling (TDM) has
been proposed. In this tool paper we introduce Test Driven Modeling
Suite (TDMS) which provides operational support for TDM. We show
how TDMS realizes the concepts of TDM and how Cheetah Experimen-
tal Platform is used to make TDMS amenable for effective empirical
research. Finally, we provide a brief example to illustrate how the adop-
tion of TDMS brings out the intended positive effects of TDM for the
creation of declarative process models.

Keywords: Declarative Business Process Models, Test Driven Model-
ing, Test Driven Modeling Suite.

1 Introduction

In today’s dynamic business environment the economic success of an enterprise
depends on its ability to react to various changes like shifts in customer’s atti-
tudes or the introduction of new regulations and exceptional circumstances [1].
Process-Aware Information Systems (PAISs) offer a promising perspective on
shaping this capability, resulting in growing interest to align information systems
in a process-oriented way [2]. Yet, a critical success factor in applying PAISs is
the possibility of flexibly dealing with process changes [1]. To address the need
for flexible PAISs, competing paradigms enabling process changes and process
flexibility have been developed, e.g., adaptive processes [3], case handling [4],
declarative processes [5] and late binding and modeling [6] (an overview is pro-
vided in [7]).

Although declarative processes promise a high degree of flexibility, avoid over-
specification and provide more maneuvering for end-users [8], [5], they are not
widely adopted in practice yet. In particular, as pointed out in [8], [9], [10],
understandability problems hamper the usage of declarative process models.
For instance, checking whether a process instance is supported by a process
schema, is far from trivial. An approach tackling these problems, the Test Driven

S. Nurcan (Ed.): CAiSE Forum 2011, LNBIP 107, pp. 16–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Creating Declarative Process Models Using Test Driven Modeling Suite 17

Modeling (TDM) methodology, is presented in [10]. TDM aims at improving the
understandability of declarative process models as well as the communication
between domain experts [11] and model builders [11] by adopting the concept
of test cases from software engineering. The contribution of this paper is to
describe Test Driven Modeling Suite (TDMS)1, i.e., the software that provides
operational support for TDM.

The remainder of this paper is structured as follows: Section 2 briefly intro-
duces declarative business process models, Section 3 shortly discusses TDM.
Then, Section 4 describes the software architecture and features of TDMS,
whereas Section 5 illustrates the usage of TDMS by an example. Finally, Sec-
tion 6 deals with related work and Section 7 concludes with a summary and an
outlook.

2 Declarative Process Models

There has been a long tradition of modeling business processes in an imperative
way. Process modeling languages supporting this paradigm, like BPMN, EPC
and UML Activity Diagrams, are widely used. Recently, declarative approaches
have received increasing interest and suggest a fundamentally different way of
describing business processes [8]. While imperative models specify exactly how
things have to be done, declarative approaches only focus on the logic that
governs the interplay of actions in the process by describing the activities that
can be performed, as well as constraints prohibiting undesired behavior. An
example of a constraint in an aviation process would be that crew duty times
cannot exceed a predefined threshold. Constraints described in literature can be
classified as execution and termination constraints. Execution constraints, on the
one hand, restrict the execution of activities, e.g., an activity can be executed at
most once. Termination constraints, on the other hand, affect the termination of
process instances and specify when process termination is possible. For instance,
an activity must be executed at least once before the process can be terminated.
Most constraints focus either on execution or termination semantics, however,
some constraints also combine execution and termination semantics (e.g., the
succession constraint [8]).

To illustrate the concept of declarative processes, a declarative process model
is shown in Fig. 1 a). It contains activities A to F as well as constraints C1 and
C2. C1 prescribes that A must be executed at least once (i.e., C1 restricts the
termination of process instances). C2 specifies that E can only be executed if
C has been executed at some point in time before (i.e., C2 imposes restrictions
on the execution of activity E). In Fig. 1 b) an example of a process instance
illustrates the semantics of the described constraints. After process instantiation,
A, B, C, D and F can be executed. E, however, cannot be executed as C2
specifies that C must have been executed before. This is indicated by the grey bar
in Fig. 1 b) below “E”. Furthermore, the process instance cannot be terminated
as C1 is not satisfied, i.e., A has not been executed at least once. This is indicated

1 Freely available from: http://www.zugal.info/tdms

http://www.zugal.info/tdms

18 S. Zugal, J. Pinggera, and B. Weber

by the grey area in Fig. 1 b) below “Termination”. The subsequent execution of B
does not cause any changes as it is not involved in any constraint. However, after
A is executed, C1 is satisfied, i.e., A has been executed at least once and thus the
process instance can be terminated (cf. Fig. 1 b). Hence, after e4 the box below
“Termination” is white. Then, C is executed, satisfying C2 and consequently
allowing E to be executed (the box below “E” is white after e6 occurred). Finally,
the execution of E does not affect any constraint, thus no changes with respect
to constraint satisfaction can be observed. As all termination constraints are still
satisfied, the process instance can still be terminated.

B

A B C D E F

Execution
Termination

T
im

e
lin

e

Process

Instantiation

Process

Termination

e1 B started

e2 B completed

e3 A started

e4 A completed

e5 C started

e6 C completed

e7 E started

e8 E completed

A

C

E

A B C

D E F

Declarative Process Model

A

C E

C1

C2

Activities

Constraints

1..*

a) b)
Process Instance I

Execution Trace of I: <B started, B completed, A started, A

completed, C started, C completed, E started, E completed>

Fig. 1. Executing a declarative process

As illustrated in Fig. 1 b), a process instance can be specified through a list
of events that describe changes in the life-cycle of activity instances, e.g., “e1:
B started”. In the following, we will denote this list as execution trace, e.g., for
process instance I: <e1, e2, e3, e4, e5, e6, e7, e8>. If events are non-overlapping,
we merge subsequent start events and end events, e.g., <B started, B completed,
A started, A completed> is abbreviated by <B, A>.

3 Test Driven Modeling

In the following, we briefly introduce TDM, the conceptual basis of TDMS. In
particular, in Section 3.1 we will draw on concepts from cognitive psychology to
shed light on possible causes of understandability problems related to declarative
models. Subsequently, in Section 3.2, we discuss the most relevant concepts of
TDM.

Creating Declarative Process Models Using Test Driven Modeling Suite 19

3.1 Cognitive Backgrounds

Declarative process models allow for the specification of flexible business pro-
cesses [8], [12]. Still, as argued in [8], [9], [10], the understandability of respective
models appears to be a hurdle for practical usage. Understandability thereby
refers to how difficult it is to extract information from a process model. As de-
tailed in [13], understandability is usually operationalized by asking questions
about a process model. The more questions are answered correctly on average,
the higher the understandability. Currently, it is still unclear for which reasons
declarative models are harder to understand than imperative models. To pro-
vide a possible explanation, we would like build upon concepts from cognitive
psychology. In particular, we identified that computational offloading [14], [15],
[16] seems to play an essential role. In short, computational offloading allows the
reader to “offload” computations to a diagram. In other words, the way how the
diagram represents information allows the reader to quickly extract certain in-
formation. For instance, in a BPMN model control flow is explicitly represented
by sequence flows (i.e., control edges) and gateways (e.g., AND gateway, OR
gateway). Assume the reader wants to check whether a certain process instance
is supported by an imperative process model. To this end, she may use the con-
trol edges to simulate the process instance by tracing through the process model.
In this way, the model allows to offload the computation of the process instance.
Contrariwise, one might describe the process model textually. Both representa-
tions (text and diagram) are information equivalent, i.e., the same information
is present, however, the text does not allow the reader to quickly identify pro-
cess instances, the reader has to simulate the process instance entirely in her
head. Similarly, declarative process models do not provide explicit mechanisms
to offload the computation of execution traces. Rather, as discussed in Section 2,
the reader has to interpret the constraints in her mind. For a detailed discussion
about computational offloading and related cognitive concepts, we refer to [17].

Assuming that computational offloading of computing process instances is not
present in declarative models, i.e., reading imposes a high mental effort, reper-
cussions on understandability, validation and maintainability can be expected.
Since model understandability, as defined in [18], directly relates to reading and
answering questions about a process model, as discussed above, a negative impact
can be expected. Regarding validation, i.e., to check whether the model prop-
erly reflects the real-world business, an interesting insight is provided in [19].
The authors state that “programmers rely heavily upon mental simulation for
evaluating the validity of rules”. Seen in the context of business process model-
ing, “mental simulation” refers to the “mental execution” of process instances.
In other words, the person who validates the process model checks via “men-
tal simulation” whether certain process instances, i.e., scenarios, are supported
by a process model. As discussed, for a declarative business process model, the
computation of process instances is far from trivial, hence a negative impact on
validation can be expected. In further consequence, also the maintainability of
declarative process models may be compromised, as argued in [10]. It is known
that every change operation requires a sense-making task, i.e., determining what

20 S. Zugal, J. Pinggera, and B. Weber

to change, as well as an action task, i.e., performing the change [20]. Compro-
mised understandability supposedly compromises the sense-making task, which
in turn impairs the change operation.

Basically, the idea of TDM is to provide computer-based support to compen-
sate for the lack of computational offloading. In particular, test cases allow to
capture and automatically validate scenarios, i.e., process instances, that should
be supported by the process model. Likewise, test cases provide the option to
specify anti-scenarios, i.e., behavior that should be forbidden by the process
model.

3.2 Test Driven Modeling

Constraints, as introduced in Section 2, focus on forbidden behavior. TDM,
however, introduces the concept of test cases to test for desired behavior of the
process model. In particular, as illustrated in Fig. 2, TDM’s meta model can be
divided into two main parts: the specification of test cases (upper half) as well
as the specification of the business process model (lower half). A Test Driven
Model consists of exactly one Declarative Process Model and an arbitrary amount
of Test Cases. A Declarative Process Model, as already discussed in Section 2,
consists of at least one Activity as well as an arbitrary amount of Constraints.
For the sake of brevity, Fig. 2 shows three constraints only, i.e., the Response
Constraint, the Precedence Constraint and the Coexistence Constraint. TDMS
actually supports all constraints described in [8], for a detailed description of
the constraints we refer to [12]. Besides the specification of a Declarative Pro-
cess Model, the meta model in Fig. 2 describes how Test Cases can be specified.
In particular, a Test Case is built-up by a Process Instance (subsequently also
referred to as execution trace) and an arbitrary number of Assertions. The Pro-
cess Instance, in turn, consists of an arbitrary number of Activity Instances. For
each Activity Instance a start event (i.e., when the activity instance enters the
state started in its life-cycle) as well as and an end event (i.e., when the activity
instance is completed) are defined. Similarly, each Assertion is defined for a cer-
tain window by its start- and end event. Within this window, a condition that
is specified by the Assertion must hold. TDM thereby differentiates between
two types of Assertions : an Execution Assertion can be used to verify whether
a certain Activity is executable. The positive flag in Assertion thereby defines
whether an Activity is expected to be executable or if the Activity is expected
to be non-executable. Similarly, a Termination Assertion can be used to test
whether the Process Instance can be terminated within a specified window.

In short, TDM allows for the specification of declarative process models and
test cases. Each test case defines a certain scenario, i.e., process instance, that
must be supported by the process model. Assertions can thereby be used to
test for specific conditions, namely whether an activity is executable as well as
whether the process instance can be terminated.

Consider, for illustration, the testcase depicted in Fig. 3. It contains the ex-
ecution trace <A, B> (1) as well as an assertion that specifies that A cannot
be executed between e2 and e3 (2) and assertions that specify that the process

Creating Declarative Process Models Using Test Driven Modeling Suite 21

rzi

Specification of declarative
process model

Specification of test cases

Declarative Process Model

-activity1 : Activity
-activity2 : Activity

Response Constraint

-activity : Activity
Execution Assertion

-activity1 : Activity
-activity2 : Activity

Coexistence Constraint

Termination Assertion

-activity1 : Activity
-activity2 : Activity

Precedence Constraint

-name : String
Test Case

-name : String
Test Driven Model

Process Instance -start : Event
-end : Event

Activity Instance

-positive : boolean
-start : Event
-end : Event

Assertion

-name : String
Activity

Constraint

For the sake of brevity only three
constraints are shown.

0..*1

1

1

1

1

0..*1

1..*

1

1

1

0..*

1

0..*

1
1

1

Fig. 2. Meta model of TDM

instance cannot be terminated before e2 (3), however, it must be possible to
terminate after e2 (4). For the reason of simplicity, the example shows subse-
quent executions only. However, testcases can also be used to simulate parallel
executions of activity. In this vein, also several different instances of the same
activity may run at the same time—given that no constraint prohibits such be-
havior. The times in Fig. 3 do not necessarily constitute real times, but rather
provide a timeline to test for control-flow behavior, i.e., define whether activities
can be executed subsequently or in parallel. Furthermore test cases are validated
automatically, i.e., no user interaction is required to check whether the specified
behavior is supported by the process model.

Fig. 3. A simple testcase

22 S. Zugal, J. Pinggera, and B. Weber

To illustrate how a test case may help to improve the understandability of a
declarative process model, consider the test case illustrated in Fig. 4. The pro-
cess model to the right (2) can be described in the following way: A must be
executed exactly once (cf. cardinality constraint on A). After A has been exe-
cuted, B must be executed (cf. response constraint between A and B). Thus,
also B must be executed at least once for every process instance. However, this
information is present in the process model implicitly only. Hence, the person
who reads to model has to inspect the model carefully for such dependencies in
order to properly understand the models’ semantics—computational offloading
is missing. According to [20], connections that are not directly visible in a model
are referred to as hidden dependencies. As the name suggests, such dependen-
cies are hard to see and detect, potentially misleading the reader and causing
understandability problems. TDM allows the process modeler to actively resolve
hidden dependencies by specifying a respective test case, thereby making the
dependency explicit. To illustrate how this could be done for the given example,
consider Fig. 4 (1): the test case specifies that the process instance can only be
terminated if B has been executed at least once, making the hidden dependency
explicit. As soon as the modeler conducts changes to the process model that vio-
late the test case, the automated validation of TDMS (cf. Section 4) immediately
informs the modeler, making her aware of the hidden dependency.

Fig. 4. Hidden dependency

So far we have introduced the concept of test cases and the intended impact
on model understandability, in the following we will sketch how their adoption
intends to improve the communication between domain expert (DE) and model
builder (MB). First, it is worthwhile to note that test cases and process model
are not meant to be created in isolation. Rather, as inspired by Test Driven
Development [21], test cases and process model should be created interwoven (for
a detailed discussion we refer to [10]). Thereby, test cases provide information
in a form that is not only understandable to the MB, but also understandable
to the DE, who normally does not have the knowledge to read formal process
models [11]. Usually the DE needs the MB to retrieve information from the
model, cf. Fig. 5 (2) and (3). Since test cases are understandable to the DE,
they provide an additional communication channel to the process model, cf.
Fig. 5 (4) and (6). It is important to stress that TDM’s intention is not to make

Creating Declarative Process Models Using Test Driven Modeling Suite 23

the DE specify the test cases in isolation. Rather, test cases should be created
by the DE and the MB together and provide a common basis for discussion.

Domain Expert (DE)

Model Builder (MB)

Domain

(1)

Test 1

Test 2

Test 3
(4)

(2)

(6)

(3)

(5)

Fig. 5. Communication flow

4 Test Driven Modeling Suite

Up to now we have introduced the concept of TDM. This section deals with Test
Driven Modeling Suite (TDMS) that provides operational support for TDM. In
particular, Section 4.1 discusses the features of TDMS in detail. Subsequently,
Section 4.2 describes how TDMS is integrated with existing frameworks for em-
pirical research and business process execution.

4.1 Software Components

To give an overview of TDMS’ features, a screenshot is provided in Fig. 6;
each component will be described in detail in the following. On the left hand
side TDMS offers a graphical editor for editing test cases (1). To the right, a
graphical editor allows for designing the process model (2). Whenever changes
are conducted, TDMS immediately validates the test cases against the process
model and indicates failed test cases in the test case overview (3). In this case,
it lists three test cases from which one failed. In addition, TDMS provides a
detailed problem message about failed test cases in (4). In this example, the MB
defined that the trace <A,B,B,B,A,C> must be supported by the process model.
However, as A must be executed exactly once (cf. the cardinality constraint on
A), the process model does not support this trace. In TDMS the failed test case
is indicated by the activity highlighted in (1), the test cases marked in (3) and
the detailed error message in (4).

24 S. Zugal, J. Pinggera, and B. Weber

Fig. 6. Screenshot of TDMS

Testcase Editor. As discussed in Section 3, test cases are a central concept of
TDM, have precise semantics for the specification of behavior and still should be
understandable to domain experts. To this end, TDMS provides a calendar-like
test case editor as shown in Fig. 6 (1). Whether the user interface is indeed as
intuitive, i.e., self-explanatory, is not entirely clear yet. So far we know that a
group of students was able to use it after a short introduction [22]. In addition,
further investigations into its usability are planned, cf. Section 7.

Declarative Process Model Editor. The declarative process model editor,
as shown in Fig. 6 (2), provides a graphical editor for designing models in Dec-
SerFlow [8], a declarative process modeling language.

Testcase Creation and Validation. In order to create new test cases or to
delete existing ones, Fig. 6 (3) provides an outline of all test cases. Whenever a
test cases is created, edited or deleted, or, on the other hand, the process model
is changed, TDMS immediately validates all test cases. For the case a test case
fails, TDMS provides a detailed problem message in Fig. 6 (4). It is important
to stress that the validation procedure is performed automatically, i.e., no user
interaction is required to validate the test cases. To this end, TDMS provides a
test engine in which test cases are executed, as shown in Fig. 7. Basically, the
test engine consists of a declarative process instance that is executed on a declar-
ative workflow engine within a test environment. Thereby, TDMS’ process model
provides the basis for the process instance. The test cases steer the execution of
the process instance, e.g., instantiating the process instance, starting activities
or completing activities. In addition, test cases may also check the state of the
process instance in the course of evaluating execution- or termination assertions.
For a detailed description of test case validation, we refer to [10].

As pointed out in Section 3, the TDM methodolog is iterative, hence TDMS
must also provide respective support. In particular, the iterative creation of

Creating Declarative Process Models Using Test Driven Modeling Suite 25

TDMS Model

Declarative Process Model

Testcases

Test Engine

Declarative Process Instance

Declarative Workflow Engine

defined by

steer

check state

Fig. 7. Testing framework

the process model poses a significant challenge, as any relevant change of the
process model2 requires the validation of testcases. However, existing declara-
tive approaches either lead to exponential runtime for schema adaptations [8]
or do not support workflow execution [12]. In order to tackle these problems,
TDMS provides an own declarative workflow engine. Similar to Declare, where
constraints are mapped to LTL formulas [23], TDMS’ workflow engine maps
constraints to Java3 objects. In addition, for each process instance, the work-
flow engine keeps a list of events to describe its current state, as described in
Section 2. The enablement of an activity can then be determined as detailed
in the following. Based on the current process instance, a constraint is able to
determine whether it restricts the execution of an activity. The workflow engine
consults all defined constraints and determines for each constraint whether it
restricts the execution. If no constraint vetos, the activity can be executed. For
determining whether the process instance can be terminated, a similar strategy
is followed. However, in this case constraints are asked whether they restrict the
termination of the process instance instead.

Whenever a constraint should be added to the process model it is then suffi-
cient to add this constraint to set of constraints to be checked. Similarly, when
removing a constraint, the workflow engine does not consider the respective con-
straint anymore. While such an approach allows for efficient schema adaptations,
it does not support verification mechanisms as provided in, e.g., Declare [23]. To
compensate for this shortcoming, TDMS provides an interface to integrate third
party tools for verification (cf. Section 4.2).

In order to ensure that all components work properly, TDMS has been de-
veloped using Test Driven Development [21], where applicable. In addition, re-
searchers with different backgrounds, e.g., economics and computer science, have
been included to develop an intuitive, i.e., self-explanatory, user interface. To val-
idate whether our efforts succeeded, we used TDMS to teach declarative process
modeling. In particular, we made use of TDMS’ validation of test cases to allow
students to interactively explore the semantics of a declarative process model.
After a short introduction, students were able to work independently, indicating
that operating TDMS, i.e., using the software, is easy to learn. Regarding the
quality of TDMS, we would like to refer to a controlled experiment we recently

2 Layouting operations, for instance, can be ignored here as they do not change the
semantics of the process model.

3 http://java.sun.com

26 S. Zugal, J. Pinggera, and B. Weber

performed [22]. Thereby, 12 students used TDMS for about 2 hours to adapt
2 declarative process models, i.e., a total of 24 process models were adapted.
Throughout the experiment, no abnormal program behavior was observed. Ap-
parently this does not mean that TDMS has industrial quality, however, TDMS
meets the requirement for academic purposes as intended.

4.2 Integration of Test Driven Modeling Suite

TDM, as introduced in Section 3, focuses on the modeling of declarative pro-
cesses, TDMS provides the necessary operational support, i.e., tool support.
To this end, TDMS makes use of Cheetah Experimental Platform’s (CEP) [24]
components for empirical research and integrates Declare [23] for workflow exe-
cution and process model verification, as illustrated in Fig. 8 and detailed in the
following.

Test Driven Modeling

Suite

Cheetah Experimental

Platform

Tests

+

Model
Declare Framework

(Worfklow Engine)

Declare Worklist

(Worfklow Client)

Export

and

Deploy

Execute Process

Instance

Process Modeling Process Execution

Fig. 8. Interplay of TDMS, CEP and Declare

Cheetah Experimental Platform as Basis.One of the design goals of TDMS
was to make it amenable for empirical research, i.e., it should be easy to employ
in experiments. In addition, data should be easy to collect and analyze. For this
purpose, TDMS was implemented as an experimental workflow activity of CEP,
allowing TDMS to be integrated in any experimental workflow (i.e., a sequence
of activities performed during an experiment, cf. [24]). Furthermore, we use CEP
to instrument TDMS, i.e., to log each relevant user interaction to a central data
storage. This logging mechanism, in combination with CEP’s replay feature,
allows the researcher to inspect in detail how TDMS is used to create process
models and test cases step-by-step. Or, even more sophisticated, such a fine-
grained instrumentation allows researchers and practioners to closely monitor
the process of process modeling, i.e., the creation of the process model, using
Modeling Phase Diagrams [25].

To illustrate how using CEP as basis for TDMS is beneficial for empirical re-
search, we would like to refer to a recently performed experiment [22]. Therein,
we investigated the impact of testcases on the maintainability of declarative pro-
cess models. To this end, we provided students with two modeling assignments.
For one of the modeling assignments, the full support of TDMS was available.
For the other modeling assignment, only the process model editor was available.

Creating Declarative Process Models Using Test Driven Modeling Suite 27

In addition, we used a survey to assess demographic data such as modeling ex-
perience or education (for details we refer to [22]). The first benefit of CEP is
that all these tasks are automatically presented to the students. Hence, no stu-
dent could accidentally forget to fill out the demographic survey or to perform
a modeling task. In other words, TDMS can seamlessly be integrated in such an
experimental workflow. Thereby, all data is automatically collected and stored
in a database. The second benefit of CEP comes out when evaluating the data
gathered during the experiment. On the one hand, data can be exported in an
automated way to comma-separated value files, which can then directly be ana-
lyzed using statistics software. On the other hand, collected data is fine-grained
and therefore allows for in-depth evaluation. In this sense, we could show that
with testcases at hand, twice as many constraints were added or deleted [22].

Process Model Verification and Execution. As discussed, the internal
workflow engine of TDMS does not support the verification of declarative pro-
cess models. However, it is known that the combination of constraints may lead
to activities that can not be executed [8]. In order ensure that the process model
is free from such dead activities, we make use of the verification provided in De-
clare [23]. In particular, as illustrated in Fig. 8, the process model is iteratively
created in TDMS. For the purpose of verification, the process model is then
converted into a format that can be read by the Declare framework. Similarly,
this export mechanism can be used to execute the process model in Declare’s
workflow engine.

5 Example

A preliminary empirical evaluation shows a positive influence of TDM during
model maintenance [22]. First, mental effort decreased, i.e., less cognitive re-
sources were needed to conduct the change. Second, perceived quality increased,
i.e., modelers were more confident about their changes—even though the quality
of changes did not differ significantly. To illustrate the influence of TDMS on
process modeling, we provide an example that shows how a DE and a MB could
use TDMS to create a process model and respective test cases describing of how
to supervise a master thesis (cf. Fig. 9–11). For the sake of brevity, the example
is kept on an abstract level and the following abbreviations are used:

D: Discuss topic P: Provide feedback G: Grade work

Starting from an empty process model, the DE lines out general properties
of the process: “When supervising a master thesis, at first the topic needs to be
discussed with the student. While the student works on his thesis, feedback may
be provided at any time. Finally, the thesis needs to be graded.”. Thus, possibly
with help of the MB, the DE inserts activities D, P and G in the test case’s
execution trace (cf. Fig. 9). TDMS automatically creates respective activities
in the process model and the DE and MB run the test case. As the specified
execution trace is supported by the process model, the test case passes.

28 S. Zugal, J. Pinggera, and B. Weber

Fig. 9. Testcase 1: <D,P,G> proposed by the DE

Subsequently, the DE and MB engage in a dialogue of questioning and answer-
ing [26]—the MB challenges the model: “So every thesis must start by discussing
the topic?”. “Yes, indeed—you need to establish common knowledge first.”, the
DE replies. Thus, they create a new test case capturing this requirement and
run it. Apparently, the test case fails as there are no constraints in the model
yet. The MB inserts an init constraints on D (i.e., D must be the first activity
in every process instance); now the test case passes (cf. Fig. 10).

Fig. 10. Testcase 2: Introduction of Init on D

Again, the MB challenges the model and asks: “Can the supervisor grade a
thesis multiple times?”. The DE replies: “No, of course not, each thesis must be
graded exactly once.” and together they specify a third test case that ensures that
G must be executed exactly once. By automatically validating this test case, it
becomes apparent that the current model allows G to be executed several times.
Thus, the MB introduces a cardinality constraint on G (cf. Fig. 11).

Fig. 11. Testcase 3: Introduction of Cardinality on G

Creating Declarative Process Models Using Test Driven Modeling Suite 29

While this example is kept small for the sake of brevity, it illustrates the
benefits of using TDMS for modeling. First, the DE, who is usually not trained
in reading or creating formal process models [11], is not required to modify the
model itself, rather he defines behavior through the specification of test cases
(possibly with the help of the MB). Second, test cases provide a common basis
for understanding, thus supporting communication between the DE and MB.
Third, behavior that is specified through test cases is validated automatically
by TDMS, thereby ensuring that model changes do not violate desired behavior.
In this sense, test cases can be seen as a computer-supported kind of modeling
minutes [27] that can be automatically validated against the process model.

6 Related Work

TDMS, as described in this work, allows for the interweaved creation of test cases
and process models. The combination of conceptual models and test cases is far
from new. For instance, in [28], [29], a language supporting automated test cases
for conceptual schemas is presented. In contrast to this work, the language is
not designed to be understood by the DE. In so-called scenario-based approaches
the goal is to synthesize a conceptual model from a set of scenarios, i.e., test
cases. The main difference to this work is the way how models are created.
In our work, it is the responsibility of the MB to create the model. In the
approaches described in the following, the model is automatically synthesized
from scenarios. This way of synthesizing models is applicable to a variety of
modeling languages and domains, as shown in [30], [31]. For instance, scenarios
may be specified in Message Sequence Charts, Sequence Diagrams, Collaboration
Diagrams [31] or Petri nets [32], [33]. Scenarios can then be synthesized to, e.g.,
Statecharts, Automatons [31] or Petri nets [32]. In principle, such approaches
may be also applied to declarative process modeling. In this vein, Lamma et
al. [34] describe how to extract declarative process models from process logs.
While automated synthesis of declarative process models is certainly a viable
approach to follow, as pointed out in [35], it is questionable in how far models
that have been synthesized automatically are readable.

7 Summary and Outlook

In this work we started by introducing declarative business process models and
associated problems. In particular, we lined out how the lack of computational
offloading as well as the presence of hidden dependencies compromises model
understandability, validation and maintainability. Subsequently, we sketched the
most important concepts of TDM and discussed how it intends to improve the
understandability of declarative process models and supports the communica-
tion between DE and MB. Then, we described TDMS that provides operational
support for TDM. Thereby, we sketched how we employ CEP as basis to make
TDMS amenable for empirical research and showed how Declare is employed for
the execution of declarative processes modeled in TDMS. Finally, we illustrated

30 S. Zugal, J. Pinggera, and B. Weber

the intended usage of TDMS, in particular the iterative development of test cases
and process model, with the help of a small example.

We acknowledge that it is not yet entirely clear whether TDM and TDMS
in particular help to foster the communication between DE and MB as well as
improve the understandability and maintainability of declarative process models.
Still, regarding maintainability, we would like to briefly sketch the findings from
a controlled experiment [22]. The results show that test cases are able to lower
mental effort during model adaptations and to improve perceived quality of the
resulting models. For the quality of resulting models, however, no effects could
be observed. As we argue, this does not necessarily imply that test cases are not
able to improve quality. Rather, a certain model complexity is required for test
cases to be beneficial.

In order to investigate whether test cases are indeed beneficial above a certain
model complexity, we are currently preparing a replication of the experiment
described in [22]. In addition, we are preparing a case study in which TDMS will
be applied in real-world modeling scenarios. Therein, we will investigate in how
far the adoption of TDMS influences the communication between DE and MB.

References

1. Lenz, R., Reichert, M.: IT support for healthcare processes - premises, challenges,
perspectives. DKE 61, 39–58 (2007)

2. Dumas, M., van der Aalst, W.M., ter Hofstede, A.H.: Process Aware Informa-
tion Systems: Bridging People and Software Through Process Technology. Wiley-
Interscience (2005)

3. Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow
without Losing Control. JIIS 10, 93–129 (1998)

4. van der Aalst, W.M.P., Weske, M.: Case handling: a new paradigm for business
process support. DKE 53, 129–162 (2005)

5. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-
Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

6. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. ISJ 30, 349–378 (2005)

7. Weber, B., Reichert, M., Rinderle, S.: Change Patterns and Change Support Fea-
tures - Enhancing Flexibility in Process-Aware Information Systems. DKE 66,
438–466 (2008)

8. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, TU Eindhoven (2008)

9. Weber, B., Reijers, H.A., Zugal, S., Wild, W.: The Declarative Approach to Busi-
ness Process Execution: An Empirical Test. In: van Eck, P., Gordijn, J., Wieringa,
R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 470–485. Springer, Heidelberg (2009)

10. Zugal, S., Pinggera, J., Weber, B.: Toward Enhanced Life-Cycle Support for Declar-
ative Processes. JSME (2011), doi:10.1002/smr.554

11. van Bommel, P., Hoppenbrouwers, S.J.B.A., Proper, H.A(E.), van der Weide, T.P.:
Exploring Modelling Strategies in a Meta-modelling Context. In: Meersman, R.,
Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1128–1137.
Springer, Heidelberg (2006)

Creating Declarative Process Models Using Test Driven Modeling Suite 31

12. Montali, M., Pesic, M., van der Aalst, W., Chesani, F., Mello, P., Storari, S.:
Declarative Specification and Verification of Service Choreographies. ACM Trans.
Web 4, 1–62 (2010)

13. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the im-
pact of hierarchy on model understandability—a cognitive perspective. In: Proc.
EESSMod 2011, pp. 18–27 (2011)

14. Scaife, M., Rogers, Y.: External cognition: how do graphical representations work?
Int. J. Human-Computer Studies 45, 185–213 (1996)

15. Zhang, J., Norman, D.A.: Representations in distributed cognitive tasks. Cognitive
Science 18, 87–122 (1994)

16. Zhang, J.: The nature of external representations in problem solving. Cognitive
Science 21, 179–217 (1997)

17. Zugal, S., Pinggera, J., Weber, B.: Assessing process models with cognitive psy-
chology. In: Proc. EMISA 2011, pp. 177–182 (2011)

18. Reijers, H.A., Mendling, J.: A Study into the Factors that Influence the Under-
standability of Business Process Models. IEEE Transaction on Systems Man &
Cybernetics, Part A 41, 449–462 (2011)

19. Kim, J., Lerch, F.J.: Why Is Programming (Sometimes) So Difficult? Programming
as Scientific Discovery in Multiple Problem Spaces. ISR 8, 25–50 (1997)

20. Green, T.R., Petre, M.: Usability Analysis of Visual Programming Environments:
A ’Cognitive Dimensions’ Framework. JVLC 7, 131–174 (1996)

21. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)

22. Zugal, S., Pinggera, J., Weber, B.: The Impact of Testcases on the Maintainability
of Declarative Process Models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P.,
Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP,
vol. 81, pp. 163–177. Springer, Heidelberg (2011)

23. Pesic, M., Schonenberg, H., van der Aalst, W.: DECLARE: Full Support for
Loosely-Structured Processes. In: Proc. EDOC 2007, pp. 287–298 (2007)

24. Pinggera, J., Zugal, S., Weber, B.: Investigating the process of process modeling
with cheetah experimental platform. In: Proc. ER-POIS 2010, pp. 13–18 (2010)

25. Pinggera, J., Zugal, S., Weidlich, M., Fahland, D., Weber, B., Mendling, J., Reijers,
H.A.: Tracing the Process of Process Modeling with Modeling Phase Diagrams. In:
Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP,
vol. 99, pp. 370–382. Springer, Heidelberg (2012)

26. Hoppenbrouwers, S.J.B.A(S.), Lindeman, L(L.), Proper, H.A(E.): Capturing Mod-
eling Processes – Towards the MoDial Modeling Laboratory. In: Meersman, R.,
Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS, vol. 4278, pp. 1242–
1252. Springer, Heidelberg (2006)

27. Hoppenbrouwers, S.J., Proper, E.H., van der Weide, T.P.: Formal Modelling as a
Grounded Conversation. In: Proc. LAP 2005, pp. 139–155 (2005)

28. Tort, A., Olivé, A.: An approach to testing conceptual schemas. DKE 69, 598–618
(2010)

29. Tort, A., Olivé, A.: First Steps Towards Conceptual Schema Testing. In: Proc.
CAiSE Forum 2009, pp. 1–6 (2009)

30. Amyot, D., Eberlein, A.: An Evaluation of Scenario Notations and Construc-
tion Approaches for Telecommunication Systems Development. Telecommunication
Systems 24, 61–94 (2003)

32 S. Zugal, J. Pinggera, and B. Weber

31. Liang, H., Dingel, J., Diskin, Z.: A comparative survey of scenario-based to state-
based model synthesis approaches. In: Proc. SCESM 2006, pp. 5–12 (2006)

32. Fahland, D.: From Scenarios To Components. PhD thesis, Humboldt-Universität
zu Berlin (2010)

33. Fahland, D.: Oclets – Scenario-Based Modeling with Petri Nets. In: Franceschinis,
G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 223–242. Springer,
Heidelberg (2009)

34. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing Declarative
Logic-Based Models from Labeled Traces. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

35. Glinz, M., Seybold, C., Meier, S.: Simulation-Driven Creation, Validation and Evo-
lution of Behavioral Requirements Models. In: Proc. MBEES 2007, pp. 103–112
(2007)

	Creating Declarative Process Models Using Test Driven Modeling Suite

	Introduction
	Declarative Process Models
	Test Driven Modeling
	Cognitive Backgrounds
	Test Driven Modeling

	Test Driven Modeling Suite
	Software Components
	Integration of Test Driven Modeling Suite

	Example
	Related Work
	Summary and Outlook
	References

