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Abstract. An independent dominating set in a graph is a subset of
vertices, such that every vertex outside this subset has a neighbor in this
subset (dominating), and the induced subgraph of this subset contains no
edge (independent). It was known that finding the minimum independent
dominating set (Independent Domination) is NP-complete on bipartite
graphs, but tractable on convex bipartite graphs. A bipartite graph is
called tree convex, if there is a tree defined on one part of the vertices,
such that for every vertex in another part, the neighborhood of this vertex
is a connected subtree. A convex bipartite graph is just a tree convex one
where the tree is a path. We find that the sum of larger-than-two degrees
of the tree is a key quantity to classify the computational complexity of
independent domination on tree convex bipartite graphs. That is, when
the sum is bounded by a constant, the problem is tractable, but when
the sum is unbounded, and even when the maximum degree of the tree
is bounded, the problem is NP-complete.

1 Introduction

A dominating set in a graph G = (V,E) is a subset D of vertices, such that
every vertex in V \ D has a neighbor in D. An independent dominating set D
is a special kind of dominating set which is also independent, that is, there
is no edge whose both ends are in D. The problem of finding the minimum
independent dominating set (IDS, in short) is NP-complete on general graphs
[3], chordal graphs [2], bipartite graphs [4], chordal bipartite graphs [7], etc.

A bipartite graph G = (A,B;E) is called tree convex, if there is a tree T =
(A,F ), such that for all vertex b in B, the neighborhood of b is a connected
subtree in T [5,6]. When T is a path, G is called convex. It was known that
IDS is NP-complete on bipartite graphs [4], but becomes tractable on convex
bipartite graphs [1]. A natural question is
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– What is the boundary between intractability and tractability of IDS on bipar-
tite graphs?

In this paper, we answer this question. We first explore IDS on some simple cases,
showing an intractability on star convex bipartite graphs, where T is a star, i.e.
a bipartite complete graph K1,|A|−1, and a tractability on triad convex bipartite
graphs, where T is a triad, i.e. three paths with a common end. These results
have already extended the known results of [4] and [1], respectively. Finally, we
find the exact condition to differentiate NP-completeness and P : whether

t =
∑

vi:degT (vi)>2

degT (vi)

is bounded by a constant or not, where degT (v) is the degree of vertex v in tree T .
The results of this paper are pictured in Figure 1.

Fig. 1. The results of this paper

The remaining part of this paper is organized as follows. TheNP-completeness
of IDS is shown on star convex bipartite graphs in Section 2, and then on more
general graph classes in Section 3. Tractability of IDS is shown in Section 4. The
conclusion and discussion are in Section 5.

2 Intractability of IDS on Star Convex Bipartite Graphs

IDS is NP-complete in bipartite graphs [4]. We can refine this intractability into
star convex bipartite graphs by a similar reduction.

Theorem 1. IDS is NP-complete on star convex bipartite graphs.

Proof. We reduce from SAT to IDS on star convex bipartite graphs. Given an
instance I of SAT, which has m variables x1, ..., xm and n clauses C1, ..., Cn, we
construct a star convex bipartite graph G = (A,B;E), such that I is satisfiable
if and only if G has an IDS of size 2m, as follows.

1. For each variable xi in I (1 ≤ i ≤ m), there is a small gadget involving six
vertices {xi, x̄i, ui, vi, yi, zi} and six edges in G, as shown in Figure 2.
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Fig. 2. The gadget for the literals xi, x̄i

2. For each clause Cj in I (1 ≤ i ≤ n), there is a vertex Cj in G.
3. For all literals xi, x̄i (1 ≤ i ≤ m), and for all clauses Cj (1 ≤ i ≤ n), we

connect xi and Cj if xi is in Cj , connect x̄i and Cj if x̄i is in Cj .
4. Add a vertex v0, which is connected to every ui, vi (1 ≤ i ≤ m) and Cj

(1 < j < n).

Clearly, the construction is in polynomial time. An example of this construction
is in Figure 3 for a SAT instance with two clauses C1 = x1∨x2 and C2 = x̄1∨x2.

Fig. 3. An example of the construction of G

Lemma 1. Graph G is star convex bipartite.

Proof. The graphG is bipartite with respect to the following partition of vertices

A = {xi, x̄i, yi, zi|1 ≤ i ≤ m} ∪ {v0}, B = {ui, vi|1 ≤ i ≤ m} ∪ {Cj |1 ≤ j ≤ n}.
Also G is star convex with the tree T on A be a star with central vertex v0 and
4m leaves, since every vertex b in B is connected to v0, the neighborhood of b is
a subtree in T . ��
Lemma 2. If I is satisfiable, G has an IDS of size no more than 2m.

Proof. If there is a satisfying assignment to I, then the set

D =
⋃

i

{xi, vi|xi = true} ∪
⋃

i

{x̄i, ui|xi = false}

is an independent set of size 2m. The set D is also a dominating set, since every
gadget is dominated by {xi, vi} or {x̄i, ui}, the vertex Cj is dominated by one
of {xi} or {x̄i} by the satisfying property, and v0 is dominated by {ui} or {vi}.
In the example shown in Figure 3, a satisfying assignment of I is x1 = false,
x2 = true, and D = {x̄1, u1, x2, v2}. ��



132 Y. Song, T. Liu, and K. Xu

Lemma 3. If G has an IDS of size no more than 2m, I is satisfiable.

Proof. Suppose there is an IDS of size no more than 2m. Since there are m
gadgets, and we can not use only one vertex to dominate all six vertices in one
gadget, no matter whether we choose v0 and Cj or not, we must choose exactly
two vertices from each gadget. The limitation of the size 2m makes v0 and Cj

outside the IDS. For each i, the pair xi and x̄i can not be both in IDS, for
otherwise, neither yi nor zi will be dominated. If we assign variable xi to be
true whenever IDS contains xi, and false otherwise, we get an assignment that
satisfies I, since each vertex Cj must be dominated, which implies that every
clause Cj contains a true literal and thus is satisfied. ��
The proof of Theorem 1 is finished. ��

3 Intractability of IDS on Tree Convex Bipartite Graphs

We can transform the star T constructed in last section into a new tree whose
maximum degree is bounded by a constant dmax as follows. We split the single
central vertex v0 with 4m leaves into a set of central vertices, whose cardinality
is �4m/(dmax − 2)�, to from a path in T . Every (dmax − 2) of the original 4m
leaves of v0 form a group to connect to one of the central vertices. Figure 4 is an
example of this transformation with m = 5 and dmax = 6. Amazingly, after this
transformation, the whole reduction still works with some slight modification.

Theorem 2. IDS is NP-complete on tree convex bipartite graphs where the
maximum degree of tree T is bounded by a constant.

Proof. We still reduce from SAT. The modified whole reduction is as follows.

1. For each variable xi in I (1 ≤ i ≤ m), there is a small gadget in G involving
six vertices {xi, x̄i, ui, vi, yi, zi} and six edges in G, as shown in Figure 2.

2. For each clause Cj in I (1 ≤ j ≤ n), there is a vertex Cj in G.
3. If variable xi is in clause Cj , we connect vertices xi and Cj in G. If negated

variable x̄i is in Cj , we connect vertices x̄i and Cj in G.
4. There are p = �4m/(dmax − 2)� central vertices v01, v02, ..., v0p to form a

path in T (not in G). The vertices yi, xi, x̄i, zi (1 ≤ i ≤ m) are ordered by
y1, x1, x̄1, z1, y2, x2, x̄2, z2, and so on. Every (dmax−2) consecutive vertices
in this order form a group, and one by one each group are leaves of one of
the p central vertices in T (again not in G).

Fig. 4. Transforming a star into a tree of bounded maximum degree
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5. For each Cj , find the minimum subtree Tj in T containing {xi|xi ∈ Cj} ∪
{x̄i|x̄i ∈ Cj}, and connect Cj to the central vertices on Tj.

6. For xi or x̄i in Cj , connect ui and vi to the central vertices on above Tj.

Clearly, the construction is in polynomial time. Figure 5 shows an example of
the construction with dmax = 4 and p = 4, for a SAT instance with two clauses
C1 = x1 ∨ x2 and C2 = x̄1 ∨ x2.

Fig. 5. An example of the constructions of G and T

Lemma 4. Graph G is tree convex bipartite where the maximum degree of tree
T is bounded by constant dmax.

Proof. The graph G is bipartite with respect to the partition of vertices

A = {xi, x̄i, yi, zi|1 ≤ i ≤ m} ∪ {v0k|1 ≤ k ≤ p},
B = {ui, vi|1 ≤ i ≤ m} ∪ {Cj |1 ≤ j ≤ n}.

That the G is tree convex with maximum degree dmax in T is ensured by the
construction, especially by the fifth and the sixth steps above. ��
Lemma 5. If I is satisfiable, G has an IDS of size no more than 2m.

Proof. If there is a satisfying assignment of I, the set

D =
⋃

i

{xi, vi : xi = true} ∪
⋃

i

{x̄i, ui : xi = false}

is an independent set of size 2m. The set D is also a dominating set, since every
gadget is dominated by {xi, vi} or {x̄i, ui}, and Cj is dominated by xi or x̄i

by the satisfying property, and the sixth step of construction ensures that each
v0k is connected to a ui and a vi. In the example in Figure 5, the satisfying
assignment is x1 = false and x2 = true, and the IDS is D = {x̄1, u1, x2, v2}. ��
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Lemma 6. If G has an IDS of size no more than 2m, I is satisfiable.

Proof. Suppose there is an IDS of size no more than 2m. Since there are m
gadgets, and we can not use a single vertex to dominate all six vertices in one
gadget, no matter whether we choose v0k and Cj (1 ≤ k ≤ p, 1 ≤ j ≤ m) or
not, so we must choose exactly two vertices from each gadget. The limitation
of the size 2m kills both v0k and Cj from the IDS. For each i, the pair xi and
x̄i can not be both in IDS, for otherwise neither yi nor zi will be dominated. If
we assign variable xi to be true whenever IDS contains xi, and false otherwise,
we get an satisfying assignment for I, since each Cj must be dominated, which
implies that every clause contains a true variable. ��
This finishes the proof of Theorem 2. ��
Note that in above two reductions, the sum of larger-than-two degrees in tree
T is unbounded. Formally, let t =

∑
vi:degT (vi)>2 degT (vi). Then t = 4m for the

T constructed in last section, and t = 4m+ p − 1 for the T constructed in this
section. In the former case, the number of larger-than-two degrees is bounded,
but the maximum degree is unbounded, while in the later case, the number of
larger-than-two degrees is unbounded, but the maximum degree is bounded, all
in T . In both cases, the sum of larger-than-two degrees in tree T is unbounded.
Thus we have the following intractability result.

Theorem 3. IDS is NP-complete on tree convex bipartite graphs whose t, the
sum of larger-than-two degrees in tree T , is unbounded.

4 Tractability of IDS on Tree Convex Bipartite Graphs

IDS is polynomial time on convex bipartite graphs [1]. We can extend this
tractability onto more general tree convex bipartite graphs by a similar dynamic
programming. We start with a simple situation as follows. Recall that a triad is
just three paths with a common end.

Theorem 4. IDS is in polynomial time on triad convex bipartite graphs.

Proof. Our algorithm is an extension of the dynamic programming in [1]. Let D
be a minimum subset of vertices with a desired property Q. D is constructed as
an increasing sequence D1 ⊆ D2 ⊆ · · · ⊆ Dm as follows.

– Step (a) (initialization): generate all possible versions of D1.
– Step (b) (branching): extend all versions of present Di−1 to all possible ver-

sions of Di with Di−1 ⊆ Di. (Possible means that the versions satisfy Q.)
– Step (c) (classification): classify the versions of Di, such that if versions V

and V ′ belong to the same class, then V ⊆ D′ and D′ satisfies Q imply that
(D′ \ V ) ∪ V ′ satisfies Q.

– Step (d) (deletion): delete all versions except the one of minimum cardinality
in each class.
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The algorithm proceeds at steps (a), (c)1, (d)1, (b)2, (c)2, (d)2, (b)3, (c)3, · · ·,
(b)m, (c)m, (d)m. We take some version of Dm with the minimum cardinality as
the output minimum IDS.

Then we define some notations on triad convex bipartite graphs. Suppose
G = (A,B;E) and there is a triad T on A. The triad T consists of three paths
p = 1, 2, 3 with a common vertex, as shown in the leftmost in Figure 6. For

Fig. 6. Three paths in triad convex tree, and the label of Ai

each vertex x, N(x) denotes the neighborhood of x in G. We partition A into
nonempty sets A1, A2, · · ·, Am, such that the following conditions hold:

– Each Ai consists of consecutive vertices in T .
– All vertices x ∈ Ai have the same N(x).
– Each Ai is maximal with respect to the above two conditions.
– Each Ai has a three-dimension label (xi, yi, zi), where the p-th bit represents

the order of Ai in path p of T in a bottom-up manner. Figure 6 shows some
examples on how to label Ai.

– In the following text, we will also call Ai: A(xi, yi, zi), and define A(xi, yi, zi)

[1] := xi, A(xi, yi, zi)[2] := yi, A(xi, yi, zi)[3] := zi. Further defined three-
dimension variable holds the same definition.

For each vertex y in B, we define l(y) and r(y) as a three-dimension variable, to
record the range where y covers in each path. They are calculated as follows. If
N(y) include the common vertex of three paths, then

l(y) := min{A(xi,yi,zi)[p]|A(xi,yi,zi) ⊆ N(y) ∩ {v|v is on path i in T }},
r(y) := max{A(xi,yi,zi)[p]|A(xi,yi,zi) ⊆ N(y) ∩ {v|v is on path i in T }}.

Otherwise, N(y) must intersect with only one path. If N(y) ⊆ path 1, then
l(y)[2] = l(y)[3] = r(y)[2] = r(y)[3] = 0. If N(y) ⊆ path 2, then l(y)[1] = l(y)[3]
= r(y)[1] = r(y)[3] = 0. If N(y) ⊆ path 3, then l(y)[1] = r(y)[1] = Ai′ [1],
l(y)[2] = r(y)[2] = Ai′ [2], where Ai′ contains the common vertex of tree paths.
Figure 7 shows an example of triad convex bipartite graph and the label of
vertices of A and B.

There are some properties about Ai. Suppose that N(Ai) are vertices con-
nected to Ai in B, and D is the minimum IDS. If N(Ai) ∩ D �= ∅, from the
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Fig. 7. The label of Ai, l(y) and r(y)

independence of D it follows Ai ∩ D = ∅. In the other case N(Ai) ∩ D = ∅,
to dominate Ai there must be Ai ⊆ D. For each Ai, we denote bi with bi = 1
iff Ai ⊆ D, and bi = 0 iff Ai ∩ D = ∅. Since there are only two possible bi, we
execute the dynamic programming process by dealing with one Ai per branch-
ing step, with a reverse order of breadth-first search, and extend Di−1 to Di by
enumerating the value of bi.

Further, in each classification part of step i in the algorithm, we define si to
be a three-dimension variable as follows. The p-th bit of si is

si[p] := max{Ak[p]|Ak ∩ path p �= ∅, Ak[p] < Ai[p], bk = 1}.
Actually, si represents the latest position where IDS has already dominated in
each path of the convex tree. We define this variable because if we know si and
whether Ai is chosen or not, i.e. bi, we know how to choose vertices in B into
IDS. So we can categorize versions with the same si into a class, and do the
deletion procedure.

Recall the definition of Di to be the minimum IDS found in step i. Then Di

has the following properties:

– Di =
⋃{Ak — k ≤ i, bk = 1 } ∪ {y ∈ B | r(y)[1] ≤ Ak[1], r(y)[2] ≤ Ak[2],

r(y)[3] ≤ Ak[3], bk = 0 for all Ak ⊆ N(y)};
– (opt) If bk = 0, and every bit of Ak ≤ si, then Di must contain some vertex

of N(Ak).

Now we can represent our IDS algorithm as follows.

(a) version b1=0:

D1:={y is vertex in B | r(y):=(D1[1],D1[2],D1[3])};

s1:=(0,0,0).

version b1=1:

D1:=A1;

s1:=(A1[1],A1[2],A1[3]).

(b) version bi=0:
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Di:=D(i-1) + {y is vertex in B|l(y)[1] > s(i-1)[1],

l(y)[2] > s(i-1)[2], l(y)[3] > s(i-1)[3],

r(y) = (Ai[1],Ai[2],Ai[3])};

si:=s(i-1).

If i=m, and Ai is not dominated, then delete the version.

version bi=1:

check (opt), if it fails, then delete the version;

If (opt) hols, then Di:=D(i-1)+Ai;

If Ai have common vertices with path p, si[p]:=Ai[p];

else si[p]:=s(i-1)[p].

(c) The version with equal sk belong to the same class.

(d) Delete all versions except one of minimum cardinality in

each class.

We can briefly analyze the running time of this algorithm as follows.

– Labeling each Ai and l(y), r(y) for each y in B cost O(|A|+ |A| · |B|) time.
– Step (a) costs O(|B|) time.
– Steps (b)(c)(d) will repeat O(|A|) times. In each loop, there are at most

O(|A|3) versions, we should calculate in O(|A| + |B|) time for each version.
Steps (c) and (d) cost O(|A|3) time. The total cost is O(|A|5 + |A|4 · |B|).

So the total running time is O(|A|5 + |A|4 · |B|), which is a polynomial. ��
This algorithm is easily extended to more general situations. For tree convex
bipartite graphs with the sum of larger-than-two degrees in the tree is bounded
by t (this property will be call Q), the tree is split into m paths, where m ≤ t.
Figure 8 briefly presents an example.

So, as long as we redefine the label of Ai, l(y) and r(y) (y ∈ B) to be m-
dimension variables, in which each bit records the position and covering range
of Ai and y in each path of the convex tree, the algorithm can operate as the
same way:

Fig. 8. An example of graphs satisfies Q
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– Initializing is as the same.
– Each Ai will be all or none chosen, which consist the two possibilities of

branching in each step.
– We should record si, which is also a m-dimension variable, presenting the

latest position where IDS has already dominated in each path. Versions with
same si are classified into the same class.

– We only keep the version with minimum cardinality in each class.

With the same analysis, the above algorithm runs in time O(|A|t+2+|A|t+1 ·|B|),
which proves the following theorem.

Theorem 5. IDS is in polynomial time on tree convex bipartite graphs where
the sum of larger-than-two degrees of the tree is bounded by a constant.

5 Conclusion and Open Problems

We have shown a dichotomy of complexity of IDS on tree convex bipartite
graphs: the problem is intractable when the sum of larger-than-two degrees in
the tree is unbounded, and tractable when the sum is bounded by a constant. In
our intractability reductions, the sum increases linearly. Can we make a reduc-
tion with an arbitrarily slow increasing of the sum? In our tractable algorithm,
the running time is exponential in the sum. Can we get a better running time?
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