

Lecture Notes in Computer Science 7285
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Jack Snoeyink Pinyan Lu Kaile Su
Lusheng Wang (Eds.)

Frontiers inAlgorithmics
and Algorithmic Aspects
in Information
and Management
Joint International Conference, FAW-AAIM 2012
Beijing, China, May 14-16, 2012
Proceedings

13

Volume Editors

Jack Snoeyink
University of North Carolina, Chapel Hill, NC, USA
E-mail: snoeyink@cs.unc.edu

Pinyan Lu
Microsoft Research Asia, Shanghai, China
E-mail: pinyanl@microsoft.com

Kaile Su
Peking University, Beijing, China
E-mail: isskls@zsu.edu.cn

Lusheng Wang
City University of Hong Kong, Kowloon, Hong Kong, SAR
E-mail: lwang@cs.cityu.edu.hk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-29699-4 e-ISBN 978-3-642-29700-7
DOI 10.1007/978-3-642-29700-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012935871

CR Subject Classification (1998): F.2, G.2, I.3.5, E.1, F.1, J.1, I.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at FAW-AAIM 2012: the 6th
International Frontiers of Algorithmics Workshop (FAW 2012) and the 8th In-
ternational Conference on Algorithmic Aspects of Information and Management
(AAIM 2012), jointly held during May 14–16, 2012, at Peking University, Beijing,
China.

The joint conference provides a focused forum on current trends of research on
algorithms, discrete structures, operation research, combinatorial optimization
and their applications, and brings together international experts at the research
frontiers in these areas to exchange ideas and to present significant new results.

There were 81 submissions to this edition of the conference, of which 33 papers
were accepted. All papers were rigorously reviewed by the Program Committee
members and/or external referees; almost all papers received at least three de-
tailed reviews. The papers were evaluated on the basis of their significance,
novelty, soundness and relevance to the conference.

We were pleased to deliver the best paper award to Kazuhide Nishikawa,
Takao Nishizeki and Xiao Zhou for their paper “Algorithms for Bandwidth Con-
secutive Multicolorings of Graphs” and the best student paper award to Bryan
He for his paper “Optimal Binary Representation of Mosaic Floorplans and
Baxter Permutations.”

Besides the regular talks, the program also included two invited talks by Tao
Jiang (University of California - Riverside, USA) and Joseph S.B. Mitchell (State
University of New York at Stony Brook, USA).

We are very grateful to all the people who made this meeting possible: the au-
thors for submitting their papers, the Program Committee members and external
reviewers for their excellent work, and the two invited speakers. In particular, we
would like to thank Peking University for hosting the conference and providing
organizational support.

We also acknowledge EasyChair, a powerful and flexible system for manag-
ing all stages of the paper handling process, from the submission stage to the
preparation of the final version of the proceedings.

May 2012 Jack Snoeyink
Pinyan Lu

Kaile Su
Lusheng Wang

Organization

General Chairs

John Hopcroft Cornell University, USA
Hong Mei Peking University, China

Program Committee Co-chairs

Jack Snoeyink University of North Carolina at Chapel Hill,
USA

Pinyan Lu Microsoft Research Asia, China
Kaile Su Peking University, China
Lusheng Wang City University of Hong Kong, Hong Kong

Program Committee: FAW Track

Andrej Bogdanov Chinese University of Hong Kong, China
Leizhen Cai Chinese University of Hong Kong, China
Xin Chen Nanyang Technological University, Singapore
Yijia Chen Shanghai Jiao Tong University, China
Zhi-zhong Chen Tokyo Denki University, Japan
Miklós Csürös Université de Montréal, Canada
Bin Fu University of Texas-Pan American, USA
Ming-Yang Kao Northwestern University, USA
Guohui Lin University of Alberta, Canada
Tian Liu Peking University, China
Xiaoming Sun Institute of Computing Technology, CAS,

China
Haitao Wang University of Notre Dame, USA
Jianxin Wang Central South University, China
David Woodruff IBM Almaden Research Center, USA
Yi Wu IBM Almaden Research Center, USA
Mingji Xia Software Institute, CAS, China
Jinhui Xu University at Buffalo, the State University of

New York, USA
Yitong Yin Nanjing University, China
Shengyu Zhang Chinese University of Hong Kong, China

VIII Organization

Program Committee: AAIM Track

Ning Chen Nanyang Technological University, Singapore
Xi Chen Columbia University, USA
Yongxi Cheng Xi’an Jiao Tong University, China
Giorgos Christodoulou University of Liverpool, UK
Hao Yuan City University of Hong Kong, China
Martin Hoefer RWTH Aachen University, Germany
Hon Wai Leong National University of Singapore, Singapore
Guojun Li Shandong University, China
Julian Mestre University of Sydney, Australia
Karthik Natarajan City University of Hong Kong, China
Anthony Man-Cho So Chinese University of Hong Kong, China
Periklis Papakonstantinou Tsinghua University, China
Zhiyi Tan Zhejiang University, China
Chung-Piaw Teo National University of Singapore, Singapore
Yajun Wang Microsoft Research Asia, China
Ke Xu Beihang University, China
Ke Yi Hong Kong University of Science and

Technology, China
Guochuan Zhang Zhejiang University, China
Jian Zhang Software Institute, CAS, China
Louxin Zhang National University of Singapore, Singapore
Lu Zhang Peking University, China

Local Organizing Committee

Hanpin Wang Peking University, China
Tian Liu Peking University, China

Additional Reviewers

Bei, Xiaohui
Burcea, Mihai
Cai, Yufei
Chen, Shiteng
Deng, Yuxin
Frati, Fabrizio
Guo, Chengwei
Halim, Steven
Hu, Haiqing
Huang, Ziyun
Jiang, Minghui
Li, Guojun
Li, Jian

Li, Shuguang
Lin, Bingkai
Liu, Yang
Liu, Yangwei
Lopez-Ortiz, Alejandro
Ma, Tengyu
Mak, Yan Kei
Megow, Nicole
Narodytska, Nina
Ng, Yen Kaow
Qiao, Youming
Shi, Zhiqiang
Srihari, Sriganesh

Organization IX

Van Zuylen, Anke
Wahlstrom, Magnus
Wang, Jiun-Jie
Wang, Xiangyu
Yang, Guang
Ye, Nan
Yin, Minghao

Yin, Yitong
Zhang, Chihao
Zhang, Jinshan
Zheng, Changwen
Zhou, Yuan
Zhu, Shanfeng

Computational Geometry Approaches to Some

Algorithmic Problems in Air Traffic
Management

Joseph S.B. Mitchell

Department of Applied Mathematics and Statistics, Stony Brook University, USA

joseph.mitchell@stonybrook.edu

Abstract. The next generation of air transportation system will have
to use technology to be able to cope with the ever increasing demand for
flights. Several challenging optimization problems arise in trying to maxi-
mize efficiency while maintaining safe operation in air traffic management
(ATM). Constraints and issues unique to air transportation arise in the
ATM domain, including weather hazards, turbulence, no-fly zones, and
three-dimensional routing. The challenge is substantially compounded
when the constraints vary in time and are not known with certainty,
as is the case with weather hazards. Human oversight is provided by air
traffic controllers, who are responsible for safe operation within a portion
of airspace known as a sector.

In this talk we discuss algorithmic methods that can be used in
modeling and solving air traffic management problems, including routing
of traffic flows, airspace configuration into load-balanced sectors, and
capacity estimation in the face of dynamic and uncertain constraints
and demands. We highlight several open problems.

Keywords: computational geometry, geometric flow, air traffic manage-
ment, load balancing, sectorization.

Acknowledgments. This research has been supported by grants from the Na-
tional Science Foundation (CCF-0729019, CCF-1018388), NASA Ames, and
Metron Aviation. The talk is based on collaborative work with many, includ-
ing Anthony D. Andre, Dominick Andrisani, Estie Arkin, Amitabh Basu, Jit-Tat
Chen, Nathan Downs, Moein Ganji, Robert Hoffman, Joondong Kim,
Victor Klimenko, Irina Kostitsyna, Shubh Krishna, Jimmy Krozel, Changkil
Lee, Tenny Lindholm, Anne Pääkkö, Steve Penny, Valentin Polishchuk, Joseph
Prete, Girishkumar Sabhnani, Robert Sharman, Philip J. Smith, Amy L. Spencer,
Shang Yang, Arash Yousefi, Jingyu Zou.

Combinatorial Methods for Inferring Isoforms

from Short Sequence Reads

Tao Jiang1,2

1Department of Computer Science and Engineering,
University of California, Riverside, CA

2 School of Information Science and Technology, Tsinghua University, Beijing, China
jiang@cs.ucr.edu

Abstract. Due to alternative splicing, a gene may be transcribed into
several different mRNA transcripts (called isoforms) in eukaryotic species.
How to detect isoforms on a genomic scale and measure their abundance
levels in a cell is a central problem in transcriptomics and has broad
applications in biology and medicine. Traditional experimental methods
for this purpose are time consuming and cost ineffective. Although deep
sequencing technologies such as RNA-Seq provide a possible effective
method to address this problem, the inference of isoforms from tens of
millions of short sequence reads produced by RNA-Seq has remained
computationally challenging. In this talk, I will first briefly survey the
state-of-the-art methods for inferring isoforms from RNA-Seq short reads
including Cufflinks, Scripture and IsoInfer, and then describe the algo-
rithmic framework behind IsoInfer in more detail. The design of IsoInfer
exhibits an interesting combination of combinatorial optimization tech-
niques (e.g., convex quadratic programming) and statistical concepts
(e.g., maximum likelihood estimation and p-values). Finally, I will in-
troduce our recent improvement of IsoInfer, called IsoLasso. The new
method incorporates the well-known LASSO regression method into the
quadratic program of IsoInfer and is likely to deliver isoform solutions
with both good accuracy and sparsity. Our extensive experiments on
both simulated and real RNA-Seq data demonstrate that this addition
could help IsoLasso to filter out lowly expressed isoforms (which are of-
ten noisy) and achieve higher sensitivity and precision simultaneously
than the existing transcriptome assembly tools.

This is a joint work with Wei Li (UC Riverside) and Jianxing Feng
(Tongji University).

Table of Contents

Optimal Binary Representation of Mosaic Floorplans and Baxter
Permutations . 1

Bryan He

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane
Graphs . 13

Jiun-Jie Wang and Xin He

Weighted Inverse Minimum Cut Problem under the Sum-Type
Hamming Distance . 26

Longcheng Liu, Yong Chen, Biao Wu, and Enyu Yao

Voronoi Diagram with Visual Restriction . 36
Chenglin Fan, Jun Luo, Wencheng Wang, and Binhai Zhu

Minimization of the Maximum Distance between the Two Guards
Patrolling a Polygonal Region . 47

Xuehou Tan and Bo Jiang

On Covering Points with Minimum Turns . 58
Minghui Jiang

On Envy-Free Pareto Efficient Pricing . 70
Xia Hua

Online Pricing for Multi-type of Items . 82
Yong Zhang, Francis Y.L. Chin, and Hing-Fung Ting

Algorithms with Limited Number of Preemptions for Scheduling on
Parallel Machines . 93

Yiwei Jiang, Zewei Weng, and Jueliang Hu

Computing Maximum Non-crossing Matching in Convex Bipartite
Graphs . 105

Danny Z. Chen, Xiaomin Liu, and Haitao Wang

Algorithms for Bandwidth Consecutive Multicolorings of Graphs
(Extended Abstract) . 117

Kazuhide Nishikawa, Takao Nishizeki, and Xiao Zhou

Independent Domination on Tree Convex Bipartite Graphs 129
Yu Song, Tian Liu, and Ke Xu

XVI Table of Contents

On-Line Scheduling of Parallel Jobs in Heterogeneous Multiple
Clusters . 139

Deshi Ye and Lili Mei

On Multiprocessor Temperature-Aware Scheduling Problems 149
Evripidis Bampis, Dimitrios Letsios, Giorgio Lucarelli,
Evangelos Markakis, and Ioannis Milis

Online Minimum Makespan Scheduling with a Buffer 161
Yan Lan, Xin Chen, Ning Ding, György Dósa, and Xin Han

A Dense Hierarchy of Sublinear Time Approximation Schemes for Bin
Packing . 172

Richard Beigel and Bin Fu

Multivariate Polynomial Integration and Differentiation Are Polynomial
Time Inapproximable Unless P=NP . 182

Bin Fu

Some Remarks on the Incompressibility of Width-Parameterized SAT
Instances . 192

Bangsheng Tang

Kernels for Packing and Covering Problems (Extended Abstract) 199
Jianer Chen, Henning Fernau, Peter Shaw, Jianxin Wang, and
Zhibiao Yang

The Worst-Case Upper Bound for Exact 3-Satisfiability with the
Number of Clauses as the Parameter . 212

Junping Zhou and Minghao Yin

Fixed-Parameter Tractability of almost CSP Problem with Decisive
Relations . 224

Chihao Zhang and Hongyang Zhang

On Editing Graphs into 2-Club Clusters . 235
Hong Liu, Peng Zhang, and Daming Zhu

Solving Generalized Optimization Problems Subject to SMT
Constraints . 247

Feifei Ma, Jun Yan, and Jian Zhang

Solving Difficult SAT Problems by Using OBDDs and Greedy Clique
Decomposition . 259

Yanyan Xu, Wei Chen, Kaile Su, and Wenhui Zhang

Zero-Sum Flow Numbers of Regular Graphs . 269
Tao-Ming Wang and Shih-Wei Hu

Table of Contents XVII

More Efficient Parallel Integer Sorting . 279
Yijie Han and Xin He

Fast Relative Lempel-Ziv Self-index for Similar Sequences 291
Huy Hoang Do, Jesper Jansson, Kunihiko Sadakane, and
Wing-Kin Sung

A Comparison of Performance Measures via Online Search 303
Joan Boyar, Kim S. Larsen, and Abyayananda Maiti

Online Exploration of All Vertices in a Simple Polygon 315
Yuya Higashikawa and Naoki Katoh

In-Place Algorithms for Computing a Largest Clique in Geometric
Intersection Graphs . 327

Minati De, Subhas C. Nandy, and Sasanka Roy

The Black-and-White Coloring Problem on Distance-Hereditary
Graphs and Strongly Chordal Graphs . 339

Ton Kloks, Sheung-Hung Poon, Feng-Ren Tsai, and Yue-Li Wang

An Improved Approximation Algorithm for the Bandpass Problem 351
Weitian Tong, Randy Goebel, Wei Ding, and Guohui Lin

Partial Degree Bounded Edge Packing Problem . 359
Peng Zhang

Erratum: The Approximability of the Exemplar Breakpoint Distance
Problem . 368

Zhixiang Chen, Bin Fu, and Binhai Zhu

Author Index . 369

Optimal Binary Representation of Mosaic

Floorplans and Baxter Permutations

Bryan He

Department of Computer Science, California Institute of Technology,
1200 E. California Blvd., 91126 Pasadena, California, United States of America

bryanhe@caltech.edu

Abstract. A floorplan is a rectangle subdivided into smaller rectangu-
lar blocks by horizontal and vertical line segments. Two floorplans are
considered equivalent if and only if there is a bijection between the blocks
in the two floorplans such that the corresponding blocks have the same
horizontal and vertical boundaries. Mosaic floorplans use the same ob-
jects as floorplans but use an alternative definition of equivalence. Two
mosaic floorplans are considered equivalent if and only if they can be
converted into equivalent floorplans by sliding the line segments that
divide the blocks. The Quarter-State Sequence method of representing
mosaic floorplans uses 4n bits, where n is the number of blocks. This
paper introduces a method of representing an n-block mosaic floorplan
with a (3n − 3)-bit binary string. It has been proven that the shortest
possible binary string representation of a mosaic floorplan has a length
of (3n− o(n)) bits. Therefore, the representation presented in this paper
is asymptotically optimal. Baxter permutations are a set of permutations
defined by prohibited subsequences. There exists a bijection between mo-
saic floorplans and Baxter permutations. As a result, the methods intro-
duced in this paper also create an optimal binary string representation
of Baxter permutations.

Keywords: Binary Representation, Mosaic Floorplan, Baxter Permu-
tation.

1 Introduction

In this section, the definitions of mosaic floorplans and Baxter permutations are
introduced, previous work in the area and their applications are described, and
the main result is stated.

1.1 Floorplans and Mosaic Floorplans

Definition 1. A floorplan is a rectangle subdivided into smaller rectangular sub-
sections by horizontal and vertical line segments such that no four subsections
meet at the same point.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 B. He

a b c

d e f
g

h i

(a)

a b
c

d
e

fg
h i

(b)

a b c

d e f

g h i

(c)

Fig. 1. Three example floorplans

The smaller rectangular subsections are called blocks. Figure 1 shows three floor-
plans, each containing 9 blocks. Note that the horizontal and vertical line seg-
ments do not cross each other. They can only form T-junctions (�, ⊥,
�, and �).

The definition of equivalent floorplans does not consider the size of the blocks
in the floorplan. Instead, two floorplans are considered equivalent if and only
if their corresponding blocks have the same relative position relationships. The
formal definition of equivalent floorplans follows.

Definition 2. Let F1 be a floorplan with R1 as its set of blocks. Let F2 be
another floorplan with R2 as its set of blocks. F1 and F2 are considered equivalent
floorplans if and only if there is a bijection g : R1 → R2 such that the following
conditions hold:

1. For any two blocks r, r′ ∈ R1, r and r′ share a horizontal line segment as
their common boundary with r above r′ if and only if g(r) and g(r′) share a
horizontal line segment as their common boundary with g(r) above g(r′).

2. For any two blocks r, r′ ∈ R1, r and r′ share a vertical line segment as their
common boundary with r to the left of r′ if and only if g(r) and g(r′) share a
vertical line segment as their common boundary with g(r) to the left of g(r′).

In Figure 1, (a) and (b) have the same number of blocks and the position rela-
tionships between their blocks are identical. Therefore, (a) and (b) are equivalent
floorplans. However, (c) is not equivalent to either.

The objects of mosaic floorplans are the same as the objects of floorplans.
However, mosaic floorplans use a different definition of equivalence. Informally,
two mosaic floorplans are considered equivalent if and only if they can be con-
verted to each other by sliding the horizontal and vertical line segments one
at a time. The equivalence of the mosaic floorplans is formally defined by us-
ing the horizontal constraint graph and the vertical constraint graph [9]. The
horizontal constraint graph describes the horizontal relationship between the
vertical line segments of a floorplan. The vertical constraint graph describes
the vertical relationship between the horizontal line segments of a floorplan. The
formal definitions of horizontal constraint graphs, vertical constraint graphs, and
equivalence of mosaic floorplans follow.

Binary Representation of Mosaic Floorplans and Baxter Permutations 3

Definition 3. Let F be a floorplan.

1. The horizontal constraint graph GH(F) of F is a directed graph. The vertex
set of GH(F) has a bijection with the set of the vertical line segments of
F . For two vertices u1 and u2 in GH(F), there is a directed edge u1 → u2

if and only if there is a block b in F such that the vertical line segment v1
corresponding to u1 is on the left boundary of b and the vertical line segment
v2 corresponding to u2 is on the right boundary of b.

2. The vertical constraint graph GV (F) of F is a directed graph. The vertex
set of GV (F) has a bijection with the set of the horizontal line segments of
F . For two vertices u1 and u2 in GV (F), there is a directed edge u1 → u2

if and only if there is a block b in F such that the horizontal line segment
h1 corresponding to u1 is on bottom boundary of b and the horizontal line
segment h2 corresponding to u2 is on the top boundary of b.

The graphs in Figure 2 are the constraint graphs of all three floorplans shown in
Figure 1. Note that the top, bottom, right, and left boundaries of the floorplan
are represented by the north, south, east, and west vertices labeled by N, S,
E, and W, respectively, in the constraint graphs. Also note that each edge in
GH(F) and GV (F) corresponds to a block in the floorplan.

W E

a b
c

d
e f

g
h i

(a)

a b
c

d
e

f

g
h i

N

S
(b)

Fig. 2. The constraint graphs representing all three mosaic floorplans in Figure 1. (a)
is the horizontal constraint graph. (b) is the vertical constraint graph.

Definition 4. Two mosaic floorplans are equivalent mosaic floorplans if and
only if they have identical horizontal constraint graphs and vertical constraint
graphs.

Thus, in Figure 1, (a), (b), and (c) are all equivalent mosaic floorplans. Note that
(c) is obtained from (b) by sliding the horizontal line segment between blocks d
and g downward, the horizontal line segment between blocks c and f upward,
and the vertical line segment between blocks a and b to the right.

1.2 Applications of Floorplans and Mosaic Floorplans

Floorplans and mosaic floorplans are used in the first major stage in the physical
design cycle of VLSI (Very Large Scale Integration) circuits [10]. The blocks in a

4 B. He

floorplan correspond to the components of a VLSI chip. The floorplanning stage
is used to plan the relative position of the circuit components. At this stage,
the blocks do not have specific sizes assigned to them yet, so only the position
relationship between the blocks are considered.

For a floorplan, the wires between two blocks run cross their common bound-
ary. In this setting, two equivalent floorplans provide the same connectivity be-
tween blocks. For a mosaic floorplan, the line segments are the wires. Any block
with a line segment on its boundary can be connected to the wires represented
by the line segment. In this setting, two equivalent mosaic floorplans provide the
same connectivity between blocks.

Binary representations of floorplans and mosaic floorplans are used by various
algorithms to generate floorplans in order to solve various VLSI layout optimiza-
tion problems.

Floorplans are also used to represent rectangular cartograms [15,17]. Rectan-
gular cartograms provide a visual method of displaying statistical data about a
set of regions.

1.3 Baxter Permutations

Baxter permutations are a set of permutations defined by prohibited subse-
quences. They were first introduced in [3]. It was shown in [8] that the set
of Baxter permutations has bijections to all objects in the Baxter combinatorial
family. For example, [4] showed that plane bipolar orientations with n edges have
a bijection with Baxter permutations of length n. [5] established a relationship
between Baxter permutations and pairs of alternating sign matrices.

In particular, it was shown in [1,6,20] that mosaic floorplans are one of the
objects in the Baxter combinatorial family. A simple and efficient bijection be-
tween mosaic floorplans and Baxter permutations was established in [1,6]. As a
result, any binary representation of mosaic floorplans can also be converted to
a binary representation of Baxter permutations.

1.4 Previous Work on Representations of Floorplans and Mosaic
Floorplans

Because of their applications in VLSI physical design, the representations of
floorplans and mosaic floorplans have been studied extensively by mathemati-
cians, computer scientists and electrical engineers. Although their definitions are
similar, the combinatorial properties of floorplans and mosaic floorplans are quite
different. The following is a list of research on floorplans and mosaic floorplans.

Floorplans

There is no known formula for calculating F (n), the number of n-block floor-
plans. The first few values of F (n) are {1, 2, 6, 24, 116, 642, 3938, . . .}. Researchers
have been trying to bound the range of F (n). In [2], it was shown that there
exists a constant c = limn→∞(F (n))1/n and 11.56 < c < 28.3. This means that

Binary Representation of Mosaic Floorplans and Baxter Permutations 5

11.56n ≤ F (n) ≤ 28.3n for large n. The upper bound of F (n) was reduced to
F (n) ≤ 13.5n in [7].

Algorithms for generating floorplans are presented in [12]. In [18], a (5n−5)-bit
representation of n-block floorplans is shown. A different 5n-bit representation of
n-block floorplans is presented in [19]. The shortest known binary representation
of n-block floorplans uses (4n− 4) bits [16].

Since F (n) ≥ 11.56n for large n [2], any binary string representation of n-block
floorplans must use at least log2 11.56

n = 3.531n bits. Closing the gap between
the known (4n−4)-bit binary representation and the 3.531n lower bound remains
an open research problem [16].

Mosaic Floorplans

It was shown in [6] that the set of n-block mosaic floorplans has a bijection to
the set of Baxter permutations, and the number of n-block mosaic floorplans
equals to the nth Baxter number B(n), which is defined as the following:

B(n) =

∑n−1
r=0

(
n+ 1
r

)(
n+ 1
r + 1

)(
n+ 1
r + 2

)
(
n+ 1
1

)(
n+ 1
2

)

In [14], it was shown that B(n) = Θ(8n/n4). The first few Baxter numbers are
{1, 2, 6, 22, 92, 422, 2074, . . .}.

There is a long list of papers on representation problem of mosaic floorplans.
[11] proposed a Sequence Pair (SP) representation. Two sets of permutations
are used to represent the position relations between blocks. The length of the
representation is 2n log2 n bits.

[9] proposed a Corner Block List (CB) representation for mosaic floorplans.
The representation consists of a list S of blocks, a binary string L of (n−1) bits,
and a binary string T of 2n − 3 bits. The total length of the representation is
(3n+ n log2 n) bits.

[21] proposed a Twin Binary Sequences (TBS) representation for mosaic floor-
plans. The representation consists of 4 binary strings (π, α, β, β′), where π is a
permutation of integers {1, 2, . . . , n}, and the other three strings are n or (n−1)
bits long. The total length of the representation is 3n+ n log2 n.

A common feature of above representations is that each block in the mosaic
floorplan is given an explicit name (such as an integer between 1 and n). They
all use at least one list (or permutation) of these names in the representation.
Because at least log2 n bits are needed to represent every integer in the range
[1, n], the length of these representations is inevitably at least n log2 n bits.

A different approach using a pair of Twin Binary Trees was introduced in
[20]. The blocks of the mosaic floorplan are not given explicit names. Instead,
the shape of the two trees are used to encode the position relations of blocks. In
this representation, each tree consists of 2n nodes. Each tree can be encoded by
using 4n bits, so the total length of the representation is 8n bits.

6 B. He

In [13], a representation called Quarter-State-Sequence (QSS) was presented.
It uses a Q sequence that represents the configuration of one of the corners of
the mosaic floorplan. The length of the Q sequence representation is 4n bits.
This is the best known representation for mosaic floorplans.

The number of n-block mosaic floorplans equals the nth Baxter number, so at
least log2 B(n) = log2 Θ(8n/n4) = 3n− o(n) bits are needed to represent mosaic
floorplans.

1.5 Main Result

Theorem 1. The set of n-block mosaic floorplans can be represented by (3n−3)
bits, which is optimal up to an additive lower order term.

Most binary representations of mosaic floorplans discussed in section 1.4 are
complex. In contrast, the representation introduced in this paper is very simple.

By using the bijection between mosaic floorplans and Baxter permutations
described in [1], the methods in this paper also work on Baxter permutations.
Hence, the optimal representation of mosaic floorplans results in an optimal
representation of all objects in the Baxter combinatorial family.

2 Optimal Representation of Mosaic Floorplans

In this section, an optimal representation of mosaic floorplans is described.

2.1 Standard Form of Mosaic Floorplans

Let M be a mosaic floorplan. Let h be a horizontal line segment in M . The upper
segment set of h and the lower segment set of h are defined as the following:

ABOVE(h) = the set of vertical line segments above h that intersect h.
BELOW(h) = the set of vertical line segments below h that intersect h.

Similarly, for a vertical line segment v in M , the left segment set of v and the
right segment set of h are defined as the following:

LEFT(v) = the set of horizontal segments on the left of v that intersect v.
RIGHT(v) = the set of horizontal segments on the right of v that intersect v.

Definition 5. A mosaic floorplan M is in standard form if the following hold:

1. For every horizontal segment h in M , all vertical segments in ABOVE(h)
appear to the right of all vertical segments in BELOW(h). (Figure 3(a))

2. For every vertical segment v in M , all horizontal segments in RIGHT(v)
appear above all horizontal segments in LEFT(v). (Figure 3(b))

Binary Representation of Mosaic Floorplans and Baxter Permutations 7

BELOW(h)

ABOVE(h)

(a)

h
RIGHT(v)

LEFT(v)

v

(b)

Fig. 3. Standard form of mosaic floorplans

The mosaic floorplan shown in Figure 1 (c) is the standard form of mosaic
floorplans shown in Figure 1 (a) and Figure 1 (b).

The standard form Mstandard of a mosaic floorplan M can be obtained by
sliding its vertical and horizontal line segments. Because of the equivalence def-
inition of mosaic floorplans, Mstandard and M are considered the same mosaic
floorplans. For a given M , Mstandard can be obtained in linear time by using
the horizontal constraint graphs and vertical constraint graphs described in [9].
From now on, all mosaic floorplans are assumed to be in standard form.

2.2 Staircases

Definition 6. A staircase is an object that satisfies the following conditions:

1. The border is formed by a line segment on the positive x-axis starting from
the origin and a line segment on the positive y-axis starting from the origin
connected by non-increasing vertical and horizontal line segments.

2. The interior is divided into smaller rectangular subsections by horizontal and
vertical line segments.

3. No four subsections meet at the same point.

a

d e

g h i
x

y

Fig. 4. A staircase with n = 6 blocks and m = 3 steps that is obtained from the mosaic
floorplan in Figure 1 (c) by deleting blocks b, c and f

A step of a staircase S is a horizontal line segment on the border of S, excluding
the x-axis. Figure 4 shows a staircase with n = 6 blocks and m = 3 steps. Note
that a mosaic floorplan is a staircase with m = 1 step.

8 B. He

2.3 Deletable Rectangles

Definition 7. A deletable rectangle of a staircase S is a block that satisfies the
following conditions:

1. Its top edge is completely contained in the border of S.
2. Its right edge is completely contained in the border of S.

In the staircase shown in Figure 4, the block a is the only deletable rectangle.
The concept of deletable rectangles is a key idea for the methods introduced in
this paper. This concept was originally defined in [16] for their (4n− 4)-bit rep-
resentation of floorplans. However, a modified definition of deletable rectangles
is used in this paper to create a (3n− 3)-bit representation of mosaic floorplans.

Lemma 1. The removal of a deletable rectangle from a staircase results in an-
other staircase unless the original staircase contains only one block.

Proof. Let S be a staircase with more than one block and let r be a deletable
rectangle in S. Define S′ to be the object that results when r is removed from S.
Because the removal of r still leaves S′ with at least one block, the border of S′

still contains a line segment on the x-axis and a line segment on the y-axis, so
condition (1) of a staircase holds for S′. Removing r will not cause the remainder
of the border to have an increasing line segment because the right edge of r must
be completely contained in the border, so condition (2) of a staircase also holds
for S′. The removal of r does not form new line segments, so the interior of S′ will
still be divided into smaller rectangular subsections by vertical and horizontal
line segments, and no four subsections in S′ will meet at the same point. Thus,
conditions (3) and (4) of a staircase hold for S′. Therefore, S′ is a staircase.

The basic ideas of the representation can now be outlined. Given a mosaic floor-
plan M , the deletable rectangles of M are removed one by one. By Lemma 1,
this results in a sequence of staircases, until only one block remains. The neces-
sary location information of these deletable rectangles are recorded so that the
original mosaic floorplan M can be reconstructed. However, if there are mul-
tiple deletable rectangles for these staircases, many more bits will be needed.
Fortunately, the following key lemma shows that this does not happen.

Lemma 2. Let M be a n-block mosaic floorplan in standard form. Let Sn = M ,
and let Si−1 (2 ≤ i ≤ n) be the staircase obtained by removing a deletable
rectangle ri from Si.

1. There is a single, unique deletable rectangle in Si for 1 ≤ i ≤ n.
2. ri−1 is adjacent to ri for 2 ≤ i ≤ n.

Proof. The proof is by reverse induction.
Sn = M has only one deletable rectangle located in the top right corner.
Assume that Si+1 (i ≤ n − 1) has exactly one deletable rectangle ri+1. Let

h be the horizontal line segment in Si+1 that contains the bottom edge of ri+1,

Binary Representation of Mosaic Floorplans and Baxter Permutations 9

and let v be the vertical line segment in Si+1 that contains the left edge of ri+1

(Figure 5). Let a be the uppermost block in Si+1 whose right edge aligns with v,
and let b be the rightmost block in Si+1 whose top edge aligns with h. Note that
either a or b may not exist, but at least one will exist because 2 ≤ i. After ri+1

is removed from Si+1, a and b are the only candidates for deletable rectangles
of the resulting staircase Si. There are two cases:

a

b

v

h
ri+1

(a)

a

b

v

h
ri+1

(b)

Fig. 5. Proof of Lemma 2

1. The line segments h and v form a �-junction (Figure 5 (a)) Then, the bottom
edge of a must be below h because M is a standard mosaic floorplan, and
a is not a deletable rectangle in Si. Thus, the block b is the only deletable
rectangle in Si.

2. The line segments h and v form a ⊥-junction (see Figure 5 (b)) Then, the left
edge of b must be to the left of v because M is a standard mosaic floorplan,
and b is not a deletable rectangle in Si. Thus, the block a is the only deletable
rectangle in Si.

In both cases, only one deletable rectangle ri (which is either a or b) is revealed
when the deletable rectangle ri+1 is removed. There is only one deletable rect-
angle in Sn = M , so all subsequent staircases contain exactly one deletable
rectangle, and (1) is true. In both cases, ri+1 is adjacent to ri, so (2) is true.

Let S be a staircase and r be a deletable rectangle of S whose top side is on the
k-th step of S. There are four types of deletable rectangles.

r
k

Type(0,0)

r
k

Type(0,1)

r
k

Type(0,1)

r
k

Type(1,1)

Fig. 6. The four types of deletable rectangles

10 B. He

1. Type (0, 0):
(a) The upper left corner of r is a �-junction.
(b) The lower right corner of r is a ⊥-junction.
(c) The deletion of r decreases the number of steps by one.

2. Type (0, 1):
(a) The upper left corner of r is a �-junction.
(b) The lower right corner of r is a ⊥-junction.
(c) The deletion of r does not change the number of steps.

3. Type (1, 0):
(a) The upper left corner of r is a �-junction.
(b) The lower right corner of r is a �-junction.
(c) The deletion of r does not change the number of steps.

4. Type (1, 1):
(a) The upper left corner of r is a �-junction.
(b) The lower right corner of r is a �-junction.
(c) The deletion of r increases the number of steps by one.

2.4 Optimal Binary Representation

This binary representation of mosaic floorplans depends on the fact that a mosaic
floorplan M is a special case of a staircase and the fact that the removal of a
deletable rectangle from a staircase results in another staircase. The binary string
used to represent M records the unique sequence of deletable rectangles that are
removed in this process. The information stored by this binary string enables
the original mosaic floorplan M to be reconstructed.

A 3-bit binary string is used to record the information for each deletable
rectangle ri. The string has two parts: the type and the location of ri. To record
the type of ri, the bits corresponding to its type is stored directly. To store the
location, note that, by Lemma 2, two consecutive deletable rectangles ri and
ri−1 are adjacent. Thus, they must share either a horizontal edge or a vertical
edge. A single bit can be used to record the location of ri with respect to ri−1:
a 1 if they share a horizontal edge, and a 0 if they share a vertical edge.

Encoding Procedure

Let M be the n-block mosaic floorplan to be encoded. Starting from Sn = M ,
remove the unique deletable rectangles ri, where 2 ≤ i ≤ n, one by one. For each
deletable rectangle ri, two bits are used to record the type of ri, and one bit is
used to record the type of the common boundary shared by ri and ri−1.

Decoding Procedure

The process starts with the staircase S1, which is a single rectangle. Each stair-
case Si+1 can be reconstructed from Si by using the 3-bit binary string for the
deletable rectangle ri+1. The 3-bit string records the type of ri+1 and the type
of edge shared by ri and ri+1, so ri+1 can be uniquely added to Si. Thus, the
decoding procedure can reconstruct the original mosaic floorplan Sn = M .

Binary Representation of Mosaic Floorplans and Baxter Permutations 11

1
2

3

4

5

000

1
2

3

4

5 6

7 111

1
2

3

4

101

1
2

3

4

5 6

110

1 1
2

3
011

1
2

000

add block 2 of type (0,0)
to the right of block 1

add block 3 of type (0,1)
above block 2

above block 6
add block 7 of type (1,1)add block 6 of type (1,1)

to the right of block 5
add block 5 of type (0,0)
to the right of block 4

add block 4 of type (1,0)
above block 3

Fig. 7. The decoding of the binary representation (000 011 101 000 110 111)

The lower left block of the mosaic floorplan M (which is the only block of S1)
does not need any information to be recorded. Each of the other blocks of M
needs three bits. Thus, the length of the representation of M is (3n− 3) bits.

3 Conclusion

In this paper, a binary representation of n-block mosaic floorplans using
(3n− 3) bits was introduced. Since any representation of n-block mosaic floor-
plans requires at least (3n−o(n)) bits [14], this representation is optimal up to an
additive lower term. This representation is very simple and easy to implement.

Mosaic floorplans have a bijection with Baxter permutations, so the optimal
representation of mosaic floorplans leads to an optimal (3n−3) bit representation
of Baxter permutations and all objects in the Baxter combinatorial family.

References

1. Ackerman, E., Barequet, G., Pinter, R.Y.: A bijection between permutations and
floorplans, and its applications. Discrete Applied Mathematics 154, 1674–1684
(2006)

2. Amano, K., Nakano, S., Yamanaka, K.: On the number of rectangular drawings:
Exact counting and lower and upper bounds. IPSJ SIG Notes 2007-AL-115-5C,
33–40 (2007)

3. Baxter, G.: On fixed points of the composite of commuting functions. Proceedings
American Mathematics Society 15, 851–855 (1964)

4. Bonichon, N., Bousquet-Mélou, M., Fusy, É.: Baxter permutations and plane bipo-
lar orientations. Séminaire Lotharingien de Combinatoire 61A (2010)

12 B. He

5. Canary, H.: Aztec diamonds and baxter permutations. The Electronic Journal of
Combinatorics 17 (2010)

6. Dulucq, S., Guibert, O.: Baxter permutations. Discrete Mathematics 180, 143–156
(1998)

7. Fujimaki, R., Inoue, Y., Takahashi, T.: An asymptotic estimate of the numbers
of rectangular drawings or floorplans. In: Proceedings 2009 IEEE International
Symposium on Circuits and Systems, pp. 856–859 (2009)

8. Giraudo, S.: Algebraic and combinatorial structures on baxter permutations. Dis-
crete Mathematics and Theoretical Computer Science, DMTCS (2011)

9. Hong, X., Huang, G., Cai, Y., Gu, J., Dong, S., Cheng, C.-K., Gu, J.: Corner-
block list: An effective and efficient topological representation of non-slicing floor-
plan. In: Proceedings of the International Conference on Computer Aided Design
(ICCAD 2000), pp. 8–12 (2000)

10. Lengauer, T.: Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
& Sons (1990)

11. Murata, H., Fujiyoshi, K.: Rectangle-packing-based module placement. In:
Proceedings of the International Conference on Computer Aided Design
(ICCAD 1995), pp. 472–479 (1995)

12. Nakano, S.: Enumerating Floorplans with n Rooms. In: Eades, P., Takaoka, T.
(eds.) ISAAC 2001. LNCS, vol. 2223, pp. 107–115. Springer, Heidelberg (2001)

13. Sakanushi, K., Kajitani, Y., Mehta, D.P.: The quarter-state-sequence floorplan rep-
resentation. IEEE Transactions on Circuits and Systems - I: Fundamental Theory
and Applications 50(3), 376–386 (2003)

14. Shen, Z.C., Chu, C.C.N.: Bounds on the number of slicing, mosaic, and general
floorplans. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 22(10), 1354–1361 (2003)

15. Speckmann, B., van Kreveld, M., Florisson, S.: A linear programming approach to
rectangular cartograms. In: Proceedings 12th International Symposium on Spatial
Data Handling (SDH), pp. 527–546 (2006)

16. Takahashi, T., Fujimaki, R., Inoue, Y.: A (4n − 4)-Bit Representation of a Rectan-
gular Drawing or Floorplan. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609,
pp. 47–55. Springer, Heidelberg (2009)

17. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Computational
Geometry: Theory and Applications 37(3), 175–187 (2007)

18. Yamanaka, K., Nakano, S.: Coding floorplans with fewer bits. IEICE Transactions
Fundamentals E89(5), 1181–1185 (2006)

19. Yamanaka, K., Nakano, S.: A Compact Encoding of Rectangular Drawings with
Efficient Query Supports. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS,
vol. 4508, pp. 68–81. Springer, Heidelberg (2007)

20. Yao, B., Chen, H., Cheng, C.-K., Graham, R.: Floorplan representation: Com-
plexity and connections. ACM Transactions on Design Automation of Electronic
Systems 8(1), 55–80 (2003)

21. Young, E.F.Y., Chu, C.C.N., Shen, Z.C.: Twin binary sequences: A nonredundant
representation for general nonslicing floorplan. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22(4), 457–469 (2003)

Succinct Strictly Convex Greedy Drawing

of 3-Connected Plane Graphs

Jiun-Jie Wang and Xin He�

Department of Computer Science and Engineering,
University at Buffalo, Buffalo, NY, 14260, USA

{jiunjiew,xinhe}@buffalo.edu

Abstract. Geometric routing by using virtual locations is an elegant
way for solving network routing problems. Greedy routing, where a mes-
sage is simply forwarded to a neighbor that is closer to the destination, is
a simple form of geometric routing. Papadimitriou and Ratajczak conjec-
tured that every 3-connected plane graph has a greedy drawing in the R2

plane [10]. Leighton and Moitra settled this conjecture positively in [9].
However, their drawings have two major drawbacks: (1) their drawings
are not necessarily planar; and (2) Ω(n log n) bits are needed to rep-
resent the coordinates of their drawings, which is too large for routing
algorithms for wireless networks. Recently, He and Zhang [8] showed that
every triangulated plane graph has a succinct (using O(log n) bit coordi-
nates) greedy drawing in R2 plane with respect to a metric function de-
rived from Schnyder realizer. However, their method fails for 3-connected
plane graphs. In this paper, we show that every 3-connected plane graph
has drawing in the R2 plane, that is succinct, planar, strictly convex, and
is greedy with respect to a metric function based on parameters derived
from Schnyder wood.

1 Introduction

As communication technology progresses, traditional wired communication net-
works are rapidly replaced by wireless networks (such as sensor networks). The
nodes of such networks are equipped with very limited memory and computing
power. Thus the traditional network communication protocols are not suitable
for them. Geometric routing is an interesting class of routing algorithms for
wireless communication which uses the geographic location to determine rout-
ing paths. The simplest geometric routing is greedy routing: to send a message
from a source node s to a destination node t, s simply forwards the message to
a neighbor that is closer to t.

However, greedy routing has drawbacks: the nodes need to be equipped GPS
devises in order to determine their geographic location, which are too expen-
sive and power consuming. Even worse, a node s might be located in a void
position, (namely s has no neighbor that is closer to the destination). In this

� Research supported in part by NSF Grant CCR-0635104.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 13–25, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 J.-J. Wang and X. He

case, the greedy routing completely fails. As a solution, Papadimitriou et. al.
[10] introduced the concept of greedy drawing: Instead of using real geographic
coordinates, one could use graph drawing to compute the drawing coordinates
for the nodes of a network G. Then geometric routing algorithms rely on drawing
coordinates to determine the routing paths. Simply speaking, a greedy drawing
is a drawing of G for which the greedy routing works. More precisely:

Definition 1. [10] Let S be a set and H(∗, ∗) a metric function over S. Let
G = (V,E) be a graph.

1. A drawing of G into S is a 1-1 mapping d : V → S.
2. The drawing d is a greedy drawing with respect to H if for any two ver-

tices u,w of G (u �= w), u has a neighbor v such that H(d(u), d(w)) >
H(d(v), d(w)).

3. The drawing d is a weakly greedy drawing with respect to H if for any two
vertices u,w of G (u �= w), u has a neighbor v such that H(d(u), d(w)) ≥
H(d(v), d(w)).

The following conjecture was posed in [10]:

Greedy Embedding Conjecture: Every 3-connected plane graph has a greedy
drawing in the Euclidean plane R2.

Leighton and Moitra [9] recently settled this conjecture positively. A similar
result was obtained by Angelini et al. [3]. However, their drawing algorithms
have drawbacks. First, as pointed out in [7], their drawings are not necessarily
planar nor convex. Second, Ω(n log n) bits are needed to represent the drawing
coordinates produced by their algorithms. This is the same space usage as tra-
ditional routing table approaches, which is not practical for sensor networks. To
make this routing scheme work in practice, we need a succinct greedy drawing:
Namely, the drawing coordinates can be represented by using O(log n) bits.

Two recent papers made some progresses toward this goal. Goodrich et al.
[7] used a set of virtual coordinates from the structure of Christmas cactus [9]
to represent the vertex positions. However, their succinct representation of each
vertex is totally different from the real underlying geometric embedding. Hence
it is not a true greedy drawing. He and Zhang [8] showed that the classical
Schnyder drawing of triangulated plane graphs is a succinct greedy drawing in
R2 with respect to a simple and natural metric functionH . They showed that the
Schnyder drawing for 3-connected plane graphs is succinct, planar and convex,
and weakly greedy with respect to the same function H . With a greedy drawing,
the greedy routing algorithm is very simple: the source node s just sends the
message to a neighbor that is strictly closer to the destination t. With a weakly
greedy drawing, the routing algorithm is more complicated. Since s might only
have a neighbor u whose distance to t is the same, s might have to send the
message to u. Hence the message might be sent back and forth among nodes
with equal distances to t, but never reaches t.

Papadimitriou and Ratajczak also posed another related conjecture [10]:

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs 15

Convex Greedy Embedding Conjecture: Every 3-connected plane graph
has a convex greedy embedding in the Euclidean plane.

Cao et al. [5] recently showed that there exists a 3-connected plane graph G
such that any convex greedy drawing of G in the R2 Euclidean plane must use
Ω(n)-bit coordinates. Thus it is impossible to find a succinct, convex, greedy
drawing on R2 Euclidean plane for 3-connected plane graphs. In other words,
in order to find a drawing in R2 plane that is succinct, greedy, and convex, one
must give up Euclidean distance. In this paper, we describe a drawing for 3-
connected plane graphs in R2 plane that is succinct, strictly convex, and greedy
with respect to a metric function based on Schnyder woods.

The classical Schnyder drawing of 3-connected plane graphs [11] is based on
three Schnyder coordinates, which are obtained by counting the number of faces
in the three regions divided by a Schnyder wood. It was shown in [8] that this
drawing is only weakly greedy with respect to the metric function H . Our new
drawing algorithm is also based on Schnyder woods. However, in addition to the
three Schnyder coordinates, our algorithm also uses other information obtained
from Schnyder woods, which we call Schnyder parameters. (There are totally
9 parameters, including three Schnyder coordinates). Schnyder parameters are
used to calculate the drawing coordinates and to define the metric function.

The present paper is organized as follows. In section 2, we give the definition
and basic properties of Schnyder woods. In section 3, we describe the metric
function H(u, v) used in our greedy drawing. We also show how to transform
the Schnyder parameters into a set of equations which can be used to determine
the relative locations of the vertices. In section 4, we show our drawing has the
greedy property with respect to the the metric function H(u, v). In section 5,
we describe how to obtain drawing coordinates from Schnyder parameters and
show that the drawing is planar and strictly convex.

2 Preliminaries

Definition 2. [1,6] Let G be a 3-connected plane graph with three external
vertices v1, v2, v3 in counterclockwise (ccw) order. A Schnyder wood of G is a
triple of rooted spanning trees {T1, T2, T3} of G with the following properties:

– For i ∈ {1, 2, 3}, the root of Ti is vi, the edges of G are directed from children
to parent in Ti.

– Each edge e of G is contained in at least one and at most two trees. If e is
contained in two spanning trees, then it has different directions in the two
trees.

– For each vertex v /∈ {v1, v2, v3} of G, v has exactly one edge leaving v in
each of T1, T2, T3. The ccw order of the edges incident to v is: leaving in T1,
entering in T3, leaving in T2, entering in T1, leaving in T3, and entering in
T2. Each entering block may be empty. An edge with two opposite direc-
tions is considered twice. The first and the last incoming edges are possibly
coincident with the outgoing edges.

16 J.-J. Wang and X. He

Fig 1 (1) and (2) show two examples of edge pattern around a vertex v. (In the
second example, the edge leaving v in T3 and an edge entering v in T2 are the
same edge). Fig 1 (3) shows an example of Schnyder wood. The edges in T1, T2, T3

are drawn as red solid, blue dashed, and green dotted lines respectively. Each
edge of G belongs to 1 or 2 trees, and is said to be unidirectional or bidirectional,
respectively.

Let {T1, T2, T3} be a Schnyder wood of G. We assume a cyclic structure on
the set {1, 2, 3} so that i− 1 and i+ 1 are always defined. Namely if i = 3 then
i+1 = 1 and if i = 1 then i−1 = 3. For each vertex u and i ∈ {1, 2, 3}, let Pi(u)
denote the path in Ti from u to the root vi of Ti. If u is the parent of w in Ti,
then w is an i-child of u. If u is an ancestor of w in Ti, then u is an i-ancestor of
w, and w is an i-descendant of u. Ri(u) denotes the region of G bounded by the
paths Pi−1(u), Pi+1(u) and the exterior path between the vertex vi−1 and vi+1,
excluding the vertices on the path Pi−1(u). xi(u) denotes the number of faces
of G in Ri(u). ni(u) denotes the ccw pre-order number of the node u in Ti, and
si(u) denotes the number of descendants of u in Ti.

We call xi(u), ni(u), si(u) (i = 1, 2, 3) the Schnyder parameters of u. They will
be used to define the drawing coordinates and the distance between vertices.

We further partition the vertices in the region Ri(u) into four subsets:

1. The i-Descendant : Di(u) = {v | v is an i-descendent of u}.
2. The i-Boundary: Bi(u) = {v | v is a vertex ∈ Pi+1(u)}.
3. The i-Left-Cousin: LCi(u) = {v | v is an i-descendent of w ∈ Pi+1(u) where

w �= u}.
4. The i-Right-Cousin: RCi(u) = {v | v is an i-descendent of w ∈ Pi−1(u)

where w �= u}.

In Fig 1 (3), we have: P2(b) = {b, a, v2}, P3(b) = {b, e, v3},R1(b) = {v2, a, d, g, h}.
B1(b) = {v2, a}, D1(b) = {d, g}, LC1(b) = {h} and RC1(b) = ∅.

vv

1v

v2 v3

c

a
b

g

e f

d

h

T

T

T

T

T
T

1

1 3

3

2

2

(3)

T

T

1

T

T T

T
1

3

3

2

2

(1) (2)

Fig. 1. (1) and (2) Two examples of edge pattern around an internal vertex v; (3) A
3-connected graph G with its Schnyder wood

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs 17

3 Metric Function H(u, v)

The metric function H used for greedy drawing is a hierarchical function with
two components H1(u, v) and H2(u, v). Let Q = 2n−4 (which is strictly greater
than the number of internal faces in G). For two vertices u and v, define:

H1(u, v) = |x1(u)−x1(v)|+|x2(u)−x2(v)|+|x3(u)−x3(v)| (1)

H2(u, v) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if u = v
Q+min{|xi(u)− xi(v)|, |xi−1(u)− xi−1(v)|} if v ∈ Bi(u)
Q+min{|xi(u)− xi(v)|, |xi+1(u)− xi+1(v)|} if v ∈ LCi(u)
Q+min{|xi−1(u)− xi−1(v)|, |xi+1(u)− xi+1(v)|} if v ∈ Di(u)
Q+min{|xi(u)− xi(v)|, |xi−1(u)− xi−1(v)|} if v ∈ RCi(u)

(2)
We pack the two components of H(u, v) into a single integer as follows:

H(u, v) = H1(u, v)× 2Q+H2(u, v) (3)

Note that min{|xj(u) − xj(v)|, |xk(u) − xk(v)|} < Q (1 ≤ j, k ≤ 3). Hence
H2(u, v) < 2Q. So, for any four vertices u, v, w, z, H(u, v) < H(w, z) if and only
if H1(u, v) < H1(w, z); or H1(u, v) = H1(w, z) and H2(u, v) < H2(w, z).

Lemma 1. Let u and v be any two vertices of G. Then: (1) v ∈ Di(u) if and
only if u ∈ Bi−1(v). (2) v ∈ LCi(u) if and only if u ∈ RCi+1(v).

Proof. We prove the lemma for i = 1. The other cases are symmetric.
(1) From Fig 2 (1), it is easy to see that v ∈ D1(u) if and only if u ∈ B3(v).
(2) From Fig 2 (2), it is easy to see that v ∈ LC1(u) if and only if u ∈ RC2(v).

�

Theorem 1. H(u, v) is a metric function.

Proof. Since H1(u, v) is the Manhattan distance in R3, it is a metric function.
In the following we show H2(u, v) is also a metric function. Since H(u, v) is a

R2

v3v2

R3

R2

v3v2

R3

R1

v
1 v

1

u u

v

R1

(1) (2)

v

Fig. 2. The proof of Lemma 1

18 J.-J. Wang and X. He

linear combination of H1(u, v) and H2(u, v), this implies that H(u, v) is a metric
function.

First, by the definition of H2(u, v), we have H2(u, v) ≥ 0, and H2(u, v) = 0
if and only if u = v. Next, we show H2(u, v) = H2(v, u) for all u, v. Assume
v ∈ R1(u). Other cases are symmetric.

Case 1: v ∈ D1(u). ThenH2(u, v) = Q+min{|x3(u)−x3(v)|, |x2(u)−x2(v)|}. By
Lemma 1, u ∈ B3(v). Thus H2(v, u) = Q+min{|x3(v)−x3(u)|, |x2(v)−x2(u)|}.
Hence H2(u, v) = H2(v, u).

Case 2: v ∈ B1(u). ThenH2(u, v) = Q+min{|x1(u)−x1(v)|, |x3(u)−x3(v)|}. By
Lemma 1, u ∈ D2(v). Thus H2(v, u) = Q+min{|x1(v)−x1(u)|, |x3(v)−x3(u)|}.
Hence H2(u, v) = H2(v, u).

Case 3: v ∈ LC1(u). Then H2(u, v) = Q+min{|x1(u)−x1(v)|, |x2(u)−x2(v)|}.
By Lemma 1, u ∈ RC2(v). Thus: H2(v, u) = Q+min{|x2(v) − x2(u)|, |x1(v) −
x1(u)|}. Hence H2(u, v) = H2(v, u).

Case 4: v ∈ RC1(u). Then H2(u, v) = Q+min{|x1(u)−x1(v)|, |x3(u)−x3(v)|}.
By Lemma 1, u ∈ LC3(v). Thus: H2(v, u) = Q+min{|x3(v) − x3(u)|, |x1(v) −
x1(u)|}. Hence H2(u, v) = H2(v, u).

Next we show that the triangle inequality holds for H2. For any u, v, w:

H2(u, v) +H2(v, w)

= Q+min{|xi(u)− xi(v)|, |xi+1(u)− xi+1(v)|}
+Q+min{|xi(v) − xi(w)|, |xi+1(v)− xi+1(w)|}

≥ 2Q > Q+min{|xi(u)− xi(w)|, |xi+1(u)− xi+1(w)|} = H2(u,w)

This completes the proof of the Theorem. �

For two vertices u and v, in order to calculate the distance H(u, v), we need to
know the relative locations between u and v. More specifically: First, we need
to know if v is in R1(u), R2(u) or R3(u). Second, we need to know if v is an i-
Descendant, i-Boundary, i-Left-Cousin or i-Right-Cousin of u. In the following,
we describe how to determine these information by using Schnyder parameters
of u and v (namely, xi(u), xi(v), ni(u), ni(v), si(u), si(v)).

We use an index function to represent the relative locations of u and v. It has
two components. The first one is used to decide which of regions R1(u), R2(u),
R3(u) contains v. The second one is used to determine if v is in Di(u), LCi(u),
RCi(u), or Bi(u).

Define a function I(x) as follows: I(x) = 1 if x ≥ 0 and I(x) = 0 if x < 0.

Observation 1. Let u, v be any two vertices of G.

1. v ∈ R1(u) if and only if n3(v) > n3(u) and n2(u) > n2(v).
2. v ∈ R2(u) if and only if n1(v) > n1(u) and n3(u) > n3(v).
3. v ∈ R3(u) if and only if n2(v) > n2(u) and n1(u) > n1(v).

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs 19

For simplicity, we define the following items:

– R1(u, v) = I(n3(v)− n3(u))× I(n2(u)− n2(v)).
– R2(u, v) = I(n1(v)− n1(u))× I(n3(u)− n3(v)).
– R3(u, v) = I(n2(v)− n2(u))× I(n1(u)− n1(v)).

Lemma 2. For any two vertices u, v of G, v ∈ Ri(u) if and only if Ri(u, v) = 1.

Proof. Immediate from Observation 1. �

Observation 2. Let u, v be any two vertices of G. The necessary and sufficient
conditions that v ∈ Di(u), v ∈ Bi(u), v ∈ LCi(u), or v ∈ RCi(u) are given in
Table 1. (The first two rows in the table are the conditions for v ∈ Ri(u)).

Table 1. Necessary and sufficient conditions for deciding relative locations of u and v

v ∈ Bi(u) v ∈ LCi(u) v ∈ Di(u) v ∈ RCi(u)

ni+1(u) > ni+1(v) ni+1(u) > ni+1(v) ni+1(u) > ni+1(v) ni+1(u) > ni+1(v)
ni−1(v) > ni−1(u) ni−1(v) > ni−1(u) ni−1(v) > ni−1(u) ni−1(v) > ni−1(u)

ni(u) > ni(v) ni(u) > ni(v) ni(u) < ni(v) ni(u) + si(u) < ni(v)
ni+1(v) + si+1(v)

≥ ni+1(u)
ni+1(u) > ni+1(v)

+si+1(v)
ni(v) ≤ ni(u) + si(u)

Note: In Lemma 1 (1), it is stated that v ∈ Di(u) if and only if u ∈ Bi−1(v). For
i = 1, it states that v ∈ D1(u) if and only if u ∈ B3(v). From Table 1, v ∈ D1(u)
if and only if the following conditions hold: (i) n2(u) > n2(v); (ii) n3(v) > n3(u);
(iii) n1(u) < n1(v) and (iv) n1(u) + s1(u) ≥ n1(v).

On the other hand, from Table 1, u ∈ B3(v) if and only if: (i’) n1(v) > n1(u);
(ii’) n2(u) > n2(v), (iii’) n3(u) < n3(v) and (iv’) n1(u) + s1(u) ≥ n1(v). So
the conditions for v ∈ D1(u) and the conditions for u ∈ B3(v) are identical.
Similarly, from Table 1, the conditions for v ∈ LCi(u) and the conditions for
u ∈ RCi+1(v) are also identical.

For simplicity, we define the following terms (i = 1, 2, 3):

– Bi(u, v) = I((ni(u)− ni(v))× (ni+1(v) + si+1(v)− ni+1(u))).
– LCi(u, v) = I((ni(u)− ni(v)) × (ni+1(u)− (ni+1(v) + si+1(v))).
– Di(u, v) = I((ni(v)− ni(u))× (ni(u) + si(u)− ni(v))).
– RCi(u, v) = I(ni(v)− (ni(u) + si(u))).

Lemma 3. Let u and v be two vertices of G where v ∈ Ri(u) (i = 1, 2, 3):

1. v ∈ Bi(u) if and only if Bi(u, v) = 1.
2. v ∈ LCi(u) if and only if LCi(u, v) = 1.
3. v ∈ Di(u) if and only if Di(u, v) = 1.
4. v ∈ RCi(u) if and only if RCi(u, v) = 1.

Proof. Immediate from Observation 2. �

20 J.-J. Wang and X. He

v2
v3

C1 C2

C
3

C
4

v2
v3

2P (u)
C

3
C

4

C2

v2
v3

C1

C
4C5

v2
v3

C1

C
4

C2C
3

C2

R (u)
1

v2

C1

C
4

C2

C5

C
3

v1
v1 v1

v3

(2)(1)

u

R (u)

R (u)

R (u)

v

w

b
d

a

c

u

R (u)

R (u)

R (u)

w

b
dc

v

1 1

3 3
2 2

u
R (u)

v1

c

bv
d

3R (u) 2

f

e

u

R (u)

R (u)

v1

c

bv
d

e

R (u)

1
w

(4)

3
2

w

(5)

(3)

u

R (u)

R (u)

c

bv
d

3

1
w

R (u) 2

a

f

e

Fig. 3. The proof of Theorem 2

Let HiB
2 (u, v) denote the function H2(u, v) for v ∈ Bi(u), H

iLC
2 (u, v) denote the

function H2(u, v) for v ∈ LCi(u), H
iD
2 (u, v) denote the function H2(u, v) for

v ∈ Di(u) and HiRC
2 (u, v) denote the function H2(u, v) for v ∈ RCi(u). From

above lemmas, the explicit definition of the distance function H(u, v) defined in
equation (3) can be written as:

H(u, v) = 2Q×H1(u, v) +
1

2

3∑
i=1

Ri(u, v)×
∑

α∈{B,LC,D,RC}
αi(u, v)×Hiα

2 (u, v)

4 Greedy Drawing Property

In this section, we show that the drawing defined by Schnyder parameters has
greedy drawing property with respect to the function H(u, v).

Theorem 2. For any two vertices u,w, u has a neighbor v such that H(u,w) >
H(v, w).

Proof. Without loss of generality, we assume w ∈ R1(u). Other cases are sym-
metric. Due to space limitation, we only prove the Case 2a (the most complicated
case). The complete proof will be given in the full paper.

Case 2: w ∈ LC1(u). Let v be the neighbor of u on P2(u).

Case 2a: w ∈ LC1(v) (see Fig 3 (3)).

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs 21

Let a ∈ P2(u) be the first common vertex of P2(u) and P1(w), b ∈ P3(u) be the
first common vertex of P3(u) and P3(v), c ∈ P2(u) be the first common vertex
of P2(u) and P2(w), d ∈ P3(u) be the first common vertex of P3(u) and P3(w),
e ∈ P1(u) be the first common vertex of P1(u) and P1(v) and f ∈ P1(u) be the
first common vertex of P1(u) and P1(w). Let C1, C2, C3, C4, C5 be the regions
bounded by the paths Pi(u), Pi(v) and Pi(w) as shown in Fig 3 (3). (Some of
these regions might be empty.) Then:

H1(u,w) = (#(C1) + #(C2) + #(C3)) + (#(C1) + #(C2) + #(C4) + #(C5))

+ |#(C3)− (#(C4) + #(C5))|
H1(v, w) = (#(C2) + #(C3)) + (#(C2) + #(C5)) + |#(C3)−#(C5)|

Case 2a1: #(C5) > #(C3). In this case, we have:

H1(u,w) = (#(C1) + #(C2) + #(C3)) + (#(C1) + #(C2) + #(C4) + #(C5))

+ (#(C4) + #(C5))−#(C3))

H1(v, w) = (#(C2) + #(C3)) + (#(C2) + #(C5)) + (#(C5)−#(C3))

Clearly H1(u,w) > H1(v, w) is equivalent to 2(#(C1) + #(C4)) > 0. Although
either C1 or C4 can be empty, they cannot be both empty. (Otherwise the edge
(u, v) will have to be in all three trees.) So 2(#(C1)+#(C4)) > 0 andH1(u,w) >
H1(v, w). This implies H(u,w) > H(v, w).

Case 2a2: #(C5) ≤ #(C3) and #(C4)+#(C5) > #(C3). In this case, we have:

H1(u,w) = (#(C1) + #(C2) + #(C3)) + (#(C1) + #(C2) + #(C4) + #(C5))

+ (#(C4) + #(C5))−#(C3))

H1(v, w) = (#(C2) + #(C3)) + (#(C2) + #(C5)) + (#(C3)−#(C5))|

Clearly H1(u,w) > H1(v, w) is equivalent to 2(#(C1) + #(C4) + #(C5)) >
2#(C3). This is true because we assumed #(C4) +#(C5) > #(C3) in this case.
So H1(u,w) > H1(v, w). This implies H(u,w) > H(v, w).

Case 2a3: #(C4) + #(C5) ≤ #(C3). In this case we have:
H1(u,w) = 2× (#(C1) +#(C2) +#(C3)) H1(v, w) = 2× (#(C2) +#(C3))
If #(C1) > 0, then H1(u,w) > H1(v, w) and hence H(u,w) > H(v, w).
If #(C1) = 0, then H1(u,w) = H1(v, w). We must consider H2(u,w) and

H2(v, w):

H2(u,w) = Q+min{|x1(u)− x1(w)|, |x2(u)− x2(w)|}
= Q+min{[#(C1) + #(C2) + #(C3)],

[#(C1) + #(C2) + #(C4) + #(C5)]}
= Q+ [#(C2) + #(C4) + #(C5)]

The last equality is because we assumed #(C4)+#(C5) ≤ #(C3) and #(C1) = 0.

22 J.-J. Wang and X. He

H2(v, w) = Q+min{|x1(v)− x1(w)|, |x2(v) − x2(w)|}
= Q+min{[#(C2) + #(C3)], [#(C2) + #(C5)]}
= Q+ [#(C2) + #(C5)]

The last equality is because #(C5) ≤ #(C4)+#(C5) ≤ #(C3). Since #(C1) = 0,
C4 cannot be empty and #(C4) > 0. Thus H2(u,w) > H2(v, w). This implies
H(u,w) > H(v, w).

5 Strictly Convex Embedding

In this section, we describe a drawing of a 3-connected plane graph G by using
Schnyder parameters. Our algorithm is based on an elegant algorithm in [4],
which constructs a strictly convex drawing of G by using Schnyder coordinates.
This algorithm has three steps:

Step 1: Draw each vertex u of G at the coordinates (x1(u), x2(u)). Recall that
xi(u) is the number of internal faces in the region Ri(u).

Step 2: Enlarge the drawing by a factor of nh (where h is a constant integer).
Namely, draw each vertex u at the new coordinates (x1(u)×nh, x2(u)×nh).

Step 3: Perform a fine perturbation for each vertex u ∈ G: Each vertex u is
moved fx(u) units along x-direction and fy(u) units along y-direction where
fx(u) and fy(u) are two integers such that |fx(u)| < nh and |fy(u)| < nh.
So the final coordinates of u is:

(x1(u)× nh + fx(u), x2(u)× nh + fy(u)) (4)

It is well known that the drawing obtained in Step 1 is a convex drawing of G, but
might not be strictly convex. In Step 2, this convex drawing is enlarged by a large
factor nh. During Step 3, each vertex u is moved to a new location by a small
distance, this results in a strictly convex drawing [4]. Let Fx = max{fx(u)|∀u ∈
G} and Fy = max{fy(u)|∀u ∈ G}. Let F = max{2n−5, Fx, Fy}+1. If we replace
the term nh in Equation (4) by Fh, the arguments in [4] still work. Thus we
have:

Claim. The mapping d : u → (X(u), Y (u)) where:

X(u) = x1(u)× Fh + fx(u) Y (u) = x2(u)× Fh + fy(u) (5)

defines a strictly convex drawing of G on R2 plane.

Next we prove some properties of the drawing produced by the above
algorithm.

Lemma 4. Consider the drawing of G defined by d : u → (X(u), (Y (u)). Let
F be a face of G. Let v, u, w be three consecutive vertices on F . Let L be the
line segment connecting v and w. Then the distance between u and L is at least

1√
2F2(h+1)

.

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs 23

u

v

L

x

y

c

z

w

Fig. 4. The proof of Lemma 4

Proof. Let sL be the slope of the line L. Then sL = a
b for some integers a, b such

that 0 ≤ |a|, |b| ≤ Fh+1 (see Fig 4). Let x (respectively, y) denote the intersection
point of L with the horizontal (respectively, vertical) line that passes u.

The distance between u and y is: Dy = Y (v) + [X(u)−X(v)]× sL − Y (u) =

Y (v)+ [X(u)−X(v)]×a
b −Y (u). Since u is not on L,Dy is a non-zero integer. Because

0 ≤ |a|, |b| ≤ Fh+1, we have Dy ≥ 1
Fh+1 . Similarly, the distance between u and

x is Dx ≥ 1
Fh+1 .

Let c be the intersection point of L with the line perpendicular to L that
passes u. Clearly c is between x and y. Denote the angle � yxu by z. Without
loss of generality, we assume z ≤ π/4. (Otherwise switch the roles of x and
y.) Since the slope of L is ≥ 1

Fh+1 , tan z ≥ 1
Fh+1 . Since we assumed z ≤ π/4,

cos z ≥ 1/
√
2. This implies sin z ≥ tan z√

2
≥ 1√

2Fh+1
. Thus, the distance between

u and c is: Dx × sin z ≥ 1√
2F2(h+1)

). �

In the following, we describe how to encode other Schnyder parameters (ni(u)
and si(u)) of a vertex u into drawing coordinates (X(u), Y (u)), while still main-
taining the strictly convex property of the drawing. First, we enlarge the draw-
ing defined by the coordinates (X(u), Y (u)) by a factor 4 × F2(h+1)+3. Then
we perform fine perturbation to the enlarged drawing by using other Schnyder
parameters. By extending the ideas in [4], we are able to show the resulting
drawing is still strictly convex. More precisely, we define:

X(u) = X(u)× 4F2(h+1)+3 + n1(u)× F2 + s1(u)× F + n3(u) = 4× x1(u)×
F2(h+1)+h+3 + 4× fx(u)× F2(h+1)+3 + n1(u)× F2 + s1(u)× F + n3(u).

Y (u) = Y (u)× 4F2(h+1)+3 + n2(u)× F2 + s2(u)× F + s3(u) = 4× x2(u)×
F2(h+1)+h+3 + 4× fy(u)× F2(h+1)+3 + n2(u)× F2 + s2(u)× F + s3(u).

It’s straightforward to recover the Schnyder parameters from (X(u), Y (u)).

Theorem 3. 1. The drawing defined by d : u → (X(u), Y (u)) is strictly
convex.

2. For each vertex u, the number of bits needed to represent (X(u), Y (u)) is
O(log n).

24 J.-J. Wang and X. He

u

v L’

L
u’

w

Fig. 5. The proof of Theorem 3

Proof. (1) Let F be any face of G. Let v, u, w be three consecutive vertices on
F . Consider the angle � vuw. It is enough to show � vuw < π in the drawing.

Let L be the line connecting v and w. By Lemma 4, in the drawing defined
by d : u → (X(u), Y (u)), the distance between u and L is at least δ ≥ 1√

2F2(h+1)
.

After we enlarge the drawing d by a factor of 4×F2(h+1)+3, the distance between
u and L is at least Δ ≥ 2

√
2× F3.

In the drawing defined by d : u → (X(u), Y (u)), the vertices are moved by a
distance strictly less than

√
2F3. The line L is moved to a new location L′. The

vertex u is moved to a new location u′ (see Fig 5). In the worst case, L and u are
moved toward each other in the direction perpendicular to L. Since the vertices
are moved by a distance less than

√
2F3, u′ is still located at the same side of

L′ as before the movement. Thus � vuw < π as to be shown.
(2) By the definition, X(u) ≤ Fh+1. Thus X(u) ≤ 4 × F3(h+1)+4. Simi-

larly Y (u) ≤ 4 × F3(h+1)+4. Since F is an integer that is polynomial in n,
X(u) = O(np) and Y (u) = O(np) (for some constant p). So we need only
O(log n) bits to represent (X(u), Y (u)). �

References

1. Bonichon, N., Felsner, S., Mosbah, M.: Convex drawings of 3-connected planar
graph. Algorithmica 47, 399–420 (2007)

2. Angelini, P., Di Battista, G., Frati, F.: Succinct Greedy Drawings Do Not Al-
ways Exist. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849,
pp. 171–182. Springer, Heidelberg (2010)

3. Angelini, P., Frati, F., Grilli, L.: An algorithm to construct greedy drawing of
triangulations. Journal of Graph Algorithms and Applications 14(1), 19–51 (2010)

4. Rote, G.: Strictly Convex Drawings of Planar Graphs. In: Proc. 16th Annual ACM-
SIAM Symp. on Discrete Algorithms, SODA 2005, pp. 728–734 (2005)

5. Cao, L., Strelzoff, A., Sun, J.Z.: On succinctness of geometric greedy routing in
Euclidean plane. In: Proc. ISPAN, pp. 326–331 (2009)

6. Felsner, S.: Convex Drawings of Planar Graphs and the Order Dimension of
3-Polytopes. Order 18, 19–37 (2001)

Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs 25

7. Goodrich, M.T., Strash, D.: Succinct Greedy Geometric Routing in the Euclidean
Plane. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878,
pp. 781–791. Springer, Heidelberg (2009)

8. He, X., Zhang, H.: Succinct Convex Greedy Drawing of 3-Connected Plane Graphs.
In: SODA 2011 (2011)

9. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces.
Discrete Comput. Geom. 44(3), 686–705 (2010)

10. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing.
Theoretical Computer Science 334(1), 3–14 (2005)

11. Schnyder, W.: Planar graphs and poset dimension. Order 5, 323–343 (1989)
12. Schnyder, W.: Embedding planar graphs on the grid. In: in Proc. 1st ACM-SIAM

Symp. Discrete Algorithms, pp. 138–148 (1990)

Weighted Inverse Minimum Cut Problem under

the Sum-Type Hamming Distance�

Longcheng Liu1,��, Yong Chen2, Biao Wu3, and Enyu Yao3

1 School of Mathematical Sciences, Xiamen University, Xiamen 361005, P.R. China
longchengliu@xmu.edu.cn

2 Institute of Operational Research & Cybernetics, Hangzhou Dianzi University,
Hangzhou 310018, P.R. China

3 Department of Mathematics, Zhejiang University, Hangzhou 310027, P.R. China

Abstract. An inverse optimization problem is defined as follows: Let
S denote the set of feasible solutions of an optimization problem P ,
let c be a specified cost (capacity) vector , and x0 ∈ S. We want to
perturb the cost (capacity) vector c to d such that x0 becomes an optimal
solution of P with respect to the cost (capacity) vector d, and to minimize
some objective functions. In this paper, we consider the weighted inverse
minimum cut problem under the sum-type Hamming distance. First, we
show the general case is NP-hard. Second we present a combinatorial
algorithm that run in strongly polynomial time to solve a special case.

Keywords: Minimum cut, Inverse problem, Hamming distance, Strongly
polynomial algorithm.

1 Introduction

Let N(V,A, c) be a connected and directed network, where V = {1, 2, . . . , n} is
the node set, A is the arc set (|A| = m) and c is the capacity vector for arcs.
Each component cij of c is called the capacity of arc (i, j). There are two special
nodes in V : the source node s and the sink node t. Let X and X = V \ X be
a partition of all vertices such that s ∈ X and t ∈ X. An s − t cut, denoted by
{X,X}, is the set of arcs with one endpoint in X and another endpoint in X .
We further use (X,X) to express the set of all forward arcs from a vertex in X
to a vertex in X and use (X,X) to express the set of all backward arcs from a
vertex in X to a vertex in X in an s− t cut. As we know the capacity of an s− t
cut {X,X}, denoted by c({X,X}), is the sum of the capacities of all forward
arcs:

c({X,X}) =
∑

(i,j)∈(X,X)

cij .

� This research is supported by the National Natural Science Foundation of China
(Grant No. 11001232), Fundamental Research Funds for the Central Universities
(Grant No. 2010121004) and Department of Education of Zhejiang Province of China
(Grant No. Y200909535).

�� Corresponding author.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 26–35, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Inverse Minimum Cut 27

The minimum-cut problem is to determine an s − t cut of minimum capacity.
It is a classical network optimization problem that has many applications. It
is well-known that minimum cut problem can be solved in strongly polynomial
time.

Conversely, an inverse minimum cut problem is to modify the arc capacity
vector as little as possible such that a given s− t cut can form a minimum cut.
Yang et al. [8] showed that the inverse minimum cut problem under l1 norm
is strongly polynomial time solvable, where the modification cost is measured
by l1 norm. Liu and Yao [5] showed that the weighted inverse minimum cut
problem under the bottleneck type Hamming distance is also strongly polynomial
time solvable, where the modification cost is measured by the bottleneck type
Hamming distance. In this paper, we consider the weighted inverse minimum
cut problem under the sum-type Hamming distance, in which we measure the
modification cost by the weighted sum-type Hamming distance.

Let each arc (i, j) have an associated capacity modification cost wij ≥ 0, and

let w denote the arc modification cost vector. Let {X0, X
0} be a given cut in the

network N(V,A, c). Then for the general weighted inverse minimum cut problem
under the sum-type Hamming distance, we look for an arc capacity vector d such
that

(a) {X0, X
0} is a minimum cut of the network N(V,A, d);

(b) for each (i, j) ∈ A, −lij ≤ dij − cij ≤ uij , where lij , uij ≥ 0 are respectively
given bounds for decreasing and increasing capacity cij ;

(c) the total modification cost for changing capacities of all arcs is minimized,
i.e.,

∑
(i,j)∈A

wijH(cij , dij) is minimized, where H(cij , dij) is the Hamming

distance between cij and dij , i.e., H(cij , dij) = 0 if cij = dij and 1 otherwise.

In general, in an inverse combinatorial optimization problem, a feasible solution
is given which is not optimal under the current parameter values, and it is re-
quired to modify some parameters with minimum modification cost such that the
given feasible solution becomes an optimal solution. A lot of such problems have
been well studied when the modification cost is measured by (weighted) l1, l2,
and l∞ norms. Readers may refer to the survey paper Heuberger [2] and papers
cited therein. Recently, inverse problems under the weighted Hamming distance
also received attention. In fact the weighted Hamming distance corresponds to
the situation in which we might care about only whether the parameter of an
arc is changed, but without considering the magnitude of its change as long as
the adjustment is restricted to a certain interval. Noting that not like the l1,
l2 and l∞ norms which are all convex and continuous about the modification,
the Hamming distance H(·, ·) is discontinuous and nonconvex, which makes the
known methods for l1, l2 and l∞ norms unable to be applied directly to the
problems under such distance measure.

Zhang et al. [10] considered the inverse center location improvement problem
under the weighted Hamming distance. For the bounded case, they showed that
even under the unweighted sum-type Hamming distance, achieving an algorithm

28 L. Liu et al.

with a worst-case ratio O(log n) is strongly NP -hard, but under the weighted
bottleneck-type Hamming distance, a strongly polynomial algorithm with a time
complexity O(n2 logn) is available. He et al. [1] discussed the inverse minimum
spanning tree problem under the weighted sum-type Hamming distance. For both
unbounded and bounded cases, they presented strongly polynomial algorithms
with a time complexity O(n3m). Zhang et al. [11] further discussed the inverse
minimum spanning tree problem under the weighted bottleneck-type Hamming
distance. For the unbounded case, they presented algorithms with a time com-
plexity O(nm), and for the constrained case, they presented an algorithm with
a time complexity O(n3m logm). Liu and He [3] discussed the inverse minimum
spanning tree problem and reverse shortest-path problem with discrete values.
They presented strongly polynomial algorithms for the inverse minimum span-
ning tree problems with discrete values and they showed the reverse shortest-
path problem with discrete values is strongly NP-complete. Liu and Zhang [7]
discussed the inverse maximum flow problems under the weighted Hamming dis-
tance, for both sum-type and bottleneck-type, they presented strongly polyno-
mial algorithms. Yang and Zhang [9] discussed inverse sorting problems under the
weighted sum-type Hamming distance. For both unbounded and bounded cases,
they presented strongly polynomial algorithms. Liu and Yao [6], Liu and Wang
[4] discussed the inverse min-max spanning tree problem under the weighted
Hamming distance. They presented strongly polynomial algorithms for all the
problems they discussed. The above n and m are the numbers of nodes and edges
(arcs), respectively, in a given undirected (directed) network.

The paper is organized as follows. Section 2 contains some preliminary results.
Section 3 shows that the general case of weighted inverse minimum cut problem
under the sum-type Hamming distance is NP-hard. Section 4 consider a polyno-
mial solvable case and a strongly polynomial algorithm is presented. Some final
remarks are made in Section 5.

2 Preliminary Results

The following result is well known.

Lemma 1. An s− t cut {X,X} of the network N(V,A, c) is a minimum cut if
and only if there exists a feasible flow f from node s to node t that ”saturates”
the cut {X,X}, i.e., there exists a feasible flow f such that

fij = cij , if (i, j) ∈ (X,X),

fji = 0, if (j, i) ∈ (X,X).

In such case the flow f must be a maximum flow of network N(V,A, c).

The general weighted inverse minimum cut problem under the sum-type Ham-
ming distance can be formulated as follows.

min
∑

(i,j)∈A

wijH(cij , dij)

s.t. Cut {X0, X
0} is a minimum cut of N(V,A, d);

−lij ≤ dij − cij ≤ uij , for each (i, j) ∈ A.

(1)

Inverse Minimum Cut 29

Lemma 2. If problem (1) has a feasible solution, then there exists an optimal
solution d∗ such that

(I) d∗ij ≤ cij for (i, j) ∈ (X0, X
0
).

(II) d∗ij = cij for (i, j) ∈ (X
0
, X0).

(III) d∗ij ≥ cij for other (i, j).

Proof. (a) We first prove the validity of (I). Let d∗ be an optimal solution of

problem (1). If (I) is not true, then we can find an arc (x, y) ∈ (X0, X
0
) with

d∗xy > cxy. Define d as

dij =

{
cij , if (i, j) = (x, y),
d∗ij , otherwise.

We say the cut {X0, X
0} is a minimum cut of the network N(V,A, d). In fact,

if there exists another s− t cut {X,X} such that

d({X,X}) < d({X0, X
0}),

then from the definition of d, we have the following two cases:
Case 1: If (x, y) ∈ (X,X), then we have

d∗({X,X})− d({X,X}) = d∗xy − cxy = d∗({X0, X
0})− d({X0, X

0}),

i.e.,

d∗({X0, X
0})− d∗({X,X}) = d({X0, X

0})− d({X,X}) > 0.

Case 2: If (x, y) /∈ (X,X), then we have

d∗({X,X}) = d({X,X}) < d({X0, X
0}) < d∗({X0, X

0}).

Both of the two cases above conflict the fact that the cut {X0, X
0} is a minimum

cut of the network N(V,A, d∗).
And from the definition of d, we have

−lij ≤ dij − cij ≤ uij , for each (i, j) ∈ A.

So d is a feasible solution of problem (1). However, we have∑
(i,j)∈A

wijH(cij , d
∗
ij)−

∑
(i,j)∈A

wijH(cij , dij) = wxy ≥ 0.

If wxy > 0, then d∗ cannot be an optimal solution of problem (1), a contradiction.
Otherwise, d is another optimal solution of problem (1), but it satisfies dxy = cxy.
Hence, by repeating the above argument, we can conclude that there exists an

optimal solution d∗ of problem (1) such that d∗ij ≤ cij for (i, j) ∈ (X0, X
0
).

(b) By a similar argument as in (a), we can get d∗ij ≥ cij for (i, j) ∈ A \
(X0, X

0
). Let f∗ be a maximum flow in network N(V,A, d∗). From Lemma 1

we know that
f∗
ij = d∗ij , if (i, j) ∈ (X0, X

0
),

30 L. Liu et al.

f∗
ji = 0, if (j, i) ∈ (X

0
, X0).

If there exists an arc (x, y) ∈ (X
0
, X0) such that d∗xy > cxy, then we define d as

follows:

dij =

{
cij , if (i, j) = (x, y),
d∗ij , otherwise.

It is easy to know that f∗ and {X0, X
0} are also a pair of maximum flow and

minimum cut in the network N(V,A, d). Combining with the fact that

−lij ≤ dij − cij ≤ uij , for each(i, j) ∈ A

we know d is a feasible solution of problem (1). And by a similar argument as

in the last part of (a) we can get d∗ij = cij for (i, j) ∈ (X
0
, X0).

Combining (a) and (b), the lemma holds.

Let the network N
′
(V,A

′
, c

′
) be obtained from N(V,A, c) by the following way:

A
′
= A \ (X0

, X0), c
′
ij = cij . Then we have the following lemmas:

Lemma 3. The cut {X0, X
0} is a minimum cut of N(V,A, d) if and only if

{X0, X
0} is a minimum cut of N

′
(V,A

′
, d

′
).

Proof. Suppose {X0, X
0} is a minimum cut of N(V,A, d), then from Lemma 1

we know there exists a maximum flow f of the network N(V,A, d) such that

fij = dij , if (i, j) ∈ (X0, X
0
),

fji = 0, if (j, i) ∈ (X
0
, X0).

And from the definition of network N
′
(V,A

′
, d

′
), the cut {X0, X

0} only has
the forward arcs in the network N

′
(V,A

′
, d

′
). Define a flow f

′
of the network

N
′
(V,A

′
, d

′
) by setting f

′
ij = fij for each arc (i, j) ∈ A

′
. It is clear that f

′
is a

feasible flow of the network N
′
(V,A

′
, d

′
) and it saturates the cut {X0, X

0}, i.e.,
{X0, X

0} is a minimum cut of the network N
′
(V,A

′
, d

′
).

Conversely, suppose {X0, X
0} is a minimum cut of the network N

′
(V,A

′
, d

′
),

then from Lemma 1 we know there exists a maximum flow f
′
of the network

N
′
(V,A

′
, d

′
) such that

f
′
ij = d

′
ij , if (i, j) ∈ (X0, X

0
).

Define a flow f of the network N(V,A, d) by setting fij = f
′
ij for each arc

(i, j) ∈ A \ (X0
, X0) and fij = 0 for each (i, j) ∈ (X

0
, X0). It is clear that f is

a feasible flow of the network N(V,A, d) and it saturates the cut {X0, X
0}, i.e.,

{X0, X
0} is a minimum cut of the network N(V,A, d).

Inverse Minimum Cut 31

Lemma 4. If the capacity vector d
′
is an optimal solution for the inverse min-

imum cut problem under the weighted sum-type Hamming distance for the net-
work N

′
(V,A

′
, c

′
), then the capacity vector d∗ is an optimal solution for the

inverse minimum cut problem under the weighted sum-type Hamming distance

for the network N(V,A, c), where d∗ij = d
′
ij for each arc (i, j) ∈ A \ (X

0
, X0)

and d∗ij = cij for each arc (i, j) ∈ (X
0
, X0).

Proof. Suppose that the arc capacity vector d
′
is an optimal solution for the

inverse minimum cut problem under the weighted sum-type Hamming distance
for the network N

′
(V,A

′
, c

′
). Define d∗ as follows:

d∗ij =

{
d

′
ij , if (i, j) ∈ A \ (X0

, X0),
cij , otherwise.

Since {X0, X
0} is a minimum cut of the network N

′
(V,A

′
, d

′
), from Lemma 3

we know {X0, X
0} is a minimum cut of the network N(V,A, d∗). And from the

definition of d∗, we have

−lij ≤ d∗ij − cij ≤ uij , for each (i, j) ∈ A,

and ∑
(i,j)∈A

wijH(cij , d
∗
ij) =

∑
(i,j)∈A′

wijH(cij , d
′
ij). (2)

So d∗ is a feasible solution for the inverse minimum cut problem for the network
N(V,A, c).

Now suppose d is an optimal solution for the inverse minimum cut problem
for the network N(V,A, c). It is obvious d′ obtained by setting d′

ij = dij for

each (i, j) ∈ A
′
is a feasible solution for the inverse minimum cut problem for

the network N
′
(V,A

′
, c

′
). Hence we have∑

(i,j)∈A′
wijH(cij , d

′
ij) ≤

∑
(i,j)∈A′

wijH(cij , d
′
ij) ≤

∑
(i,j)∈A

wijH(cij , dij). (3)

From the Equations (2) and (3), we have∑
(i,j)∈A

wijH(cij , d
∗
ij) ≤

∑
(i,j)∈A

wijH(cij , dij).

Combining with the fact that d∗ is a feasible solution and d is an optimal solution
for the inverse minimum cut problem under the weighted sum-type Hamming
distance for the network N(V,A, c), we know the capacity vector d∗ is an optimal
solution for the inverse minimum cut problem for the network N(V,A, c).

32 L. Liu et al.

3 Complexity of the General Case

In this section, we will show problem (1) is NP-hard. To show this result, we
transfer a well-known NP-hard problem-Knapsack Problem-into a special case
of the decision version of problem (1).

Knapsack Problem(KP)
Given a knapsack of capacity C > 0 and I items. Each item has value pi > 0
and weight wi > 0. Find the selection of items (θi = 1 if item i be selected and

0 otherwise) that fit
I∑

i=1

θi ·wi ≤ C, and the total value,
I∑

i=1

θi · pi is maximized.

The Decision Version of Knapsack Problem(DVKP)
Given a knapsack of capacity C > 0 and I items. Each item has value pi > 0
and weight wi > 0. For a given threshold K, whether there is a selection of
items (θi = 1 if item i be selected and 0 otherwise) satisfying the following two
consitions:

(a)
I∑

i=1

θi · wi ≤ C;

(b)
I∑

i=1

θi · pi ≥ K.

Theorem 1. Even if the modified arcs are restricted in (X0, X
0
), i.e., lij =

uij = 0 if (i, j) /∈ (X0, X
0
), problem (1) is NP-hard.

Proof. The decision version of the problem (1) is as follows:
For a given threshold C, whether there is a solution d satisfying the following

conditions:
(a) {X0, X

0} is a minimum cut of the network N(V,A, d);
(b) for each (i, j) ∈ A, −lij ≤ dij − cij ≤ uij ;
(c) the total modification cost for changing capacities of all arcs is not greater

than C, i.e.,
∑

(i,j)∈A

wijH(cij , dij) ≤ C.

For a given instance of DVKP {n,wi, pi, C,K}, we construct a network N
and an instance of the decision version of problem (1) as follows:

The network N has 2n+3 nodes and 3n+1 arcs {a1, a2, . . . , an, b1, b2, . . . , bn,
c1, c2, . . . , cn, d}. An illustration of network N is shown in Figure 1.

Set the {wij , cij , lij , uij} as follows:

(1) If (i, j) ∈ {a1, a2, . . . , an, c1, c2, . . . , cn}, then lij = uij = 0, cij = wij = M ,
where M is a sufficiently large number.

(2) If (i, j) = d, then lij = uij = 0, cij =
n∑

i=1

pi −K,wij = +∞.

(3) For the arc bi in {b1, b2, . . . , bn}, we set the capacity equals the item’s value
pi, set the upper bound uij equals 0, set the lower bound lij equals the item’s
value pi, set the modification cost equals the item’s weight wi.

Inverse Minimum Cut 33

a1

a2

an

s t

b1

b2

bn

c1

c2

cn

d

Fig. 1. An illustration of network N

For a sufficiently large number M , the minimum cut of the constructed network
N is {X,X} = {d}.

At last, we set the given cut as {X0, X
0} = {b1, b2, . . . , bn}.

It is clear that the construction of the network N can be done in polynomial
time.

Combining the property of the Hamming distance with the definition of
{wij , cij , lij , uij} above, the constructed instance of the decision version of prob-
lem (1) is whether there is an arc set Ω ⊆ {b1, b2, . . . , bn} satisfying the following
conditions:

(a)
∑
i∈Ω

pi ≥ K;

(b)
∑
i∈Ω

wi ≤ C (where C is the capacity of the knapsack).

It is clear that the answer of the above decision problem is Yes if and only if the
answer of the given instance of DVKP is Yes.

4 A Polynomial Solvable Case

From the results stated in Section 2, the weighted inverse minimum cut problem
under the sum-type Hamming distance can be formulated as follows:

min
∑

(i,j)∈A′
wijH(c

′
ij , d

′
ij)

s.t. Cut {X0, X
0} is a minimum cut of N

′
(V,A

′
, d

′
);

−lij ≤ d
′
ij − c

′
ij ≤ uij , for each (i, j) ∈ A

′
.

(4)

By a similar argument as in Lemma 2, we have the following lemma:

Lemma 5. Problem (4) is feasible if and only if d′ is a feasible solution of
problem (4), where d′ is defined as:

d
′
ij =

{
c
′
ij − lij , if (i, j) ∈ (X0, X

0
),

c
′
ij + uij , otherwise.

(5)

34 L. Liu et al.

In section 3, we have shown even restricted the modified arcs in (X0, X
0
), the

weighted inverse minimum cut problem under the sum-type Hamming distance
is NP-hard. So in this section, we consider a polynomial solvable case. We not

only restrict the modified arcs in (X0, X
0
), but also set wij = w for all (i, j) ∈ A,

which can be formulated as follows (for simplicity, we set wij = 1):

min
∑

(i,j)∈A′
H(c

′
ij , d

′
ij)

s.t. Cut {X0, X
0} is a minimum cut of N

′
(V,A

′
, d

′
);

−lij ≤ d
′
ij − c

′
ij ≤ uij , for each (i, j) ∈ (X0, X

0
);

lij = uij = 0, for each (i, j) ∈ A
′ \ (X0, X

0
).

(6)

We are going to give an algorithm for solving problem (6) in strongly polyno-
mial time. But before stating the algorithm, it is helpful to explain the main
motivation of the algorithm.

First, by Lemma 5, we find out whether the problem (6) is feasible or not. If
problem (6) is infeasible, then we stop and do nothing any more.

Second, if problem (6) is feasible, we want to find a new vector d′ to make the

cut {X0, X
0} become a minimum cut of the network N

′
(V,A

′
, d

′
). From Lemma

2 and the property of the Hamming distance we know the new vector d′ satisfies
the following property: if d

′
ij �= c

′
ij then d

′
ij = c

′
ij − lij .

Third, to meet the objective request, we change the arcs with the largest
modification first. By Lemma 1, when the value of the maximum flow of the

current network is equal to the capacity of the cut {X0, X
0}, we stop.

Now we are ready to state our algorithm.

Algorithm 1

Step 0: Check whether problem (6) is feasible or not. (By Lemma 1 and Lemma

5, we can run the maximum flow algorithm to see whether {X0, X
0} is a mini-

mum cut of the network N ′(V,A′, d′), where d′ is defined as in (5).) If problem
(6) is infeasible, stop. Otherwise, go to Step 1.

Step 1: Let {Y, Y } be the minimum cut of the network N ′(V,A′, c′), C =

c′({X0, X
0})− c′({Y, Y }), Ω = ∅, q = 0, Γ = (X0, X

0
) \ (Y, Y). For (i, j) ∈ Γ ,

denote Δij = lij . We rearrange all the Δij in an nonincreasing order, ex-
press them as: Δ1 ≥ Δ2 ≥ . . . ≥ Δk and denote the associated arcs as:
{(i1, j1), (i2, j2), . . . , (ik, jk)}.
Step 2: q = q + 1, Ω = Ω ∪ {(iq, jq)}.

Step 3: If
q∑

i=1

Δi ≤ C, go back to Step 2. Otherwise, output an optimal solution

d′ of the problem (6) as:

d
′
ij =

{
c
′
ij − lij , if (i, j) ∈ Ω,

c
′
ij , otherwise.

(7)

The following theorem is straightforward.

Inverse Minimum Cut 35

Theorem 2. Algorithm 1 is a strongly polynomial time algorithm for problem (6).

5 Concluding Remarks

In this paper we studied the weighted inverse minimum cut problem under the
sum-type Hamming distance. With some preliminary results we first proved the
general case is NP-hard. We also consider a polynomial solvable case.

As a future research topic, it will be meaningful to consider other inverse
combinational optimization problems under Hamming distance. Studying com-
putational complexity results and proposing optimal/approximation algorithms
are promising.

References

1. He, Y., Zhang, B.W., Yao, E.Y.: Wighted inverse minimum spanning tree problems
under Hamming distance. Journal of Combinatorial Optimization 9, 91–100 (2005)

2. Heuberger, C.: Inverse Optimization: A survey on problems, methods, and results.
Journal of Combinatorial Optimization 8, 329–361 (2004)

3. Liu, L.C., He, Y.: Inverse minimum spanning tree problem and reverse shortest-
paht problem with discrete values. Progress in Natural Science 16(6), 649–655
(2006)

4. Liu, L.C., Wang, Q.: Constrained inverse min-max spanning tree problems under
the weighted Hamming distance. Journal of Global Optimization 43, 83–95 (2009)

5. Liu, L.C., Yao, E.Y.: A weighted inverse minimum cut problem under the bot-
tleneck type Hamming distance. Asia-Pacific Journal of Operational Research 24,
725–736 (2007)

6. Liu, L.C., Yao, E.Y.: Inverse min-max spanning tree problem under the weighted
sum-type Hamming distance. Theoretical Computer Science 396, 28–34 (2008)

7. Liu, L.C., Zhang, J.Z.: Inverse maximum flow problems under the weighted Ham-
ming distance. Journal of Combinatorial Optimization 12, 395–408 (2006)

8. Yang, C., Zhang, J.Z., Ma, Z.F.: Inverse maximum flow and minimum cut problems.
Optimization 40, 147–170 (1997)

9. Yang, X.G., Zhang, J.Z.: Inverse sorting problem by minimizing the total weighted
number of changes and partial inverse sorting problems. Computational Optimiza-
tion and Applications 36, 55–66 (2007)

10. Zhang, B.W., Zhang, J.Z., He, Y.: The center location improvement problem under
the Hamming distance. Journal of Combinatorial Optimization 9, 187–198 (2005)

11. Zhang, B.W., Zhang, J.Z., He, Y.: Constrained inverse minimum spanning
tree problems under the bottleneck-type Hamming distance. Journal of Global
Optimization 34, 467–474 (2006)

Voronoi Diagram with Visual Restriction�

Chenglin Fan1, Jun Luo1,3, Wencheng Wang2, and Binhai Zhu3,4

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
{cl.fan,jun.luo}@siat.ac.cn

2 Institute of Software, Chinese Academy of Sciences, China
whn@ios.ac.cn

3 Top Key Discipline of Computer Software and Theory, Zhejiang Provincial Colleges,
Zhejiang Normal University, China

4 Department of Computer Science, Montana State University, Bozeman, MT 59717, USA
bhz@cs.montana.edu

Abstract. In a normal Voronoi diagram, each site is able to see all the points in
the plane. In this paper, we study the case such that each site is only able to see
a visually restricted region in the plane and construct the so-called Visual Re-
striction Voronoi Diagram (VRVD). We show that the visual restriction Voronoi
cell of each site is not necessary convex and it could consist of many disjoint
regions. We prove that the combinatorial complexity of the VRVD on n sites is
Θ(n2). Then we give an O(n2 log n) time and O(n2) space algorithm to con-
struct VRVD.

1 Introduction

Voronoi diagram is a fundamental structure in computational geometry and plays im-
portant roles in other fields such as GIS and physics [2]. One of the major applications
of Voronoi diagram is to answer the nearest-neighbor queries efficiently. Much has been
done on the variants of Voronoi diagrams and the algorithms for computing Voronoi di-
agrams in various fields [1, 4, 5, 7–10], Aurenhammer [3] considered a special kinds of
Voronoi Diagram: visibility is constrained to a segment on a line avoiding the convex
hull of the sites, he also presented a quadratic complexity and construction time.

In some situations, we want to find not only the closest site but also the site which is
visible to the query point. For example, in a football match, each player has his/her own
vision area at any given time. If we want to find which player is the closest to the ball
and can also see the ball efficiently, we can construct the so-called Visual Restriction
Voronoi Diagram. In this paper, we consider the case when each player (or site) has
some visible angle (which may not be 180◦) in the plane.

In the following paragraphs we define some notations, given a set of n sites/points
P = {p1, p2, ..., pn} in the plane. For each site/point pi, associate it with two rays
r1(pi) and r2(pi) which have the same endpoint pi, and the point pi is only visible to
the region from r1(pi) to r2(pi) in clockwise order. We use V R(pi) to denote the region
which pi is visible to (see Figure 1).
� This research has been partially funded by the International Science & Technology Coopera-

tion Program of China (2010DFA92720), Shenzhen Fundamental Research Project (grant no.
JC201005270342A) and by NSF of China under project 60928006.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 36–46, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Voronoi Diagram with Visual Restriction 37

pi

V R(pi)

r1(pi)

r2(pi)

Fig. 1. Illustration of V R(pi), r1(pi), and r2(pi)

A point q in the plane is said to be controlled by pi if it meets two conditions below:

1. q ∈ V R(pi).
2. Among all the sites in P which are visible to q, pi is the closest one.

A region in the plane is said to be controlled by pi if every point in the region is con-
trolled by pi and this region is called the visual restriction Voronoi cell of pi. Note that
different from the normal Voronoi diagram, in our setting a member in P may control
more than one connected region, and each connected region is not necessary convex (see
Figure 2). For the special case when the angle of each site could see is 180◦, every site
is visible to a half-plane. We call that specific Voronoi diagram as Half-Plane Voronoi
diagram (HPVD for short). If we use Theorem 2.2(i) by Edelsbrunner et al. [6] and
compute the upper envelope of a set of n triangles in three dimensions in O(n2α(n))
time and storage, then project it to the two dimensional plane to get the VRVD. We
can easily get an O(n2α(n)) combinatorial complexity and build VRVD in O(n2α(n))
time and space. In this paper, we obtain an optimal combinatorial complexity O(n2)
for VRVD. We also design an algorithm using O(n2) space to compute VRVD, as the
algorithm in [6] does not work in practice.

In this paper, we assume that there are no two sites at the same position, and no two
sites whose boundary lines overlap with each other. Section 2 gives the analysis of com-
binatorial complexity of VRVD, while the algorithm to construct VRVD is presented in
section 3. We give the conclusion in section 4.

2 Combinatorial Complexity of VRVD

In this section, we investigate the combinatorial complexity (i.e., the size) of VRVD.
Let us first consider the edges of VRVD. It is not difficult to find that the edges of VRVD
have only two types: either it belongs to a perpendicular bisector of two sites or it be-
longs to a boundary line l1(pi) or l2(pi) (1 ≤ i ≤ n, l1(pi), l2(pi) are the extended line
of rays r1(pi), r2(pi) respectively). Therefore, there are two types of edges of VRVD:

1. Those edges lie on a boundary line,
2. Those edges do not not lie on a boundary line;

and there are three types of vertices of VRVD:

38 C. Fan et al.

q
5

3 2 4

1

2

5

5

41

3

1

5

p1

p2

p3

p4p5

Fig. 2. An example of Visual Restriction Voronoi diagram of five sites p1, p2, p3, p4, p5. In this
special example, we assume the angle between two rays of point is 180◦ , and each point is visible
to a half-plane, and the boundary of that half-plane is perpendicular to the arrow of that point.
The number in each cell is the site ID which controls that cell.

1. V1: the intersections between two edges of the second type,
2. V2: the intersections between two edges of the first type,
3. V3: the intersections between two edges: one of first type and another one of the

second type.

Now we want to bound the number of vertices of VRVD of n sites P , denoted as
VRVD(P). Since there are only n boundary lines, there are only O(n2) intersections
between them. Therefore |V2| = O(n2). However, what is the number of V1 and V3?

Lemma 1. In VRVD(P), there are at most O(n) edges of the second type intersecting
with each boundary line.

Proof. Consider the boundary line l(pk) (without loss of generality, we just assume
l(pk) is horizontal), which represents any one of line l1(pk), l2(pk) and the intersections
I1, I2, . . . , Im between r1(pi), r2(pi) (1 ≤ i ≤ n, i �= k) and l(pk) (see
Figure 3). These intersections separate the line l(pk) into 2m + 1 intervals (if we
consider each intersection point as an interval): (−∞, I1), [I1, I1], (I1, I2), . . . , (Im −
1, Im), [Im, Im], [Im,+∞) such that each site pi is either visible to all points in an in-
terval or invisible to any point of a given interval. We use ni to denote the number of
sites in P that is visible to the i-th interval. Note that one site may be visible to two
different intervals but the sets of visible sites of two different intervals cannot be iden-
tical. For a site pi, if pi is visible to the i-th interval but is not visible to the (i + 1)-th
interval, then there are two cases: (1) pi is not visible to all intervals to the right of the
i-th interval. (2) pi is not visible to those intervals to the right of the i-th interval until
the point Ir or Il, where Ir and Il are the right and left intersection points between l(pk)
and rays r1(pi) and r2(pi) respectively. We use Di to denote the set of those sites and
|Di| to denote the number of those sites.

Similarly, if pi is not visible to the i-th interval but visible to the (i + 1)-th interval,
then there are two cases: (1) pi is visible to all intervals to the right of i-th interval; (2)
pi is visible to those intervals to the right of the i-th interval until the point Ir or Il.

Voronoi Diagram with Visual Restriction 39

pk l(pk)

(a)

(b)

pk l(pk)
I1 I2 . . . Im

Fig. 3. The boundary line l(pk) is visible by many sites in P

We use Ai to denote the set of those sites and |Ai| to denote the number of those sites.
Hence we have the following:

2m∑
i=1

|Di| ≤ n

n1 +A1 +A2 +A3 + · · ·+A2m ≤ 2n

We first consider the leftmost interval (−∞, I1). There are n1 sites which are visible to
this interval. Hence there are at most n1 − 1 second kind of edges of VRVD (perpen-
dicular bisector edge) which intersect with the interval (−∞, I1). Suppose the number
of intersections in this interval is k1 ≤ n1 − 1. There are at most n1 − k1 sites that
do not control the leftmost interval (or in other words, do not contribute any perpen-
dicular bisector edges intersecting with the leftmost interval) and they may contribute
perpendicular bisector edges intersecting with the intervals to the right later. For two
sites pi, pj , they create a perpendicular bisector bij . If pi is to the left of bij , then pi can
not control some intervals to the right of bij unless pj is not visible to some intervals
right of bij . That means if pj ∈ Di, then pi could control some intervals to the right of
the i-th interval again.

We then consider the second interval. From the above discussion, we know that at
most (n1 − k1) + |D1| sites may control the second interval. Moreover, the sites in A1

which are not visible to the first interval and visible to the second interval may also
control the second interval. Therefore, totally at most (n1 − k1) + |D1| + |A1| sites
may control the second interval and there are at most (n1 − k1) + |D1| + |A1| − 1 ≥
k2 third type intersections in the second interval. We continue considering the third
interval and so on using a similar analysis. For the (i+ 1)-th interval, there are at most
|Di|+ |Ai|+ |Di−1|+ |Ai−1|+ · · ·+ |D1|+ |A1|+ |n1|−k1−k2−· · ·−ki)−1 ≥ ki+1

third type intersections. Then we have:

k1 + k2 + · · ·+ k2m+1

≤ k1 + k2 + · · ·+ k2m + (|D2m|+ |A2m|+ |D2m−1|+ |A2m−1|+ · · ·

+|D1|+ |A1|+ n1 − k1 − k2 − · · · − k2m)− 1 ≤ 3n− 1

40 C. Fan et al.

p1

p2
p3

Fig. 4. The boundary lines l1(pi), l2(pi)(i = 1, 2, .., n) separate the big rectangle plane into
many convex polygons

Therefore we can conclude that there are at most O(n) second kind of edges intersect-
ing with each boundary line. What is more, there are at most 2(n− 2) intersections be-
tween other boundary lines intersecting with l(pk). Hence l(pk) is divided into at most
O(n) disjoint intervals from left to right such that each interval is controlled by at most
one site. �

Actually, from Lemma 1, we know that |V3| = O(n2). Then the question is: how many
second kind of edges of VRVD are there?

We draw a big rectangle containing all the sites of P and all intersections of boundary
lines. Then the rectangle is decomposed by the (arrangement of the) boundary lines
l1(pi), l2(pi)(i = 1, 2, .., n) into many convex polygons. Each convex polygon CPj is
visible to some sites of P . In fact, each site is either visible to the whole area of CPj ,
or not visible to any point in CPj (see Figure 4). Moreover, for any convex polygon
CPj , all the sites are either outside of CPj , or on the boundary of CPj . Let the set of
sites which are visible to CPj be V Pj . Then VRVD(P) inside CPj is the same as the
Voronoi diagram of V Pj inside CPj (see Figure 5). Let the part of VRVD(P) inside
CPj be VRVDj . We now study the property of VRVDj .

Lemma 2. Let the number of edges of VRVDj which intersect with polygon CPj be x
(the third type of intersections). The number of edges of VRVDj is at most 2x− 1 and
the first type of intersections in VRVDj is at most x− 1.

Proof. First we prove that VRVDj . is a tree. If VRVDj . is not a tree, then it contains
cycle. This cycle must contain a site which contradicts the fact there are no sites inside
CPj . Since VRVDj . is actually the normal Voronoi diagram of V Pj inside CPj , the
degree of inner node of VRVDj . is at least three. The intersection edges of VRVDj

with polygon CPj are actually the leaves of VRVDj .. For a tree with x leaves and
internal nodes with degree at least three, the number of edges of this tree is at most
2x− 1, and the inner nodes of the tree is at most x− 1, which is equal to the number of
the first type of intersections in VRVDj . �

According to Lemma 2 and the fact that there are O(n2) third type of intersections, we
know |V1| = O(n2) and the total number of bisector edges of VRVD is also O(n2).
Therefore we have the following theorem:

Voronoi Diagram with Visual Restriction 41

CPj

V RV Dj

Fig. 5. Illustration of VRVD j inside convex polygon CPi (thick line) where all sites are outside
of CPj or on the boundary of CPj

Theorem 1. The combinatorial complexity of VRVD of n sites is Θ(n2).

Proof. Since |V1| = O(n2),|V2| = O(n2) and |V3| = O(n2), the total number of ver-
tices is O(n2). From Lemma 1 and Lemma 2, we know that the total number of bisector
edges of VRVD is also O(n2) and the boundary edges are cut by other boundary lines
and bisector edges which add at most O(n2) edges. Hence the total number of edges is
O(n2). According to the Euler formula for planar graphs, the number of faces of VRVD
is also O(n2).

It is easy to construct an example such that VRVD does contain Ω(n2) vertices,
edges and cells. For example, in Figure 6, all sites’ boundaries are horizontal. Therefore
all their visual angles are 180◦ and normal vectors of those boundaries are either up or
down vertically. There are n/2 points on line l1 and the distance between two adjacent
points is d0, and n/2 points on l2 such that l2 is crossing the center point on l1 and
l2 is perpendicular to l1. All points on l2 are on one side of l1. The distance between
the leftmost point on l1 and l2 is d. The first point on l2 whose distance to line l1 is
d1 = d+ ε. The distance between the second point and line l1 is d2 = 2 ∗ d1 + ε,..., the
ith point whose distance to l1 is di = 2 ∗ di−1 + ε,

Therefore, the combinatorial complexity of VRVD of n sites is Θ(n2). �

3 Algorithm for Computing Visual Restriction Voronoi Diagram

The basic idea for computing VRVD is to first compute all VRVDi . for all CPi (see
Figure 5) and then merge them together. If we know the sites that control the cells
inside CPi, then we can compute the normal Voronoi diagram of those sites to obtain
VRVDi .. Next, we show how to compute the sites that control the cells inside CPi.

Since VRVDi . is a tree, all cells inside CPi have edges on the boundary ofCPi. That
is to say, the sites that control a part of the boundary of CPi are the same as the sites that
control cells inside CPi. Thus, we only need to focus on which site controls which part
of boundary line. For a boundary line l1(pk) (the same as l2(pk)), we need to compute
the intervals that are controlled by different sites. Without loss of generality, assume

42 C. Fan et al.

l1

...

l2

Fig. 6. Example of Ω(n2) vertices, edges and cells in the Visual-Restriction Voronoi Diagram of
set P with parallel boundaries

l1(pk)

p1

p2

p3

p4

p5

p6

Fig. 7. Illustration of three groups of sites whose directions are to the left, to the right, or vertical

that l(pk) is a horizontal line. The n sites are separated into four groups according to
the number of intersection between their rays and l(pk) (see Figure 7):

A. Those sites pi whose rays r1(pi), r2(pi) intersect with l(pk) with just one intersec-
tions (see p1, p2 in Figure 7). We assume the total number of points of this group is
ml.

B. Those sites pi whose rays r1(pi), r2(pi) intersect with l(pk) with just two intersec-
tions (see p4, p5 in Figure 7). We assume the total number of points of this group is
mr.

C. Those sites pi which are visible to all points on l(pk) (see p3 in Figure 7). We
assume the total number of points of this group is mv. Note that those sites invisible
to any points on l(pk) can be ignored (see p6 in Figure 7).

D. The site pk is only visible to a half-line of l(pk), what is more, only one side of
r1(pk), r2(pk).

We compute the intervals controlled by each group of sites independently and then
merge them together later. First we show how to compute the intervals controlled by
the first group of sites A. There are two kinds of sites for the first group of sites: (A.1)
those sites which is invisible to left part of l(pk) and visible to the right part of l(pk);

Voronoi Diagram with Visual Restriction 43

(A.2) those sites which is visible to left part of l(pk) and invisible to the right part of
l(pk). They are symmetrical to each other. We compute the two cases (A.1 and A.2)
respectively and merger them together. The first case A.1 is covered as follows (the
second case A.2 can be covered similarly):

The boundary lines of mr sites intersect with l(pk) at points I1, I2, ..., Im′
r

from

left to right (m
′
r ≤ mr since some boundary lines intersect with l(pk) at the same

point). These intersections separate l(pk) into m
′
r visible intervals: [I1, I1), [I2, I3),

..., [Im′
r
,+∞). Note that the sites of this group are not visible to any point on the

interval (−∞, I1). We deal with each interval on l(pk) from left to right. For each
interval, it could be separated into several subintervals such that each subinterval is
controlled by one site and we need to compute those subintervals.

Suppose that we have already processed all intervals to the left of the j-th interval
[Ij , Ij+1) and now we are dealing with the j-th interval. Those sites that are visible to
the intervals to the left of Ij are visible to interval [Ij ,+∞). Suppose that those sites
that control x subintervals on [Ij ,+∞) are q1, q2, ..., qx from left to right which have
already been computed in the previous steps. Note that the order of x subintervals on
[Ij ,+∞) are in the same order of q1, q2, ..., qx from left to right. There could be several
sites whose boundary line intersect with l(pk) at Ij and they are only visible to the
interval [Ij ,+∞). For each site p of them, we search q1, q2, ...qx to find the position of
p among them according to their x-coordinates. There are three cases:

1. p is to the right of qx, that means p controls the rightmost subinterval. We can sweep
from site qx to the left (until reaching Ij since p is not visible to the left of Ij) to
find the left endpoint of the subinterval that p controls. First, we compute the inter-
section Ip,x between the bisector bqx,p (between site qx and p) and l(pk). Assume
that the endpoint separating two consecutive subintervals which are controlled by
sites qx−1 and qx is a. If Ip,x is to the right of a, then stop sweeping and Ip,x is
the left endpoint of the subinterval that p controls. Else if Ip,x is to the left of a
or Ip,x = a, site qx does not control any point in [Ij ,+∞), and qx will never be
considered later on. Then we treat qx−1 as qx and continue sweeping as above until
we find the left endpoint of the subinterval that p controls or reach Ij .

2. p is to the left of q1. We sweep from q1 to the right. First we compute the intersec-
tion Iq1,p between the bisector bq1,p (between site q1 and p) and l(pk). If Iq1,p is
to the left of Ij , p does not control any point on line l(pk). Else the left endpoint
of the subinterval that p controls is Ij and we need to find the right endpoint of the
subinterval that p controls. Assume that the endpoint separating two consecutive
subintervals that are controlled by sites q1 and q2 is b. If Iq1,p is to the left of b,
then Iq1,p is the right endpoint of the subinterval that p controls; else q1 does not
control any point in [Ij ,+∞), and we continue sweeping as above from q2 to the
right until we find the right endpoint. Note that the right endpoint could be +∞.

3. The neighbor sites of p from left to right are qi and qi+1. First, we compute the
intersection Ip,i between the bisector bp,i (between qi and p) and l(pk), and the
intersection Ip,i+1 between the bisector bp,i+1 (the bisector between qi+1 and p)
and l(pk). If Ip,i is not to the left of Ip,i+1, then p does not control any point in
l(pk); else sweep from qi toward left to find the left endpoint of the subinterval that

44 C. Fan et al.

p controls as in step 1, and sweep from qi+1 toward right to find the right endpoint
of the subinterval that p controls as in step 2.

Note that if the bisector bqj ,p (1 ≤ j ≤ x) is parallel to l(pk), that means there is
no intersection between bqj ,p and l(pk). In this case, we can set Ip,j as +∞ or −∞
according to the positions of p, qj , l(pk) and bqj ,p. If bqj ,p is above l(pk) and qj is above
bqj ,p, then we set Ip,j as −∞ since p controls the interval which is originally controlled
by qj . If bqj ,p is above l(pk) and qj is below bqj ,p, then we set Ip,j as +∞. Actually, that
means we can just ignore p since it does not control any interval in [Ij ,+∞). Similarly,
we can set Ip,j as +∞ if bqj ,p is below l(pk) and qj is above bqj ,p and set Ip,j as −∞
if bqj ,p is below l(pk) and qj is below bqj ,p. There is still one special case when the
bisector bqj ,p overlaps with l(pk). In this case, we can just set the interval controlled by
qj to be controlled by both qj and p.

When the above steps are finished, we compute the sites control subintervals in in-
terval [Ij , Ij+1), which is easy as all sites q1, q2, ..., qx are already sorted and controlled
one subinterval from left to right by now for [Ij ,+∞), we just sweep from the q1 to
right, to find the site qy which control at least one point to the right of Ij , then all the
sites on the left of qy are deleted and never need to be considered later. After the j-th
interval [Ij , Ij+1) is processed, we can process all other intervals to the right of the j-th
interval as above from left to right.

The computation of the intervals controlled by the second kinds of sites A.2 is similar
to the computation of the intervals controlled by the first kinds of sites A.1.

We now show how to merge intervals generated by sites of A.1 and A.2. We sort
the endpoints of two types of intervals from left to right and create some new intervals.
For a new interval that originally belongs to one type, we do not need to take care of
it. Otherwise if we have a new interval [a, b] that originally belongs to two types, we
need to decide whether [a, b] should be split into two subintervals that are controlled
by the two type of sites separately. Suppose that [a, b] is controlled by sites pl and pr
before merging, where pl points left and pr points right. We compute the intersection Ilr
between l(pk) and the bisector blr (bisector of pl and pr), the intersection Ilk between
l(pl) and l(pk), and the intersection Irk between l(pr) and l(pk). According to the
positions of Ilr , Ilk and Irk, we can split [a, b] easily. Details are omitted here due to
space limitation. After the merge of the first and the second type of intervals, we obtain
the intervals in l(pk) determined by the first group of sites.

For the second groups of sites B, we use the divide and conquer algorithm to solve
it, we just separate the mr points into two sets of almost the same size, and compute
the their intervals controlled on l(pk) from left to right respectively, then just merge
it using the above method. Then we have T (n) = 2T (n/2) + O(n), in which T (n)
denotes the time to compute n sites’ intervals. The number of intervals controlled by n
sites on l(pk) is O(n) according to Lemma 1. The merging procedure needs only O(n)
time for two sets (each with n/2 sites), hence T (n) = O(n log n).

For the third group of sites C, since their boundary lines have no intersections with
l(pk), we can not use the above algorithm directly. However, we can treat the intersec-
tions between rays and l(pk) to be +∞ or −∞. Then we can use the above algorithm
again.

Voronoi Diagram with Visual Restriction 45

We can merge the intervals decided by the sites in A and B in a similar way. Finally,
if two newly created consecutive intervals are controlled by the same site, we just merge
them together.

At last, we merge the intervals controlled by the four groups of sites respectively.
The merging procedure is similar to the procedure of merging intervals determined by
A.1 and A.2.

Lemma 3. All the intervals on line l(pk) that are controlled by the corresponding sites
can be computed in O(n logn) time.

Proof. Computing the intersections between n−1 boundary lines and l(pk), and sorting
all of them from left to right can be achieved in O(n logn) time. Before processing
the interval [Ij ,+∞), its subintervals and the sites q1, q2, ..., qx that control them are
in order from left to right. We use a balanced binary search tree to store them. The
sites q1, q2, ..., qx are stored in the leaves of tree. Searching the left neighbor and right
neighbor of site p needs O(log n) time. Then sweeping one subinterval toward left or
right takes O(log n) time. Note that a site that is deleted from the balanced search tree
will never be considered again in [Ij ,+∞). Since there are at most O(n) sites, the total
time complexity of sweeping is O(n logn).

Before the merge of different types of O(n) intervals, those intervals are already
sorted from left to right. Merging them together takes O(n) time and it produces O(n)
new intervals. Splitting each new interval takes only constant time. Hence these steps
of merge and splitting take O(n) time. The total running time for computing intervals
on line l(pk) that correspond to sites on one side of l(pk) is O(n log n). �

From the above lemma, we know that we can compute all intervals on all n boundary
lines in O(n2 logn) time. For a convex polygon CPi, we can traverse the edges of CPi

to collect the set Si of sites that control the intervals on edges of CPi. Then we compute
the normal Voronoi diagram V Di of Si and use CPi to cut off V Di to obtain V Pi. Note
that if pk controls some interval on l(pk) which belongs to one edge of CPi, then pk
may or may not be visible to CPi according to the direction of pk. If pk is visible to
CPi, we can include pk in Si. Otherwise, pk is not counted.

Lemma 4. V Pi can be computed in O(hi log hi + ci) time, where hi is the number of
sites which control cells inside CPi and ci is the number of edges of CPi.

Proof. After the arrangement of lines l(pk), i = 1, 2, · · · , n, is computed and stored
in a doubly-connected edge list, the set of sites that controls the edges of CPi can be
obtained in O(hi + ci) time through a traversal in the arrangement. Computing the
normal Voronoi diagram V Di takes O(hi log hi) time. The trim of V Di to obtain HPi

takes O(hi + ci) time. So the total running time is O(hi log hi + ci). �

Note that some intervals on edges of CPi are not on the final VRVD since the two sites
that control two sides of those intervals are the same. If the two sides of an interval
are controlled by the same site (or neither sides is controlled by any sites), then that
interval is not edge of final VRVD, else it is an edge of final VRVD. We can traverse
the edges of all CPi and check whether each interval is an edge of final VRVD or not.

Theorem 2. The VRVD of n sites can be computed in O(n2 logn) time.

46 C. Fan et al.

Proof. Based on Lemma 4, each V Pi can be computed in O(hi log hi + ci) time.
Then all V Pi can be calculated in O(

∑X
i=1(hi log hi + ci)) time where X = O(n2)

is the number of CP . For each boundary line, it is divided into O(n) intervals and
each interval is controlled by at most one site according to the proof of lemma 1.
Therefore,

∑X
i=1 hi = O(n2). The total number of edges for all convex polygon CPj

(j = 1, 2, ..., n) is O(n2), as n lines intersecting with each other produces at most
O(n2) line segments, that means

∑X
i=1 ci = O(n2). Hence O(

∑X
i=1(hi log hi+ci)) =

O(n2 logn). The procedure of merging the edges between adjacent part of Voronoi dia-
gram V Pi can be done by sweeping every boundary line from left to right, which needs
O(n2) time in total, as all intervals are already sorted. Hence the theorem is proved. �

4 Concluding Remarks

In this paper, we propose a new variant of Voronoi diagram such that each site has
its own visual area. We study the corresponding Visual Restriction Voronoi Diagram
(VRVD) with the visual area of each site being a sector. First, we prove that the combi-
natorial complexity of VRVD of n sites is Θ(n2). Then an algorithm with O(n2 logn)
running time is given to construct the VRVD with n sites. Whether we can remove the
additional log factor and design an O(n2) time algorithm to construct the VRVD is still
an open problem. In the future, we could consider solving the VRVD problem in an
output-sensitive fashion because we expect the complexity of VRVD is usually small,
possibly only O(n) in real applications. What is more, the VRVD in higher dimension
is also an interesting problem.

References

1. Aggarwal, A., Guibas, L., Saxe, J., Shor, P.: A linear time algorithm for computing the
voronoi diagram of a convex polygon. In: Proceedings of the Nineteenth Annual ACM Sym-
posium on Theory of Computing, STOC 1987, pp. 39–45. ACM, New York (1987)

2. Aurenhammer, F.: Voronoi diagrams–a survey of a fundamental geometric data structure.
ACM Comput. Surv. 23, 345–405 (1991)

3. Aurenhammer, F., Stöckl, G.: On the Peeper’s Voronoi diagram. SIGACT News 22, 50–59
(1991)

4. Aurenhammer, F., Edelsbrunner, H.: An optimal algorithm for constructing the weighted
voronoi diagram in the plane. In: Pattern Recognition, pp. 251–257 (1984)

5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry
Algorithms and Applications. Springer (1997)

6. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions:
Algorithms and applications. Discrete & Computational Geometry 4, 311–336 (1989)

7. Fan, C., He, J., Luo, J., Zhu, B.: Moving network voronoi diagram. In: ISVD, pp. 142–150
(2010)

8. Fortune, S.: A sweepline algorithm for voronoi diagrams. Algorithmica 2, 153–174 (1987)
9. Gowda, I.G., Kirkpatrick, D.G., Lee, D.T., Naamad, A.: Dynamic voronoi diagrams. IEEE

Transactions on Information Theory 29(5), 724–730 (1983)
10. Guibas, L.J., Knuth, D.E., Sharir, M.: Randomized incremental construction of delaunay and

voronoi diagrams. Algorithmica 7(4), 381–413 (1992)

Minimization of the Maximum Distance

between the Two Guards Patrolling
a Polygonal Region�

Xuehou Tan1,2 and Bo Jiang2

1 School of Information Science and Technology,
Dalian Maritime University, Linghai Road 1, Dalian, China

2 School of Information Science and Technology,
Tokai University, 4-1-1 Kitakaname, Hiratsuka 259-1292, Japan

tan@wing.ncc.u-tokai.ac.jp

Abstract. The two-guard problem asks whether two guards can walk to
detect an unpredictable, moving target in a polygonal region P , no mat-
ter how fast the target moves, and if so, construct a walk schedule of the
guards. For safety, two guards are required to always be mutually visible,
and thus, they move on the polygon boundary. Specially, a straight walk
requires both guards to monotonically move on the boundary of P from
beginning to end, one clockwise and the other counterclockwise.

The objective of this paper is to find an optimum straight walk such
that the maximum distance between the two guards is minimized. We
present an O(n2 log n) time algorithm for optimizing this metric, where
n is the number of vertices of the polygon P . Our result is obtained by
investigating a number of new properties of the min-max walks and con-
verting the problem of finding an optimum walk in the min-max metric
into that of finding a shortest path between two nodes in a graph. This
answers an open question posed by Icking and Klein.

1 Introduction

Motivated by the relations to the well-known Art Gallery and Watchman Route
problems, much attention has recently been devoted to the problem of detecting
an unpredictable, moving target in an n-sided polygon P by a group of mobile
guards. Both the target and the guards are modeled by points that can contin-
uously move in P . The goal of the guards is to eventually “see” the target, or
to verify that no target is present in the polygon, no matter how fast the target
moves. Many types of polygon shapes and the vision sensors of the guards have
been studied in the literature [7, 10–17, 19].

In this paper, we focus on the two-guard model, in which two guards move
on the polygon boundary and are always kept to be mutually visible [10, 11].

� Work by Tan was partially supported by Grant-in-Aid (23500024) for Scientific Re-
search from Japan Society for the Promotion of Science, and work by Jiang was
partially supported by National Natural Science Foundation of China under grant
61173034.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 47–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

48 X. Tan and B. Jiang

The goal is to patrol P by two guards so that at any instant, the line segment
connecting the guards partitions P into a “clear” region (not containing the tar-
get) and an “uncleared” region (it may contain the target). In the end, we would
like to know whether the whole polygon P is clear or the target is detected, if it
is ever possible. This target-finding model may have applications in adversarial
settings, as it has obvious advantages for safety and communication between the
guards.

Icking and Klein were the first to study the two-guard problem [11]. Suppose
that two vertices u and v on P are given. The problem of walking two guards
in P then asks the guards to start at the entrance u and force the target out of
the region through the exit v. Icking and Klein have shown that the solution of
the two-guard problem consists of a number of instances of straight walks and
counter walks [11]. A walk is said to be straight if two guards monotonically move
on P from u to v, or counter if both guards move on P clockwise, one from u to
v and one from v to u. They gave an O(n logn) time decision algorithm for de-
termining whether the polygon P is straight, counter, or general walkable, where
n denotes the number of vertices of P . Later, a linear-time decision algorithm
was presented by Heffernan [10]. Tseng et al. gave an O(n log n) time algorithm
to determine all pairs of boundary points which admit straight, general walks
[20]. Recently, Bhattacharya et al. improved this time bound to O(n) [3].

The two-guard problem also involves giving a walk, if it exists. For the general
walk problem, Icking and Klein have given a schedule reporting algorithm with
O(n log n+ k) running time, where k is the size of the walk schedule reported.
For the straight and counter walk versions, the schedule reporting algorithms
of Icking and Klein take O(n log n) time [11]. Later, Heffernan showed that a
straight or counter walk schedule can be reported in Θ(n) time, if it exists [10].

The objective of this paper is to find an optimum straight walk such that the
maximum distance between the two guards is minimized. The study of the two-
guard problem in this min-max metric is motivated by the fact that for a police
patrol in a dangerous midtown street, the closer the two guards are kept the safer
they are. Actually, finding a min-max walk was left as an open problem in [11].
Our work is also stimulated by its relationship to the well-known Fréchet distance
problem [1, 2, 5]. The Fréchet distance for two curves is usually illustrated by
a person walking a dog on a leash. Both the person and the dog walk forward
on their respective curves. The Fréchet distance of these two curves (they may
intersect each other or even self-intersect) is defined as the length of the shortest
leash that makes it possible for the person and the dog to walk from beginning
to end. An O(N2 logN) time algorithm has been developed to compute the
Fréchet distance between polygonal curves A and B in arbitrary dimensions
for obstacle-free environments, where N is the larger of the complexities of A
and B [1]. In our straight walk problem, we place one more restriction that the
person and the dog should always be mutually visible inside the given region.
The O(n2 logn) time solution obtained in this paper answers an open question
posed by Icking and Klein [11], and matches with the best known result for
computing the Fréchet distance between two polygonal curves [1]. Moreover, our

Minimization of the Maximum Distance between the Two Guards Patrolling 49

algorithm can automatically find the starting and ending vertices such that the
maximum distance over all pairs of the starting and ending points is minimized,
provided that the given polygon is straight walkable.1

The rest of this paper is organized as follows. In Section 2 of this paper, we give
basic definitions used in the paper. In Section 3, we show that an optimum straight
walk can be decomposed into a sequence of basic motions, called the atomic walks.
The atomic walks are so defined that their solutions in the min-max metric can
easily be found. In Section 4, we introduce a data structure that records all possi-
ble atomic walks in the given polygon and a transition relation among the atomic
walks. By applying Dijkstra’s algorithm to the obtained diagram, we can then give
ourO(n2 logn) time algorithm for finding an optimum straight walk such that the
maximum distance between the two guards is minimized. Finally, we pose some
open problems for further research in Section 5.

2 Preliminary

Let P denote a simple polygon of n vertices and ∂P the boundary of P . Just for
convenience, we assume that P is in a general position in the plane. That is, no
three vertices of P are collinear, and no three edge extensions have a common
point. Two points p, q ∈ P are visible from each other if the line segment
connecting them, denoted by pq, does not intersect the exterior of P . We denote
by |xy| the length of xy.

Let g1, g2 be two point guards on ∂P . Let g1(t) and g2(t) denote the positions
of g1 and g2 on ∂P at time t; we require that g1(t) and g2(t): [0,∞) → ∂P be two
continuous functions. A point p ∈ P is said to be detected or illuminated at t if p
is contained in the line segment g1(t)g2(t). A configuration of g1 and q2 at time
t is a pair of the points g1(t) and g2(t) such that the line segment g1(t)g2(t) lies
in the interior of P . Assume that the initial positions of two guards are located
at a same vertex of P . The configuration of g1 and q2 at a time thus divides
P into a clear region that does not contain the target, and an uncleared (or a
contaminated) region that may contain the target. Any line segment g1(t)g2(t)
at a time t is called a walk segment. The point g1(t) is the walk partner of g2(t),
and vice versa.

A walk instruction can be given by a pair of functions g1(t), g2(t) such that
either of g1(t) and g2(t) specifies an algebraic path, i.e., an edge of P along
which the guard g1 or g2 moves. More specifically, the following two types of
walk instructions are considered: Two guards g1 and g2 move along segments of
single edges such that (i) no intersections occur among all line segments g1(t)g2(t)
during the movement, or (ii) any two segments g1(t)g2(t) intersect each other.
(Probably, one guard stands still, while the other moves.) See [11].

Let the area of P be one, and let P (t) denote the fraction of the clear area
at time t. Initially, P (0) = 0. We say a walk schedule exists for P , or equally, P

1 Without loss of generality, we assume that a walk schedule always starts (ends) at
a polygon vertex.

50 X. Tan and B. Jiang

allows a walk if P (t) = 1 for some t > 0. The complexity of a walk schedule is
the total number of walk instructions it consists of.

Theorem 1. (See [3]) It takes O(n) time to determine whether the given poly-
gon P is straight walkable, where n is the number of vertices of P .

For the remainder of the paper, we assume that the polygon P is straight
walkable.

3 Properties of the Min-max Walks

In this section, we study the straight walk probem in the min-max metric. We
first describe a method to assign some critical walk partners with every vertex
of P . These critical walk segments are then used to define a basic motion of the
two guards, whose solution in the min-max metric can easily be given.

First, we briefly review an important concept of ray shots. A vertex ofP is reflex
if its interior angle is strictly greater than 180◦. For a reflex vertex r, its forward
(backward) ray shot, denote by F (r) (B(r)) is defined as the first point of P hit by
a “bullet” shot at r along the edge adjacent to r, in clockwise (counterclockwise)
direction. See Fig. 1. Clearly, the motion of the two guards are restricted by these
ray shots inside P [10, 11, 18]. Assume that the shaded region below the line seg-
ment ab in Fig. 1 is currently clear. Assume also that there is a reflex vertex r in the
contaminated region such that four points a, F (r), r and b (a, r,B(r) and b) are in
clockwise order. See Fig. 1. Then, the shotF (r) requires that the guard at a should
move to F (r) clockwise by the time the guard at b moves to pass through r; oth-
erwise, the contaminated region can never be cleared by any straight walk, which
starts at ab and ends at some vertex of the contaminated region.Analogously,B(r)
requires that the guard at b should move to B(r) counterclockwise by the time the
guard at a moves to pass through r.

In order to assign the walk partners for every vertex of P , we compute the ray
shots for all reflex vertices of P . A portion of an edge of P is called a ”pseudo-
edge” if its endpoints are either a polygon vertex or a ray shot, and its interior
does not contain any other ray shots. Next, we compute for each vertex x its

b
a

P

b
a

P

rr
F(r)

B(r)

Fig. 1. Ray shots F (r) or B(r) place the restrictions on the motion of the guards

Minimization of the Maximum Distance between the Two Guards Patrolling 51

visible region inside P . Denote by vis(x) the visible region of x, and denote
by S(x) the set of the pseudo-edges contained in vis(x). For each pseudo-edge
e of S(x), we let the point of e closest to x be a critical walk partner for x.
The vertex x is called the defining vertex of the pseudo-edge e. Clearly, several
critical partners may be assigned with x. We call the segments connecting x
and its critical partners, the critical walk segments. So, a critical walk segment
always has a polygon vertex (i.e., the defining vertex) as one of its endpoints.

Two critical walk segments, together with at most two pseudo-edges, or some
portions of the pseudo-edges between them, form a walk-quadrilateral (it may
degenerate into a triangle) if the walk segments do not intersect (but they may
share an endpoint). A walk-quadrilateral is minimal, if it does not contain any
other walk-quadrilaterals. We call the walk of the two guards in a minimal walk-
quadrilateral, an atomic walk. Clearly, an atomic walk does not contain any other
atomic walks.

We present below several properties of the atomic walks, which are the key
to our solution.

Lemma 1. An atomic walk can be made such that the maximum distance be-
tween the guards is the larger of the lengths of two critical walk segments.

Proof. Observe that any walk-quadrilateral, from its definition, is straight walk-
able from one critical walk segment to the other. So, if the underlying walk-
quadrilateral degenerates into a triangle, then only one guard needs to move
from one critical walk segment to the other, while the other stands still. The
lemma simply follows.

Suppose that the walk-quadrilateral is not a triangle. Assume that x1y1 and
x2y2 are two critical walk segments, which define the walk-quadrilateral for the
atomic walk, and their defining vertices are x1 and x2. Our method is then to
introduce at most two (walk) segments, each of the length smaller than the larger
of |x1y

′
1| and |x2y2|, to divide the walk-quadrilateral into a smaller quadrilateral

with two parallel segments and at most two triangles.
Without loss of generality, assume that two guards are currently located at

x1 and y1, i.e., the segment connecting the two guards is required to move from
x1y1 to x2y2. If either critical walk segment, say, x1y1, happens to have two
vertices x1, y1 as its endpoints, then the segment x1y1 is perpendicular to both
the edge containing x1 and the edge containing y1. This is because otherwise the
angle � x1y1y2 is strictly larger than π/2, and thus the atomic walk defined by x1

and x2 contains the one defined by x1 and y1, a contradiction (Fig. 2(a)). In this
case, the segment connecting the guards can first move parallel to x1x2 till it
touches x2 or y2, and then one guard further moves to reach the other endpoint
of x2y2. Clearly, the distance function between the two guards is not changed in
the former movement, and monotonically increasing the latter movement. The
lemma is true.

Assume now that neither of y1 and y2 is a vertex. If neither y1 nor y2 is a
ray shot, then both x1y1 and x2y2 are perpendicular to the line containing y1
and y2. See Fig. 2(b). The segment connecting the two guards can be moved,
parallel to x1y1 (or x2y2), from one critical walk segment to the other. Again,

52 X. Tan and B. Jiang

x
1

(b) (a)

y2

x2

y1

x1

y
2

x2

y
1

(c)

(f)

y
2

y
1

x1

x2 y'

(e)

y
1

y
2

x2

x1 y'1

x1

y
2

x
2

y
1

x
1

y
2

x
2

y
1

y'
1 y'

2

y'
1

(d)

2

Fig. 2. Illustrating the proof of Lemma 1

the lemma is true. If y1 (y2) is a ray shot, then � x1y1y2 (� x2y2y1) is at least
π/2. In this case, we find the point y′1 (y′2) of the segment x1x2, which is closest
to y1 (y2). See Fig. 2(c)-(d). Note that one of y′1 and y′2 may not exist (Fig.
2(d)). The atomic walk can then be made by at most three following motions
of the guards: from x1y1 to y1y′1, from y1y′1 to y2y′2, and from y2y′2 to x2y2. See
Fig. 2(c) or 2(d). Also, the lemma follows.

Finally, consider the situation in which x1 and x2 are on different pseudo-
edges. If the edges containing x1y2 and x2y1 are parallel, the segment connect-
ing the guards can simply be moved from x1y1 to x2y2 such that the distance
function between the two guards is monotone. If x1y2 and x2y1 are not parallel,
then as discussed above, two angles � x1y1x2, � x2y2x1 are at least π/2. If the
angle at x1 is the smallest in the quadrilateral x1y1x2y2, we let y′1 the point of
x1y2 such that y1y′1 and x2y2 are parallel (Fig. 2(e)). Otherwise, the angle at
x2 is the smallest and we let y′2 the point of x2y1 such that y2y′2 and x1y1 are
parallel (Fig. 2(f)). We have |y1y′1| < |x1y1|, |y1y′1| < |x2y2| in the former case,
and |y2y′2| < |x1y1|, |y2y′2| < |x2y2| in the latter case. In either case, the motion
of the guards can simply be arranged such that the maximum distance between
the two guards is the larger of |x1y

′
1| and |x2y2|. The proof is complete. �

Next, we show that there is an optimum walk in the min-max metric such that it
consists of only atomic walks. Suppose that W is an optimum walk in the min-
max metric, and u, v are its starting, ending vertices, respectively. All polygon
vertices are touched, in the walk W , by the segment connecting the guards
one by one. We call the first walk segment reached a vertex x, the W -walk
segment of x. Also, we consider u (v) as the very first (last) W -walk segment.
Since no two W -walk segments properly intersect, all W -walk segments can be
ordered from u to v. Consider the motion of the guards between two consecutive

Minimization of the Maximum Distance between the Two Guards Patrolling 53

W -walk segments. By an argument similar to the proof of Lemma 1, it can also
be arranged so that the maximum distance between the guards is the larger of
the lengths of two W -walk segments. Thus, we focus below our attention on the
lengths of W -walk segments.

Observe that a walk W is globally optimum if it is locally optimum, i.e., the
portion of the walk between any two W -walk segments is optimum, too. An
immediate result is the following.

Lemma 2. Suppose that W is an optimum straight walk in the min-max metric.
Then, one can always assume that the portion of W between any two W -walk
segments is optimum. Moreover, all the locally longest W -walk segments belong
to the set of critical walk segments.

Proof. If the portion of W between some two W -walk segments is not optimum,
then we can rearrange the walk between the W -walk segments such that that
portion of W is optimum. The first part of the lemma simply follows.

Turn to the second part of the lemma. Let Si, . . ., Sj , . . ., Sk (i < j < k) be
a sequence of consecutive W -walk segments such that the length of Sj , i.e., |Sj |
is the maximal among |Si|, . . ., |Sk|. Assume now that Sj is not a critical walk
segment. Let x be the defining vertex of Sj , and let y be the other endpoint of Sj .
Then, we can move the point y to a new position y′, on the edge containing y, by
an arbitrary small distance such that |Sj | > |xy′| and |Sh| ≤ |xy′|, h �= j. This
implies that the portion ofW between Si and Sj is not optimum, a contradiction.
Therefore, Sj is a critical walk segment. The proof is complete. �

The above result is still a little away from what we need. Let us now consider
a discrete version of this min-max problem, in which not only the maximum
distance but also the distance between the guards on every W -walk segment is
minimized. (So, any solution to the discrete, min-max problem also minimizes
the sum of the lengths of all W -walk segments.) Then, we can simply obtain
following results.

Observation 1. Any optimum straight walk in the discrete, min-max metric
gives the same answer (i.e., the maximum distance between the two guards) as
that in the min-max metric.

Lemma 3. Suppose that W is an optimum straight walk in the discrete, min-
max metric. Then, one can always assume that the portion of W between any
two W -walk segments is optimum. Moreover, all the W -walk segments belong to
the set of critical walk segments.

Corollary 1. Suppose that W is an optimal straight walk W in the discrete,
min-max metric. Then, all the motions of the guards between two consecutive
W -walk segments are the atomic walks.

4 Algorithm

In this section, we introduce a data structure, called the atomic walk diagram,
which records all possible atomic walks in the given polygon P and a transition

54 X. Tan and B. Jiang

relation among these walks (see also [19]). Next, we show that any optimum
solution in the discrete, min-max metric can be represented by a path between
two special nodes of the diagram. This makes it possible to apply Dijkstra’s
algorithm to the atomic walk diagram, so as to find an optimum solution.

Suppose that all vertices of P and their assigned walk partners are ordered
on the boundary of P clockwise. Let us number all vertices and walk partners
in the sorted order using integers 0, 1, . . ., m − 1. For ease of presentation, we
slightly modify the description of the polygon P . If x is a polygon vertex, we let
x′ be a copy of x, and consider x and x′ as two different vertices of P . All the
original and copyed vertices appear on the boundary of P alternately, and thus,
an edge has an original vertex and a copyed vertex, and (One may also consider
that x′ and x have two consecutive integers, but only the original vertices have
their walk partners.)

The atomic walk diagram G is constructed as follows. First, we put into the
set V (G) all the nodes (i, j) (0 ≤ i, j ≤ m− 1), where i and j are two endpoints
of a critical walk segment. For all vertices x, we also put into V (G) the nodes
(x, x′) and (x′, x). Note that any walk schedule is assumed to start (end) at
a polygon vertex. The nodes (x, x′) will be considered as the possible starting
points of walk schedules, and thus, called the starting nodes. The nodes (x′, x)
are considered as the possible ending points of walk schedules, and called the
ending nodes. Finally, we add two special nodes s (called the source node), t
(called the target node) to V (G). Since no more than n critical walk segments
can be defined by a vertex, the total number of nodes of V (G) is clearly O(n2).

Let us describe how to construct the arc set of the diagram G, which is
denoted by E(G). Note that the starting point (vertex) of a straight walk is
always contained in the clear region. Although the exact position of this starting
point is not known, we can assume that the vertices of the clear region are in

k

(a,a')

i

b',b

a,a'

l

j

(a',a)

(b,b')(b',b)

(l,k)

(j,i)

(k,l)

(i,j)

(a) (b)

Fig. 3. Illustrating the construction of the diagram G

Minimization of the Maximum Distance between the Two Guards Patrolling 55

clockwise order, from the starting point. Two nodes (i, j) and (k, l) are then
connected by a single arc from (i, j) to (k, l) if and only if (i) there is an atomic
walk between them and (ii) the points i, k, l and j are in clockwise order. See
Fig. 3. Clearly, if there is an arc from (i, j) to (k, l) in G, then the (symmetric)
arc from (l, k) to (j, i) exists. Specially, if there is an arc from (x, x′) (the starting
node) to (k, l) (k �= l), then the arc from (l, k) to (x′, x) (the ending node) exists.
Finally, for every starting node (x, x′), we add an arc from s to (x, x′). And, for
every ending node (x′, x), we add an arc from (x′, x) to t. See Fig. 3 for an
example, which shows the arcs representing three atomic walks. (Only a portion
of G is shown in Fig. 3.) Since a polygon vertex x can define at most O(n) atomic
walks, the total number of arcs of the obtained set E(G) is also O(n2). Observe
that the transition relation among the atomic walks is implicitly represented by
all arcs of E(G).

Lemma 4. Theatomicwalk diagramG can be constructed inO(n2) timeandspace.

Proof. First, all ray shots can be computed in O(n logn) time using the ray-
shooting query algorithm [4]. For each vertex x, its visible region vis(x) as well
as the pseudo-edge set S(x) can be computed in O(n) time [8]. All critical walk
segments can then be computed in O(n2) time. As shown in the proof of Lemma
1, an atomic walk occurs in the following situations: (i) two adjacent (defining)
vertices have their walk partners on a pseudo-edge, including the special case
that the edge degenerates into a vertex, and (ii) a defining vertex and the partner
of the other defining vertex are on a pseudo-edge such that no other ray shots
are contained between them; otherwise, it contradicts the definition of atomic
walks. Thus, all the atomic walks defined by a vertex x can be found in O(n)
time. The time required to compute all atomic walks is O(n2), too. After all
atomic walks are found, the diagram Q can simply be constructed in O(n2) time
and space. �

Lemma 5. Suppose that P is straight walkable. Any optimum walk W in the
discrete, min-max metric can then be represented as an st-path in the diagram
G. Also, an st-path in G always correspoonds to a valid walk of the two guards.

Proof. First, we claim that not only the vertices but also the ray shots have to be
considered in a straight walk (i.e., both polygon vertices and ray shots are needed
to give the walk instructions of the straight walk). LetWu,v denote a straight walk
from a vertex u to the other v. With respect to Wu,v, the boundary of P can be
divided into two polygonal chains, with common endpoints u and v. Then, for a
vertex x on a chain, all of its possible walk partners inWu,v belong to a non-empty
interval [lo(x), hi(x)] on opposite chain, where each of lo(x) and hi(x) is either a
polygon vertex or a ray shot [11]. Since u and v may be any two vertiecs of P , the
claim simply follows.

Besides the vertices and ray shots, the critical walker partners (defined for all
polygon vertices) are also used to define the atomicwalks. It follows fromCorollary
1 that the optimum walk W in the discrete, min-max metric can be decomposed
into a sequence of atomic walks. From our construction of the diagramG, all pos-
sible atomic walks in P are represented by arcs of G. (Remember that an atomic

56 X. Tan and B. Jiang

walk is represented by two arcs in G.) Thus, all the atomic walks in W can be
mapped to a sequence of arcs in G. Next, add two additional arcs to the obtained
sequence; one connects s to the first node of the arc sequence representingW , and
the other connects the last node of the arc sequence. Since W gives a continuous
motion of the two guards, the resulting sequence is a directed st-path in G.

Assume now that G contains a directed st-path. Except for the very first and
last arcs, any other arc of the st-path corresponds an atomic walk of the two
guards. Since the very first (last) arc actually indicates the starting (ending)
vertex, the directed st-path in G can thus be transformed into a valid walk of
the two guards. This completes the proof. �

To solve the discrete, min-max problem, we assign a weight with each arc of
E(G). First, the weight of an arc connected to the node s or t is defined as zero.
Since all other arcs of E(G) represent the atomic walks, the weight of an arc is
defined as the larger of the lengths of two critical walk segments. We denote by
Gm this weighted diagram of G.

It follows from Lemma 5 that an optimum walk W corresponds to such a
directed st-path inGm that the maximum of the weights of the arcs in the st-path
is minimized. Such a min-weight st-path in Gm can be computed in O(n2 logn)
time using Dijkstra’s algorithm [6]. (If two computed paths happen to have
the same maximum distance, we can further compare the sum of the lengths
of the critical walk segments encountered by them, and select the path having
the smaller sum.) Note also that Dijkstra’s algorithm can find two symmetric
optimum walks (see Fig. 3).

By now, we obatin the main result of this paper.

Theorem 2. Suppose that P is straight walkable. One can compute inO(n2 logn)
time an optimum walk such that the maximum distance between the two guards is
minimized.

5 Concluding Remarks

In this paper, we study the problem of finding an optimum straight walk such
that the maximum distance between the two guards is minimized. We presented
an O(n2 logn) time algorithm for optimizing this metric. (Actually, the discrete
version of the min-max walk problem is also solved.) The key point is to decom-
pose an optimum straight walk into a sequence of atomic walks, whose solutions
in the min-max metric can easily be found. Because of its relationship to the
Fréchet distance problem, our method may find new applications in computing
various Fréchet distances.

We pose several open questions for further research. Suppose that P is known
to be straight walkable from the entrance u to the exit v. In this special case,
our algorithm still needs O(n2 logn) time to compute an optimmum walk from
u to v. It is thus an interesting work to develop a more efficient solution for this
special case. Second, is it possible to extend our method to counter (or general)
walks? Note that all walk segments intersect each other in a counter walk. We
find it difficult to define the concept of the atomic counter walks, analogous to

Minimization of the Maximum Distance between the Two Guards Patrolling 57

that of the atomic walks. In contrast, an O(n2) time algorithm for computing an
optimum general walk such that the sum of the distances travelled by the two
guards is minimized has been developed by the authors [19].

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
Int. J. Comput. Geom. & Appl. 5, 75–91 (1995)

2. Bespamyatnikn, B.: An optimal morphing between polylines. Int. J. Comput.
Geom. & Appl. 12, 217–228 (2002)

3. Bhattacharya, B.K., Mukhopadhyay, A., Narasimhan, G.: Optimal Algorithms for
Two-Guard Walkability of Simple Polygons. In: Dehne, F., Sack, J.-R., Tamassia,
R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 438–449. Springer, Heidelberg (2001)

4. Chazelle, B., Guibas, L.: Visibility and intersection problem in plane geometry.
Discrete Comput. Geom. 4, 551–581 (1989)

5. Cook, A.F., Wenk, C.: Geodesic Fréchet distance inside a simple polygon. ACM
Trans. Algo. 7(1) (2010)

6. Corman, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introdution to algorithms,
2nd edn. The MIT Press (2001)

7. Efrat, A., Guibas, L.J., Har-Peled, S., Lin, D.C., Mitchell, J.S.B., Murali, T.M.:
Sweeping simple polygons with a chain of guards. In: Proc., ACM-SIAM Sympos.
Discrete Algorithms, pp. 927–936 (2000)

8. Ghosh, S.K.: Visibility algorithms in the plane. Cambridge University Press (2007)
9. Guibas, L.J., Latombe, J.C., Lavalle, S.M., Lin, D., Motwani, R.: Visibility-based

pursuit-evasion in a polygonal environment. IJCGA 9, 471–493 (1999)
10. Heffernan, P.J.: An optimal algorithm for the two-guard problem. Int. J. Comput.

Geom. & Appl. 6, 15–44 (1996)
11. Icking, C., Klein, R.: The two guards problem. Int. J. Comput. Geom. & Appl. 2,

257–285 (1992)
12. LaValle, S.M., Simov, B., Slutzki, G.: An algorithm for searching a polygonal region

with a flashlight. Int. J. Comput. Geom. & Appl. 12, 87–113 (2002)
13. Lee, J.H., Park, S.M., Chwa, K.Y.: Searching a polygonal room with one door by

a 1-searcher. Int. J. Comput. Geom. & Appl. 10, 201–220 (2000)
14. Suzuki, I., Yamashita, M.: Searching for mobile intruders in a polygonal region.

SIAM J. Comp. 21, 863–888 (1992)
15. Tan, X.: A unified and efficient solution to the room search problem. Comput.

Geom. Theory Appl. 40(1), 45–60 (2008)
16. Tan, X.: An efficient algorithm for the three-guard problem. Discrete Appl.

Math. 158, 3312–3324 (2008)
17. Tan, X.: Sweeping simple polygons with the minimum number of chain guards.

Inform. Process. Lett. 102, 66–71 (2007)
18. Tan, X.: The Two-Guard Problem Revisited and Its Generalization. In:

Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 847–858.
Springer, Heidelberg (2004)

19. Tan, X., Jiang, B.: Optimum Sweeps of Simple Polygons with Two Guards. In:
Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 304–315.
Springer, Heidelberg (2010)

20. Tseng, L.H., Heffernan, P.J., Lee, D.T.: Two-guard walkability of simple polygons.
Int. J. Comput. Geom. & Appl. 8(1), 85–116 (1998)

On Covering Points with Minimum Turns

Minghui Jiang

Department of Computer Science, Utah State University, Logan, UT 84322-4205, USA
mjiang@cc.usu.edu

Abstract. We point out mistakes in several previous FPT algorithms for k-LINK

COVERING TOUR and its variants in R
2, and show that the previous NP-hardness

proofs for MINIMUM-LINK RECTILINEAR COVERING TOUR and MINIMUM-
LINK RECTILINEAR SPANNING PATH in R

3 are incorrect. We then present new
NP-hardness proofs for the two problems in R

10.

1 Introduction

The problem of covering a set of points by a minimum number of lines is one of the
oldest problems in computational geometry. Megiddo and Tamir [16] proved that the
line cover problem is NP-hard even in R2. For the rectilinear version of the problem in
which the lines must be axis-parallel, Hassin and Megiddo [12] observed the problem
in R2 reduces to vertex cover in bipartite graphs and hence is solvable in polynomial
time, and then proved that the problem in R3 in NP-hard. On the other hand, Gaur
and Bhattacharya [10] presented a (d − 1)-approximation algorithm for the problem
in Rd for all d ≥ 3. Also, Langerman and Morin [14] presented FPT algorithms for
the general problem of covering n points in Rd by k hyperplanes with both d and k as
parameters; see also [11,19].

Instead of using lines, we can cover the points using a polygonal chain of line seg-
ments, with the goal of minimizing the number of links or turns in the chain. Given a set
of n points in Rd, a chain of line segments that covers all n points is called a covering
tour if the chain is closed, and is called a spanning path if the chain is open. A cov-
ering tour (or a spanning path) is rectilinear if all segments in the tour (or the path)
are axis-parallel. Thus we have four optimization problems MINIMUM-LINK COV-
ERING TOUR, MINIMUM-LINK RECTILINEAR COVERING TOUR, MINIMUM-LINK

SPANNING PATH, and MINIMUM-LINK RECTILINEAR SPANNING PATH (and corre-
spondingly, four decision problems k-LINK COVERING TOUR, k-LINK RECTILINEAR

COVERING TOUR, k-LINK SPANNING PATH, and k-LINK RECTILINEAR SPANNING

PATH). These problems have been extensively studied in terms of both computational
complexity and combinatorial bounds [15,6,17,2,5,18,4]; see also [9,1,3] for related
results.

We now review previous results on these problems. On the negative side, Kranakis
et al. [15] noted that MINIMUM-LINK SPANNING PATH in R2 is NP-hard (they cred-
ited Clote for this result), and Arkin et al. [2] proved that MINIMUM-LINK COVER-
ING TOUR in R2 is NP-hard. On the positive side, Stein and Wagner [17] presented
an O(log n)-approximation for MINIMUM-LINK COVERING TOUR in R2 (using the
approximation for set cover). Moreover, for the rectilinear versions of the problems,

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 58–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Covering Points with Minimum Turns 59

Stein and Wagner [17] presented a 2-approximation for MINIMUM-LINK RECTILIN-
EAR COVERING TOUR in R2, and Bereg et al. [4] presented a 2-approximation for
MINIMUM-LINK RECTILINEAR SPANNING PATH in R2 and a d2-approximation for
MINIMUM-LINK RECTILINEAR SPANNING PATH in Rd for all d ≥ 3.

In contrast to the NP-hardness of (non-rectilinear) MINIMUM-LINK COVERING

TOUR and MINIMUM-LINK SPANNING PATH in R2, the complexities of MINIMUM-
LINK RECTILINEAR COVERING TOUR and MINIMUM-LINK RECTILINEAR SPAN-
NING PATH in Rd for any fixed d ≥ 2 remain unknown, even for the simplest case
that all points are in the plane and no two points share the same x or y coordinate. In-
terestingly, for this simplest case, Stein and Wagner [17] presented an approximation
algorithm for MINIMUM-LINK RECTILINEAR COVERING TOUR that uses at most 2
more turns than the optimal, and Bereg et al.’s constructive proof for a related combina-
torial bound [4, Theorem 5] implies an approximation algorithm for MINIMUM-LINK

RECTILINEAR SPANNING PATH that uses at most 1 more turn than the optimal.
Recently, Estivill-Castro et al. [7,8] reported NP-hardness proofs for MINIMUM-

LINK RECTILINEAR COVERING TOUR (they called it the RECTILINEAR MINIMUM

LINK TRAVELING SALESMAN PROBLEM) and for MINIMUM-LINK RECTILINEAR

SPANNING PATH (they called it the RECTILINEAR MINIMUM LINK SPANNING PATH

PROBLEM) in R3 [7], and presented several FPT algorithms for k-LINK RECTILINEAR

COVERING TOUR (they call it the RECTILINEAR k-BENDS TRAVELING SALESMAN

PROBLEM) and its variants in R2 [8]. The NP-hardness proofs in [7] are reminiscent
of the NP-hardness proof of Hassin and Megiddo [12] for the related problem of line
cover in R3. The FPT algorithms in [8] are based on standard kernelization and bounded
search tree techniques as in the previous work of Langerman and Morin [14] on line
cover. In this paper, we point out mistakes in several FPT algorithms in [8], and show
that the NP-hardness proofs in [7] are incorrect. We then present new NP-hardness
proofs for MINIMUM-LINK RECTILINEAR COVERING TOUR and MINIMUM-LINK

RECTILINEAR SPANNING PATH in R10.

2 Mistakes in Previous Algorithms

In this section, we point out mistakes in several previous FPT algorithms for k-LINK

COVERING TOUR and its variants in R2 [8].
We first point out a mistake in the FPT algorithm for the problem k-LINK COVERING

TOUR [8, Section 2.1]. This algorithm uses a kernelization procedure to find a set Lk+1

of at most k lines, where each line covers at least k + 1 points, then obtains a reduced
instance of at most 2k+k2 points, including the two extreme points of each line in Lk+1,
and the at most k2 points not covered by any line in Lk+1. The algorithm then finds the
set R of all lines through at least two points in the reduced instance, and enumerates
tours based on the lines in R. The choice of the set R depends on a lemma [8, Lemma 6]
which states that “If a tour T has the minimum number of turns, then every line segment
in T covers at least two points.” The mistake in this algorithm is that it neglected the
possibility that a segment in T may cover at least two points but either none or only
one of these points is included in the reduced instance: in particular, a point may not
be included in the reduced instance if it is on a line in Lk+1 but is not one of the two

60 M. Jiang

extreme points. Consequently, the line supporting this segment may not be included in
R and hence may not be used in enumerating tours. We remark that the algorithm for
the related problem k-LINK RECTILINEAR COVERING TOUR [8, Section 3.1] is more
careful in composing the set R; see [8, Lemma 10 and Lemma 11].

We next point out a mistake in the FPT algorithm for the problem k-LINK COV-
ERING TOUR with the constraint that “one line-segment covers all points on the same
line” [8, Section 2.2]. This algorithm depends on the same lemma [8, Lemma 6], which
was proved by a translation/rotation argument. While the argument is valid for the prob-
lem without constraint, it does not hold for the problem with constraint. We refer to Fig-
ure 1 for a counterexample. It is clear that no tour can cover these 11 points with less
than 4 turns. On the other hand, these 11 points can be covered by a tour with 4 turns
at (3, 0), (−5, 0), (0, 5), and (0,−1), where each segment in the tour covers all points
on the line supporting the segment. The following proposition disproves the lemma [8,
Lemma 6] for the problem with constraint:

Proposition 1. In any tour with 4 turns that covers the 11 points in Figure 1 under the
constraint, there is at least one segment that covers either a single point or no point
at all.

Proof. Observe that each of the three lines y = 0, x = 0, and y − x = 5 covers four
points. We claim that the tour must include one segment from each of these three lines.
Suppose the contrary that one of these three lines does not host a segment, then each
of the four points on this line must be covered by a distinct segment in the tour. It is
easy to verify (by a case analysis) that the four segments through the four points cannot
cover the other seven points.

Now, the segment on the horizontal line y = 0 must contain the four points (−5, 0),
(1, 0), (2, 0), and (3, 0) because of the constraint, so it cannot be consecutive with the
segment on the vertical line x = 0. Thus we can assume, up to symmetry, that the
segment on y = 0 is followed by the segment on y − x = 5, which is then followed

x

y

Fig. 1. A counterexample for the general problem with constraint. The point set consists of 11
points: (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (0, 4), (−5, 0), (−4, 1), (−3, 2), (−2, 3). The
number of turns is 4.

On Covering Points with Minimum Turns 61

by the segment on x = 0. Now consider the fourth segment that closes the tour. This
segment cannot be the segment between the two points (0, 1) and (3, 0) because then it
would miss the point (−3, 2) which is on the same line. Similarly, it cannot be on the
horizontal line y = 0. Indeed this fourth segment can contain at most one point, either
(0, 1) or (3, 0). �

After reducing the point set to a kernel of size at most k2, the algorithm for the problem
with constraint simply enumerates tours based on the lines through at least two points
in the kernel as justified by this lemma; see [8, page 199]. Note that the point set in
our counterexample is already a kernel by their criteria because no line can covered
more than k = 4 points. Since the lemma is no longer valid for the problem with
constraint, the algorithm fails to find a solution to our counterexample illustrated in
Figure 1. (Another mistake in this algorithm is that the enumeration of tours in the
kernel is done with no regard to the points outside the kernel. Consequently, there may
be segments through at least two points in the kernel that miss points on the same line
but outside the kernel. This may lead to invalid tours that violate the constraint.)

There is a similar mistake in the FPT algorithm for the problem k-LINK RECTILIN-
EAR COVERING TOUR with the constraint that “one line-segment covers all points on
the same line” [8, Section 3.2.1]. This algorithm only considers “tours where every line-
segment covers at least one point.” To justify this, [8, page 205, footnote e] argues that
“If a line-segment in the tour covers no points, it can be translated in parallel until it is
placed over one point.” Again, this argument is valid for the problem without constraint
but does not hold for the problem with constraint.

We refer to Figure 2 for a counterexample. Observe that any rectilinear tour that
covers the 16 points under the constraint must contain either four horizontal segments
on the four lines y = j, 0 ≤ j ≤ 3, or four vertical segments on the four lines x = i,
0 ≤ i ≤ 3. Assume the former without loss of generality. Then to connect the four
horizontal segments into a rectilinear tour with 8 turns, we need two vertical segments
with x-coordinates less than 0 and two vertical segments with x-coordinates more than
3; see Figure 2 for one such tour. To translate these four vertical segments until they
cover points would violate the constraint. The algorithm for the rectilinear problem
with constraint [8, Section 3.2.1] always outputs a tour in which every segment covers
at least one point: each segment in the tour either is one of two candidate segments
that cover a point p in the bounded search tree procedure as in [8, Figure 9], or is a

x

y

Fig. 2. A counterexample for the rectilinear problem with constraint. The point set consists of 16
points: (i, j) for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3. The number of turns is 8.

62 M. Jiang

connecting segment incident to at least one extreme point of a candidate segment as
in [8, Figure 10]. Consequently, the algorithm either fails to find a solution, or finds an
invalid solution, to our counterexample illustrated in Figure 2.

3 Mistakes in Previous NP-Hardness Proofs

In this section, we show that the previous NP-hardness proofs for MINIMUM-LINK

RECTILINEAR COVERING TOUR and MINIMUM-LINK RECTILINEAR SPANNING

PATH in R3 [7, Theorem 15 and Theorem 16] are incorrect.
We briefly review the NP-hardness proof for MINIMUM-LINK RECTILINEAR COV-

ERING TOUR in R3 [7, Theorem 15], which is based on a reduction from the NP-hard
problem ONE-IN-THREE 3-SAT. The building block of the construction, illustrated
in [7, Figure 5], consists of 22 line-segments arranged in two groups, with 11 segments
in each group following a similar pattern, where each segment is represented by a large
number of points on it. They claimed that each building block, when considered alone,
admits only two minimum rectilinear tours with 34 turns. These two tours, illustrated
in [7, Figures 6 and 7], can be represented schematically as

• ⊕ ◦ and ◦ � •

where ⊕ and � stand for the two different ways to traverse segments 2–21 depending
on the directions • ◦ or ◦ • in which the two segments 1 and 22 are traversed.

Given a 3-SAT formula with n′ variables and m clauses, the construction includes
one variable gadget for each variable, and one clause gadget for each clause. Each
variable gadget consists of m building blocks; see [7, Figure 9]. They claimed that each
variable gadget, when considered alone, admits only two minimum rectilinear tours
with 34m turns

•
1
⊕ ◦

2
•
2
⊕ ◦ · · · • ⊕ ◦

m
•
m

⊕ ◦
1

and
◦
1
� •

2
◦
2
� • · · · ◦ � •

m
◦
m

� •
1

where each pair
•
i

and ◦
i

of the same index i represent two “adjacent” segments parallel to the z-axis that are
connected by one link parallel to either the x-axis or the y-axis. The building blocks of
each variable gadget are then arranged in the space to pass through the clause gadgets
of all clauses that contain the variable; see [7, Figure 10].

The authors of [7] observed that to connect the separate minimum tours for the vari-
able gadgets into a single complete tour, it takes only two additional turns to merge
any two tours into one. Their example [7, Section 4.4, Figure 11] corresponds to the
following transformation:

•
1
⊕ ◦

1

•
2
⊕ ◦

2

−→
•
1′

⊕ ◦
2′

•
1′

⊕ ◦
2′

On Covering Points with Minimum Turns 63

where the two links 1 and 2 are replaced by two 2-segment chains 1′ and 2′. From this
observation, they concluded in [7, Lemma 14] that the 3-SAT formula has a satisfying
one-in-three assignment if and only if the point set thus constructed admits a rectilinear
tour with 34mn′ + 2(n′ − 1) turns.

We note that the “if” direction of this lemma does not hold. Specifically, its proof
overlooked the fact that there could be many different ways to merge the separate tours,
which may disrupt the repeated pattern in each variable gadget. For example, when
n′ = 3 and m = 2, we can merge the n′ = 3 separate tours into a complete tour with
2(n′ − 1) = 4 additional turns as follows

•
1
⊕ ◦

2
•
2
⊕ ◦

1

•
3
⊕ ◦

4
•
4
⊕ ◦

3

•
5
⊕ ◦

6
•
6
⊕ ◦

5

−→

•
1′

⊕ ◦
2
•
2
⊕ ◦

3′

•
1′

⊕ ◦
4′

◦
3′

� •
5′

•
5′

⊕ ◦
6
•
6
⊕ ◦

4′

where the four links 1, 3, 4, and 5 are replaced by four 2-segment chains 1′, 3′, 4′, and
5′, and the pattern in the second variable gadget is disrupted. Because of the disrupted
patterns, it is possible that the point set admits a tour with 34mn′ +2(n′ − 1) turns but
the 3-SAT formula does not have a satisfying one-in-three assignment.

For a complete counterexample, consider the following 3-SAT formula with n′ = 4
variables and m = 4 clauses:

(u1 ∨ u2 ∨ u3) ∧ (u1 ∨ u2 ∨ u4) ∧ (u1 ∨ u3 ∨ u4) ∧ (u2 ∨ u3 ∨ u4)

A satisfying one-in-three assignment for this formula must have exactly 4 true literals,
one in each clause. But the number of true literals of any assignment is a multiple of
3, since each variable has exactly three positive literals. Thus this formula does not
have any satisfying one-in-three assignment. If the boolean assignment is allowed to be
inconsistent, for example, u1 is true, u3 and u4 are false, but u2 is false in the first two
clauses and is true in the fourth clause, then the formula would have exactly one true
literal in each clause. This corresponds to the following complete tour with a disrupted
pattern in the second variable gadget (for simplicity, only indices of modified links are
shown):

•
a
⊕ ◦ • ⊕ ◦ • ⊕ ◦ • ⊕ ◦

a

◦
b
� • ◦ � • ◦ � •

e
◦
e
� •

b

◦
c
� • ◦ � • ◦ � • ◦ � •

c

◦
d
� • ◦ � • ◦ � • ◦ � •

d

−→

•
a′ ⊕ ◦ • ⊕ ◦ • ⊕ ◦ • ⊕ ◦

e′

◦
b′

� • ◦ � • ◦ � •
a′

•
e′

⊕ ◦
d′

◦
b′

� • ◦ � • ◦ � • ◦ � •
c′

◦
d′

� • ◦ � • ◦ � • ◦ � •
c′

Each of the four chains a′, b′, c′, d′ consists of two segments as in [7, Figure 11], one
parallel to the x-axis and one parallel to the y-axis. The chain e′ consists of three seg-
ments, with an additional middle segment parallel to the z-axis. These five chains to-
gether incur 1 + 1 + 1 + 1 + 2 = 6 = 2(n′ − 1) more turns in addition to the 34mn′

turns of the separate tours of the variable gadgets.

64 M. Jiang

In our counterexample, the separate tours for the variable gadgets are cut open be-
tween building blocks. We did this for a clean presentation. Indeed these separate tours
could be cut open at other places too, in particular, between any two parallel segments
within a building block, such as segments 1 and 2, 2 and 3, 4 and 9, etc.; see [7, Fig-
ure 5]. A divided building block does not function as an atomic unit, and hence loses
its boolean property to encode true or false. This would yield other, more complicated,
counterexamples.

We have shown that the NP-hardness proof for MINIMUM-LINK RECTILINEAR

COVERING TOUR in R3 [7, Theorem 15] does not hold. For the same reason, the NP-
hardness proof for MINIMUM-LINK RECTILINEAR SPANNING PATH in R3 [7, Theo-
rem 16] does not hold either.

4 New NP-Hardness Proofs

In this section, we prove the following theorem:

Theorem 1. MINIMUM-LINK RECTILINEAR COVERING TOUR and MINIMUM-LINK

RECTILINEAR SPANNING PATH in R10 are both NP-hard.

We first prove the NP-hardness of MINIMUM-LINK RECTILINEAR COVERING TOUR

in R10 by a reduction from the NP-hard problem HAMILTONIAN CIRCUIT in grid
graphs [13]. A grid graph is a finite, vertex-induced, subgraph of the infinite graph
with the points of integer coordinates in the plane as vertices, and with an edge between
two vertices if and only the corresponding points have Euclidean distance exactly 1.
Note that a grid graph is completely specified by its vertex set.

Let G be a grid graph specified by a set P of n grid points pi = (xi, yi) ∈ Z2,
1 ≤ i ≤ n, and let E be the set of m edges ej , 1 ≤ j ≤ m. We will construct a
corresponding set Q of n grid points qi = (ai, bi, ci, di, ri, si, ti, ui, vi, wi) ∈ R10,
1 ≤ i ≤ n, such that G has a Hamiltonian circuit if and only if Q has a rectilinear tour
of 8n turns.

For any two points pk and pl, we denote pk ≺xy pl if either xk < xl or xk = xl and
yk < yl, and denote pk ≺xȳ pl if either xk < xl or xk = xl and yk > yl. For each
point pi, we denote by rankxy(pi) and rankxȳ(pi) the ranks of pi in P ordered by ≺xy

and ≺xȳ, respectively. For example, if G is the grid graph in Figure 3, then the values
of rankxy(pi) and rankxȳ(pi) are listed in Table 1.

1311 12 xx

yy

1 1

2

2

3
3

4 45 56 6

7
7 8

8
9

9
10

10

Fig. 3. A grid graph of 10 vertices and 13 edges. Left: vertex indices. Right: edge indices.

On Covering Points with Minimum Turns 65

Table 1. Values of rankxy(pi) and rankxȳ(pi) for the grid graph in Figure 3

i 1 2 3 4 5 6 7 8 9 10

rankxy(pi) 3 6 2 5 8 10 1 4 7 9
rankxȳ(pi) 1 4 2 5 7 9 3 6 8 10

We now describe our construction. For each point qi, 1 ≤ i ≤ n, we set the four
coordinates ri, si, ti, ui to rankxy(pi) and set the two coordinates vi, wi to rankxȳ(pi),
then initialize the four coordinates ai, bi, ci, di to the index i. Next, for each point pi,
and for each edge ej that connects qi to another point qk, we update the four coordinates
ai, bi, ci, di of qi according to the following cases:

1. yk = yi (then xk = xi − 1 or xk = xi + 1)
(a) If xi is odd and xk = xi − 1, or if xi is even and xk = xi +1, set ai ← n+ j.
(b) If xi is odd and xk = xi + 1, or if xi is even and xk = xi − 1, set bi ← n+ j.

2. xk = xi (then yk = yi − 1 or yk = yi + 1)
(a) If yi is odd and yk = yi − 1, or if yi is even and yk = yi + 1, set ci ← n+ j.
(b) If yi is odd and yk = yi + 1, or if yi is even and yk = yi − 1, set di ← n+ j.

This completes the construction. We refer to Figure 3 and Table 2 for an example.

Table 2. Coordinates of qi for the grid graph in Figure 3

i 1 2 3 4 5 6 7 8 9 10

ai 11 11 14 14 16 16 21 21 23 23
bi 1 2 3 15 15 6 7 22 22 10
ci 1 2 17 18 19 20 17 18 19 20
di 12 13 12 13 5 6 7 8 9 10

ri 3 6 2 5 8 10 1 4 7 9
si 3 6 2 5 8 10 1 4 7 9
ti 3 6 2 5 8 10 1 4 7 9
ui 3 6 2 5 8 10 1 4 7 9

vi 1 4 2 5 7 9 3 6 8 10
wi 1 4 2 5 7 9 3 6 8 10

The following property of the construction can be easily verified by a case analysis:

Lemma 1. For any two points qi and qj in Q, if the corresponding points pi and pj are
adjacent in G, then qi and qj share one coordinate along one of the first 4 axes and have
distinct coordinates along the other 9 axes, otherwise they have distinct coordinates
along all 10 axes.

Our reduction is clearly polynomial. To complete the proof of the NP-hardness of
MINIMUM-LINK RECTILINEAR COVERING TOUR in R10, it remains to prove the
following lemma:

Lemma 2. G has a Hamiltonian circuit if and only if Q has a rectilinear tour of 8n
turns.

66 M. Jiang

1
2

3

4 5

6

Fig. 4. Six types of turns

Proof. We first prove the direct implication. Suppose that G has a Hamiltonian circuit
H . We will construct a rectilinear tour of 8n turns for Q. Refer to Figure 4. For each
point pi in P , select a line Li through the corresponding point qi in Q and parallel to
one of the six axes r, s, t, u, v, w according to the following six cases about the two
points pk and pl immediately before and after pi in H :

1. yk = yi = yl (then xk < xi < xl or xl < xi < xk): r for odd xi, s for even xi.
2. xk = xi = xl (then yk < yi < yl or yl < yi < yk): r for odd yi, s for even yi.
3. xi = min{xk, xl} and yi = max{yk, yl}: t
4. xi = max{xk, xl} and yi = min{yk, yl}: u
5. xi = min{xk, xl} and yi = min{yk, yl}: v
6. xi = max{xk, xl} and yi = max{yk, yl}: w

Let Si ⊂ Li be the rectilinear segment containing all points with coordinate between
the coordinates of qk and ql (along the axis parallel to Li). Recall that ri = si = ti =
ui = rankxy(pi) and vi = wi = rankxȳ(pi). By our axis assignment, Si must contain
qi in the interior.

Consider the six types of turns at pi according to the six cases of pk and pl listed
above. Observe that in any Hamiltonian circuit of G, (i) a turn of type 3, 4, 5, or 6
cannot be consecutive with another turn of the same type, (ii) a turn of type 1 or 2 is
consecutive with another turn of the same type only if the middle vertices of the two
turns are adjacent and hence have different parities, and (iii) a turn of type 1 cannot be
consecutive with a turn of type 2. Thus by our choice of axis assignment, Si is parallel
to neither Sk nor Sl.

To connect the n segmentsSi, 1 ≤ i ≤ n, into a rectilinear tour, we add 7n segments.
Specifically, for each point pi and its immediate successor pl in the Hamiltonian circuit
H , we add 7 more segments between the two segments Si and Sl. Note that pi and pl
are adjacent in G. So it follows by Lemma 1 that qi and ql share exactly one coordinate
along one of the first four axes. Recall that the two segments Si and Sl, which contain
the two points qi and ql respectively, are not parallel to each other, but each of them
is parallel to one of the last six axes. To connect the two segments Si and Sl, we use
one segment parallel to each axis except these three axes. For example, suppose that qi
and ql share the same coordinate ai = al = â along the a-axis, and that Si and Sl are
parallel to the r-axis and the w-axis, respectively. Then two segments Si and Sl can be
connected by 7 segments with 8 turns as follows:

On Covering Points with Minimum Turns 67

qi = (ai, bi, ci, di, ri, si, ti, ui, vi, wi) → Si →
(â, bi, ci, di, rl, si, ti, ui, vi, wi)

(â, bl, ci, di, rl, si, ti, ui, vi, wi)

(â, bl, cl, di, rl, si, ti, ui, vi, wi)

(â, bl, cl, dl, rl, si, ti, ui, vi, wi)

(â, bl, cl, dl, rl, sl, ti, ui, vi, wi)

(â, bl, cl, dl, rl, sl, tl, ui, vi, wi)

(â, bl, cl, dl, rl, sl, tl, ul, vi, wi)

(â, bl, cl, dl, rl, sl, tl, ul, vl, wi)

→ Sl → (al, bl, cl, dl, rl, sl, tl, ul, vl, wl) = ql.

Altogether, there are exactly 8n turns in the resulting rectilinear tour for Q.
We next prove the reverse implication. Suppose that Q has a rectilinear tour R of

8n turns. We will find a Hamiltonian circuit in G. Consider any two points qi and qj
in Q that are consecutively covered by R. By Lemma 1, the two points have distinct
coordinates along at least 9 of the 10 axes. As a point moves in a rectilinear segment,
only one of its coordinates changes. Therefore, besides the two segments Si and Sj that
contain qi and qj respectively, the chain of segments connecting qi and qj must include
at least 7 other segments, and hence at least 8 turns. Since R has exactly 8n turns, it
follows that each point in Q must be covered exactly once, and there must be exactly
8 turns between any two points that are covered consecutively. Any two consecutively
covered points qi and qj in Q with 8 turns in between must have distinct coordinates
along at most 9 axes. By our construction, they must correspond to two adjacent points
pi and pj in P . Thus the rectilinear tour R for Q corresponds to a Hamiltonian circuit
in the grid graph G specified by P . �

We have proved the NP-hardness of MINIMUM-LINK RECTILINEAR COVERING TOUR

in R10 by a reduction from HAMILTONIAN CIRCUIT in grid graphs. The same construc-
tion also gives a reduction to MINIMUM-LINK RECTILINEAR SPANNING PATH in R10

with specified starting and ending points from HAMILTONIAN PATH in grid graphs.
Note that an instance of the problem HAMILTONIAN PATH in grid graphs consists of
a grid graph G specified by a set P of n grid points as in the problem HAMILTONIAN

CIRCUIT in grid graphs, and moreover has two special points pi and pj in P marked as
the starting and ending vertices of the Hamiltonian path. For the reduction, we simply
construct the point set Q corresponding to the point set P as before, then specify the
two points qi and qj in Q as the first and last points to be covered by a rectilinear path.
This leads to the following lemma analogous to Lemma 2:

Lemma 3. G has a Hamiltonian path from pi to pj if and only if Q has a rectilinear
spanning path of 8(n− 1) turns from qi to qj .

Proof. The proof is almost identical to that of Lemma 2 except that the spanning path
from qi to qj need not be closed into a tour—this saves 7 segments and hence 8 turns.
Also note the technicality that there is no point before the first point or after the last

68 M. Jiang

point in the Hamiltonian path. Without loss of generality, we categorize such degenerate
cases into either case 1 or case 2 of the six cases illustrated in Figure 4. �

We next prove the NP-hardness of MINIMUM-LINK RECTILINEAR SPANNING PATH

in R10 (without specified starting and ending points). This is achieved by a Turing re-
duction from HAMILTONIAN PATH in grid graphs [13]. Given an instance (P, pi, pj)
of HAMILTONIAN PATH in grid graphs, we first construct a corresponding instance
(Q, qi, qj) of MINIMUM-LINK RECTILINEAR SPANNING PATH (with specified starting
and ending points) in R10, then augment the point set Q to 400 instances of MINIMUM-
LINK RECTILINEAR SPANNING PATH in R10 by enumerating all possible combina-
tions of directions to extend the two end segments of a spanning path of Q from qi to
qj . Since there are 10 axes and each axis has both a positive direction and a negative
direction, there are (10 · 2)2 = 400 combinations of directions. For each combina-
tion of directions, we augment the point set Q to a point set Q′ by adding two dummy
points q′i and q′j . The dummy point q′i is farther than qi in the direction that extends the
end segment at qi; the dummy point q′j is farther than qj in the direction that extends
the end segment at qj . Moreover, q′i (respectively, q′j) has the same coordinate as qi
(respectively, qj) along one of the last 6 axes (recall that all points in Q have distinct
coordinates along each of the last 6 axes), and has a distinct coordinate different from
all others along each of the other 9 axes. We have the following lemma analogous to
Lemma 3:

Lemma 4. G has a Hamiltonian path from pi to pj if and only if at least one of the 400
instances of Q′ has a rectilinear spanning path of 8(n+ 1) turns.

Proof. For the direct implication, suppose that G has a Hamiltonian path from pi to pj .
Then, by Lemma 3, Q has a rectilinear spanning path of 8(n−1) turns from qi to qj . At
least one of the 400 instances of Q′ correctly guesses the directions to extend the two
end segments of Q, and hence needs only 8 turns to connect q′i to qi and another 8 turns
to connect q′j to qj . This yields an extended rectilinear spanning path of 8(n+ 1) turns
from q′i to q′j .

For the reverse implication, the crucial observation is that the two dummy points
q′i and q′j only share coordinates with the two end points qi and qj , respectively. Thus
under the constraint of at most 8 turns between any two consecutively covered points
in a spanning path, we must have q′i and q′j at the two ends, and have qi and qj next to
q′i and q′j , respectively. Then the same argument as in the proof of Lemma 2 completes
the proof. �

Since HAMILTONIAN PATH in grid graphs is also NP-hard [13], this proves the
NP-hardness of MINIMUM-LINK RECTILINEAR SPANNING PATH in R10.

References

1. Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B.: The angular-metric
traveling salesman problem. SIAM Journal on Computing 29, 697–711 (1999)

2. Arkin, E.M., Mitchell, J.S.B., Piatko, C.D.: Minimum-link watchman tours. Information
Processing Letters 86, 203–207 (2003)

On Covering Points with Minimum Turns 69

3. Arkin, E.M., Bender, M.A., Demaine, E.D., Fekete, S.P., Mitchell, J.S.B., Sethia, S.: Optimal
covering tours with turn costs. SIAM Journal on Computing 35, 531–566 (2005)

4. Bereg, S., Bose, P., Dumitrescu, A., Hurtado, F., Valtr, P.: Traversing a set of points with a
minimum number of turns. Discrete & Computational Geometry 41, 513–532 (2009)

5. Collins, M.J.: Covering a set of points with a minimum number of turns. International Journal
of Computational Geometry and Applications 14, 105–114 (2004)

6. Collins, M.J., Moret, B.M.E.: Improved lower bounds for the link length of rectilinear span-
ning paths in grids. Information Processing Letters 68, 317–319 (1998)

7. Estivill-Castro, V., Heednacram, A., Suraweera, F.: NP-completeness and FPT results for
rectilinear covering problems. Journal of Universal Computer Science 15, 622–652 (2010)

8. Estivill-Castro, V., Heednacram, A., Suraweera, F.: FPT-algorithms for minimum-bends
tours. International Journal of Computational Geometry 21, 189–213 (2011)

9. Fekete, S.P., Woeginger, G.J.: Angle-restricted tours in the plane. Computational Geometry:
Theory and Applications 8, 195–218 (1997)

10. Gaur, D.R., Bhattacharya, B.: Covering points by axis parallel lines. In: Proceedings of the
23rd European Workshop on Computational Geometry, pp. 42–45 (2007)

11. Grantson, M., Levcopoulos, C.: Covering a set of points with a minimum number of lines.
In: Proceedings of the 22nd European Workshop on Computational Geometry, pp. 145–148
(2006)

12. Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines.
Discrete Applied Mathematics 30, 29–42 (1991)

13. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamiltonian paths in grid graphs. SIAM Jour-
nal on Computing 11, 676–686 (1982)

14. Langerman, S., Morin, P.: Covering things with things. Discrete & Computational Geome-
try 33, 717–729 (2005)

15. Kranakis, E., Krizanc, D., Meertens, L.: Link length of rectilinear Hamiltonian tours in grids.
Ars Combinatoria 38, 177–192 (1994)

16. Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Opera-
tions Research Letters 1, 194–197 (1982)

17. Stein, C., Wagner, D.P.: Approximation Algorithms for the Minimum Bends Traveling Sales-
man Problem. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 406–421.
Springer, Heidelberg (2001)

18. Wagner, D.P.: Path Planning Algorithms under the Link-Distance Metric. Ph.D. thesis, Dart-
mouth College (2006)

19. Wang, J., Li, W., Chen, J.: A parameterized algorithm for the hyperplane-cover problem.
Theoretical Computer Science 411, 4005–4009 (2010)

On Envy-Free Pareto Efficient Pricing

Xia Hua

School of Physical and Mathematical Sciences , Nanyang Technological University, Singapore
huax0005@e.ntu.edu.sg

Abstract. In a centralized combinatorial market, the market maker has a num-
ber of items for sale to potential consumers, who wish to purchase their preferred
items. Different solution concepts (allocations of items to players) capture differ-
ent perspectives in the market. Our focus is to balance three properties: revenue
maximization from the market maker’s perspective, fairness from consumers’
perspective, and efficiency from the market’s global perspective.

Most well-known solution concepts capture only one or two properties, e.g.,
Walrasian equilibrium requires fairness for consumers and uses market clearance
to guarantee efficiency but ignores revenue for the market maker. Revenue max-
imizing envy-free pricing balances market maker’s revenue and consumer’s fair-
ness, but ignores efficiency.

In this paper, we study a solution concept, envy-free Pareto efficient pricing,
that lies between Walrasian equilibrium and envy-free pricing. It requires fairness
for consumers and balances efficiency and revenue. We study envy-free Pareto
efficient pricing in two domains, unit-demand and single-minded consumers, and
analyze its existence, computation, and economic properties.

1 Introduction

In a centralized combinatorial market, a market maker sells a set of m items to n po-
tential consumers, where each consumer i has a valuation function vi(·) measuring the
maximum amount that i is willing to pay for different combinations of items. As an
outcome of the market, the market maker specifies a price vector p = (pj) for all items
and an allocation vector X = (Xi) which indicates the subset of items that every con-
sumer i obtains. That is, for the given outcome (p, X), consumer i obtains subset Xi

with payment p(Xi) =
∑

j∈Xi
pj to the market maker; therefore his utility is defined

to be vi(Xi)− p(Xi).
The centralized combinatorial market is one of the most fundamental market models

that has received a lot of attention in the literature [17,9]. It characterizes a number of
applications, especially with the development of the Internet, e.g., Amazon’s electronic
market, Google and Yahoo’s advertising markets, to name a few. A key question in
such marketplaces is that for the given input information vi(·), what kind of outcomes
should the market output? In other words, what solution concepts should be selected
in different applications with different focuses? Solution concepts play a critical role
and finding them is the central question in economics and social choices. The focus of
the current paper is to study different solution concepts in the centralized combinatorial
marketplaces.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 70–81, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Envy-Free Pareto Efficient Pricing 71

Before presenting the considered solution concepts, we will first examine a few crit-
ical properties that different parties would consider in the market.

– Envy-freeness (or fairness). It is natural to assume that all consumers are utility
maximizers, i.e., for any given price vector, they would want to purchase a subset
of items that gives them the maximum utilities. Envy-freeness captures such self-
interested considerations of consumers and requires that no consumer envies any
other allocation for the given market prices. In other words, every consumer’s util-
ity is maximized at his corresponding allocation, and therefore, is happy with the
outcome of the market.

– Revenue. The market maker, on the other hand, would like to obtain as much rev-
enue as possible, which is the total payment received from all consumers. There-
fore, while consumers prefer to pay less to increase their utilities, the market maker’s
interest is revenue maximization.

– Social welfare. While consumers and the market maker have contrary interests in
terms of payments, social welfare, defined to be the total utility of all participants
(i.e., both consumers and the seller) in the market, unifies the interests of the whole
system. Social welfare is one of the most important factors to evaluate an outcome
of a system from a global point of view. Most seminal designs and benchmarks,
e.g., VCG mechanism [22,7,13] and market equilibrium [23], are guaranteed to
have solutions that maximize social welfare.

– Pareto efficiency. It is another condition that captures the overall performance of
a system. Given a Pareto efficient solution, there is no way to improve someone’s
utility (either that of a consumer or of the seller in our combinatorial market) with-
out hurting any other participants. Pareto efficiency is weaker than social welfare
maximization since it only gives a locally optimal solution to maximize social wel-
fare.

The above properties characterize different aspects of different solution concepts. Ide-
ally, we would like to have one that satisfies all these properties. However, due to the
contrary interests amongst different parties in the market, such a solution does not ex-
ist in general. Therefore, any feasible solution concept can only have a partial focus on
each of these properties. We will consider the following solution concepts in the current
paper.

Walrasian Equilibrium (WE). An outcome is called a Walrasian equilibrium if it satis-
fies, in addition to envy-freeness, a market clearance condition which says that every
leftover item must be priced at zero. Walrasian equilibrium is one of the most impor-
tant solution concepts in economics and has been studied extensively in the literature. It
ensures individual fairness and overall market efficiency. In particular, the seminal first
fundamental welfare theorem says that every Walrasian equilibrium maximizes social
welfare; this implies that it is Pareto efficient as well.

However, it is well known that a Walrasian equilibrium may not exist in general; and
even if one is guaranteed to exist (for example, when the valuation functions satisfy the
gross substitutes condition [16]), the revenue it generates could be very small even for
a revenue maximizing Walrasian equilibrium (RWE). These two issues largely limit the
applicability of Walrasian equilibrium. For example, the market maker would like to

72 X. Hua

Table 1. Our results (last row) for unit-demand consumers

Fairness Social welfare Pareto efficiency Revenue Computation Existence
RWE

√ √ √
small easy yes

REF
√ × × large hard yes

REP
√ √ √

medium hard yes

Table 2. Our results (last row) for single-minded consumers

Fairness Social welfare Pareto efficiency Revenue Computation Existence
RWE

√ √ √
small hard no

REF
√ × × large hard yes

REP
√ × √

medium hard no

seek to optimize his own objective, i.e., revenue maximization, which is one of the key
business concerns in many applications. From this perspective, Example 1 shows that
(revenue maximizing) Walrasian equilibrium is not a good solution concept in some
applications.

Revenue Maximizing Envy-Freeness (REF). The limitation of Walrasian equilibrium
relies on the requirement of the market clearance condition. In applications like Google
and Yahoo’s advertising markets, the market makers may hold some of their inventories
unsold (i.e., priced at infinity) to achieve their own objectives. Removing the market
clearance condition leads to the solution concept of envy-freeness (EF), which is guar-
anteed to always exist. Finding an envy-free pricing solution that maximizes revenue
(REF) for the seller has attracted a lot of attention recently in computer science [15,1,5]:
The optimization problem is NP-hard to solve even when all consumers only desire one
item or a fixed subset of items; approximation algorithms have been considered for
special cases.

A remarkable property of a REF pricing solution is that there are instances in which
the REF revenue can be arbitrarily larger than that of the RWE.

Example 1. (REVENUE COMPARISON: RWE vs REF). There are two consumers i1, i2
and two items j1, j2. Both consumers want to get only one item, and their valuations are
vi1j1 = k, vi1j2 = k + 2, and vi2j1 = 0 and vi2j2 = 1. In an optimal RWE solution, i1
wins j2 and i2 wins j1 at a price vector (0, 2). In an optimal REF solution, however, we
may charge a price vector (k, k + 2) with the same allocation. Hence, the total revenue
is increased from 2 to k+2. (Note that in the REF solution, we are free to set any large
price for item j1, whereas in the RWE, its price has to be 0 by the market clearance
condition.) Hence, the difference between an optimal RWE solution and REF solution
can be arbitrarily large.

While REF does generate the largest possible revenue provided the fairness condition, it
may not maximize social welfare; and further, it may not even be Pareto efficient, which
is arguably the weakest solution concept to ensure overall performance of a system.

On Envy-Free Pareto Efficient Pricing 73

Example 2 (REF is not Pareto efficient). There are two consumers i1, i2 and two items
j1, j2. Again both consumers only want to get one item, and their valuations are vi1j1 =
100, vi1j2 = 10, and vi2j1 = 180 and vi2j2 = 100, as the following figure (A) shows:

consumers items

i1

i2

j1

j2

100

10

180

100

(A)

i1

i2

j1

j2

prices

180

200

(B) Optimal REF

i1

i2

j1

j2

100

100

(C) Pareto Domination of (B)

i1

i2

j1

j2

100

20

(D) Optimal REP

In this example, an optimal REF solution is given by (B) with total revenue 180 (note
that we can set j2 with any large price to ensure that i2 is happy with his allocation j1
at price 180). However, this is Pareto dominated by the solution in (C) where both i1
and i2 obtain the same utility 0 and the market maker improves his revenue from 180 to
200. Note that the solution given by (C) is not envy-free. For this example, the optimal
REP (defined below) is shown in (D).

Revenue Maximizing Envy-Free Pareto Efficiency (REP). Social welfare maximization,
and the bottom line, Pareto efficiency, are critical solution conditions for a market to
have healthy and long-term development. To capture these conditions, in particular,
Pareto efficiency, we introduce a solution concept, envy-free Pareto efficiency (EP),
which requires both envy-freeness and Pareto efficiency. A revenue maximizing envy-
free Pareto efficient (REP) outcome is one that maximizes revenue among all envy-free
Pareto efficient solutions. The figure (D) in Example 2 gives an optimalREP solution for
the given instance, which is different from the optimalREF solution shown in figure (B);
this implies that an algorithm for finding a REF solution will not suffice for finding a
REP solution.

By the definitions of the three solution concepts and the first fundamental theorem,
we know that EP lies between WE and EF, that is, the solution space has the following
structure:

WE ⊆ EP ⊆ EF

This further implies that the total revenue generated by REP also sits between RWE and
REF, i.e.,

RWE ≤ REP ≤ REF

where both inequalities can be strict.

74 X. Hua

Including Pareto efficiency strikes a balance between system efficiency and revenue:
REF solutions yield good revenue, but, as mentioned earlier, the overall performance of
the system is not addressed well. On the other hand, WE, while fair and efficient, is not
practical because the revenue of the market maker can be arbitrarily small. Our solution
concept EP, in addition to satisfying fairness (in the form of envy-freeness), addresses
both overall performance (in the form of Pareto efficiency) and revenue (which is
sandwiched between the revenues guaranteed by REF and WE solutions).

Our Results

We will study these solution concepts in two domains that are, arguably, the most ap-
plicable: unit-demand consumers (where each consumer desires exactly one item, as
shown in Example 1 and 2) and single-minded consumers (where each consumer de-
sires a fixed subset of items).

For a market with unit-demand consumers, the existence of an EP solution follows
from the existence of a WE immediately. Further, in addition to satisfying fairness and
efficiency, we show that EP (and therefore REP) has the property that it maximizes
social welfare (Theorem 2). This property of EP solutions is quite remarkable because
it does not hold for REF solutions. Hence, our solution concept possesses all the nice
economic properties that WE has. On the other hand, while approximating the revenue
of an REP solution is NP-hard (Theorem 4), we show that for a special case which
includes most instances of advertising markets, an optimal REP can be computed in
polynomial time (Theorem 5).

For a market with single-minded consumers, our solution concept, REP, aligns with
WE and REF. Similar to the complexity of determining the existence of a WE [4], we
show that determining the existence of an EP solution is NP-hard. Even if an EP solu-
tion is guaranteed to exist, computing one that maximizes revenue is NP-hard as well
(Theorem 6); this has the same computational complexity as REF [15]. These hardness
results do not rule out the applicability of the solution concepts, but rather, illustrate
their computational features. This is similar to Nash equilibrium, which is extensively
applied in game theory, but shown to be hard to compute [8,11,6].

Please note that in this paper, due to space limit, we do not include most of the proofs.
We summarize our results, and compare EP with WE and EF in Tables 1 and 2. Our

results imply that EP captures fairness, and balances the tradeoff between efficiency and
revenue. Therefore, it provides a good alternative for solution concepts in combinatorial
markets.

Related Work

Envy-freeness and Pareto efficiency are among the most well-studied solution concepts
in economics. For instance, Pazner and Schmeidler [18] gave examples in which no
Pareto efficient allocation is envy-free. Varian [21] considered general utility functions
for the buyers and showed that if preferences of consumers are monotonic, then a fair
allocation exists. For Walrasian equilibrium, Shapley and Shubik [20] showed that a
solution always exists in unit-demand settings. The result was later improved to a more
general class of functions [10,12,19]. Kelso and Crawford [16], as well as Gul and

On Envy-Free Pareto Efficient Pricing 75

Stacchetti [14], proposed conditions (e.g., gross substitutes and single improvements)
in which a Walrasian equilibrium always exists. More discussions are referred to the
textbooks, e.g., [17,9]. We note the major difference between our work and the literature
is that we consider the centralized seller as a participant of the market as well; thus, in
our model the market is composed of n+ 1 entities.

From a computational point of view, Bouveret and Lang [2] studied the complexity
of deciding whether there exists a Pareto efficient and envy-free allocation in several
contexts when preferences are represented compactly. Guruswami et al. [15] showed
that a revenue maximizing envy-free solution is NP-hard to approximate, even for
unit-demand and single-minded consumers. The revenue maximizing envy-free pric-
ing problem was later shown by Briest [3] that it is even NP-hard to approximate
within a ratio of O(logε n) for some ε > 0. Our results, on the other hand, suggest that
REP, as an alternative solution concept, could be more applicable from computational
perspective.

2 Model and Solution Concepts

In a marketplace, we have a set A of n consumers and a single seller (i.e., the market
maker) with a set B of m items, where each item has unit supply. For every consumer
i and subset of items S ⊆ B, there is a value vi(S) ≥ 0 denoting the valuation that
i obtains from S. We assume that vi(∅) = 0. An output of the market is given by a
price vector p = (pj)j∈B where pj is the price of item j, and an allocation vector
X = (Xi)i∈A where Xi is the subset of items that i obtains. For any S ⊆ B, its
price is defined to be the sum of the prices of its elements, i.e., p(S) =

∑
j∈S pj .

Given an output (p, X), the utility of every consumer i is defined to be ui(p, X) =
vi(Xi)−p(Xi). We assume all consumers are utility-maximizers, i.e., they would prefer
outcomes with larger utilities.

In general, there could be many different outputs (p, X). A crucial study in eco-
nomics and social choice is the selection of solution concepts that satisfy different cri-
teria. All outputs considered in the current paper are assumed to be feasible (i.e., Xi ∩
Xi′ = ∅ for any i �= i′) and individually rational (i.e., ui(p, X) = vi(Xi)−p(Xi) ≥ 0).
One of the most notable solution concepts is that of Walrasian Equilibrium, which is
defined formally as below.

Definition 1. (ENVY-FREENESS AND WALRASIAN EQUILIBRIUM). An outcome
(p, X) is called a Walrasian Equilibrium (WE) if it satisfies the following two
conditions:

– (Market clearance) Every unsold item is priced at zero.
– (Envy-freeness) For any consumer i and any subset of items S ⊆ B, vi(Xi) −
p(Xi) ≥ vi(S)− p(S).

The first condition above is a market clearance condition, which requires that all unal-
located items are priced at zero (or at any given reserve price). The second is a fairness
condition, which says that at the given price vector, the utility of every consumer is
maximized by the corresponding allocation, i.e., everyone is happy with his allocation.

76 X. Hua

While envy-freeness captures the interests of consumers, the seller, on the other hand,
would like to maximize the total amount of payment received (i.e., revenue), defined by
r(p, X) =

∑
i∈A p(Xi) for a given outcome (p, X). This motivates the following

solution concepts:

– Revenue maximizing Walrasian equilibrium (RWE): As the name implies, it is a
Walrasian equilibrium that offers the most revenue to the seller.

– Revenue maximizing envy-free solution (REF): These are envy-free solutions with
maximum total revenue. Note that we do not require market clearance condition
here, i.e., it is possible that an unallocated item has a positive price.

Although a (revenue maximizing) envy-free solution captures the interests of both the
consumers and the seller to some extent, as Example 2 shows, it may not be Pareto
efficient, which is defined formally as follows.

Definition 2 (Pareto efficiency). An outcome (p, X) is said to Pareto dominate (or
just dominate) another outcome (p′, X ′) if (i) for all i ∈ A, ui(p, X) ≥ ui(p

′, X ′);
(ii) r(p, X) ≥ r(p′, X ′), and (iii) at least one of the above inequalities is strict. We
say that an outcome (p, X) is Pareto efficient if it is not Pareto dominated by any other
outcome.

In the current paper, we will consider the following solution concept, combining rev-
enue maximization (from the seller’s perspective), envy-freeness (from the consumers’
perspective), and Pareto efficiency (from the market’s perspective).

Definition 3. (REVENUE MAXIMIZING ENVY-FREE PARETO EFFICIENCY). An envy-
free Pareto efficient (EP) solution is one that is both envy-free and Pareto efficient.
A revenue maximizing envy-free Pareto efficient (REP) solution is one with maximum
revenue among all EP solutions.

Another important property considered in the current paper is social welfare, defined as
below.

Definition 4 (Social welfare). Given an outcome (p, X), the social welfare is defined
to be the sum of utilities of all participants in the system, i.e.,

∑
i∈A ui(p, X)+r(p, X).

Observe that the utility of every consumer i is ui(p, X) = vi(Xi) − p(Xi) and the
utility of the seller is

∑
i∈A p(Xi). Hence, in our setting social welfare is equal to∑

i∈A vi(Xi), which is independent of the selected price vector. A feasible allocation
that maximizes social welfare is called optimal, i.e., it has the maximum total valua-
tions

∑
i∈A vi(Xi). Therefore, an outcome maximizes social welfare if and only if the

corresponding allocation is optimal.

3 Unit Demand Consumers

We say a consumer i has unit demand if vi(S) = 0 for any S ⊆ B with |S| ≥ 2.
That is, i is interested in obtaining at most one item. In this section, we assume all
consumers have unit demand and denote vij = vi({j}). Note that when all consumers
have unit demand, any feasible allocation X = (Xi)i∈A corresponds to a matching
between consumers and items.

On Envy-Free Pareto Efficient Pricing 77

3.1 Pareto Efficiency and Social Welfare

In this section, we will examine the relation between Pareto efficiency and social wel-
fare maximization (hence, optimal allocation) in the market with unit-demand con-
sumers.

We begin with a useful lemma.

Lemma 1. If (p, X) is not Pareto efficient, then there is another solution (p′, X ′) that
dominates (p, X), but the strict improvement is restricted to the seller’s revenue. That
is, ui(p

′, X ′) = ui(p, X) for all consumers i ∈ A and r(p′, X ′) > r(p, X).

Given the above characterization, we can show the following result.

Theorem 1. Given an outcome (p, X), if X is an optimal allocation, then (p, X) is
Pareto efficient.

We comment that the reverse direction of the above claim does not hold, i.e., Pareto
efficiency may not imply optimal allocation. For example, there are two consumers
i1, i2, and one item j1, with vi1j1 = 10 and vi2j1 = 8. Assigning the item to i2 at price
0 is not an optimal allocation, but it is Pareto efficient since it is not dominated by any
other outcome given that the utility of i2 should be at least 8. That is, optimal allocation
is only a sufficient condition to ensure Pareto efficiency.

However, as the next theorem implies, given envy-freeness, optimal allocation is also
a necessary condition for Pareto efficiency. We note that the following result is known
for WE, but we consider the solution concept EP with n+ 1 participating entities.

Theorem 2. For any envy-free solution (p, X), if X is not an optimal allocation, then
(p, X) cannot be Pareto efficient. Therefore any EP solution has the maximum social
welfare and the corresponding allocation is optimal.

The above claim (with proof deferred to the full version) implies that if we enforce both
envy-freeness and Pareto efficiency, the solution is guaranteed to have maximum social
welfare. We have the following (main) conclusion.

Corollary 1. In a market with unit demand consumers, given envy-freeness, an output
is Pareto efficient if and only if it maximizes social welfare.

3.2 Determining Pareto Efficiency

In this section, we consider the following question: Given a market with unit demand
consumers, can we determine whether an output (p, X) is Pareto efficient or not? While
optimality of an allocation ensures Pareto efficiency (Theorem 1), the converse is not
necessarily true. Therefore, our approach does not entail Theorem 1.

Next we will give an algorithm to determine Pareto efficiency of any given market
output (p, X). For simplicity, denote r = r(p, X) and ui = ui(p, X). Let N be
the number of consumers with positive utility ui, i.e., N = |{i ∈ A | ui > 0}|.
We construct a weighted bipartite graph G(p, X) = (A,B;E) as follows: For each
consumer i and each item j, if vij−ui ≥ 0, then we add an edge connecting i and j with

78 X. Hua

weight wij = vij −ui. Let W be a sufficiently large number, e.g., W = n2 ·maxij vij .
Further, we define another graph G∗(p, X) = (A,B;E) derived from G(p, X) where
the only difference is on the weights of edges: In graph G∗, the weight of every edge
(i, j) ∈ E is defined to be w∗

ij = wij +W if ui > 0 and w∗
ij = wij if ui = 0. If the

total weight of the maximum matching in the graph G∗(p, X) exceeds NW + r, the
algorithm reports that the market output (p, X) is not Pareto efficient; otherwise, it is
Pareto efficient.

Theorem 3. The total weight of the maximum matching in the graphG∗(p, X) exceeds
NW + r if and only if the market output (p, X) is not Pareto efficient. Therefore, the
above algorithm determines whether (p, X) is Pareto efficient or not in polynomial time.

3.3 Complexity of Computing REP

In this section, we consider the problem of computing a revenue maximization solution
that is both envy-free and Pareto efficient (i.e., an REP solution) in a unit-demand mar-
ket. The following claim says that the problem in general does not admit a polynomial
time algorithm. (Indeed, it does not admit a (1 + ε) approximation algorithm for an
arbitrarily small ε > 0.)

Theorem 4. For any constant c > 1, there is no polynomial time algorithm for comput-
ing an EP solution with revenue greater than 1/c times the revenue of an REP solution,
unless P=NP.

The proof is a gap preserving reduction from independent set problem.
Although the above hardness result shows that in general we cannot expect a poly-

nomial time algorithm, the following claim says that for certain special cases, where
all items have positive prices in a revenue maximizing WE solution, we can compute an
optimal REP solution efficiently. Note that in most applications like advertising markets
and housing markets, the items on sale are quite competitive and almost surely all items
will be priced positively in a RWE solution.

Theorem 5. Given a market with unit demand consumers, let (p, X) be an optimal
RWE solution. If we have pj > 0 for all items, then (p, X) is an optimal REP solution
as well. Hence, REP can be computed in polynomial time.

4 Single-Minded Consumers

We say a consumer i is single-minded if there is a subset of items Si ⊆ B, called the
demand set of i, such that vi(S) = vi(Si) > 0 if Si ⊆ S and vi(S) = 0 otherwise.
That is, i is only interested in obtaining a subset containing Si. In this section, we
assume that all consumers are single-minded and denote vi(Si) = vi. Note that when
all consumers are single-minded, we can assume without loss of generality that every
consumer i either wins subset Si or wins nothing. Hence, we can encode an allocation
X = (xi)i∈A to be a (0, 1)-indicator vector where xi = 1 implies that i wins subset Si

in X . Note that for any consumers i �= i′ with xi = xi′ = 1, we must have Si∩Si′ = ∅

On Envy-Free Pareto Efficient Pricing 79

in any feasible allocation since all items have unit supply. Given any solution (p, X),
the revenue of the seller can be denoted by r(p, X) =

∑
i∈A xi · p(Si).

Our goal is again to consider envy-free solutions which are Pareto efficient (EP) as
well, and find one that maximizes the revenue among all such solutions (REP). Surpris-
ingly, in a market with single-minded consumers, an EP solution may not exist at all;
and even if one exists, an REP may not.

Example 3 (Non-existence of EP). There are three items j1, j2, and j3 and six con-
sumers ik, k = 1, . . . , 6. The first three consumers i1, i2, and i3 are interested in
S1 = {j1, j2}, S2 = {j2, j3} and S3 = {j3, j1}, each with valuation 2. The remaining
consumers i4, i5, and i6 are interested in items j1, j2,, and j3, respectively, each with
valuation 0.7. Suppose consumer i1 is a winner in an envy free solution. Consumer i6
is the only possible other winner. However, if i6 is a winner, the solution will not be
envy free as either i2 or i3 will have a valuation that exceeds the price of their demand
set. Using similar argument for other cases, we can conclude that any envy free solution
will have at most one winner.

Consider any solution that sells at most two items. Clearly, we can increase the rev-
enue by selling the third item to the appropriate consumer ik, where k ∈ {4, 5, 6}.
Therefore, the solution that sells to at most two items cannot be Pareto efficient. This
immediately implies that no Pareto efficient solution can have less than two winners.
Therefore, in this example, there is no EP solution.

Example 4 (Non-existence of REP when EP exists). There are three items j1, j2, j3 and
four consumers i1, . . . , i4 with demand subsets S1 = {j1, j2}, S2 = {j2, j3}, S3 =
{j3, j1}, and S4 = {j1, j2, j3}, and valuations vi1 = vi2 = vi3 = 2 and vi4 = 2.5. It
is easy to see that at most one consumer can be the winner. Further, it can be seen that
i4 cannot be the winner given envy-freeness since there is no solution to the equation
system:

pj1 + pj2 + pj3 ≤ vi4 = 2.5,

pj1 + pj2 ≥ vi1 = 2,

pj2 + pj3 ≥ vi2 = 2,

pj3 + pj1 ≥ vi3 = 2.

Since i1, i2, i3 are symmetric, assume without loss of generality that i1 is the winner and
pj3 = ∞. Then i2, i3, i4 all get utility zero. Due to Pareto efficiency, we cannot charge
i1 at price p(S1) = pj1 + pj2 = vi1 = 2, since otherwise it is dominated by another
solution where i4 wins all three items at a total price of 2.5 (the seller obtains more
revenue in this solution). Therefore, to guarantee envy-freeness and Pareto efficiency,
we have to charge i1 at a price strictly less than vi1 = 2. Hence, any price vector
(pj1 , pj2 ,∞) where pj1 + pj2 < 2 gives an EP solution. However, in this example,
there is no exact REP solution since the revenue of the seller can be arbitrarily close to
2. This example further implies that even if an EP solution exists, it may not maximize
social welfare since i4 should be the winner in the optimal allocation.

80 X. Hua

Our computational results, however, are quite negative. In particular, we show in
Theorem 6 that, in addition to computing an optimal REP solution, even testing Pareto
efficiency of a given solution and determining the existence of one EP solution is hard.

Theorem 6. In a market with single-minded consumers, the following results hold:

– Determining whether a given solution (p, X) is Pareto efficient is NP-complete.
– Determining the existence of an EP solution is NP-complete.
– Given the existence of an EP solution, computing (a revenue maximizing) one is

NP-hard.

Despite the hardness results in Theorem 6, in a manner similar to Theorem 5, we present
natural cases where optimal REP solutions can be easily computed.

Theorem 7. Suppose a market with single minded consumers that admits an optimal
RWE solution (p, X) in which pj > 0 for all items j. Then, (p, X) is an optimal REF
solution as well.

Theorem 8. Given a market with single minded consumers, let (p, X) be an optimal
REF solution. If we have pj > 0 for all items, then (p, X) is an optimal REP solution
as well.

Theorems 7 and 8 immediately lead to the following corollary.

Corollary 2. Given a market with single minded consumers, let (p, X) be an optimal
RWE solution. If we have pj > 0 for all items, then (p, X) is an optimal REP solution
as well.

Finally, we note that the instances constructed in our reductions in Theorem 6 are some-
what artificial. Therefore, while the hardness results hold, we expect more natural in-
stances that occur in real world scenarios to allow EP solutions.

Acknowledgments. I am grateful for John Augustine and Ning Chen for many helpful
discussions and suggestions.

References

1. Balcan, M., Blum, A., Mansour, Y.: Item Pricing for Revenue Maximization. In: EC 2008,
pp. 50–59 (2008)

2. Bouveret, S., Lang, J.: Efficiency and Envy-Freeness in Fair Division of Indivisible Goods:
Logical Representation and Complexity. In: IJCAI 2005, pp. 935–940 (2005)

3. Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L., Damgård, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008,
Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg (2008)

4. Chen, N., Deng, X., Sun, X.: On Complexity of Single-Minded Auction. Journal of Computer
and System Sciences 69(4), 675–687 (2004)

5. Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal Envy-Free Pricing with Metric Substitutabil-
ity. SIAM Journal on Computing 40(3), 623–645 (2011)

On Envy-Free Pareto Efficient Pricing 81

6. Chen, X., Deng, X., Teng, S.H.: Settling the Complexity of Computing Two-Player Nash
Equilibria. Journal of the ACM 56(3) (2009)

7. Clarke, E.H.: Multipart Pricing of Public Goods. Public Choice 11, 17–33 (1971)
8. Conitzer, V., Sandholm, T.: Complexity Results about Nash Equilibria. In: IJCAI 2003,

pp. 765–771 (2003)
9. Cramton, P., Shoham, Y., Steinberg, R.: Combinatorial Auctions. MIT Press (2006)

10. Crawford, V., Knoer, E.: Job Matching with Heterogeneous Firms and Workers. Economet-
rica 49(2), 437–450 (1981)

11. Daskalakis, C., Goldberg, P., Papadimitriou, C.: The complexity of computing a Nash equi-
librium. SIAM Journal on Computing 39(1), 195–259 (2009)

12. Demange, G., Gale, D.: The Strategy of Two-Sided Matching Markets. Econometrica 53,
873–888 (1985)

13. Groves, T.: Incentives in Teams. Econometrica 41, 617–631 (1973)
14. Gul, F., Stacchetti, E.: Walrasian Equilibrium with Gross Substitutes. Journal of Economic

Theory 87, 95–124 (1999)
15. Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On Profit-

Maximizing Envy-Free Pricing. In: SODA 2005, pp. 1164–1173 (2005)
16. Kelso, A., Crawford, V.: Job Matching, Coalition Formation, and Gross Substitutes. Econo-

metrica 50, 1483–1504 (1982)
17. Mas-Colell, A., Whinston, M., Green, J.: Microeconomic Theory. Oxford University Press

(1995)
18. Pazner, E., Schmeidler, D.: A Difficulty in the Concept of Fairness. Rev. Econ. Studies 41,

441–443 (1974)
19. Quinzii, M.: Core and Competitive Equilibria with Indivisibilities. International Journal of

Game Theory 13, 41–60 (1984)
20. Shapley, L., Shubik, M.: The Assignment Game I: The Core. International Journal of Game

Theory 1(1), 111–130 (1971)
21. Varian, H.: Equity, Envy, and Efficiency. Journal of Economic Theory 9, 63–91 (1974)
22. Vickrey, W.: Counterspeculation, Auctions and Competitive Sealed Tenders. Journal of

Finance 16, 8–37 (1961)
23. Walras, L.: Elements of Pure Economics, 1877. Harvard University Press (1954)

Online Pricing for Multi-type of Items

Yong Zhang1,2,�, Francis Y.L. Chin2,��, and Hing-Fung Ting2,���

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China
2 Department of Computer Science, The University of Hong Kong, Hong Kong

{yzhang,chin,hfting}@cs.hku.hk

Abstract. In this paper, we study the problem of online pricing for
bundles of items. Given a seller with k types of items, m of each, a
sequence of users {u1, u2, ...} arrives one by one. Each user is single-
minded, i.e., each user is interested only in a particular bundle of items.
The seller must set the price and assign some amount of bundles to each
user upon his/her arrival. Bundles can be sold fractionally. Each ui has
his/her value function vi(·) such that vi(x) is the highest unit price ui is
willing to pay for x bundles. The objective is to maximize the revenue of
the seller by setting the price and amount of bundles for each user. In this
paper, we first show that the lower bound of the competitive ratio for this
problem is Ω(log h+ log k), where h is the highest unit price to be paid
among all users. We then give a deterministic online algorithm, Pricing,
whose competitive ratio is O(

√
k · log h log k). When k = 1 the lower and

upper bounds asymptotically match the optimal result O(log h).

1 Introduction

Economy, a very important facet in the world, has received deep and wide study
by scientists from economics, mathematics, and computer science for many years.
In computer science, researchers often build theoretical models for some eco-
nomic events, then solve the problems by using techniques derived from algo-
rithm design, combinatorial optimization, randomness, etc.

In this paper, we study the problem of item pricing, which is one of the most
important problems in computational economics. Item pricing contains two kinds
of participators: the seller and the user. The seller has some items, which will
be sold to the users at some designated prices; the user will buy the items at an
acceptable price. The objective is to maximize the total revenue of the seller by
assigning items to the users. To achieve this target, the prices of the items must
be sold dynamically, i.e., the prices of items are different for different users, at
different times, in different locations, with different amounts, ... If the designated
price is higher than the expected price of a user, this user will reject the item;
otherwise, this user will accept the item.

� Research supported by NSFC (No. 11171086) and Shenzhen Internet Industry
Development Fund under grant No.JC201005270342A.

�� Research supported by HK RGC grant HKU 7117/09E.
��� Research supported by HK RGC grant HKU-7171/08E.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 82–92, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Online Pricing for Multi-type of Items 83

Formally speaking, given a seller with k types of items, i1, i2, ..., ik, the
amount of each type is m, thus, the total amount of items is m ·k. A sequence of
users {u1, u2, ...} come one by one, each user is single-minded, i.e., each user is
interested only in a particular bundle of items. For example, user u’s bundle of
interest is Iu = {i1, i2} (or Iu = {1, 2}). The bundles can be sold fractionally, but
the amount of each item in the sold bundle must be the same. Still considering
the above example, the seller may sell a half bundle to u, i.e., half i1 and half i2.
The seller must set the unit price and sell a certain number of bundles to each
user on his/her arrival. In this paper, for ease of computation and comparison,
the unit price is defined on items, not on bundles, even though one can convert
to the other easily. For example, if the seller sells 1.5 bundles Iu = {1, 2} to u at
price 3, then the unit price is 1. Actually, if we define the unit price on a bundle,
the results in this paper still hold, because the unit price on bundle I can be
regarded as |I| times the unit price on an item. However, defining the unit price
on an item is more convenient since different bundles can be compared easily.
Each ui has his/her value function vi(·) such that vi(x) is the highest unit price
ui is willing to pay for x bundles. Generally, the more bundles a user buys, the
lower unit price he expects. Thus, in this paper, we assume that vi(x) is non-
increasing. Let h be the highest value among all vi(x), i.e., vi(x) ≤ h for all i
and x. When user u comes with his bundle of interest Iu, suppose that the seller
sets the item unit price p and assigns bundles to u. If p > vi(), then user u
cannot accept this price, and no bundle is bought by u. Otherwise, p ≤ vi(),
and u accepts this price and pays p · · |Iu| to the seller.

To understand this model clearly, consider the example as shown in Figure 1.
The seller has k = 3 types of items, and each type contains m = 2 items. There
are three single-minded users who want to buy these items. User 1’s bundle of
interest is I1 = {1, 2}; the unit prices at which user 1 is willing to buy his bundle
are 5 and 5 for buying 1 and 2 bundles respectively, i.e., v1(1) = v2(1) = 5. User
2’s bundle of interest is I2 = {2, 3}; the unit prices at which user 2 is willing
to buy his bundle are 6 and 4 for buying one and two bundles respectively, i.e.,
v2(1) = 6 and v2(2) = 4. User 3’s bundle of interest is I3 = {1, 3}; the unit prices
at which user 3 is willing to buy his bundle are 7 and 4 for buying one and two
bundles respectively, i.e., v3(1) = 7 and v3(2) = 4.

amount of items amount of items

u
n
it
p
ri
ce

u
n
it
p
ri
ce

0 0m1

p1

m2

p2

value function of u1 value function of u1

Fig. 1. An example of online pricing for multi items

84 Y. Zhang, F.Y.L. Chin, and H.-F. Ting

When user 1 comes, to maximize the seller’s revenue on this user, the seller
will assign 2 bundles of I1 = {1, 2} at unit price 5 to him. When user 2 and
user 3 come, there is no item 1 and item 2 left. In this case, user 2 and user
3 cannot buy anything and the total revenue of the seller is 20. However, the
optimal strategy can achieve a total revenue of 36 by assigning one bundle of I1
at unit price 5 to user 1, one bundle of I2 = {2, 3} at unit price 6 to user 2, and
one bundle of I3 = {1, 3} at unit price 7 to user 3.

We consider the online version of this problem, i.e., before the i-th user comes,
the seller has no information of the j-th user for j ≥ i. To measure the perfor-
mance of online algorithms, competitive analysis is generally used, i.e., to com-
pare the outputs between the online algorithm and the optimal offline algorithm
(which assumes all information is known in advance). Given the seller with item
set B and a user sequence σ, let A(B, σ) and O(B, σ) denote the total revenue
received by the seller according to the online algorithm A and the optimal offline
algorithm O, respectively. The competitive ratio of the algorithm A is

RA = sup
B,σ

O(B, σ)

A(B, σ)
.

The pricing problem for items has been well studied in the past few years. Both
multi-type and single-type items have been considered. Previous work has mainly
focused on two supply models: the unlimited supply model [1, 2, 6, 10, 12] where
the number of each type of item is unbounded and the limited supply model
[1, 3–5, 7, 11, 13, 14] where the number of each type of item is bounded by some
value. As for the users, there are several users’ behaviors studied, including
single-minded [7–10, 12, 14] (each user is interested only in a particular set of
items), unit-demand [2–6, 12, 14] (each user will buy at most one item in total)
and envy free [1, 5, 7, 10, 12] (after the assignment, no user would prefer to
be assigned a different set of items with the designated prices, loosely speaking,
each user is happy with his/her purchase). Most of the previous studies have
considered a combination of the above scenarios (e.g. envy-free pricing for single-
minded users when there is unlimited supply). In [15], Zhang et al. considered
a more practical and realistic model in the sense that the seller has a finite
number of items (one type of item with limited supply) and users can demand
more than one items and arrive online. They proved that the lower bound of
the competitive ratio is O(log h), moreover, they gave a deterministic online
algorithm with competitive ratio O(log h), where h is the highest unit price.

In this paper, besides generalizing the problem to more than one type of
items and bundles of items required by users, the idea used in our proposed
online pricing algorithm is rooted by considering the amount of remaining items
in additional to the user’s value function in determining the price and amount of
items to be sold. The proof in establishing the upper bound is more complicated
by employing a fine price partition. The result in this paper can also match the
optimal result O(log h) [15] asymptotically when there is only one type of item
(k = 1) in the model.

Online Pricing for Multi-type of Items 85

This paper is organized as follows: Section 2 proves the lower bound of the
competitive ratio for this variant to be Ω(log h + log k); in Section 3, a deter-
ministic online algorithm whose competitive ratio is O(

√
k log h log k) is given.

2 Lower Bound of the Competitive Ratio

In this part, our target is to show the lower bound of the competitive ratio of
the online pricing problem for multi-type of items is Ω(log h+ log k), where h is
the highest unit price and k is the number of types.

To easily analyze the lower bound, we assume that h = 2� and k = 2j , i.e.,
log h and log k are both integers. The lower bound is proved step by step. In each
step, the adversary sends a user to the seller. In this proof, all value functions
are flat, particularly, the value function v(x) is some power of 2 for all x.

In the first log k steps, the value function v(x) = 1.

Step 1
The adversary sends user u1 to the seller, with bundle of interest {1}.
If the seller assigns x1 bundles to u1 such that x1 ≤ m/(log h + log k), the

adversary stops. In this case, the revenue of the seller is at mostm/(log h+log k),
while the maximal revenue is m by assigning all m bundles to u1. Thus, the ratio
in this case is at least Ω(log h+ log k).

Otherwise, the seller assigns more than m/(logh+ log k) bundles to u1. The
adversary will send the next user to the seller.

Step 2
The adversary sends user u2 to the seller, with bundle of interest {1, 2}.
If the seller assigns x2 bundles to u2 such that x1 + x2 ≤ 2m/(logh+ log k),

the adversary stops. In this case, the revenue of the seller is at most x1 + 2x2 ≤
3m/(logh+ log k), while the optimal revenue is 2m by assigning all i1 and i2 to
user u2. Thus, the ratio in this case is at least Ω(log h+ log k).

Otherwise, the seller assigns x2 bundles to u2 such that x1+x2 > 2m/(logh+
log k).

...
Step : (1 < ≤ log k)

The adversary sends user u� to the seller, with bundle of interest {1, 2�−2 +
1− −2�−1}.

If the seller assigns x� bundles to u� such that
∑�

t=1 xt ≤ ·m/(logh+ log k),
the adversary stops. In this case, the revenue achieved by the seller is

x1 + 2x2 + ...+ (2�−2 + 1)x� (1)

Lemma 1. If the adversary stops at step , the total revenue is at most

(2�−1 + − 1)m

log h+ log k
.

86 Y. Zhang, F.Y.L. Chin, and H.-F. Ting

Proof. From previous steps, we have

t∑
p=1

xp ≥ tm

log h+ log k
(1 ≤ t <),

thus,
�∑

p=t+1

xp ≤ (− t)m

log h+ log k
(1 ≤ t <).

Therefore, Equation (1) achieves the maximal value (2�−1+�−1)m
log h+log k when each xp

equals to m/(log h+ log k). �
The optimal revenue is (2�−2 +1)m by assigning all m bundles to u�. Therefore,
in this case, the competitive ratio is still bounded by Ω(log h+ log k).

Otherwise, the adversary sends the next user to the seller.
...

In the following log h steps (step log k+1 ≤ ≤ log k+ log h), the bundles of
interest are {1, k/2+1−−k}, and the value functions are v(x) = 2�−log k at step .

Step log k + 1
The adversary sends user ulog k+1 to the seller.

If the seller assigns xlog k+1 bundles to ulog k+1 such that
∑log k+1

�=1 x� ≤ (log k+
1)m/(logh + log k), the adversary stops. In this case, the revenue achieved by
the seller is

x1 + 2x2 + ...+ (k/2 + 1)xlog k + 2 · (k/2 + 1)xlog k+1 (2)

Similar to the proof in Lemma 1, we can find that the revenue achieved is at
most

(3k/2 + log k + 1)m

log k + log h
.

The optimal revenue is (k+2)m by assigning allm bundles to ulog k+1. Therefore,
in this case, the competitive ratio is still bounded by Ω(log h+ log k).

Otherwise, the adversary sends the next user to the seller.
The analysis on Steps until Step log k+log h− 1 are similar to the above one.

Step log k + log h
The adversary sends user ulog k+log h to the seller and the seller assigns

xlog k+log h bundles to the user. Since all bundles of interest include i1, thus,
the total number of all assigned bundles is no more than m. Thus, the adversary
must stop at this step. Similar to the previous analysis, we can say that the ratio
between the optimal solution and the revenue achieve by the online algorithm is
at least O(log k + log h).

Therefore, we have the following conclusion.

Theorem 1. For the online pricing for multi-type of items, the lower bound of
the competitive ratio is Ω(log h+ log k).

Online Pricing for Multi-type of Items 87

3 Online Algorithm

To maximize the revenue of the seller on a particular user u with bundle of
interest I, a straightforward idea is finding unit price p and amount of bundles
b such that p is acceptable when buying b bundles, and b · p is maximized. If we
assign b bundles with unit price p to u, the revenue is b ·p · |I|, which is maximal.

In our algorithm, we assign unit price 2� (≥ 0) to each user. In this way, we
have no need to consider all possible prices, and we will show that the perfor-
mance doesn’t be affected too much. Let (b, p) be the assignment such that b·p·|I|
is maximal. W.l.o.g., suppose 2i ≤ p < 2i+1, note that v(x) is non-increasing,
we have v−1(2i+1) ≤ b ≤ v−1(2i). Thus,

b · p ≤ v−1(2i) · p ≤ v−1(2i) · 2i+1 = 2 · v−1(2i) · 2i.

If we choose the unit price equals to some power of 2, (v−1(2i), 2i) is a candidate
of the assignment, which is at least half of the maximal value.

In our algorithm, we partition the amount of each type of item into �log h�
stages, from stage 1 to stage �log h�. The amount of items in stage i can be only
assigned with unit price 2i−1. Furthermore, partition the items in each stage
into �log k� + 1 levels, from level 0 to level �log k�. For type i, items in level
can be only assigned to users such that type i is in the user’s bundle of interest
and the size of the bundle is within [2�−1+1, 2�]. For example, a user u’s bundle
of interest is {1, 2, 3, 4}, thus, in our algorithm, we choose items from level 2 in
some stage to satisfy this user.

Let δs,ti denote the available amount of items of type i in stage s level t.
Initially, δs,ti = m/(�logh�(�log k�+ 1).

Next, we will formally describe the pricing algorithm for multi-type of items.

Algorithm 1. Pricing

1: Let I be the bundle of interest of the coming user u.
2: Let � = �log |I |� � � denotes the level which may assign items to user i.
3: Let xj be the largest amount of bundles that user i is willing to buy given unit

price 2j and satisfying xj ≤ m.
4: Let yj = min{xj ,mini∈I{δj+1,�

i }}.
5: Let s = argmaxj yj · 2j such that yj > 0.
6: if no such s exists then
7: Assign 0 bundles to user u.
8: else
9: Set the unit price p = 2s.
10: Assign ys bundles to user u.
11: δs+1,�

i = δs+1,�
i − ys for all i ∈ I .

12: end if

According to the algorithm Pricing, if a user u with bundle of interest I cannot
be satisfied, that means in each acceptable stage s, at least one type of item in
I at level �log |I| are all assigned to other users.

88 Y. Zhang, F.Y.L. Chin, and H.-F. Ting

For a user sequence {u1, u2, ...}, let ALG denote the total revenue received
from the algorithm Pricing, let OPT be the revenue achieved by the optimal
algorithm. Next, we give the competitive ratio of the algorithm Pricing, i.e.,
prove the upper bound of the ratio between OPT and ALG.

After the processing of Pricing, for each type of item, some levels in some
stages are full, the others still contain some available items. Classify all levels
into two classes: Lf

i denotes the levels of type i which are full, i.e., if δs,ti = 0,

level t in stage s of type i belongs to Lf
i ; L

n
i denotes the levels of type i which

contain available items, i.e., δs,ti > 0 for the corresponding levels.
Compare the assignments from the optimal algorithm and Pricing, we also

partition the assignments from the optimal algorithm into two classes according
to Lf

i and Ln
i . In the optimal solution, consider the assignment to a user with

bundle of interest I, suppose the unit price p ∈ [2�, 2�+1). In the assignment from

Pricing, if there exist i ∈ I such that δ
�+1,�log |I|�
i = 0, i.e., this level belongs to

Lf
i , we say the revenue of this assignment from the optimal algorithm belongs to

Of . Otherwise, if for any i ∈ I, δ
�+1,�log |I|�
i > 0 in the assignment w.r.t. Pricing,

the revenue of this assignment belongs to On.
Moreover, we partition the assignment according to the size of the bundle. If

|I| ≤
√
k, we say the size of the bundle is small, otherwise, the size is large. The

revenue of the assignment from the optimal algorithm is further partitioned into
four classes: Os

f , O
l
f , O

s
n, and Ol

n, where Os
f and Os

n denote the revenue from

small bundles, Ol
f and Ol

n denote the revenue from large bundles. Note that

Os
f + Ol

f = Of and Os
n + Ol

n = On. Next, we compare these four classes with
ALG respectively.

Lemma 2.
Os

f

ALG ≤ O(
√
k · log h log k).

Proof. By the optimal algorithm, consider an assignment A of a bundle I with
unit price p ∈ [2�, 2�+1). Assume that |I| ≤

√
k and in the assignment from

Pricing, at least one type i ∈ I at level �log |I| in stage +1 is full. The optimal
revenue of the assignment A is

p ·m · |I| (3)

From the algorithm Pricing, the revenue at level �log |I| in stage + 1 of type
i is

2� ·m/(�logh�(�log k�+ 1)) (4)

The ratio between (3) and (4) is

O(
√
k · log h log k).

Suppose by the optimal algorithm, more than one assigned small bundles, I1,
I2, ..., Ij with unit prices p1, p2, ..., pj satisfy pj′ ∈ [2�, 2�+1) for 1 ≤ j′ ≤ j and
all �log |Ij′ | (1 ≤ j′ ≤ j) are equal, if these bundles share an item i such that
in the assignment from Pricing, level �log |I1| in stage +1 of item i is full, the
total revenue for these bundles in the optimal solution is at most

max{pj′} ·m ·max{|Ij′ |} 1 ≤ j′ ≤ j (5)

Online Pricing for Multi-type of Items 89

Compare the value in Equation (5) with the revenue from Pricing at level �log |I|
in stage + 1 of type i (Equation (4)), the ratio is also

O(
√
k · log h log k).

From the optimal pricing, all assignments in Os
f can be partitioned into parts,

each part contains the assignments mentioned above. Since the total revenues
on such full levels is a lower bound of ALG, we have

Os
f

ALG
≤ O(

√
k · log h log k).

�

Lemma 3.
Ol

f

ALG ≤ O(
√
k · log h log k).

Proof. By the optimal algorithm, consider some amount of bundle I with unit
price p ∈ [2�, 2�+1) is assigned to a user. Assume that |I| >

√
k and there exist

an item i ∈ I such that in the assignment from Pricing, level �log |I| in stage
+1 of item i is full. Note that in Pricing, items in this level can be only assigned
to bundles with size in between (2�log |I|�−1, 2�log |I|�], thus, the total revenue on
level �log |I| in stage + 1 is at least

2� ·m · 2�log |I|�−1

�log h�(�log k�+ 1)
(6)

Note that the optimal revenue for bundles with unit price p ∈ [2�, 2�+1) is at
most

2�+1 ·m · k (7)

The ratio between the above two equations is O(
√
k · log h log k). Combine all

revenues in Ol
f , we can say that this lemma is true. �

Lemma 4.
Os

n

ALG ≤ O(
√
k · log h log k).

Proof. Again, consider an assigned bundle I from the optimal algorithm, such
that the revenue on I belongs to Os

n and the unit price is p ∈ [2�, 2�+1). The
algorithm Pricing chooses the unit price 2j such that 2j · yj is maximized. Note
that (2�, y�) is also a candidate for satisfying bundle I.

– If Pricing assigns (2�, y�), since after the assignment, δ
�+1,�log I�
i > 0 for all

i ∈ I, the revenue achieved on I by Pricing is at least half of the optimal
revenue on this bundle.

– Otherwise, Pricing assigns (2j , yj) such that j �= . From the choosing
criteria, 2j · yj ≥ 2� · y�.

• If δ
�+1,�log I�
i > y� for all i ∈ I, from above analysis, we can say the

revenue on I by Pricing is at least half of the optimal revenue on this
bundle.

90 Y. Zhang, F.Y.L. Chin, and H.-F. Ting

• Otherwise, δ
�+1,�log I�
i = y� for some i ∈ I. Since 2j · yj ≥ 2� · y�, the

revenue achieved on I by Pricing plus the current revenue on level �log I
in stage + 1 of type i is at least

2� ·m
�log h�(�log k�+ 1)

(8)

This is because if we assign (2�, y�) for this bundle, level �log I in stage
+ 1 of type i is full.
Similar to the analysis in Lemma 2, suppose more than one assigned
small bundles I1, I2, ... with unit price p1, p2, ... within [2�, 2�+1) and
the sizes of these bundles are all within (2�log |I1|�−1, 2�log |I1|�], if all these
bundles share type i, the total revenue on such bundles by the optimal
scheme is at most

2�+1 ·m · 2�log |I1|� (9)

The ratio between the above two terms is O(
√
k · log h log k).

Mapping the assignments of Os
n to the corresponding assignments of Pricing

described above, each assignment by Pricing is counted at most TWICE. Com-
bining the above analysis, we can say that

Os
n

ALG
≤ O(

√
k · log h log k).

�

Lemma 5.
Ol

n

ALG ≤ O(
√
k · log h log k).

Proof. The proof of this lemma is similar to the proofs in Lemma 3 and Lemma
4. Consider an assigned bundle I from the optimal algorithm, such that the
revenue on I belongs to Ol

n and the unit price is p ∈ [2�, 2�+1). The algorithm
Pricing chooses the unit price 2j such that 2j · yj is maximized. Since any level
�log |I| in stage + 1 of item i ∈ I is not full, (2�, y�) is a candidate.

– If Pricing assigns (2�, y�), since after the assignment, δ
�+1,�log I�
i > 0 for all

i ∈ I, the revenue achieved on I is at least half of the optimal revenue on
this bundle.

– Otherwise, Pricing assigns (2j , yj) such that j �= . From the choosing
criteria, 2j · yj ≥ 2� · y�.

• If δ
�+1,�log I�
i > y� for all i ∈ I, from above analysis, we can say the

revenue on I by Pricing is at least half of the optimal revenue on this
bundle.

• Otherwise, δ
�+1,�log I�
i = y� for some i ∈ I. Since 2j · yj ≥ 2� · y�, the

revenue achieved on I by Pricing plus the current revenue on level �log I
in stage + 1 is at least

2� ·m · 2�log |I|�−1

�log h�(�log k�+ 1)
(10)

Online Pricing for Multi-type of Items 91

This is because if we assign (2�, y�) for this bundle, level �log I in stage
+1 of type i is full, and the size of each bundle on this level is at least
2�log |I|�−1.

From the optimal scheme, the total revenue on assignments from unit
price in between [2�, 2�+1) and bundle size in between (2�log |I|�−1, 2�log |I|�]
is at most

2�+1 ·m · k (11)

The ratio between the above two terms is O(
√
k · log h log k)

Mapping the revenue of assignments in Ol
n to the assignment by Pricing, from

the above analysis, each assignment is counted at most twice. Thus,

Ol
n

ALG
≤ O(

√
k · log h log k).

�
Now we give the main conclusion of this paper.

Theorem 2. The competitive ratio of the algorithm Pricing is at most

O(
√
k · log h log k).

Proof. From the definition of Os
f , O

l
f , O

s
n, and Ol

n, these four classes are disjoint.
Note that if a requested bundle cannot be satisfied, it must belongs to Os

f or

Ol
f . Combining Lemma 2 until Lemma 5, we can say that the competitive ratio

of the algorithm Pricing is O(
√
k · log h log k). �

References

1. Balcan, N., Blum, A., Mansour, Y.: Item pricing for revenue maximization. In:
Proc. of the 9th ACM Conference on Electronic Commerce (EC 2008), pp. 50–59
(2008)

2. Bansal, N., Chen, N., Cherniavsky, N., Rurda, A., Schieber, B., Sviridenko, M.:
Dynamic pricing for impatient bidders. ACM Transactions on Algorithms 6(2)
(March 2010)

3. Briest, P.: Uniform Budgets and the Envy-Free Pricing Problem. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 808–819. Springer, Heidelberg
(2008)

4. Briest, P., Krysta, P.: Buying cheap is expensive: hardness of non-parametric multi-
product pricing. In: Proceedings of the Eighteenth Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, New Orleans, Louisiana, January 07-09, pp. 716–725
(2007)

5. Chen, N., Deng, X.: Envy-Free Pricing in Multi-item Markets. In: Abramsky, S.,
Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 418–429. Springer, Heidelberg (2010)

6. Chen, N., Ghosh, A., Vassilvitskii, S.: Optimal envy-free pricing with metric
substitutability. In: Proc. of the 9th ACM Conference on Electronic Commerce
(EC 2008), pp. 60–69 (2008)

92 Y. Zhang, F.Y.L. Chin, and H.-F. Ting

7. Cheung, M., Swamy, C.: Approximation Algorithms for Single-minded Envy-free
Profit-maximization Problems with Limited Supply. In: Proc. of 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2008), pp. 35–44 (2008)

8. Elbassioni, K., Raman, R., Ray, S., Sitters, R.: On Profit-Maximizing Pricing
for the Highway and Tollbooth Problems. In: Proceedings of the 2nd Interna-
tional Symposium on Algorithmic Game Theory, Paphos, Cyprus, October 18-20,
pp. 275–286 (2009)

9. Elbassioni, K., Sitters, R., Zhang, Y.: A Quasi-PTAS for Profit-Maximizing Pricing
on Line Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 451–462. Springer, Heidelberg (2007)

10. Fiat, A., Wingarten, A.: Envy, Multi Envy, and Revenue Maximization. In:
Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 498–504. Springer, Heidel-
berg (2009)

11. Grigoriev, A., van Loon, J., Sitters, R.A., Uetz, M.: How to Sell a Graph: Guidelines
for Graph Retailers. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 125–136.
Springer, Heidelberg (2006)

12. Guruswami, V., Hartline, J., Karlin, A., Kempe, D., Kenyon, C., McSherry, F.: On
Profit-Maximizing Envy-Free Pricing. In: Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 1164–1173 (2005)

13. Im, S., Lu, P., Wang, Y.: Envy-Free Pricing with General Supply Constraints. In:
Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 483–491. Springer, Heidelberg
(2010)

14. Krauthgamer, R., Mehta, A., Rudra, A.: Pricing commodities. Theoretical Com-
puter Science 412(7), 602–613 (2011)

15. Zhang, Y., Chin, F.Y.L., Ting, H.-F.: Competitive Algorithms for Online Pric-
ing. In: Fu, B., Du, D.-Z. (eds.) COCOON 2011. LNCS, vol. 6842, pp. 391–401.
Springer, Heidelberg (2011)

Algorithms with Limited Number

of Preemptions for Scheduling
on Parallel Machines�

Yiwei Jiang, Zewei Weng, and Jueliang Hu��

Department of Mathematics, Zhejiang Sci-Tech University,
Hangzhou 310018, China

mathjyw@yahoo.com.cn, hujlhz@163.com

Abstract. In previous study on comparing the makespan of the sched-
ule allowed to be preempted at most i times and that of the optimal
schedule with unlimited number of preemptions, the worst case ratio
was usually obtained by analyzing the structures of the optimal sched-
ules. For m identical machines case, the worst case ratio was shown to
be 2m/(m+ i+ 1) for any 0 ≤ i ≤ m− 1[1], and they showed that LPT
algorithm is an exact algorithm which can guarantee the worst case ratio
for i = 0. In this paper, we propose a simpler method which is based on
the design and analysis of the algorithm and finding an instance in the
worst case. It can obtain the worst case ratio as well as the algorithm
which can guarantee this ratio for any 0 ≤ i ≤ m− 1, and thus we gen-
eralize the previous results. We also make a discussion on the trade-off
between the objective value and the number of preemptions. In addition,
we consider the i-preemptive scheduling on two uniform machines. For
both i = 0 and i = 1, we present the algorithms and give the worst-case
ratios with respect to s, i.e., the ratio of the speeds of two machines.

Keywords: i-preemptive scheduling, approximation algorithm, worst
case ratio, makespan.

1 Introduction

In the preemptive scheduling, we are given a sequence J = {J1, J2, . . . , Jn} of
n independent jobs with positive sizes p1, p2, . . . , pn, which must be scheduled
onto m parallel machines M1,M2, · · · ,Mm. We identify the jobs with their sizes.
At any time, each machine can handle at most one job and each job can be pro-
cessed by at most one machine. Preemption is allowed, which means that each
job may be preempted into a few pieces. These pieces are to be assigned to pos-
sibly different machines in non-overlapping time slots. Generally, the number of

� Supported by the National Natural Science Foundation of China (11001242,
11071220) and Zhejiang Province Natural Science Foundation of China (Y6090175,
Y6090554).

�� Corresponding author.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 93–104, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

94 Y. Jiang, Z. Weng, and J. Hu

preemptions is not bounded and the costs of preempting a job may be neglected.
However, in many practical systems, there arise costs with job preemptions such
as the costs of moving a job off a machine before it is finished and the costs of
saving information about the job while it is waiting to be resumed[1]. Hence, it is
extremely important to consider the algorithms for the scheduling with limited
number i of preemptions.

The optimal makespan for the preemptive scheduling on m identical
machines is

max{ max
1≤i≤n

pi,

∑n
i=1 pi
m

} (1)

which can be obtained by McNaughton’s wrap around rule[8] with no more than
m− 1 preemptions.

For the preemptive scheduling on m uniform machines, let si denote the speed
of machine Mi and assume that s1 ≥ s2 ≥ · · · ≥ sm and p1 ≥ p2 ≥ · · · ≥ pm.
Let Sj =

∑j
i=1 si and Pj =

∑j
i=1 pi. Then the optimal makespan is

max{ max
1≤j<m

{Pj

Sj
}, Pn

Sm
}. (2)

Liu and Yang[10] obtained the above result only for the case s1 ≥ 1 and
si = 1, 1 < i ≤ m. For the general case, Horvath et al.[5] obtained the opti-
mal schedule with as many as n2(m − 1) preemptions. Gonzalez and Sahni[3]
presented an algorithm which generates optimal schedule with at most 2(m− 1)
preemptions.

In the i-preemptive scheduling, it is allowed to preempt the jobs at most i
times. For a job sequence J , let Ci∗(J) (or in short Ci∗) denote the optimal
objective function value in the i-preemptive scheduling and let C∗(J)(or in short
C∗) denote the optimal objective function value in preemptive scheduling where
the number of preemptions is unbounded. In this paper, we consider the objective
to minimize the makespan, i.e., the maximum completion time after scheduling
all jobs. A natural question is to find the least upper bound Ri on the ratio of
Ci∗ and C∗, that is,

Ri = inf{R|C
i∗(I)

C∗(I) ≤ R, ∀ I}.

For a job system with arbitrary precedence constraints, Liu[7] conjectured that
R0 = 2m

m+1 when i = 0, i.e., the ratio the optimal nonpreemptive makespan
versus the optimal preemptive makespan. Coffman and Garey[2] showed Liu’s
conjecture when m = 2, i.e, R0 = 4/3. Hong and Leung[6] considered the cases
for unit execution time (UET) and also for tree-structured job systems.

For the problem in which a set of n independent jobs has to be scheduled on
m identical machines, we can obtain Ri = 1 when i ≥ m− 1 from the result by
McNaughton[8].

For 0 ≤ i ≤ m− 2, Braun and Schmidt[1] showed

Ri =
2m

m+ i+ 1
,

Algorithms with Limited Number of Preemptions 95

based on the analysis of the structure of the optimal i-preemptive schedule.
They further showed that the Largest Processing Time (LPT)[4] algorithm can
guarantee the worst case ratio when i = 0, that is, the makepan of the schedule
generated by LPT is not greater than R0C

∗ for any instance. Klonowska et al.[9]
generalized the results by Braun and Schmidt[1]. They considered the worst case
ratio of the optimal makespans for i and j preemptions, 0 ≤ i < j ≤ m − 1. In
the case of m ≥ i+ j + 1, the worst case ratio is

2
�j/(i+ 1)�+ 1

�j/(i+ 1)�+ 2
.

For the m < i+ j +1, they presented a formula based on the Stern-Brocot tree.
Most existing papers considered the ratio Ri by analyzing the structures of the

optimal schedules. In this paper, we study the ratio Ri from a new perspective.
That is, it can be obtained by analyzing the worst case ratio of an approximation
algorithm and finding an instance in worst case. The worst case ratio of an
approximation algorithm A is defined as

RA = inf{R|C
A(I)

C∗(I) ≤ R, ∀ I},

where CA(I) (or in short CA) denotes the objective value produced by A, and
C∗(I) (or in short C∗) denotes the optimal preemptive objective value. More
precisely, if there is a number α such that we can achieve the following two
things:

a. Designing an approximation algorithm A which is allowed to preempt at most
i times and analyzing its worst case ratio RA ≤ α;

b. Finding an instance I∗ such that the ratio Ci∗(I∗)
C∗(I∗) ≥ α.

Thus we can conclude that the ratio Ri = α. This is our method to obtain
the worst case ratio of the makespan of the optimal i-preemptive schedule and
that of the optimal preemptive schedule with unlimited preemptions. It will be
found later that this method is more tersely than the previous ones. What is
more important is that we obtain the ratio Ri as well as an algorithm which can
generate a schedule with the makespan no more than Ri times of the optimal
preemptive schedule for any instance. Especially, it will generate an optimal
schedule for the instance in the worst case.

In[1], Braun and Schmidt showed that LPT algorithm is an exact algorithm
which can guarantee the worst case ratio Ri when i = 0. In this paper, we
will present an algorithm for i-preemptive scheduling on m identical machines,
which can guarantee the worst case ratio Ri =

2m
m+i+1 for any 0 ≤ i ≤ m− 1. In

addition, we will discuss the trade-off between the objective of minimizing the
makespan and the number of preemptions.

We will also consider the i-preemptive scheduling on two uniform machines.
Without loss of generality, it is assumed that the speeds of two machines M1

and M2 are s and 1, respectively. From the results by Gonzalez and Sahni[3], we
only need to consider two cases of i = 0 and i = 1. We will show that

96 Y. Jiang, Z. Weng, and J. Hu

R0 =

⎧⎨
⎩

2(s+1)
3s , for 1 ≤ s < 4/3,

s+1
2 , for 4/3 ≤ s < 2,

s+1
s , for s ≥ 2,

and

R1 =
2s2 + 2s− 1

2s2 + 1
.

The rest of the paper is organized as follows. Sections 2 and 3 consider the algo-
rithms for i-preemptive scheduling on m identical machines and on two uniform
machines, respectively. Finally, Section 4 presents some concluding remarks.

2 i-Preemptive Scheduling on m Identical Machines

In this section, we first present an algorithm which is allowed to preempt at
most i number of preemptions and show its worst case ratio is 2m

m+i+1 . Together
with the instance given by Braun and Schmidt[1], it is easy to obtain that the
desired Ri =

2m
m+i+1 . Next, we will consider the problem that how many times

of preemptions are needed at least in the worst case if the makespan should not
be greater than α times of C∗ for a given number α.

We now present our algorithm LPT−iP based on McNaughton’s wrap around
rule and LPT rule. The algorithm splits at most i jobs and each of them are split
into two pieces and scheduled on two distinct machines in the first i machines.
The other m − i machines are used to non-preemptively schedule jobs by the
LPT rule. Formally, the algorithm LPT − iP can be described as follows.

Algorithm LPT − iP :

1. Sort all the jobs such that p1 ≥ p2 ≥ · · · ≥ pn and compute the optimal

makespan C∗ = max{p1,
∑n

i=1 pi

m } by (1).

2. Find the job pk such that
∑k

i=1 pi ≥ iRiC
∗ and

∑k−1
i=1 pi < iRiC

∗. Split pk
into two pieces p1k and p2k with p1k = iRiC

∗ −
∑k−1

i=1 pi.
3. For the job p1, p2, · · · , pk−1, p

1
k, schedule them in turn on the first i machines

by the McNaughton’s wrap around rule.
4. For the job p2k, pk+1, · · · , pn, schedule them non-preemptively on the last

m− i machines by the LPT rule.
5. Move the job p2k to be the first job on the machine that processes it.

Remark. We claim that the above algorithm LPT − iP is well defined. That
is, the time slots assigned to the different portions of each preempted job never
overlap. Denoted by qj the last job processed on Mj , 1 ≤ j ≤ i− 1. Noting that
qj is possibly preempted in the algorithm, see Figure 1. It is clear that the two
portions (if any) of every qj are not overlapping, since q

1
i +q2i = qi ≤ C∗ < RiC

∗.
Similarly, the assignment of the job pk is feasible from the step 5 of the algorithm,
see Figure 2.

Algorithms with Limited Number of Preemptions 97

Fig. 1. The schedule π produced by step 4

Fig. 2. The schedule π′ produced by step 5

We now consider the worst case ratio of the algorithm LPT − iP .

Theorem 1. The worst case ratio of the algorithm LPT−iP is at most 2m
m+i+1 ,

i.e.,

RLPT−iP ≤ 2m

m+ i+ 1
.

Proof. Let π and π′ denote the schedules produced by step 4 and step 5, re-
spectively (see Figures 1 and 2). Note that the makespan is unchanged from
the schedule π to π′ in disregard of the feasibility of the schedule. Thus, for
convenience, we only need to analyze the makespan of π.

98 Y. Jiang, Z. Weng, and J. Hu

Let pl be the job which determines the makespan in the schedule π and let sl
be the start time of pl. Then we have

CLPT−iP = sl + pl. (3)

If pl is processed on the first i machines, we can conclude that CLPT−iP =
2m

m+i+1C
∗ by step 3. We now turn to deal with the case that pl is processed on

the last m− i machines below.
If sl = 0, the desired result can be obtain trivially. Suppose sl > 0, that is,

there is at least one job processed on the same machine before the job pl. We
can claim that pl ≤ sl, for all the jobs scheduled on these machines abide by the
LPT rule. By (3), we have

sl ≥
CLPT−iP

2
. (4)

We now focus on the completion time of the other machines except the machine
to process the job pl. Clearly, the completion time of the machine Mj for any
1 ≤ j ≤ i is 2m

m+i+1C
∗ and the total size is

2imC∗

m+ i+ 1
.

The completion time of each machine in the other m− i− 1 machines is at least
sl due to the LPT rule. Hence, we can conclude that

2imC∗

m+ i+ 1
+ (m− i− 1)sl + CLPT−iP ≤

n∑
i=1

pi,

which, together with the fact that the inequality (4) and C∗ ≥
∑n

i=1 pi/m from
(1), deduces that

2imC∗

m+ i+ 1
+

CLPT−iP (m− i− 1)

2
+ CLPT−iP ≤ mC∗.

By a simply computation, we can obtain

CLPT−iP

C∗ ≤ 2m

m+ i+ 1
.

The proof is complete.

By the above theorem, it is easy to obtain the result in[1] as follows.

Theorem 2. Ri =
2m

m+i+1 .

Proof. From Theorem 1, we can conclude that for any instance I,

Ci∗(I)
C∗(I) ≤ CLPT−iP (I)

C∗(I) ≤ 2m

m+ i+ 1
.

It follows that Ri ≤ 2m
m+i+1 by the definition of Ri.

Algorithms with Limited Number of Preemptions 99

On the other hand, let us consider the instance I∗ of m+ i+1 jobs with equal
size of 1. Clearly, we have C∗ = m+i+1

m .
Since at most i preemptions are allowed, there are at least m+ 1 jobs which

are non-preemptively scheduled on the m machines. It implies that at least two
of those m + 1 jobs are scheduled on the same machine, resulting in Ci∗ ≥ 2.
Note that Ri is the worst case ratio of the optimal i−preemptive makespan Ci∗

and the optimal preemptive makespan C∗, thus we have

Ri ≥
Ci∗(I∗)

C∗(I∗)
=

2
m+i+1

m

=
2m

m+ i+ 1
.

Then the desired result is achieved.

To sum up the above arguments, it clearly shows that the result in [1] can be
obtained simply by our method. At the same time we can give the algorithm to
generate the schedule with the makespan not greater than RiC

∗ for all 0 ≤ i ≤
m− 1.

Next we will simply discuss the trade-off between the makespan and the num-
ber of preemption. That is, for a given α ≥ 1, how many preemptions are needed
such that the makespan of produced schedule, denoted by Callow, is not greater
than αC∗.

It can be found that from the algorithm LPT − iP , we only need at most i
preemptions for any α ∈ [2m

m+i+1 ,
2m
m+i) for some 1 ≤ i ≤ m−1 and no preemption

is needed if α ≥ 2m
m+1 .

Note that for the instance I∗ of m+ i+1 jobs with equal size of 1 mentioned
in the proof of Theorem 2, the optimal non-preemptive makespan is identical to
the optimal makespan with i preemptions, 1 ≤ i ≤ m − 2. Hence, we are much
more concerned to know whether the i preemptions are required to ensure that
Callow ≤ αC∗.

In fact, suppose that there is an integer i such that α ∈ [2m
m+i+1 ,

2m
m+i). Let us

consider the instance J ∗ of m+ i jobs with equal size of 1. Clearly, the makspan
is at least 2 if we are allowed to preempt at most i− 1 times, which follows that
Callow

C∗ ≥ 2
(m+i)/m > α. Thus we can conclude that the number of preemptions

is at least i in this sense. Generally, we can draw a conclusion below.

Theorem 3. For any given 1 ≤ α ≤ 2m
m+1 , there is an integer i such that

α ∈ [2m
m+i+1 ,

2m
m+i). To ensure the desired makespan of the schedule is not greater

than αC∗ for any instance, we only need at most i preemptions. Moreover, it is
a tight number of preemptions, i.e., there is an instance which needs exactly i
preemptions.

3 i-Preemptive Scheduling on Two Uniform Machines

In this section, we will consider the i-preemptive scheduling on two uniform
machines. Without loss of generality, we assume that the speeds of two machines
M1 and M2 are s and 1, s ≥ 1. Note that from [3] the optimal scheduling on

100 Y. Jiang, Z. Weng, and J. Hu

two uniform machines can be obtained by at most two preemptions. Therefore,
we only need to consider the cases i = 0 and i = 1. In the following, we will
give the worst case ratios R0 and R1 for the above cases. At the same time, we
will present two algorithms to guarantee that the makespans produced by our
algorithms are not greater than R0C

∗ and R1C
∗ for any instance, respectively.

Before going to present our algorithms, we first give the lower bound of Ri as
follows, i = 0, 1. Let

r0 =

⎧⎨
⎩

2(s+1)
3s , for 1 ≤ s < 4/3,

s+1
2 , for 4/3 ≤ s < 2,

s+1
s , for s ≥ 2.

and r1 =
s2 + 2s− 1

s2 + 1
.

Lemma 1. R0 ≥ r0 and R1 ≥ r1.

Proof. To obtain the desired results, we only need to find some instances such
that the ratio of the optimal makespan in the i-preemptive scheduling and the
optimal makespan in the preemptive scheduling is exactly ri, i = 0, 1.

In fact, it only needs to consider the instance of three identical jobs for i = 0
and 1 ≤ s < 4

3 , and the instance of two identical jobs for other cases. Here omits
the details.

In the following two subsections, we will present the algorithm Ai with the worst
case ratio of ri, i = 0, 1.

3.1 Algorithm for Non-preemptive Scheduling

In this subsection, we will show the worst case ratio of the optimal non-preemptive
makespan and the optimal preemptive makespan on two uniform machines is ex-
actly r0, i.e., R0 = r0. From Lemma 1, we only need to show R0 ≤ r0 by present-
ing an algorithm without preemption, denoted by A0, with the worst case ratio of
RA ≤ r0. The main idea of our algorithm is as follows: For the case of s ≥ 2, it
only needs to schedule all the jobs onto the fast machine. For the case of 1 ≤ s < 2,
it firstly generates a schedule by the LPT rule, here the LPT rule schedules the
largest one in all unscheduled jobs to a machine such that it can be completed as
soon as possible. Then the algorithmwill possibly make some adjustments accord-
ing to the initial schedule generated by LPT . The detailed algorithm is below.

Algorithm A0:

a. For s ≥ 2. Schedule all jobs on the machine M1.

b. For 1 ≤ s < 2.

1. Sort all the jobs such that p1 ≥ p2 ≥ · · · ≥ pn. For any job pj , 1 ≤ j ≤ n,
let ci be the current completion time of Mi, i = 1, 2. If c1 + pj/s ≤ c2 + pj ,
schedule pj on the machine M1, otherwise, on M2. Denote this schedule by
πLPT .

Algorithms with Limited Number of Preemptions 101

2. Suppose pl is the job that determines the makepan in the schedule πLPT .
Let Ii be the set of the jobs processed on the machine Mi except the job pl,
i = 1, 2. Denote li =

∑
pj∈Ii

pj.

If l1 ≤ l2 + pl < 2l1, exchange all the jobs in I1 and I2 and schedule the
job pl on the machine M1. Otherwise, keep the schedule πLPT as the final
schedule.

Before going to show the worst case ratio of the algorithm A0 is r0, we should
illuminate that the desired ratio can not be obtained by simply using the LPT
rule. Let us consider the instance of three jobs with p1 = s and p2 = p3 = 1, the
LPT rule will schedule p1 and p3 on the fast machine M1 and the other on M2.
Then we have CLPT = s+1

s . With the optimal makespan C∗ = s+2
s+1 , it follows

that for any 1 < s ≤ 4
3

CLPT

C∗ ≥
s+1
s

s+2
s+1

=
(s+ 1)2

s2 + 2s
>

2(s+ 1)

3s
= r0.

Therefore, it is essential to introduce the step 2 in the algorithm A0. We next
show the worst case ratio of the algorithm A0 below.

Theorem 4. The worst case ratio of the algorithm A0 is at most r0, i.e.,

RA0 ≤

⎧⎨
⎩

2(s+1)
3s , for 1 ≤ s < 4/3,

s+1
2 , for 4/3 ≤ s < 2,

s+1
s , for s ≥ 2.

Proof. By the notations in the algorithm and (2), we can obtain the optimal
preemptive makespan is

C∗ = max{p1
s
,
l1 + l2 + pl

s+ 1
}. (5)

For the case of s ≥ 2, it is clear that the makespan of our algorithm is l1+l2+pl

s ,

which, together with (5), leads to CA0

C∗ ≤ s+1
s . We next focus on the case of

1 ≤ s < 2.
Without loss of generality, we assume that I1 �= ∅, i.e., l1 > 0. In fact, if

I1 = ∅, from the algorithm, we can obtain that the job p1 must be scheduled on
the machine M1. It implies that pl = p1 and thus we have CA0 = p1

s = C∗. By
distinguishing three cases, we can show

CA0

C∗ ≤ max{s+ 1

2
,
2(s+ 1)

3s
} =

{
2(s+1)

3s , for 1 ≤ s < 4/3,
s+1
2 , for 4/3 ≤ s < 2.

Case 1. l2+pl < l1. As the algorithm states that the final schedule is generated
by the LPT rule, we can obtain that by the step 1 CA0 ≤ min{l2 + pl,

l1+pl

s } ≤
l2 + pl. Hence, by (5), we obtain that

CA0

C∗ ≤ l2 + pl
l1+l2+pl

s+1

=
s+ 1

1 + l1
l2+pl

≤ s+ 1

2
. (6)

102 Y. Jiang, Z. Weng, and J. Hu

For the Case 2 of l1 ≤ l2 + pl < 2l1 and the Case 3 of l2 + pl ≥ 2l1, the desired
results can be obtained by similar discussion as Case 1.

It is clear that R0 ≤ RA0 ≤ r0 with Theorem 4. By Lemma 1, we can obtain
that the main result in this subsection.

Theorem 5. R0 = r0.

3.2 Algorithm for 1-Preemptive Scheduling

Similar to the above argument, we will show R1 = r1 in this subsection. Clearly,
by Lemma 3.1, we only need to present an algorithm which is allowed to preempt
at most one time, denoted by A1, and show its worst case ratio is not greater
than r1. The algorithm is quite simple and can formally be described as follows.

Algorithm A1:

1. Sort all the jobs such that p1 ≥ p2 ≥ · · · ≥ pn and compute the optimal

makespan C∗ = max{ p1

s ,
∑n

i=1 pi

s+1 } by (2).

2. Find the job pk, where k = min{j|
∑j

i=1 pi > sr1C
∗}, and split it into two

pieces p1k = sr1C
∗ −

∑k−1
i=1 pi and p2k = pk − p1k.

3. Schedule p1, p2, · · · , pk−1, p
1
k and p2k, pk+1, · · · , pn in turn on the machines

M1 and M2 from zero time, respectively.

Noting that if k is not existing, we have
∑n

i=1 pi ≤ sr1C
∗. Therefore, the desired

result can be achieved by simply scheduling all the jobs on the fast machine M1.
Hence, we assume that k is well defined and we must have k > 1 due to C∗ ≥ p1

s .

Theorem 6. The worst case ratio of the algorithm A1 is at most r1, i.e.,

RA1 ≤ 2s2 + s− 1

2s2
.

Proof. It is obvious that CA1 =
∑k−1

i=1 pi+p1
k

s = r1C
∗ and thus we only need to

show that the assignment of the job pk is feasible, that is, the time slots assigned
to p1k and p2k are not overlapping. Hence, it is sufficient to prove that

p2k +
p1k
s

≤ r1C
∗. (7)

Note that p1k = sr1C
∗ −

∑k−1
i=1 pi and pk ≤

∑n
i=1 pi

2 with k > 1. Then

p2k +
p1k
s

− r1C
∗ = pk − p1k +

p1k
s

− r1C
∗

= pk +
s− 1

s

k−1∑
i=1

pi − sr1C
∗ =

pk
s

+
s− 1

s

k∑
i=1

pi − sr1C
∗

Algorithms with Limited Number of Preemptions 103

≤
∑n

i=1 pi
2s

+
s− 1

s

n∑
i=1

pi − sr1C
∗

≤ 2s− 1

2s

n∑
i=1

pi − sr1

∑n
i=1 pi
s+ 1

= (
2s− 1

2s

s+ 1

s
− r1)

s

s+ 1

n∑
i=1

pi = 0.

Hence, the inequality (7) holds and the proof is complete.

By Lemma 1 and Theorem 6, we conclude that the worst case ratio of the optimal
1-preemptive makespan and the optimal preemptive makespan is exactly r1.
That is,

Theorem 7. R1 = r1.

4 Conclusions

In this paper, we studied the worst case ratio of the optimal makespan of i-
preemptive schedule and the optimal preemptive schedule with unlimited pre-
emptions. Compared with the technique used in the literature, our method is
simpler and more effective. It can obtain the ratio Ri = 2m

m+i+1 as well as an
algorithm which can generate a schedule with the makespan no more than Ri

times of the optimal preemptive schedule for any instance. We also discussed
the trade-off between the objective of minimizing the makespan and the number
of preemptions. In addition, we considered the i-preemptive scheduling on two
uniform machines.

Further study is suggested to extend the result to m uniform machines, even
for the special case of s1 = s, s2 = · · · = sm = 1. What’s more, it is also worth
studying the other objective functions.

References

1. Braun, O., Schmidt, G.: Parallel processor scheduling with limited number of pre-
emptions. SIAM Journal on Computing 32(3), 671–680 (2003)

2. Coffman Jr., E.G., Garey, M.R.: Proof of the 4/3 conjecture for preemptive vs.
nonpreemptive two-processor scheduling. Journal of the Association for Computing
Machinery 20, 991–1018 (1993)

3. Gonzalez, T., Sahni, S.: Preemptive scheduling of uniform processor systems. Jour-
nal of the Association for Computing Machinery 25, 92–101 (1978)

4. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal on
Applied Mathematics 17, 416–429 (1969)

5. Horvath, E.C., Lam, S., Sethi, R.: A level algorithm for preemptive scheduling.
Journal of the Association for Computing Machinery 24, 32–43 (1977)

6. Hong, K.S., Leung, J.Y.-T.: Some results on Lius conjecture. SIAM Journal on
Discrete Mathematics 5, 500–523 (1992)

104 Y. Jiang, Z. Weng, and J. Hu

7. Liu, C.L.: Optimal scheduling on multi-processor computing systems. In: Pro-
ceedings of the 13th Annual Symposium on Switching and Automata Theory,
pp. 155–160. IEEE Computer Society, Los Alamitos (1972)

8. McNaughton, R.: Scheduling with deadlines and loss functions. Management
Science 6, 1–12 (1959)

9. Klonowska, K., Lundberg, L., Lennerstad, H.: The maximum gain of increasing the
number of preemptions in multiprocessor scheduling. Acta Informatica 46, 285–295
(2009)

10. Liu, J.W.S., Yang, A.: Optimal scheduing of independent tasks on heterogeneous
computing systems. In: Proceedings of ACM Annual Conference, San Diego, Cahf,
pp. 38–45 (1974)

Computing Maximum Non-crossing Matching

in Convex Bipartite Graphs�

Danny Z. Chen, Xiaomin Liu, and Haitao Wang��

Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA

{dchen,xliu9,hwang6}@nd.edu

Abstract. We consider computing a maximum non-crossing matching
in convex bipartite graphs. For a convex bipartite graph of n vertices and
m edges, we present an O(n log n) time algorithm for finding a maximum
non-crossing matching in the graph. The previous best algorithm for this
problem takes O(m+ n log n) time. Since m = Θ(n2) in the worst case,
our result improves the previous solution for large m.

1 Introduction

Matching problems are an important topic in combinatorics and operations re-
search. In this paper, we study the problem of computing a maximum non-
crossing matching in convex bipartite graphs and present an efficient algorithm
for it. Roughly speaking, a matching is non-crossing if no two edges in its given
embedding intersect each other. The formal problem definition is given below.

1.1 Notation and Problem Statement

A graph G = (V,E) with vertex set V and edge set E is a bipartite graph if V
can be partitioned into two subsets A and B (i.e., V = A ∪ B and A ∩ B = ∅)
such that every edge e(a, b) ∈ E connects a vertex a ∈ A and a vertex b ∈ B
(it is often also denoted by G = (A,B,E)). A bipartite graph G = (A,B,E)
is said to be convex on the vertex set B if there is a linear ordering on B, say
B = {b1, b2, . . . , b|B|}, such that for each vertex a ∈ A and any two vertices bi
and bj in B with i < j, if both bi and bj are connected to a by two edges in
E, then every vertex bt ∈ B with i ≤ t ≤ j is connected to a by an edge in E.
If G is convex on B, then G is called a convex bipartite graph. Figure 1 shows
an example. In this paper, A, B, and E always refer to these sets in a convex
bipartite graph G = (A,B,E), and we assume that the vertices in B are ordered
as discussed above.

We say that an edge e(a, b) ∈ E is an incident edge of a and b, and a and b are
adjacent to each other. For each vertex ak ∈ A, suppose the adjacent vertices
of ak are bi, bi+1, . . . , bj (i.e., all vertices in B from bi to bj); then we denote
begin(ak) = i and end(ak) = j.

� This research was supported in part by NSF under Grant CCF-0916606.
�� Corresponding author.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 105–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

106 D.Z. Chen, X. Liu, and H. Wang

A B

Fig. 1. An example of a convex bipartite graph

For simplicity, we assume n = |A| = |B|. Let A = {a1, a2, . . . , an}. Let m =
|E|. Note that althoughm may be Θ(n2), the graph G can be represented implic-
itly in O(n) time and O(n) space by giving the two values begin(a) and end(a) for
each vertex a ∈ A. A subset M ⊆ E is a matching if no two distinct edges in M
are connected to the same vertex. Two edges e(ai, bj) and e(ah, bl) in E are said
to be non-crossing if either (i < h and j < l) or (i > h and j > l). A matching M
is non-crossing if no two distinct edges in M intersect. A maximum non-crossing
matching (MNCM for short) inG is a non-crossingmatchingM such that no other
non-crossing matching in G has more edges than M .

1.2 Related Work

Finding a maximummatching in general graphs or bipartite graphs has been well
studied [3,5,8,10,13,16]. Glover [9] considered computing a maximummatching in
convex bipartite graphs with some industrial applications. Additional matching
applications of convex bipartite graphs were given in [11]. A maximum matching
in a convex bipartite graph can be obtained in O(n) time [7,11,17]. Liang and
Blum [14] gave a linear time algorithm for finding a maximum matching in
circular convex bipartite graphs. Motivated by applications such as 3-side switch
box routing in VLSI design, the problem of finding a maximum non-crossing
matching (MNCM) in bipartite graphs was studied [12], which can be reduced
to computing a longest increasing subsequence in a sequence of size m and thus
is solvable in O(m logn) time [6,18]. An improved O(m log logn) time algorithm
was given by Malucelli et al. [15] for finding an MNCM in bipartite graphs;
further, they showed that in a convex bipartite graph, an MNCM can be found
in O(m+(n−k) log k) time where k is the size of the output MNCM [15], which
is O(m + n logn) time in the worst case.

In this paper, we present a new algorithm for computing an MNCM in a
convex bipartite graph in O(n log n) time. Since m can be Θ(n2), our result
improves the O(m+n logn) time solution by Malucelli et al. [15]. Our approach
is based on the algorithm in [15]; the efficiency of our algorithm hinges on new
observations on the problem as well as a data structure for efficiently processing
certain frequent operations performed by the algorithm.

Computing Maximum Non-crossing Matching in Convex Bipartite Graphs 107

2 Preliminaries

In this section, we briefly review the algorithm by Malucelli et al. [15], called the
labeling algorithm (for the full algorithmic and analysis details, see [15]). Our
new algorithm given in Section 3 uses some ideas of this labeling algorithm.

For simplicity of discussion, we assume the vertices of each set of A and B are
ordered on a vertical line in the plane from top to bottom by their indices and
each edge in E is represented as a line segment connecting the two corresponding
vertices. For any two non-crossing edges e(ai, bj) and e(ah, bl), we say e(ai, bj) is
above e(ah, bl) if i < h and j < l, and e(ai, bj) is below e(ah, bl) if i > h and j > l.

The labeling algorithm [15] aims to compute a label L(a, b) for each edge
e(a, b) ∈ E, which is actually the cardinality of a “partial” MNCM if one con-
siders only the edges of E above and including e(a, b). After the labels for all
edges of E are computed, an MNCM can be obtained in additional O(m) time
[15]. In order to compute the labels for all edges, the algorithm also computes
a label L(b) for each vertex b ∈ B, which is equal to the maximum label of all
incident edges of b whose labels have been computed so far in the algorithm.

Initially, the label values for all edges of E and all vertices of B are zero. The
algorithm considers the vertices in A one by one in their index order. For each
vertex ai ∈ A, there are two procedures for processing it. In the first procedure,
for each incident edge e(ai, bj) of ai, the algorithm finds the vertex bt with the
maximum L(bt) such that t < j, and sets L(ai, bj) as L(bt) + 1, i.e., L(ai, bj) =
1 + max{L(bt) | t < j}. After the labels for all incident edges of ai are computed,
the second procedure does the following: For each incident edge e(ai, bj) of ai, set
L(bj) = max{L(bj), L(ai, bj)}. This finishes the processing of ai ∈ A. The algo-
rithm endswhen all vertices inAhave been processed. To analyze the running time,
each edge in the second procedure takes constant time. The key is to implement the
first procedure efficiently, i.e., computing the key maximum valuemax{L(bt) | t <
j} for each edge e(ai, bj). As indicated in [15], by using a range query data struc-
ture [1], each keymaximumvalue canbe computed inO(log n) time. Consequently,
the entire algorithm takes O(m logn) time. A further improvement is based on a
newway of maintaining the label values for the vertices ofB and using integer data
structures (e.g., van Emde Boas tree [4]), as follows.

A map C is used in which each element C(t) (1 ≤ t ≤ n) stores the smallest
index i such that L(bi) = t, i.e., L(bC(t)) = t and there is no bj with j < C(t)
and L(bj) = t. For 1 ≤ i ≤ j ≤ n, we use C(i . . . j) to denote the set of elements
C(i), C(i + 1), . . . , C(j). During the algorithm, the elements in C(1 . . . n) are
computed in the index order. Let K be the number of elements in C(1 . . . n)
that have been computed so far by the algorithm (K is also the index of the
last element in C(1 . . . n) that has been computed). The value K is actually the
cardinality of a partial MNCM that has been produced so far. Initially, K = 0,
and for convenience let C(0) = 0. After the algorithm ends, the value K is the
cardinality of the output MNCM (hence, K ≤ n). With the map C, in the first
procedure for processing a vertex ai ∈ A, for each edge e(ai, bj), computing the
value max{L(bt) | t < j} becomes finding max{k | C(k) < j, 0 ≤ k ≤ K}.
Changes to the second procedure are also needed for updating the map C, as

108 D.Z. Chen, X. Liu, and H. Wang

follows: If L(ai, bj) ≤ K, then update C(L(ai, bj)) to be min{j, C(L(ai, bj))};
otherwise, set C(K+1) = j and K = K+1. For the running time, if the map C
is implemented by an array, then each edge in the second procedure can still be
processed in constant time. For the first procedure, a useful fact is that the values
in C(1 . . .K) are monotonically increasing, and thus for each edge e(ai, bj), the
value max{k | C(k) < j, 0 ≤ k ≤ K} can be obtained in O(logK) time by a
binary search on C(1 . . .K). If using an integer data structure [4] to implement
the map C, each edge can be processed in O(log logn) time since the universal
values are 1, 2, . . . , n. Hence, the algorithm takes O(m log logn) time.

When the graph is convex bipartite, there is a faster way to compute an
MNCM. Here the map C is implemented by an array. Still, we focus on the
first procedure for processing each vertex ai ∈ A, which considers the incident
edges of ai in the inverse order of the indices of the vertices in B (i.e., the edge
e(ai, bend(ai)) is considered first). The algorithm first checks whether end(ai) >
C(K). If end(ai) > C(K), then set L(ai, bend(ai)) = K + 1, L(bend(ai)) = K + 1,
C(K + 1) = end(ai), and K = K + 1; otherwise, the label L(ai, bend(ai)) is
computed by a binary search on C. After L(ai, bend(ai)) is obtained, the labels
of the other incident edges of ai are computed by simultaneously scanning C
from back to front and the incident edge list of ai, and the labels of the vertices
in B connecting to the above edges are updated accordingly. The array C is
also updated accordingly. Note that the number of the scanned elements of C
is no bigger than the number of incident edges of ai. Thus, the above scanning
procedure takes O(m) time in the entire algorithm. For each vertex ai ∈ A, we
only perform at most one binary search on C. Therefore, the total running time
of the algorithm is O(m + n logn).

3 Our Algorithm

In this section, we present our new algorithm for finding an MNCM in a convex
bipartite graph G = (A,B,E), whose running time is O(n log n). We follow the
definitions and notation in Section 2.

Our algorithm still computes the labels for all edges of E and all vertices of
B. However, a key difference is that our algorithm does so in an implicit manner,
thus avoiding the O(m) time overhead. In the previous labeling algorithm [15]
sketched in Section 2, when a vertex ai ∈ A is being processed, the update of C is
done after the labels of the incident edges (ai, bj) of ai are explicitly computed. In
contrast, our new algorithm updates C “directly” without explicitly computing
the labels of the incident edges of ai. This is possible due to our new observations.
The efficiency of our algorithm also relies on a new way of implementing the map
C and the operations performed by the algorithm.

We present our main algorithm in Section 3.1 but defer the implementation
details and the time analysis to Section 3.2. However, this algorithm computes
only the final map C without reporting an MNCM. In Section 3.3, we show
that with the final map C and a little additional information, an MNCM can be
produced in additional O(n) time by a simple greedy approach.

Computing Maximum Non-crossing Matching in Convex Bipartite Graphs 109

3.1 The Description of the Main Algorithm

Our algorithm also considers the vertices in A from a1 to an. For each ai ∈ A, we
compute the labels of all its incident edges and we also update the labels of all
adjacent vertices of ai. The labels of the edges and the vertices in B are defined
the same as in Section 2. We also use the map C in the same way as before, i.e.,
each element C(t) for 1 ≤ t ≤ n stores the smallest index i such that L(bi) = t.

With the map C, for each vertex ai ∈ A, the labels of ai’s incident edges will
be computed implicitly and the labels of ai’s adjacent vertices in B will also be
computed implicitly; in contrast, the map C will always be updated explicitly.
The map C is implemented by a special balanced binary tree, which will be
discussed in Section 3.2. Below, we give the algorithm details.

Again, as in Section 2, let K be the number of elements in C(1 . . . n) that
have been computed so far by the algorithm and the value K is actually the
cardinality of a partial MNCM that has been produced so far. Initially, we set
K = 0, C(0) = 0, and C(t) = +∞ for all 1 ≤ t ≤ n. The labels of all edges and
vertices in B are implicitly set to zero.

We discuss a general step where the vertex ai ∈ A is considered. Recall that
its adjacent vertex set is {bj ∈ B | begin(ai) ≤ j ≤ end(ai)}. Let x be the index
with 0 ≤ x ≤ K + 1 such that C(x − 1) < begin(ai) ≤ C(x), and y be the index
with 0 ≤ y ≤ K +1 such that C(y− 1) < end(ai) ≤ C(y). Note that both x and
y must exist. Also, note that x ≤ y holds because begin(ai) ≤ end(ai).

If x > K, then it is easy to see that x must be K+1 since C(K+1) = +∞. By
the definition of the index x, we have C(K) < begin(ai). Hence, the label of each
edge e(ai, bj) with begin(ai) ≤ j ≤ end(ai) must be K+1. Thus, the label of each
vertex bj with begin(ai) ≤ j ≤ end(ai) must also be K + 1 (the previous values
of these vertex labels must be less than K+1 because the value of C(K+1) has
not been set before, i.e., C(K + 1) = +∞). It should be noted that we do not
set these labels explicitly. According to the definition of the map C, the value
of C(K + 1) should be the smallest index t with L(bt) = K + 1. In this case,
such smallest index t is begin(ai). Thus, we simply set C(K +1) = begin(ai) and
K = K + 1. This finishes processing the vertex ai ∈ A for this case. Below, we
discuss the case where x ≤ K.

Since C(x − 1) < begin(ai) ≤ C(x), by the definition of the map C, the label
of the edge e(ai, bbegin(ai)) is (x − 1) + 1 = x. The label of the vertex bbegin(ai)

should also be (implicitly) set to x since its previous value was at most x due
to begin(ai) ≤ C(x). Thus, C(x) should be updated to be min{begin(ai), C(x)}.
Since begin(ai) ≤ C(x), we can simply set C(x) = begin(ai). If x = y, then
the labels of all incident edges of ai are x and the labels of all vertices in B
adjacent to ai are also x; thus we do not need to update other values in C and
the processing of ai is finished. Otherwise (i.e., x �= y), we have x < y. In the
following discussion, the value of C(x) always refers to its previous value before
we set C(x) = begin(ai). Since x < y, we have C(x) < end(ai) and in other
words C(x) + 1 ≤ end(ai). Consider any edge e(ai, bj) with C(x) + 1 ≤ j ≤
min{end(ai), C(x+ 1)}. The label of the edge e(ai, bj) must be x+1. The label
of the vertex bj must also be x+1 since its previous value must be at most x+1

110 D.Z. Chen, X. Liu, and H. Wang

begin(a)=8, end(a)=18, x=3, y=6i i

index 1 2 3 4 5 6 7

value 2 4 9 11 14 20 28
the map C

index 1 2 3 4 5 6 7
updated C value 2 4 8 10 12 15 28

i:process a

Fig. 2. Illustrating a range-shift operation in processing a vertex ai with begin(ai) = 8
and end(ai) = 18. We have x = 3 and y = 6. The updated values of C are underlined.

due to j ≤ C(x + 1). Since C(x) < C(x + 1) and both C(x) and C(x + 1) are
integers, we have C(x) + 1 ≤ C(x + 1). Thus, the value of C(x + 1) should be
updated to C(x) + 1. If y = x + 1, we are done with updating C (after setting
C(x) = begin(ai)). If y > x + 1, we continue to consider the edges (ai, bj) with
C(x + 1) + 1 ≤ j ≤ min{end(ai), C(x + 2)} in a similar way (here, the value of
C(x+1) is its previous value before we set C(x+ 1) = C(x) + 1). Similarly, the
labels of all these edges are (x+ 1) + 1 = x+ 2 and the labels of the vertices in
B incident to these edges are also x + 2; thus the value of C(x + 2) should be
updated to C(x+ 1) + 1 due to C(x+ 1) + 1 ≤ C(x+ 2).

In general, in the case of x < y, suppose C ′ is the new map after the update;
then we have C′(z) = C(z−1)+1 for each x+1 ≤ z ≤ y, and C′(x) = begin(ai).
All other values of the map C do not need to be changed. Of course, in the
implementation, it is not necessary to create a temporary map C′ and we need
to update C only from C(y) back to C(x + 1) and finally update C(x), i.e.,
C(y) = C(y − 1) + 1, C(y − 1) = C(y − 2) + 1, . . . , C(x + 1) = C(x) + 1, and
C(x) = begin(ai). Intuitively, the values of C from C(x) to C(y − 1) are each
increased by one and then shift to its right neighbor in the map C. We call the
above process a range-shift operation on the index range from x to y−1. Figure 2
gives such an example. Finally, if y > K, then y must be K + 1 and we update
K = K + 1. This finishes the processing of the vertex ai ∈ A.

3.2 The Algorithm Implementation and the Time Analysis

To implement our main algorithm efficiently, the key is to find a good way to
store the map C in order to efficiently support the operations needed by the
algorithm (e.g., the range-shift operation).

If using an array to store the map C, the algorithm runs inO(m+n log n) time.
Specifically, for each ai ∈ A, we can determine the two indices x and y by binary
search inO(log n) time. A range-shift operation can be implemented inO(y−x+1)
time. Since y − x ≤ end(ai)− begin(ai), the total time for performing all range-
shift operations in the entire algorithm is bounded by O(m). Thus, the overall
running time of the algorithm is O(m + n logn). To speed up the algorithm, a
clear target is to improve the range-shift operations. Below we present a new way
to store the map C such that each range-shift operation is performed in O(log n)
time (other operations needed in the algorithm can also be performed efficiently).

Computing Maximum Non-crossing Matching in Convex Bipartite Graphs 111

Note that this implies that the values of C(x+1, x+2, . . . , y) for each range-shift
operation are set implicitly.

We use an augmented balanced binary search tree T (e.g., an AVL tree [2])
to store C. Each internal node of T has exactly two children except when T has
at most one node. Each node v of T (a leaf or an internal node) stores a value,
which we call the α value of v, denoted by α(v). For any two nodes v and u in T ,
the path from v to u always includes both v and u. Each leaf u is associated with
a value that is the sum of the α values of all nodes in the path from u to the
root of T , and we call it the β value of u, denoted by β(u). Note that β(u) is not
explicitly stored in the leaf u. The β values of all leaves of T from left to right
are monotonically increasing. For any node v of T , let T (v) denote the subtree
of T rooted at v. Each node v of T also explicitly stores two additional values
min(v) and max(v), called the min and max values of v respectively, which are
defined as follows. Denote by vl the leftmost leaf of the subtree T (v) and by vr
the rightmost leaf of T (v). We define min(v) as the sum of the α values of the
nodes in the path of T from vl to v, and max(v) as the sum of the α values of the
nodes in the path from vr to v. In other words, if v is not the root, then min(v)
is equal to β(vl) minus the sum of the α values of the nodes in the path from the
parent of v to the root, and similarly, max(v) is equal to β(vr) minus the sum
of the α values of the nodes in the path from the parent of v to the root. By
the definitions of min(v) and max(v), if v is the root of T , min(v) = β(vl) and
max(v) = β(vr); if v is a leaf, then min(v) = max(v) = α(v). As to be shown
below, the min and max values are used to help search for a particular leaf. The
α, min, and max values are also referred to as the support values of the nodes of
T . The β values of the leaves of T are also referred to as the β values of T .

A key difference between the β values and the support values is that the
support values are stored explicitly at the corresponding nodes while the β values
are stored implicitly (they are inferred by the α values).

In our MNCM algorithm, we use T to store the map C. An element C(i) of C
is valid if C(i) has already been computed, i.e., 1 ≤ i ≤ K. Specifically, the map
C is stored in T in a way that the β values of the leaves of T from left to right
are exactly equal to the valid elements in C by the index order. Recall that the
valid elements in C are monotone increasing by the index order. The details of
doing so will be given later after we discuss some operations on T . Since all valid
elements in C are distinct, in the following discussion, for ease of exposition, we
also assume that the β values of T are distinct although the more general case
can also be handled.

Suppose n is the number of leaves in T . Since T is balanced, the height of T
is O(log n). Later, we will show that the following four operations on T can each
be performed in O(log n) time, which are used by our MNCM algorithm. The
first operation is the search operation: Given a value β′, find the leaf whose β
value is β′; if there is no such leaf, then report the successor leaf of β′, i.e., the
leaf whose β value is the smallest among those leaves whose β values are larger
than β′ (if β′ is larger than all β values of T , then report “NONE”). The second
operation is insertion: Given a value β′, insert a new leaf to T such that its β

112 D.Z. Chen, X. Liu, and H. Wang

value is equal to β′. Here we assume the β values of other leaves of T are not
equal to β′. The third operation is deletion: Given a value β′ that is equal to
the β value of a leaf in T , delete that leaf from T . The fourth operation is the
range-update operation: Given a value β′ and two other values β1 and β2 that
are the β values of two leaves v1 and v2 of T with β1 ≤ β2, update the tree T
such that the β values of all the leaves of T between the two leaves v1 and v2
(including v1 and v2) are each increased by β′. Below, we describe the details of
implementing these four operations, each in O(log n) time.

We begin with the search operation, which can be done similarly as searching
in a binary search tree by making use of the support values of T .

Lemma 1. Each search operation on T can be performed in O(log n) time.

Proof. Given a value β′, we first check whether β′ is larger than the biggest β
value of T . This can be done in O(log n) time by finding the rightmost leaf of T .
Below, we focus on the case when β′ is smaller than the biggest β value of T .

Denote by R the root of T . Initially, we are at R. Let v be the left child of R.
By the definition of the max values, max(v) is equal to the value β(vr) minus the
value α(R), where vr is the rightmost leaf of the subtree T (v). In other words,
the sum of α(R) and max(v) is equal to β(vr). We compare the value β′ with
the sum of α(R) and max(v). If β′ is larger, then the sought leaf must be in the
right subtree of R and we proceed to the right child of R; otherwise, we proceed
to the left child of R. We continue this procedure recursively. Consider a general
step when we are at a node u of T . If u is a leaf, then we stop and u is the leaf
we seek. Otherwise, let

∑
be the sum of the α values of the nodes in the path

from u to R. The value
∑

can be computed during our recursive procedure of
moving from R down to the current node u. Let w be the left child of u. By the
definition of the max values, β(wr) is the sum of max(w) and

∑
, where wr is the

rightmost leaf in the subtree T (w). We compare the value β′ with the sum of
max(w) and

∑
. If β′ is larger, then the sought leaf must be in the right subtree

of u and we proceed to the right child of u (we also increase the value of
∑

by
the α value of the right child of u); otherwise, we proceed to w (we also increase
the value of

∑
by α(w)). Since we only use constant time at each node, the

sought leaf is found in O(log n) time. The lemma thus follows.

We next discuss the range-update operation.

Lemma 2. Each range-update operation on T takes O(log n) time.

Proof. Given β′ and two other values β1 and β2 (β1 ≤ β2), we first find the two
leaves l and r in T with β(l) = β1 and β(r) = β2 in O(log n) time using the
search operations in Lemma 1. Let L[l,r] denote the set of leaves of T from l
to r (including l and r). From the two leaves l and r, we can find a set N[l,r]

of O(log n) nodes of T such that the set of leaves in the subtrees rooted at the
nodes of N[l,r] is exactly L[l,r] and each leaf of L[l,r] belongs to exactly one such
subtree. The set N[l,r] can be obtained easily in O(log n) time by traversing the
two paths from l and r to their lowest common ancestor in T . For each node

Computing Maximum Non-crossing Matching in Convex Bipartite Graphs 113

v ∈ N[l,r], we increase α(v) by β′. In this way, the β values of the leaves in L[l,r]

are each (implicitly) increased by β′. However, we are not done yet. Due to our
modifications on the α values of all nodes in N[l,r], we may also need to update
the min and max values of some nodes, as discussed below.

By the definitions of themin andmax values, these values at each node inN[l,r]

need to be increased by β′. Further, proper ancestors of any node in N[l,r] may
also need to have their min and max values increased. There are only O(log n)
such ancestor nodes, since any such ancestor node v must be on either the path
from l to the root or the path from r to the root. Let w be the lowest common
ancestor of l and r. Each node u �= w in the two paths from l to w and from r
to w has either a left child in N[l,r] or a right child in N[l,r]; if left, we increase
min(u) by β′, and if right we increase max(u) by β′. For the path from w to the
root, at each node u, if the min of the left child was increased, then we increase
min(u) by β′, and if the max of the right child increased, then we increasemax(u)
by β′. It is easy to see that all these min and max values are updated correctly
by the above procedure, which takes O(log n) time.

The support values of all other nodes in T need not be updated. This com-
pletes the range-update operation on β′, β1, and β2. The overall running time
is O(log n). The lemma thus follows.

Now, we discuss the insertion operation, which is performed similarly as that in
ordinary AVL trees plus we also need to update the support values accordingly.

Lemma 3. Each insertion operation on T can be performed in O(log n) time.

Proof. Due to the space limit, we only give a sketch. Given a value β′, our goal is
to insert a new leaf in T whose β value is β′. We assume that β′ is smaller than
the biggest β value of T (otherwise, the algorithm is very similar and simpler).

We first find the successor leaf u of β′ in O(log n) time by a search operation
in Lemma 1. At the position of u, we create a new internal node i, and let the
parent of i be the parent of u and u be the right child of i. We create a new leaf
a and let a be the left child of i. Next, we need to update the support values of
T , after which the new leaf a should have β′ as its β value.

First, set α(i) = 0. Consider the new leaf a. Set α(a) = β′ −
∑

, where
∑

is the sum of the α values of all nodes in the path from i to the root, and set
min(a) = max(a) = α(a). For the node i, since α(i) = 0, set min(i) = α(a) and
max(i) = α(u). Further, we may also need to update the min values of some
ancestors of a. Specifically, for any proper ancestor v of a, if a is the leftmost
leaf in the subtree T (v), then min(v) needs to be set as the sum of the α values
of all nodes in the path from a to v. If we check all a’s ancestors in a bottom-up
fashion, updating their min values can be easily done in totally O(log n) time.

At this moment, all support values of T after the new leaf a is inserted have
been set correctly and β(a) = β′. However, due to the insertion of a, T may
become unbalanced, in which case we need to perform rotations as in a normal
AVL tree. After the rotation, we also need to update accordingly the support
values of some nodes of T , whose total number is at most O(log n). Updating
these support values takes totally O(log n) time. We omit the details.

114 D.Z. Chen, X. Liu, and H. Wang

The deletion operation can also be implemented in O(log n) time, which is
similar to the deletion operation in the normal AVL trees except that some sup-
port values may need to be updated. This can be done similarly as the insertion
operation and we omit the details.

Lemma 4. Each deletion operation on T can be performed in O(log n) time.

Below we show that our MNCM algorithm in Section 3.1 can be implemented
in O(n logn) time by using T to store the map C.

The map C is stored in T such that the β values of the leaves of T from left
to right are exactly equal to the valid elements in C by the index order. Initially,
in the beginning of the algorithm, no element in C is valid, and thus T = ∅.

We consider the general step described in Section 3.1, i.e., the vertex vi ∈ A is
processed. We assume that right before this step, all valid elements in the current
map C have been stored in T in the way described above. First, we need to find
the two indices x and y as well as the two values C(x) and C(y), which can
be found in O(log n) time by a search operation on T , as follows. To find x, we
perform a search operation on T with the value β′ = begin(ai). If the operation
returns “NONE”, then we know that begin(ai) is larger than all β values of T ,
or equivalently, begin(ai) is larger than all valid elements of the current map C,
implying that x > K. Otherwise, the search operation will return the leaf whose
β value is equal to C(x). However, this only gives us the value C(x) and we
also need to know the value x. An easy observation is that x− 1 is equal to the
number of valid elements in C less than C(x), or equivalently, x − 1 is exactly
the number of leaves of T to the left of the leaf corresponding to C(x). To find
the number of leaves of T to the left of that leaf, we may need to modify the tree
T such that each internal node v is also associated with the number of leaves
in the subtree T (v). We omit the details of this part. Hence, the value x can
also be found in O(log n) time. Analogously, the values C(y) and y can also be
computed in O(log n) time. Below, we discuss other operations needed in our
algorithm described in Section 3.1.

The operation of setting C(K + 1) = begin(ai) can be implemented by an
insertion operation with the value β′ = begin(ai). The operation of setting
C(x) = begin(ai) for an x ≤ K can be implemented in O(log n) time by perform-
ing first a deletion operation with the value β′ = C(x) and then an insertion
operation with the value β′ = begin(ai). When x < y, the range-shift operation
from x to y− 1 can be carried out in O(log n) time by a range-update operation
with the values β′ = 1, β1 = C(x), and β2 = C(y − 1). We also need to perform
a deletion operation on the value C(y) to delete the leaf with the β value C(y).
The subsequent operation of setting C(x) = begin(ai) can be implemented by an
insertion operation with the value begin(ai) (note that no deletion is needed here
because the original leaf with the β value C(x) has been “shifted” to a new leaf
with the β value C(x) + 1). In summary, processing each ai ∈ A takes O(log n)
time. Thus, the final map C can be obtained in O(n logn) time.

We have not computed an actual matching yet. In Section 3.3, we show how
to produce an actual MNCM.

Computing Maximum Non-crossing Matching in Convex Bipartite Graphs 115

3.3 Reporting an MNCM

In this section, we find an actual MNCM in additional O(n) time based on the
map C that has been computed by the main MNCM algorithm. After the main
MNCM algorithm is over, the index of the last valid element of C (i.e., the value
K) is the cardinality of an MNCM in G. To obtain an actual MNCM, we need
to record some additional information in the main algorithm, as follows.

Suppose the main algorithm is processing a vertex ai ∈ A. If the value K
is increased (i.e., K is set to be K + 1) due to the processing of ai, then this
implies that there is a non-crossing matching of cardinality K (the value K here
has already been set to K + 1) containing an incident edge of ai. We associate
this vertex ai with K. For the implementation, we use a variable z to record it,
i.e., set z = ai if the value K is increased due to the processing of ai. At the
end of the algorithm, z gives a vertex ai ∈ A such that an MNCM contains an
incident edge of ai but the MNCM does not contain any incident edge of at ∈ A
for any t > i. In Lemma 5 below, we show that knowing this particular vertex ai
is sufficient for us to find an MNCM in O(n) time by a simple greedy algorithm.

Lemma 5. Suppose an MNCM contains an incident edge of ai but the MNCM
does not contain any incident edge of at ∈ A for any t > i. Then, an actual
MNCM can be found in O(n) time.

Proof. Let M be an MNCM that contains an incident edge of ai. Suppose
e(ai, bj) is the incident edge of ai in M. Let K be the cardinality of M.

Since M does not contain any incident edge of at ∈ A for any t > i, the
other edges of M must be all above e(ai, bj). We claim that there is an MNCM
(denoted by M′) that contains the edge e(ai, bend(ai)). Indeed, if j = end(ai),
then M′ = M and the claim holds. Otherwise, since bend(ai) is below bj (i.e.,
j < end(ai)), by replacing the edge e(ai, bj) in M with the edge e(ai, bend(ai)),
we obtain another feasible non-crossing matching M′ whose cardinality is also
K. Hence, M′ is an MNCM and the claim holds. We pick the edge e(ai, bend(ai))
as an edge in our sought MNCM.

Next, we consider the vertex ai−1. If begin(ai−1) ≥ end(ai), then no incident
edge of ai−1 can be in M′ since every such edge intersects e(ai, bend(ai)) ∈ M′;
thus, we continue to consider the vertex ai−2. Otherwise (i.e., begin(ai−1) <
end(ai)), there is an incident edge of ai−1 above the edge e(ai, bend(ai)); we
claim that there is an MNCM M′′ that contains both edges e(ai, bend(ai)) and
e(ai−1, bt), where t = min{end(ai) − 1, end(ai−1)}. The argument is similar to
the one above. Namely, if e(ai−1, bt) is not contained in M′, we can always find
another MNCM M′′ by replacing an edge in M′ by e(ai−1, bt). We omit the
details. We pick the edge e(ai−1, bt) as an edge in our sought MNCM.

We then continue to consider ai−2 and the procedure is similar. After a1 is
considered, we obtain an MNCM. The total running time of the above greedy
algorithm is O(n). The lemma thus follows.

116 D.Z. Chen, X. Liu, and H. Wang

References

1. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry
— Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

2. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd
edn. MIT Press (2001)

3. Edmonds, J.: Paths, trees and flowers. Canad J. Math. 17, 449–467 (1965)
4. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient

priority queue. Theory of Computing Systems 10(1), 99–127 (1977)
5. Even, S., Tarjan, R.: Network flow and testing graph connectivity. SIAM J.

Comput. 4, 507–518 (1975)
6. Fredman, M.: On computing the length of longest increasing subsequences. Discrete

Mathematics 11(1), 29–35 (1975)
7. Gabow, H., Tarjan, R.: A linear-time algorithm for a special case of disjoint set

union. Journal of Computer and System Sciences 30, 209–221 (1985)
8. Gabow, H.: An efficient implementation of Edmonds’ algorithm for maximum

matching on graphs. Journal of the ACM 23, 221–234 (1976)
9. Glover, F.: Maximum matching in a convex bipartite graph. Naval Res. Logist.

Quart. 14, 313–316 (1967)
10. Hopcroft, J., Karp, R.: An n5/2 algorithm for maximum matchings in bipartite

graphs. SIAM J. on Comput. 2(4), 225–231 (1973)
11. Lipski Jr., W., Preparata, F.P.: Efficient algorithms for finding maximum match-

ings in convex bipartite graphs and related problems. Acta Informatica 15(4),
329–346 (1981)

12. Kajitami, Y., Takahashi, T.: The noncross matching and applications to the 3-side
switch box routing in VLSI layout design. In: Proc. International Symposium on
Circuits and Systems, pp. 776–779 (1986)

13. Kuhn, H.: The Hungarian method for the assignment problem. Naval Research
Logistics Quarterly 2, 83–97 (1955)

14. Liang, Y., Blum, N.: Circular convex bipartite graphs: Maximum matching and
Hamiltonian circuits. Information Processing Letters 56, 215–219 (1995)

15. Malucelli, F., Ottmann, T., Pretolani, D.: Efficient labelling algorithms for the
maximum noncrossing matching problem. Discrete Applied Mathematics 47(2),
175–179 (1993)

16. Micali, S., Vazirani, V.: An O(
√|V ||E|) algorithm for finding maximum matching

in general graphs. In: Proc. of the 21st Annual Symposium on Foundations of
Computer Science, pp. 17–27 (1980)

17. Steiner, G., Yeomans, J.: A linear time algorithm for maximum matchings in con-
vex, bipartite graphs. Computers and Mathematics with Applications 31(2), 91–96
(1996)

18. Widmayer, P., Wong, C.: An optimal algorithm for the maximum alignment of
terminals. Information Processing Letters 10, 75–82 (1985)

Algorithms for Bandwidth Consecutive

Multicolorings of Graphs

(Extended Abstract)

Kazuhide Nishikawa1, Takao Nishizeki1, and Xiao Zhou2

1 School of Science and Engineering, Kwansei Gakuin University, Gakuen 2–1,
Sanda-shi, Hyogo, Japan

{nishikawa,nishi}@kwansei.ac.jp
2 Graduate School of Information Sciences, Tohoku University,

Sendai-shi, Miyagi, Japan
zhou@ecei.tohoku.ac.jp

Abstract. Let G be a simple graph in which each vertex v has a posi-
tive integer weight b(v) and each edge (v, w) has a nonnegative integer
weight b(v, w). A bandwidth consecutive multicoloring of G assigns each
vertex v a specified number b(v) of consecutive positive integers so that,
for each edge (v, w), all integers assigned to vertex v differ from all in-
tegers assigned to vertex w by more than b(v, w). The maximum integer
assigned to a vertex is called the span of the coloring. In the paper,
we first investigate fundamental properties of such a coloring. We then
obtain a pseudo polynomial-time exact algorithm and a fully polynomial-
time approximation scheme for the problem of finding such a coloring of
a given series-parallel graph with the minimum span. We finally extend
the results to the case where a given graph G is a partial k-tree, that is,
G has a bounded tree-width.

Keywords: Bandwidth coloring, Channel assignment, Multicoloring,
Series-parallel graph, Partial k-tree, Algorithm, Acyclic orientation,
Approximation, FPTAS.

1 Introduction

An ordinary coloring of a graph G assigns each vertex a color so that, for each
edge (v, w), the color assigned to v differ from the color assigned to w [7]. The
problem of finding a coloring of a graph G with the minimum number χ(G)
of colors often appears in the scheduling, task-allocation, etc. [7]. However, it
is NP-hard, and difficult to find a good approximate solution. More precisely,
for all ε > 0, approximating χ(G) within n1−ε is NP-hard [15], where n is the
number of vertices in G.

The ordinary coloring has been extended in various ways [3–7, 9, 13]. A mul-
ticoloring assigns each vertex a specified number of colors so that, for each edge
(v, w), the set of colors assigned to v is disjoint with the set of colors assigned
to w [3–5, 14]. A bandwidth coloring assigns each vertex a positive integer as a

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 117–128, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 K. Nishikawa, T. Nishizeki, and X. Zhou

color so that the two integers assigned to the ends of each edge (v, w) differ by
at least the specified weight ω(v, w) of (v, w) [9].

In this paper we deal with another generalized coloring, called a “bandwidth
consecutive multicoloring.” Let G = (V,E) be a simple graph with vertex set
V and edge set E. Each vertex v ∈ V has a positive integer weight b(v), while
each edge (v, w) ∈ E has a non-negative integer weight b(v, w). A bandwidth
consecutive multicoloring F of G is an assignment of positive integers to vertices
such that

(a) each vertex v ∈ V is assigned a set F (v) of b(v) consecutive positive
integers; and

(b) for each edge (v, w) ∈ E, all integers assigned to v differ from all integers
assigned to vertex w by more than b(v, w).

We call such a bandwidth consecutive multicoloring F simply a b-coloring of G
for a weight function b. The maximum integer assigned to a vetex is called the
span of a b-coloring F , and is denoted by span(F). We define the b-chromatic
number χb(G) of a graph G to be the minimum span over all b-colorings F of G.
A b-coloring F is called optimal if span(F) = χb(G). A b-coloring problem is to
compute χb(G) for a given graph G.

Figure 1(a) depicts a weighted graph G together with an optimal b-coloring
F of G, where a weight b(e) is attached to an edge e, a weight b(v) is written in
a circle representing a vertex v, and a set F (v) is attached to a vertex v. Since
span(F) = 11, χb(G) = 11.

The ordinary vertex-coloring is merely a b-coloring for the case b(v) = 1 for
every vertex v and b(v, w) = 0 for every edge (v, w). The “bandwidth coloring”
or “channel assignment” [9] is a b-coloring for the case b(v) = 1 for every vertex v
and b(v, w) = ω(v, w)− 1 for every edge (v, w). It should be noted that our edge
weight b(v, w) is one less than the ordinary edge weight ω(v, w) of a bandwidth
coloring. (This convention will make the arguments and algorithms simple and
transparent.)

A b-coloring arises in the assignment of radio channels in celluar communication
systems [9] and in the non-preemptive task scheduling [10]. The b(v) consecutive
integers assigned to a vertex vcorrespond to the contiguous bandwidth of a channel
v or the consecutive time periods of a task v. The weight b(v, w) assigned to edge
(v, w) represents the requirement that the frequency band or time period of vmust
differ from that of w by more than b(v, w). The span of a b-coloring corresponds to
the minimum total bandwidth or the minimum makespan.

One can find amulticoloring of a graphGwith theminimum number of colors in
time polynomial in the output size ifG is a series-parallel graph or a partial k-tree,
that is, a graph of bounded tree-width [5, 14]. The problem of finding a bandwidth
coloring with the minimum number of colors is NP-hard even for partial 3-trees
[9], and there is a fully polynomial-time approximation scheme (FPTAS) for the
problem on partial k-trees [9]. Since our b-coloring problem is also NP-hard for
partial 3-trees, it is desirable to obtain a good approximation algorithm. However,
there are only heuristics for the b-coloring problem so far [8].

Algorithms for Bandwidth Consecutive Multicolorings of Graphs 119

Fig. 1. (a) Series-parallel weighted graph G and its optimal b-coloring F , (b) acyclic

orientation
−→
G and the longest path P , (c) graph Gσ with weights scaled by σ = 2 and

its optimal bσ-coloring Fσ, and (d) acyclic orientation
−→
Gσ and the longest path Pσ

In this paper, we first investigate fundamental properties of a b-coloring.
In particular, we characterize the b-chromatic number χb(G) of a graph G
in terms of the longest path in acyclic orientations of G. We then obtain a
pseudo polynomial-time exact algorithm for the b-coloring problem on series-
parallel graphs, which often appear in the task scheduling and electrical circuts
[10, 11]. The algorithm takes time O(B3n), where B is the maximum weight of
G: B = max

x∈V ∪E
b(x). Using the algorithm, we then give a fully polynomial-time

approximation scheme (FPTAS) for the problem. We finally extend these results
to the case where G is a partial k-tree.

2 Preliminaries

In this section, we first give some definitions and then present three lemmas on
a b-coloring.

Let G = (V,E) be a simple graph without selfloops and multiple edges.
We denote by n and m the number of vertices and edge in G, respectively.

120 K. Nishikawa, T. Nishizeki, and X. Zhou

The chromatic number χ(G) of G is the minimum number of colors required by
an ordinary coloring of G.

Let N be the set of all positive integers, that are regarded as colors. A b-
coloring F : V → 2N of G must satisfy the following (a) and (b):

(a) for every vertex v ∈ V , the set F (v) consists of b(v) consecutive positive
integers, and hence

minF (v) = maxF (v)− b(v) + 1; and

(b) for every edge (v, w) ∈ E, all integers in F (v) differ from those in F (w)
by more than b(v, w).

A b-coloring F can be respresented by a function f : V → N such that f(v) =
maxF (v) for every vertex v ∈ V . Clearly, for every vertex v ∈ V ,

b(v) ≤ f(v). (1)

For every edge (v, w) ∈ E,

f(v) �= f(w) (2)

since b(v, w) ≥ 0. For every edge (v, w) ∈ E with f(v) < f(w),

b(v, w) < (f(w)− b(w) + 1)− f(v).

and hence

f(v) + b(v, w) + b(w) ≤ f(w). (3)

Conversely, every function f : V → N satisfying Eqs. (1), (2) and (3) represents
a b-coloring F such that

F (v) = {f(v)− b(v) + 1, f(v)− b(v) + 2, · · · , f(v)}.

Thus, such a function f is also called a b-coloring of G. Obviously, span(F) =
max
v∈V

f(v). We often denote span(F) by span(f). A b-coloring f is called optimal

if span(f) = χb(G). The b-coloring problem is to compute χb(G) for a given
graph G with weight b(x) for each element x ∈ V ∪ E.

The graph in Fig. 1(a) has the maximum weight B = 7. One can easily have
the following lemmas.

Lemma 1. For every weighted graph G, B ≤ χb(G) ≤ B(2χ(G)− 1).

Proof. Obviously B ≤ χb(G). There is an ordinary coloring of G which uses a
number χ(G) of colors ci, 1 ≤ i ≤ χ(G). Let f : V → N be a function such that
f(v) = 2(i−1)B+b(v) if v is colored by ci. Then f satisfies Eqs. (1), (2) and (3),
and hence f is a b-coloring of G. Therefore, χb(G) ≤ span(f) ≤ B(2χ(G)− 1).

�

Algorithms for Bandwidth Consecutive Multicolorings of Graphs 121

Lemma 2. Let G = (V,E) be a bipartite graph in which every vertex has degree
one or more, and let

B̄ = max{b(v) + b(v, w) + b(w) | (v, w) ∈ E}. (4)

Then χb(G) = B̄.

Lemma 2 implies that the b-coloring problem can be solved in linear time for
bipartite graphs and hence for trees.

We then characterize χb(G) in terms of the longest path in acyclic orientations

of G. Orient all edges of G so that the resulting directed graph
−→
G is acyclic. The

directed graph is called an acyclic orientation of G. Figure 1(b) depicts an acyclic
orientation of the graph G in Fig. 1(a).

The length (P,D) of a directed path P in an acyclic graphD is the sum of the
weights of all vertices and edges in P . We denote by max(D) the length of the

longest directed path in D. For the acyclic graph
−→
G in Fig. 1(b) max(

−→
G) = 11,

and the longest directed path P in
−→
G is drawn by thick lines.

Extending the Gallai-Roy theorem on the ordinary coloring (see for example
[12]), we have the following lemma on the b-coloring.

Lemma 3. For every graph G with weight function b

χb(G) = min−→
G

max(
−→
G),

where the minimum is taken over all acyclic orientations
−→
Gof G.

Proof. We first prove that χb(G) ≥ min−→
G

max(
−→
G). Let f be an optimal b-coloring

of G. Then span(f) = χb(G). Orient each edge (v, w) ∈ E from v to w if and
only if f(v) < f(w). Then clearly the resulting directed graph D is acyclic. Let
P = v1, e1, v2, e2, · · · , vp−1, ep−1, vp be the longest directed path in D, where
edge ei, 1 ≤ i ≤ p− 1, goes from vertex vi to vi+1. Then

max(D) =

p∑
i=1

b(vi) +

p−1∑
i=1

b(vi, vi+1).

Since f is a b-coloring of G, by Eqs. (1) and (3) we have

b(v1) ≤ f(v1) (5)

and

b(vi, vi+1) + b(vi+1) ≤ f(vi+1)− f(vi) (6)

for every i, 1 ≤ i ≤ p − 1. Taking the sum of Eq. (5) and Eq. (6) for all i,
1 ≤ i ≤ p− 1, we have

max(D) ≤ f(vp) ≤ span(f) = χb(G).

Since min−→
G

max(
−→
G) ≤ max(D), we have χb(G) ≥ min−→

G

max(
−→
G).

122 K. Nishikawa, T. Nishizeki, and X. Zhou

We then prove that χb(G) ≤ min−→
G

max(
−→
G). Let D be an acyclic orientation of

G such that

max(D) = min−→
G

max(
−→
G).

Let f : V → N be a mapping such that f(v) is the length of the longest directed
path in D ending at v for each vertex v of D. Then, for every directed edge
(v, w) of D, f(v)+ b(v, w)+ b(w) ≤ f(w) and hence f(v) �= f(w). The definition
of f implies that b(v) ≤ f(v) for every vertex v ∈ V . Thus f is a b-coloring of G

and span(f) = max(D). Hence χb(G) ≤ span(f) = min−→
G

max(
−→
G). �

3 Exact Algorithm for Series-Parallel Graphs

Many problems can be solved for series-parallel graphs in polynomial time or
mostly in linear time [11]. In this section we show that the b-coloring problem
can be solved for series-parallel graphs in pseudo polynomial-time O(B3n). It
should be noted that B3n is polynomial in n and B.

A series-parallel graph is recursively defined as follows [11]:

1. A graph G of a single edge is a series-parallel graph, and has the ends of the
edge as terminals s and t of G. (See Fig. 2(a).)

2. Let G1 be a series-parallel graph with terminals s1 and t1, and let G2 be a
series-parallel graph with terminals s2 and t2. (See Fig. 2(b).)
(a) A graph G obtained from G1 and G2 by identifying t1 with s2 is a series-

parallel graph, whose terminals are s1 and t2. Such a connection is called
a series connection. (See Fig. 2(c).)

(b) A graph obtained from G1 and G2 by identifying s1 with s2 and iden-
tifying t1 with t2 is a series-parallel graph, whose terminals are s1 = s2
and t1 = t2. Such a connection is called a parallel connection . (See Fig.
2(d).)

Every series-parallel graph G can be represented by a “binary decomposition
tree.” Figure 3 illustrates a decomposition tree T of the series-parallel graph G
in Fig. 1(a). Labels s and p attached to internal nodes in T indicate series and
parallel connections, respectively. Every leaf of T represents a subgraph of G
induced by a single edge. A node u of T corresponds to a subgraph Gu of G
induced by all edges represented by the leaves that are descendants of u in T .
Thus G = Gr for the root r of T . One can find a decomposition tree of a given
series-parallel graph in linear time [11].

The definition immediately implies that every series-parallel graph G has an
ordinary coloring with at most three colors, that is, χ(G) ≤ 3. Therefore, by
Lemma 1, we have χb(G) ≤ 5B. For a series-parallel graph G with terminals s
and t and integers i and j, 1 ≤ i, j ≤ 5B, we define

χij(G) = min
f

span(f)

Algorithms for Bandwidth Consecutive Multicolorings of Graphs 123

Fig. 2. Definition of series-parallel graphs

Fig. 3. Decomposition tree T of the series-parallel graph in Fig. 1(a)

where the minimum is taken over all b-colorings f of G such that f(s) = i and
f(t) = j. Let χij(G) = ∞ if there is no such b-coloring.

One can recursively compute χij(G), 1 ≤ i, j ≤ 5B, as follows. Consider first
the case where G consists of a single edge e = (s, t) as illustrated in Fig. 2(a).
Then χij(G) = max{i, j} if the following (a)−(c) hold:

(a) i �= j, b(s) ≤ i, and b(t) ≤ j;
(b) i < j implies i+ b(s, t) + b(t) ≤ j; and
(c) j < i implies j + b(s, t) + b(s) ≤ i.

Otherwise, χij(G) = ∞. Consider next the case where G is obtained from G1

and G2 by a series connection as illustrated in Fig. 2(c). Then

χij(G) = min
1≤k≤5B

max{χik(G1), χkj(G2)}. (7)

124 K. Nishikawa, T. Nishizeki, and X. Zhou

Consider finally the case where G is obtained from G1 and G2 by a parallel
connection as illustrated in Fig. 2(d). Then

χij(G) = max{χij(G1), χij(G2)}. (8)

One may assume that a series-parallel graph G has no multiple edges. Then one
can easily prove by induction that m ≤ 2n− 3. Since the binary decomposition
tree T of G has m leaves, T has exactly m − 1(≤ 2n − 4) internal nodes. We
compute χij(Gu), 1 ≤ i, j ≤ 5B, for all nodes u of T from leaves to the root r.
It takes time O(B3n). Since G = Gr, we compute χb(G) from χij(Gr) in time
O(B2) as follows:

χb(G) = min
1≤i,j≤5B

χij(Gr)

Thus we have the following theorem.

Theorem 1. The b-coloring problem can be solved in time O(B3n) for a series-
parallel graph G, where n is the number of vertices in G and B is the maximum
weight of G.

Clearly, B3n is polynomial in n if B is bounded above by a polynomial in n.

4 FPTAS

In this section we give a fully polynomial-time approximation scheme (FPTAS)
for the b-coloring problem on series-parallel graphs.

Let G be a graph with a weight function b, and let σ be a scaling factor which
is a positive integer. Then we denote by Gσ a graph which is isomorphic with G
but has a weight function bσ such that

bσ(x) = �b(x)/σ (9)

for every element x ∈ V ∪E. Figure 1(c) depicts Gσ with σ = 2 for the graph G
in Fig. 1(a). An optimal bσ-coloring Fσ of Gσ is also depicted in Fig. 1(c). We
now have the following lemma.

Lemma 4. Let G be a graph with weight function b, let σ be a positive integer,
and let fσ be an optimal bσ-coloring of Gσ. Then, a function f such that f(v) =
σfσ(v) for every vertex v is a b-coloring of G, and hence χb(G) ≤ σχbσ (Gσ).

Proof. Since fσ is an optimal bσ-coloring of Gσ, we have span(fσ) = χbσ (Gσ),
bσ(v) ≤ fσ(v) for every vertex v ∈ V , fσ(v) �= fσ(w) for every edge (v, w), and
fσ(v) + bσ(v, w) + bσ(w) ≤ fσ(w) for every edge (v, w) with fσ(v) < fσ(w).
Therefore, we have b(v) ≤ σbσ(v) ≤ σfσ(v) = f(v) for every vertex v. Similarly,
we have f(v) �= f(w) for every edge (v, w), and f(v) + b(v, w) + b(w) ≤ f(w)
for every edge (v, w) with f(v) < f(w). Thus f is a b-coloring of G, and hence
χb(G) ≤ span(f) = σ · span(fσ) = σχbσ (Gσ). �

Consider the following approximation scheme.

Algorithms for Bandwidth Consecutive Multicolorings of Graphs 125

Approximation Scheme

1. Choose a scaling factor σ appropriately. (We will later choose σ = �εB/4n�
for a desired approximation error rate ε.)

2. Find an optimal bσ-coloring fσ of Gσ (by a pseudo polynomial-time exact
algorithm, say the algorithm in Section 3).

3. Output, as an approximate solution, a b-coloring f of G such that f(v) =
σfσ(v) for every vertex v.

We now have the following lemma on the longest paths in acyclic orientations−→
G and

−→
Gσ.

Lemma 5. Let G be a weighted graph of n vertices, let
−→
G be an acyclic ori-

entation of G, and let P be the longest directed path in
−→
G . Let σ be a positive

integer, let
−→
Gσ be the acyclic graph obtained from Gσ by orienting each edge in

the same direction as in
−→
G , and let Pσ be the longest directed path in

−→
Gσ. (See

Fig. 1.) Then

(Pσ,
−→
Gσ) < (P,

−→
Gσ) + 2n (10)

Using Lemmas 3 and 5, we then have the following lemma on the error of the
approximation scheme above.

Lemma 6. For a positive integer σ and a graph G with weight function b

σχbσ (Gσ) < χb(G) + 4σn.

Proof. Lemma 3 implies that there are an acyclic orientation
−→
G of G and the

longest path P in
−→
G such that

χb(G) = max(
−→
G) = (P,

−→
G). (11)

Let
−→
Gσ be the acyclic orientation obtained from Gσ by orienting each edge in the

same direction as in
−→
G . The path P contains at most 2n− 1 elements (vertices

and edges). Therefore, we have

χb(G) + 2σn =
∑
x∈P

b(x) + 2σn

> σ
∑
x∈P

(
b(x)

σ
+ 1

)

> σ
∑
x∈P

bσ(x)

= σ(P,
−→
Gσ). (12)

126 K. Nishikawa, T. Nishizeki, and X. Zhou

Let Pσ be the longest path in
−→
Gσ, then by Lemma 5 we have

(P,
−→
Gσ) + 2n > (Pσ,

−→
Gσ). (13)

By Lemma 3 we have

(Pσ,
−→
Gσ) ≥ χbσ (Gσ). (14)

By Eqs. (12)−(14) we have

χb(G) + 4σn > σ(P,
−→
Gσ) + 2σn

> σ(Pσ,
−→
Gσ)

≥ σχbσ (Gσ).

�

Let ε(> 0) be a desired approximation error rate. If εB/4n ≤ 1, then we compute
χb(G) by a pseudo polynomial-time exact algorithm, say the algorithm in Section
3; the computation time is bounded by a polynomial in n and 1/ε sinceB ≤ 4n/ε.
One may thus assume that εB/4n > 1. We then choose σ = �εB/4n�(≥ 1), and
find an approximately optimal b-coloring f(= σfσ) of G by the approximation
scheme above. By Lemmas 1 and 6 one can bound the error as follows:

span(f)− χb(G) = σχbσ (Gσ)− χb(G)

< 4σn

≤ εB

≤ εχb(G). (15)

We thus have the following theorem.

Theorem 2. If there is an exact algorithm to solve the b-coloring problem for a
class of graphs in time polynomial in n and B, then there is a fully polynomial-
time approximation scheme for the class.

Proof. Suppose that the algorithm finds an optimal b-coloring of a graph G in
the class in time p(n,B), where p(n,B) is a polynomial in n and B. Find an
optimal bσ-coloring fσ of Gσ in time p(n,Bσ) by the algorithm, and output a b-
coloring f = σfσ of G by the approximation scheme above, where σ = �εB/4n�
and Bσ = �B/σ is the maximum weight of Gσ. By Eq. (15) the error is less
than εχb(G). Since Bσ = O(n/ε), the computation time p(n,Bσ) of the scheme
is bounded by a polynomial in n and 1/ε.

From Theorems 1 and 2 we thus have the following corollary.

Corollary 1. There is a fully polynomial-time approximation scheme for the b-
coloring problem on series-parallel graphs, and the computation time is O(Bσ

3n)
= O(n4/ε3).

Algorithms for Bandwidth Consecutive Multicolorings of Graphs 127

5 Partial k-Trees

The class of partial k-trees, that is, graphs with bounded tree-width, contains
trees, outerplanar graphs, series-parallel graphs, etc. In this section we show that
the results in Sections 3 and 4 can be extended to partial k-trees.

For a bounded positive integer k, a k-tree is recursively defined as follows
[1, 2]:

(1) A complete graphs with k vertices is a k-tree.
(2) If G = (V,E) is a k-tree and k vertices v1, v2, · · · , vk induce a complete

subgraph of G, then G′ = (V ∪ {w}, E ∪ {(vi, w) : 1 ≤ i ≤ k}) is a k-tree
where w is a new vertex not contained in G.

Any subgraph of a k-tree is called a partial k-tree.
A binary tree T = (VT , ET) is called a tree decomposition of a partial k-tree

G = (V,E) if T satisfies the following conditions (a)−(e) [2]:

(a) every node X ∈ VT is a subset of V and |X | = k + 1;
(b)

⋃
X∈VT

X = V ;
(c) for each edge e = (u, v) ∈ E, T has a leaf X ∈ VT such that u, v ∈ X ;
(d) if node Xp lies on the path in T from node Xq to node Xr, then Xq∩Xr ⊆

Xp; and
(e) each internal node Xi of T has exactly two children, say X� and Xr, such

that |X� −Xr| = 1 and either Xi = X� or Xi = Xr.

One can easily observe from the definitions above that χ(G) ≤ k + 1 for every
partial k-tree G. Therefore, by Lemma 1 we have χb(G) ≤ (2k + 1)B. Similarly
as in Section 3, we compute the counterparts of χij from leaves to the root of
a tree decomposition T of G and compute χb(G) from the counterparts for the
root, which corresponds to G. Thus χb(G) can be computed in time

((2k + 1)B)k+1 × (2k + 1)B × n = O(Bk+2n),

because χb(G) ≤ (2k + 1)B and |X | = k + 1 for every node X of T and hence
there are a number ((2k + 1)B)k+1 of counterparts of χij , |X� − Xr| = 1 for
every internal node Xi of T , and T has O(n) nodes. The time is bounded by a
polynomial in n and B. Therefore, by Theorem 2, the scheme in Section 4 is an
FPTAS and takes time

Bσ
k+2n = O

((n
ε

)k+2

n

)
.

We thus have the following corollary.

Corollary 2. There is a fully polynomial-time approximation scheme for the
b-coloring problem on partial k-trees.

128 K. Nishikawa, T. Nishizeki, and X. Zhou

References

1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Disc. Appl. Math. 23, 11–24 (1989)

2. Bodlaender, H.L.: Treewidth: Algorithmic Techniques and Results. In: Privara, I.,
Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg
(1997)

3. Halldórsson, M.M., Kortsarz, G.: Tools for multicoloring with applications to pla-
nar graphs and partial k-trees. J. of Algorithms 42(2), 334–366 (2002)

4. Halldórsson, M.M., Kortsarz, G., Proskurowski, A.: Multicoloring trees. Informa-
tion and Computation 180(2), 113–129 (2003)

5. Ito, T., Nishizeki, T., Zhou, X.: Algorithms for multicolorings of partial k-trees.
IEICE Trans. Inf. & Syst. E86-D(2), 191–200 (2003)

6. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Disc. Appl.
Math. 75(2), 135–155 (1997)

7. Jensen, T.R., Toft, B.: Graph Coloring Problems. Wiley, New York (1994)
8. Malaguti, E., Toth, P.: An evolutionary approach for bandwidth multicoloring

problems. Europian Journal of Operation Reseach 189, 638–651 (2008)
9. McDiamid, C., Reed, B.: Channel assignment on graphs of bounded treewidth.

Discrete Mathematics 273, 183–192 (2003)
10. Pinedo, M.L.: Scheduling: Theory, Algorithms and Systems. Springer Science,

New York (2008)
11. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combina-

torial problems on series-parallel graphs. J. Assoc. Comput. Mach. 29, 623–641
(1982)

12. West, D.B.: Introduction to Graph Theory. Prentice-Hall, Englewood Cliffs (1996)
13. Zhou, X., Kanari, Y., Nishizeki, T.: Generalized vertex-colorings of partial k-trees.

IEICE Trans. Fundamentals E83-A(4), 671–678 (2000)
14. Zhou, X., Nishizeki, T.: Multicolorings of series-parallel graphs. Algorithmica 38,

271–297 (2004)
15. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique

and chromatic number. Theory of Computing 3, 103–128 (2007)

Independent Domination on Tree Convex

Bipartite Graphs

Yu Song1, Tian Liu1,�, and Ke Xu2,∗

1 Key Laboratory of High Confidence Software Technologies, Ministry of Education,
Institute of Software, School of Electronic Engineering and Computer Science,

Peking University, Beijing 100871, China
{songyufish,lt}@pku.edu.cn

2 National Lab. of Software Development Environment,
Beihang University, Beijing 100191, China

kexu@nlsde.buaa.edu.cn

Abstract. An independent dominating set in a graph is a subset of
vertices, such that every vertex outside this subset has a neighbor in this
subset (dominating), and the induced subgraph of this subset contains no
edge (independent). It was known that finding the minimum independent
dominating set (Independent Domination) is NP-complete on bipartite
graphs, but tractable on convex bipartite graphs. A bipartite graph is
called tree convex, if there is a tree defined on one part of the vertices,
such that for every vertex in another part, the neighborhood of this vertex
is a connected subtree. A convex bipartite graph is just a tree convex one
where the tree is a path. We find that the sum of larger-than-two degrees
of the tree is a key quantity to classify the computational complexity of
independent domination on tree convex bipartite graphs. That is, when
the sum is bounded by a constant, the problem is tractable, but when
the sum is unbounded, and even when the maximum degree of the tree
is bounded, the problem is NP-complete.

1 Introduction

A dominating set in a graph G = (V,E) is a subset D of vertices, such that
every vertex in V \ D has a neighbor in D. An independent dominating set D
is a special kind of dominating set which is also independent, that is, there
is no edge whose both ends are in D. The problem of finding the minimum
independent dominating set (IDS, in short) is NP-complete on general graphs
[3], chordal graphs [2], bipartite graphs [4], chordal bipartite graphs [7], etc.

A bipartite graph G = (A,B;E) is called tree convex, if there is a tree T =
(A,F), such that for all vertex b in B, the neighborhood of b is a connected
subtree in T [5,6]. When T is a path, G is called convex. It was known that
IDS is NP-complete on bipartite graphs [4], but becomes tractable on convex
bipartite graphs [1]. A natural question is

� Corresponding authors.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 129–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

130 Y. Song, T. Liu, and K. Xu

– What is the boundary between intractability and tractability of IDS on bipar-
tite graphs?

In this paper, we answer this question. We first explore IDS on some simple cases,
showing an intractability on star convex bipartite graphs, where T is a star, i.e.
a bipartite complete graph K1,|A|−1, and a tractability on triad convex bipartite
graphs, where T is a triad, i.e. three paths with a common end. These results
have already extended the known results of [4] and [1], respectively. Finally, we
find the exact condition to differentiate NP-completeness and P : whether

t =
∑

vi:degT (vi)>2

degT (vi)

is bounded by a constant or not, where degT (v) is the degree of vertex v in tree T .
The results of this paper are pictured in Figure 1.

Fig. 1. The results of this paper

The remaining part of this paper is organized as follows. TheNP-completeness
of IDS is shown on star convex bipartite graphs in Section 2, and then on more
general graph classes in Section 3. Tractability of IDS is shown in Section 4. The
conclusion and discussion are in Section 5.

2 Intractability of IDS on Star Convex Bipartite Graphs

IDS is NP-complete in bipartite graphs [4]. We can refine this intractability into
star convex bipartite graphs by a similar reduction.

Theorem 1. IDS is NP-complete on star convex bipartite graphs.

Proof. We reduce from SAT to IDS on star convex bipartite graphs. Given an
instance I of SAT, which has m variables x1, ..., xm and n clauses C1, ..., Cn, we
construct a star convex bipartite graph G = (A,B;E), such that I is satisfiable
if and only if G has an IDS of size 2m, as follows.

1. For each variable xi in I (1 ≤ i ≤ m), there is a small gadget involving six
vertices {xi, x̄i, ui, vi, yi, zi} and six edges in G, as shown in Figure 2.

Independent Domination on Tree Convex Bipartite Graphs 131

Fig. 2. The gadget for the literals xi, x̄i

2. For each clause Cj in I (1 ≤ i ≤ n), there is a vertex Cj in G.
3. For all literals xi, x̄i (1 ≤ i ≤ m), and for all clauses Cj (1 ≤ i ≤ n), we

connect xi and Cj if xi is in Cj , connect x̄i and Cj if x̄i is in Cj .
4. Add a vertex v0, which is connected to every ui, vi (1 ≤ i ≤ m) and Cj

(1 < j < n).

Clearly, the construction is in polynomial time. An example of this construction
is in Figure 3 for a SAT instance with two clauses C1 = x1∨x2 and C2 = x̄1∨x2.

Fig. 3. An example of the construction of G

Lemma 1. Graph G is star convex bipartite.

Proof. The graphG is bipartite with respect to the following partition of vertices

A = {xi, x̄i, yi, zi|1 ≤ i ≤ m} ∪ {v0}, B = {ui, vi|1 ≤ i ≤ m} ∪ {Cj |1 ≤ j ≤ n}.

Also G is star convex with the tree T on A be a star with central vertex v0 and
4m leaves, since every vertex b in B is connected to v0, the neighborhood of b is
a subtree in T . �

Lemma 2. If I is satisfiable, G has an IDS of size no more than 2m.

Proof. If there is a satisfying assignment to I, then the set

D =
⋃
i

{xi, vi|xi = true} ∪
⋃
i

{x̄i, ui|xi = false}

is an independent set of size 2m. The set D is also a dominating set, since every
gadget is dominated by {xi, vi} or {x̄i, ui}, the vertex Cj is dominated by one
of {xi} or {x̄i} by the satisfying property, and v0 is dominated by {ui} or {vi}.
In the example shown in Figure 3, a satisfying assignment of I is x1 = false,
x2 = true, and D = {x̄1, u1, x2, v2}. �

132 Y. Song, T. Liu, and K. Xu

Lemma 3. If G has an IDS of size no more than 2m, I is satisfiable.

Proof. Suppose there is an IDS of size no more than 2m. Since there are m
gadgets, and we can not use only one vertex to dominate all six vertices in one
gadget, no matter whether we choose v0 and Cj or not, we must choose exactly
two vertices from each gadget. The limitation of the size 2m makes v0 and Cj

outside the IDS. For each i, the pair xi and x̄i can not be both in IDS, for
otherwise, neither yi nor zi will be dominated. If we assign variable xi to be
true whenever IDS contains xi, and false otherwise, we get an assignment that
satisfies I, since each vertex Cj must be dominated, which implies that every
clause Cj contains a true literal and thus is satisfied. �

The proof of Theorem 1 is finished. �

3 Intractability of IDS on Tree Convex Bipartite Graphs

We can transform the star T constructed in last section into a new tree whose
maximum degree is bounded by a constant dmax as follows. We split the single
central vertex v0 with 4m leaves into a set of central vertices, whose cardinality
is �4m/(dmax − 2) , to from a path in T . Every (dmax − 2) of the original 4m
leaves of v0 form a group to connect to one of the central vertices. Figure 4 is an
example of this transformation with m = 5 and dmax = 6. Amazingly, after this
transformation, the whole reduction still works with some slight modification.

Theorem 2. IDS is NP-complete on tree convex bipartite graphs where the
maximum degree of tree T is bounded by a constant.

Proof. We still reduce from SAT. The modified whole reduction is as follows.

1. For each variable xi in I (1 ≤ i ≤ m), there is a small gadget in G involving
six vertices {xi, x̄i, ui, vi, yi, zi} and six edges in G, as shown in Figure 2.

2. For each clause Cj in I (1 ≤ j ≤ n), there is a vertex Cj in G.
3. If variable xi is in clause Cj , we connect vertices xi and Cj in G. If negated

variable x̄i is in Cj , we connect vertices x̄i and Cj in G.
4. There are p = �4m/(dmax − 2) central vertices v01, v02, ..., v0p to form a

path in T (not in G). The vertices yi, xi, x̄i, zi (1 ≤ i ≤ m) are ordered by
y1, x1, x̄1, z1, y2, x2, x̄2, z2, and so on. Every (dmax−2) consecutive vertices
in this order form a group, and one by one each group are leaves of one of
the p central vertices in T (again not in G).

Fig. 4. Transforming a star into a tree of bounded maximum degree

Independent Domination on Tree Convex Bipartite Graphs 133

5. For each Cj , find the minimum subtree Tj in T containing {xi|xi ∈ Cj} ∪
{x̄i|x̄i ∈ Cj}, and connect Cj to the central vertices on Tj.

6. For xi or x̄i in Cj , connect ui and vi to the central vertices on above Tj.

Clearly, the construction is in polynomial time. Figure 5 shows an example of
the construction with dmax = 4 and p = 4, for a SAT instance with two clauses
C1 = x1 ∨ x2 and C2 = x̄1 ∨ x2.

Fig. 5. An example of the constructions of G and T

Lemma 4. Graph G is tree convex bipartite where the maximum degree of tree
T is bounded by constant dmax.

Proof. The graph G is bipartite with respect to the partition of vertices

A = {xi, x̄i, yi, zi|1 ≤ i ≤ m} ∪ {v0k|1 ≤ k ≤ p},

B = {ui, vi|1 ≤ i ≤ m} ∪ {Cj |1 ≤ j ≤ n}.
That the G is tree convex with maximum degree dmax in T is ensured by the
construction, especially by the fifth and the sixth steps above. �

Lemma 5. If I is satisfiable, G has an IDS of size no more than 2m.

Proof. If there is a satisfying assignment of I, the set

D =
⋃
i

{xi, vi : xi = true} ∪
⋃
i

{x̄i, ui : xi = false}

is an independent set of size 2m. The set D is also a dominating set, since every
gadget is dominated by {xi, vi} or {x̄i, ui}, and Cj is dominated by xi or x̄i

by the satisfying property, and the sixth step of construction ensures that each
v0k is connected to a ui and a vi. In the example in Figure 5, the satisfying
assignment is x1 = false and x2 = true, and the IDS is D = {x̄1, u1, x2, v2}. �

134 Y. Song, T. Liu, and K. Xu

Lemma 6. If G has an IDS of size no more than 2m, I is satisfiable.

Proof. Suppose there is an IDS of size no more than 2m. Since there are m
gadgets, and we can not use a single vertex to dominate all six vertices in one
gadget, no matter whether we choose v0k and Cj (1 ≤ k ≤ p, 1 ≤ j ≤ m) or
not, so we must choose exactly two vertices from each gadget. The limitation
of the size 2m kills both v0k and Cj from the IDS. For each i, the pair xi and
x̄i can not be both in IDS, for otherwise neither yi nor zi will be dominated. If
we assign variable xi to be true whenever IDS contains xi, and false otherwise,
we get an satisfying assignment for I, since each Cj must be dominated, which
implies that every clause contains a true variable. �

This finishes the proof of Theorem 2. �

Note that in above two reductions, the sum of larger-than-two degrees in tree
T is unbounded. Formally, let t =

∑
vi:degT (vi)>2 degT (vi). Then t = 4m for the

T constructed in last section, and t = 4m+ p − 1 for the T constructed in this
section. In the former case, the number of larger-than-two degrees is bounded,
but the maximum degree is unbounded, while in the later case, the number of
larger-than-two degrees is unbounded, but the maximum degree is bounded, all
in T . In both cases, the sum of larger-than-two degrees in tree T is unbounded.
Thus we have the following intractability result.

Theorem 3. IDS is NP-complete on tree convex bipartite graphs whose t, the
sum of larger-than-two degrees in tree T , is unbounded.

4 Tractability of IDS on Tree Convex Bipartite Graphs

IDS is polynomial time on convex bipartite graphs [1]. We can extend this
tractability onto more general tree convex bipartite graphs by a similar dynamic
programming. We start with a simple situation as follows. Recall that a triad is
just three paths with a common end.

Theorem 4. IDS is in polynomial time on triad convex bipartite graphs.

Proof. Our algorithm is an extension of the dynamic programming in [1]. Let D
be a minimum subset of vertices with a desired property Q. D is constructed as
an increasing sequence D1 ⊆ D2 ⊆ · · · ⊆ Dm as follows.

– Step (a) (initialization): generate all possible versions of D1.
– Step (b) (branching): extend all versions of present Di−1 to all possible ver-

sions of Di with Di−1 ⊆ Di. (Possible means that the versions satisfy Q.)
– Step (c) (classification): classify the versions of Di, such that if versions V

and V ′ belong to the same class, then V ⊆ D′ and D′ satisfies Q imply that
(D′ \ V) ∪ V ′ satisfies Q.

– Step (d) (deletion): delete all versions except the one of minimum cardinality
in each class.

Independent Domination on Tree Convex Bipartite Graphs 135

The algorithm proceeds at steps (a), (c)1, (d)1, (b)2, (c)2, (d)2, (b)3, (c)3, · · ·,
(b)m, (c)m, (d)m. We take some version of Dm with the minimum cardinality as
the output minimum IDS.

Then we define some notations on triad convex bipartite graphs. Suppose
G = (A,B;E) and there is a triad T on A. The triad T consists of three paths
p = 1, 2, 3 with a common vertex, as shown in the leftmost in Figure 6. For

Fig. 6. Three paths in triad convex tree, and the label of Ai

each vertex x, N(x) denotes the neighborhood of x in G. We partition A into
nonempty sets A1, A2, · · ·, Am, such that the following conditions hold:

– Each Ai consists of consecutive vertices in T .
– All vertices x ∈ Ai have the same N(x).
– Each Ai is maximal with respect to the above two conditions.
– Each Ai has a three-dimension label (xi, yi, zi), where the p-th bit represents

the order of Ai in path p of T in a bottom-up manner. Figure 6 shows some
examples on how to label Ai.

– In the following text, we will also call Ai: A(xi, yi, zi), and define A(xi, yi, zi)

[1] := xi, A(xi, yi, zi)[2] := yi, A(xi, yi, zi)[3] := zi. Further defined three-
dimension variable holds the same definition.

For each vertex y in B, we define l(y) and r(y) as a three-dimension variable, to
record the range where y covers in each path. They are calculated as follows. If
N(y) include the common vertex of three paths, then

l(y) := min{A(xi,yi,zi)[p]|A(xi,yi,zi) ⊆ N(y) ∩ {v|v is on path i in T }},

r(y) := max{A(xi,yi,zi)[p]|A(xi,yi,zi) ⊆ N(y) ∩ {v|v is on path i in T }}.
Otherwise, N(y) must intersect with only one path. If N(y) ⊆ path 1, then
l(y)[2] = l(y)[3] = r(y)[2] = r(y)[3] = 0. If N(y) ⊆ path 2, then l(y)[1] = l(y)[3]
= r(y)[1] = r(y)[3] = 0. If N(y) ⊆ path 3, then l(y)[1] = r(y)[1] = Ai′ [1],
l(y)[2] = r(y)[2] = Ai′ [2], where Ai′ contains the common vertex of tree paths.
Figure 7 shows an example of triad convex bipartite graph and the label of
vertices of A and B.

There are some properties about Ai. Suppose that N(Ai) are vertices con-
nected to Ai in B, and D is the minimum IDS. If N(Ai) ∩ D �= ∅, from the

136 Y. Song, T. Liu, and K. Xu

Fig. 7. The label of Ai, l(y) and r(y)

independence of D it follows Ai ∩ D = ∅. In the other case N(Ai) ∩ D = ∅,
to dominate Ai there must be Ai ⊆ D. For each Ai, we denote bi with bi = 1
iff Ai ⊆ D, and bi = 0 iff Ai ∩ D = ∅. Since there are only two possible bi, we
execute the dynamic programming process by dealing with one Ai per branch-
ing step, with a reverse order of breadth-first search, and extend Di−1 to Di by
enumerating the value of bi.

Further, in each classification part of step i in the algorithm, we define si to
be a three-dimension variable as follows. The p-th bit of si is

si[p] := max{Ak[p]|Ak ∩ path p �= ∅, Ak[p] < Ai[p], bk = 1}.

Actually, si represents the latest position where IDS has already dominated in
each path of the convex tree. We define this variable because if we know si and
whether Ai is chosen or not, i.e. bi, we know how to choose vertices in B into
IDS. So we can categorize versions with the same si into a class, and do the
deletion procedure.

Recall the definition of Di to be the minimum IDS found in step i. Then Di

has the following properties:

– Di =
⋃
{Ak — k ≤ i, bk = 1 } ∪ {y ∈ B | r(y)[1] ≤ Ak[1], r(y)[2] ≤ Ak[2],

r(y)[3] ≤ Ak[3], bk = 0 for all Ak ⊆ N(y)};
– (opt) If bk = 0, and every bit of Ak ≤ si, then Di must contain some vertex

of N(Ak).

Now we can represent our IDS algorithm as follows.

(a) version b1=0:

D1:={y is vertex in B | r(y):=(D1[1],D1[2],D1[3])};

s1:=(0,0,0).

version b1=1:

D1:=A1;

s1:=(A1[1],A1[2],A1[3]).

(b) version bi=0:

Independent Domination on Tree Convex Bipartite Graphs 137

Di:=D(i-1) + {y is vertex in B|l(y)[1] > s(i-1)[1],

l(y)[2] > s(i-1)[2], l(y)[3] > s(i-1)[3],

r(y) = (Ai[1],Ai[2],Ai[3])};

si:=s(i-1).

If i=m, and Ai is not dominated, then delete the version.

version bi=1:

check (opt), if it fails, then delete the version;

If (opt) hols, then Di:=D(i-1)+Ai;

If Ai have common vertices with path p, si[p]:=Ai[p];

else si[p]:=s(i-1)[p].

(c) The version with equal sk belong to the same class.

(d) Delete all versions except one of minimum cardinality in

each class.

We can briefly analyze the running time of this algorithm as follows.

– Labeling each Ai and l(y), r(y) for each y in B cost O(|A|+ |A| · |B|) time.
– Step (a) costs O(|B|) time.
– Steps (b)(c)(d) will repeat O(|A|) times. In each loop, there are at most

O(|A|3) versions, we should calculate in O(|A| + |B|) time for each version.
Steps (c) and (d) cost O(|A|3) time. The total cost is O(|A|5 + |A|4 · |B|).

So the total running time is O(|A|5 + |A|4 · |B|), which is a polynomial. �

This algorithm is easily extended to more general situations. For tree convex
bipartite graphs with the sum of larger-than-two degrees in the tree is bounded
by t (this property will be call Q), the tree is split into m paths, where m ≤ t.
Figure 8 briefly presents an example.

So, as long as we redefine the label of Ai, l(y) and r(y) (y ∈ B) to be m-
dimension variables, in which each bit records the position and covering range
of Ai and y in each path of the convex tree, the algorithm can operate as the
same way:

Fig. 8. An example of graphs satisfies Q

138 Y. Song, T. Liu, and K. Xu

– Initializing is as the same.
– Each Ai will be all or none chosen, which consist the two possibilities of

branching in each step.
– We should record si, which is also a m-dimension variable, presenting the

latest position where IDS has already dominated in each path. Versions with
same si are classified into the same class.

– We only keep the version with minimum cardinality in each class.

With the same analysis, the above algorithm runs in time O(|A|t+2+|A|t+1 ·|B|),
which proves the following theorem.

Theorem 5. IDS is in polynomial time on tree convex bipartite graphs where
the sum of larger-than-two degrees of the tree is bounded by a constant.

5 Conclusion and Open Problems

We have shown a dichotomy of complexity of IDS on tree convex bipartite
graphs: the problem is intractable when the sum of larger-than-two degrees in
the tree is unbounded, and tractable when the sum is bounded by a constant. In
our intractability reductions, the sum increases linearly. Can we make a reduc-
tion with an arbitrarily slow increasing of the sum? In our tractable algorithm,
the running time is exponential in the sum. Can we get a better running time?

Acknowledgments. This research was partially supported by the National 973
Program of China (Grant No. 2010CB328103) and the National Natural Science
Foundation of China (Grant No. 60973033).

References

1. Damaschke, P., Muller, H., Kratsch, D.: Domination in Convex and Chordal Bipar-
tite Graphs Information Processing Letters 36, 231–236 (1990)

2. Farber, M.: Independent Domination in Chordal Graphs. Operations Research Let-
ters 1, 134–138 (1982)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness (1979)

4. Irving, W.: On approximating the minimum independent dominating set. Informa-
tion Processing Letters 37, 197–200 (1991)

5. Jiang, W., Liu, T., Ren, T.N., Xu, K.: Two Hardness Results on Feedback Vertex
Sets. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681,
pp. 233–243. Springer, Heidelberg (2011)

6. Jiang, W., Liu, T., Xu, K.: Tractable Feedback Vertex Sets in Restricted Bipartite
Graphs. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831,
pp. 424–434. Springer, Heidelberg (2011)

7. Muller, H., Brandstadt, A.: The NP-completeness of Steiner Tree and Dominating
Set for Chordal Bipartite Graphs. Theoretical Computer Science 53, 257–265 (1987)

On-Line Scheduling of Parallel Jobs

in Heterogeneous Multiple Clusters�

Deshi Ye and Lili Mei

College of Computer Science, Zhejiang University, Hangzhou 310027, China
yedeshi@zju.edu.cn

Abstract. We consider the on-line scheduling of parallel jobs in het-
erogeneous multiple clusters, in which a set of clusters is given and the
parallel jobs arrive one by one, and the goal is to schedule all the jobs
while minimizing the makespan. A cluster consists of many identical pro-
cessors. A parallel job may require several processors in one cluster to
execute it simultaneously. In this paper, we investigate two variants of the
heterogeneous clusters. First, for the clusters of different widths (num-
ber of processors) but identical processor speeds, we provide an on-line
algorithm with a competitive ratio at most of 14.2915. Second, for the
clusters of different speeds but identical widths, we provide an on-line
algorithm with a competitive ratio at most of 18.2788.

Keywords: Multiple cluster scheduling, Parallel jobs scheduling, Strip
packing, On-line algorithms.

1 Introduction

A computer cluster is a set of identical processors connected by a local intercon-
nection network. We consider a grid computing environment, in which several
clusters share their computing resources to reach a common goal. A parallel job
may require several processors in a cluster for processing. Parallel jobs arrive in
an on-line manner and the objective is to minimize the time when all the jobs
are completed.

Formally, our problem can be described as multiple cluster scheduling (MCS).
We are given m heterogeneous clusters Cl1, Cl2, . . . , Clm. A set of jobs J =
{T1, T2, . . .} arrives one by one. Each job Tj is described by a processing time
h(Tj) and a width w(Tj) (the number of required processors). The work (or
area) of a job Tj is w(Tj) · h(Tj). A cluster Cli has wi identical processors and
identical speed vi. A job Tj is allowed to be scheduled in only one cluster and
without preemption, and its processing time in cluster Cli is pij = h(Tj)/vi if

w(Tj) ≤ wi else pij = ∞. The objective is to minimize the makespan, which is
the maximum completion time of a job.

This problem is closer to the multiple strip packing problem (MSP), in which a
set of rectangles is packed into multiple two-dimensional strips of certain widths

� Research was supported by NSFC(11071215).

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 139–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

140 D. Ye and L. Mei

such that the sides of the rectangles are parallel to the strip sides and no rectangle
interiors intersect. The objective is to minimize the maximum height of the
strip used to pack a given sequence of rectangles without rotation. These two
problems are equivalent if we require in addition that a job must use consecutive
processors, i.e., we regard a cluster as a strip and a job as a rectangle.

In this paper, we study on-line algorithms for the MCS problem. In the on-
line variation, jobs arrive one by one and the allocated position for the current
job must be immediately and irrevocably made without any information of next
jobs. The provided algorithms in this paper always assign a job on consecutive
processors, and thus the algorithms are valid for the MCS problem.

Performance Measures. We adopt the classical competitive analysis [4] to mea-
sure the performance of on-line algorithms. For any instance I and an on-line
algorithm A, we denote by OPT(I) and A(I), respectively, the makespans given
by an optimal off-line algorithm and by the on-line algorithm A to schedule
all the jobs in I. An on-line algorithm is ρ-competitive if A(I) ≤ ρOPT (I).
The competitive ratio of the algorithm A is the supremum value of ρ, i.e.,
RA = supI{A(I)/OPT (I)}.
Related Work. The multiple strips packing (MSP) problem was first considered
by Zhuk [21]. The main result of their paper is a 10-approximation algorithm
that is semi on-line. The jobs arrive on-line and must be distributed to the strips
in the on-line manner, but the packing of items in a strip is off-line. The packing
is performed after all the items have been deployed to the strips. The author
also showed that the problem cannot be approximated within a factor of 2 even
if there are only two identical strips.

For the off-line MSP with identical widths, Ye et al. [20] provided a
(2 + ε)-approximation algorithm. Bougeret et al. [7] improved the result to
2-approximation, which therefore is tight. Also, they provided an asymptotic
FPTAS for the multiple strip packing problem. If we remove the constraint of
using consecutive processors, 5/2-approximation algorithms were given in [6,5].

For the off-line MSP with different widths, Bougeret et al. [8] provided 5/2-
approximation algorithms. They also presented an off-line 5/2-approximation
algorithm for the MSP problem with different speeds.

The on-line MSP with identical speeds have been studied in [17,20]. In [20]
the authors studied the on-line model, as in our paper, and investigated both
deterministic and randomized algorithms. However, their results are limited to
the MSP problem with identical widths and identical speeds. The maximum
competitive ratio is 6.6623 for single strip, and the competitive ratio decreases
when the number of strips increases. On the other hand, in [17] the authors
studied the model in which jobs arrive over time, and designed a 3-competitive
algorithm for the problem without release times and a 5-competitive algorithm
with release times. Further notice that their model is non-clairvoyant, i.e. the
running time of every job is only known after the completion of this job. Their
model holds for the variants with different widths.

As far as we know, there is no previous work on MSP with different speeds.
The existing work focuses on the sequential jobs scheduling in related machines.

On-Line Scheduling of Parallel Jobs in Heterogeneous Multiple Clusters 141

Aspnes et al. [1] provided an 8-competitive deterministic algorithm and a 5.436-
competitive randomized algorithm for the on-line related machine scheduling.
Berman et al. [3] improved the competitive ratios to 5.828 and 4.311, respectively.
Besides, they gave lower bounds of 2.4380 and 1.8372 on the competitive ratios
of deterministic algorithms and randomized algorithms, respectively. Currently,
Ebenlendr and Sgall [11] improved the deterministic lower bound to 2.564.

The classical one strip packing problem has been extensively studied. Coffman
et al. [10] studied NFDH (Next Fit Decreasing Height) and FFDH (First Fit
Decreasing Height) algorithms and showed that their asymptotic approximation
ratios are 2 and 1.7, respectively. The current best asymptotic approximation is
an asymptotic FPTAS due to Kenyon and Rémila [15], Jansen and Stee [14] for
the model if rotation of rectangles is allowed. For the absolute approximation
ratio, 2-approximation algorithms have been provided in [16,18]. The current
best algorithm is due to Harren et al. [12] with an approximation ratio of 5/3+ε,
where ε is an arbitrarily small positive number.

For the on-line single strip packing problem, Baker and Schwarz [2] developed
shelf algorithms. The next fit shelf algorithm (NFS) and the first fit shelf algo-
rithm (FFS) achieve competitive ratios 7.46 and 6.99, respectively. Revised shelf
algorithms were proposed with competitive ratio of 6.66 [19,13].

Our Contributions. In this paper, we study the on-line algorithms in hetero-
geneous multiple clusters. On-line means that jobs not only arrive on-line to
be distributed to clusters, but also that each job shall be immediately and ir-
revocably assigned. We study two variants of heterogeneous multiple clusters.
Heterogeneous means the clusters might have different widths or different speeds.
First, in Section 2, for clusters with different widths but the same speeds, we
provide an on-line algorithm with a competitive ratio of 14.2915. Second, in
Section 3, for clusters with different speeds but the same widths, we provide an
on-line algorithm with a competitive ratio of 18.2788. In the remaining paper,
the terms strip and rectangle can be used interchangeably with terms cluster and
job, respectively.

2 Different Widths

In this section, we investigate the MCS problem with identical speeds but differ-
ent widths. Without loss of generality, we assume that the clusters are arranged
in non-decreasing order of widths, i.e., w1 ≤ w2 ≤ . . . ≤ wm.

A semi on-line algorithm [21] was provided for the MCS problem for identical
speeds but different widths, in which the items arrive one by one and are assigned
to one cluster immediately, but one can pack the items in one cluster by an off-
line algorithm after all the items have been distributed.

Our on-line algorithm consists of two steps. In the first step, we extend the
algorithm [21] to distribute items to clusters. Next, we apply revised first fit
shelf RSr [19] algorithm to pack the items in that strip in the second step. To
be self-content of the paper, the revised first fit shelf algorithm RSr is given in
Algorithm 1.

142 D. Ye and L. Mei

Algorithm 1. RSr [19] (assign jobs in the cluster i)

1: Given any r > 1, and for any incoming job Tj , the assignment is illustrated as
below.

2: if Job Tj is big, i.e. w(Tj) > 1/2 ∗ wi then
3: Open a new shelf with height h(Tj) and use it.
4: end if
5: if Job Tj is small, i.e., w(Tj) ≤ 1/2 ∗ wi then
6: Choose a value k ∈ Z such that rk < h(Tj) ≤ rk+1, then pack it into a shelf of

height rk+1 by the FF(First Fit) algorithm. That is to say, the job (or rectangle)
Tj is packed left most to a lowest shelf with height rk+1 which has enough room
for it. Otherwise, create a new shelf with height rk+1 at the current top of the
strip, and then place this rectangle into it.

7: end if

Algorithm 2.

1: Specify a constant parameter 0 < β ≤ 1. For each incoming job Tj , we select the
cluster i among the admissible clusters such that the ratio Si/wi is minimized.

2: Then Tj is packed in the ith cluster by Algorithm 1 (the Revised First Fit (RSr) [19]
shelf algorithm).

Let 0 < β ≤ 1. For each incoming job Tj, let first(Tj) be the minimum i such
that wi ≥ w(Tj) and last(Tj) be the minimum r such that

∑r
i=first(Tj)

wi ≥
β
∑m

i=first(Tj)
wi. Let Si be the area of jobs packed in the i-th cluster. The

clusters between first(Tj) and last(Tj) are called admissible clusters for job Tj .
The detailed on-line algorithm for our problem is given in Algorithm 2.

Theorem 2.1. Let β = 1/2. For any r > 4/3, the competitive ratio of Algorithm 2
for on-line MCS problem with different widths is at most of 1 + 6r + r2/(r − 1).
The competitive ratio is at most of 14.2915 if we let r = 1 +

√
7/7 ≈ 1.378.

Proof. We extend the criterion for distributing jobs to clusters for the semi on-
line algorithm in [21] to our fully on-line algorithm. In [21], the β was setting to
be 1/2. Denote OPT to be the optimal off-line makespan. Suppose Ta is the last
job that was added to the k-th cluster when the makespan happens. In [21], for
single strip, the following inequality is obtained.

Sk

wk
≤ 4 · OPT . (2.1)

By specifying the parameter β, we can obtain that

Sk

wk
≥ β(1 − β)OPT.

Then the best possible value for β is 1/2, which therefore the inequality 2.1 still
holds.

On-Line Scheduling of Parallel Jobs in Heterogeneous Multiple Clusters 143

Denote ALG to be the makespan of our on-line algorithm. Let us consider
the schedule generated by Algorithm 1, which consists of shelves. Denote by HF

the length of shelves that contain big jobs. For small jobs, the shelves with the
same length rk forms class k, in which the sparse shelf is define to be the last
shelf if the number of shelves used is odd, and all the other shelves are dense.
Denote HS and HD to be the height of sparse shelves and dense shelves before
packing Ta, respectively. Then ALG ≤ HS +HD +HF + h(Ta). Denote μ to be
the longest item in the k-th strip.

Lemma 2.2. [19] The total work assigned in a cluster by the Algorithm 1 is at
least HF

2 + 2
3 · 1

r ·HD.

Proof. The detailed proof is given in [19], we simply restate this fact here. For
full shelves, the width of each job is larger than 1/2 which implies the total work
of full shelves is at least HF /2. For dense shelves, the length of each job is at
least 1/r the height of each shelf. Moreover, except the last shelf of each class,
at most one shelf of which the total width of the assigned jobs is less than 2/3.
If it happens, we add the work of last shelf to this shelf, and the last shelf is
added to the set of sparse shelves. �

Let r ≥ 4/3, and from Lemma 2.2, we have the work of a cluster is at least
HF+HD

1.5r , i.e., Sk ≥ HF+HD

1.5r wk. Combine the equation (2.1), we have

ALG = HS +HD +HF + h(Ta)

≤ r2

r − 1
μ+ 1.5r

Sk

wk
+ μ

≤ (
r2

r − 1
+ 6r + 1)OPT.

By setting r = 1 +
√
7/7 ≈ 1.378, we obtain that the minimum value of the

competitive ratio is 14.2915. �

3 Different Speeds

In this section, we deal with the variant of the MCS problem for clusters with the
same widths but different speeds, which are assumed to be v1 ≤ v2 ≤ . . . ≤ vm.
Without loss of generality, we assume the widths of all clusters to be 1. Our
main idea to design the on-line algorithm is to guess an optimal value for the
off-line schedule. If the value is correctly guessed, all the jobs must be scheduled
with some factor of the guessed value. This idea is used widely in scheduling
theory, such as on-line scheduling algorithms for related machine or unrelated
machine [1,3].

Suppose that Λ is a guess of an optimal off-line solution. Let L(v, Λ, J) be the
work of those jobs with h(Ji) > Λ · v, i.e., the total work of jobs that cannot be
processed with speed of at most v if the makespan is bounded by Λ, since the
width of a cluster is 1. Let Cap(v) be the sum of speeds larger than v.

144 D. Ye and L. Mei

Lemma 3.1. If L(v, Λ, J) > Λ ·Cap(v), then the set of job J cannot be executed
with makespan bounded by Λ.

Proof. L(v, Λ, J) means that the set of jobs J must be processed in the clusters
with speeds larger than v with bounded makespan Λ. Since all clusters have a
width of 1 and there is at most Cap(v) clusters, the makespan must be larger
than Λ. �

Algorithm 3.

1: The clusters are indexed such that v1 ≤ v2 ≤ . . . ≤ vm. Specify a parameter r1 as
the parameter r chosen in Algorithm 1. Choose a constant r2 > 1, which will be
specified later.

2: Let Λ = h(T1)/vm, c0 = Λ, x0 = 0, and i = 0.
3: for each incoming job Tj do
4: We assign this job to a cluster as below.
5: while L(v, Λ, J) > Λ · Cap(v) for any v ∈ V = {0, v1, v2, . . . , vm} do
6: i = i+ 1;
7: Λ = r2 · Λ;
8: xi =

r21
r1−1

Λ+ Λ;

9: ci = ci−1 + 3r1
2
Λ.

10: end while
11: Job Tj is assigned to the cluster p such that p = min{q|S(q) ≤ ci+xi, h(Tj)/vq ≤

Λ}, where S(q) is the makespan of the cluster q if the job Tj is assigned to this
cluster by the Algorithm 1.

12: Assign Job Tj in cluster p using Algorithm 1, where r = r1.
13: end for

Our algorithm consists of two levels. One is to distribute the incoming job to a
specified cluster and then the second level is to assign this job in the cluster. The
second level is the classical on-line strip packing algorithm, we adopt the existing
algorithm revised first fit shelf (RSr) [19], which is described in Algorithm 1.
Thus, the essential part is the first level which is described in line 1 to line 9 in
Algorithm 3.

The technique we used in Algorithm 3 is inspired from the on-line related
machine scheduling [3]. The on-line related machine scheduling is a special case
of our problem if we let the size of any job is exactly the width of a cluster.
One typical technique for on-line algorithms is doubling [9], the 8-competitive
algorithm for the related machine scheduling uses the doubling algorithm [1],
in which the algorithm guesses an optimal off-line makespan, if the guess is
not correct and then doubling the guess, otherwise the algorithm is shown to
be correct for assigning all the jobs within twice the guess. This method is
extended in [3], which increases the guess by a parameter r instead of doubling.
To efficiently use the clusters and reduce the makespan, we cannot simply use
the classical on-line algorithms for related machine scheduling to our problem.
Instead, we need to carefully design an algorithm while considering both levels.

On-Line Scheduling of Parallel Jobs in Heterogeneous Multiple Clusters 145

Theorem 3.2. Algorithm 3 for on-line MCS problem with different speeds
achieves the competitive ratio at most of 18.2788, if we choose r1 = 1.43126
in Algorithm 1 and r2 = 1.5214 in Algorithm 3.

Proof. Without loss of generality, we assume that the optimal off-line makespan
is 1. The initial value of Λ is defined to be Λ0. Suppose that the Algorithm 3
stops at the l-th iteration and in each iteration i, the value of Λ is defined to be
Λi = ri2Λ0 for any 1 ≤ i ≤ l. Since the optimal makespan is 1, we have Λl ≤ r2
and Λl−1 < 1 from Lemma 3.1 and Line 5 in Algorithm 3. Then the competitive
ratio of our algorithm is computed as below. Let ALG be the makespan of our
algorithm. Thus,

ALG ≤ cl + xl =
3r1
2

l∑
i=0

Λi +
r21

r1 − 1
Λl + Λl

≤ 3r1
2

1∑
i=−∞

ri2Λl−1

+(
r21

r1 − 1
r2 + r2)Λl−1

≤ 3r1
2

1∑
i=−∞

ri2 +
r21

r1 − 1
r2 + r2

≤ 3r1
2

· r22
r2 − 1

+
r21

r1 − 1
r2 + r2.

In the following, we will show our algorithm is correct if r1 ≥ 4/3. Then the best
value of ALG is 18.2788, if we choose r1 = 1.43126 and r2 = 1.5214.

Now we need to show that the correctness of our algorithm if we let r1 ≥ 4/3.
Denote Jk to be the set of jobs scheduled in the iteration of k, where 0 ≤
k ≤ l and the definition of iteration is given at the beginning of this proof. By
Algorithm 3, the incoming job is preferred to be assigned to the slowest cluster.
Let Jk

i be the set of jobs that in phase k cluster i+1 received or cluster i ignored.
To prove the correctness of this theorem, we only need to show that the set Jk

m

is empty for every phase k, i.e., L(0, Λt, J
t
m) = 0 for any t ≤ k.

In each iteration k, we have

L(v, Λk, J
k) ≤ Λk · Cap(v) (3.1)

for every speed v and phase k.

Lemma 3.3. For every i = 0, . . . ,m and phase k, if r1 ≥ 4/3 in Algorithm 1,
then we have

k∑
t=0

L(0, Λt, J
t
i) ≤ (

k∑
t=0

Λt)(

m∑
j=i+1

vj).

146 D. Ye and L. Mei

Proof. The proof is done by the induction on i. In initial step, we show the
lemma holds for i = 0 and l = 0. From the inequality (3.1), for any t we have

L(0, Λt, J
t
0) = L(0, Λt, J

t) ≤ ΛtCap(0) = Λt(

m∑
j=1

vj).

Thus, the claim is true for i = 0. For l = 0, since J0 is empty and then J0
i is

empty for all i, which therefore the left side of the inequality is zero.
Suppose that now the claim is true for (i, l−1) and (i−1, l). We will prove the

claim for (i, l). Let us consider the schedule generated in Algorithm 1 in cluster
i, the schedule consists of shelves. Again we let HF be the length of shelves that
contain big jobs. For small jobs, the shelves with the same length ry consists of
class y. The last shelf in any class y is called sparse if the number of shelves used
is odd, while all the other shelves are dense. Let HS and HD be the total length
of sparse shelves and dense shelves over all y, respectively.

Case 1: (HF +HD)/vi ≤ cl = 1.5r1
∑l

t=0 Λt. By the hypothesis of (i, l− 1),
it is sufficient to show that

L(0, Λl, J
l
i) ≤ Λl(

m∑
j=i+1

vj).

Since all the jobs assigned in cluster i are bounded by vi · Λl, we have HS/vi ≤
Λl(1 + r−1

1 + r−2
1 + . . .) ≤ r21

r1−1Λl. Note that in iteration l, cl + xl = cl +
r21

r1−1Λl + Λl. Consequently, in this case cluster i accepted all jobs with length

at most Λl · vi from the set J l
i−1. Therefore, the set J l

i consists only of the jobs
that must be executed on clusters faster than vi, i.e. L(0, Λl, J

l
i) = L(vi, Λl, J

l
i).

From the inequality (3.1), we have L(0, Λl, J
l
i) = L(vi, Λl, J

l
i) ≤ ΛlCap(vi) ≤

Λl(
∑m

j=i+1 vj).
Case 2: (HF +HD)/vi > cl. From the hypothesis of (i − 1, l), it is sufficient

to show that

l∑
t=0

(L(0, Λt, J
t
i−1)− L(0, Λt, J

t
i)) ≥ (

l∑
t=0

Λt)vi. (3.2)

The left-hand side of inequality (3.2) is the total work of the jobs accepted

by cluster i during these phases. Since (HF + HD)/vi > cl = 1.5r1
∑l

t=0 Λt,
and it remains to show that the total work accepted in cluster i is at least
(HF +HD)/(1.5r1). This is done by Lemma 2.2 and let r1 ≥ 4/3. �

For i = m, the right-hand of the inequality in the Lemma 3.3 is zero, which
implies that

∑k
t=0 L(0, Λt, J

t
i) ≤ 0, and then L(0, Λt, J

t
m) = 0 for any t ≤ k. �

4 Conclusions

In this paper, we have investigated the on-line scheduling of parallel jobs in
multiple clusters. First, for clusters with different widths but identical speeds, we

On-Line Scheduling of Parallel Jobs in Heterogeneous Multiple Clusters 147

designed an on-line algorithm with a competitive ratio of no more than 14.2915.
Second, for clusters with different speeds but identical speeds, we provided an
on-line algorithm with a competitive ratio at most of 18.2788.

Though we did not consider the case where clusters have different widths and
different speeds, we believe that the technique used in this paper can be extended
to this general case. It is an interesting question whether we could improve the
competitive ratios for all variants of the problem in this work.

Acknowledgment. We thank anonymous referees for helpful comments to im-
prove the presentation of this paper. We also thank Jack Snoeyink for his com-
ments and suggestions regarding the presentation of this paper.

References

1. Aspnes, J., Azar, Y., Fiat, A., Plotkin, S., Waarts, O.: On-line load balancing
with applications to machine scheduling and virtual circuit routing. Journal of the
ACM 44, 486–504 (1997)

2. Baker, B.S., Schwartz, J.S.: Shelf algorithms for two-dimensional packing problems.
SIAM Journal on Computing 12, 508–525 (1983)

3. Berman, P., Charikar, M., Karpinski, M.: On-line load balancing for related ma-
chines. Journal of Algorithms 35, 108–121 (2000)

4. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

5. Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., Trystram, D.: A Fast 5/2-
Approximation Algorithm for Hierarchical Scheduling. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 157–167. Springer,
Heidelberg (2010)

6. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximating the
non-contiguous multiple organization packing problem. In: Proceedings of Theo-
retical Computer Science: the 6th IFIP WG 2.2 International Conference (TCS),
pp. 316–327 (2010)

7. Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation
Algorithms for Multiple Strip Packing. In: Bampis, E., Jansen, K. (eds.) WAOA
2009. LNCS, vol. 5893, pp. 37–48. Springer, Heidelberg (2010)

8. Bougeret, M., Dutot, P.F., Trystram, D.: An extention of the 5/2-approximation
algorithm using oracle. Research Report (2010)

9. Chrobak, M., Kenyon, C.: Competitiveness via doubling. In: SIGACT News,
pp. 115–126 (2006)

10. Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for
level oriented two-dimensional packing algorithms. SIAM Journal on Computing 9,
808–826 (1980)

11. Ebenlendr, T., Sgall, J.: A lower bound on deterministic online algorithms for
scheduling on related machines without preemption. In: Proc. of the 9th Workshop
on Approximation and Online Algorithms, WAOA 2011 (2012)

12. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-Approximation for
Strip Packing. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS,
vol. 6844, pp. 475–487. Springer, Heidelberg (2011)

148 D. Ye and L. Mei

13. Hurink, J.L., Paulus, J.J.: Online Algorithm for Parallel Job Scheduling and Strip
Packing. In: Kaklamanis, C., Skutella, M. (eds.) WAOA 2007. LNCS, vol. 4927,
pp. 67–74. Springer, Heidelberg (2008)

14. Jansen, K., van Stee, R.: On strip packing With rotations. In: Proc. 37th Symp.
Theory of Computing (STOC), pp. 755–761 (2005)

15. Kenyon, C., Remila, E.: Approximate Strip Packing. In: Proc. 37th Symp. Foun-
dations of Computer Science (FOCS), vol. 37, pp. 31–37 (1996)

16. Schiermeyer, I.: Reverse-Fit: A 2-Optimal Algorithm for Packing Rectangles. In:
van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg
(1994)

17. Schwiegelshohn, U., Tchernykh, A., Yahyapour, R.: Online scheduling in grids. In:
IEEE International Symposium on Parallel and Distributed Processing (IPDPS),
pp. 1–10 (2008)

18. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM
Journal on Computing 26, 401–409 (1997)

19. Ye, D., Han, X., Zhang, G.: A note on online strip packing. Journal of Combina-
torial Optimization 17(4), 417–423 (2009)

20. Ye, D., Han, X., Zhang, G.: Online multiple-strip packing. Theoretical Computer
Science 412(3), 233–239 (2011)

21. Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete
Mathematics and Applications 16(1), 73–85 (2006)

On Multiprocessor Temperature-Aware

Scheduling Problems

Evripidis Bampis1,�, Dimitrios Letsios1,2,∗, Giorgio Lucarelli1,2,∗,
Evangelos Markakis3, and Ioannis Milis3

1 LIP6, Université Pierre et Marie Curie, France
{Evripidis.Bampis,Giorgio.Lucarelli}@lip6.fr

2 IBISC, Université d’ Évry, France
dimitris.letsios@ibisc.univ-evry.fr

3 Dept. of Informatics, Athens University of Economics and Business, Greece
{markakis,milis}@aueb.gr

Abstract. We study temperature-aware scheduling problems under the
model introduced by Chrobak et al. in [9], where unit-length jobs of given
heat contributions are to be scheduled on a set of parallel identical pro-
cessors. We consider three optimization criteria: makespan, maximum
temperature and (weighted) average temperature. On the positive side,
we present polynomial time approximation algorithms for the minimiza-
tion of the makespan and the maximum temperature, as well as, optimal
polynomial time algorithms for minimizing the average temperature and
the weighted average temperature. On the negative side, we prove that
there is no (4

3
−ε)-approximation algorithm for the problem of minimizing

the makespan for any ε > 0, unless P = NP .

1 Introduction

The exponential increase in the processing power of recent (micro)processors has
led to an analogous increase in the energy consumption of computing systems
of any kind, from compact mobile devices to large scale data centers. This has
also led to vast heat emissions and high temperatures affecting the processors’
performance and reliability. Moreover, high temperatures reduce the lifetime of
chips and may permanently damage the processors. For this reason, manufactur-
ers have set appropriate thresholds in processors’ temperature and use cooling
systems. However, the energy consumption and heat emission of these cooling
systems have to be added to that of the whole system.

The issues of the energy and thermal management, in the (micro)processor and
system design levels, date back to the first computer systems. During the last few
years these issues have been also addressed at the operating system’s level, gener-
ating new interesting questions. In this context the operating system has to decide
the order in which the jobs should be scheduled so that the system’s temperature

� Research supported by the French Agency for Research under the DEFIS program
TODO, ANR-09-EMER-010, and by GDR du CNRS, RO.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 149–160, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 E. Bampis et al.

(and/or energy consumption) remains as low as possible, while at the same time
some standard user or system oriented criterion (e.g. makespan, response time,
throughput, etc) is optimized. Clearly, the minimization of the temperature and
the optimization of the scheduling criteria are typically in conflict, and several
models have been proposed in the literature in order to analyze such conflicts and
trade-offs. A first model is based on the speed-scaling technique for energy saving
and the Newton’s law of cooling; see for example [5,4] as well as recent reviews on
speed scaling in [12,1,2]. In another model proposed in [15], a thermal RC circuit
is utilized to capture the temperature profile of a processor.

Apart from the above models, in this paper we adopt the simplified model
for cooling and thermal management introduced by Chrobak et al. [9] who were
motivated by [14]. We consider a set of unit-length jobs (corresponding to slices of
the processes to be scheduled), each one of a given heat contribution, and model
the thermal behavior of the system as follows: If a job of heat contribution h is
executed on a processor in a time interval [t− 1, t), t ∈ N, and the temperature
of the processor at time t − 1 is Θ, then the processor’s temperature at time t
is Θ+h

2 . Although in practise [16] the heat contribution of the executed jobs and
the cooling effect are spread over time, we consider a simplified discrete process
in which we first add to the temperature the heat contribution of the current
job and then we multiply by one half, in order to take into account the cooling
effect. We consider two natural variants of the model:

- the threshold thermal model in which a given threshold on the temperature
of the processors cannot be violated. This makes necessary the introduction
of idle times in a schedule.

- the optimization thermal model in which there is no explicit upper bound
on the temperature of the processors. The lack of such an explicit bound
is counterbalanced by the fact that the minimization of the (maximum or
average) temperature becomes the goal of the scheduler.

The constraints that are introduced by such temperature management models
give rise to interesting and technically challenging scheduling problems, which
is the focus of our work. In particular, our goal is to schedule a set of jobs on a
set of m parallel identical processors so as to minimize (i) the makespan in the
threshold thermal model and (ii) the maximum or average temperature in the
optimization thermal model.

Related Results and Our Contribution. In [9], Chrobak et al. consider the
threshold thermal model with a given temperature threshold θ. They study the
problem of scheduling a set of unit-length jobs with release dates and deadlines on
a single processor so as to maximize the throughput, i.e. the number of jobs that
meet their deadlines, without exceeding the temperature threshold θ at any time
t ∈ N. Extending the well-known three-field notation for scheduling problems,
this problem is denoted as 1|ri, pi = 1, hi, θ|

∑
Ui. They prove that this problem

is NP-hard even for the special case when all jobs are released at time 0 and their
deadlines are equal, i.e. 1|pi = 1, hi, θ|

∑
Ui. Furthermore, they study the on-line

version of the throughput maximization problem in the presence of release dates

On Multiprocessor Temperature-Aware Scheduling Problems 151

and deadlines. They prove that a family of reasonable list scheduling algorithms,
including coolest first and earliest deadline first algorithms, have a competitive
ratio of at most two. In the negative side, they also give an instance that shows
that there is no deterministic on-line algorithm with competitive ratio less than
two. This result implies also an approximation factor of two for the off-line
problem.

The same discrete thermal model has been also adopted by Birks et al. in
[7,6,8] where online algorithms for several generalizations of the throughput max-
imization problem have been studied. In fact, in [7] the cooling effect is taken
into account by multiplying the temperature by 1/c, where c > 1, instead of one
half. In [6] the weighted throughput objective is considered, while in [8] the jobs
have equal (non-unit) processing times.

We initiate the study of three additional optimization criteria under the
threshold thermal model of [9] as well as under the optimization thermal model.
Furthermore, we study all criteria for the case of multiple processors, unlike [9]. In
Section 3 we address the problem of minimizing the schedule length (makespan) in
the threshold thermal model (P |pi = 1, hi, θ|Cmax). We prove that this problem
cannot be approximated within a factor less than 4/3 and we present a generic
algorithm of approximation ratio 2ρ, where ρ is the approximation ratio of an
algorithm A for the classical makespan problem on parallel machines, used as a
subroutine in our algorithm. This leads to a (2 + ε)-approximation ratio, within
a running time that is polynomial in n but exponential in 1/ε, for m processors
(by using the known PTAS’s for minimizing makespan) and a 2-approximation
ratio for a single processor, within O(n log n) time. If instead the standard LPT
(43 − 1

3m)-approximation algorithm is used in the generic algorithm, we are able
to give a tighter analysis, improving the 2ρ-approximation ratio to 7

3 − 1
3m , while

the overall running time is in O(n log n). In Sections 4 and 5 we move to the op-
timization thermal model. In Section 4, we study the problem of minimizing the
maximum temperature of a schedule (P |pi = 1, hi|Θmax), and we give a 4/3 ap-
proximation algorithm. In Section 5, we prove that the problem of minimizing
the average temperature of a schedule (P |pi = 1, hi|

∑
Θi), as well as a time-

dependent weighted version of this problem are both solvable in polynomial time.
We conclude in Section 6.

2 Notation and Preliminaries

We consider a set J = {J1, J2, . . . , Jn} of n jobs to be executed on a system of m
identical processors. All jobs have unit processing times and for each one of them
we are given a heat contribution hi, 1 ≤ i ≤ n. We consider each job Ji executed
in a time interval [t − 1, t), t ∈ N, which we call slot t, on some processor. By
Θj

t we denote the temperature of processor j at time t. As in [9] if we start

executing job Ji at time t − 1, then Θj
t =

Θj
t−1+hi

2 . The initial temperature of

each processor (the ambient temperature) is considered to be zero, i.e., Θj
0 = 0.

In what follows, we simplify the notation by using Θt instead of Θj
t , when the

processor is specified by the context.

152 E. Bampis et al.

The threshold thermal model. In this model, the temperature is not allowed to
exceed a threshold θ at any time t ∈ N. It is clear that, for a given instance in
this model, a feasible schedule may exist only if hi ≤ 2 · θ for each job Ji. By
normalizing the values of hi’s and θ we can assume w.l.o.g. that 0 < hi ≤ 2 and
θ = 1. Moreover, if a processor at time t− 1 has temperature Θt−1 and it holds

that Θt−1+hi

2 > 1, for every job Ji that has not yet been scheduled, then this
processor will remain idle for the slot [t− 1, t) and its temperature at time t will

be reduced by half, i.e., Θt−1

2 . Note also that once a processor has executed some
job(s) its temperature will never become exactly zero. Therefore, in this model,
a feasible instance can not contain more than m jobs of heat contributions equal
to 2, as there are m slots with Θ0 = 0 (the first slots in each one of the m
available processors).

The optimization thermal model. In this model, no explicit temperature threshold
is given and the problems we will study are the minimization of maximum and
average temperature. For any instance in this model, any schedule of length at
least � n

m is feasible, independently of the range of the jobs’ heat contributions.
However, the optimum value of our objectives depends on the time available to
execute the given set of jobs: the maximum or average temperature of a schedule
of length � n

m is, clearly, greater than that of a schedule of bigger length, where
we are allowed to introduce idle slots. Hence, we are interested in minimizing
these two objective functions with respect to a given schedule length d ≥ � n

m .
In what follows, we only consider instances with n = m · d, since for instances
with n < md we can simply add md − n fictive jobs of heat contribution equal
to zero. Thus, the number of jobs equals the total number of available slots of
the m processors.

We close this section by elaborating on the complexity of the problems stud-
ied in the rest of the paper. It is already mentioned in [9] that even for a sin-
gle processor, the NP-hardness of the maximum throughput problem for the
case where jobs are released at time 0 and all deadlines are equal (1|pi =
1, hi, θ|

∑
Ui) implies the NP-hardness of the makespan minimization problem

(1|pi = 1, hi, θ|Cmax). In fact, the decision version of the latter problem asks for
the existence of a feasible schedule where all jobs complete their execution by
some given deadline d. Moreover, the decision version of the maximum tempera-
ture problem for a single processor (1|pi = 1, hi|Θmax) asks for the existence of a
schedule where all jobs complete their execution by some given deadline d with-
out exceeding a given temperature threshold θ. Therefore, the same reduction
gives NP-hardness for both makespan and maximum temperature minimization
problems. The NP-hardness for our problems on an arbitrary number of parallel
processors follows trivially.

3 Makespan Minimization

In this section we study the approximability of makespan minimization under
the threshold thermal model, that is P |pi = 1, hi, θ|Cmax.

On Multiprocessor Temperature-Aware Scheduling Problems 153

We start with a negative result on the approximability of our problem. The
proof of the next theorem is along the same lines with the NP-hardness reduction
for the throughput maximization problem under the same model [9] and it is
omitted.

Theorem 1. It is NP-hard to approximate the minimum makespan problem
(P |pi = 1, hi, θ|Cmax) within a factor better than 4/3.

In what follows in this section, we present an approximation algorithm for the
minimum makespan problem. Note that, in order to respect the temperature
threshold, a schedule may have to contain idle slots. To argue about the number
of idle slots that are needed before the execution of each job, we will intro-
duce first an appropriate partition of the set of jobs according to their heat
contribution. In particular, for each integer k ≥ 0, we can argue separately for

jobs whose heat contribution belongs to the interval (2
k−1
2k−1 ,

2k+1−1
2k

]; recall that
hi ≤ 2, 1 ≤ i ≤ n. Moreover, the interval to which a job of heat contribution hi

belongs to is indexed by ki, that is

ki = max{k ∈ N | hi >
2k−1
2k−1 }.

Our algorithm and its analysis are based on the following proposition for the
structure of any feasible schedule.

Proposition 1
(i) Let J ′ be the set of jobs of heat contribution hi > 1; |J ′| = n′. Any feasible
schedule can be transformed into another feasible one of at most the same length
where exactly max{m− n′, 0} jobs in J \ J ′ are executed in the first slot of the
processors.
(ii) Any schedule where every Ji is executed after at least ki idle slots is feasible.
(iii) In an optimal schedule, between the execution on the same processor of jobs
Jj and Ji of heat contributions hj , hi > 1, there are at least ki − 1 slots, which
are either idle or execute jobs of heat contribution at most one.

In what follows we consider instances with n > m for otherwise the problem
becomes trivial. By Proposition 1(i) we assume also that the number of jobs
of heat contribution hi > 1 is greater than m, for otherwise all jobs are exe-
cuted without any idle before them and the length of an optimal schedule is
exactly � n

m . We consider the jobs in non-increasing order of their heat con-
tributions, i.e., h1 ≥ h2 ≥ . . . ≥ hn, and we define A = {J1, J2, . . . , Jm} and
B = {Jm+1, Jm+2, . . . , Jn}. Our algorithm schedules first the jobs in A to the
first slot of each processor. Each one of the jobs in B is scheduled by leaving
before its execution exactly ki idle slots, according to the Proposition 1(ii). In
this way, our problem, for the jobs in B, is transformed to an instance of the
classical makespan problem on parallel machines, P ||Cmax, where the processing
time of each job is pi = ki+1, that is, ki idle slots plus its original unit processing
time. Then, these jobs are scheduled using an algorithm A for P ||Cmax.

We denote by SOL the length of the schedule S provided by Algorithm
MAX C and by OPT the length of an optimal schedule S∗ for our problem.

154 E. Bampis et al.

Algorithm MAX C

1: Sort the jobs in non-increasing order of their heat contributions: h1 ≥ h2 ≥ ... ≥ hn;
2: Let A = {J1, J2, . . . , Jm}, and B = {Jm+1, Jm+2, . . . , Jn};
3: Schedule each job Ji ∈ A to the first slot of processor i;
4: For each job Ji ∈ B, let pi = ki + 1;
5: Schedule the jobs in B by running an algorithm A for P ||Cmax;

By S(ki+1) we denote the schedule found by an algorithm A for the P ||Cmax

problem for the jobs in B with processing times pi = ki +1; let C(ki +1) be the
length of this schedule. Clearly, SOL = 1 + C(ki + 1). Similarly, we denote an
optimal schedule for the same instance of P ||Cmax by S∗(ki + 1) and its length
by C∗(ki + 1).

To analyze our AlgorithmMAX C, we first need a lower bound on the optimal
makespan. To derive this bound we will also utilize an optimal schedule S∗(ki)
for the jobs of B assuming that they have processing times pi = ki. Note that
for jobs with hi ∈ (0, 1], ki = 0, hence the schedule S∗(ki) involves only jobs for
which hi > 1. Let C∗(ki) denote the length of such a schedule.

Lemma 1. For the optimal makespan it holds that OPT ≥ max{ n
m , 1+C∗(ki)}.

Proof. The first bound on the optimal makespan follows trivially by considering
all jobs requiring a single slot for their execution.

For the second bound, let A∗, |A∗| = m, be the set of jobs executed in the
first slot of the m processors in an optimal solution and B∗ = J \A∗.

Consider, first, an auxiliary schedule of length OPT−, identical to the optimal
apart from the fact that each job in B∗ ∩A has been replaced by a different job
in A∗ ∩ B. Observe that in this schedule, the jobs executed in the first slot of
the processors remain A∗ while the jobs executed in the remaining slots are the
jobs in B. Since each job in B has smaller or equal heat contribution than any
job in A, it follows that OPT ≥ OPT−.

Consider, next, the schedule S∗(ki). For this schedule it holds that, OPT− ≥
1 + C∗(ki), since by Proposition 1(i),(iii) each job in B requires at least ki slots
to be executed; recall that we consider instances where the number of jobs of
heat contribution hi > 1 is greater than m and that jobs in B with hi ≤ 1, and
hence ki = 0, do not appear in the schedule S∗(ki). �

It is well-known that the P ||Cmax problem is strongly NP-hard and a series of con-
stant approximation algorithms and PTASs have been proposed. Our main result
in this Section is that in step 5 of AlgorithmMAX C we can use any algorithmA
for P ||Cmax to obtain twice the approximation ratio of A for our problem.

Theorem 2. Algorithm MAX C achieves an approximation ratio SOL
OPT ≤ 2ρ,

where ρ is the approximation ratio of the algorithm A for P ||Cmax.

On Multiprocessor Temperature-Aware Scheduling Problems 155

Proof. A ρ-approximation algorithmA implies that C(ki+1)
C∗(ki+1) ≤ ρ. Hence, SOL =

1 + C(ki + 1) ≤ 1 + ρ · C∗(ki + 1).
To obtain an upper bound to C∗(ki+1) we start from the schedule S∗(ki). The

processing times of jobs in the latter schedule are reduced by one with respect to
the former one, and the jobs in B with h ≤ 1 do not appear in schedule S∗(ki).
Let B′ ⊆ B be this set of jobs.

We transform the schedule S∗(ki) to a new schedule S ′(ki+1) in two successive
steps: (i) we increase the processing time of jobs in B \ B′ from ki to ki + 1,
and (ii) we introduce the jobs in B′ with unit processing time, at the end of the
resulting schedule in a first-fit manner. Clearly, for the length, C′(ki +1), of this
new schedule it holds that C∗(ki + 1) ≤ C′(ki + 1) as both of them refer to the
same instance. Let us now bound C′(ki + 1) in terms of C∗(ki).

If C′(ki + 1) ≤ 2C∗(ki), then
SOL
OPT ≤ 1+2ρC∗(ki)

1+C∗(ki)
≤ 2ρ, since ρ ≥ 1.

If C′(ki + 1) > 2C∗(ki), then we consider the construction of S ′(ki + 1) and
we argue about the completion time of a critical processor in S∗(ki), i.e., the
processor that finishes last. By step (i), the length of schedule S∗(ki) increases
at most twice, since each job in B \B′ has processing time at least one and this
is increased by 1. As C′(ki+1) > 2C∗(ki), in the last slot of S ′(ki+1) all non-idle
processors execute jobs of B′. By step (ii), all but the last time slots of S ′(ki+1)
are busy. Hence, the critical processor in S∗(ki) finishes in S ′(ki+1) the earliest
at time C′(ki + 1) − 1. Moreover, this processor is assigned the minimum total
increase at the end of the transformation, since it finishes last in S∗(ki). As
the total increase of the processing times from S∗(ki) to S ′(ki + 1) is n − m,
it follows that the length of the critical processor increases at most by n−m

m .
Hence, C′(ki +1)− 1 ≤ C∗(ki) +

n−m
m , that is C′(ki +1) ≤ C∗(ki) +

n
m . Thus, by

Lemma 1 we get SOL
OPT ≤ 1+ρ(C∗(ki)+

n
m)

max{ n
m ,1+C∗(ki)} ≤ 1+ρC∗(ki)

1+C∗(ki)
+

ρ n
m
n
m

≤ 2ρ. �

For the case of a single processor the 1||Cmax problem is trivially polynomial,
whereas for multiple processors there are well known PTAS’s, e.g., [11,3]. Hence
the main implication of Theorem 2 is:

Corollary 1. For any ε > 0, Algorithm MAX C achieves a 2+ε-approximation
ratio for P |pi = 1, hi, θ|Cmax. For a single processor, it achieves an approxima-
tion ratio of 2.

To obtain the ratio of 2 + ε, as stated above, one needs to use a PTAS for
the classical makespan problem in step 5 of Algorithm MAX C, resulting in
a running time that is exponential in 1/ε. To achieve more practical running
times, we can investigate the use of other algorithms for step 5. In particular, if
the standard Longest Processing Time (LPT) algorithm is used, then Theorem
2 leads to a 2(43 − 1

3m) approximation ratio within O(n logn) time. Recall that
the LPT algorithm simply assigns the next job (in the non-increasing order of
their processing times) to the first available processor [10]. In the next theorem
we are able to improve this ratio to 7/3, based on an LPT oriented analysis of
Algorithm MAX C.

156 E. Bampis et al.

Theorem 3. Algorithm MAX C using the LPT rule in step 5 achieves an ap-
proximation ratio of 7

3 − 1
3m within O(n log n) time.

4 Maximum Temperature Minimization

Now, we turn our attention to the optimization thermal model and to the prob-
lem of minimizing the maximum temperature, i.e., P |pi = 1, hi|Θmax. Recall
that as we discussed in Section 2, we consider a schedule length d ≥ � n

m and
that n = m · d, by adding the appropriate number of fictive jobs. By Θ∗

max we
denote the maximum temperature of an optimal schedule.

We start with the observation that any algorithm for this problem achieves
a 2 approximation ratio. Indeed, it holds that Θ∗

max ≥ hmax/2, no matter how
we schedule the job of maximum heat contribution. It also holds that for any
algorithm, Θmax ≤ hmax, with Θmax being the maximum temperature of the
algorithm’s schedule. Therefore, Θmax ≤ 2 ·Θ∗

max.
To improve this trivial ratio we propose the following algorithm which is based

on the intuitive idea of alternating the execution of hot and cool jobs.

Algorithm MAX T

1: Sort the jobs in non-increasing order of their heat contributions: h1 ≥ h2 ≥ ... ≥ hn;
2: Using the order of Step 1, schedule the � d

2
�m hottest jobs to the odd slots of the

processors using Round-Robin;
3: Using the reverse order of Step 1, schedule the
 d

2
�m coolest jobs to the even slots

of the processors using Round-Robin;

To elaborate a little more on how the algorithm works, note that processor
1 will be assigned the job J1, followed by Jn, then followed by Jm+1, and then
by Jn−m and this alternation of hot and cool jobs will continue till the end of
the schedule. Similarly processor 2 will de assigned the jobs J2, Jn−1, Jm+2,
Jn−m−1, and so on. The schedule is illustrated further in Table 1.

To analyze the AlgorithmMAX T, we start with the proposition below, which
is implied by the Round-Robin scheduling of jobs in its Steps 2 and 3.

Proposition 2. In the schedule returned by Algorithm MAX T:
(i) A job Ji, i ≥ (�d

2�+ 1)m+ 1, is succeeded by the job Jn−i+m+1.

(ii) A job Ji, m+ 1 ≤ i ≤ �d
2 m, is preceded by the job Jn−i+m+1.

Table 1. The schedule produced by Algorithm MAX T

1 J1 Jn Jm+1 Jn−m J2m+1 ...
2 J2 Jn−1 Jm+2 Jn−m−1 J2m+2 ...
...
m Jm Jn−m+1 J2m Jn−2m+1 J3m ...

On Multiprocessor Temperature-Aware Scheduling Problems 157

The maximum temperature may appear at various points of the schedule of
Algorithm MAX T. The next lemma states that one of these points satisfies a
certain property regarding the heat contribution of the job executed right before.

Lemma 2. In the schedule returned by Algorithm MAX T, the maximum tem-
perature is achieved after the execution of a job Ji, with i ≤ (�d

2�+ 1)m.

Proof. Assume that all the points where the maximum temperature Θmax occurs
are after the execution of a job Ji, with i ≥ (�d

2� + 1)m+ 1. By Proposition 2,
such a job is succeeded by a job Ji′ , i

′ = n− i+m+1, in the schedule returned
by Algorithm MAX T. It is easy to check that i > i′, hence hi′ ≥ hi. Let
Θ,Θ′ ≤ Θmax be the temperatures before the execution of Ji and after the
execution of Ji′ , respectively. Then, Θmax = Θ+hi

2 and hi ≥ Θmax, since Θmax ≥
Θ. Moreover, Θ′ = Θmax+hi′

2 ≥ Θmax, since hi′ ≥ hi. This implies that Θ′ =
Θmax, since Θ′ ≤ Θmax. But this means that the maximum temperature is
also achieved after the execution of job Ji′ , which is a contradiction because

i′ = n− i+m+ 1 ≤ m(d− �d
2�) ≤ m(�d

2�+ 1)
contrary to what we assumed in the beginning of the proof. �

Lemma 3. For the maximum temperature of an optimal schedule it holds that
Θ∗

max ≥ hn−i+m+1

4 + hi

2 , for any i, m+ 1 ≤ i ≤ �d
2 m.

Proof. Consider a job Ji and let Ji′ be its previous job in the same processor
in an optimal schedule S∗. The jobs executed in the first slot of each processor
in S∗ do not have a previous one. To simplify the presentation of our proof, we
assume that they are preceded by hypothetical jobs Jn+j , 1 ≤ j ≤ m.

If i′ ≤ n − i + m + 1, then Θ∗
max ≥ hi′

4 + hi

2 ≥ hn−i+m+1

4 + hi

2 , since hi′ ≥
hn−i+m+1.

If i′ > n − i + m + 1, then let B = {Jn−i+m+2, Jn−i+m+3, . . . , Jn, Jn+1,
. . . , Jn+m} and let A be the set of jobs that precede the jobs J1, J2, . . . , Ji−1 in
the optimal schedule. Clearly, |B| = |A| = i − 1, Ji′ ∈ B and Ji′ /∈ A since Ji′

precedes Ji in S∗.
Therefore, there is a job Jk′ ∈ A such that Jk′ /∈ B, that is k′ < n− i+m+2.

For any i ≤ �d
2 m, the job Jk′ precedes a job Jk in S∗ and since Jk′ ∈ A it

follows, by the definition of the set A, that k < i. Hence, Θ∗
max ≥ hk′

4 + hk

2 ≥
hn−i+m+1

4 + hi

2 , since hk ≥ hi and hk′ ≥ hn−i+m+1. �

Theorem 4. Algorithm MAX T achieves a 4
3 approximation ratio.

Proof. By Lemma 2 the maximum temperature in the schedule, S, obtained by
Algorithm MAX T occurs after the execution of a job Ji, i ≤ (�d

2� + 1)m (the
maximum may be achieved in other timeslots as well).

If 1 ≤ i ≤ m, then the maximum occurs at the first processor and Θmax =
h1

2 ≤ Θ∗
max and, hence, the algorithm returns an optimal schedule.

If m + 1 ≤ i ≤ �d
2 m then by Proposition 2, the job Ji is preceded in the

schedule S by the job Jn−i+m+1. Let Θ be the temperature before the execution

158 E. Bampis et al.

of the job Jn−i+m+1. By Lemma 3, and since Θ ≤ Θmax, Θmax = Θ
4 +

hn−i+m+1

4 +
hi

2 ≤ Θmax

4 +Θ∗
max. Hence, Θmax ≤ 4

3 ·Θ∗
max.

Note that if d is odd, then �d
2 m = (�d

2�+1)m and the analysis of the previous

case holds. Hence the only remaining case is that d is even and �d
2 m+ 1 ≤ i ≤

(�d
2�+1)m. For this case, let Θ′ ≤ Θmax be the temperature before the execution

of Ji. Then, hi ≥ Θmax, since Θmax = Θ′+hi

2 and Θmax ≥ Θ′. Thus, there are at

least �d
2 m+1 jobs of heat contribution at least Θmax. Note that, in any schedule,

each processor can execute at most �d
2 jobs without any pair of them scheduled

in two consecutive slots. Hence, in an optimal schedule, there are at least two
jobs Jp and Jq, p, q ≤ i, executed in consecutive slots in the same processor.

Therefore, Θ∗
max ≥ hp

4 +
hq

2 ≥ Θmax

4 + Θmax

2 = 3
4 ·Θmax, that is Θmax ≤ 4

3 ·Θ∗
max.

�

For the tightness of the analysis of Algorithm MAX T consider an instance of
m processors, mn2 jobs and d = n2; mn hot jobs of heat contribution h = 2 and
mn(n− 1) cool jobs of heat contribution h = ε. We consider n to be sufficiently
large and that ε tends to 0. The algorithm in each processor alternates n hot
jobs with n− 1 cool jobs and schedules n(n− 2) + 1 cool jobs at the end. The
maximum temperature of the algorithm’s schedule is attained exactly after the
execution of the last hot job on each processor. This job is executed at slot 2n−1,

and thus Θmax = 2
22n−1 + ε

22n−2 + 2
22n−3 + ε

22n−4 + . . .+ ε
22 + 2

21 " 2
1
2

1− 1
4

= 4
3 .

On the other hand, the optimal solution alternates in each processor a hot
job with n − 1 cool jobs. The temperature before the execution of any hot job
tends to zero and the maximum temperature is one.

5 Average Temperature Minimization

In this section, we look at the problem of minimizing the average temperature,
that is P |pi = 1, hi|

∑
Θi, instead of the maximum temperature. We will again

consider a schedule length d and assume that the number of jobs is n = md.
Contrary to the maximum temperature, we show that minimizing the average
temperature of a schedule is solvable in polynomial time. Our algorithm is based
on the following lemma whose proof is omitted.

Lemma 4. In any optimal solution for the average temperature, jobs are sched-
uled in a coolest first order, i.e., for any pair of jobs Ji, Jj such that hi > hj

scheduled at slots t and t′, respectively, it holds that t′ ≤ t, regardless of the
processor they are assigned to.

The previous lemma leads directly to the next simple algorithm.
Algorithm AVR T finds a schedule in O(n log n) time. The optimality of this

schedule follows directly by the Round-Robin scheduling of the jobs in non-
decreasing order of their heat contributions and Lemma 4.

Theorem 5. An optimal schedule for the problem of minimizing the average
temperature (P |pi = 1, hi|

∑
Θi) can be found in polynomial time.

On Multiprocessor Temperature-Aware Scheduling Problems 159

Algorithm AVR T

1: Sort the jobs in non-decreasing order of their heat contributions: h1 ≤ h2 ≤ ... ≤ hn;

2: According to this order schedule the jobs to processors using Round-Robin;

5.1 Weighted Average Temperature Minimization

In what follows, we consider a time-dependent weighted version of average tem-
perature minimization. In particular, we consider each slot of every processor to
be associated with a given positive weight wi, 1 ≤ i ≤ d, and our problem is
denoted as P |pi = 1, hi|

∑
wi ·Θi. The weights wi could represent the interest of

the system manager to keep its processors/computers cool during specific time
periods of peak loads. This leads to special, but more practical cases, of our
formulation where the weights of some slots (e.g. the same or consecutive slots
in all processors) could be considered equal.

To be more precise with our presentation we denote the weight of the t-th
slot of processor p by wp

t , 1 ≤ t ≤ d, 1 ≤ p ≤ m. Similarly with the un-weighted
case, we consider a job Ji of heat contribution hi scheduled in the t-th slot
of processor p in a schedule S. The contribution of this job to the weighted
temperature of the s-th slot of processor p, with t ≤ s ≤ d, is wp

s · hi

2s−t+1 , and
this job does not affect the temperature of any other slot in any processor. Hence,
the contribution of job Ji to the total weighted temperature of the schedule S

is
∑d

s=t w
p
s · hi

2s−t+1 = hi ·
∑d

s
wp

s

2s−t+1 . Clearly, the quantity cpt =
∑d

s
wp

s

2s−t+1 is
a constant that depends only on the slot t of processor p and not on the job
executed in this slot.

Based on this, our problem can be transformed into a weighted bipartite
matching problem and the next theorem holds.

Theorem 6. The problem of minimizing the weighted average temperature (P |
pi = 1, hi|

∑
wi ·Θi) is polynomially solvable.

6 Conclusions

The most important open question is to improve the approximation ratio for the
problems of minimizing the makespan and minimizing the maximum tempera-
ture. Also it would be interesting to generalize our results in the case where the
cooling effect is different than one half, as in [7,6,8], and to consider other clas-
sical scheduling objectives under this thermal model. Resolving these questions
seems technically more challenging than the classic scheduling problems due to
the different nature of the constraints that are introduced by temperature man-
agement models. Note that scheduling problems under the threshold thermal
model can be seen as scheduling problems with sequence-dependent setup times;
such a setup time for a job corresponds to the idle slots required to respect the
temperature threshold. In this context (see for example [13]), the set-up time of
a job usually depends only on the job itself and the previous job in the schedule.
However, in our case, the number of idle slots, required before executing a job,

160 E. Bampis et al.

depends on all the jobs scheduled before as well as on their order, hence existing
results from the literature cannot be applied.

References

1. Albers, S.: Energy-efficient algorithms. Commun. ACM 53, 86–96 (2010)
2. Albers, S.: Algorithms for dynamic speed scaling. In: STACS 2011. LIPIcs, vol. 9.

Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2011)
3. Alon, N., Azar, Y., Woeginger, G., Yadid, T.: Approximation schemes for schedul-

ing on parallel machines. Journal of Scheduling 1, 55–66 (1998)
4. Atkins, L., Aupy, G., Cole, D., Pruhs, K.: Speed Scaling to Manage Temperature.

In: Marchetti-Spaccamela, A., Segal, M. (eds.) TAPAS 2011. LNCS, vol. 6595, pp.
9–20. Springer, Heidelberg (2011)

5. Bansal, N., Kimbrel, T., Pruhs, K.: Speed scaling to manage energy and tempera-
ture. J. ACM 54(1), Article 3 (2007)

6. Birks, M., Cole, D., Fung, S.P.Y., Xue, H.: Online Algorithms for Maximizing
Weighted Throughput of Unit Jobs with Temperature Constraints. In: Atallah,
M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 319–329.
Springer, Heidelberg (2011)

7. Birks, M., Fung, S.P.Y.: Temperature Aware Online Scheduling with a Low Cooling
Factor. In: Kratochv́ıl, J., Li, A., Fiala, J., Kolman, P. (eds.) TAMC 2010. LNCS,
vol. 6108, pp. 105–116. Springer, Heidelberg (2010)

8. Birks, M., Fung, S.P.Y.: Temperature Aware Online Algorithms for Scheduling
Equal Length Jobs. In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011.
LNCS, vol. 6681, pp. 330–342. Springer, Heidelberg (2011)

9. Chrobak, M., Dürr, C., Hurand, M., Robert, J.: Algorithms for Temperature-Aware
Task Scheduling in Microprocessor Systems. In: Fleischer, R., Xu, J. (eds.) AAIM
2008. LNCS, vol. 5034, pp. 120–130. Springer, Heidelberg (2008)

10. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl.
Math. 17, 416–426 (1969)

11. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for schedul-
ing problems: theoretical and practical results. J. ACM 34, 144–162 (1987)

12. Irani, S., Pruhs, K.R.: Algorithmic problems in power management. ACM SIGACT
News 36, 63–76 (2005)

13. Pinedo, M.: Scheduling: Theory, Algorithms and Systems. Prentice-Hall (1995)
14. Yang, J., Zhou, X., Chrobak, M., Zhang, Y., Jin, L.: Dynamic thermal management

through task scheduling. In: ISPASS 2008, pp. 191–201. IEEE Computer Society
(2008)

15. Zhang, S., Chatha, K.S.: Approximation algorithm for the temperature-aware
scheduling problem. In: ICCAD 2007, pp. 281–288. IEEE Press (2007)

16. Zhou, X., Yang, J., Chrobak, M., Zhang, Y.: Performance-aware thermal manage-
ment via task scheduling. ACM Trans. Archit. Code Optimizat. 7, 1–31 (2010)

Online Minimum Makespan Scheduling

with a Buffer

Yan Lan1, Xin Chen2, Ning Ding2, György Dósa3, and Xin Han2,�

1 Dalian Neusoft Institute of Information
lanyan@neusoft.edu.cn

2 Software School, Dalian University of Technology
chenx dlut@163.com, {dingning,hanxin}@dlut.edu.cn

3 Department of Mathematics, University of Pannonia, Veszprém, Hungary
dosagy@almos.vein.hu

Abstract. In this paper we study an online minimum makespan
scheduling problem with a reordering buffer. We obtain the following
results, which improve on work from FOCS 2008: i) for m identical ma-
chines, we give a 1.5-competitive online algorithm with a buffer of size
1.5m, which is better than the previous best result : 1.5-competitive al-
gorithm with a buffer of size 1.6197m; ii) for three identical machines,
to give an optimal online algorithm we reduce the size of the buffer from
nine to six; iii) for m uniform machines, using a buffer of size m, we
improve the competitive ratio from 2 + ε to 2− 1/m+ ε, where ε > 0 is
sufficiently small.

1 Introduction

In the classic minimum makespan scheduling problem, we are asked to allocate a
set of jobs with processing times (here, we also call it size) tom parallel machines
without preemption. The target is to minimize the makespan, i.e., the time when
all the jobs are precessed. This problem is NP-hard in the strong sense [10].
Normally before we assign all the jobs to machines we know the information of
all the jobs, this version of the problem is called offline version. Another version
of this problem is called online version, where the information of all the jobs is
given gradually, after the current incoming job is handled, we know the next job.
And once the decision is made, we cannot change it. This condition is strict in
some sense. To relax this strict condition, we consider an online non-preemptive
scheduling with a reordering buffer, at each time step, we have two choices: assign
the job to some machine or store it the buffer temporally, once the job is assigned
on some machine, it cannot be stored in the buffer. In the final step when the
input ends, all the jobs in the buffer must be allocated to some machines. Since
the buffer has a size limitation, the key point is how to select jobs and put them
into the buffer. This problem has been studied in [15,7,5,4,19]. To evaluate online
algorithms, we use one of the standard measures: competitive ratio. Given any

� Partially supported by NSFC(11101065).

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 161–171, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

162 Y. Lan et al.

sequence of jobs if the makespan by an online algorithm is at most c times the
one by an optimal algorithm, we call the online algorithm c-competitive.

Previous Results: For the online minimum makespan scheduling problem on
m identical machines, Graham first gave a (2− 1

m)-competitive algorithm, called
list scheduling. The upper bound has been improved in [2,14,1]. The best known
one is 1.9201 due to Fleischer and Wahl [8] . The best lower bound known
to date is 1.88 due Rudin and Chandrasekaran [13]. Kellerer et al [15], Zhang
[19] studied the online minimum makespan scheduling problem on two identical
machines with a buffer of size one and obtained a 4

3 -competitive algorithm,
which is the best possible we can do. Recently, a seminal paper is by Englert
et al [7], they gave several results on identical machines and uniform machines.
For m parallel machines with a reordering buffer of size Θ(m), they gave a lower
bound 4/3 ≤ rm ≤ 1.4659 (for example, r2 = 4/3 and r3 = 15

11 ≈ 1.3636), and
proposed an optimal online algorithm with a buffer of size �2.5m + 1. For m
related machines, a (2 + ε)-competitive algorithm was obtained. In that paper
several lower and upper bounds are given, for example a 1.5-competitive online
algorithm with a buffer of size 1.6197m is given. The preemptive online minimum
makespan scheduling problem onm identical machines with a buffer of size k was
studied by Dósa and Epstein [5]. The non-preemptive online minimum makespan
scheduling problem on two related machines with a buffer of size k was studied
by Dósa and Epstein [4].

Related Models: Some similar models have been investigated in the last years
such as i) online scheduling problems with bounded migration [17]; when a new
job comes some already scheduled jobs can be reassigned. Here the bound mi-
gration means that the total size of rescheduled jobs is bounded or the total
cost of the rescheduled jobs is bounded. ii) Online scheduling problems with
bounded rearrangement, where we are allowed to reschedule a bounded num-
ber of jobs in order to allocate a new job and there are several variants of this
model [6, 18, 16, 3].

Our Contribution: i) For m identical machines, we give a 1.5-competitive
online algorithm with a buffer of size 1.5m, which is better than the previous
best result : 1.5-competitive algorithm with a buffer of size 1.6197m in [7]; ii) for
three identical machines, we propose an optimal online algorithm with a buffer
of size six, which is better than the previous result of a buffer with size nine
in [7]; iii) for m uniform machines, using a buffer of size m, we improve the
competitive ratio from 2 + ε in [7] to 2 − 1/m + ε, where ε > 0 is arbitrarily
small.

2 Preliminaries

Our problem is the same with the one presented in the paper [7].

Input: Given a job sequence J = {j1, j2, ..., jn} composed of n jobs, each job is
associated with processing time (also called as size) pi(1 ≤ i ≤ n), and a set of
machines M1, M2, ...,Mm, and a buffer of size k.

Online Minimum Makespan Scheduling with a Buffer 163

Output: Online allocate all the jobs in J on m machines without preemption
such that the makespan(the maximal completion time) is minimum. During the
assignment, we are allowed to store some jobs in the buffer, but once some job
is assigned on some machine, that job cannot be stored in the buffer and we
cannot reschedule that job.

3 Two Algorithms for Identical Machines

In this section we consider online algorithms for identical machines. We propose
a 3

2 -competitive online algorithm for m machine with a buffer of size 1.5m,
which is better than the previous result 1.6197m. We also give an optimal online
algorithm with a buffer of size six for three identical machines.

3.1 m Machines with a Buffer of Size 3m
2

In this subsection, we give a 3
2 -competitive online algorithm for m identical

machines with a buffer of size 1.5m, which is better than the previous result [7],
a 3

2 -competitive online algorithm with a buffer of size 1.6197m. Here assume
m = 6n for simplicity, where n ≥ 1 is an integer. Our result can be generalized
without this condition. The main ideas are below: i) we keep the largest 3m

2 jobs
in the buffer, ii) allocate all the other jobs on m machines in such a way that in
some machine there is a room for one of the largest m jobs in the buffer without
violating the condition: the makespan is at most 1.5 times the optimal value,
iii) when the input ends, we assign the largest m jobs to their corresponding
machines, and allocate all the other jobs by a greedy way.

There are two phases in our algorithm: iteration phase and final phase. In the
iteration phase, we handle the incoming job jt with size pt as below. Let T be the
total size of all the jobs assigned on m machines so far, initially it is zero. Let πt,i

be the i-th largest job in the buffer after time t. We also use πt,i to denote its size.

In the iteration phase:

1. Store in the buffer the larger job between jobs jt and πt−1, 3m2
, i.e., if

pt > πt−1, 3m2
then remove job πt−1, 3m2

from the buffer and put jt in the
buffer, else do nothing.

2. For i = 1 to 3m
2 , update πt,i.

3. Assign the smaller job of jt and πt−1, 3m2
into machine Mk by the fol-

lowing way(we will prove that such machine must exist). Define p =
min{pt, πt−1, 3m2

}.
(a) If there is machine Mk with load at most

wk(T + δkp)− p,

assign the job to Mk, where wk = 3
2m and δk = 5m

6 for 1 ≤ k ≤ m/3,
for other k, we have wk = 1

2(k−1) and δk = m
2 + k.

164 Y. Lan et al.

In the final phase: we assign the jobs in the buffer as below:

1. For 1 ≤ i ≤ m, allocate job πt,i to machine Mm+1−i.
2. Allocate all the other jobs in the buffer one by one to a machine with

minimum load.

Observation 1. For any t ≥ 0 and i ≥ 1 we have πt+1,i ≥ πt,i and πt,i ≥ πt,i+1.

Observation 2.
∑m

i=m
3 +1 wi =

∑m
i=m

3 +1
1

2(i−1) ≥ ln 3
2 .

Proof.
∑m

i=m
3 +1

1
2(i−1) ≥ 1

2 ·
∫m

m
3

1
xdx ≥ ln 3

2 . �

Observation 3.
∑m

i=m
3 +1 wi · δi =

∑m
i=m

3 +1
1

2(i−1) · (i+
m
2) ≥

m
3 + m ln 3

4 > 7m
12 .

Lemma 1. In the iteration phase there is always a machine Mk with load at
most

wk(T + δkp)− p

for 1 ≤ k ≤ m, where p = min{pt, πt−1, 3m2
}.

Proof. Assume the lemma does not hold. Let Lk be the load of machine Mk.
Then for 1 ≤ k ≤ m/3, we have

Lk >
3

2m

(
T +

5m

6
min{pt, πt−1, 3m2

}
)
−min{pt, πt−1, 3m2

},

for m/3 < k ≤ m, we have

Lk >
1

2(k − 1)

(
T + (

m

2
+ k)min{pt, πt−1, 3m2

}
)
−min{pt, πt−1, 3m2

}.

Then we have

T =

m∑
k=1

Lk > (
3

2m
× m

3
+

m∑
i=m

3 +1

1

2(i− 1)
) · T

+(

m∑
i=m

3 +1

1

2(i− 1)
· (i + m

2
) +

3

2m
× 5m

6
× m

3
−m) ·min{pt, πt−1, 3m2

}

>
1 + ln 3

2
· T + (

7m

12
+

5m

12
−m) ·min{pt, πt−1, 3m2

}
> T,

where the last second inequality holds by Observations 2 and 3. Hence the as-
sumption is wrong and the lemma holds. �

Theorem 1. Our online algorithm is 1.5-competitive.

Proof. For a given input L, let A(L) be the makespan by our online algorithm,
let OPT (L) be the makespan by an optimal offline algorithm. Next we will prove
that A(L) ≤ 1.5OPT (L).

Online Minimum Makespan Scheduling with a Buffer 165

By Lemma 1, we know our online algorithm cannot fail at the iteration phase.
Assume the iteration phase ends at time t. Consider machine Mk. Let job j with
size p be the last job assigned on Mk during the iteration phase. Let T ′ be the
total size of jobs assigned on m machines just before assigning job j. Let T be
the total size of jobs assigned on m machines at the end of the iteration phase.
Then for 1 ≤ k ≤ m

3 we have

Lk ≤ 3

2m

(
T ′ +

5m

6
· p
)
=

3

2m

(
T + (

5m

6
− 1) · p

)
,

for m
3 + 1 ≤ k ≤ m, we have

Lk ≤ 1

2(k − 1)

(
T ′ + (k +

m

2
) · p

)
=

1

2(k − 1)

(
T + (k +

m

2
− 1) · p

)
.

It is not difficult to see

T +
∑3m/2

i=1 πt,i

m
≤ OPT (L). (1)

After the first step in the final phase, for 1 ≤ k ≤ m
3 , by (1) and Observation 1

we have

T + (
5m

6
− 1) · p < m ·OPT (L)− 2m

3
· πt, 2m3

,

hence after assigning job πt,m+1−k, the load of machine Mk is

L
′
k ≤ 3

2m

(
T + (

5m

6
− 1) · p

)
+ πt,m+1−k

<
3

2m

(
m ·OPT (L)− 2m

3
· πt, 2m3

)
+ πt, 2m3

=
3

2
OPT (L),

for m
3 + 1 ≤ k ≤ m, by (1) and Observation 1 we have

T + (k +
m

2
− 1) · p ≤ m ·OPT (L)− (m+ 1− k) · πt,m+1−k,

hence after assigning job πt,m+1−k, the load of machine Mk is

L
′
k ≤ 1

2(k − 1)

(
T + (k +

m

2
− 1) · p

)
+ πt,m+1−k

≤ 1

2(k − 1)
(m · OPT (L)− (m+ 1− k) · πt,m+1−k) + πt,m+1−k

=
m

2(k − 1)
· OPT (L) +

3(k − 1)−m

2(k − 1)
πt,m+1−k ≤ 3

2
OPT (L),

where the last inequality holds from πt,m+1−k ≤ OPT (L) and k ≥ m
3 + 1. So,

after the first step in the final phase the makespan of our algorithm is at most
1.5OPT (L). We know the average load is always at most OPT (L). It is also not

difficult to see πt,k ≤ OPT (L)
2 , where k > m. Since we assign πt,k to a machine

with minimal load for allm+1 ≤ k ≤ 3m/2, after the assignment the load of that
machine is always at most 1.5OPT (L). Hence we have that A(L) ≤ 1.5OPT (L).

�

166 Y. Lan et al.

3.2 Three Machines with a Buffer of Size Six

In this subsection we give an online algorithm with a competitive ratio 15
11 ≈

1.3636, which matches the lower bound, for three identical machines with size
six, i.e., we reduce the size from nine [7] to six. The main ideas are similar with
the one in [7], but we use a different threshold for each machine when we assign
jobs in the iteration phase. Because of the different threshold, the size of the
buffer is reduced.

There are two phases: iteration phase and final phase. In the iteration phase,
we handle the incoming job jt with size pt as below. Let T be the total size of
all the jobs assigned on three machines just before time t, initially it is zero. Let
πt,i be the i-th largest job in the buffer at time t. We also use πt,i to denote its
size. Define w1 = 5

11 , w2 = 4
11 , w3 = 2

11 , and δ1 = 13
5 , δ2 = 3 and δ3 = 4.

The iteration phase

1. Store the larger job of jt and πt−1,6 in the buffer, i.e., if pt > πt−1,6

then remove job πt−1,6 from the buffer and put jt in the buffer, else do
nothing.

2. Assign the smaller job of jt and πt−1,6 to machine Mk with load at most
wi(T + δi ·p)−p, where p = min{pt, πt−1,6} (We will prove such machine
must exist).

In the final phase: we assign the jobs in the buffer as below:

1. Let OPT ′ be the optimal value for the jobs in the buffer.
2. Put all the jobs in the buffer with size larger than OPT ′/3 into a subset

Gb, put all the others in the buffer into a subset Gs.
3. Call LPT(Largest Processing Time) [11,9] algorithm to allocate the jobs

in Gb to three virtual machines M
′
i , where 1 ≤ i ≤ 3 (note that LPT is

an optimal algorithm for at most six jobs on three machines). Assume
that L(M

′
1) ≤ L(M

′
2) ≤ L(M

′
3), where L(M

′
i) is the load of machine M

′
i .

Then assign all the jobs in M
′
i to Mi for all 1 ≤ i ≤ 3.

4. schedule all the jobs in Gs one by one on a machine with minimum load.

Lemma 2. In the iteration phase there is always a machine Mk with load at
most

wk

(
T + δk min{pt, πt−1,6}

)
−min{pt, πt−1,6}

for 1 ≤ k ≤ 3, where pt is the size of the incoming job jt.

Proof. Assume the lemma does not holds. Let Lk be the load of machine Mk.
Then for 1 ≤ k ≤ 3, we have

Lk > wk

(
T + δk min{pt, πt−1,6}

)
−min{pt, πt−1,6}.

Online Minimum Makespan Scheduling with a Buffer 167

Then we have

T =

3∑
k=1

Lk > (

3∑
k=1

wk) · T + (

3∑
k=1

wk · δk − 3) ·min{pt, πt−1,6}

= T,

where the last second inequality holds by the definitions of wk and δk. Hence
the assumption is wrong and the lemma holds. �

Lemma 3. [7] For three identical machines, any online algorithm cannot have
a competitive ratio strictly less than 15

11 .

Theorem 2. The above online algorithm is 15
11 ≈ 1.3636-competitive for three

machines with a buffer of size 6.

Proof. For a given input L, let A(L) be the makespan by our online algorithm,
let OPT (L) be the makespan by an optimal offline algorithm. Next we will prove
that A(L) ≤ 15

11OPT (L).
Consider machine Mk for 1 ≤ k ≤ 3. Let job j with size p be the last job

assigned on Mk during the iteration phase. We have

Lk ≤ wk(T + δk ·min{p, πt−1,6}),

since T and πt−1,6 are increasing functions over t. Observe that

T + p+

6∑
i=1

πt,i ≤ 3OPT (L). (2)

We will prove for each k ∈ [1, 3], after the the final stage, the makespan by our
algorithm is at most 15

11OPT (L). After the third step in the final stage, consider

M1. If L(M
′
1) ≤ 2p, we have

L1 ≤ 5

11
(T +

13

5
p) + L(M

′
1) ≤

5

11
(3OPT (L)− 6p+

8

5
p) + 2p =

15

11
OPT (L),

else L(M
′
1) > 2p, we have

L1 ≤ 5

11
(T +

13

5
p) + L(M

′
1) ≤

5

11
(3OPT (L)− 3L(M

′
1) +

8

5
p) + L(M

′
1)

≤ 5

11
(3OPT (L)− 3L(M

′
1) +

4

5
L(M

′
1)) + L(M

′
1) =

15

11
OPT (L).

After the third step in the final stage, consider M2. If L(M
′
1) = 0, then

machines M
′
2 and M

′
3 have at most one job by LPT algorithm, then there are at

least four jobs in Gs. Else if there is one job on M
′
1 then there are at least one

job in Gs. The reason is that: there are at most two jobs in each virtual machine
since each job in Gb has size larger than OPT

′
/3. Hence we have

L(Gs) + L(M
′
1) ≥ 2p,

168 Y. Lan et al.

by (2) we have T + 3p + 2L(M
′
2) ≤ T + p + L(Gs) +

∑3
i=1 L(M

′
i) ≤ 3OPT (L)

and

L2 ≤ 4

11
(T + 3p) + L(M

′
2) ≤

4

11
(3OPT (L)− 2L(M

′
2)) + L(M

′
2)

=
12

11
OPT (L) +

3

11
L(M

′
2) ≤

15

11
OPT (L),

since L(M
′
2) ≤ OPT (L).

After the third step in the final stage, consider M3. If L(M
′
2) = 0, then we

have machine M
′
3 has at most one job by LPT algorithm, then there are at least

five jobs in Gs. Else if there is one job in M
′
2 then by the above analysis, we

have L(Gs) + L(M
′
1) ≥ 2p. Hence we have

L(Gs) + L(M
′
1) + L(M

′
2) ≥ 3p

by (2), we have T + 4p + L(M
′
3) ≤ T + p + L(Gs) +

∑3
i=1 L(M

′
i) ≤ 3OPT (L)

and

L3 ≤ 2

11
(T + 4p) + L(M

′
3) ≤

2

11
(3OPT (L)− L(M

′
3)) + L(M

′
3)

=
6

11
OPT (L) +

9

11
L(M

′
3) ≤

15

11
OPT (L),

since L(M
′
3) ≤ OPT (L).

Now we we consider the last step in the final stage, i.e., all the jobs in Gs with
size at most OPT (L)/3. We know the average load is always at most OPT (L).
It is also not difficult to see all the jobs in Gs are assigned on machines with
load at most OPT (L) and after the assignment the load of the machine is at
most 4OPT (L)/3. Hence this theorem holds. �

4 A Simple Algorithm for Uniform Machines

Our algorithm is similar with the one in [7]. There are two phases: the iteration
phase and the final phase. We use the iteration phase to deal a new job, when
there is no new job given, we execute the final phase. The iteration phase is
the same as the one in [7], however we fully use the buffer of size m while the
algorithm [7] uses a buffer with size m − 1. The final phase of our algorithm is
different from the one in [7]: if the largest job in the buffer is very large, then we
use the same approach as the one in [7], otherwise we use the same approach as
the one in the iteration phase (this part is different from the one in [7]).

Let Ci(t) be the completion time on machine i for all 1 ≤ i ≤ m just after
time step t. Let si be the speed of machine i, where 1 ≤ i ≤ m. Let jmin be the
smallest job in the buffer. Let jt be the job arrived at time step t. The iteration
phase of our online algorithm performs as below:

Online Minimum Makespan Scheduling with a Buffer 169

The iteration phase

1. If job jt is larger than job jmin then remove job jmin from the buffer and
store job jt in the buffer. Let j be the smaller job between jobs jt and
jmin. Update job jmin if possible.

2. Assign job j into machine i such that

Ci(t− 1) ≤ T (t− 1) +m · p(j)∑m
k=1 si

− p(j)

si
,

where T (t − 1) is the total load on all the machines after time t − 1,
i.e., the total processing time of all the jobs so far. (Such machine always
exists).

In the final phase: we assign the jobs in the buffer as below:

1. Let jmax be the largest job in the buffer. If p(jmax) >
T
m then allocate all

the jobs in the buffer by the PTAS due to Hochbaum and Shmoys [12]
on m machines without considering the scheduled jobs, where T is the
total load of all the jobs given.

2. Else assign all the jobs in the buffer one by one by the previous approach,
i.e., at time step t assign job j to a machine i such that

Ci(t− 1) ≤ T (t− 1) +m · p(j)∑m
k=1 si

− p(j)

si
.

Lemma 4. [7] In Step 2 of the iteration phase, for job j there always exists
machine Mi such that

Ci(t− 1) ≤ T (t− 1) +m · p(j)∑m
k=1 si

− p(j)

si
.

Lemma 5. After time step t ≥ 1, for all 1 ≤ i ≤ m on machine i,

Ci(t) ≤
T (t) + (m− 1)p(j)∑m

k=1 si
.

Theorem 3. Our algorithm is (2m−1
m + ε)-competitive on m uniform machines

with a buffer of size m.

Proof. Again let T be the total load of all the jobs given. Let OPT be the optimal
solution of an offline algorithm. So, we have OPT ≥ T∑

m
k=1 si

. Consider the time

when there are no new jobs given. For ∀i, let job j be the last job assigned on
machine i at time step t in the iteration phase. There are two cases.

Case 1: jmax ≤ T
m . Then by Lemma 5,

Ci(t) ≤ T (t) + (m− 1)p(j)∑m
k=1 si

≤ T + (m− 1) · T
m∑m

k=1 si
=

(2m− 1)T

m ·∑m
k=1 si

≤ (2m− 1)OPT

m
.

170 Y. Lan et al.

Case 2: jmax > T
m . Then we have

T (t) + (m− 1)p(j) ≤ T − p(jmax) <
(m− 1)T

m

since any job in the buffer is not smaller than job j. At the end of the iteration
phase, we have

Ci(t) ≤
T (t) + (m− 1)p(j)∑m

k=1 si
≤ m− 1

m

T∑m
k=1 si

≤ m− 1

m
OPT.

After the final phase we have ALG ≤ (1 + ε+ m−1
m)OPT . �

Remarks: Some open questions are left. For example, i) for m identical ma-
chines, can we reduce the size of the buffer smaller than 2.5m+ 2 to achieve an
optimal online algorithm? ii) for m identical machines, using a buffer of size m,
can we have an online algorithm with a competitive ratio less than 2+rm

2 ?

References

1. Albers, S.: Better bounds for online scheduling. SIAM J. Comput. 29(2), 459–473
(1999)

2. Bartal, Y., Fiat, A., Karloff, H., Vohra, R.: New algorithms for an ancient schedul-
ing problem. J. Comput. Syst. Sci. 51(3), 359–366 (1995)

3. Chen, X., Lan, Y., Benko, A., Dósa, G., Han, X.: Optimal algorithms for online
scheduling with bounded rearrangement at the end. Theor. Comput. Sci. 412(45),
6269–6278 (2011)

4. Dósa, G., Epstein, L.: Online scheduling with a buffer on related machines. J.
Comb. Optim. 20(2), 161–179 (2010)

5. Dósa, G., Epstein, L.: Preemptive online scheduling with reordering. SIAM J. Dis-
crete Math. 25(1), 21–49 (2011)

6. Dósa, G., Wang, Y., Han, X., Guo, H.: Online scheduling with rearrangement on
two related machines. Theor. Comput. Sci. 412(8-10), 642–653 (2011)

7. Englert, M., Özmen, D., Westermann, M.: The power of reordering for online mini-
mum makespan scheduling. In: Proc. 48th Symp. Foundations of Computer Science
(FOCS), pp. 603–612 (2008)

8. Fleischer, R., Wahl, M.: Online scheduling revisited. Journal of Scheduling 3, 343–
353 (2000)

9. Friesen, D.K.: Tighter bounds for lpt scheduling on uniform processors. SIAM J.
Comput. 16(3), 554–560 (1987)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman (1979)

11. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM Journal of Ap-
plied Mathematics 17(2), 416–429 (1969)

12. Hochbaum, D.S., Shmoys, D.B.: A polynomial approximation scheme for schedul-
ing on uniform processors: Using the dual approximation approach. SIAM Journal
on Computing 17(3), 539–551 (1988)

13. Rudin III, J.F., Chandrasekaran, R.: Improved bounds for the online scheduling
problem. SIAM J. Comput. 32(3), 717–735 (2003)

Online Minimum Makespan Scheduling with a Buffer 171

14. Karger, D.R., Phillips, S.J., Torng, E.: A better algorithm for an ancient scheduling
problem. J. Algorithms 20(2), 400–430 (1996)

15. Kellerer, H., Kotov, V., Speranza, M.G., Tuza, Z.: Semi on-line algorithms for the
partition problem. Oper. Res. Lett. 21(5), 235–242 (1997)

16. Liu, M., Xu, Y., Chu, C., Zheng, F.: Online scheduling on two uniform machines
to minimize the makespan. Theor. Comput. Sci. 410(21-23), 2099–2109 (2009)

17. Sanders, P., Sivadasan, N., Skutella, M.: Online scheduling with bounded migra-
tion. Math. Oper. Res. 34(2), 481–498 (2009)

18. Tan, Z., Yu, S.: Online scheduling with reassignment. Oper. Res. Lett. 36(2), 250–
254 (2008)

19. Zhang, G.: A simple semi on-line algorithm for p2//cmax with a buffer. Information
Processing Letters 61, 145–148 (1997)

A Dense Hierarchy of Sublinear Time

Approximation Schemes for Bin Packing

Richard Beigel1 and Bin Fu2

1 CIS Department, Temple University,
Philadelphia, PA 19122-6094, USA

beigel@cis.temple.edu
2 Department of Computer Science, University of Texas-Pan American,

Edinburg, TX 78539, USA
bfu@utpa.edu

Abstract. The bin packing problem is to find the minimum number of
bins of size one to pack a list of items with sizes a1, . . . , an in (0, 1]. Us-
ing uniform sampling, which selects a random element from the input list

each time, we develop a randomized O(n(log log n)∑
n
i=1

ai
+(1

ε
)O(1

ε
)) time (1+ε)-

approximation scheme for the bin packing problem. We show that every
randomized algorithm with uniform random sampling needs Ω(n∑

n
i=1 ai

)

time to give an (1 + ε)-approximation. For each function s(n) : N → N ,
define

∑
(s(n)) to be the set of all bin packing problems with the sum

of item sizes equal to s(n). We show that
∑

(nb) is NP-hard for every
b ∈ (0, 1]. This implies a dense sublinear time hierarchy of approximation
schemes for a class of NP-hard problems, which are derived from the bin
packing problem. We also show a randomized streaming approximation
scheme for the bin packing problem such that it needs only constant up-
dating time and constant space, and outputs an (1 + ε)-approximation

in (1
ε
)O(1

ε
) time. Let S(δ)-bin packing be the class of bin packing prob-

lems with each input item of size at least δ. This research also gives a
natural example of NP-hard problem (S(δ)-bin packing) that has a con-
stant time approximation scheme, and a constant time and space sliding
window streaming approximation scheme, where δ is a positive constant.

1 Introduction

The bin packing problem is to find the minimum number of bins of size one to
pack a list of items with sizes a1, . . . , an in (0, 1]. It is a classical NP-hard problem
and has been widely studied. The bin packing problem has many applications
in the engineering and information sciences. Some approximation algorithm has
been developed for bin packing problem: for examples, the first fit, best fit,
sum-of-squares, or Gilmore-Gomory cuts [2,8,7,16,15]. The first linear time ap-
proximation scheme is shown in [11]. Recently, a sublinear time O(

√
n) with

weighted sampling and a sublinear time O(n1/3) with a combination of weighted
and uniform samplings were shown for bin packing problem [3].

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 172–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Sublinear Time Bin Packing 173

We study the bin packing problem in randomized offline sublinear time model,
randomized streaming model, and randomized sliding window streaming model.
We also study the bin packing problem that has input item sizes to be random
numbers in [0, 1]. Sublinear time algorithms have been found for many compu-
tational problems, such as checking polygon intersections [5], estimating the
cost of a minimum spanning tree [6,9,10], finding geometric separators [13], and
property testing [22,17], etc. Early research on streaming algorithms dealt with
simple statistics of the input data streams, such as the median [21], the num-
ber of distinct elements [12], or frequency moments [1]. Streaming algorithm is
becoming more and more important due to the development of internet, which
brings a lot of applications. There are many streaming algorithms that have been
proposed from the areas of computational theory, database, and networking, etc.

Due to the important role of bin packing problem in the development of
algorithm design and its application in many other fields, it is essential to study
the bin packing problem in these natural models. Our offline approximation
scheme is based on the uniform sampling, which selects a random element from
the input list each time. Our first approach is to approximate the bin packing
problem with a small number of samples under uniform sampling. We identify
that the complexity of approximation for the bin packing problem inversely
depends on the sum of the sizes of input items.

Using uniform sampling, we develop a randomized O(n(log logn)∑n
i=1 ai

+ (1ε)
O(1

ε))

time (1 + ε)-approximation scheme for the bin packing problem. We show that
every randomized algorithm with uniform random sampling needs Ω(n∑

n
i=1 ai

)

time to give an (1 + ε)-approximation. Based on an adaptive random sampling
method developed in this paper, our algorithm automatically detects an approx-

imation to the weights of summation of the input items in time O(n(log log n)∑
n
i=1 ai

)

time, and then yields an (1 + ε)-approximation.
For each function s(n) : N → N , define

∑
(s(n)) to be the set of all bin

packing problems with the sum of item sizes equal to s(n). For a constant b ∈
(0, 1), every problem in

∑
(nb) has an O(n1−b(log logn)+ (1ε)

O(1
ε)) time (1+ ε)-

approximation for an arbitrary constant ε. On the other hand, there is no o(n1−b)
time (1 + ε)-approximation scheme for the bin packing problems in

∑
(nb) for

some constant ε > 0. We show that
∑

(nb) is NP-hard for every b ∈ (0, 1]. This
implies a dense sublinear time hierarchy of approximation schemes for a class
of NP-hard problems that are derived from bin packing problem. We also show
a randomized single pass streaming approximation scheme for the bin packing
problem such that it needs only constant updating time and constant space, and
outputs an (1 + ε)-approximation in (1ε)

O(1
ε) time. This research also gives an

natural example of NP-hard problem that has a constant time approximation
scheme, and a constant time and space sliding window single pass streaming
approximation scheme.

The streaming algorithms in this paper for bin packing problem only approx-
imate the minimum number of bins to pack those input items. It also gives
a packing plan that allows an item position to be changed at different mo-
ment. This has no contradiction with the existing lower bound [4,19] that no

174 R. Beigel and B. Fu

approximation scheme exists for online algorithm that does not change bins of
already packed items.

2 Models of Computation and Overview of Methods

Algorithms for bin packing problem in this paper are under four models, which are
deterministic, randomized, streaming, and sliding windows streaming models.

Definition 1. – A bin packing is an allocation of the input items of sizes
a1, . . . , an in (0, 1] to bins of size 1. We want to minimize the total number
of bins. We often use Opt(L) to denote the least number bins for packing
items in L.

– Assume that c and η are constants in (0, 1), and k is a constant integer.
There are k kinds of bins of different sizes. If c ≤ si ≤ 1, and η ≤ wi ≤ 1
for all i = 1, 2, . . . , k, then we call the k kinds of bins to be (c, η, k)-related,
where wi and si are the cost and size of the i-th kind of bin, respectively.

– A bin packing with (c, η, k)-related bins is to allocate the input items a1, . . . , an
in (0, 1] to (c, η, k)-related bins.Wewant tominimize the total costs

∑k
i=1 uiwi,

where ui is the number of bins of cost wi. We often use Optc,η,k(L) to denote
the least cost for packing items in L with (c, η, k)-related bins. It is easy to see
Opt(L) = Opt1,1,1(L).

– For a positive constant δ, a S(δ)-bin packing problem is the bin packing
problem with all input items at least δ.

– For a nondecreasing function f(n) : N → N , a
∑

(f(n))-bin packing prob-
lem is the bin packing problem with all input items a1, . . . , an satisfying∑n

i=1 ai = f(n).

Deterministic Model: The bin packing problem under the deterministic model
has been well studied. We give a generalized version of bin packing problem that
allows multiple sizes of bins to pack them. It is called as bin packing with (c, η, k)
related bins in Definition 1.

Randomized Models:Our main model of computation is based on the uniform
random sampling. We give the definitions for both uniform and weighted random
samplings below.

Definition 2. Assume that a1, . . . , an is an input list of items in (0, 1] for a bin
packing problem.

– A uniform sampling selects an element a from the input list with Pr[a =
ai] =

1
n for i = 1, . . . , n.

– A weighted sampling selects an element a from the input list with Pr[a =
ai] =

ai∑n
i=1 ai

for i = 1, . . . , n.

We feel that the uniform sampling is more practical to implement than weighted
sampling. In this paper, our offline randomized algorithms are based on uniform
sampling. The weighted sampling was used in [3].

Sublinear Time Bin Packing 175

Streaming Computation: A data stream is an ordered sequence of data items
p1, p2, . . . , pn. Here, n denotes the number of data points in the stream. A stream-
ing algorithm is an algorithm that computes some function over a data stream
and has the following properties: 1. The input data are accessed in the sequential
order of the data stream. 2. The order of the data items in the stream is not
controlled by the algorithm.

Sliding Window Model: In the sliding window streaming model, there is a
window size n for the most recent n items. The bin packing problem for the
sliding window streaming algorithm is to pack the most recent n items.

Bin Packing with Random Inputs: We study the bin packing problem such
that the input is a series of sizes that are random numbers in [0, 1]. It has a
constant time approximation scheme.

2.1 Overview of Our Method

We develop algorithms for the bin packing problem under offline uniform random
sampling model, the streaming computation model, and sliding window stream-
ing model (only for S(δ)-bin packing with a positive constant δ). The brief ideas
are given below.

Sublinear Time Algorithm for Offline Bin Packing. Since the sum of
input item sizes is not a part of input, it needs O(n) time to compute its exact
value, and it’s unlikely to be approximated via one round random sampling in a
sublinear time. We first approximate the sum of sizes of items through a multi-
phase adaptive random sampling. Select a constant ϕ to be the threshold for
large items. Select a small constant γ = O(ε). All the items from the input
are partitioned into intervals [π1, π0], [π2, π1) . . . , [πi+1, πi), . . . such that π0 =
1, π1 = ϕ, and πi+1 = πi/(1 + γ) for i = 2, We approximate the number of
items in each interval (πi+1, πi] via uniform random sampling. Those intervals
with very a small number of items will be dropped. This does not affect much of
the ratio of approximation. One of worst cases is that all small items are of size
1
n2 and all large size items are of size 1. In this case, we need to sampleΩ(n∑

ai=1 1)

number of items to approximate the number of 1s. This makes the total time
to be Ω(n∑

n
i=1 ai

). Packing the items of large size is adapted the method in [11],

which uses a linear programming method to pack the set of all large items, and
fills small items into those bins with large items to waste only a small piece of
space for each bin. Then the small items are put into bins that still have space
left after packing large items. When the sum of all item sizes is O(1), we need
O(n) time. Thus, the O(n) time algorithm is a part of our algorithm for the case∑n

i=1 ai = O(1).

Streaming Algorithm for Bin Packing. We apply the above approximation
scheme to construct a single pass streaming algorithm for bin packing problem.
A crucial step is to sample some random elements among those input items of

176 R. Beigel and B. Fu

size at least δ, which is set according to ε. The weights of small items are added
to a variable s1. After packing large items of size at least δ, we pack small items
into those bins so that each bin does not waste more than δ space while there is
small items unpacked.

SlidingWindow Streaming Algorithm for S(δ)-Bin Packing. Our sliding
window single pass streaming algorithm deals with the bin packing problem that
all input items are of size at least a constant δ. Let n be the size of sliding
window instead of the total number of input items. Select a sufficiently large
constant k. There are k sessions to approximate the bin packing. After receiving
every n

k items, a new session is started to approximate the bin packing. The
approximation ratio is guaranteed via ignoring at most n

k items. As each item is
of large size at least δ, ignoring n

k items only affect a small ratio of approximation.

3 Adaptive Random Sampling for Bin Packing

In this section, we develop an adaptive random sampling method to get the
rough information for a list of items for the bin packing problem. We show a
randomized algorithm to approximate the sum of the sizes of input items in
O((n∑

n
i=1 ai

) log logn)) time. This is the core step of our randomized algorithm,

and is also or main technical contribution.

Definition 3. – For each interval I and a list of items S, define C(I, S) to
be the number of items of S in I.

– For ϕ, δ, and γ in (0, 1), a (ϕ, δ, γ)-partition for (0, 1] divides the inter-
val (0, 1] into intervals I1 = [π1, π0], I2 = [π2, π1), I3 = [π3, π2), . . . , Ik =
(0, πk−1) such that π0 = 1, π1 = ϕ, πi = πi−1(1− δ) for i = 2, . . . , k− 1, and
πk−1 is the first element πk−1 ≤ γ

n2 .
– For a set A, |A| is the number of elements in A. For a list S of items, |S| is

the number of items in S.

Lemma 1. For parameters ϕ, δ, and γ in (0, 1), a (ϕ, δ, γ)-partition for (0, 1]
has the number of intervals k = O(log n

γθ).

We need to approximate the number of large items, the total sum of the sizes
of items, and the total sum of the sizes of small items. For a (ϕ, δ, γ)-partition
I1∪I2 . . .∪Ik for (0, 1], Algorithm Approximate-Intervals(.) below gives the esti-
mation for the number of items in each Ij if interval Ij has a number items to be
large enough. Otherwise, those items in Ij can be ignored without affecting much
of the approximation ratio. We have an adaptive way to do random samplings in
a series of phases. Phase t+1 doubles the number of random samples of phase t
(mt+1 = 2mt). For each phase, if an interval Ij shows sufficient number of items
from the random samples, the number of items C(Ij , S) in Ij can be sufficiently

approximated by Ĉ(Ij , S). Thus, Ĉ(Ij , S)πj also gives an approximation for the

sum of the sizes of items in Ij . The sum appw =
∑

Ij
Ĉ(Ij , S)πj for those inter-

vals Ij with large number of samples gives an approximation for the total sum

Sublinear Time Bin Packing 177

∑n
i=1 ai of items in the input list. Let mt denote the number of random samples

in phase t. In the early stages, appw is much smaller than n
mt

. Eventually, appw
will surpass n

mt
. This happens when mt is more than n∑n

i=1 ai
and appw is close to

the sum
∑n

i=1 ai of all items from the input list. This indicates that the number
of random samples is sufficient for approximation algorithm. For those intervals
with small number of samples, their items only need small fraction of bins to be
packed. This process is terminated when ignoring all those intervals with none or
small number of samples does not affect much of the accuracy of approximation.
The algorithm gives up the process of random sampling when mt surpasses n,
and switches to use a deterministic way to access the input list, which happens
when the total sum of the sizes of input items is O(1). The lengthy analysis is
caused by the multi-phases adaptive random samplings. We show two examples
below.

Algorithm Approximate-Intervals(ϕ, δ, γ, θ, α, P, n, S)

Input: a parameter ϕ ∈ (0, 1), a small parameter θ ∈ (0, 1), a failure probability
upper bound α, a (ϕ, δ, γ) partition P = I1 ∪ . . .∪ Ik for (0, 1] with δ, γ ∈ (0, 1),
an integer n, a list S of n items a1, . . . , an in (0, 1]. Parameters ϕ, δ, γ, θ, and α
do not depend on the number of items n.

Steps:

1. Phase 0:

2. Let z := ξ0 log logn, where ξ0 is a parameter such that 8(k + 1)(log n)
g(θ)z/2 < α for all large n.

3. Let parameters c0 := 1
100 ,c2 := 1

3(1+δ)c0
,c3 := δ4

2(1+δ) ,c4 := 8
(1−θ)(1−δ)ϕc0

,

and c5 := 12ξ0
(1−θ)c2c3

.

4. Let m0 := z.

5. End of Phase 0.

6. Phase t:
7. Let mt := 2mt−1.

8. Sample mt random items ai1 , . . . , aimt
from the input list S.

9. Let dj := |{j : aij ∈ Ij and 1 ≤ j ≤ mt}| for j = 1, 2, . . . , k.

10. For each Ij ,

11. if dj ≥ z,

12. then let Ĉ(Ij , S) :=
n
mt

dj to approximate C(Ij , S).

13. else let Ĉ(Ij , S) := 0.

14. Let appw :=
∑

dj≥z Ĉ(Ij , S)πj to approximate
∑n

i=1 an.

15. If appw ≤ c5n log logn
c0mt

and mt < n then enter Phase t+ 1.

16. else

17. If mt < n

18. then let app′w :=
∑

dj≥z and j>1 Ĉ(Ij , S)πj to approximate∑
ai<δ,1≤i≤n ai.

19. else let appw :=
∑n

i=1 ai and app′w :=
∑

ai<ϕ ai.

178 R. Beigel and B. Fu

20. Output appw, app
′
w and Ĉ(I1, S) (the approximate number of items

of size at least ϕ).
21. End of Phase t.

End of Algorithm

Lemma 2 uses several parameters ϕ, δ, γ, α and θ that will be determined by
the approximation ratio for the the bin packing problem. If the approximation
ratio is fixed, they all become constants.

Lemma 2. Assume that ϕ, δ, γ, α and θ are parameters in (0, 1), and those pa-
rameters do not depend on the number of items n.. Then there exists a ran-
domized algorithm described in Approximate-Intervals(.) such that given a list S
of items of size a1, . . . , an in the range (0, 1] and a (ϕ, δ, γ)-partition for (0, 1],
with probability at most α, at least one of the following statements is false after
executing the algorithm:

1. For each Ij with Ĉ(Ij , S) > 0, C(Ij , S)(1− θ) ≤ Ĉ(Ij , S) ≤ C(Ij , S)(1 + θ);

2.
∑

ai∈Ij and Ĉ(Ij ,S)=0 ai ≤ δ3

2 (
∑n

i=1 ai) +
γ
n ;

3. (1 − θ)(1− δ)ϕ(
∑n

i=1 ai

2 − 2γ
n) ≤ appw ≤ (1 + θ)(

∑n
i=1 ai);

4. If
∑n

i=1 ai ≥ 4, then 1
4 (1 − θ)(1 − δ)ϕ(

∑n
i=1 ai) ≤ appw ≤ (1 + θ)(

∑n
i=1 ai);

and
5. It runs in O(1

(1−θ)δ4 log g(θ) min(n∑
n
i=1 ai

, n) log logn) time. In particular, the

complexity of the algorithm is O(min(n∑
n
i=1 ai

, n) log logn) if ϕ, δ, γ, α and θ

are constants in (0, 1).

Lemma 2 implies that with probability at least 1− α, all statements 1 to 5 are
true.

4 Main Results

We list the main results that we achieve in this paper. The proof of Theorem 1
is omitted in the conference version of this paper. The full version can be down-
loaded at http://arxiv.org/abs/1007.1260.

Theorem 1 (Main). Approximate-Bin-Packing(.) is a randomized approxima-
tion scheme for the bin packing problem such that given an arbitrary τ ∈ (0, 1)
and a list of items S = a1, . . . , an in (0, 1] for the bin packing problem, it gives

an approximation app with Opt(S) ≤ app ≤ (1+ τ)Opt(S)+ 1 in O(n(log logn)∑
i=1 ai

+

(1τ)
O(1

τ)) time with probability at least 3
4 .

We show a lower bound for those bin packing problems with bounded sum of
sizes

∑n
i=1 ai. The lower bound always matches the upper bound.

Theorem 2. Assume f(n) is a nondecreasing unbounded function from N to
N with f(n) = o(n). Every randomized (2− ε) approximation algorithm for bin
packing problems in

∑
(f(n)) needs Ω(n

f(n)) time, where ε is an arbitrary small

constant in (0, 1).

Sublinear Time Bin Packing 179

Proof. Since f(n) is unbounded, assume n is large enough such that

(f(n) + 2)(2− ε) < 2(f(n)− 2). (1)

We design two input list of items.
The first list contains m = 2(f(n) − 2)) elements of size 1

2 + δ, where δ =
1

2(f(n)−2) . The rest n−m items are of the same size γ = 1
n−m = o(1). We have

m(12 + δ) + (n − m)γ = 2(f(n) − 2)(12 + 1
2(f(n)−2)) + 1 = f(n). Therefore, the

first list is a bin packing problem is in
∑

(f(n)).
The second list contains n− f(n) elements of size γ and the rest f(n) items

are of size equal to 1 − τ , where τ = (n−f(n))γ
f(n) = o(1). We have f(n)(1 − τ) +

(n−f(n))γ = f(n). The second list is also a bin packing problem is in
∑

(f(n)).
Both γ and τ are small. Packing the first list needs at least 2(f(n)− 2) bins.

Packing the second list only needs at most f(n) + 2 bins since two bins of size
one is enough to pack those items of size τ .

Assume that an algorithm only has computational time o(n
f(n)) for computing

(2− ε)-approximation for bin packing problems in
∑

(f(n)). The algorithm has
an o(1) probability to access at least one item of size at least 1

2 in both lists.
Therefore, the two lists have the same output for approximation by the same
randomized algorithm. For the second list, the output for the number of bins
should be at most (f(n) + 2)(2 − ε). By inequality (1), it is impossible to pack
the first list items. This brings a contradiction. �

Corollary 1. There is no o(n∑
n
i=1 ai

) time randomized approximation scheme

algorithm for the bin packing problem.

Theorem 3. For each constant b ∈ (0, 1), the bin packing problem in
∑

(nb) is
NP-hard.

5 Streaming Approximation Scheme

In this section, we show a constant time and constant space streaming algorithm
for the bin packing problem. For the streaming model of the bin packing problem,
we output a plan to pack the items that have come from the input list, and the
number of bins to approximate the optimal number of bins. Our algorithm only
holds a constant number of items. Therefore, it has a constant updating time
and constant space complexity.

Lemma 3. There is an O(u) updating time algorithm to select u random ele-
ments from a stream of input elements.

Proof. We set up u positions to put the u elements. There is a counter n to count
the total number of elements arrived. For each new arrived element an, the i-th
position uses probability 1

n to replace the old element at the i-th position with

the new element. For each element ai, with probability 1
i

i
i+1 . . .

n−1
n = 1

n , it is
kept at each of the u positions after processing n elements. Therefore, we keep
u-random elements from the input list. �

180 R. Beigel and B. Fu

Theorem 4. There is a single pass streaming randomized approximation scheme
algorithm for the bin packing problem such that the algorithm has O(1) updat-
ing time and O(1) space, and computes an approximate packing solution Apx(n)

with Sopt(n) ≤ App(n) ≤ (1 + ε)Sopt(n) + 1 in (1ε)
O(1

ε) time, where Sopt(n) is
the optimal solution for the first n items in the input stream, and App(n) is an
approximate solution for the first n items in the input stream.

Definition 4. The 3-partition problem is to decide whether a given multiset of
integers in the range (B4 ,

B
2) can be partitioned into triples that all have the

same sum B, where B is an integer. More precisely, given a multiset S of n = 3t
positive integers, can S be partitioned into m subsets S1, S2, . . . , St such that the
sum of the numbers in each subset is equal?

It is well known that 3-partition problem is NP-complete [14]. It is used in
proving the following NP-hard problems (Theorem 3 and Theorem 5). We show
that the S(δ)-bin packing problem is NP-hard if δ is at least 1

4 .

Theorem 5. For each δ at most 1
4 , the S(δ)-bin packing problem is NP-hard.

Proof. We reduce the 3-partition problem to S(δ)-bin packing problem. Assume
that S = {a1, . . . , a3m} is an input of 3-partition. We design that a S(δ)-bin
packing problem as below: the bin size is 1 and the items are a1

B , . . . , a3m

B . The

size of each item is at least 1
4 since each ai >

B
4 . It is easy to see that there is a

solution for the 3-partition problem if and only if those items for the bin packing
problem can be packed into m bins. �

Theorem 6. Assume that c, η, and k are constants. Let δ be an arbitrary con-
stant. Then there is a single pass sliding window streaming randomized approxi-
mation algorithm for the S(δ)-bin packing problem with (c, η, k)-related bins that
has O(1) updating time and O(1) space, and computes an approximate packing

solution App(.) with Soptc,η,k(n) ≤ App(n) ≤ (1 + γ)Soptc,η,k(n) in (1γ)
O(1

γ)

time, where Soptc,η,k(n) is the optimal solution for the last n items in the input
stream, and App(n) is an approximate solution for the most recent n items in
the input stream.

Acknowledgements. We would like to thank Xin Han for his helpful sugges-
tions which improves the presentation of this paper. We would like to thank
the helpful comments from the reviewers at FAW-AAIM 2012. This research is
supported in part by National Science Foundation Early Career Award 0845376.
An earlier version of this paper is posted at http://arxiv.org/abs/1007.1260.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. In: Proceedings of the Symposium on Theory of Computing,
pp. 20–29 (1996)

Sublinear Time Bin Packing 181

2. Applegate, D., Buriol, L., Dillard, B., Johnson, D., Shore, P.: The cutting-stock
approach to bin packing: Theory and experiments. In: Proceedings of Algorithm
Engineering and Experimentation (ALENEX), pp. 1–15 (2003)

3. Batu, T., Berenbrink, P., Sohler, C.: A sublinear-time approximation scheme for
bin packing. Theoretical Computer Science 410, 5082–5092 (2009)

4. Brown, D.: A lower bound for on-line one-dimensional bin packing problem. Tech-
nical Report 864, University of Illinois, Urbana, IL (1979)

5. Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM Journal
on Computing 35, 627–646 (2005)

6. Chazelle, B., Rubfinfeld, R., Trevisan, L.: Approximating the minimum spanning
tree weight in sublinear time. SIAM Journal on Computing 34, 1370–1379 (2005)

7. Csirik, J.A., Johnson, D.S., Kenyon, C., Shor, P.W., Weber, R.R.: A Self Organizing
Bin Packing Heuristic. In: Goodrich, M.T., McGeoch, C.C. (eds.) ALENEX 1999.
LNCS, vol. 1619, pp. 246–265. Springer, Heidelberg (1999)

8. Csirik, J., Johnson, D., Kenyon, C., Orlin, J., Shore, P., Weber, R.: On the sum-
of-squares algorithm for bin-packing. In: Proceedings of the 22nd Annual ACM
Symposium on Theory of Computing (STOC), pp. 208–217 (2000)

9. Czumaj, A., Ergun, F., Fortnow, L., Magen, I.N.A., Rubinfeld, R., Sohler, C.:
Sublinear approximation of euclidean minimum spanning tree. SIAM Journal on
Computing 35, 91–109 (2005)

10. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees
in sublinear-time. In: Proceedings of the 36th Annual ACM Symposium on Theory
of Computing, pp. 175–183 (2004)

11. Fernandez de la Vega, W., Lueker, G.S.: Bin packing can be solved within 1+epsilon
in linear time. Combinatorica 1(4), 349–355 (1981)

12. Flajolet, P., Martin, G.: Probabilistic counting algorithms for data base application.
Journal of Computer and System Sciences 31, 182–209 (1985)

13. Fu, B., Chen, Z.: Sublinear-time algorithms for width-bounded geometric sepa-
rators and their applications to protein side-chain packing problems. Journal of
Combinatorial Optimization 15, 387–407 (2008)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Company, New York (1979)

15. Gilmore, M., Gomory, R.: A linear programming approach to the cutting-stock
problem - part ii. Operations Research

16. Gilmore, M., Johnson, D.: A linear programming approach to the cutting-stock
problem. Operations Research

17. Goldreich, O., Ron, D.: On testing expansion in bounded-degree graphs. Techni-
cal Report 00-20, Electronic Colloquium on Computational Complexity (2000),
http://www.eccc.uni-trier.de/eccc/

18. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. Journal
of the ACM 49(2), 157–171 (2002)

19. Liang, F.: A lower bound for on-line bin packing. Information Processing Letters 10,
76–79 (1980)

20. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press
(2000)

21. Munro, J.I., Paterson, M.S.: Selection and sorting with limited storage. Theoretical
Computer Science 12, 315–323 (1980)

22. Goldreich, S.G.O., Ron, D.: Property testing and its connection to learning and
approximation. J. ACM 45, 653–750 (1998)

http://www.eccc.uni-trier.de/eccc/

Multivariate Polynomial Integration

and Differentiation Are Polynomial Time
Inapproximable Unless P=NP

Bin Fu

Department of Computer Science, University of Texas-Pan American,
Edinburg, TX 78539, USA

bfu@utpa.edu

Abstract. We investigate the complexity of approximate integration
and differentiation for multivariate polynomials in the standard compu-
tation model. For a functor F (·) that maps a multivariate polynomial to a
real number, we say that an approximation A(·) is a factor α:N → N+

approximation iff for every multivariate polynomial f with A(f) ≥ 0,
F (f)
α(n)

≤ A(f) ≤ α(n)F (f), and for every multivariate polynomial f with

F (f) < 0, α(n)F (f) ≤ A(f) ≤ F (f)
α(n)

, where n is the length of f , len(f).

For integration over the unit hypercube, [0, 1]d, we represent a multi-
variate polynomial as a product of sums of quadraticmonomials: f(x1, . . . ,
xd) =

∏
1≤i≤k pi(x1, . . . , xd), where pi(x1, . . . , xd) =

∑
1≤j≤d qi,j(xj),

and each qi,j(xj) is a single variable polynomial of degree at most two and
constant coefficients. We show that unless P = NP there is no α:N → N+

and A(·) that is a factor α polynomial-time approximation for the integral
Id(f) =

∫
[0,1]d

f(x1, . . . , xd)dx1, . . . , d xd.

For differentiation, we represent a multivariate polynomial as a prod-
uct quadratics with 0, 1 coefficients. We also show that unless P = NP
there is no α:N → N+ and A(·) that is a factor α polynomial-time ap-

proximation for the derivative ∂f(x1,...,xd)
∂x1,...,∂xd

at the origin (x1, . . . , xd) =

(0, . . . , 0). We also give some tractable cases of high dimensional integra-
tion and differentiation.

1 Introduction

Integration and differentiation are basic operations in classical mathematics. In-
tegrations with a large number of variables have been found applications in many
areas such as finance, nuclear physics, and quantum system, etc. The complexity
for approximating multivariate integration has been studied by measuring the
number of function evaluations. For example, Sloan and Wozniakowski proved an
exponential lower bounds 2s of function evaluations in order to obtain an approx-
imation with error less than the integration itself that has s variables [9]. The in-
tegration

∫
[0,1]d

f(x1, · · · , xd)dx1 · · · dxd
is over the cubic [0, 1]d for some function

f(x1, · · · , xd). In the quasi-Monte Carlo method for computing
∫
[0,1]d f(x)dx, it is

approximated by 1
n

∑n
i=1 f(pi), where p1, · · · , pn are n random points in [0, 1]d.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 182–191, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Integration and Differentiation 183

This approximation has an error Θ((ln n)d−1

n) that grows exponentially on the
dimension number d (see e.x., [7,6] and the reference papers there).

We study the polynomial-time approximation limitation for the high dimen-
sional integration for some easily defined functions. Valiant showed that com-
puting the high dimensional integration and differentiation are both #P -hard
via reducing permanent problem to them [12]. Valiant’s results do not imply any
inapproximability of the two problems since permanent has a polynomial-time
approximation scheme [5].

In this paper, we consider the high dimensional integration for multivari-
ate polynomials. For a functor F (·) that maps a multivariate polynomial to a
real number, we say that an approximation A(·) is a factor α:N → N+ ap-

proximation iff for every multivariate polynomial f with A(f) ≥ 0, F (f)
α(n) ≤

A(f) ≤ α(n)F (f), and for every multivariate polynomial f with F (f) < 0,

α(n)F (f) ≤ A(f) ≤ F (f)
α(n) , where n is the length of f , len(f). For integration over

the unit hypercube, [0, 1]d, we represent a multivariate polynomial as a product
of sums of quadratic monomials: f(x1, . . . , xd) =

∏
1≤i≤k pi(x1, . . . , xd), where

pi(x1, . . . , xd) =
∑

1≤j≤d qi,j(xj), and each qi,j(xj) is a single variable polynomial
of degree at most two and constant coefficients. Its integration can be computed
in polynomial space. It is easy to deal with the sum of monomials. Studying
the product of multiple polynomial of multiple variables is of essential impor-
tance in complexity theory. A

∏∑∏
polynomial is a multiplication of several

polynomial
∏m

i=1 pi(x1, · · · , xd) and each pi(x1, · · · , xd) is a sum of monomials.
The sum of product expansion of a

∏∑∏
polynomial may have exponential

number of terms. Testing some properties such as the multilinear monomial in
the sum of product expansion of a

∏∑∏
polynomial is NP-hard [2]. We show

that there is not any-factor polynomial-time approximation to the integration
problem unless P = NP.

A similar hardness of approximation result is also derived for the differenti-
ation of the polynomial function. The recent development of monomial testing
theory [1,3,2] can be used to explain the hardness for computing the differenti-
ation for a

∏∑∏
polynomial. For differentiation, we represent a multivariate

polynomial as a product quadratics with 0, 1 coefficients. We also show that
unless P = NP, there is not any-factor polynomial-time approximation to its

differentiation ∂f(d)(x1,···,xd)
∂x1···∂xd

at the origin point (x1, · · · , xd) = (0, · · · , 0). Since
both integration and differentiation are widely used, this approach may help
understand the complexity of approximation of some mathematics systems that
involve high dimension integration or differentiation.

Partial derivatives were used in developing deterministic algorithms for the
polynomial identity problem (for example, see [8]), a fundamental problem in
the computational complexity theory. Our intractability result for the high di-
mension differentiation over multivariate polynomial points out a barrier of this
approach.

We also give some tractable cases of high dimension integration and
differentiation.

184 B. Fu

2 Notations

Let N = {0, 1, 2, · · ·} be the set of all natural numbers. Let N+ = {1, 2, · · ·} be
the set of all positive natural numbers.

Assume that function r(n) is from N to N+. For a functor F (.) that converts
a multivariate polynomial into a real number, an algorithm A(.) gives an r(n)-
factor approximation to F (f) if it satisfies the following conditions: if F (f) ≥ 0,

then F (f)
r(n) ≤ A(f) ≤ r(n)F (f); and if F (f) < 0, then r(n)F (f) ≤ A(f) ≤ F (f)

r(n) ,

where n is the length of f .
Assume that functions r(n) and s(n) are from N to N+. For a functor F (.), an

algorithm A(.) gives an (r(n), s(n))-factor approximation to F (f) if F (f) ≥ 0,

then F (f)
r(n) − s(n) ≤ A(f) ≤ r(n)F (f) + s(n); and if F (f) < 0, then r(n)F (f) −

s(n) ≤ A(f) ≤ F (f)
r(n) + s(n), where n is the length of f .

In this paper, we consider two kinds of functors. The first one is the integration
in the unit cube for a multivariate polynomial:

∫
[0,1]d

f(x1, · · · , xd)dx1 · · · dxd
.

The second is the differentiation ∂f(d)(x1,···,xd)
∂x1···∂xd

at the origin point (x1, · · · , xd) =

(0, · · · , 0).
For the complexity of multivariate integration, we consider the functions with

the format f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd), where

each pi(x1, · · · , xd) =
∑d

j=1 qi,j(xj) with each single variable polynomial qi,j(xj)
of constant degree. This kind multivariate polynomial is called

∏∑
Sc if the

degree of each qi,j(xj) is at most c.
For the complexity ofmultivariatedifferentiation,we consider the functionswith

the format f(x1, · · · , xd) = p1(x1, · · · , xd)p2(x1, · · · , xd) · · · pk(x1, · · · , xd), where
eachpolynomialpi(x1, · · ·, xd) is of a constantdegree.Thepolynomialf(x1, · · · , xd)
is called a

∏∑∏
k polynomial if the degree of each pi(x1, · · · , xd) is at most k.

3 Overview of Our Methods

In this section, we show the brief idea to derive the main result of this paper
(Theorem 1). 3SAT is an NP-complete problem proved by Cook [4]. We show
that approximating the integration of a

∏∑
S2 polynomial is NP-hard by a

reduction from 3SAT problem to it. It is still NP-hard to decide a conjunctive
normal form that each variable appears at most three times with at most one
negative time. We assume that each variable has its negation appears at most
one time (Otherwise, we replace it by its negation).

We show (see Lemma 2) that there exist integer coefficients polynomial func-

tions g1(x) = ax2+bx+c, g2(x) = ux+v, and f(x) = 2x satisfy that
∫ 1

0
g1(x)dx =

1,
∫ 1

0 g2(x)dx = 1,
∫ 1

0 f(x)dx = 1,
∫ 1

0 g1(x)g2(x)dx = 4,
∫ 1

0 g1(x)f(x)dx = 0,∫ 1

0
g2(x)f(x)dx = 0, and

∫ 1

0
g1(x)g2(x)f(x)dx = 0.

Example 1. Consider the logical formula F = (x1+x2)(x1+x2)(x1+x2), which
has the sum of product expansion x1x1x1+x1x1x2+x1x2x1+x1x2x2+x2x1x1+
x2x1x2 + x2x2x1 + x2x2x2. The term x1x1x2 can bring a truth assignment

Integration and Differentiation 185

x1 = true and x2 = true to make F true. As each variable appears at most
3 times with at most one negative appearance, the first positive xi is replaced
by g1(yi), the second positive xi is replaced by g2(yi), and the negative xi is
replaced by f(yi). It is converted into the polynomial

p(y1, y2) = (g1(y1) + g1(y2))(g2(y1) + f(y2))(f(y1) + g2(y2)).

The polynomial p(y1, y2) has the sum of product expansion

g1(y1)g2(y1)f(y1) + g1(y1)g2(y1)g2(y2) + g1(y1)f(y2)f(y1) +

g1(y1)f(y2)g2(y2) + g1(y2)g2(y1)f(y1) + g1(y2)g2(y1)g2(y2) +

g1(y2)f(y2)f(y1) + g1(y2)f(y2)g2(y2).

Consider the integration
∫
[0,1]2

p(y1, y2)dy1dy2 . The integration can be distributed

into those product terms.
∫
[0,1]2 g1(y1)g2(y1)g2(y2)dy1dy2 is one of them. We have∫

[0,1]2 g1(y1)g2(y1)g2(y2)dy1dy2 = (
∫
[0,1] g1(y1)g2(y1)dy1)(

∫
[0,1] g2(y2)dy2)

= 4 · 1 = 4.
The integrations for other terms are all non-negative integers. Thus,∫

[0,1]2 p(y1, y2)dy1dy2 is a positive integer due to the satisfiability of F .

Example 2. Consider the logical formula G = (x1 + x2)x1x2, which has the
sum of product expansion x1x1x2 + x1x2x2. Neither x1x1x2 nor x1x2x2 can be
satisfied. As each variable appears at most 3 times with at most one negative
appearance, the first positive xi is replaced by g1(yi), the second positive xi is
replaced by g2(yi), and the negation case xi is replaced by f(yi). It is converted
into the polynomial q(y1, y2) = (g1(y1) + g1(y2))f(y1)f(y2). The polynomial
q(y1, y2) has the sum of product expansion g1(y1)f(y1)f(y2)+ g1(y2)f(y1)f(y2).

Consider the integration
∫
[0,1]2 q(y1, y2)dy1dy2 that is identical to∫

[0,1]2
g1(y1)f(y1)f(y2)dy1dy2 +

∫
[0,1]2

g1(y2)f(y1)f(y2)dy1dy2 . We have∫
[0,1]2

g1(y1)f(y1)f(y2)dy1dy2 = (

∫
[0,1]

g1(y1)f(y1)dy1)(

∫
[0,1]

f(y2)dy2)=0 · 1 = 0.

We also have∫
[0,1]2

g1(y2)f(y1)f(y2)dy1dy2 = (

∫
[0,1]

f(y1)dy1)(

∫
[0,1]

g1(y2)f(y2)dy2)=1 · 0 = 0.

Therefore,
∫
[0,1]2 q(y1, y2)dy1dy2 = 0 due to the unsatisfiability of G. Therefore,

for any-factor a(n) > 0, a polynomial-time factor a(n)-approximation to the
integration of a

∏∑
S2 polynomial implies a polynomial-time decision for the

satisfiability of the corresponding boolean formula.

4 Intractability of High Dimensional Integration

In this section, we show that the integration in high dimensional cube [0, 1]d

does not have any-factor approximation. We will reduce an existing NP-complete

186 B. Fu

problem to the integration problem. Our main technical contribution is in con-
verting a logical formula into a polynomial. We often use a basic property of
integration, which can be found in some standard text books of calculus (for ex-
ample [11]). Assume function f(x1, · · · , xd) = f1(xi1 , · · · , xid1

)f2(xj1 , · · · , xjd2
),

where {x1, · · · , xd} is the disjoint union of {xi1 , · · · , xid1
} and {xj1 , · · · , xjd2

}.
Then we have

∫
[0,1]d f(x1, · · · , xd)dx1 · · · dxd

=(∫
[0,1]d1 f1(xi1 , · · · , xid1

)dxi1
· · · dxid1

)
·
(∫

[0,1]d2 f(xj1 , · · · , xjd2
)dxj1

· · · dxjd2

)
.

In order to make the conversion from logical operation to algebraic operation,
we represent conjunctive normal form with the following format. For example,
the formula (x1 + x2)(x1 + x2)(x1 + x2) is a conjunctive normal form with two
boolean variables x1 and x2, where + represents the logical

∨
, and . represent

the logical
∧
.

Definition 1

– A 3SAT instance is a conjunctive form C1 · C2 · · ·Cm such each Ci is a
disjunction of at most three literals.

– 3SAT is the language of those 3SAT instances that have satisfiable assign-
ments.

– A (3, 3)-SAT instance is an instance G for 3SAT such that for each variable
x, the total number of times of x and x in G is at most 3, and the total
number of times of x in G is at most 1.

– (3, 3)-SAT is the language of those (3, 3)-SAT instances that have satisfiable
assignments.

It is well known 3SAT is NP-complete [4]. For examples, (x1 + x2 + x3)(x1 +
x2)(x1 + x2) is both 3SAT and (3, 3)-SAT instance, and also belongs to both
3SAT and (3, 3)-SAT. On the other hand, (x1 + x2 + x3)(x1 + x2)(x1 + x2) is
not a (3, 3)-SAT instance since x1 appears twice in the formula. The following
lemma is similar to a result derived by Tovey [10].

Lemma 1. There is a polynomial-time reduction from 3SAT to (3, 3)-SAT.

Proof. Let F be an instance for 3SAT. Let’s focus on one variable xi that appears
m times in F . Introduce a series of new variables yi,1, · · · , yi,m for xi. Convert F
to F ′ by changing the j-th occurrence of xi in F to yi,j for j = 1, · · · ,m. Define

Gxi = (xi → yi,1) · (yi,1 → yi,2) · (yi,2 → yi,3) · (yi,3 → yi,4) · · · (yi,m−1 → yi,m) ·
(yi,m → xi)

= (xi + yi,1) · (yi,1 + yi,2) · (yi,2 + yi,3) · (yi,3 + yi,4) · · · (yi,m−1 + yi,m) ·
(yi,m + xi).

Each logical formula (x → y) is equivalent to (x + y). If Gxi is true, then
xi, yi,1, · · · , yi,m are equivalent.

Convert F ′ into F ′′ such that F ′′ = F ′Gx1 · · ·Gxk
, where x1, · · · , xk are all

variables in F .
For each variable x in F ′′ with more than one x, create a new variable yx,

replace each positive x of F by yx, and each negative x by yx. Thus, F
′′ becomes

F ′′′. It is easy to see that F ∈ 3SAT iff F ′′ is satisfiable iff F ′′′ ∈(3,3)-SAT. �

Integration and Differentiation 187

4.1 Integration of
∏∑

S2 Polynomial

Lemma 2 is our main technical lemma. It is used to convert a (3, 3)-SAT instance
into a

∏∑
S2 polynomial.

Lemma 2. Let g1(x) = 30x2 − 36x+9, g2(x) = −6x+ 4, and f(x) = 2x. They
satisfy the following conditions

1.
∫ 1

0 g1(x)dx,
∫ 1

0 g2(x)dx,
∫ 1

0 f(x)dx, and
∫ 1

0 g1(x)g2(x)dx are all positive inte-
gers, and

2.
∫ 1

0
g1(x)f(x)dx,

∫ 1

0
g2(x)f(x)dx, and

∫ 1

0
g1(x)g2(x)f(x)dx are all equal to 0.

Proof. For a polynomial h(x) = anx
n+an−1x

n−1+ · · ·+a0, we can compute its

integration as
∫ 1

0 h(x)dx = an

n+1 + an−1

n + · · ·+ a0. It is straightforward to verify
the lemma with the concrete expressions for the three functions g1(x), g2(x)
and f(x). �

Lemma 3. There is a polynomial-time algorithm h such that given a (3, 3)-
SAT instance s(x1, · · · , xd), it produces a

∏∑
S2 polynomial h(s(x1, · · · , xd)) =

q(y1, · · · , yd) to satisfy the following two conditions:

1. if s(x1, · · · , xd) is satisfiable, then
∫
[0,1]d

q(y1, · · · , yd)dy1 · · · dyd
is a positive

integer; and
2. if s(x1, · · · , xd) is not satisfiable, then

∫
[0,1]d

q(y1, · · · , yd)dy1 · · · dyd
is zero.

Proof. We give two examples to show how a logical formula is converted into a
multivariate polynomial in section 3. Let polynomials g1(y), g2(y), and f(y) be
defined according to those in Lemma 2.

For a (3, 3)-SAT problem s(x1, · · · , xd), let q(y1, · · · , yd) be defined a follows.

– For the first positive literal xi in s(x1, · · · , xd), replace it with g1(yi).
– For the second positive literal xi in s(x1, · · · , xd), replace it with g2(yi).
– For the negative literal xi in s(x1, · · · , xd), replace it with f(yi).

The formula s(x1, · · · , xd) has a sum of product form. It is satisfiable if and only
if one term does not contain both positive and negative literals for the same
variable. If a term contains both xi and xi, the corresponding term in the sum
of product for q(.) contains both gj(yi) and f(yi) for some j ∈ {1, 2}. This makes
it zero after integration by Lemma 2. Therefore, s(x1, · · · , xd) is satisfiable if and
only if

∫
[0,1]d q(y1, · · · , yd)dy1 · · · dyd

is not zero. Furthermore, it is satisfiable, the

integration is a positive integer by Lemma 2. See the two examples in section 3.
The computating time of h is clearly polynomial since we convert s to h(s) by
replacing each literal by a single variable function of degree at most 2. �

Theorem 1. Let a(n) be an arbitrary function from N to N+. Then there is
no polynomial-time a(n)-factor approximation for the integration of a

∏∑
S2

polynomial p(x1, · · · , xd) in the region [0, 1]d unless P = NP.

188 B. Fu

Proof. Assume that A(.) is a polynomial-time a(n)-factor approximation for the
integration

∫
[0,1]d

p(y1, · · · , yd)dy1 · · · dyd
with

∏∑
S2 polynomial p(y1, · · · , yd).

For a (3, 3)-SAT instance s(x1, · · · , xd), let p(y1, · · · , yd) = h(s(x1, · · · , xd)) ac-
cording to Lemma 3. By Lemma 3, a (3, 3)-SAT instance s(x1, · · · , xd) is satis-
fiable if and only if the integration J =

∫
[0,1]d p(y1, · · · , yd)dy1 · · · dyd

is not zero.

Assume that s(x1, · · · , xd) is not satisfiable, then we have A(J) ∈ [J/a(n), J ·
a(n)] = [0, 0] that implies A(J) = 0. Assume that s(x1, · · · , xd) is satisfiable,
then we have A(J) ∈ [J/a(n), J · a(n)] ⊆ (0,+∞) that implies A(J) > 0. Thus,
s(x1, · · · , xd) is satisfiable if and only if A(J) > 0.

Therefore, there is a polynomial-time algorithm for solving (3, 3)-SAT that is
NP-complete by Lemma 1. So, P = NP. �

As n is often used as the length of input, the time complexity is measured by a
function on n. We use a function a(1n) instead of function a(n) to control the
accuracy of approximation since n has only logn bits in binary expression, and
1n has n bits.

Lemma 4. Assume that a(1n) is a polynomial-time computable function from
{1}∗ to N+ with a(1n) > 0 for n. There is a polynomial-time algorithm such
that given a (3, 3)-SAT instance s(x1, · · · , xd), it generates a

∏∑
S2 polynomial

p(y1, · · · , yd) such that if s(x1, · · · , xd) is satisfiable, then∫
[0,1]d

p(y1, · · · , yd)dy1···yd
is a positive integer at least 3a(1n)2; and if s(x1, · · · , xd)

is not satisfiable,
∫
[0,1]d p(y1, · · · , yd)dy1···yd

is zero.

Proof. For a (3,3)-SAT problem s(x1, · · · , xd), let q(y1, · · · , yd) = h(s(x1, · · · , xd))
be constructed as Lemma 3.

Since a(1n) is polynomial-time computable, let p(y1, · · · , yd) =
3a(1n)2q(y1, · · · , yd) that can be computed in a polynomial-time . �

Theorem 2. Let a(1n) be a polynomial-time computable function from {1}∗
to N+. Then there is no polynomial-time (a(1n), a(1n))-approximation for the
integration problem

∫
[0,1]d

f(x1, · · · , xd)dx1 · · · dxd
for a

∏∑
S2 polynomial f(.)

unless P = NP.

Proof. Assume that there is a polynomial-time (a(1n), a(1n))-approximation
App(.) for the integration problem

∫
[0,1]d

f(x1, · · · , xd)dx1 · · · dxd
for a

∏∑
S2

polynomial f(.).
Let s(x1, · · · , xd) be an arbitrary (3, 3)-SAT instance. Let p(y1, · · · , yd) be the

polynomial according to Lemma 4.
Let J =

∫
[0,1]d p(y1, · · · , yd)dy1···yd

. If s(x1, · · · , xd) is not satisfiable, then J =

0. Otherwise, J ≥ 3a(1n)2.
Assume that s(x1, · · · , xd) is not satisfiable. Since App(J) is an (a(1n), a(1n))-

approximation, we have App(J) ≤ J · a(1n) + a(1n) = a(1n) by the definition in
section 2.

Assume that s(x1, · · · , xd) is satisfiable. Since App(J) is an (a(1n), a(1n))-

approximation, we have App(J) ≥ J
a(1n) − a(1n) ≥ 3a(1n)2

a(1n) − a(1n) = 2a(1n) by

the definition in section 2.

Integration and Differentiation 189

Therefore, s(x1, · · · , xd) is satisfiable if and only if App(J) ≥ 2a(1n). Thus, if
there is a polynomial-time (a(1n), a(1n))–approximation, then there is a
polynomial-time algorithm for solving (3, 3)-SAT. By Lemma 1, P = NP. �

5 Inapproximation of Differentiation

In this section, we study the hardness of high dimensional differentiation. We
derive the inapproximation results under both NP �= P.

Definition 2. A monomial is an expression xa1
1 · · ·xad

d and its degree is a1 +
· · · + ad. A monomial xa1

1 · · ·xad

d , in which x1, · · · , xd are different variables, is
a multilinear if a1 = a2 = · · · = ad = 1.

For example, (x1x3+x2
2)(x2x4+x2

3) is a
∏∑∏

2 polynomial. It has a multilinear
monomial x1x2x3x4 in its sum of products expansion.

We give Lemma 5 to convert an instance f for (3, 3)-SAT into a
∏∑∏

2

polynomial. The technology developed in [1,2] will be applied in the construction.

Lemma 5. Let a(1n) be a polynomial-time computable function from N to N+.
Then there is a polynomial-time algorithm A such that given a (3, 3)-SAT in-
stance F (y1, · · · , yd), the algorithm returns a

∏∑∏
2 polynomial G(x1, · · · , xd)

such that

1. If F is not satisfiable, then G does not have a multiliear monomial with an
nonzero coefficient in its sum of product expansion.

2. If F is satisfiable, then G has the multiliear monomial x1 · · ·xd with a positive
integer coefficient at least 3a(1n)2 in its sum of product expansion.

Theorem 3. Assume that r(n) is a function from N to N+. If there is a
polynomial-time algorithm A such that given a

∏∑∏
2 polynomial g(x1, · · · , xd),

it gives an r(n)-factor approximation to ∂g(n)(x1,···,xd)
∂x1···∂xd

at the origin point

(x1, · · · , xd) = (0, · · · , 0), then P = NP.

Theorem 4. Let a(1n) be a polynomial-time computable function from {1}∗ to
N+. Then there is no polynomial-time (a(1n), a(1n))-approximation for
∂g(n)(x1,···,xd)

∂x1···∂xd
with g(x1, · · · , xd) as a

∏∑∏
2 polynomial at the origin point

(x1, · · · , xd) = (0, · · · , 0), unless P = NP.

6 Some Tractable Integrations and Derivatives

In this section, we present some polynomial-time algorithms for integration
with some restrictions. We also show a case that the differentiation can fully
polynomial-time approximation scheme.

190 B. Fu

6.1 Bounded Width Product

Definition 3. A formula f1 · f2 · · · fm is c-wide if for each variables xi, there
is an index j such that xi only appears in fj, fj+1, · · · fj+c−1, where each fi is a
sum of monomials.

Theorem 5. There is an O(mn3c) time algorithm to compute the integration∫
[0,1]d

F (x1, · · · , xd) for a c-wide formula F (x1, · · · , xd) = f1 · · · fm, where n is

the total length of F .

Proof. Apply the divide and conquer method. Convert F into F1GF2 such that
G is a product of at most c sub-formulas fi · · · fj with j − i = c in the middle
region of F (we can let i =

⌈
m−c
2

⌉
+ 1, and j =

⌈
m−c
2

⌉
+ c).

Let S1 be the set of variables that are only in F1, S2 be the set of variables
that are only in F2, and S be the set of variables that appear in G. The set of
variables in F is partitioned into S1, S, and S2.

As F1 = f1 · · · fi−1, we convert F1 into F ∗
1 = f1 · · · fi−cf

∗
1 , where f∗

1 is
the product of the last c sub-formulas: f∗

1 = fi−c · · · fi−1. Similarly, as F2 =
fj+1 · · · fm, we convert F2 into F ∗

2 = f∗
2 fj+c+1 · · · fm, where f∗

2 is the product of
the first c sub-formulas: f∗

2 = fj+1 · · · fj+c. Convert G into the sum of products.
We have∫

[0,1]d
F (x1, · · · , xd)dx1 · · · dxd

=

∫
[0,1]|S|

G · (
∫
[0,1]|S1|

F1dS1) · (
∫
[0,1]|S2|

F2dS2)dS

=

∫
[0,1]|S|

G · (
∫
[0,1]|S1|

F ∗
1 dS1) · (

∫
[0,1]|S2|

F ∗
2 dS2)dS .

The integration
∫
[0,1]|S1| F1dS1 can be expressed as a polynomial of variables in

S. The integration
∫
[0,1]|S2| F2dS2 can be expressed as a polynomial of variables

in S.
We have the recursive equation for the computational time T (m) = 2T (m/2)+

O(n3c). This gives T (m) = O(mn3c). �

6.2 Tractable Differentiation

In this section, we give a polynomial-time randomized approximation scheme by
using the theory of testing monomials developed by Chen and Fu [2,1].

Definition 4. Let f(x1, · · · , xd) = p1(x1, · · · , xd) · · · pk(x1, · · · , xd) be a
∏∑

polynomial. If for each pi(x1, · · · , xd), each variable’s coefficient is either 0 or 1,
then f is called a

∏∑∗ polynomial.

We show that the differentiation for a
∏∑∗

polynomial has a polynomial-
time approximation scheme. Chen and Fu derived the following theorem by a
reduction from the number of perfect matchings in a bipartite.

Theorem 6 (Chen and Fu [1]). There is a polynomial-time randomized al-
gorithm to approximate the coefficient of a

∏∑∗
polynomial.

Integration and Differentiation 191

Theorem 7. Let ε be an arbitrary constant in (0, 1). Then there is a polynomial-
time randomized algorithm that given a

∏∑∗
polynomial f , it returns a (1+ ε)-

approximation for ∂f(x1,···,xd)
(d)

∂x1···∂xd
at the point (0, · · · , 0).

Proof. For a
∏∑∗

polynomial f(x1, · · · , xd), its
∂f(x1,···,xd)

(d)

∂x1···∂xd
at the point

(0, · · · , 0) is identical to the coefficient of the monomial x1 · · ·xd in the sum of
products in the expansion of f(x1, · · · , xd). The theorem follows from Theorem 6.

�

Acknowledgements. The author is grateful to Jack Snoeyink for his sugges-
tions that improves the presentation of this paper. The author would also like to
thank the referees at FAW-AAIM 2012 for their helpful comments. This research
is supported in part by the National Science Foundation Early Career Award
CCF-0845376.

References

1. Chen, Z., Fu, B.: Approximating Multilinear Monomial Coefficients and Maximum
Multilinear Monomials in Multivariate Polynomials. In: Wu, W., Daescu, O. (eds.)
COCOA 2010, Part I. LNCS, vol. 6508, pp. 309–323. Springer, Heidelberg (2010)

2. Chen, Z., Fu, B.: The Complexity of Testing Monomials in Multivariate Polynomi-
als. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011. LNCS, vol. 6831, pp.
1–15. Springer, Heidelberg (2011)

3. Chen, Z., Fu, B., Liu, Y., Schweller, R.: Algorithms for Testing Monomials in
Multivariate Polynomials. In: Wang, W., Zhu, X., Du, D.-Z. (eds.) COCOA 2011.
LNCS, vol. 6831, pp. 16–30. Springer, Heidelberg (2011)

4. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the
2nd Annual ACM Symposium on Theory of Computing, pp. 151–158 (1971)

5. Jerrum, M., Sinclaire, A., Vigoda, E.: A polynomial-time ap- priximation algorithm
for the permanent of a matrix with nonnegative entries. Journal of the ACM 51(4),
671–697 (2004)

6. Niederreiter, H.: Quasi-monte carlo methods and pseudo-random numbers. Bulletin
of the American Mathematical Society 84(6), 957–1041 (1978)

7. Niederreiter, H.: Random Number Generation and quasi-Monte Carlo Methods,
vol. 63. SIAM, Philadelphia (1992)

8. Shpilka, A., Volkovich, I.: Read-once polynomial identity testing. In: Proceedings
of the 40th Annual ACM Symposium on Theory of Computing, pp. 507–516 (2008)

9. Sloan, I.H., Wozniakowski, H.: An intractability result for multiple integration.
Math. Comput. 66(219), 1119–1124 (1997)

10. Tovey, C.A.: A simplified satisfiability problem. Discrete Applied Mathematics 8,
85–89 (1984)

11. Trench, W.F.: Advanced Calculus. Harper & Row, New York (1978)
12. Valiant, L.: Completeness classes in algebra. In: Proceedings of the Eleventh Annual

ACM Symposium on Theory of Computing, pp. 249–261 (1979)

Some Remarks on the Incompressibility
of Width-Parameterized SAT Instances

Bangsheng Tang

Institute for Interdisciplinary Information Sciences,
Tsinghua University, 100084, Beijing
bangsheng.tang@gmail.com

Abstract. Compressibility of a formula regards reducing the length of the input,
or some other parameter, while preserving the solution. Any 3-SAT instance
on N variables can be represented by O(N3) bits; [4] proved that the instance
length in general cannot be compressed to O(N3−ε) bits under the assumption
NP �⊆ coNP/poly, which implies that the polynomial hierarchy does not col-
lapse. This note initiates research on compressibility of SAT instances parame-
terized by width parameters, such as tree-width or path-width. Let SATtw(w(n))
be the satisfiability instances of length n that are given together with a tree-
decomposition of width O(w(n)), and similarly let SATpw(w(n)) be instances
with a path-decomposition of width O(w(n)). Applying simple techniques and
observations, we prove conditional incompressibility for both instance length and
width parameters: (i) under the exponential time hypothesis, given an instance φ
of SATtw(w(n)) it is impossible to find within polynomial time a φ′ that is
satisfiable if and only if φ is satisfiable and tree-width of φ′ is half of φ; and (ii)
assuming a scaled version of NP �⊆ coNP/poly, any 3-SATpw(w(n)) instance
of N variables cannot be compressed to O(N1−ε) bits.

1 Introduction

Satisfiability(SAT) is the problem of deciding whether a given conjunctive normal
form(CNF) formula is satisfiable. Denote by n the input length of the formula, and by
N the number of variables. SAT has been playing a central role in both theoretical and
applied aspects of computer science. It is the prototypical NP-complete problem in
complexity theory, and has found enormous applications in various practical areas, e.g.
artificial intelligence, machine learning, decision making, automated theorem proving.

Although it is not possible to solve SAT in its most general form within polynomial
time unless NP �= P, there is an apparent need for practically efficient algorithms.
Real world instances often come with structure. Parameterization is a general way of
quantifying the structure. The quest for efficient algorithms for fixed parameters (fixed-
parameter tractable) has received significant attention in the past few years. One way of
parameterizing SAT is using width parameters (tree-width, path-width, branch-width,
etc.), which are graph-theoretic parameters of a graph associated with the instance.
It is shown in a series of moves, e.g. [1, 13, 12, 5, 6, 2] that width-parameterized
SAT with parameter k can be solved time-efficiently in simultaneously 2O(k)nO(1)

time and 2O(k)nO(1) space, or space-efficiently in simultaneously 2O(k logn)nO(1) time

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 192–198, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Some Remarks on the Incompressibility of Width-Parameterized SAT Instances 193

and nO(1) space. Rather involved time-space trade-off algorithms achieving better time
and space are also given in [2].

We use the term compressibility of SAT instances to refer the fact that the length
of input instance or parameters can be reduced by an efficient algorithm, in a way that
the compressed instance preserves satisfiability. Compressing input instances has been
considered in [4] under the term sparsification. The following two-player communica-
tion game between an efficient algorithm and an oracle was considered: the first player
is a verifier who has an d-CNF formula, and she wants to decide its satisfiability within
deterministic polynomial time; the second player is an oracle with unbounded compu-
tational power but without knowing the formula beforehand. The goal of this commu-
nication game is to minimize the number of bits the verifier must communicate with
the oracle, such that the verifier can decide the satisfiability of the formula. Nd bits
will suffice, because this is the total number of possible clauses and the first player
can send an Nd bit string, where the ith bit indicates whether the ith clause is present.
In [4], it is proved that the trivial way of communication is essentially optimal in the
following sense: if the satisfiability of d-CNF formulas can be decided by communi-
cation within O(Nd−ε) bits for any ε > 0, then NP ⊆ coNP/poly. How about SAT
instance of bounded width parameters? At one extreme, when the width is O(log n),
the verifier can compute satisfiability by herself without any communication; at another
end, when the width is Ω(n), the formula is in its most general form, previous result can
be applied. The technically interesting case is for the intermediate range of this width
parameter.

In this note, we focus on the compressibility of SAT instances parameterized by
two types of width parameters, i.e. tree-width and path-width. In the setting of param-
eterized problems, we can discuss compression of input instances as above, or com-
pression of parameters. Note that algorithms for parameterized problems have running
time and space super-polynomial in the chosen parameter times a polynomial of the
input instance length. Efficient compression of parameters would indicate significant
improvement in the time and space resource requirements of the state-of-the-art al-
gorithms. We show that compressing the width-parameter by a constant factor within
polynomial time is not possible under the assumption that unless exponential time hy-
pothesis (ETH) fails. ETH states that solving SAT on N variables requires 2Ω(N)

time, which is stronger than P �= NP and has important implications in computational
complexity (see e.g. [7, 8, 10]). Let NL[r(n)] be the class of problems decidable by a
logspace machine equipped with a read-only non-deterministic, polynomially long wit-
ness tape, where the machine can have O(r(n)) passes (as the head reverses) over the
witness tape. We strengthen the assumption that NP �⊆ coNP to NL[ω(1)] �⊆ coNP.
In fact, we assume further that

NL[ω(1)] �⊆ coNP/poly

to obtain an incompressibility result of input length for width-parameterized SAT.
A complexity theoretic study of this assumption is interesting on its own right, and

it is left for future work. Here are some indications on its validity: (i) the belief that
NP �⊆ coNP is because usually people think that in fact the required certificate size
blows up to exponential (not merely super-polynomial) - i.e. some kind of exhaustive

194 B. Tang

enumeration is required - and (ii) given a non-uniform advice of polynomial size will
not help either (in particular, an easy extension of Karp-Lipton shows that if NP ⊆
coNP/poly the polynomial hierarchy collapses).

Results in this note are based on preliminary observations and simple techniques.
Nevertheless, this work initiates the study of compressibility or sparsification of width-
parameterized SAT instances, and makes conceptual contributions to better
understanding the complexity of width-parameterized SAT. Techniques that work for
general instances fail dramatically for width-parameterized instances. Intuition and
speculation on why previous techniques fail are also included in this note. We believe
that improving our results is a very interesting research direction for both theory and
practice.

2 Preliminary

Notation and terminology used in this note basically follow [2].

Definition 1. Let G = (V,E) be an undirected graph. A tree decomposition of G is a
tuple (T,X), where T = (W,F) is a tree, and X = {X1, · · · , X|W |} where Xi ⊆ V

s.t. (1) ∪|W |
i=1Xi = V , (2) ∀(i, j) ∈ E, ∃t ∈ W , s.t. i, j ∈ Xt, and (3) ∀i, the set

{t : i ∈ Xt} forms a subtree of T .
Each of Xi is called a bag, the width of (T,X) is defined as maxt∈W |Xt| − 1, and

the tree-width T W(G) of graph G is defined as the minimum width over all possible
tree decompositions.

When the tree decomposition T = (W,F) is restricted to a path, the decomposition is
called path decomposition, and the specific tree-width is called path-width PW(G).

Definition 2. The incidence graph Gφ of a SAT instance φ is a bipartite graph, where
in one side of the bipartization each node is associated with a distinct unsigned vari-
able, and in the other each node is associated with a clause. There is an edge between
a clause-node and a variable-node if and only if the variable appears in a literal of the
clause.

The tree-width of a formula φ is the tree-width of its incidence graph, T W(φ) =
T W(Gφ). When it is clear from the context we may abuse notation and write T W(φ)
to denote the width of a given decomposition of Gφ. Note that any tree-decomposition
(path-decomposition) of an instance graph will have tree-width (path-width) at most N ,
because one can always construct a path of the number of the clauses, and put each
clause into a different bag arbitrarily, and copy all the variables into all the bags. This
is a valid path-decomposition, and therefore a valid tree-decomposition of width N .
Without loss of generality we assume that in number of bags is upper bounded by a
polynomial of the number of the clauses and variables. This is assured by a property
of decompositions called nice. A nice one can be constructed from any decomposition
efficiently (see e.g. [9, 3]).

Denote by SATtw(w(n)) the problem of deciding satisfiability of a CNF formula,
which is given together with a tree-decomposition of width O(w(n)) as input, where n

Some Remarks on the Incompressibility of Width-Parameterized SAT Instances 195

is input length. SATpw(w(n)) is the path-decomposition version. 3-SATtw(w(n)) and
3-SATpw(w(n)) are the variants where the input formulas are 3-CNF formulas. The
following lemma shows that there is no essential difference between 3-SATpw(w(n))
and SATpw(w(n)).

Lemma 1 ([11]). SATpw(w(n)) is reducible to 3-SATpw(w(n)), under logspace
many-to-one reductions.

Although the width parameter remains asymptotically unchanged, the number of vari-
ables is increased in the reduction. For each clause of k literals, at most k new variables
need to be introduced. Recall that we have defined the complexity class NL[r(n)],
which is of interest because it characterizes width-parameterized SAT.

Lemma 2 ([11]). SATpw(w(n)) is complete for NL[w(n)
logn], under logspace many-to-

one reductions.

As in the literature, denote by NP/poly the class of languages accepted by a non-
deterministic polynomial time Turing machine with a polynomial length advice, and
coNP/poly its complement.

3 Incompressibility

3.1 Incompressibility of Width Parameters

We start with some preliminary observations stating that no non-trivial compression can
be done to reduce the width parameter. Suppose we have an SATtw instance φ together
with an optimal tree decomposition of width T W(φ) = ω(logn). A width-compression
algorithm A with compression ratio α: 0 < α < 1, is an algorithm satisfying the
following property (*):

A takes φ and the tree decomposition as input, runs in polynomial time and
then outputs another instance φ′ along with a new tree decomposition, such
that φ is satisfiable if and only if φ′ is satisfiable, and T W(φ′) = αT W(φ).

Theorem 1. No width-compression algorithm with α = n− 1
nc (c > 1 is a constant)

for SATtw instances with tree-width ω(logn), satisfying (*) can exist, under ETH.

Proof. By ETH, deciding satisfiability of the sub-formula by picking the clauses in-
cluded in a specific bag in the decomposition in general requires 2Ω(T W(φ)) = 2ω(logn)

= nω(1) time. This also lower bounds the running time for any algorithm deciding sat-
isfiability of φ under ETH.

Suppose for the sake of contradiction, such an algorithm A exists. If we repeatedly
run A for logα T W(φ) = O(log n/ log(n− 1

nc)) = O(nc) times upon φ, we will ob-
tain an instance φ, where T W(φ) is a constant and has the same satisfiability as φ.
Satisfiability of φ and the transformation from φ to φ can be computed in polynomial
time, which in turn implies that satisfiability of φ can be decided in polynomial time.
However, this is impossible due to the super-polynomial lower bound for running time
under ETH given in the previous paragraph. �

196 B. Tang

If we allow the tree-width of the instances be up to linear in n, namely general SAT
instances, the same incompressibility result holds, while P �= NP is sufficient for
contradiction. Namely,

Proposition 1. No width-compression algorithm with α = n− 1
nc (c > 1 is a constant)

for SATtw instances with tree-width Ω(n), satisfying (*) can exist, assumingP �= NP.

The compression ratio α = n− 1
nc is a slowly increasing function as n increases with

upper bound 1. When n is large enough, we can actually replace α with any constant,
and the following corollary holds.

Corollary 1. No width-compression algorithm with α = α0 (a constant, 0 < α0 < 1),
for SATtw instances with tree-width ω(logn), satisfying (*) exists, under ETH.

3.2 Incompressibility of Instance Length

Next we turn to the question of interactively “compressing” the instance length à la [4].
Let L be a language, denote OR(L) with k instances is the problem: given a k-tuple
(x1, x2, · · · , xk), deciding whether there is an xi, s.t. xi ∈ L. The following lemma is
crucial for the proof.

Lemma 3 ([4]). Let L be a language, with instance length n and t : Z+ → Z+ be
polynomially bounded s.t. the problem of OR(L) with t(n) instances can be decided
by sending O(t(n) log t(n)) bits, then L ∈ coNP/poly.

Note that for 3-CNF formulas, input length n is O(N3), therefore logn = Θ(logN).
Now we are ready to state the incompressibility result for 3-SATpw(w(n)) instances,
where w(n) = Ω(log n).

Theorem 2. If satisfiability of every 3-CNF formula on N variables, with a
path-decomposition of width O(w(n)), where n is the input length, can be decided
by the verifier through communicatingO(N1−ε) bits with the oracle, then NL[w(n)

logn] ⊆
coNP/poly.

Proof. Consider an OR(3-SATpw(w(n))) instance, with t(n) 3-SATpw(w(n)) in-
stances each with N variables can be represented by a 3-SATpw(w(n)) instance with
t(n)N variables, and all the instances use different variables. We choose t(n) to be
polynomially bounded.

Suppose the instances are φi, ∀i, and each has a corresponding path-decomposition
Pi, variables vi,j , clauses Ci,j . Merely joining all the path-decompositions sequentially
will impose an AND-relation. To impose an OR-relation, additional operations are re-
quired after joining. Let a be a group of variables of length O(log n) acting as a selector,
namely, for a fixed i, (a = i) denotes the clause with semantic meaning “a representing
the binary expansion of i”. Since t(n) is a polynomial in n, O(log n) bits are suffi-
cient. For each Pi, replace each clause Ci,j by a clause representing (a = i) → Ci,j ,
or equivalently (a = i) ∨ Ci,j . To preserve the connectivity requirement of a path-
decomposition, the variables of a need to be added to each bag of the joined path.

Some Remarks on the Incompressibility of Width-Parameterized SAT Instances 197

One last problem is that each newly created clause is of O(log n) variables. To obtain a
3-SATpw(w(n)) instance, we apply the reduction by Lemma 1, blowing up the number
of variables by a factor of O(log n).

In the end, a 3-SAT instance of O(t(n)N logn) variables with path-widthO(w(n))
is constructed. Now by hypothesis, when t(n) is a large enough polynomial this in-
stance can be decided by the verifier through communicating O((t(n)N logn)1−ε) =
O(t(n) log t(n)) bits with the oracle. By Lemma 3, this means 3-SATpw(w(n)) is in
coNP/poly. Combining this and the characterization in Lemma 2 concludes the proof.

�

The incompressibility result for width-parameterized SAT seems much weaker than
that for general SAT as in [4]. There is a crucial step called packing lemma, failed
to be applied in width-parameterized setting. The lemma describes a procedure which
combines OR of t(n) SAT instances (each of length n) into a semantically equivalent
SAT instance, without requiring large number of variables (only (t(n)n)

1
3) by allowing

the clauses corresponding to different original instances to share variables. However,
the same technique does not work in the width-parameterized setting since the same
procedure did not take width into consideration and actually will blow up the width of
resulting instance to n. Therefore, a straightforward way of combining was used in the
proof of Theorem 2 which in turn requires t(n)n variables. One direction of improving
the result will be finding a new packing technique for width-parameterized settings.

4 Conclusion

In this note, we proved two incompressibility results, one for width parameters, the
other for instance lengths. Our techniques are elementary, and future improvements
with new techniques tailored for width-parameterized SAT are left for future work.

Acknowledgments. This work was supported in part by the National Basic Research
Program of China Grant 2011CBA00300, 2011CBA00301, the National Natural Sci-
ence Foundation of China Grant 61033001, 61061130540, 61073174. The author would
like to thank Periklis Papakonstantinou for supervising this research.

References

[1] Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and Tseitin tautologies. In:
Foundations of Computer Science (FOCS), pp. 593–603. IEEE (2002)

[2] Allender, E., Chen, S., Lou, T., Papakonstantinou, P., Tang, B.: Width-parameterized sat:
Time-space tradeoffs (2012) (manuscript)

[3] Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science 209(1-2), 1–45 (1998)

[4] Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses. In: Symposium on Theory of Computing (STOC),
pp. 251–260. ACM (2010)

[5] Fischer, E., Makowsky, J.A., Ravve, E.V.: Counting truth assignments of formulas of
bounded tree-width or clique-width. Discrete Applied Mathematics 156(4), 511–529 (2008)

198 B. Tang

[6] Georgiou, K., Papakonstantinou, P.A.: Complexity and Algorithms for Well-Structured
k-SAT Instances. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. 4996, pp.
105–118. Springer, Heidelberg (2008)

[7] Impagliazzo, R., Paturi, R.: Complexity of k-sat. In: Proceedings of Fourteenth Annual
IEEE Conference on Computational Complexity, pp. 237–240. IEEE (1999)

[8] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complex-
ity? Journal of Computer and System Sciences (JCSS) 63(4), 512–530 (2001); (also FOCS
1998)

[9] Kloks, T.: Treewidth: computations and approximations, vol. 842. Springer (1994)
[10] Lokshtanov, D., Marx, D., Saurabh, S.: Known algorithms on graphs of bounded treewidth

are probably optimal. In: 22nd ACM/SIAM Symposium on Discrete Algorithms (SODA
2011), pp. 777–789 (2011)

[11] Papakonstantinou, P.A.: A note on width-parameterized sat: An exact machine-model char-
acterization. Information Processing Letters (IPL) 110(1), 8–12 (2009)

[12] Samer, M., Szeider, S.: A fixed-parameter algorithm for# sat with parameter incidence
treewidth. Arxiv preprint cs/0610174 (2006)

[13] Szeider, S.: On Fixed-Parameter Tractable Parameterizations of SAT. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)

Kernels for Packing and Covering Problems

(Extended Abstract)

Jianer Chen1,2, Henning Fernau3, Peter Shaw4,
Jianxin Wang1, and Zhibiao Yang1

1 School of Information Science and Engineering, Central South University,
Changsha 410083, P.R. China

{jianer,jxwang}@mail.csu.edu.cn, csu yzb@126.com
2 Department of Computer Science and Engineering, Texas A&M University,

College Station, Texas 77843-3112, USA
chen@cs.tamu.edu

3 FB IV—Abteilung Informatik, Universität Trier, D-54286 Trier, Germany
fernau@uni-trier.de

4 School of Engineering and Information Technology, Charles Darwin University,
Darwin, Northern Territory, Australia, 0909

peter.shaw@cdu.edu.au

Abstract. We show how the notion of combinatorial duality, related to
the well-known notion of duality from linear programming, may be used
for translating kernel results obtained for packing problems into kernel
results for covering problems. We exemplify this approach by having a
closer look at the problems of packing a graph with vertex-disjoint trees
with r edges. We also improve on the best known kernel size for packing
graphs with trees containing two edges, which has been well studied.

1 Introduction

There are several lines of motivation for our study:1

(1) Parameterized complexity has gained much interest over the last decade. An
essential tool for proving a problem to be fixed-parameter tractable is the no-
tion of kernelization, which also characterizes the lowest complexity class FPT .
Fellows [11], one of the pioneers of this area, sees the quest for smaller kernel
sizes as one of the “races” in that area. Recently, the first meta-results for ob-
taining small kernels appeared, see [4,15,17,18,21]. By way of contrast, at about
the same time, several lower bound techniques for kernel sizes were established:
[3,5,6,9,12,16,20,19]. Hence, it would be good to see more results of parameter-
ized problems having small problem kernels. Also in recent years, several rather
general scenarios for developing kernelization results have been obtained, see
[4,15,17,18,21]. Our paper adds to the latter list several packing and covering
problems, focussing on vertex-linear kernels for graph problems.

1 Precise definitions of all necessary concepts will be given at the end of this section,
to which we refer readers not familiar with parameterized complexity.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 199–211, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

200 J. Chen et al.

(2) More specifically, one of the many open questions in the area of kerneliza-
tion is the question whether or not r-hitting set has a kernel with less than
Θ(kr−1) vertices; this bound can be attained due to [2]. Similar questions can
be raised for the corresponding packing problems [1]. Since hitting set problems
can be used to model various problems in a natural way, it is natural to look
into such specialized problems. A natural restriction are vertex-deletion prob-
lems in graphs as studied in [21]. We will focus here on the problem(s) formally
described below.

covering-H’s

Given: a graph G = (V,E), k ∈ N

Parameter: k
Question: Is there a set C with ≤
k vertices in G such that G[V \ C]
contains no subgraph isomorphic
to H?

H-packing

Given: a graph G = (V,E),
k ∈ N

Parameter: k
Question: Is there a set P
of (at least) k vertex-disjoint
copies of H in G?

Of particular interest to us will be H = Tr, where a Tr is any tree with r
edges. Notice that, for r = 2, T2 is simply a path of length two, also known as
P2. The maximum T1-packing problem is nothing else than the polynomial-time
solvable maximum matching problem, and covering-T1’s is just the vertex

cover problem, which has been always a kind of testbed problem for the area
of parameterized algorithms. Since our covering resp. packing problems can be
modeled as r-hitting set resp. r-set packing, it is clear that they are in
FPT , see [1,2].

(3) A more general motivation for studying this problem comes from the area
of (integer) linear programming ((I)LP). For example, the natural minimization
version of covering-T2’s can be expressed as an ILP as follows: Minimize

∑
xi

subject to xi+xj+x� ≥ 1 for any path vivjv� in the graph. As usual, the variables
xi model the vertices vi, and we are only interested in those solutions that satisfy
the integrality condition xi ∈ {0, 1}. Relaxation and dualization produce the
following problem: Maximize

∑
yj subject to

∑
pj�v yj ≤ 1 for all vertices v; so

the variables yj correspond to paths pj in the graph, and this interpretation is in
particular sound if we re-introduce integrality conditions yj ∈ {0, 1}. What kind
of graph problem does this formulation express? It is not hard to see that a well-
studied problem appears this way: T2-packing. In the sense just described, we
will call T2-packing the combinatorial dual of covering-T2’s. Clearly, the size
of an optimum solution to an instance I of covering-T2’s is a lower bound to
an optimum solution to I, viewed as an instance of T2-packing, and this is true
in general due to the well-known weak duality theorem of linear programming.
Can we obtain good kernelizations for both types of problems? Accordingly, the
combinatorial dual of a maximization problem is understood. The combinatorial
dual of the combinatorial dual is the original problem.

Main Contributions.: Having the idea of combinatorial dual in mind, we ex-
hibit how to transfer kernelization results from the packing to the covering sce-
nario. We also develop a general notion of crown reductions and apply these

Kernels for Packing and Covering Problems 201

to derive kernels for the Tr-packing and covering-Tr’s problems that have
only linearly many vertices (for each fixed r). These kernels are unlikely to have
sub-quadratically many edges due to [9]. We then show with the example of T2-
packings how the general kernel bounds can be further lowered for more special
cases. Namely, we get a 6k vertex kernel for T2-packing that improves on earlier
findings [24,25].

A Primer to Parameterized Complexity: Parameterized complexity offers a
two-dimensional view on the complexity of a computational problem whose input
contains some explicit parameter, as in our case, for instance, an upper bound
on the number of vertices in a solution to a covering problem. A parameterized
(decision) problem (Π,κ) is said to be fixed-parameter tractable [10,14,22], or
belongs to FPT , if there is a deterministic algorithm that, given an instance I of
the problem, where k = κ(I) is the parameter of the instance, correctly answers
YES or NO in time O(f(k) · p(σ(I))), where f is some arbitrary (computable)
function, σ measures the size of an instance, and p is some polynomial.

Given a classical, non-parameterized problem, it can be parameterized in vari-
ous ways, as indicated by the parameterization function κ. For decision problems
derived from optimization problems, the standard parameterization refers to a
bound k on the entity to be optimized, i.e., to an upper bound in case of min-
imization problems and to a lower bound in case of maximization problems. In
this paper, this is the case with covering-Tr’s and with Tr-packing, respec-
tively. Hence, we will in the following denote instances as pairs (I, k) to make
the concrete parameter values explicit.

A polynomial-time computable reduction that transforms an instance (I, k)

to an instance (Î , k̂) of the same problem is called a kernelization if, for some

(computable) function g, max{σ(Î), k̂} ≤ g(k). Î is also referred to as a (problem)
kernel of I. It is well-known that a parameterized problem is in FPT if and
only if it admits a kernel(ization). In the case of graph problems, it has become
customary to be more specific on the size measure σ. So, we speak about a 6k
vertex kernel. Kernelizations are often given as a collection of simple reduction
rules that are to be exhaustively applied.

2 Re-cycling Kernel Results

In the context of parameterized complexity, the main reason why we advocate the
notion of combinatorial dual is that we claim that often kernel results obtained
for maximization problems (for instance packings with standard parameteriza-
tion, bounding the entity to be maximized) can be read as kernel results for the
combinatorial dual, i.e., a minimization problem (i.e., covering problems under
standard parameterization).

This path seems to be promising, since kernelization results seem to be easier
to obtain for maximization problems, due to the fact that extremal combinatorial
arguments are relatively easy at hand, cf. [23].

Let Πmax be a maximization problem where the task is to find, under certain
restrictions, a set P of objects with maximum cardinality |P |. We assume that

202 J. Chen et al.

Table 1. Standard algorithms for maximization problems and their duals

Input: an instance (I, k) of (Π,κmax)
1. efficiently compute a maximal

solution P of instance I ;
2. if |P | ≥ k then return YES;
3. apply reduction rules in R;

possibly restart.

primal-kernelization(Π,κmax)

Input: an instance (Ic, kc) of (Πc, κmin)
1. efficiently compute a maximal

solution P of the dual instance I ;
2. if |P | > kc then return NO;
3. apply the dual reduction rules in R′;

possibly restart.

dual-kernelization(Πc, κmin)

Πmax can be formulated as an ILP whose relaxation can be denoted, in matrix
notation, as (†): “maximize cTx subject to Ax ≤ b and x ≥ 0”. The dual
linear program becomes (‡): “Minimize bTy subject to ATy ≥ c and y ≥ 0”.
Πmin denotes a minimization problem that can be formulated as an ILP whose
relaxation can be written as (‡). Let (Π,κmax) be the standard parameterization
ofΠmax and (Πc, κmin) be the standard parameterization ofΠmin. (Πc, κmin) will
be called a combinatorial dual of (Π,κmax). Having fixed Πmin, there is a unique
mapping from an instance (I, k) of (Π,κmax) to the combinatorial dual instance
(Ic, kc) of (Π,κmin) and vice versa.

Kernelization algorithms for (Π,κmax) often take some standard form as
sketched in the left column in Table 1 and described in more detail below. As
it is usual with optimization problems, a feasible solution refers to any valid
packing (in our case). Maximality in its simplest greedy form means that the
current packing cannot be extended by adding further objects to it. However,
one can develop local optimization procedures that lead to less trivial notions of
maximality, as we will see in this paper.

The effectiveness of the algorithm primal-kernelization(Π,κmax) depends
on the structures of the problem Πmax. In many cases, a kernel of size bounded
by g(k) ≥ k is obtained for the instance (I, k) of (Π,κmax) based on a Boundary
Lemma with the following standard structure.

Boundary Lemma. Let (I, k) be an instance of (Π,κmax)
and let P be a maximal solution. If |P | < k and σ(I) > g(k),
then some reduction rules in R apply to (I, k).

In particular, if in step 3 of algorithm primal-kernelization(Π,κmax), no
reduction rules in R apply, then the Boundary Lemma derives immediately that
σ(I) ≤ g(k), giving a kernel of size bounded by g(k).

Now we study how the kernelization algorithm for (Π,κmax) is used for kernel-
ization of its combinatorial dual (Πc, κmin). Let (I, k) be an instance of (Π,κmax)
and let (Ic, kc) be the combinatorial dual of (I, k), an instance of (Πc, κmin). Note
that the size functions σ(I) and σc(Ic) may be different. We call the combina-
torial dual (Πc, κmin) size-h bounded, where h is a non-decreasing function, if
σc(Ic) ≤ h(σ(I)) for all instances I of Πmax. Moreover, we say that the set R
of reduction rules for (Π,κmax) transfers if there is a corresponding set R′ of
dual reduction rules for (Πc, κmin) such that if some reduction rules in R are

Kernels for Packing and Covering Problems 203

applicable to an instance (I, k) of (Π,κmax), then some reduction rules in R′ are
applicable to (Ic, kc).

Based on the kernelization algorithm primal-kernelization for the problem
(Π,κmax), we can propose a kernelization algorithm for its combinatorial dual
(Πc, κmin), as given in the right column in Table 1.

Theorem 1. Suppose that (Π,κmax) satisfies the Boundary Lemma, that the set
R of reduction rules in the algorithm primal-kernelization transfers, and that
the combinatorial dual (Πc, κmin) is size-h bounded. Then dual-kernelization

is a kernelization algorithm for (Πc, κmin) that produces a kernel of size bounded
by h(g(kc + 1)).

Proof. The correctness of step 2 of dual-kernelization is guaranteed by the
LP dualization theorem. Now suppose that the algorithm dual-kernelization

stops with an instance (I ′c, k
′
c) of (Πc, κmin) and a packing P of the dual (I ′, k′)

of (I ′c, k
′
c); (I

′, k′) is an instance in (Π,κmax)) such that |P | ≤ k′c < k′c + 1
and that no reduction rules in R′ are applicable to (I ′c, k

′
c). Since the set R

of reduction rules transfers, no reduction rules in R are applicable to (I ′, k′).
Because (Π,κmax) satisfies the Boundary Lemma, we get σ(I ′) ≤ g(k′c + 1).
This directly implies σc(I

′
c) ≤ h(σ(I ′)) ≤ h(g(k′c + 1)), as (Πc, κmin) is size-h

bounded. �
We give some applications of Theorem 1.

An r-set is a set of exactly r elements. Consider the r-set packing problem
(given a collection C of r-sets and a parameter k, decide if there are k disjoint
r-sets in C), and the r-hitting set problem (given a collection C of r-sets and a
parameter kc, decide if there is a kc-set that intersects all r-sets in C). It is easy
to verify that r-hitting set is a combinatorial dual of r-set packing. Define
for both problems the size of an instance to be the cardinality of the union of
all r-sets in the input collection C. Thus, r-hitting set is a size-h bounded
dual of r-set packing, with h being the identity. Abu-Khzam [1] presented a
greedy kernelization algorithm for r-set packing using a set R of reduction
rules that transfers, and proved that r-set packing with the reduction rules
in R satisfies the Boundary Lemma with g(k) = O(kr−1). By Theorem 1, this
result immediately implies a kernel of size O((kc + 1)r−1) = O(kr−1

c) for the
r-hitting set problem, which is the main result of [2].

Theorem 1 also allows us to develop new kernelization results. For exam-
ple, Moser [21] presented a greedy kernelization algorithm for the problem H-

packing that satisfies the conditions of Theorem 1 and produces a kernel with
at most O(k|V (H)|−1) many vertices. For a special case where H is a star with r
edges, Prieto and Sloper [24] presented a greedy kernelization algorithm for the
problem that produces a kernel of size O(k2) where the algorithm also satisfies
the conditions of Theorem 1. Using Theorem 1 we can directly translate these
results to kernelization results for their combinatorial duals as follows:

Theorem 2. Fix an undirected graph H with h vertices. covering-H’s admits
a kernel with O(kh−1

c) many vertices. If H is a star with r edges, then covering-

H admits a quadratic vertex kernel. �

204 J. Chen et al.

So far, we have neglected three questions that are crucial for the success of
our approach: (1) How to obtain reduction rules? (2) How to prove boundary
lemmas? (3) How to define useful notions of maximality of packings in order to
improve on kernel bounds. These questions will be examplarily answered in the
following sections.

3 Crown Rules for Packing and for Covering

Set covering/packing problems can be modeled by domination and its dual.
The natural combinatorial dual of r-Red/Blue domination is r-Red/Blue

distance-3 packing, as defined below. Slightly abusing notation, we will call
a set D ⊆ R a covering for B′ ⊆ B iff N(D) ⊇ B′, so for each x ∈ B′, there is a
y ∈ D such that {x, y} ∈ E. If |D| ≤ kc, D is called a kc-covering. A set P ⊆ B
is a packing in G if each v ∈ R is neighbor of at most one x ∈ P . If |P | ≥ k,
then P is called a k-packing.

r-Red/Blue domination

Given: a bipartite graph G = (R�
B,E), ∀x ∈ B : deg(x) = r, kc ∈ N

Parameter: kc
Question: Is there a set D ⊆ R,
|D| ≤ kc, with N(D) = B?

r-Red/Blue distance-3 packing

Given: a bipartite graph G = (R�
B,E), ∀x ∈ B : deg(x) = r, k ∈ N

Parameter: k
Question: Is there a set P ⊆ B,
|P | ≥ k, s.t.∀v ∈ R: |N(v)∩P | ≤ 1?

Definition 1. A generic crown decomposition (H,C,X) of a bipartite graph
G = (R % B,E), with ∀x ∈ B : deg(x) = r, is given by a head H ⊆ R and a
crown C ⊆ R %B satisfying

1. H is a cutset in G, one collection of components being C.
2. H is a covering for C ∩B.
3. There is an injective mapping (matching) M : H → C ∩ B such that (a)

∀x ∈ H : {x,M(x)} ∈ E, and (b) M(H) is a packing in G.
4. X := (R %B) \ (H ∪C) are the remaining vertices.

Notice that items 1 and 2 imply that N(C) ⊆ H ∪C. In particular, N(C ∩R) ⊆
C ∩B. Moreover, item 3 implies |M(H)| = |H |.

Theorem 3. A bipartite graph G = (R %B,E) with a generic crown decompo-
sition (H,C,X) has a k-covering (or k-packing, resp.) if and only if G\ (H ∪C)
has a (k − |H |)-covering (or (k − |H |)-packing, resp.).

Proof. Let us first consider the covering part. By the definition of a generic crown
decomposition, the “only-if”-part is clear. Now assume K is a k-covering of B,
i.e., N(K) = B. In particular, K covers M(H). Since M(H) forms a packing,
at least |H | = |M(H)| vertices from K are needed to cover M(H). Let these
K-vertices be collected in K ′ ⊆ K. Since H forms a separator, (K \ K ′) ∪ H
is also a covering of G, with |K| ≥ |(K \ K ′) ∪ H |. Hence, G \ (H ∪ C) has a
(k − |H |)-covering.

For reasons of space, we omit the packing part proof. �

Kernels for Packing and Covering Problems 205

So, the generic crown rule would delete a crown (whenever identified) and change
the parameters (of the covering or packing variant) accordingly. A special case is
when R contains isolates that can be put into a crown with an empty head. How
can we use this generic crown rule in other concrete situations? Let us explain
this first with the most classical notion of a crown and then continue with other
situations. As can be seen, the generic crown rule serves as a modelling tool
rather than a concrete reduction rule. However, concrete and problem-dependent
reduction rules can be derived from this generic rule. Then, it should be also
possible to derive methods how to find crowns in polynomial time.

Example 1. The classical crown rule is meant to work for vertex cover. Here, a
VC-crown decomposition of a graph G = (V,E) consists of a partition (H,C,X)
of the vertex set of G, such that (1) H is a cutset, (2) C is an independent
set, (3) there is an injective mapping (matching) M : H → C such that, for all
x ∈ H , {x,M(x)} ∈ E.

This decomposition (and the derived reduction rule) is a special case of the
generic crown decomposition, if we associate to V the bipartite model graph
BG = (R %B,E′) with R = V , B = E, and (x, e) ∈ E′ iff x is endpoint of e in
G. By construction, for all x ∈ B, deg(x) = 2. Moreover, H ⊆ V is a cutset in
G if and only if H is a cutset in BG.

4 Small Kernels for Tr-packing & covering Tr’s

We propose the following definition of a Tr-crown (decomposition), generalizing
earlier works of Prieto and Sloper [23,24].

Definition 2. A Tr-crown decomposition (H,C,X) in a graph G = (V,E) is a
partitioning of the vertices of the graph into three sets H, C, and X that have
the following properties: (1) H (the head) is a separator in G such that there are
no edges in G between vertices belonging to C and vertices belonging to X . (2)
C (the crown) induces a collection of trees with ≤ r − 1 edges in G. (3) There
are r injective mappings π1, . . . , πr from H to C, called witness functions, such
that ∀1 ≤ i < j ≤ r : πi(H) ∩ πj(H) = ∅, and for each v ∈ H , the vertex set
p(v) = {v} ∪ {πi(v) | 1 ≤ i ≤ r} forms a Tr-tree in G.

Crowns are used in a kernelization strategies that simply eliminates crowns. The
correctness of this strategy is implied by the following result:

Theorem 4. Consider a graph G = (V,E) with a Tr-crown decomposition
(H,C,X). G has a Tr-covering with k vertices (or a Tr-packing with k trees,
resp.) if and only if G \ (H ∪ C) has a Tr-covering with (k − |H |) vertices (or
Tr-packing with (k − |H |) trees, resp.).

The correctness of this theorem immediately follows from observing the connec-
tion to the natural bipartite graph model BG = (B % R,E′) for an instance to
this problem: R = V , and B consists of all trees with d edges in G, where E′

encodes whether a vertex participates in a tree.

206 J. Chen et al.

When applying a crown elimination strategy, we should be able to find crowns
fast. The according result is inspired by results of Prieto and Sloper [23,24], based
on the following new notion:

Definition 3. We call a Tr-crown decomposition (H,C,X) asteroidal if for the
witness functions πi, {v, πi(v)} is an edge for each v ∈ H and each 1 ≤ i ≤ r.

Let G = (V,E) be a graph. Then, I ⊆ 2V is called independent if there are
no edges between any two sets I, J ∈ I. The out-neighborhood of I is N(I) =⋃

I∈I
⋃

v∈I(N(v) \ I).
Lemma 1. Let G = (V,E) be a graph. Let I ⊆ 2V be independent and any
I ∈ I obeys |I| ≤ r, where |I| ≥ r · |N(I)|. Then, G possesses an asteroidal
Tr-crown decomposition that can be found in linear time.

Proof. Construct an auxiliary bipartite graph B = (VB , EB) as follows: VB =
I ∪ ({1, . . . , r} × N(I); EB = {{U, (i, v)} | U ∈ I, v ∈ N(I), 1 ≤ i ≤ r} ∪
{{(i, v), (j, w)} | v, w ∈ N(I), {v, w} ∈ E, 1 ≤ i, j ≤ r}. So, the vertex set I
has at least as many elements as its out-neighborhood in G. Hence, B has a
VC-crown decomposition (HB, CB , XB) that can be found in linear time, see
Ex. 1 and [7]. To this decomposition, we can associate an injective mapping
(matching) π : HB → CB . Moreover, CB ⊆ I and no proper subset of HB is a
cutset for CB (+) (by the algorithm described in [7]). If (i, v) ∈ HB for some i,
then {(j, v) | 1 ≤ j ≤ r} ⊆ HB ; otherwise, HB would not be a cutset for CB by
the definition of EB and due to (+). Associate to (HB, CB , XB) the structure
(H,C,X) of subsets of V , with H = {v | ∃i[(i, v) ∈ HB]}, C =

⋃
I∈CB

I,
X = V \ (H ∪ C). Then, (H,C,X) is an asteroidal Tr-crown decomposition of
G. Namely, define πi(v) = u for π((i, v)) = I and some (arbitrary) u ∈ I that
testifies that v is in the neighborhood of I, where I ∈ I. �

Lemma 1 justifies the correctness and applicability of the asteroidal Tr-crown
rule whose exact definition (that should differentiate between the packing and
the covering scenarios) is left to the reader. This definition enables us to establish:

Theorem 5. Let r ≥ 2. Tr-packing (covering Tr’s, resp.) admits a kernel
with at most fr ·k (fr · (k+1), resp.) many vertices, with fr = ((r2+1) · (r+1)),
that can be found in linear time.

Proof. Run the algorithm described in Sec. 2, the only reduction rule being the
asteroidal Tr-crown rule. In a reduced instance ((G,E), k), a maximal Tr-packing
P has at most k elements, each containing at most (r + 1) many vertices (let
U ⊆ V collect these), and there cannot be more than r · |U | components in G−U
(due to the reducedness property), where each component has at most r vertices
(by the maximality of P). �

Notice that for r = 2, we face the problems covering-P2’s and P2-packing

(trees on two edges are just paths on two edges); for the latter problem, our kernel
bound matches the 15k-bound obtained in [23,24] by actually using two reduction
rules. This bound was further improved in [25] to a bound of 7k vertices. We
will further improve on this bound in the following section.

Kernels for Packing and Covering Problems 207

5 Improving on Kernel Size: A Case Study

The 7k-kernel result optimizes packings that are found in a greedy fashion (step
1. of primal kernelization), by either increasing the packing or reducing
the number of K1-components (isolated vertices). These rules are visualized in
Fig. 1 and 2. We have used solid circles and thick lines for vertices and edges,
respectively, in the P2-packing P , and hollow circles and thin lines for vertices
and edges not in P . In particular, two hollow circles linked by a thin line represent
a K2-component (an isolated edge). Let us call a packing where none of these
rules applies (1, 2)-optimal, and call a vertex from the packing that has neighbors
outside the packing a border point. The following assertion was shown in [25].

Proposition 1. ([25]) In a (1, 2)-optimal P2-packing P, each path from P con-
tains at most two border points. If p ∈ P contains two border points, one of them
is the middle point of the path p.

A direct plug-in of this proposition into the proof of Theorem 5 yields a 10k
kernel, but a more fine-grained analysis gives the mentioned result. A further
challenge is to improve the kernel size 7k. Due to its special shape, we will call
an asteroidal T2-crown decomposition V-crown decomposition in the following.

On top of Rules 1 and 2 described in Fig. 1 and 2, resp., we propose three
further rules to optimize a maximal P2-packing P :

Rule 3. If a P2-path in P has one of its end adjacent to a K2 and another of
its vertices adjacent to a K1, then increase the size of the P2-packing by 1, as
illustrated in Figure 3.

Rule 4. If a P2-path in P has its middle vertex adjacent to a K2 and one of its
ends adjacent to at least two K1’s, then increase the size of the P2-packing by
1, as illustrated in the left figure in Figure 4.

Rule 5. If a P2-path p in P has its middle vertex w adjacent to more than
one K2, and one of its ends adjacent to a K1, then replace p by a new P2-path
that consists of w and a K2 adjacent to w, as illustrated in the right figure in
Figure 4.

Fig. 1. Rule 1: Two K1’s are adjacent to two vertices in a P2-path

Fig. 2. Rule 2: Two K2’s are adjacent to two vertices in a P2-path

208 J. Chen et al.

Fig. 3. Rule 3: A K2 is adjacent to an end of a P2-path

Rule 4 Rule 5

Fig. 4. Rule 4-5: K2’s are adjacent to the middle vertex of a P2-path

Our proposed kernelization algorithm P2PK first computes a non-extendible
P2-packing and then optimizes this packing according to the given five rules.
One important technical detail is that Rule 5 is applied on P only when all
other rules are not applicable on P . If no packing with more than k P2’s was
found in this way, the rules provide enough structural information to claim a
sharper kernel bound (boundary lemma).

Lemma 2. Let P be an optimized P2-packing of size k0 obtained from our algo-
rithm P2PK(G, k). If G contains at least 6k0 vertices, then there is a P2-crown
decomposition of G that can be constructed in linear time.

Proof. Since P is a maximal P2-packing, the complement G − P induces a col-
lection I1 of K1’s and a collection I2 of K2’s. We partition the P2-paths in P
into two sets P1 and P2, the K1’s in I1 into two sets I ′1 and I ′′1 , and the K2’s
in I2 into two sets I ′2 and I ′′2 , by the following procedure. 1. P1 = ∅; I ′1 = ∅;
I ′2 = ∅;
2. P2 = P ; I ′′1 = I1; I ′′2 = I2;
3. repeat

If a P2-path p in P2 has its vertices adjacent to at most one K1

in I ′′1 and at most one K2 in I ′′2 ,
then move p from P2 to P1,

move the K1 adjacent to p from I ′′1 to I ′1,
and move the K2 adjacent to p from I ′′2 to I ′2.

until no change
Because none of the Rules 1-5 is applicable on the P2-packing P , the partitions

P = P1∪P2, I1 = I ′1∪I ′′1 , and I2 = I ′2∪I ′′2 have a number of structural properties.
Suppose that P1 = {p1, . . . , pd} and P2 = {pd+1, . . . , pk0}.
Property A. The total number of vertices in I ′1 ∪ I ′2 is bounded by 3d.
Property B. No vertex in I ′′1 ∪ I ′′2 is adjacent to any vertex in P1, or to any
vertex in I ′1 ∪ I ′2.
Property C. No two K1’s in I ′′1 can be adjacent to two different vertices in a
P2-path in P2.

Kernels for Packing and Covering Problems 209

Property D. No two K2’s in I ′′2 can be adjacent to two different vertices in a
P2-path in P2.
Property E. No K2 in I ′′2 can be adjacent to more than one vertex in a P2-path
in P2.
Property F. No K1 in I ′′1 can be adjacent to more than one vertex in a P2-path
in P2.

Because of Property A, the collection P2 is not empty (assuming that the
graph G is connected), d < h0, and I ′′1 ∪ I ′′2 is not empty. We claim:
Property G. Each P2-path in P2 has at most one vertex adjacent to vertices
in I ′′1 ∪ I ′′2 .

We omit the proof of the claims due to space restrictions.
Let V (I ′′2) be the vertex set that induces the K2’s in the collection I ′′2 .
If |I ′′2 | ≥ k0 − d, then |V (I ′′2)| ≥ 2(k0 − d). By Property B, the vertices

in I ′′2 can be adjacent to only vertices in P2, and by Property G, there are
at most k0 − d vertices in P2 that are adjacent to vertices in I ′′2 . This gives
|N(V (I ′′2))| ≤ k0−d, thus, |V (I ′′2)| ≥ 2|N(V (I ′′2))|. By Property E and Lemma 1,
a P2-crown decomposition in G can be constructed in linear time given V (I ′′2).

Now suppose |I ′′2 | = h2 < k0 − d. Since the graph G has at least 6k0 vertices,
and by Property A, the total number of vertices in P2 ∪ I ′′1 ∪ I ′′2 is more than
6k0 − 6d. Suppose that |I ′′1 | = h1, and note that |V (I ′′2)| = 2h2 and the total
number of vertices in P2 is 3(k0−d). Thus we have h1+2h2+3(k0−d) > 6k0−6d.
This gives immediately h1 + h2 > 2(k0 − d). Let I ′′ be the set of vertices in I ′′1
and I ′′2 , then I ′′ induces the collection I ′′1 of K1’s and the collection I ′′2 of K2’s.
By Properties B and G, the vertices in I ′′ are only adjacent to at most k0 − d
vertices in P2, that is, |I ′′1 | + |I ′′2 | > 2|N(I ′′) \ I ′′|. By Lemma 1, a V-crown
decomposition in the graph G can be constructed in linear time given I ′′. �
We can now formulate the main result of this section.

Theorem 6. P2-packing has a kernel with ≤ 6k−6 many vertices.

This yields an improved parameterized algorithm, using [13].

Theorem 7. P2-packing can be solved in time O∗(2.3713k).

Making use of the concept of combinatorial dual, Theorem 1 implies:

Corollary 1. covering-P2’s has a kernel with ≤ 6k many vertices.

6 Prospects

We have initiated the study of combinatorial duals in parameterized complexity.
We showed that kernel results (in particular, for maximization problems) can
be transferred to their combinatorial duals, an observation that is quite rare in
the field. We have been recently able to transfer these idea in a different field,
namely that of moderately exponential-time algorithms.2

Our results also add to the list of problems where the parameterized dual has
a linear vertex kernel, so that lower bound arguments apply [6].

2 Slides of H. Fernau’s talk at APEX 2012 are available at the workshop website.

210 J. Chen et al.

References

1. Abu-Khzam, F.N.: An improved kernelization algorithm for r-Set Packing. IPL 110,
621–624 (2010)

2. Abu-Khzam, F.N.: A kernelization algorithm for d-Hitting Set. JCSS 76(7), 524–
531 (2010)

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. JCSS 75, 423–434 (2009)

4. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S.,
Thilikos, D.M.: (Meta) kernelization. In: FOCS, pp. 629–638. IEEE Computer
Society (2009)

5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cycles and
Disjoint Paths. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp.
635–646. Springer, Heidelberg (2009)

6. Chen, J., Fernau, H., Kanj, Y.A., Xia, G.: Parametric duality and kernelization:
lower bounds and upper bounds on kernel size. SIAM J. Comput. 37, 1077–1108
(2007)

7. Chor, B., Fellows, M., Juedes, D.W.: Linear Kernels in Linear Time, or How to
Save k Colors in O(n2) Steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.)
WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

8. Dehne, F., Fellows, M., Rosamond, F.A., Shaw, P.: Greedy Localization, Iterative
Compression, and Modeled Crown Reductions: New FPT Techniques, an Improved
Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover. In:
Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp.
271–280. Springer, Heidelberg (2004)

9. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: STOC, pp. 251–260. ACM (2010)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
11. Fellows, M.R.: Blow-Ups, Win/Win’s, and Crown Rules: Some New Directions in

FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer,
Heidelberg (2003)

12. Fernau, H., Fomin, F.V., Philip, G., Saurabh, S.: The Curse of Connectivity:
t-Total Vertex (Edge) Cover. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010.
LNCS, vol. 6196, pp. 34–43. Springer, Heidelberg (2010)

13. Fernau, H., Raible, D.: A parameterized perspective on packing paths of length
two. J. Comb. Optim. 18, 319–341 (2009)

14. Flum, J., Grohe, M.: Parameterized Complexity Theory. Text in Theoretical Com-
puter Science. Springer (2006)

15. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: SODA, pp. 503–510. SIAM (2010)

16. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. In: STOC, pp. 133–142. ACM (2008)

17. Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar
Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

18. Kratsch, S.: Polynomial kernelizations for MIN F+Π1 and MAX NP. In: STACS.
Leibniz International Proceedings in Informatics (LIPIcs), vol. 3, pp. 601–612.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2009)

19. Kratsch, S., Marx, D., Wahlström, M.: Parameterized Complexity and Kerneliz-
ability of Max Ones and Exact Ones Problems. In: Hliněný, P., Kučera, A. (eds.)
MFCS 2010. LNCS, vol. 6281, pp. 489–500. Springer, Heidelberg (2010)

Kernels for Packing and Covering Problems 211

20. Kratsch, S., Wahlström, M.: Two Edge Modification Problems without Polynomial
Kernels. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 264–
275. Springer, Heidelberg (2009)

21. Moser, H.: A Problem Kernelization for Graph Packing. In: Nielsen, M., Kučera,
A., Miltersen, P.B., Palamidessi, C., Tůma, P., Valencia, F. (eds.) SOFSEM 2009.
LNCS, vol. 5404, pp. 401–412. Springer, Heidelberg (2009)

22. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press (2006)

23. Prieto, E.: Systematic Kernelization in FPT Algorithm Design. PhD thesis, The
University of Newcastle, Australia (2005)

24. Prieto, E., Sloper, C.: Looking at the stars. TCS 351, 437–445 (2006)
25. Wang, J., Ning, D., Feng, Q., Chen, J.: An improved kernelization for P2-packing.

IPL 110, 188–192 (2010)

The Worst-Case Upper Bound for Exact 3-Satisfiability
with the Number of Clauses as the Parameter

Junping Zhou and Minghao Yin

College of Computer, Northeast Normal University,
130117, Changchun, P.R. China
{zhoujp877,ymh}@nenu.edu.cn

Abstract. The rigorous theoretical analyses of algorithms for exact 3-satisfiability
(X3SAT) have been proposed in the literature. As we know, previous algorithms
for solving X3SAT have been analyzed only regarding the number of variables as
the parameter. However, the time complexity for solving X3SAT instances depends
not only on the number of variables, but also on the number of clauses. Therefore,
it is significant to exploit the time complexity from the other point of view, i.e. the
number of clauses. In this paper, we present algorithms for solving X3SAT with
rigorous complexity analyses using the number of clauses as the parameter. By an-
alyzing the algorithms, we obtain the new worst-case upper bounds O(1.15855m),
where m is the number of clauses.

Keywords: X3SAT; upper bound; the worst case; connected-clauses principle.

1 Introduction

Exact satisfiability problem, abbreviated XSAT, is a problem of deciding whether there is
a truth assignment satisfying exactly one literal in each clause. The exact 3-satisfiability
(X3SAT) is the version in which each clause contains at most three literals. The X3SAT
problem is an important variant of the well-known NP-complete problem of proposi-
tional satisfiability (SAT), which has played a key role in complexity theory as well as in
automated planning. In fact, X3SAT is also a NP-complete problem even when restricted
to all variables occurring only unnegated [1]. If P � NP, it means that we can’t solve the
problem in polynomial time. Therefore, Improvements in the exponential time bounds
are crucial in determining the size of NP-complete problem instances that can be solved.
Even a slight improvement from O(ck) to O((c− ε)k) may significantly increase the size
of the problem being tractable.

Recently, tremendous efforts have been made on analyzing of algorithms for X3SAT
problems. Based on a recursive partitioning of the problem domain and a careful elimi-
nation of some branches, Drori and Peleg presented an algorithm running in O(1.1545n)
for X3SAT, where n is the number of the variables [2]. By adapting and improving
branching techniques, Porschen et al. proposed an algorithm for solving X3SAT run-
ning in O(1.1487n) [3]. According to exploit a perfect matching reduction and present
a more involved deterministic case analysis, Porschen et al. prove a new upper bound
for X3SAT (O(1.1926n)) [4]. By providing a new transformation rule, Kulikov [5] sim-
plified the proof of the bound for X3SAT (O(1.1926n)) presented by Porschen et al. [4].

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 212–223, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Worst-Case Upper Bound for Exact 3-Satisfiability 213

Based on combining various techniques including matching and reduction, Dahllof et
al. addressed an algorithm running in O(1.1120n) for X3SAT [6]. Further improved al-
gorithms in [7] presented a new upper time bound for the X3SAT (O(1.1004n)), which
is the best upper bound so far.

Different from complexity analyses regarding the number of variables as the pa-
rameter, Skjernaa presented an algorithm for XSAT with a time bound O(2m) but using
exponential space, where m is the number of clauses of a formula [8]. Bolette addressed
an algorithm for XSAT with polynomial space usage and a time bound O(m!) [9]. Simi-
lar to the XSAT problem, the time complexity of X3SAT problem is calculated based on
the size of the X3SAT instances, which depends not only on the number of variables, but
also on the number of clauses. Therefore, it is significant to exploit the time complexity
from the other point of view, i.e. the number of clauses. However, so far all algorithms
for solving X3SAT have been analyzed based on the number of variables. And to our
best knowledge, it is still an open problem that analyzes the X3SAT algorithm with the
number of clauses as the parameter.

The aim of this paper is to exploit new upper bounds for X3SAT using the number of
clauses as the parameter. We provide an algorithm for solving X3SAT. This algorithm
employs a new principle, i.e. the connected-clauses principle, to simplify formulae. This
allows us to remove one sub-formula and therefore reduce as many clauses as possible
in both branches. In addition, by improving the case analyses, we obtain the worst-case
upper bound for solving X3SAT is O(1.15855m), where m is the number of clauses of a
formula.

2 Problem Definitions

We describe some definitions used in this paper. A variable can take the values true
or false. A literal of a variable is either the unnegated literal x, having the same truth
value as the variable, or the negated literal ¬x, having the opposite truth value as the
variable. A clause is a disjunction of literals, referred to as a k-clause if the clause is a
disjunction on k literals. A k-SAT formula F in Conjunction Normal Form (CNF) is a
conjunction of clauses, each of which contains at most k literals. A truth assignment for
F is a map that assigns each variable a value. When a truth assignment makes the F true,
we say the truth assignment is a satisfying assignment. The exact satisfiability problem
(XSAT) is to find a truth assignment such that exactly one literal is true in each clause.
The exact 3-satisfiability problem (X3SAT) is a version of the XSAT in which each
clause contains at most three literals. We define m as the number of clauses in F, and n
as the number of variables F contains. When a variable occurs once in F, it is referred
to as singleton. The degree of a variable v, represented by ϕ(v), is the number of times
it occurs in a formula. The degree of a formula F, denoted by ϕ(F), is the maximum
degree of variables in F. A literal x is an (i, j)-literal if F contains exactly i occurrences
of x and exactly j occurrences of ¬x. And a literal x is monotone if its complementary
literal does not appear in F. Given a literal x, we say var(x) is the variable that forms
the literal and ∼ x indicates x or ¬x. We also use F(μ ← η) to denote the substitution
of μ by η in the formula F, where μ is either a literal or a clause, and η is a literal,
clause, or false. To avoid a tedious enumeration of trivialities, if more than one literal is

214 J. Zhou and M. Yin

substituted by false, μ is usually expressed as a set of literals. We use F/π to denote the
formula obtained by removing from F, where is either a clause or a sub-formula. Given
a formula F and a literal x, NumC(F,N(x)) is defined as follow.

NumC(F,N(x)) = |{C|C ∈ F ∧ var(C) ∩ N(x) � ∅}|. (1)

In Equation (1), N(x) is the set of variables that appear in a clause with the literal x, and
var(C) is the set of variables occur in the clause C.

After specifying the definitions, we present some basic rules for solving X3SAT
problem. Given a formula F, the basic strategy of Davis-Putnam-Logemann-Loveland
(DPLL) is to arbitrarily choose a variable v that appears in F. Then,

F = (F ∧ v) ∨ (F ∧ ¬v). (2)

Given a formula F, if F can be partitioned into disjoint sub-formulae where any two
sub-formulae have no common variables, then

F = F1 ∧ F2 ∧ ... ∧ Fn. (3)

Thus, F can be evaluated by deciding the satisfiability of disjoint sub-formulae of F
respectively.

2.1 Estimating the Running Time

In this subsection, we explain how to compute an upper bound on the running time of a
DPLL-style algorithm. At first, we present a notion called branching tree. The branching
tree is a hierarchical tree structure with a set of nodes, each of which is labeled with a
formula [10]. Suppose there is a node labeled with a formula F, then its sons labeled
with F1, F2, ..., Fk are obtained by branching on one or more variables in the formula
F, i.e., assigning values to the variable(s) such that the formula F is reduced to two or
more sub-formulae F1, F2, ..., Fk with fewer variables. Indeed, the construction of a
branching tree can be viewed as an execution of a DPLL-style algorithm. Therefore, we
use the branching tree to estimate the running time of our algorithm.

In the branching tree, every node has a branching vector. Let us consider a node
labeled with F0 and its sons labeled with F1, F2, ... , Fk. The branching vector of the
node labeled with F0 is (r1, r2, ..., rk), where ri = f (F0) − f (Fi) (f (F0) is the number
of clauses of F0). The characteristic polynomial of the branching vector is defined as
follows:

h(x) = 1 −
∑k

i=1
x¬ri . (4)

The positive root of this polynomial is called the branching number, denoted by
λ(r1, r2, , rk). And we assume that the branching number of the leaves is 1. We
define the maximum branching number of nodes in the branching tree as the branch-
ing number of the branching tree, expressed by max λ(r1, r2, , rk). The branching num-
ber of a branching tree has an important relationship with the running time (T(m)) of

The Worst-Case Upper Bound for Exact 3-Satisfiability 215

DPLL-style algorithms. At first, we assume that the running time of DPLL-style algo-
rithms performing on each node is in polynomial time. Then we obtain the following
inequality.

T (m) ≤ (maxλ(r1, r2, , rk))m × poly(F) = (max
∑k

i=1
T (m − ri))m × poly(F). (5)

In Equation (5), m is the number of clauses in the formula F, ploy(F) is the polynomial
time executing on the node F, and

λ(r1, r2, , rk) =
∑k

i=1
T (m − ri). (6)

In addition, if a X3SAT problem recursively solved by the DPLL-style algorithms, the
time required doesn’t increase, for

∑k

i=1
T (mi) ≤ T (m) where m =

∑k

i=1
mi. (7)

In the Equation (7), m is the number of clauses, mi is the number of clauses in the sub-
formula Fi (1 ≤ i ≤ k) of the formula F. Note that when analyzing the running time of
our algorithms, we ignore the polynomial factor so that we assume that all polynomial
time computations take O(1) time in this paper.

3 Algorithm for Solving X3SAT

In this section, we present the algorithm X3SAT and prove an upper bound O(1.15855m),
where m is the number of the clauses. Firstly we address some transformation rules used
in the algorithm.

3.1 Transformation Rules

The transformation rules are applied before branching on one or more variables of
the formula F. According to the complexity analysis described above, we just need
to take into the difference value between the number of clauses of the input formula and
the number of clauses of the formulae obtained from it by branching. The larger of the
difference value, the smaller the upper bound obtained. In the following, we present the
transformation rules (TR1) - (TR14) which are also used by [7].

(TR1). If F contains a variable x such that the number of negated occurrences is larger
than the number of unnegated occurrences, then let F = F(¬x← x).

(TR2). If F contains a 1-clause C = x, then F = F(x← true).

(TR3). If F contains a 2-clause C = x ∨ y, then F = F(x← ¬y).

(TR4). If F contains a clause C = x ∨ x ∨ y, then F = F(x← f alse).

(TR5). If F contains a clause C = x ∨ ¬x ∨ y, then F = F(y← f alse).

216 J. Zhou and M. Yin

(TR6). If F contains a clause C = x ∨ y ∨ z where x and y are singletons, then F =
F(x← f alse).

(TR7). If F contains clauses C1 = x∨y∨z and C2 = x∨¬y∨z′, then F = F(x← f alse).

(TR8). If F contains clauses C1 = x∨y∨z and C2 = ¬x∨¬y∨z′, then F = F(y← ¬x).

(TR9). If F contains clauses C1 = x1∨y1∨y2, C2 = x2∨y2∨y3, and C3 = x3∨¬y3∨y1,
then F = F(C3 ← (¬x1 ∨ x2 ∨ x3)).

(TR10). If F contains clauses C1 = x1∨¬y1∨y2, C2 = x2∨¬y2∨y3, ..., Ck = xk∨¬yk∨y1,
then F = F({x1, x2, ..., xk} ← f alse).

(TR11). If F contains clauses C1 = x1∨y1∨y2, C2 = x2∨y2∨y3, and C3 = x3∨¬y3∨y1

where x1 is a singleton, then F = F/C1.

(TR12). If F contains clauses C1 = x1∨y1∨y2, C2 = x2∨y2∨y3, and C3 = x3∨y3∨y1

where val(x3) is a singleton, then F = F(C3 ← (¬x1 ∨ y3 ∨ x3)).

(TR13). If F contains clauses C1 = x1 ∨ y1 ∨ z1, C2 = x1 ∨ y1 ∨ z2, then F = F(C2 ←
(¬z1 ∨ z2)).

(TR14). If F contains a clause C = x ∨ y ∨ z, where x and y only occur unnegated and
in clauses with a singleton in all other clauses, then F = F(y← f alse).

Actually, the above transformation rules are used in the Reduce function repeatedly
until no transformation rule applies, which can be guaranteed to terminate in polynomial
time. The function takes a CNF F as the input and returns a simplified X3SAT formula.
In the following, we will show the character of the simplified X3SAT formula. From
now on, unless otherwise stated, given a literal x, Y1 = {y1, y2, ...} is the set of literals
that occur in a clause with x; Y2 = {y′1, y′2, ...} is the set of literals that occur in a clause
with ¬x and Y = Y1 ∪ Y2; Z = {z1, z2, ...} is the set of literals that don’t occur in a clause
with x. We use y’s literals indicating the literals occur in Y. For example, if x is a (2, 1)
- literal, the clauses the literal x in are showed in Fig. 1.

Theorem 1.[7] A simplified X3SAT formula contains no 1-clauses or 2-clauses, and
no two clauses have more than one variable in common; no clause has more than one
singleton; all (a, 0)-literals and (a, 1)-literals that are not singletons are in a clause with
no singletons.

Theorem 2. If a X3SAT formula contains clauses C1 = x∨y1∨y2, C2 = x∨y3∨y4, and
C3 = ¬y1 ∨ y3 ∨ z1 where y1 is a (1, 1) - literal, then F = F((C1∧C3)← (¬y4∨ y2∨ z1))
and ϕ(x) = ϕ(x) − 1.

C1= x y1 y2 C2= x y3 y4 C3= x y'1 y'2

Fig. 1. The clauses that the literal x appears in when x is a (2, 1) - literal

The Worst-Case Upper Bound for Exact 3-Satisfiability 217

Proof. If a X3SAT formula contains clauses C1 = x ∨ y1 ∨ y2, C2 = x ∨ y3 ∨ y4, and
C3 = ¬y1 ∨ y3 ∨ z1, then F = F(C3 ← (¬y4 ∨ y2 ∨ z1)) by (TR9). Since y1 is a (1,
1) - literal, y1 is removed by (TR9). Thus, y1 is a singleton in F. If a X3SAT formula
contains clauses C1 = x∨ y1 ∨ y2, C2 = x∨ y3 ∨ y4, and C3 = ¬y4 ∨ y2 ∨ z1, then we can
apply (TR11) and obtain F = F/C1. Therefore, F = F((C1 ∧ C3) ← (¬y4 ∨ y2 ∨ z1))
and ϕ(x) = ϕ(x) − 1.

Theorem 3. When X3SAT formula F contains a clause y′1 ∨ y3 ∨ z1 and a (2, 1) - literal
x, the formula F can be simplified and the literal x becomes a (2, 0) - literal.

Proof. Since x is a (2, 1) - literal, F contains clauses C2 = x∨y3∨y4 and C3 = ¬x∨y′1∨y′2.
Then we can apply (TR9) to y′1∨y3∨z1, x∨y3∨y4, and ¬x∨y′1∨y′2, which can transform
F to contain ¬z1 ∨ y4 ∨ y′2 instead of ¬x ∨ y′1 ∨ y′2. Therefore, F can be simplified and
the literal x becomes a (2, 0) - literal.

Theorem 4. When X3SAT formula F contains a (3, 0) - literal x, a singleton y4, and a
clause y1 ∨ y3 ∨ z1, the formula F can be simplified and the literal x becomes a (2, 0) -
literal.

Proof. If x is a (3, 0) - literal, the formula F contains clauses C1 = x ∨ y1 ∨ y2 and
C2 = x∨ y3 ∨ y4. Using the (TR12) on x∨ y1 ∨ y2, x∨ y3 ∨ y4, and y1 ∨ y3 ∨ z1 where y4

is a singleton, we can replace x ∨ y3 ∨ y4 by y2 ∨ y3 ∨ y4. Therefore, the formula F can
be simplified and the literal x becomes a (2, 0) - literal.

Theorem 5. The transformation rules (TR1)∼(TR14) run in polynomial time for a
given X3SAT formula F.

Proof. Suppose that the formula F contains n variables and m clauses. In essence,
(TR1), (TR9), (TR12), and (TR13) are aimed at making the formula have some good
properties. (TR1) acts on the variables, while (TR9), (TR12), and (TR13) act on the
clauses. For a given formula F, (TR1) runs at most n times, and (TR9), just the same
to (TR12), (TR13), also runs at most m times. Therefore, the four transformation rules
execute in O(n + 3m). In order to obtain a better upper bound, (TR2), (TR3), (TR5),
(TR6), (TR8), and (TR11) reduce as many clauses as possible. Since the formula F
has m clause, these transformation rules run in O(m). In addition, owing to the (TR4),
(TR7), (TR10), and (TR14), the variables can be reduced from the given formula. So
these transformation rules run in O(n). In total, the transformation rules (TR1) (TR14)
run in O(2n + 4m), which are done in polynomial time.

3.2 Helper Principle

In this subsection, we concentrate on introducing the connected-clauses principle. Be-
fore presenting the details, we specify some notions used in this part. Given a simplified
X3SAT formula F in CNF, F can be expressed as an undirected graph called connection
graph. In the connection graph, the vertexes are the clauses of F and the edges between
two vertexes if the corresponding clauses contain the same literal. We say that the clause

218 J. Zhou and M. Yin

C is connected with C’ if there is an edge connecting the corresponding vertexes in the
connection graph. We call such two clauses the connected clauses. The character of
connected clauses is showed in the following theorem.

Theorem 6. For any two connected clauses C1 and C2, there is only one edge connect-
ing the corresponding vertexes in the connection graph.

Proof. In order to prove there is only one edge connecting the corresponding vertexes
in the connection graph, we need to prove that C1 and C2 have only one common literal.
By (TR2) and (TR3) we know that each clause has exactly three literal in a simplified
X3SAT formula. If two clauses have common variables, the common variables must
form the same literals based on (TR7) and (TR8). According to (TR13), there is at most
only one common literal in any two clauses. Therefore, for any two connected clauses,
there is only one edge connecting the corresponding vertexes in the connection graph.

Let us start to propose the connected-clauses principle. Suppose a connection graph
G can be partitioned into two components G1 and G2 where there is only one edge
l connecting a vertex in G1 to a vertex in G2, i.e. the formula F corresponding to G
is partitioned into two sub-formulae F1 and F2 corresponding to the two components
with only one common literal l. Then, we can determine the satisfiability of the X3SAT
formula F as follows.

F = ((F1 ∧ l) ∧ (F2 ∧ l)) ∨ ((F1 ∧ ¬l)(F2 ∧ ¬l)). (8)

The aim of this principle is to partition the formula F into two sub-formulae. When F1

contains a small number of clauses, it can be solved by exhaustive search in polynomial
time. This allows us to remove F1 from F and therefore reduce as many clauses as
possible in both branches. The following theorem states that the principle in sound.

Theorem 7. The connected-clauses principle is sound.

Proof. To prove that the connected-clauses principle is sound, we just to prove after
applying the connected-clauses principle do not change the satisfiability of the original
formula. Suppose a connection graph G can be partitioned into two components G1 and
G2 where there is only one edge l connecting a vertex in G1 to a vertex in G2, i.e. the
formula F corresponding to G is partitioned into two sub-formulae F1 and F2 corre-
sponding to the two components with only one common literal l. Then after applying
the connected-clauses principle to the formula F, the formula F can be partitioned into
two formulae F1 and F2.

Suppose F is satisfiable. Consider a satisfying assignment I for F. It is obvious that
in the satisfying assignment the literal l either true or false. We assume that the literal
l is fixed true. Then the satisfying assignment for F consists of a satisfying assignment
for F1 ∧ l and a satisfying assignment for F2 ∧ l. The similar situation is encountered
when l is fixed false.

On the contrary, every satisfying assignment for F1 ∧ l (resp. F1 ∧ ¬l) can combine
with every satisfying assignment for F2 ∧ l (resp. F2 ∧ ¬l), both of which have an
assignment true (resp. false) for l. The combining satisfying assignments are indeed the
satisfying assignments for F which has an assignment true (false) for l.

Therefore, the connected-clauses principle is sound.

The Worst-Case Upper Bound for Exact 3-Satisfiability 219

3.3 Algorithm X3SAT for Solving Exact 3SAT

The algorithm X3SAT for exact 3SAT is based on the DPLL algorithm. The basic idea
of the algorithm is to choose a variable and recursively determine whether the formula is
satisfiable or not when variable is true or false. Before presenting the algorithm X3SAT,
we address a function Ω(F, x) in Fig. 2, which recursively executes the propagation.
The function takes a formula F and a literal x being assigned true as input. The detailed
process of the function is presented as follows. (1) Remove all clauses containing literal
x from F; (2) delete all literals occurring with x from the other clauses; (3) delete all
occurrences of the negation of literal x from F; (4) perform the process as far as possible.

Function (F, x)
1. If there exists a clause x y1 y2 in F,

then remove the clause x y1 y2 and the literals y1, y2 from F.
2. If there exists a clause x y'1 y'2 in F, remove x from

x y'1 y'2.
3. For 1 i 2 do (F, yi).
4. Return F=Reduce(F).

Fig. 2. The function Ω

Now let us start to describe the framework of our algorithm X3SAT in Fig. 3. The
algorithm employs a new principle, i.e. the connected-clauses principle, to simplify for-
mulae. It takes a simplified X3SAT formula F as the input. Note that in the algorithm
ESX3SAT(F) is a function that solves the X3SAT by exhaustive search. As we all know,
if a X3SAT instance is solved by exhaustive search, it will spend a lot of time. How-
ever, when the number of clauses that the formula F contains is so few, it may run in
polynomial time. Therefore, we use the function ESX3SAT(F) only when the number
of clauses isn’t above 5, which can guarantee the exhaustive search runs in polynomial
time. Prefect Matching(F) is also a function that reduces the X3SAT instance to a per-
fect matching problem when ϕ(F) ≤ 2, and this can be solved in polynomial time [11].
In Theorem 8, we analyze the algorithm X3SAT using the measure described above.

Theorem 8. Algorithm X3SAT runs in O(1.15855m) time, where m is the number of
the clauses.

Proof. Let us analyze the algorithm case by case. Note that when analyzing the run-
ning time of the algorithm, we ignore the polynomial factor so that we assume that all
polynomial time computations take O(1) time.

Case 1, 2 and 3 can solve the instances completely and run in O(1).
Case 4 doesn’t increase the time needed.
Case 5: When x = true, every clause containing x is removed and ¬x is removed

from clauses. More over, every clause containing ¬x shrinks to 2-clause which can be
removed by (TR3). Therefore, the current formula contains at least four clauses less
than F and the same situation is encountered when x = f alse. In addition, when x is

220 J. Zhou and M. Yin

Algorithm X3SAT(F)

Case 1: F has an empty clause. return unsatisfiable.

Case 2: F is empty. return satisfiable.
Case 3: m < 6. return ESX3SAT (F).
Case 4: F consists of disjoint sub-formulae F1, F2, …, Fk.

 return X3SAT (F1) X3SAT (F2) … X3SAT (Fk).

Case 5: (F) 4. Pick a maximum degree variable x.

return X3SAT ((F, x)) X3SAT ((F, x)).
Case 6: (F)=3 and there is a (2, 1)-literal x such that C1= x y1 y2, C2= x y3 y4, and
C3= x y'1 y'2.

1. If two clauses C4 and C5 connect with C1~ C3.

(1) C4 connects with C1 and C2, C5 connects with C3, i.e., C4= ~y1 ~y3 z1, and C5=

~y'1 z2 z3, where z1 is a singleton.

return X3SAT((F1, y'1) (F2, y'1)) X3SAT((F1, y'1) (F2, y'1)),

where F1= C1 C2 C3 C4, F2=F/ F1.

(2) C4 connects with C1 and C2, C5 connects with C3, i.e., C4= ~y1 ~y3 z1, and C5=

~y'1 z2 z3, where z1 is not a singleton.

return X3SAT ((F, x)) X3SAT ((F, x)).

(3) C4 connects with C1; C5 connects with C2 and C3, i.e., C4=~ y1 z1 z2 and

C5=~ y'1 ~y3 z3, where z3 is a singleton.

return X3SAT((F1, y1) (F2, y1)) X3SAT((F1, y1) (F2, y1)),

where F1= C1 C2 C3 C5, F2=F/ F1.

(4) C4 connects with C1; C5 connects with C2 and C3, i.e., C4=~ y1 z1 z2 and

C5=~ y'1 ~y3 z3, where z3 is not a singleton.

return X3SAT ((F, x)) X3SAT ((F, x)).

(5) otherwise, return X3SAT ((F, x)) X3SAT ((F, x)).

2. If three or more clauses connect with C1~ C3.

return X3SAT ((F, x)) X3SAT ((F, x)).

Case 7: (F)=3 and there is a (3, 0)-literal x.

return X3SAT ((F, x)) X3SAT ((F, x)).

Case 8: (F) 2, return Prefect_Matching(F).

Fig. 3. The algorithm for solving X3SAT

fixed a value, the clauses containing the literals in Y can be also removed. Now we
let R = NumC(F,N(x)) and R′ = NumC(F,N(¬x)).Then we have T (m) = T (m − 4 −
R) + T (m − 4 − R′). By Theorem 1, we know that at least four literals in Y occur in
other clauses. So we obtain R + R′ ≥ 2. Therefore, the worst case is when T (m) =
T (m − 6) + T (m − 4) with solution O(1.15096m).

Case 6.1.1: When z1 is a singleton, the formula F can be partitioned into two formu-
lae F1 = C1 ∧ C2 ∧ C3 ∧ C4 and F2 = F/F1 with only one common literal y′1. By the
connected-clauses principle, we branch on the common literal y′1. We know that when
the number of clauses that a formula contains is less than 6, the formula can be solved

The Worst-Case Upper Bound for Exact 3-Satisfiability 221

by exhaustive search. This means that the formula F1 can be solved in polynomial time.
And when y′1 is fixed a value, at least one clause containing y′1 is removed from the for-
mula F2. So the current formulae contain at least five clauses less than F in both of the
branches. Therefore, we have T (m) = T (m − 5) + T (m − 5) with solution O(1.14870m).

Case 6.1.2: In this case, the y′s literals in C4 must be unnegated based on Theorem
2. Thus, when x = true, every clause containing x or z1 is removed and every clause
containing x or z1 is also removed by (TR3). Since var(z1) occurs at least twice and
var(x) occurs three times in F, the current formula contains at least five clauses less than
F. When x = f alse, every clause containing var(x) or var(y′1) can be removed, which
make y1 and y3 become singletons. So clause C4 can be removed by (TR6). Therefore,
the worst case is when T (m) = T (m − 5) + T (m − 5) with solution O(1.14870m).

Case 6.1.3: This case is similar to the case 6.1.1. So the current formula contains
at least five clauses less than F in both of the branches. Therefore, we have T (m) =
T (m − 5) + T (m − 5) with solution O(1.14870m).

Case 6.1.4: In this case, at least one of the y’s literals in C5 must be negated based
on Theorem 3. If we give true to x, at least four clauses containing var(x) or var(y1),
are removed. And simultaneously other clauses containing var(z3) are removed. As we
know, z3 is not a singleton and this means that var(z1) occurs at least twice. So the
current formula contains at least six clauses less than F. When x = f alse, at least four
clauses containing var(x) or var(y′1) are removed. Therefore, the worst case is when
T (m) = T (m − 6) + T (m − 4) with solution O(1.15096m).

Case 6.1.5: Due to previous cases, we know that C4 and C5 both contain at least two
y’s literals. When x = true, every clause containing x or yi (1 ≤ i ≤ 4) is removed.
When x = f alse, every clause containing x or y′j (1 ≤ j ≤ 2) is removed. In addition,
by Theorem 3, at least one of the y′s literals in the clause C4 or C5 with y′j (1 ≤ j ≤ 2)
must be negated and therefore at least two clauses containing literals in Z can be also
removed. Thus, it follows that T (m) = T (m− 6)+ T (m− 4) with solution O(1.15096m).

Case 6.2: Let us assume that R = NumC(F,N(x)) and R′ = NumC(F,N(¬x)). Since
ϕ(x) = 3, the current formula contains at least three clauses less than F when x is fixed a
value. Furthermore, when x = true, yi = f alse (1 ≤ i ≤ 4) and the clauses containing
yi (1 ≤ i ≤ 4) are removed by (TR3). The time needed in this case is thus bounded by
T (m) = T (m − 3 − R) + T (m − 3 − R′) since exactly the similar situation arises when
x is given the value false. It is easy to see that R ≥ 1 and R′ ≥ 1 for there are three
or more clauses connect with C1 ∼ C3. Moreover, at least four literals in Y occur in
the three or more clauses by Theorem 1. Consequently, R + R′ ≥ 4 and the worst case
occurs when R = 3,R′ = 1. Therefore, The time needed in this case is bounded by
T (m) = T (m − 6) + T (m − 4) and T (m) ∈ O(1.15096m).

Case 7: If x is a (3, 0)-literal, at least four variables in Y1 must occur in other clauses
by Theorem 1. And if F contains an unnegated and negated variable, it must be (1, 1)-
literal, otherwise, the (2, 1)-literal case is met. Therefore, there are at least two clauses
connected with C1 ∼ C3. In the following, we analyze the complexity from three cases.
(1) Two clauses C4 and C5 connect with C1 ∼ C3. If F contains a clause with three
variables in Y1, then x must be given the value false. Otherwise, F can be simplified
by Theorem 2 and 4. Therefore, the case (1) can be solved in O(1). (2) Three clauses
C4, C5, and C6 connect with C1 ∼ C3. Similarly, when F contains a clause with three

222 J. Zhou and M. Yin

variables in Y1, the formula F can be solved in O(1). When Ci (4 ≤ i ≤ 6) contains
two y′s literals, the literals must be unnegated according to Theorem 2 and 4. So when
each clause Ci (4 ≤ i ≤ 6) contains two y′s literals, we branch on x. If x = true, three
clauses containing x are removed and three clauses containing y′s variables are also
removed. If x = f alse, we substitute ¬y2 for y1; substitute ¬y4 for y3; and substitute
¬y6 for y5. Consequently, we obtain a formula F contains ¬y2 ∨¬y4 ∨ z1, y2 ∨¬y6 ∨ z2,
and y6 ∨ y4 ∨ z3. It is easy to see that the three clauses can be removed by (TR10). And
when there is a clause containing only one y′s literal, the clause can be removed by
(TR6 and TR4) when x = f alse. Therefore, The time needed in this case is bounded
by T (m) = T (m − 6) + T (m − 4) and T (m) ∈ O(1.15096m). (3) Four or more clauses
connect with C1 ∼ C3. In this case, we branch on x. When x is fix a value, the clauses
containing x are removed. And the clauses containing y’s variables are removed when
x = true. Therefore, this case is bounded by T (m) = T (m − 7) + T (m − 3) and takes
O(1.15855m) time.

Case 8: This case can solve the problems completely and run in O(1).

In total, algorithm X3SAT runs in O(1.15855m) time, where m is the number of the
clauses.

4 Conclusion

This paper addresses the worst-case upper bound for the X3SAT problem with the num-
ber of clauses as the parameter. The algorithm presented is a DPLL-style algorithm. In
order to improve the algorithms, we put forward a new connected-clauses principle to
simplify the formulae. After a skillful analysis of these algorithms, we obtain the worst-
case upper bound O(1.15855m) for X3SAT.

References

1. Schaefer, T.J.: The Complexity of Satisfiability Problems. In: 10th Annual ACM Symposium
on Theory of Computing, pp. 216–226 (1978)

2. Drori, L., Peleg, D.: Faster Exact Solutions for Some NP-hard Problems. Theoretical Com-
puter Science 287(2), 473–499 (2002)

3. Porschen, S., Randerath, B., Speckenmeyer, E.: X3SAT is Decidable in time O(2n/5). In:
Fifth International Symposium on the Theory and Applications of Satisfiability Testing, pp.
231–235. Springer, Heidelberg (2002)

4. Porschen, S., Randerath, B., Speckenmeyer, E.: Exact 3-Satisfiability is Decidable in time
O(20.16254n) (June 2002) (manuscript); Annals of Mathematics and Artificial Intelligence
43(1) 173-193 (2005)

5. Kulikov, A.S.: An Upper Bound O(20.16254n) for Exact 3-Satisfiability: a Simpler Proof. Za-
piski Nauchnyh Seminarov POMI 293, 118–128 (2002)

6. Dahllof, V., Jonsson, P., Beigel, R.: Algorithms for Four Variants of the Exact Satisfiability
Problem. Theoretical Computer Science 320(2-3), 373–394 (2004)

7. Byskov, J.M., Madsen, B.A., Skjernaa, B.: New Algorithms for Exact Satisfiability. Theoret-
ical Computer Science 332(1-3), 515–541 (2005)

8. Skjernaa, B.: Exact Algorithms for Variants of Satisfiability and Colouring Problems. PhD
thesis, Department of Computer Science, Aarhus University (2004)

The Worst-Case Upper Bound for Exact 3-Satisfiability 223

9. Bolette, A.M.: An Algorithm for Exact Satisfiability Analysed with the Number of Clauses
as Parameter. Information Processing Letters 97(1), 28–30 (2006)

10. Hirsch, E.A.: New Worst-Case Upper Bounds for SAT. J. Auto. Reasoning 24(4), 397–420
(2000)

11. Monien, B., Speckenmeyer, E., Vornberger, O.: Upper Bounds for Covering Problems. Meth-
ods Oper. Res. 43, 419–431 (1981)

Fixed-Parameter Tractability of almost CSP

Problem with Decisive Relations

Chihao Zhang and Hongyang Zhang

BASICS, Department of Computer Science, Shanghai Jiao Tong University,
Shanghai, 200240, China

{chihao.zhang,hongyang90}@gmail.com

Abstract. Let I be an instance of binary boolean CSP. Consider the
problem of deciding whether one can remove at most k constraints of I
such that the remaining constraints are satisfiable. We call it the Almost
CSP problem. This problem is NP-complete and we study it from the
point of view of parameterized complexity where k is the parameter.
Two special cases have been studied: when the constraints are inequality
relations (Guo et al., WADS 2005) and when the constraints are OR
type relations (Razgon and O’Sullivan, ICALP 2008). Both cases are
shown to be fixed-parameter tractable (FPT). In this paper, we define
a class of decisive relations and show that when all the relations are in
this class, the problem is also fixed-parameter tractable. Note that the
inequality relation is decisive, thus our result generalizes the result of
the parameterized edge-bipartization problem (Guo et al., WADS 2005).
Moreover as a simple corollary, if the set of relations contains no OR type
relations, then the problem remains fixed-parameter tractable. However,
it is still open whether OR type relations and other relations can be
combined together while the fixed-parameter tractability still holds.

1 Introduction

Consider the following parameterized problem:

p-Almost-CSP

Input: An instance of binary boolean CSP, and a nonnega-
tive integer k.

Parameter: k.
Problem: Decide whether one can delete at most k constraints

such that the remaining constraints are satisfiable.

Many natural problems can be expressed in this setting. For example, p-Almost
2SAT problem[13], which asks whether a CNF formula ϕ can be satisfied if we
are allowed to remove at most k clauses, is a special case of p-Almost CSP. It was
noticed in [15] that the fixed-parameter tractability of p-Almost 2SAT is equiv-
alent to the vertex cover problem parameterized above the perfect matching.
Another special case which has received extensive attention in the literature is

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 224–234, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fixed-Parameter Tractability of almost CSP Problem 225

the parameterized edge-bipartization problem[6,15], which asks whether one can
remove at most k edges in an undirected graph such that the remaining graph
is bipartite. Both problems have been shown to be fixed-parameter tractable.

The above special cases impose restriction on the type of relations. These
results motivate us to explore the parameterized complexity of p-Almost-CSP
under various other sets of relations. Let R be a set of relations. Let p-R-Almost-
CSP be the problem of p-Almost-CSP such that all the input CSP instance can
only use relations in R. Almost 2SAT is equivalent to the case that the constraints
are restricted to OR type relations, which include R1(x, y) := “x∨y”, R2(x, y) :=
“x ∨ ȳ”, R3(x, y) := “x̄ ∨ y”, R4(x, y) := “x̄ ∨ ȳ” (we denote the set of these four
OR type relations by Ror). Edge-bipartization problem corresponds to the case
that R contains only inequality relation.

Our Results. We define a class of decisive relations. A binary relation R is
decisive if for x ∈ {0, 1}, at most one of (x, 0) and (x, 1) is in R and at most
one of (0, x) and (1, x) is in R. Intuitively, if we fixed one component of a pair
(x, y) where x, y ∈ {0, 1}, there is at most one choice for the other component to
make the pair in R. We denote the set of decisive relations by Rdecisive. Decisive
relations are quite expressive, including AND type relations, equality relation
and inequality relation.

We present an O∗(4k
2

) (O∗(·) suppresses the polynomial term) algorithm for
p-Rdecisive-Almost-CSP, hence it is fixed-parameter tractable.

Interestingly, based on the algorithms for decisive relations, it easily follows
that if R contains no OR type relations, then p-R-Almost-CSP is fixed-parameter
tractable.

Our approach is based on the technique of iterative compression, which was
first introduced in [14] to deal with the odd cycle transversal problem. Following
the standard routine of this technique, we reduce p-Rdecisive-Almost-CSP to a
variant edge-separation problem on graphs, we call this problem p-MinMixedCut.
We then show that p-MinMixedCut is fixed-parameter tractable. The most im-
portant ingredient of our algorithm is the edge version of important separator
introduced in [10].

Related Work. The question of whether the Almost 2SAT problem is fixed-
parameter tractable, as mentioned above, was regarded as a long standing open
problem [9,12,3], and finally solved by Razgon and O’Sullivan[13]. For the pa-
rameterized edge-bipartization problem, a reduction to odd cycle transversal was
first noticed in [15]. Guo et al. presented a better FPT algorithm in [6]. It is also
shown in [8] that there is a parameterized reduction from the edge-bipartization
problem to the Almost 2-SAT problem. All these algorithms rely on the frame-
work of iterative compression, which was introduced in [14]. See [7] for a survey
of this technique.

Important separator was first introduced in [10] but implicitly used in [2,1,13].
It has been widely used in designing algorithms for graph separation problems.
See [11] for a gentle introduction to this concept.

226 C. Zhang and H. Zhang

This paper is organized as follows: In Section 2, we present the statement
of the problem, give some necessary definitions and introduce the notations. In
Section 3, we use iterative compression technique to reduce the problem to p-
MinMixedCut and then present a O∗(4k

2

) algorithm to solve it in Section 4. In
Section 5, we give an algorithm based on previous sections to prove the main
theorem and evaluate its running time. Finally, we conclude in Section 6 with
some open problems.

2 Preliminaries

2.1 Parameterized Problems and Fixed-Parameter Tractability

A parameterized problem is a pair (Q, κ), where Q ⊆ Σ∗ is a classic decision
problems and κ : Σ∗ → N is a polynomial-time computable function. An instance
of (Q, κ) is denoted by (x, k) where k = κ(x). A fixed-parameter tractable (FPT)
algorithm decides whether x ∈ Q in time O(f(k) · |x|c), where c is a constant
and f is an arbitrary computable function that only depends on k. We may
use O∗(f(k)) to suppress the polynomial term. The notion of FPT relaxes the
polynomial-time tractability in the classic setting. Readers may refer to [4,5,12]
for more information on parameterized complexity and algorithms.

2.2 Constraint Satisfaction Problem

An instance of Constraint Satisfaction Problem (CSP) is defined as a triple
I := (X,D, C) where X is a set of variables, D is a domain of values, and C
is a set of constraints. Every constraint is a pair 〈t, R〉, where t is a c-tuple of
variables and R is a c-ary relation on D. An evaluation of the variables is a
function from the set of variables to the domain of values v : X → D . An
evaluation v satisfies a constraint 〈(x1, . . . , xc), R〉 if (v(x1), . . . , v(xc)) ∈ R. A
solution is an evaluation that satisfies all constraints. An instance I is satisfiable
if it has a solution.

In this paper, we only consider binary boolean CSP, namely D = {0, 1} and
c ≤ 2 for all relations R.

To explain why we focus on binary boolean case, note that the decision version
of CSP remains NP-hard when |D| ≥ 3 and c = 2, or when |D| = 2 and c ≥ 3,
therefore in both cases p-Almost-CSP is not fixed-parameter tractable unless
PTIME = NP.

2.3 Binary Boolean Relations

There are 16 different binary boolean relations in total, listed in Table 1.
We divide the relations into three categories, namely Ror,Rdecisive,Rother ,

as shown in the table. Let Rdecisive := {R5, . . . , R11}, a binary boolean relation
R is decisive if R ∈ Rdecisive. This set of relations can be defined as follows in a
more intuitive way:

Fixed-Parameter Tractability of almost CSP Problem 227

Table 1. 16 binary boolean relations

Ror Rdecisive Rother

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

(0,0) 0 1 1 1 1 0 1 0 0 0 0 1 1 1 0 0

(0,1) 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0

(1,0) 1 1 0 1 0 1 0 0 1 0 0 1 0 1 0 1

(1,1) 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1

Definition 1 (Decisive Relation). Let R be a binary boolean relation. We say
R is decisive if for every u ∈ {0, 1}, ¬(R(u, 0)∧R(u, 1)) and ¬(R(0, u)∧R(1, u)).

Intuitively, if we fix one component of the relation, there is at most one choice
for the other component such that the pair is in R.

Decisive relations have very simple interpretations: R5(x, y) := “x = y”,
R6(x, y) := “x �= y”, R7 := “x̄ ∧ ȳ”, R8 := “x̄ ∧ y”, R9 := “x ∧ ȳ”, R10(x, y) :=
“x ∧ y”, R11 := ∅. Let Rand := {R7, R8, R9, R10}.

2.4 Problem Statement and Main Result

Let R be a set of relations, consider the problem

p-R-Almost-CSP

Input: An instance of binary boolean CSP, and a nonnega-
tive integer k.

Parameter: k.
Problem: Find a set of at most k constraints such that the

remaining constraints are satisfiable after removing
them, or report no such set exists.

The main result of this paper is

Theorem 1. Let R = Rdecisive be the set of binary boolean decisive relations.
Then p-R-Almost-CSP is fixed-parameter tractable.

The relations in Rother are very special and easy to handle in our model. Based
on the algorithm for decisive case, we obtain the following corollary:

Corollary 1. LetR = Rdecisive∪Rother, thenp-R-Almost-CSP is fixed-parameter
tractable.

2.5 Graph and Separator

Let G := (V,E) be an undirected graph, U ⊆ V be a set of vertices, S ⊆ E be a
set of edges. A path P := {e1, . . . , es} of length s from u to v is a set of s edge
such that u ∈ e1, v ∈ es, ei ∩ ei+1 �= ∅ for 1 ≤ i < s.

228 C. Zhang and H. Zhang

We denote the set of vertices reachable from U in G′ := (V,E\S) by R(U, S).
Let X,Y ⊂ V and X ∩ Y = ∅, a set of edges T is called an (X,Y)-separator if
Y ∩R(X,T) = ∅. An (X,Y)-separator is minimal if none of its proper subsets
is an (X,Y)-separator. An (X,Y)-separator S′ dominates an (X,Y)-separator
S if |S′| ≤ |S| and R(X,S) � R(X,S′). For singleton set {u}, we may write it
as u for simplicity.

3 Reduction by Iterative Compression

In this section, we use the method of iterative compression to reduce p-R-
Almost-CSP to a variant edge-separation problem. Similar reductions can be
found in [13]. Unless otherwise specified, all the relations in this section belong
to Rdecisive\{R11} because constraints of type R11 are unsatisfiable and can be
removed in advance.

Given a CSP instance I = (X, C), where C = {〈t1, R1〉, . . . , 〈tn, Rn〉} consists
of n decisive constraints and an integer k ≥ 0. Then consider n + 1 instances
I0, . . . , In where Ii = (X, Ci) and Ci consists of first i constraints of C. Note that
In = I. We solve (Ii, k) for i = 1, . . . , n one by one.

Since k ≥ 0, (I0, k) is obviously a true instance. If for some i ≤ n, (Ii, k) is a
false instance, then we know that (I, k) is also a false instance. Now assume for
some m < n all (Ii, k) with i ≤ m are true instance, we need to decide (Im+1, k).

We know that (Im, k) is a true instance, let S be one of its solution sets where
|S| ≤ k, then S ′ := S ∪{〈tm+1, Rm+1〉} is a solution set for Im+1. If |S ′| ≤ k then
(Im+1, k) is a true instance and we are done. Otherwise, we give an algorithm that
either construct a solution set T of size at most k or report no such set exists.

To this end, we enumerate ST ⊆ S ′ and consider the CSP instance I ′ =
(X, C′), where C′ := Cm\ST . It is easy to see that the following holds:

Claim 1. Let T ⊆ Cm+1 be a set of constraints. Then T is a solution set of
Im+1 if and only if for ST := S ′ ∩ T , T \ST is a solution set of I ′ = (X, C′)
where C′ := Cm\ST .

Since (T \ST) ∩ (S ′\ST) = ∅, we come to the following problem:

Problem 1

Input: A binary boolean CSP I, a set of constraints S with
|S| ≤ k1 such that I is satisfiable after removing S
and an integer k2 ≥ 0.

Parameter: k1 + k2.
Problem: Find a set of restrictions T with |T | ≤ k2 such that

S ∩ T = ∅ and I is satisfiable after removing T .

Lemma 1. Problem 1 is fixed-parameter tractable.

We first extend our terminologies. Let S be a set of constraints, then V (S) is the
set of variables appearing in S. Let I := (X, C) be a satisfiable binary boolean
CSP instance, then I has a satisfiable assignment F : X → {0, 1}.

Fixed-Parameter Tractability of almost CSP Problem 229

Now let (I := (X, C),S, k1, k2) be an instance of Problem 1, and let I ′ :=
(X, C\S). We enumerate all the assignments F : V (S) → {0, 1} such that F
satisfies S. The following claim is straightforward:

Claim 2. The instance (I := (X, C),S, k1, k2) has a solution set T if and only
if for some F : V (S) → {0, 1} that satisfies S, I ′ contains a set of constraints T ′

such that (1) |T ′| ≤ k2 and (2) after removing T ′ in I ′, there exists a satisfiable
assignment of I ′ consistent with F .

Proof. For the forward direction, let T be a solution set of (I,S, k1, k2) and
F0 be a satisfiable assignment of (X, C\T). Then T ′ := T and F0 fulfill our
requirement.

Conversely, given T ′ and a satisfiable assignment F ′ of I ′ after removing T ′

such that the restriction of F ′ on V (S) satisfies S. Then T := T ′ is a solution
set of (I,S, k1, k2) since F ′ is a satisfiable assignment of (X, C\T). �

Thus it suffices to solve Problem 2 in FPT time:

Problem 2

Input: A satisfiable binary boolean CSP I, a partial assign-
ment F and an integer k ≥ 0.

Parameter: k.
Problem: Find a set of constraints T with |T | ≤ k such that

after removing T in I, there exists a satisfiable as-
signment of I consistent with F .

Lemma 2. Problem 2 is fixed-parameter tractable.

Since I = (X, C) is satisfiable, let A : X → {0, 1} be one of its satisfiable
assignment. If A is consistent with F , then we are done. Otherwise, let D(F)
be the domain of F , then for some variable x ∈ D(F), we have F (x) �= A(x).
Let D ⊆ D(F) be the set of all such variables. Let v �∈ X , for every x ∈ D, if
F (x) = 0 then replace x by v̄ in I; if F (x) = 1 then replace x by v in I. Let I ′

be the new instance after replacement.

Claim 3. (I, F, k) contains a solution set T if and only if there is a set of
constraints T ′ with |T ′| ≤ k and after removing T ′ in I ′, there is an assignment
A′ satisifying A′(v) = 1 and A′ agrees with F on D(F)\D.

Proof. First assume (I, F, k) contains a solution set T . We construct T ′ as fol-
lows: for every C = ((x1, x2), RC) ∈ T , if x1, x2 �∈ D, then add C to T ′; other-
wise, let C′ be the constraint obtained from C by replacing the variable in D by
v, and add C′ to T ′. Let A be a satisfiable assignment of (I, F, k) after removing
T and A is consistent with F . Define an assignment A′ on X\D∪ {v} where A′

agrees with A on X\D and A′(v) = 1. By the definition of I ′, A′ is a satisfiable
assignment of I ′ after removing T ′ and A′ agrees with F on D(F)\D.

The converse can be proved analogously and thus we omit it. �

230 C. Zhang and H. Zhang

Therefore we reduce Problem 2 to the following:

Problem 3

Input: A satisfiable binary boolean CSP I := (X, C), a par-
tial assignment F , a variable v and an integer k ≥ 0.
It is known that there is a satisfiable assignment A
of I consistent with F and A(v) = 0.

Parameter: k.
Problem: Find a set of constraints T with |T | ≤ k such that

after removing T in I, there exists a satisfiable as-
signment of I, say A, such that A is consistent with
F and A(v) = 1.

Next, we interpret Problem 3 as a graph separation problem.
Here each variable corresponds to a vertex and each constraint corresponds

to an edge. An edge has an annotated type indicating the constraint upon the
edge. Then a satisfiable assignment corresponds to a way to color each vertex
with 0 or 1 such that all the edge constraints are satisfied.

First assume the graph is connected, without loss of generality, since between
disconnected components there are no constraints. Since all the relations are
decisive, if one vertex is assigned with some value, then to satisfy the constraints,
the value of all the reachable vertices is determined. Our goal is to flip the value
of v in a satisfiable assignment F while keeping the value of some other set of
vertices S. To do this vertices set S should be separated from v. We denote this
set of vertices by S1. Furthermore, let e = {w, u} be an edge where at least one
of w and u is not in S and the type of e is in Rand, then we have to either
separate {w, u} with v or remove edge e. We denote this set of edges by S2.
Therefore, the problem is equivalent to the following:

p-MinMixedCut

Input: An undirected graph G := (V,E), a vertex t ∈ V , a
set of vertices S1 := {u1, . . . , up} and a set of pairs
of vertices S2 := {{v1, w1}, . . . , {vq, wq}} where each
{vi, wi} is an edge in G. An integer k ≥ 0.

Parameter: k.
Problem: Find a set of at most k edges T , such that (1) T is

a separator with respect to S1 and t; (2) For every
pair {v, w} in S2, either edge {v, w} ∈ T or T is a
separator with respect to {v, w} and t.

4 p-MinMixedCut Is Fixed-Parameter Tractable

The algorithm employs the method of bounded search tree. For each pair {v, w} ∈
S2, we branch into two cases: either add {v, w} to the solution set or separate
them from t. To bound the width of each branch, we use the similar idea of
important separator in [10].

Fixed-Parameter Tractability of almost CSP Problem 231

Definition 2. Let G := (V,E) be an undirected graph. Let X,Y ⊂ V and X ∩
Y = ∅, a set of edges S is an important (X,Y)-separator if it is minimal and
there is no (X,Y)-separator S′ that dominates S.

We show that it is enough to enumerate all the important separators in the
branches.

Lemma 3. Given an instance (G, t, S1, S2, k) of p-MinMixedCut, if there is a
solution set T of size at most k, then there exists a solution set T ′ of size at
most k such that (1) for every vertex u ∈ S1, some subset of T ′ is an important
(u, t)-separator and (2) for every pair {v, w} ∈ S2, if the edge {v, w} �∈ T , then
some subset of T ′ is an important ({v, w}, t)-separator.

Proof. We only prove (1), the proof of (2) is analogous. Let u be a vertex in S1

and S ⊆ T be a minimal (u, t)-separator. If S is an important (u, t)-separator,
then we are done, otherwise, there is an edge set S′ that dominates S, we show
that T ′ := (T \S) ∪ S′ is also a solution set of size at most k.

Assume on the contrary that T ′ is not a solution, we distinguish between two
cases:

(a) These is a vertex u′ such that u′ is separated from t by T but not by T ′.
This is impossible because every path P from u′ to t intersects either T \S
or S, and S′ dominates S, hence P intersects with T ′.

(b) For some edge e := {v, w} ∈ S2, e ∈ S and e �∈ S′. Since e ∈ S and S is
minimal, v, w belong to different connected components after removing S.
Without loss of generality, assume v ∈ R(u, S) and w ∈ R(t, S). Since S′

dominates S, v ∈ R(u, S′), hence w ∈ R(u, S′). Therefore both v and w are
separated from t by S′ and by T ′ as well.

To prove (2), we can contract {v, w} to a single vertex in G and use the same
argument above. �

This lemma implies that to separate every vertex u from t, it suffices to enumer-
ate important (u, t)-separator, thus settling the correctness of our algorithm.

Next, the number of important separators can be bounded by a function of k.
Essentially, this enables us to bound the number of branches in the search tree.

Lemma 4 ([11,2]). Let G := (V,E) be an undirected graph. There are at most
4k important (X,Y)-separator of size at most k for every X,Y ⊆ V . Further-
more, all the important separators can be enumerated in O∗(4k) time.

Therefore the following algorithm solves p-MinMixedCut in FPT time.

232 C. Zhang and H. Zhang

MinMixedCut(G, t, S1, S2, k)

Input: An undirected graph G := (V,E), a vertex t ∈ V , a set
of vertices S1, and a set of pairs of vertices S2. An integer
k ≥ 0.

Output: A set of edges T that fulfills our requirement, or return
‘NO’ if no such set exists.

1. if S2 is nonempty and k > 0, choose p = {u, v} ∈ S2 such that p ∈ E
and t is reachable from {u, v} in G

1.1 T ← MinMixedCut(G′ := (V,E\{p}), t, S1, S2\{p}, k− 1)
1.2 if T is not ‘NO’ then return T ∪ {p}
1.3 for all important ({u, v}, t)-separator S such that |S| ≤ k
1.3.1 T ← MinMixedCut(G′ := (V,E\S), t, S1, S2\S, k − |S|)
1.3.2 if T is not ‘NO’ then return T ∪ S

1.4 return ‘NO’
2. T ← minimum edge cut from S1 to {t} in G
3. if |T | ≤ k return T else return ‘NO’

To evaluate the running time of the above algorithm, consider its search tree
T . The depth of T is at most k since in every recursive call for MinMixedCut,
k decreases by 1 at least.

Next we consider the number of nodes in T . Since there are two branches in
step 1.1, 1.3, respectively, and by Lemma 4 there are at most 4k+1 branches in
step 1.3, so the total number of branches is at most 1 + 4k+1. Thus the size of
T is O(4k

2

) and the total running time of the algorithm is O∗(4k
2

).

5 Main Theorem

In this section, we prove Theorem 1 and Corollary 1.

Proof (of Theorem 1).
Given a p-Almost-CSP instance (I, k), the main algorithm first reduces it to

an instance of p-MinMixedCut (G, t, S1, S2, k
′), following the procedure described

in Section 3. Then it solves the instance by using the algorithm described in
Section 4.

Now we evaluate the running time of above algorithm step by step:

1 p-Almost-CSP to Problem 1
Let (I, k) be an instance of p-Almost-CSP. There are at most |I| iterations.
For each iteration, we enumerate at most 2k ST . The resulting instance
(I1,S, k1, k2) of Problem 1 satisfies |I1| ≤ |I|, |S| ≤ k, k1 + k2 ≤ k.

2 Problem 1 to Problem 2
Let (I1,S, k1, k2) be an instance of Problem 1. We need to enumerate at most
2|S| ≤ 2k assignments F , and for each F , we get a new instance (I2, F, k3)
of Problem 2 where |I2| ≤ |I1|, k3 = k2 ≤ k.

Fixed-Parameter Tractability of almost CSP Problem 233

3 Problem 2 to Problem 3
Let (I2, F, k3) be an instance of Problem 2, we reduce it to an instance
(I3, F, v, k4) of Problem 3 where |I3| ≤ |I2|, k4 = k3 in O(|I2|) time.

4 Problem 3 to p-MinMixedCut
Let (I3, F, v, k4) be an instance of Problem 3, we reduce it to an instance
(G, t, S1, S2, k

′) of p-MinMixedCut where |G| + |S1| + |S2| = O(|I3|)) and
k′ = k4 in O(|I3|) time.

So the total runtime of this procedure is O(|I| · 2k · 2k · |I|) = O(4k|I|2).
For every instance (G := (V,E), t, S1, S2, k

′), we can solve it in O∗(4k
2

) =

O∗(4k
2

). Therefore our algorithm for p-R-Almost-CSP where R is the set of

decisive relations runs in O∗(4k · 4k2

) = O∗(4k
2

). �

Now we prove Corollary 1.

Proof (of Corollary 1). Let I := (X, C) be an instance of binary boolean CSP.
We have five more relations now, i.e. Rother. First R12 can be ignored since
it is always satisfied. For other four relations, note that R13(x, y) = “x = 0”,
R14(x, y) = “y = 0”, R15(x, y) = “y = 1”,R16(x, y) = “x = 1”, thus they can
be reduce to equality relation by adding two variables 1 and 0 into X . For all
constraints in C that is of type R13(x, y), R14(x, y), R15(x, y), R16(x, y), replace
them by R5(x, 0), R5(y, 0), R5(y, 1), R5(x, 1) respectively. Then this instance can
be solved in the same way as Theorem 1, except in the reduction from Problem
1 to Problem 2, we enumerate all F : V (S) ∪ {0,1} → {0, 1} such that F (0) =
0, F (1) = 1 instead. �

6 Conclusions and Open Problems

In this paper we discussed the p-R-Almost-CSP problem. By utilizing the power-
ful techniques of iterative compression and important separators, we solved for
the case of decisive relations. To deal with the general case, however, the biggest
technical challenge is about how to deal with OR type relations and decisive
relations together.

Acknowledgements. This research was partially supported by the National
Nature Science Foundation of China (60970011 & 61033002).

We are grateful to anonymous referees for pointing out some mistakes and
their suggestion for presentation.

References

1. Chen, J., Liu, Y., Lu, S.: An improved parameterized algorithm for the minimum
node multiway cut problem. Algorithmica 55(1), 1–13 (2009)

2. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. Journal of the ACM (JACM) 55(5),
21 (2008)

234 C. Zhang and H. Zhang

3. Demaine, E., Gutin, G., Marx, D., Stege, U.: Open problems from dagstuhl seminar
07281, available electronically, Technical report,
http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281

4. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York
(1999)

5. Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag New York
Inc. (2006)

6. Guo, J., Gramm, J., Huffner, F., Niedermeier, R., Wernicke, S.: Compression-based
fixed-parameter algorithms for feedback vertex set and edge bipartization. Journal
of Computer and System Sciences 72(8), 1386–1396 (2006)

7. Guo, J., Moser, H., Niedermeier, R.: Iterative compression for exactly solving np-
hard minimization problems. Algorithmics of Large and Complex Networks, 65–80
(2009)

8. Khot, S., Raman, V.: Parameterized complexity of finding subgraphs with heredi-
tary properties. Theoretical Computer Science 289(2), 997–1008 (2002)

9. Mahajan, M., Raman, V.: Parametrizing above guaranteed values: Maxsat and
maxcut. In: Electronic Colloquium on Computational Complexity (ECCC), vol. 4
(1997)

10. Marx, D.: Parameterized graph separation problems. Theoretical Computer Sci-
ence 351(3), 394–406 (2006)

11. Marx, D.: Important separators and parameterized algorithms (February 2011),
http://www.cs.bme.hu/~dmarx/papers/marx-mds-separators-slides.pdf

12. Niedermeier, R.: Invitation to fixed-parameter algorithms, vol. 31. Oxford Univer-
sity Press, USA (2006)

13. Razgon, I., O’Sullivan, B.: Almost 2-sat is fixed-parameter tractable. Journal of
Computer and System Sciences 75(8), 435–450 (2009)

14. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Operations Research
Letters 32(4), 299–301 (2004)

15. Wernicke, S.: On the algorithmic tractability of single nucleotide polymorphism
(SNP) analysis and related problems. PhD thesis (2003)

http://drops.dagstuhl.de/opus/volltexte/2007/1254/pdf/07281
http://www.cs.bme.hu/~dmarx/papers/marx-mds-separators-slides.pdf

On Editing Graphs into 2-Club Clusters�

Hong Liu��, Peng Zhang, and Daming Zhu

School of Computer Science and Technology, Shandong University, Shandong
Provincial Key Laboratory of Software Engineering, Jinan, China

{hong-liu,algzhang,dmzhu}@sdu.edu.cn

Abstract. In this paper, we introduce and study three graph modifica-
tion problems: 2-Club Cluster Vertex Deletion, 2-Club Cluster

Edge Deletion, and 2-Club Cluster Editing. In 2-Club Cluster

Vertex Deletion (2-Club Cluster Edge Deletion, and 2-Club

Cluster Editing), one is given an undirected graph G and an inte-
ger k ≥ 0, and needs to decide whether it is possible to transform G
into a 2-club cluster graph by deleting at most k vertices (by deleting
at most k edges, and by deleting and adding totally at most k edges).
Here, a 2-club cluster graph is a graph in which every connected com-
ponent is of diameter 2. We first prove that all these three problems are
NP-complete. Then, we present for 2-Club Cluster Vertex Dele-

tion a fixed parameter algorithm with running time O∗(3.31k)1, and
for 2-Club Cluster Edge Deletion a fixed parameter algorithm with
running time O∗(2.74k).

Keywords: Fixed Parameter Tractability, Graph-based Data Cluster-
ing, 2-Club.

1 Introduction

Data clustering [15] is the process of partitioning data set into clusters so that the
data records within a cluster are highly interrelated, while there are less inter-
relations between elements in different clusters. It is an important task in many
areas, e.g., machine learning, data mining, decision-making, and exploratory
pattern-analysis. Various approaches have been proposed for data clustering. In
graph-based data clustering [2,14], data records are represented as vertices, there
is an edge between two vertices if and only if the interrelations of the correspond-
ing data records exceeds a certain threshold, and a cluster is therefore interpreted
as a dense subgraph. Traditionally, complete graphs, also called cliques, are used
to model dense subgraphs. However, in various application scenarios, the require-
ment for clusters to be cliques is too restrictive. As alternatives, various relaxed

� Research supported by the National Natural Science Foundation of China (61070019)
and the National Natural Science Foundation of China (60603007).

�� Corresponding author.
1 In the O∗ notation we omit the polynomial terms, so that O∗(f(k)) stands for
O∗(f(k)P (n)) for some polynomial P .

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 235–246, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

236 H. Liu, P. Zhang, and D. Zhu

clique models for dense subgraph have been proposed, e.g. μ-clique, s-clique,
s-club, and s-plex, etc. [10].

A graph-based data clustering problem can be formulated as a cluster graph
modification problem: Given an undirected graph G, one asks for a minimum-
cardinality set of editing operations that transform G into a graph (called cluster
graph) in which every connected component is a dense subgraph (cluster). Tradi-
tionally, there are three standard editing operations, i.e., adding edges, deleting
edges, and deleting vertices. The most prominent problem in this context maybe
Cluster Editing [2,14], which asks whether a graph can be transformed into
a collection of disjoint cliques by altogether at most k edge adding and edge
deleting operations. A closed related problem is Cluster Vertex Deletion

[9], in which the editing operation is instead vertex deleting. In this line, a
series of problems considering relaxed clique models are also studied, for exam-
ples, s-Plex Cluster Editing [8], s-Plex Cluster Vertex Deletion [7],
s-Defective Clique Editing [7], μ-Clique Editing [7], etc..

Extending and complementing previous work, we introduce three novel cluster
graph modification problems: s-Club Cluster Vertex Deletion, s-Club

Cluster Edge Deletion, and s-Club Cluster Editing. A vertex subset
S ⊆ V of a graph G = (V,E) is called s-club if the diameter of the induced
subgraph G[S] is at most s. Clearly, a clique is nothing but a 1-club. A s-club
cluster graph is a graph whose connected components are s-clubs. For small
values of s, the s-clubs have been a practical and popular choice to model clusters
in the context of social networks [1] and protein interaction networks [3]. Thus,
our problems also has much practice implications. This work provides the first
theoretical study of these three problems. The decision versions of them are
formulated as follows, respectively:

s-Club Cluster Vertex Deletion

Input : A graph G = (V,E) and an integer k ≥ 0
Question: Can G be modified by up to k vertex deletions into an s-club cluster

graph?
s-Club Cluster Edge Deletion

Input : A graph G = (V,E) and an integer k ≥ 0
Question: Can G be modified by up to k edges deletions into an s-club cluster

graph?
s-Club Cluster Editing

Input : A graph G = (V,E) and an integer k ≥ 0
Question: Can G be modified by up to k edge deletions and insertions into

an s-club cluster graph?
Particularly, 2-clubs have an outstanding characteristic, i.e., every pair of

vertices in it either have a direct edge or have a common neighbor. This intuitive
two-hop interpretation has encouraged the choice of 2-clubs in many applications
where a “two-hop transitivity” is expected [12]. In this paper, we spend our effort
mainly for the cases where s=2.

On Editing Graphs into 2-Club Clusters 237

The rest of the paper is organized as follows. In the 2nd section, we introduce
some useful notions and concepts. In the 3rd section, we present NP-completeness
results for our problems. Then, in the 4th section, we present for 2-ClubCluster

Vertex Deletion a fixed parameter algorithm with running time of O∗(3.31k),
and for 2-ClubClusterEdgeDeletion a fixed parameter algorithmwith run-
ning time O∗(2.74k). Conclusion and future work are given in the last section.

2 Preliminaries

We only consider simple (i.e., with no loops or multiple edges) and undirected
graphs G = (V,E), where V is the set of vertices and E is the set of edges. For
a graph, we also use VG and EG to denote its vertex and edge sets, respectively.
The (open) neighborhood of a vertex v ∈ V in G is NG(v) := {u|{u, v} ∈ E}.
The closed neighborhood of a vertex v ∈ V in G is NG[v] := NG(v) ∪ {v}.
Moreover, for a subset V ′ ⊆ V , let NG(V

′) :=
⋃

v∈V ′ NG(v) \ V ′ and NG[V
′] :=⋃

v∈V ′ NG[v]. The degree of a vertex v in G is degG(v) := |NG(v)|. We say
two vertices are connected, if there exists at least one path between them. The
distance between two connected vertices is the length of a shortest path between
them. The maximum distance between any pair of connected vertices in G is
called the diameter of G. For a set V ′ ⊆ V , we denote by G[V ′] the subgraph
of G induced by the vertices in V ′. A chordless path with four distinct vertices
in G is called a P4. Given a P4 stuv, we call s and v end vertices of stuv, and t
and u internal vertices. Particularly, the two end vertices s and v in stuv neither
have a direct edge nor have a common neighbor, it’s called a restricted P4 and
denoted by Pstuv.

Let G be any graph. If S is a subset of V , such that G′ = (V − S,E) is a
2-club cluster graph, then S is called a 2-Club Cluster Vertex-Deletion Set for
G. If F is a subset of V ×V , such that G′ = (V,E(F) is a 2-club cluster graph,
where E(F = (E \F)∪ (F \E)), then F is called a 2-Club Cluster Edge-Edition
Set for G. If in addition F ⊆ E, then F is called a 2-Club Cluster Edge-Deletion
Set for G.

Our algorithm is based on the depth-bounded search tree technique that is
frequently successfully applied in the development of fixed-parameter algorithms
[5,13]. A depth-bounded search tree algorithm works in a recursive manner.
The number of recursion calls is the size of search tree. If the algorithm solves
a problem instance with parameter k and calls itself recursively for problem
instances with parameters k − d1, k − d2, · · · , k − di, then (d1, · · · , di) is called
the branching vector of this recursion, and the overall search tree size reads
as T (k) = T (k − d1) + T (k − d2) + · · · + T (k − di). If α is a solution of the
recurrence which has maximum absolute value and is positive, then α is called
the branching number corresponding to the branching vector (d1, · · · , di) (all
branching numbers that occur in this paper are single roots). The size of the
search tree is therefore O(αk), where α is the largest branching number that will
occur.

238 H. Liu, P. Zhang, and D. Zhu

3 NP-Hardness Proofs

3.1 NP-Complteness of 2-Club Cluster Vertex Deletion

Note that 2-club cluster graphs are not hereditary, that is, not closed under
taking induced subgraphs. For instance, a 5-cycle is a 2-club cluster graph but
deleting a vertex results in a P4, which is not a 2-club cluster graph. Thus the
general NP-completeness result for vertex deletion problems for hereditary graph
properties [11] does not apply here. In this section we prove that, for any s ≥ 2,
s-Club Cluster Vertex Deletion is NP-complete.

Theorem 1. s-Club Cluster Vertex Deletion is NP-complete.

Proof. Membership in NP is trivial. In fact, one can verify in polynomial time
that a connected graph is of diameter s by computing the distance between each
pair of its vertices.

We prove NP-hardness by reduction from the well-known NP-complete prob-
lem Vertex Cover [6]: Given a graph G = (V,E) and an nonnegative integer
k ≤ |V |, determine if there is a subset Vc ⊆ V such that |Vc| ≤ k and, for each
edge {u, v} ∈ E, at least one of u and v belongs to Vc.

Let G = (V,E) be an graph. For each vertex v ∈ V , we attach a Ps−1 to
obtain a new graph G′ = (V ′, E′), and the corresponding Ps induced by vertices
in this Ps−1 together with v is denoted by P v

s (see Fig. 1 for an illustration). We
shall prove that G has a vertex cover of size at most k if and only if G′ has a
2-Club Cluster Vertex-Deletion Set of size at most k.

⇒: Suppose that there exists a vertex cover Vc ⊆ V of size k in G. Delete the
k corresponding vertices from G′. It is obvious that very connected component
in G′ − Vc is of diameter s.

⇐: Now suppose G′ has a size-k 2-Club Cluster Vertex-Deletion Set Vs. Let
Vc = {v ∈ V |P v

s ∩ Vs �= ∅}. Obviously, |Vc| ≤ k. We claim that Vc is a vertex
cover of G. Otherwise, suppose there is an edge {u, v} ∈ E with u /∈ Vc and
v /∈ Vc. This means that none of the vertices in both Pu

s and P v
s is included

in Vs. Consequently, there exists at least one pair of vertices in G′ − Vs whose
distance is greater than s. Thus, a contradiction. �

v
sP

G G

v

Fig. 1. An illustration of reduction from Vertex Cover to s-Club Cluster Vertex

Deletion

On Editing Graphs into 2-Club Clusters 239

3.2 NP-Complteness of 2-Club Cluster Editing

We show that 2-Club Cluster Editing is NP-hard by a reduction from the
NP-complete 3-Exact 3-Cover (3X3C) problem [6]. A similar technique was
used in [14] to prove NP-hardness of the Cluster Editing problem.

Theorem 2. 2-Club Cluster Editing is NP-complete.

Proof. Membership in NP is trivial. In the following, we present a reduction
from 3X3C to 2-Club Cluster Editing. A 3X3C instance includes a finite
set of elements U = {u1, u2, · · · u3n}, and a set C of triplets of elements from
U , i.e., C = {S1, S2, · · · , Sr}, where, for every 1 ≤ i ≤ r, Si ⊆ U and |Si| = 3.
Moreover, for every 1 ≤ j ≤ n, uj is included in at most three triplets. The
question is whether there is a sub-collection C′ ⊆ C of size n that covers U , i.e.,
every element of U occurs in exactly one triplet in C′.

Let 〈U,C〉 be an instance of 3X3C. Assume r > n > 1. We build a graph
G = (V,E) according to 〈U,C〉 as follows (see Fig. 2 for an illustration): First,
for each element ui in U , we introduce a vertex, which is denoted also by ui. For
each triplet Si ∈ C, we add necessary edges that link each pair of vertices in Si.
Denote by EC the set of all such edges in G and define t ≡ |EC |. It is not hard
to see that, since every element of U is included in at most three triplets, we
have t ≤ 9n. Let k = 3(r − n)(6n+ 1) + (t− 3n). Next, for each triplet Si ∈ C,
we introduce a gadget, denoted by Gi. In Gi, there are two cliques, denoted by
Q1

i and Q2
i respectively. Q1

i contains 6n + 1 vertices, while Q2
i contains k + 2

vertices. Then, we add to G necessary edges that join every vertex in Q1
i to every

vertex in Q2
i . Last, we add to G necessary edges that join every vertex in Si to

every vertex in Q1
i , and the set of all such edges in G is denote by EUQ1 . Clearly,

|EUQ1 | = 3r(6n+ 1).
In the following, we show that there is an exact cover of U if and only if there

is a 2-Club Cluster Edge-Edition Set for G of size at most k.

2
iQ

iY jY

1
iQ

1
jQ

2
jQ

iG jG

Fig. 2. The gadget for reduction from 3X3C to 2-Club Cluster Editing

⇒: Suppose that C′ ⊆ C is an exact cover of U . Define edge set
A ≡ {{u, v}|u ∈ Si, Si /∈ C′, v ∈ VQ1

i
}, and edge set

B ≡ {{u, v}|u ∈ Si, v ∈ Sj , Si ∈ C′, Sj ∈ C′, i �= j}.

240 H. Liu, P. Zhang, and D. Zhu

Clearly, |A|+ |B| = k. It is easy to verify that A ∪B is a 2-Club Cluster Edge-
Edition Set for G.

⇐: Suppose that G has one or more 2-Club Cluster Edge-Edition Set of size
at most k and let M be one of minimum size. Clearly, |M | ≤ k. We shall prove
that one can derive from M an exact cover of U . Let G′ = (V,E(F).

Claim 1. For every 1 ≤ i ≤ r, G′[VQ2
i
] is connected.

Proof of Claim. For any fixed 1 ≤ i ≤ r, since G[VQ2
i
] is a clique of size k + 2, if

G′[VQ2
i
] is disconnected, then at least k+ 1 > |M | edges should be deleted from

G[VQ2
i
] . This is not allowed. Thus the correctness of the claim. ,

Claim 2. In G′, for every 1 ≤ i ≤ r, every vertex in VQ1
i
is adjacent to at least

one vertex in VQ2
i
.

Proof of Claim. Since any vertex v in G[VQ1
i
] is adjacent to k + 2 vertices in

G[VQ2
i
], to make v disconnected to every vertices in G[VQ2

i
], k + 2 > |M | edges

incident with v should be deleted from G. This is not allowed. Thus the correct-
ness of the claim. ,
Claim 3. For any pair 1 ≤ i, j ≤ r, with i �= j, there exist no edge between
G′[VQ2

i
] and G′[VQ2

j
].

Proof of Claim. (By contradiction) Without loss of generality, suppose there are
x edges between G′[VQ2

i
] and G′[VQ2

j
]. (These x edges should be included in M .)

It is easy to see that at most x vertices in G′[VQ2
i
] are adjacent to at most x

vertices in G′[VQ2
j
]. Since there are k + 2 vertices in both VQ2

i
and VQ2

j
, then in

G′, at least k + 2 − x vertices in VQ2
i
(this set of vertices is denoted by Yi) are

not adjacent to any vertex in VQ2
j
, and symmetrically, at least k+2− x vertices

in VQ2
j
(this set of vertices is denoted by Yj) are not adjacent to any vertex in

VQ2
i
. According to Claim 1, in G′, vertices in Yi (Yj) are in the same connected

component. Since G′ is of diameter at most 2, for any pair of vertices, yi ∈ Yi

and yj ∈ Yj , they should share a common neighbor. This means that, besides
the x edges between G′[VQ2

i
] and G′[VQ2

j
], at least k + 2 − x edges should be

added to G to achieve this. Clearly, all these edges should be included in M .
Consequently, |M | must be greater than k + 2. Thus a contradiction. ,
Claim 4. For any pair 1 ≤ i, j ≤ r, with i �= j, any vertex in VQ2

i
and any vertex

in VQ2
j
can not be in the same connected component in G′.

Proof of Claim. (By contradiction) Suppose a vertex vi ∈ VQ2
i
and a vertex

vj ∈ VQ2
j
are in the same connected component in G′. Since, according to Claim

1, G′[VQ2
j
] is connected, vi and all vertices in VQ2

j
are in the same connected

component in G′. Note that, according to Claim 3, vi is not adjacent to any
vertex in VQ2

j
in G′. However, since G′ is of diameter at most 2, vi and every

vertex in VQ2
j
should share a common neighbor (outside VQ2

i
∪ VQ2

j
) in G′. To

achieve this, since |VQ2
j
| = k+2, at least k+2 edges should be added toG. Clearly,

these edges should be included in M . Consequently, |M | would be greater than
k + 2. Thus a contradiction. ,

On Editing Graphs into 2-Club Clusters 241

For any pair 1 ≤ i, j ≤ r, with i �= j, since (according to Claims 1 and 2) both
G′[VGi] and G′[VGi] are connected subgraphs, but (according to Claim 4) any
vertex in VQ2

i
can not be connected with any vertex in VQ2

j
, we see that VGi

and VGj can not be included in the same connected component in G′. Thus,
for every vertex u ∈ U , it is adjacent in G′ to vertices of at most one Q1 (say
Q1

i if any), and all edges (if any) that link u and vertices outside Q1
i must be

deleted from G. Thus, at least 3r(6n+1)− 3n(6n+1) = 3(r−n)(6n+1) edges
in EUQ1 must be in M . However, since M is a minimum size 2-Club Cluster
Edge-Edition Set for G, t− 3n ≤ 6n, and |M | ≤ 3(r− n)(6n+ 1) + (t− 3n), we
see, for every vertex u ∈ U , u is adjacent in G′ to all vertices of exactly one set
in {Q1

i |u ∈ Si, Si ∈ C}. In other words, for each 1 ≤ i ≤ r, all vertices of Q1
i

are adjacent in G′ to none or all three vertices in Si, outside Q1
i . In fact, there

are exactly n vertex sets S′
1, S

′
2, · · · , S′

n, each of whose elements are adjacent in
G′ to vertices of the corresponding Q1. Furthermore, for every set S′ of such n
sets, none of the edges in EG[S′] ⊂ EC is in M . However, all other t− 3n edges
in EC must be in M . Thus, from M , a 2-Club Cluster Edge-Edition Set of size
at most k, we successfully derive a exact cover C′ = {S′

1, S
′
2, · · · , S′

n} for U . �
Note that in the reduction of Theorem 2, none edge adding operation is allowed.
Hence the following corollary.

Corollary 1. 2-Club Cluster Edge Deletion is NP-complete.

4 Parameterized Algorithms

The following Lemma is important for the algorithms presented in this section.

Lemma 3. A graph G is an 2-club cluster graph if and only if there exists no
restricted P4 as induced subgraph in G.

Proof. The proof is straightforward and is omitted here. �
According to Lemma 3, 2-Club Cluster Vertex Deletion can be solved by
repeatedly finding (in polynomial time) a restricted P4 and then branching into
all possibilities of deleting one of its vertices. This yields a trivial search tree
algorithm with running time O∗(4k). In analogy, there exists a trivial search
tree algorithm to solve 2-Club Cluster Vertex Deletion in O∗(3k) time.
In this section, we present for each of the two problems an improved search tree
algorithm, by adopting more complicated branching rules. Each of our branching
rules is presented by a set of sets of deleted objects (vertices or edges). For
example, given a graph G, a branching rule {{o1}, {o2, o3}, {o4}} means there
are three branches to destroy one or more certain restricted P4 in G, i.e., deleting
o1, deleting o2 and o3, and deleting o4.

4.1 An Improved Parameterized Algorithm for 2-Club Cluster
Vertex Deletion

In this subsection, we present for 2-Club Cluster Vertex Deletion an
improved search tree algorithm with running time O∗(3.31k). The basic idea is
as follows.

242 H. Liu, P. Zhang, and D. Zhu

Let 〈G = (V,E), k〉 be a 2-Club Cluster Vertex Deletion instance. We
start with identifying a restricted P4, Pstuv , and distinguish a number of cases
according to adjacency relations among vertices in NG[{s, t, u, v}].

In detail, we first distinguish the following two cases:

(C1) degG(s) = degG(v) = 1.
(C2) At least one of degG(s) and degG(v) is greater than 1. W.l.o.g, we

assume there exists a vertex w ∈ V such that {w, v} ∈ E and w �= u.

Regarding case (C1), we distinguish two subcases:

(C1.1) NG(t) \ {s, u} = NG(u) \ {t, v}. To destroy Pstuv , we make a
branching {{t}, {u}, {v}}. The branching vector is (1, 1, 1) and the
branching number is α < 3.

(C1.2) NG(t) \ {s, u} �= NG(u) \ {t, v}. W.l.o.g, we assume there exists
a vertex w ∈ V , which is adjacent to t but not u. Here, we need
to destroy two restricted P4, i.e., Pstuv and Pwtuv. For this purpose,
we make a branching {{t}, {u}, {v}, {s, w}}. The branching vector is
(1, 1, 1, 2) and the branching number α = 3.31.

Regarding case (C2), we distinguish two subcases:

(C2.1) s, w have a common neighbor x with x �= t. To destroy Pstuv and
Psxwv, we make a branching {{s}, {v}, {t, x}, {t, w}, {u, x}, {u,w}}.
The branching vector is (1, 1, 2, 2, 2, 2) and the branching number is
α < 3.24.

(C2.2) s, w do not have a common neighbor.

Regarding case (C2.2), we distinguish two subcases:

(C2.2.1) t is adjacent to w. To destroy Pstuv and Pstwv, we make a
branching {{s}, {t}, {v}, {u,w}}. The branching vector is (1, 1, 1, 2)
and the branching number is α < 3.31.

(C2.2.2) t is not adjacent to w.

Regarding subsubcase (C2.2.2), we distinguish two subcases:

(C2.2.2.1) u is adjacent to w. To destroy Pstuv and Pstuw , we make a
branching {{s}, {t}, {u}, {v, w}}. The branching vector is (1, 1, 1, 2)
and the branching number is α < 3.31.

(C2.2.2.2) u is not adjacent to w.

Regarding case (C2.2.2.2), we distinguish two subcases:

(C2.2.2.2.1) t, w have a common neighbor x with x �= u. To destroy
Pstuv and Pstxw, we make a branching {{s}, {t}, {u, x}, {u,w}, {v, x},
{v, w}}. The branching vector is (1, 1, 2, 2, 2, 2) and the branching
number is α < 3.24.

(C2.2.2.2.2) t, w do not have a common neighbor. To destroy Pstuv and
Ptuvw , we make a branching {{t}, {u}, {v}, {s, w}. The branching
vector is (1, 1, 1, 2) and the branching number is α < 3.31.

On Editing Graphs into 2-Club Clusters 243

In summary, in the worst case, the branching vector is (1,1,1,2), yielding a
branching number 3.31. This results in the following theorem:

Theorem 4. 2-Club Cluster Vertex Deletion can be solved in
O∗(3.31k) time.

4.2 An Improved Parameterized Algorithm for 2-Club Cluster
Edge Deletion

In this subsection, we present an improved search tree algorithm with run-
ning time O∗(2.74k). The basic idea here is somewhat similar to that used in
subsection 4.1.

ts vu
1C

4 5

1
ts vu

w

32
4 5

1
ts vu

w

32

4

1
ts vu

w

32

1.1C

1.2C

1.3C

ts vu
2.1C 2.1.1C

2.1.2C

1
ts vu

32

ts vu

w

5

7

9

6

8
10

1
ts vu

4

w

x
y

z

2 3

5

7

6

8

1
ts vu

4

w

x
y

2 3

5

6

1
ts vu

4

w

x

2 3

1
ts vu

4

w

2 3

5

6

1
ts vu

4

w x

2 3

5

6

1
ts vu

4

w
x

2 3

4 5

1
ts vu

w

32

2.2.1C

2.2.2C

2.2.3C 2.2.4C 2.2.5C

2.2.8C

2.2.7C

2.2.6C

()a

()b

()c

2.2C

5

7

6

8

1
ts vu

4

w

x

y

2 3

5

7

6
8

1
ts vu

4

w
x

y

2 3

Fig. 3. Illustration of relationships of some cases considered in subsection 4.2. The
edges are identified with numbers.

244 H. Liu, P. Zhang, and D. Zhu

Let 〈G = (V,E), k〉 be a 2-Club Cluster Edge Deletion instance. We
start with identifying a restricted P4, denoted by Pstuv , and distinguish the
following two cases:

(C1) At least two vertices of Pstuv have a common neighbor in V \
{s, t, u, v}.

(C2) Any two vertices of Pstuv do not have a common neighbor in V \
{s, t, u, v}.

Regarding case (C1), we distinguish three subcases (See Fig. 3(a) for an
illustration):

(C1.1) In Pstuv, an end vertex and its neighboring internal vertex have a
common neighbor. W.l.o.g, assume u and v have a common neighbor
w. To destroy Pstuv, we make a branching {{1}, {2}, {3, 4}, {3, 5}}.

(C1.2) In Pstuv , two internal vertices t and u have a common neighbor
w. To destroy Pstuv, we make a branching {{1}, {2, 4}, {2, 5}, {3, 4},
{3, 5}}. the branching vector is (1, 2, 2, 2, 2) and the branching
number is α < 2.57.

In both the above two cases, the branching vector is (1, 1, 2, 2) and the
branching number is α < 2.74.

(C1.3) In Pstuv, an end vertex and an internal vertex, which are not
adjacent to each other, have a common neighbor. W.l.o.g, assume
u and v have a common neighbor w. To destroy Pstuv, we make a
branching {{1}, {2}, {3, 4}, {3, 5}}.

Regarding case (C2), we distinguish two subcases:

(C2.1) Both s and v are leaves.
(C2.2) At least one of s and v are not leaves. W.l.o.g, assume there is

a vertex w ∈ V \ {t, u, v} which is adjacent to s.

Regarding case (C2.1), we distinguish two subcases (See Fig. 3(b) for an
illustration):

(C2.1.1) Neither t nor u has a neighbor in V \ {s, t, u, v}. It is a trivial
case, as an arbitrary edge in {1, 2, 3} can be deleted to destroy Pstuv .

(C2.1.2) t and/or u have a neighbor in V \ {s, t, u, v}. W.l.o.g, assume
w ∈ V \ {s, t, u, v} is adjacent to u. To destroy Pstuv and Pstuw, we
make a branching {{1}, {2}, {3, 4}}. The branching vector is (1, 1, 2)
and the branching number is α < 2.42.

Regarding case (C2.2), we distinguish eight subcases according to wether or
not w has a common neighbor (denoted by x,y and z, respectively, if any) with
t, u and v, respectively. See Fig. 3(c) for the illustration of the eight subcases
C2.2.1-C2.2.8. The corresponding branchings, branching vectors and branching
numbers are listed in Tab. 1.

In summary, in the worst cases, the branching number is 2.74. In analogy to
Theorem 4, we obtain the following theorem:

On Editing Graphs into 2-Club Clusters 245

Theorem 5. 2-Club Cluster Edge Deletion can be solved in
O∗(2.74k) time.

Table 1. Branching rules for cases C2.2.1-C2.2.8, and their corresponding branching
vectors and branching numbers

Cases Branchings Branching vectors Branching numbers

C2.2.1

{{1,4},{1,6,8,10},{1,5,8,10},{1,6,7,10},
{1,5,7,10},{1,6,8,9},{1,5,8,9},{1,6,7,9},

{1,5,7,9},{2,4,5},{2,4,6},{2,7,9},
{2,7,10},{2,8,9},{2,8,10},{3,9},{3,10},
{3,4,5,7},{3,4,6,7},{3,4,6,8},{3,4,5,8}}

(2,4,4,4,4,4,4,4,
4,3,3,3,3,3,3,
2,2,4,4,4,4)

α < 2, 65

C2.2.2
{{3},{2,7},{2,8},{1,5,7},
{1,5,8},{1,6,7},{1,6,8}} (1,2,2,4,4,4,4) α < 2, 47

C2.2.3
{{1,5,7},{1,5,8},{1,6,7},{1,6,8},

{2,7},{2,8},{3,7},{3,8}} (3,3,3,3,2,2,2,2) α < 2, 39

C2.2.4
{{1,5,7},{1,5,8},{1,6,7},{1,6,8},{2,4},

{2,5,7},{2,5,8},{2,6,7},{2,6,8},
{3,7},{3,8},{3,4,5},{3,4,6}}

(3,3,3,3,2,3,3,
3,3,2,2,3,3)

α < 2, 62

C2.2.5 {{1,5},{1,6},{2},{3,4,5},{3,4,6}} (2,2,1,3,3) α < 2, 27

C2.2.6 {{1,5},{1,6},{2,5},{2,6},{3}} (2,2,2,2,1) α < 2, 57

C2.2.7 {{1,5},{1,6},{2,5},{2,6},{3,4,5},{3,4,6}} (2,2,2,2,3,3) α < 2, 22

C2.2.8 {{1},{2},{3,4}} (1,1,2) α < 2, 42

5 Conclusions

In this paper, we proved the NP-Completenesses of 2-Club Cluster Vertex

Deletion and 2-Club Cluster Edge Deletion. We also presented fixed
parameter algorithms for these two problems. There are still much work to be
done. One is to find polynomial kernels for these two problems, or prove that
no polynomial kernels exist (see, e.g., [4]). Another future work is to further
improve the running times of the algorithms presented in this paper.

References

1. Alba, R.D.: A graph-theoretic definition of a sociometric clique. Journal of
Mathematical Sociology 3, 113–126 (1973)

2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning
56(1-3), 89–113 (2004)

3. Balasundaram, B., Butenko, S., Trukhanov, S.: Novel approaches for analyzing
biological networks. Journal of Combinatorial Optimization 10(1), 23–39 (2005)

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: Onproblems with-
out polynomial kernels. Journal of Computer and System Sciences 75(8), 423–434
(2009)

5. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer (1999)
6. Garey, M., Johnson, D.: Computers and intractability: A guide to the theory of

NP-completeness. W. H. Freeman and Company (1979)

246 H. Liu, P. Zhang, and D. Zhu

7. Guo, J., Kanj, I.A., Komusiewicz, C., Uhlmann, J.: Editing graphs into disjoint
unions of dense clusters. Algorithmica 61, 949–970 (2011)

8. Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model
for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete
Mathematics 24(4), 1662–1683 (2010)

9. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algo-
rithms for cluster vertex deletion. Theory of Computing Systems 47(1), 196–217
(2010)

10. Lee, V.E., Ruan, N., Jin, R., Aggarwal, C.: A survey of algorithms for dense sub-
graph discovery. In: Aggarwal, C.C., Wang, H. (eds.) Managing and Mining Graph
Data, pp. 303–336 (2010)

11. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer Systems and Science 20(2), 219–230 (1980)

12. Mahdavi, F., Balasundaram, B.: On inclusionwise maximal and max-imum cardi-
nality k-clubs in graphs (2010),
http://iem.okstate.edu/baski/files/DISCO-k-clubs-2010-02-11.pdf

13. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press
(2006)

14. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144(1-2), 173–182 (2004)

15. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Transactions on
Neural Networks 16(3), 645–678 (2005)

http://iem.okstate.edu/baski/files/DISCO-k-clubs-2010-02-11.pdf

Solving Generalized Optimization Problems
Subject to SMT Constraints

Feifei Ma1, Jun Yan1, and Jian Zhang1,2

1 Institute of Software, Chinese Academy of Sciences
2 State Key Laboratory of Computer Science

maff@ios.ac.cn, {junyan,jian zhang}@acm.org

Abstract. In a classical constrained optimization problem, the logical relation-
ship among the constraints is normally the logical conjunction. However, in many
real applications, the relationship among the constraints might be more complex.
This paper investigates a generalized class of optimization problems whose con-
straints are connected by various kinds of logical operators in addition to con-
junction. Such optimization problems have been rarely studied in literature in
contrast to the classical ones. A framework which integrates classical optimiza-
tion procedures into the DPLL(T) architecture for solving Satisfiability Modulo
Theories (SMT) problems is proposed. Two novel techniques for improving the
solving efficiency w.r.t. linear arithmetic theory are also presented. Experiments
show that the proposed techniques are quite effective.

1 Introduction

Many real-world and theoretical problems can be classified as optimization problems,
i.e., minimizing or maximizing an objective function possibly subject to a set of con-
straints. A constraint is typically a mathematical equation or inequality. Optimization
problems have long been the interest of mathematicians as well as engineers. Many ef-
ficient algorithms have been developed for various kinds of optimization problems over
the past decades, for example, the simplex method for linear programming.

Although not explicitly stipulated, in a classical constrained optimization problem,
the logical relationship among the constraints is the logical AND (∧), which means all
of the equations or inequalities must be simultaneously satisfied. For such problems,
solid theoretical foundations have been laid. However, in some applications, the rela-
tionship among the constraints might be more complex. The constraints may be con-
nected by several kinds of logical operators so as to describe, for instance, a compound
environment in a robot path planning problem or certain restrictions in task scheduling.
In software testing and analysis, one strategy is to find out the conditions under which
the software system uses resources heavily. This can also be formulated as an opti-
mization problem with complex constraints. For some specific applications, tailored
methods were sporadically proposed. But in the literature, such optimization problems
have rarely been studied in the general form.

In this paper, we assume that the constraints are expressed as Satisfiability Modulo
Theories (SMT) formulae. SMT, as an extension to the satisfiability (SAT) problem,
has received more and more attention in recent years [1,4,12,10]. Instead of Boolean

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 247–258, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

248 F. Ma, J. Yan, and J. Zhang

formulae, SMT checks the satisfiability of logical formulae with respect to combina-
tions of background theories. Examples of theories include real numbers, integers, bit
vectors and even non-linear constraints. An SMT solver typically integrates a powerful
SAT solver as the Boolean search engine and several theory solvers for deciding the
consistency of theory fragments.

In the sequel, we show how to solve an optimization problem which is constrained by
SMT formulae via modifying the SMT solving procedure. Two pruning techniques are
proposed so as to accelerate the searching process. Although the basic ideas of our ap-
proach are applicable to multiple theories, we are especially interested in problems with
a linear objective function and Boolean combination of linear arithmetic constraints, or,
SMT(LAC) constraints.

2 Background

This section describes some basic concepts and notations. We also give a brief overview
of some existing techniques that will be used later.

The main object of study in this paper can be regarded as an optimization task whose
constraints involve variables of various types (including integers, reals and Booleans).
There can be logical operators (like AND, OR) and arithmetic operators.

We use bi (i > 0) to denote Boolean variables, xj (j > 0), y, . . . , to denote numeric
variables. A literal is a Boolean variable or its negation. A clause is a disjunction of
literals. A Boolean formula in conjunctive normal form is a conjunction of clauses.
A linear arithmetic constraint (LAC) is a comparison between two linear arithmetic
expressions. A simple example is x1 + 2x2 < 3.

In general, a constraint φ can be represented as a Boolean formula PSφ(b1, . . . , bn)
together with definitions in the form: bi ≡ expri1 op expri2 . That means, the Boolean
variable bi stands for the LAC: expri1 op expri2 . Here expri1 and expri2 are numeric
expressions, while op is a relational operator like ‘<’, ‘=’, etc. The LAC is called the
theory predicate corresponding to bi. The Boolean formula PSφ is the propositional
skeleton of the constraint φ.

For a Boolean formula, a model is an assignment1 of truth values to all the Boolean
variables such that the formula is evaluated to TRUE. Usually the Davis-Putnam (DPLL)
procedure can be used to decide whether a Boolean formula has a model.

2.1 DPLL(T) Framework

Most of the state-of-the-art SMT solvers are built upon the DPLL(T) architecture [6].
DPLL(T) is a generalization of DPLL for solving the fragment of a decidable theory
T. It combines a DPLL-based SAT solver and theory-specific solving [10] through a
well-defined interface.

To solve an SMT formula, a Boolean abstraction of the formula is derived by en-
coding each theory predicate with a new propositional variable. The SAT solver then
explores the Boolean search space of the formula, and passes the conjunctions of theory

1 In this paper we represent an assignment as a set of literals.

Solving Generalized Optimization Problems Subject to SMT Constraints 249

predicates on to the theory solver for feasibility checking. For this integration to work
well, however, the theory solver must be able to participate in propagation and conflict
analysis, i.e., it must be able to infer new facts from already established facts, as well
as to supply succinct explanations of infeasibility when theory conflicts arise.

2.2 Optimization Problem with Complex Constraints

In classical constrained optimization problems, the constraints are conjunctively con-
nected. For instance, in linear programming, all linear inequalities must hold simultane-
ously. However, in many real applications, the relationships among constraints are very
complex, and such problems cannot be handled with traditional optimization methods.

Let us see a practical example. In real-time operating systems, an important research
issue is rate monotonic scheduling. Given a set of n periodic tasks {τ1 . . . τi . . . τn},
where each task τi is associated with a computation time Ci and a release period Ti,
the goal is to assign the computation time to each task such that all the tasks can be
scheduled and the performance of the system is optimized as well. It is proved that the
optimization problem can be formulated as follows:

maximize Σn
i=1

Ci

Ti

subject to ∀i
∨
t∈Si

(Σi
j=1�

t

Tj
 Cj − t ≤ 0)

Cmin
i ≤ Ci ≤ Cmax

i

where Si = {rTj |j ≤ i, r = 1, . . . , � Ti

Tj
�}. The objective function represents the CPU

utilization. The constraints are integer linear inequalities, connected by disjunctions and
conjunctions, forming an SMT(LAC) formula. In this paper, we study the optimization
of a given function subject to SMT constraints2.

3 Solving Optimization Problems with DPLL(T)

3.1 A Straightforward Method

We know that an SMT instance φ is satisfiable if there is an assignment α to the Boolean
variables in PSφ such that:

1. α propositionally satisfies φ, or formally α |= PSφ;
2. The conjunction of theory predicates under the assignment α, which is denoted by

T̂ h(α), is consistent w.r.t. the addressed theory.

We call an assignment satisfying the above conditions a feasible assignment. For exam-
ple, suppose PSφ is b1 ∨ b2 ∨ b3, where b1 ≡ (x > 10), b2 ≡ (y > 5), b3 ≡ (x+2y <
18). Then {b1, b2,¬b3} is a feasible assignment; but {b1, b2, b3} is not.

2 Without loss of generality, in the sequel we assume all objective functions are to be minimized.

250 F. Ma, J. Yan, and J. Zhang

Suppose an SMT optimization problem is composed of an objective function f(x)
and an SMT formula φ. The solution space of φ is the union of feasible regions of all
feasible assignments of φ. Denote the set of all feasible assignments of φ by Mod(φ).
The minimum value of f(x) over φ, denoted by Min(f(x), φ), is defined as follows.

Min(f(x), φ) = min{Min(f(x), α)|α ∈ Mod(φ)}

Since α is a conjunction of theory predicates, Min(f(x), α) is a normal procedure for
computing the optimal solution of a classical optimization problem.

The DPLL(T) architecture can be directly adapted to compute the optimal solution
of a given formula by replacing the theory solver with a theory optimizer. We ask the
SMT solver to enumerate all feasible assignments to formula φ, compute the optimal
solution of each assignment and pick the smallest one.

However, the problem with the straightforward approach is that the classical opti-
mization procedure is called as many times as the number of feasible assignments are.
It is vital to the efficiency of the algorithm to reduce the number of calls to classical op-
timization procedures. In the rest of the section, we shall present two such techniques.
The ideas behind the two techniques have one thing in common: they are both con-
cerned with how to compute the optimal solution of an area as large as possible through
a single call to the classical optimization procedure.

3.2 Optimization in Bunches

In [11], when studying the volume computation problem of SMT formulae, Ma et al.
proposed a strategy called “volume computation in bunches”. We find that the same
idea is applicable to the optimization problem.

Given an assignment α to the Boolean variables in formula φ, concerning the two
conditions for feasible assignments, we can distinguish four cases:

(i) α |= PSφ, and T̂ h(α) is consistent in the specific theory. (Here α is a feasible
assignment.)

(ii) α |= PSφ, while T̂ h(α) is inconsistent in the specific theory.
(iii) α falsifies φ propositionally, while T̂ h(α) is consistent in the specific theory.
(iv) α falsifies φ propositionally, and T̂ h(α) is inconsistent in the specific theory.

The situation that α is a feasible assignment is just one of the cases when both the con-
ditions are true. The optimal solution of formula φ is the smallest one amongst those
of all assignments in case (i). When T̂ h(α) is inconsistent, as in case (ii) or case (iv), its
feasible region can be viewed as empty. So when searching through the combined feasi-
ble regions of feasible assignments, it will be safe to count in some theory-inconsistent
assignments since they would not affect the result. The theory-inconsistent assignments,
when properly selected, can be combined with the feasible assignments to form fewer
assignments, reducing the number of classical optimizations.

Definition 1. A set of full assignments S is called a bunch if there exists a partial
assignment αc such that for any full assignment α, α ∈ S ↔ αc ⊆ α. αc is called the
cube of S.

Solving Generalized Optimization Problems Subject to SMT Constraints 251

In other words, the assignments in a bunch S share a partial assignment αc, and for the
Boolean variables which are not assigned by the cube αc, these assignments cover all
possibilities of value combinations. For the assignments in a bunch, optimization can
be greatly simplified, as the following theorem reveals:

Proposition 1. Given an SMT optimization problem which is to minimize f(x) over φ,
for a bunch S with the cube αc, the following equation holds:

min{Min(f(x), α)|α ∈ S} = Min(f(x), αc).

Example 1. Consider the optimization problem that minimizes x − y subjected to φ,
where φ = (((y + 3x < 3) → (30 < y)) ∨ (x ≤ 60)) ∧ ((30 < y) → ¬(x > 3) ∧
(x ≤ 60)).

We first introduce a Boolean variable for each linear inequality of φ and obtain its
propositional skeleton PSφ = ((b1 → b2) ∨ b4) ∧ (b2 → ¬b3 ∧ b4), where b1 ≡
(y + 3x < 3), b2 ≡ (30 < y), b3 ≡ (x > 3) and b4 ≡ (x ≤ 60).

There are seven feasible assignments, three of which are: α1 = {¬b1,¬b2, b3,¬b4},
α2 = {¬b1,¬b2,¬b3, b4}, and α3 = {¬b1,¬b2, b3, b4}. Their respective optimal solu-
tions are3:

Min(x− y, α1) = 30 + δ, where x = 60 + δ, y = 30
Min(x− y, α2) = −39, where x = −9, y = 30
Min(x− y, α3) = −27− δ, where x = 3 + δ, y = 30

Now let’s consider another assignment: α4 = {¬b1,¬b2,¬b3,¬b4}. It is easy to check
that α4 satisfies PSφ, but T̂ h(α4) is inconsistent in linear arithmetic. Also, these four
assignments form a bunch whose cube is {¬b1,¬b2}. Noticing this, we have

min{Min(x− y, α1),Min(x− y, α2),Min(x− y, α3)}
= min{Min(x− y, α1),Min(x− y, α2),Min(x− y, α3),Min(x− y, α4)}
= Min(x− y, {¬b1,¬b2})
= −39

where x = −9, y = 30. As a result, we need to call a linear programming routine only
once rather than four times.

It would be ideal to incorporate the assignments in both case (ii) and case (iv) to form
larger bunches. However, we currently neglect case (iv) because a typical DPLL(T)-
style solver doesn’t provide decision procedures for assignments that falsifies the propo-
sitional skeleton. For convenience, we just handle the assignments in case (ii). A key
point is that when the SMT solver finds a feasible assignment, we try to obtain a smaller
one which still propositionally satisfies the formula. It is formally defined as follows.

Definition 2. Suppose α is a feasible assignment for formula φ. An assignment αmc is
called a minimum cube of α if i) αmc ⊆ α and αmc |= PSφ and ii) ∀α′(α′ |= PSφ →
α′ �⊂ αmc).

3 δ represents an arbitrarily small value since there exist strict inequlities.

252 F. Ma, J. Yan, and J. Zhang

In fact, the minimum cube αmc of an assignmentα is the cube of a bunch S such that for
any bunch S ′, α ∈ S ′ → S �⊂ S ′. Any assignment in S also satisfies PSφ because only
part of it has evaluated PSφ to be true. As we have explained before, it is pretty safe to
count in such an assignment while solving the SMT optimization problem, regardless
of its consistency in the specific theory.

Note that an assignment might have several minimum cubes. Currently we use a
simple method to find only one minimum cube, as described in [11].

3.3 Feasible Region Expansion

When solving an SMT constrained optimization problem, the standard optimization
procedure is called each time the SAT engine reaches a feasible assignment. If it is
possible to obtain more information other than the optimal solution in the optimization
subroutine, the whole searching process might benefit a lot.

For a standard optimization problem, there might be certain constraints which do not
influence the optimal solution, in other words, the optimal solution is not bounded or re-
stricted by these constraints. They are called redundant constraints, defined formally
as follows.

Definition 3. Suppose an optimization problem is to minimize f(x) over a set of con-
straints {c1, c2, . . . , cm}. ck (1 ≤ k ≤ m) is a redundant constraint if the following
equation holds:

Min(f(x),
∧

1≤i≤m

ci) = Min(f(x),
∧

1≤i≤m,i�=k

ci) (1)

By definition, a standard optimization problem can be reduced to a simplified version
by removing redundant constraints, while preserving the optimal solution. The feasible
region of the problem expands as the constraints are removed. As a result, when we get
an optimal solution for a feasible region, possibly we can conclude that it is also the
optimal solution for a larger one. Inspired by this observation, we propose the second
pruning strategy, namely “feasible region expansion”. It can be used simultaneously
with the “optimization in bunches” strategy. The basic idea is as follows: each time a
feasible assignment α is obtained, find the optimal solution of its minimum cube αmc,
then remove all redundant constraints from αmc, and get a smaller partial assignment
α′. α′ has the same optimal solution as αmc, while covers a larger region than αmc
does. So the negation of α′ instead of αmc is added to PSφ. In this way, through one
single call to the standard optimization subroutine, a piece of broader search space can
be examined and excluded.

A key problem naturally arises: How to identify redundant constraints without extra
calls to the optimization procedure? The problem is very general while the answer is
closely related to the specific type of the constraints. We find that linear programming
has a very fine property which makes the identification of some redundant constraints
quite a simple task.

Proposition 2. Given a linear programming problem with the objective c�x and sub-
ject to Ax ⊗ b, if it has an optimal solution xopt, then the linear constraint Aix ⊗i bi is
redundant if the point xopt is not in the hyperplane Aix = bi, or formally Aixopt �= bi.

Solving Generalized Optimization Problems Subject to SMT Constraints 253

Such a constraint Aix ⊗i bi is called a non-binding constraint. It does not affect the
optimal solution.

Example 2. Given an SMT(LAC) optimization problem which is defined as:

minimize x+ y

subject to φ : x ≥ 0 ∧ y ≥ 0

∧ (x ≥ 1 ∨ ¬(y ≥ 1)) (2)

∧ (¬(x ≥ 1) ∨ y ≥ 1)

We have PSφ = b1 ∧ b2 ∧ (b3 ∨ ¬b4) ∧
(¬b3 ∨ b4), where⎧⎪⎪⎨

⎪⎪⎩
b1 ≡ (x ≥ 0);
b2 ≡ (y ≥ 0);
b3 ≡ (x ≥ 1);
b4 ≡ (y ≥ 1);

�

�

x

y

1

1

�
�
�
�
�
�
�

x+ y

R1

R2

0
�

The optimization problem is illustrated in the right figure. The solution space of φ is
the combined area of feasible regions R1 and R2. Suppose we get a feasible assignment
α = {b1, b2,¬b3,¬b4}, whose feasible region is R1. Obviously the minimum cube
of α is α itself. The optimal solution of Min(x + y, α) is {x = 0, y = 0}, with the
objective function evaluating to 0. Since the point {x = 0, y = 0} is located on the lines
x = 0 and y = 0, while away from the lines x = 1 and y = 1, the linear constraints
corresponding to ¬b3 and ¬b4 are redundant constraints, thus can be omitted in the
linear programming problem. The solution {x = 0, y = 0} is also the optimal solution
of the partial assignment {b1, b2}, which covers the whole solution space of φ. As a
result, we know {x = 0, y = 0} is the optimal solution of the original problem, without
calculating the other feasible assignment {b1, b2, b3, b4} with feasible region R2.

3.4 The Algorithms

In this subsection, we present the pseudo-codes of our approach and the pruning
techniques.

Figure 1 describes the algorithm to compute the minimum cube of a given assign-
ment α. The algorithm flips the literals in α one by one. More specifically, if α with
literal li removed still evaluates PS to true, then li can be removed from α. Finally
α becomes the minimum cube of the original assignment. Note that in an assignment,
some variables are decision variables, while others get assigned by BCP. These implied
literals need not be checked when finding the minimum cube of an assignment. (It has
been proved in [11].)

Figure 2 illustrates the “feasible region expansion” strategy. For a given assignment
α and its optimal solution, FeaRegExpan removes the redundant constraints from α.

The DPLL(T) framework for SMT solving is adapted to SMT optimization. The
detailed algorithm is presented in Figure 3. OptSol stands for the optimal solution

254 F. Ma, J. Yan, and J. Zhang

1: MiniCube(Assignment α, Boolean Formula PS)
2: Assignment α′;
3: for all Literal li ∈ α do
4: if li is a decision variable or its negation then
5: α′ = α − {li};
6: if α′ |= PS then
7: α = α′;
8: end if
9: end if

10: end for
11: return α;

Fig. 1. Function: MiniCube

1: FeaRegExpan(Assignment α, solution)
2: for all literal li ∈ α do
3: if solution is not in the hyperplane T̂ h(li) then
4: α = α − {li};
5: end if
6: end for
7: return α;

Fig. 2. Function: FeaRegExpan

1: Boolean Formula PS = PSφ;
2: OptSol = Null;
3: while TRUE do
4: if BCP() == CONFLICT then
5: backtrack-level = AnalyzeConflict();
6: if backtrack-level < 0 then
7: return OptSol;
8: end if
9: backtrack to backtrack-level;

10: else
11: α = current assignment;
12: if α |= PS then
13: α = MiniCube(α, PS);
14: CurSol = LinearProgramming(T̂ h(α));
15: if CurSol is unbounded then
16: return UNBOUNDED;
17: end if
18: if CurSol is smaller than OptSol then
19: OptSol = CurSol;
20: end if
21: α = FeaRegExpan(α, CurSol);
22: Add ¬α to PS;
23: else
24: choose a Boolean variable and extend α;
25: end if
26: end if
27: end while

Fig. 3. DPLL(T) for Optimization

of the SMT optimization problem, and CurSol is the optimal solution of the current
assignment during the search.

At the beginning of the algorithm, the propositional skeleton of the SMT formulaφ is
extracted and denoted as PS. After Boolean constraint propagation (BCP()), if the cur-
rent assignmentα already satisfies the Boolean formulaPS, the subroutineMiniCube
is called to the minimum cube of α.

When the minimum cube is obtained, the algorithm calls a linear programming pack-
age to compute the optimal solution of the cube. If the optimal solution CurSol exists,
the algorithm replaces OptSol with CurSol if the latter is smaller, and call the sub-
routine FeaRegExpan to eliminate redundant constraints from α. Otherwise, α is
inconsistent and PostCheck is called to reduce it. Then its negation ¬α is added to
PS so that the feasible region associated with the reduced α would not be counted more
than once. It is a blocking clause, ruling out all the assignments in the bunch related to
the reduced α. The algorithm terminates when there is no model for PS and returns
OptSol, or when an unbounded solution is discovered.

Although Figure 3 describes the optimization approach under the assumption that
all linear constraints are defined over real numbers, it can also handle integer linear
constraints with slight modification. Firstly, in line 14, the LP relaxation of the integer
linear programming is solved. Then if CurSol is smaller than OptSol, T̂ h(α) is solved
with integer linear programming, otherwise there is no need to compute the integer op-
timal solution, and “feasible region expansion” strategy is applied w.r.t. the real optimal
solution CurSol.

Solving Generalized Optimization Problems Subject to SMT Constraints 255

4 Implementation and Experimental Results

The algorithm was implemented using the SAT solver MiniSat 2.0 [5], which serves
as the search engine for the Boolean structure of the SMT(LAC) instance. The linear
programming tool Cplex [8] is integrated for consistency checking and optimization
w.r.t. a set of linear constraints. A laptop with Core 2 duo 2.10 GHz CPU running 32-
bit linux was used for the experiments.

To study the effectiveness of the aforementioned techniques, we randomly gener-
ated a number of SMT(LAC) instances whose propositional skeletons are in CNF, and
the length of clauses varies from 3 to 5. We compared both the running times and the
numbers of calls to Cplex on these random instances in three settings: with no pruning
strategy, with only “optimization in bunches”, and with both the “bunch” and “feasible
region expansion” employed. The results are listed in Table 1, where ‘-’ represents a
timeout of 30 minutes. Obviously each of the pruning techniques can reduce the run-
ning time and number of calls significantly, even by several orders of magnitude in
some cases. The denotations #LC, #C, #V and #calls represent the number of linear
constraints, clauses, numerical variables and calls to Cplex, respectively.

We also compared the performance of our program with Cplex on some random
instances. The inputs for Cplex are mixed integer linear programming problems trans-
lated from SMT(LAC) instances by introducing “Big-M” constraints. Table 2 lists the
running results (where OptSMT denotes our program), which indicate that our method
outperforms MILP on instances with large number of boolean constraints.

Table 1. Comparison of Techniques

No Pruning Bunch Bunch&FRE
(#LC #C #V) Time #calls Time #calls Time #calls

(20 40 15) - 124.34 15,228 0.05 52
(20 50 9) 26.66 17,595 0.92 1,175 0.15 262
(20 50 10) - 227.73 19,453 0.06 79

(20 100 10) 89.42 35,463 8.66 5,236 0.32 383
(40 400 20) - 219.61 23,192 18.03 4,908
(40 500 20) - 1178.80 44,759 47.41 9,421

(100 800 60) 498.49 19,844 136.17 3,820 25.72 804
(100 700 80) - 215.18 3,976 47.95 913
(100 1000 60) 209.57 5,160 24.75 693 5.53 139

Table 2. Comparison with Cplex

Parameters Time
#LC #C #V OptSMT Cplex
100 600 50 78.08 83.42
100 800 50 0.12 31.22
100 1000 50 0.05 14.52
200 1000 100 16.63 4.40
200 1000 120 0.19 4.91
200 1200 100 5.71 34.10
200 1400 100 242.35 -
200 1600 100 5.54 -
200 2000 100 0.96 -

The pruning techniques are effective for integer linear constraints as well. Here we
just give an example instead of a thorough evaluation. Let us consider an instance of rate
monotonic scheduling problem which has been introduced in the background section.
It consists of 4 tasks, with characteristics defined as {T1 = 100, T2 = 150, T3 =
210, T4 = 400}, and {20 ≤ C1 ≤ 60, 20 ≤ C2 ≤ 75, 30 ≤ C3 ≤ 100, 30 ≤ C4 ≤
150}. Our program finds an optimal solution {C1 = 33, C2 = 20, C3 = 30, C4 =
148}, with the optimal value 0.9762. Cplex is called 59 times, and the running time
is 0.028s. If the “feasible region expansion” technique is disabled, there are 75 calls

256 F. Ma, J. Yan, and J. Zhang

to Cplex and the running time is 0.040s. However, if both techniques are disabled, the
number of calls grows to 2835, and it takes 4.123s to find the same solution.

We also did experiments on real optimization problems in software testing area. For
instances with dozens of integer variables, our program can find the optimal solution
within 0.1s, which is quite useful to software testing practitioners.

5 Related Works and Discussion

The problem studied in this paper is a generalization of SMT, and also a generalization
of the traditional optimization (linear programming) problem.

As we mentioned at the beginning, there are quite some works on solving the SMT
problem. But few of them care about optimization, except for two recent works in [3]
and [13] which discuss a variant of weighted Max-SAT problem, namely weighted
Max-SMT. Each clause of the SMT formula is associated with some weight or cost.
The task is to find a feasible assignment such that the total weight of satisfied clauses
are maximized, or a given cost function is minimized. It is possible to translate weighted
Max-SMT into our optimization problem in general. However, weighted Max-SMT has
its own features, and deserves independent study.

Many works on constraint solving and constraint programming (CP) can be extended
to deal with optimization. In particular, Hooker and his collaborators have been advocat-
ing the tight integration of CP and classical optimization techniques (like mixed integer
linear programming) [7]. One promising approach is mixed logic linear programming
(MLLP) which extends MILP by introducing logic-based modeling and solutions [9].
However, it seems that the constraints they considered have simpler logical structures
than those studied in this paper. We did not compare with their work for we can only
find a demo version of their tool and our experimental instances cannot be translated
into the demo tool’s input automatically.

Cheng and Yap studied search space reduction methods for constraint optimization
problems [2] where the constraints are of some special forms. The variables are all
0-1 integer variables and the constraints are basically linear equations. The methods
perform quite well on the Still-Life problem. We will investigate whether they will be
helpful on the more general problems.

6 Concluding Remarks

Optimization problems occur naturally in various important applications. Traditionally
the constraint part in such a problem is a set of inequalities between arithmetic ex-
pressions. In this paper, we investigate a generalized class of optimization problems
constrained by arbitrary Boolean combinations of linear inequalities. Based on the
DPLL(T) framework for SMT, we present an exact optimization algorithm augmented
with two efficient pruning techniques. The experimental results show that our approach
is very promising. A significant future study is to incorporate more theories into the
framework.

Solving Generalized Optimization Problems Subject to SMT Constraints 257

Acknowledgements. The work is supported by the National Natural Science Foun-
dation of China (NSFC) under grant No. 61100064 and No. 60903049, and partially
funded by the State Key Laboratory of Rail Traffic Control and Safety of Northern
Jiaotong University. The authors are grateful to Tian Liu for his comments on an earlier
version of the paper.

References

1. Barrett, C.W., Tinelli, C.: CVC3. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS,
vol. 4590, pp. 298–302. Springer, Heidelberg (2007),
http://www.cs.nyu.edu/acsys/cvc3

2. Cheng, K.C., Yap, R.H.C.: Search space reduction and Russian doll search. In: Proceedings
of the 22nd AAAI Conference on Artificial Intelligence (AAAI 2007) (2007)

3. Cimatti, A., Franzén, A., Griggio, A., Sebastiani, R., Stenico, C.: Satisfiability Modulo the
Theory of Costs: Foundations and Applications. In: Esparza, J., Majumdar, R. (eds.) TACAS
2010. LNCS, vol. 6015, pp. 99–113. Springer, Heidelberg (2010)

4. Dutertre, B., de Moura, L.: A Fast Linear-Arithmetic Solver for DPLL(T). In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006),
http://yices.csl.sri.com/

5. Eén, N., Sorensson, N.: The MiniSat Page (2011), http://minisat.se/
6. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Deci-

sion Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188.
Springer, Heidelberg (2004)

7. Hooker, J.N.: Logic, optimization, and constraint programming. INFORMS Journal on Com-
puting 14, 295–321 (2002)

8. IBM. Cplex, http://www-01.ibm.com/software/integration/
optimization/cplex-optimization-studio/

9. Hooker, J.N., Osorio, M.A.: Mixed logical-linear programming. Discrete Appl. Math. 96-97,
395–442 (October 1999)

10. Kroening, D., Strichman, O.: Decision Procedures. Springer (2008)
11. Ma, F., Liu, S., Zhang, J.: Volume Computation for Boolean Combination of Linear Arith-

metic Constraints. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 453–468.
Springer, Heidelberg (2009)

12. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008),
http://research.microsoft.com/projects/z3/index.html

13. Nieuwenhuis, R., Oliveras, A.: On SAT Modulo Theories and Optimization Problems. In:
Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 156–169. Springer, Heidelberg
(2006)

http://www.cs.nyu.edu/acsys/cvc3
http://yices.csl.sri.com/
http://minisat.se/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://www-01.ibm.com/software/integration/optimization/cplex-optimization-studio/
http://research.microsoft.com/projects/z3/index.html

258 F. Ma, J. Yan, and J. Zhang

A Proofs

Proof of Proposition 1

Proof. Firstly, we show that if the left side of the equation is infeasible (doesn’t have
any solution), so is the right side. Assume that the left side is infeasible, which means
that {Min(f(x), α)|α ∈ S} is an empty set, while the right side has an optimal solu-
tion, namely x�. For a Boolean variable bi which is not assigned by αc, its truth value
can be determined w.r.t x�: if x� satisfies T̂ h(bi), then bi is true. Denote the set of such
literals by α�

c , we now get a full assignment α� = αc ∪ α�
c . Obviously x� satisfies

T̂ h(α�), and x� is the optimal solution of Min(f(x), α�). Since S is a bunch with a
cube αc, we have α� ∈ S. Therefore, the assumption that {Min(f(x), α)|α ∈ S} is
empty is contradicted.

Now assume that x� is the optimal solution to the left side of the equation, and its cor-
responding assignment is α�, i.e., min{Min(f(x), α)|α ∈ S} = Min(f(x), α�) =

f(x�). Since αc ⊆ α�, x� is a feasible solution of T̂ h(αc), Min(f(x), αc) is not infea-
sible and we have f(x�) ≤ Min(f(x), αc). Suppose Min(f(x), αc) has an optimal
solution x′, or formally Min(f(x), αc) = f(x′). A full assignment α′ can be con-
structed w.r.t x′ in the same way as we have mentioned above. Because x′ satisfies
T̂ h(α′), we have f(x′) ≤ Min(f(x), α′). Also since αc ⊆ α′, we have α′ ∈ S and
thus Min(f(x), α′) ≤ f(x�). Therefore, f(x′) = f(x�).

The situation that the optimal value is unbounded can be viewed as a special case of
the second situation. �
Proof of Proposition 2

Proof. A well-known fact about linear programming is that if the optimal solution ex-
ists, it must be one of vertices of the polytope defined by the linear constraints. This
property is essential to our proof. We denote the polytope defined by Ax ⊗ b as P , and
the polytope without the constraint Aix ⊗i bi as P ′.

We firstly explain that with Aix ⊗i bi removed from the constraints, the linear
programming problem still has an optimal solution. Assume without the constraint
Aix ⊗i bi, the problem is unbounded. There must exist a point x1 such that c�x1 <
c�xopt, and satisfies all constraints except for Aix ⊗i bi. Since the two points xopt

and x1 are on different sides of the hyperplane Aix = bi, the line connecting the two
points will intersect with the hyperplane at some point, say x2. Obviously x2 satisfies
all constraints includingAix⊗i bi. Moreover, because of the monotonicity of the objec-
tive function, we have c�x1 < c�x2 < c�xopt. So x2 is a solution and is smaller than
xopt, contradicting the precondition of the theorem. As a result, the linear programming
problem is still bounded without the constraint Aix ⊗i bi. Also, the possibility for the
problem to be infeasible can be directly ruled out. There must be an optimal solution of
the problem.

Suppose the new optimal solution is x′
opt. According to the property of linear pro-

gramming, it is a vertex of P ′. Similarly, xopt is a vertex of P . Since P ′ is obtained via
removing the hyperplane Aix ⊗i bi from P , each vertex of P ′ is also a vertex of P . So
we have c�xopt ≤ c�x′

opt. Because the point xopt is out of the hyperplane Aix = bi, it
is also a vertex of P ′ and we have c�x′

opt ≤ c�xopt. As a result, xopt and x′
opt are the

same optimal solution, and the constraint Aix⊗i bi is redundant. �

Solving Difficult SAT Problems by Using

OBDDs and Greedy Clique Decomposition�

Yanyan Xu1, Wei Chen2, Kaile Su3,4, and Wenhui Zhang5

1 School of Information Science and Technology, Beijing Forestry University, China
xuyyxu@gmail.com

2 Naveen Jindal School of Management, The University of Texas at Dallas, USA
wei.chen@utdallas.edu

3 College of Mathematics Physics and Information Engineering,
Zhejiang Normal University, Jinhua, China

4 School of Electronics Engineering and Computer Science, Peking University, China
kailepku@gmail.com

5 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences

zwh@ios.ac.cn

Abstract. In this paper, we propose an OBDD-based algorithm called
greedy clique decomposition, which is a new variable grouping heuristic
method, to solve difficult SAT problems. We implement our algorithm
and compare it with several state-of-art SAT solvers including Minisat,
Ebddres and TTS. We show that with this new heuristic method, our
implementation of an OBDD-based satisfiability solver can perform bet-
ter for selected difficult SAT problems, whose conflict graphs possess a
clique-like structure.

1 Introduction

Boolean formula satisfaction problems and SAT solving techniques play an ex-
tremely important role in theoretical computer science as well as practice. The
question of whether there exists a complete polynomial time SAT algorithm is a
key problem for theoretical computer science and is open for many years [1]. On
the other hand, the practical use of the SAT solvers is also very important. Ap-
plications of SAT solving techniques range from microprocessor verification [2]
and field-programmable gate array design [3] to solving AI planning problems
by translating them into Boolean formulas [4].

Symbolic SAT solving is an approach where the clauses of a CNF formula are
represented by OBDDs. These OBDDs are then conjoined, and checking satisfi-
ability is reduced to the question of whether the resulting OBDD is identical to
false or true. Using OBDDs for SAT is an active research area [5,6,7]. It turns

� Supported by the Beijing Forestry University Young Scientist Fund No.
BLX2009013, the Chinese National 973 Plan (No.2010CB328103), the ARC grants
FT0991785 and DP120102489, the National Natural Science Foundation of China
under Grant No. 60833001, and the CAS Innovation Program.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 259–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

260 Y. Xu et al.

out that OBDDs and search based techniques are complementary [8,9]. There
are problems for which one works better than the other.

Excellent performance breakthroughs have been made in solving SAT prob-
lems for these years. New algorithms and implementation techniques focusing on
real life SAT problems are proposed and many benchmark problems are solved
by the state-of-the-art solvers [10,3] in time proportional to the size of the input.
It seems that the difficulty of many SAT benchmark problems consists in their
size only. A lot of smaller benchmark problems are solved in real-time by those
state-of-the-art solvers. It is very hard to compete with these best SAT solvers
on these benchmark problems. That is why we are concentrating on difficult
SAT problems only, where the word difficult means these problems are difficult
for these state-of-the-art SAT solvers.

In [11], we show that at least for pigeonhole principles PHPn+1
n , which are

difficult SAT problems, there exists a direct OBDD proof of polynomial size.
A natural next step is to try to generalize the way we find the grouping of
variables in the pigeonhole case to an automatic mechanism, and apply it to other
structural similar problems with the hope that we can get a polynomial time
algorithm for these instances. We get the inspiration from Pavel Surynek [12]
and the technique of greedy clique decomposition is exactly what we need in this
situation.

In this paper, we explore the possibility of applying greedy clique decom-
position as the variables grouping heuristics to an OBDD-based SAT solver.
Experiments show that this method is quite efficient for some typical problems
which do possess a clique-like structural property in their conflict graph com-
pared with some well-known satisfiability solvers. Moreover, our implementation
can deal with both satisfiable and unsatisfiable instances. Original method pro-
posed by [12] can only works well when the input is an unsatisfiable formula and
it is only a preprocessing procedure. Moreover, it is not based on OBDDs.

The rest of this paper is organized as follows: First, we give the details of
OBDD-based satisfiability solving in Section 2. Then, we introduce how to ap-
ply the idea of clique decomposition as the grouping of variables heuristics in
Section 3. Thereafter, in Section 4 we present the experimental results. Finally,
we conclude this paper in Section 5.

2 OBDD-Based Satisfiability Solving

In this section, we first introduce Ordered Binary Decision Diagrams(OBDDs),
and then we give the OBDD-based satisfiability solving procedure.

2.1 Ordered Binary Decision Diagrams(OBDDs)

Ordered Binary Decision Diagrams (OBDDs) introduced by Bryant [13] can rep-
resent Boolean functions as DAGs (directed acyclic graphs). OBDD is a canonical
and compact representation according to two reduction rules. During the last
decade, powerful search techniques using OBDDs have been developed in the area

Solving Difficult SAT Problems 261

of symbolic model checking [14] and replanning [15,16,17]. In the most common
form as reduced OBDDs, each Boolean function is uniquely represented by an
OBDD, and thus all semantically equivalent formulas share the same OBDD.
OBDDs are based on the Shannon’s Expansion

f = ITE(x, f1, f0) = (x → f1) ∧ (¬x → f0),

decomposing f into its co-factors f0 and f1, where f0 (resp. f1) is obtained by
setting variable x into false (resp. true) in f . By repeatedly applying Shannon’s
Expansion to a formula until no more variables are left, its OBDD representation
is obtained. Merging equivalent nodes and deleting nodes with coinciding co-
factors result in reduced OBDDs. Fig. 1 shows the OBDD for the formula f =
x ∨ (y ∧ ¬z). In Fig. 1, the dashed line means the variable is set into 0 and the
solid line means 1.

x

y

1

z

0

Fig. 1. OBDD for f = x ∨ (y ∧ ¬z) with the variable order x>y>z

Algorithm 1. BDD-and(f,g)

BDD-and(BDDf ,BDDg)1

Input: BDDf ,BDDg

Output: BDDf∧g

begin2

if BDDf = 0 or BDDg = 0 then return 0;3

if BDDf = 1 then return BDDg else if BDDg = 1 then return BDDf ;4

(x,BDDf0 ,BDDf1) = decompose(BDDf);5

(y,BDDg0 ,BDDg1) = decompose(BDDg);
if x < y then return newNode(y,BDD-and(f, g0),BDD-and(f, g1));6

if x = y then return newNode(x,BDD-and(f0, g0),BDD-and(f1, g1));7

if x > y then return newNode(x,BDD-and(f0, g),BDD-and(f1, g));8

end9

To generate OBDDs for formulas, we should build them bottom-up starting
with basic OBDDs for variables or literals, and then constructing more complex
OBDDs by using OBDD operations (e.g., BDD-and, BDD-or) for logical con-
nectives. We give the BDD-and algorithm (Algorithm 1) explicitly as we need it
in this paper. Here, decompose breaks down a non-terminal OBDD node into its
constituent components, i.e., its variable and co-factors. The function newNode
constructs a new OBDD node if it doesn’t exist, and otherwise returns the al-
ready existent node. The algorithm is based on a given OBDD variable order.

262 Y. Xu et al.

2.2 OBDD-Based Satisfiability Solving

Given an unsatisfiable CNF formula, we first convert each of its clauses into
corresponding OBDD, and then partition its variable set X into several disjoint
buckets (sets): X1, X2, ..., Xk, each containing one or several variables. After
that we join all the clauses in which the variables in Xi appear, and denote the
OBDD we obtained by F (Xi) (note that we follow the order F (X1), F (X2), . . .,
F (Xk) when constructing these F (Xi), and each clause is joined exactly once,
i.e., if a clause is first joined in F (Xk) with k < i, it won’t be joined in F (Xi)
even if variables in Xi do appear in this clause), do the following:

∃Xk.(...∃X2.(∃X1.(F (X1)) ∧ F (X2))... ∧ F (Xk)).

That is, we treat each bucket in turn, and eliminate all variables in that bucket
at a time using existential quantification.

In this case, how we divide X into these buckets and the relative order
these buckets are quantified out play an important role in affecting the sizes
of the intermediate OBDDs. The existing implementation and tools known to
us [18,19,20] treat each variable as a single bucket and no involved efforts are
made to discover the more natural variable grouping of the input formulas. In
this paper we provide a method to discover effective variable groupings automat-
ically and utilize this information to improve the performance of OBDD-based
satisfiability solving, at least for some particular subclasses of the input formu-
las. The greedy clique decomposition may suit this purpose well (note that in
this case, we treat each clique as a bucket).

3 Greedy Clique Decomposition

A clique is a complete subgraph. The greedy clique decomposition decomposes
the conflict graph of the input formula into different cliques using a simple greedy
method.

Definition 1 (Conflict graph). A conflict graph G = (V,E) for a CNF for-
mula is defined as follows: Let V be the set of all its variables 1, for different
x, y ∈ V , edge(x, y) ∈ E iff there is a length 2 clause containing exactly these
two variables.

From the definition, it is easy to see that constructing a conflict graph from a
given CNF instance only takes time linear to the instance size.

The pseudo code for the greedy clique decomposition algorithm is given in Algo-
rithm 2. Note that this is a quite straight-forward approximation algorithm. First

1 The original description of the consistent graph [12] is more complicated and is based
on the concept of arc-consistency and singleton arc-consistency. Our definition is a
simplified version. However, the essential idea remains the same. Note also that
in [12], V is defined to contain all literals. In our own experimental experience, this
is not necessary.

Solving Difficult SAT Problems 263

wefind the vertexwith the largest degree in the conflict graph and thenput this ver-
tex and all its neighbors in the conflict graph into the first clique, then all vertices
in the first clique and edges connecting from/to these vertices are removed from
the conflict graph, and we find the vertex with the largest degree in the remaining
graph, ..., keep doing this until we are left with only non-connected vertices in the
remaining graph, then all such vertices are treated as a single clique.

Algorithm 2. Greedy Clique Decomposition

GCD(G)1

Input: the conflict graph G = (V,E)
Output: clique[clique num]
begin2

clique num=0;3

find the vertex v with the largest degree n in graph G;4

while (n !=0) do5

add v and all its neighbors to clique[clique num];6

clique num++;7

delete v and its neighbors and all edges connecting from/to these8

vertices from G;
find the new vertex v with the largest degree in the remaining graph G;9

set n = this degree number;10

add all remaining vertices in G to clique[clique num];11

end12

We illustrate the concept of the conflict graph and this algorithm by an ex-
ample: the pigeonhole problem PHP4

3 with 4 pigeon and 3 holes expressing that
we can put 4 pigeons into 3 holes without putting 2 pigeons into one and the
same hole, which is obviously unsatisfiable. Let variable pij denotes that the pi-
geon i is in the hole j, we encode this problem using the following set of clauses
(non-onto version):

{p11 ∨ p12 ∨ p13, p21 ∨ p22 ∨ p23, p31 ∨ p32 ∨ p33, p41 ∨ p42 ∨ p43,
¬p11 ∨ ¬p21, ¬p11 ∨ ¬p31, ¬p21 ∨ ¬p31, ¬p11 ∨ ¬p41, ¬p21 ∨ ¬p41, ¬p31 ∨ ¬p41,
¬p12 ∨ ¬p22, ¬p12 ∨ ¬p32, ¬p22 ∨ ¬p32, ¬p12 ∨ ¬p42, ¬p22 ∨ ¬p42, ¬p32 ∨ ¬p42,
¬p13 ∨ ¬p23, ¬p13 ∨ ¬p33, ¬p23 ∨ ¬p33, ¬p13 ∨ ¬p43, ¬p23 ∨ ¬p43, ¬p33 ∨ ¬p43}.
The corresponding conflict graph is shown in Fig. 2. It consists of three cliques:

{p11, p21, p31, p41}, {p12, p22, p32, p42}, {p13, p23, p33, p43}.

11P 21P

31P 41P

12P 22P

32P 42P

13P 23P

33P 43P

Fig. 2. The Conflict Graph for Instance PHP4
3

264 Y. Xu et al.

It can be seen that the algorithm correctly decomposes the conflict graph in
Fig. 2 to these three clique components. One can easily see that for PHPn+1

n ,
there will be n cliques in the corresponding conflict graph:

{p11, p21, ..., p(n+1)1}, {p12, p22, ..., p(n+1)2}, ..., {p1n, p2n, ..., p(n+1)n},

and this algorithm still correctly decomposes the corresponding conflict graph.
For pigeonhole problems, viewing each clique as a bucket, we know theoret-

ically that we will get a polynomial size proof (in this case, the relative order
of how these buckets are eliminated does not matter) [11]. Since the worst-case
time complexity of this intuitive approximation algorithm is only quadratic to
the conflict graph size, we are sure that we can implement the OBDD-based
satisfiability solving algorithm for the pigeonhole problems in a practical sense
(which is rather inspiring, since the existing OBDD-based solvers [18,19,20] can’t
handle pigeonhole cases efficiently).

It is natural to try this algorithm on other problems of which the conflict
graphs are similar to the pigeonhole case, so we can improve the performance of
the problems. With our experimental results we show that this is indeed the case.
Readers are referred to Section 4 for more details. For the intuitive effectiveness
of putting each clique as a bucket when doing variable elimination, we argue that
when representing a Boolean function using an OBDD, the more two variables
interact with each other, the less size OBDD we can get by putting these variables
nearby each other in the variable order. In other words, the dependencies between
these variables are the main cause for the OBDD size explosion. It follows that
if we can put all these variables into a clique and eliminate them together, it will
reduce the sizes of intermediate OBDDs.

4 Experimental Results

Our experiments2 are carried out on a server machine with 32 GB main memory
and four 3 GHz Xeon CPUs running Linux 2.6.9. No parallel mechanism are
used. Our implementation makes use of the CUDD package [21]. We use the
benchmark suite [22]. Timeout is set to 10 minutes (600 seconds). For some
solvers (Ebddres and Minisat), we list both the runtime (seconds) and the peak
memory usage (MB), for others (TTS, SSAT and our implementation), we list
the runtime only because the peak memory usage is negligible.

4.1 The SAT Solvers Used in Our Experiments

Minisat is the winner for the SAT 2005 Competition for three industrial cate-
gories and one crafted category. It also won the SAT 2007 and 2009 Competition.
It is considered one of the best SAT solvers.

2 Our implementation along with the set of benchmarks we used can be downloaded
from http://www.utdallas.edu/˜wxc103020/bddsat.tar.bz2.

Solving Difficult SAT Problems 265

Table 1. Test instances and the corresponding clique decomposition

Instance #vars/ #clauses satisfiable? clique decomposable? cliques
hole 7 56/ 204 No Yes 8*7
hole 8 72/ 297 No Yes 9*8
hole 9 90/ 415 No Yes 10*9
hole 10 110/ 561 No Yes 11*10
hole 11 132/ 738 No Yes 12*11
hole 12 156/ 949 No Yes 13*12
hole 13 182/ 1197 No Yes 14*13
hole 14 210/ 1485 No Yes 15*14
hole 20 420/ 4221 No Yes 21*20
hole 30 930/ 13981 No Yes 31*30
chnl10 11 220/ 1122 No Yes 11*20
chnl10 12 240/ 1344 No Yes 12*20
chnl10 13 260/ 1586 No Yes 13*20
chnl11 12 264/ 1476 No Yes 12*22
chnl11 13 286/ 1742 No Yes 13*22
chnl11 20 440/ 4220 No Yes 20*22
fpga10 8 sat 120/ 448 Yes Yes 8*10+5*8
fpga10 9 sat 135/ 549 Yes Yes 9*10+5*9
fpga12 8 sat 144/ 560 Yes Yes 8*12+6*8
fpga12 9 sat 162/ 684 Yes Yes 9*12+6*9
fpga12 11 sat 198/ 968 Yes Yes 11*12+6*11
fpga12 12 sat 216/ 1128 Yes Yes 12*12+6*12
fpga13 9 sat 176/ 759 Yes Yes 9*13+7*5+6*4
fpga13 10 sat 195/ 905 Yes Yes 10*13+7*5+6*5
fpga13 12 sat 234/ 1242 Yes Yes 12*13+7*6+6*5
Urq3 5 46/ 470 No No n/a
Urq4 5 74/ 694 No No n/a
Urq5 5 121/ 1210 No No n/a
Urq6 5 180/ 1756 No No n/a
Urq7 5 240/ 2194 No No n/a
Urq8 5 327/ 3252 No No n/a

Ternary Tree Solver (TTS) is the silver medal winner for the SAT 2007 Com-
petition in the crafted category, UNSAT specialization, known for dealing with
small but hard instances.

Ebddres is an OBDD-based satisfiability solver [19]. Note that the primary
purpose of this solver is to generate the proof of unsatisfiability, which in turn
is to be utilized in the hardware verification.

SSAT is a preprocessing tool based on the idea of clique consistency [12]. It can
decide very fast if the input instance is unsatisfiable and clique decomposable.
However, for satisfiable problems, it serves only as a preprocessor.

4.2 Test Instances and Corresponding Clique Decomposition

Detailed information about the instances we used and the corresponding clique
decomposition of their conflict graphs are presented in Table 1. In the first col-
umn we list the instances. There are 4 sets of instances used in our evaluation:
the pigeonhole cases (“hole”), the randomized urquhart instances (“Urq”), and
the field programmable gate array routing instances (“chnl” and “fpga”). We
list the number of variables and the number of clauses of each instance in the
second column. We list whether an instance is satisfiable in the third column and
whether an instance is clique decomposable using our algorithm in the fourth

266 Y. Xu et al.

column. The detailed clique information of corresponding conflict graph of each
instance is given in the last column. For example, “8*10” indicates that there
are 10 cliques of size 8 in the corresponding conflict graph, and “8*10+5*8” indi-
cates that there are 10 cliques of size 8 and 8 cliques of size 5 in the corresponding
conflict graph. Careful readers might notice that the number of vertices in this
column equals the number of variables of the instance. We would like to point
out that for “Urq” cases, our algorithm fails to find useful clique information
and hence as we can see from Table 2, the performance of our implementation
is quite poor.

4.3 Results and Analysis

Analysis of the results For each F (Xi) mentioned in Section 2, there are two ways
of obtaining the corresponding OBDD: linear computation and tree computation.
“–ve” denotes variable elimination with linear computation. “–tree” denotes tree
computation without variable elimination. “–vetree” corresponds to variable elim-
ination with tree computation. As we can see from Table 2, using Ebddres, going
from –ve to –vetree we can get a constant factor speedup. The results are simi-
lar in our implementation. Going from linear to tree computation we can get an

Table 2. Experimental results

Instance Ebddres –ve Ebddres –tree Ebddres –vetree Minisat TTS SSAT our +tree
hole 7 0.03/3.5 0.00/0.6 0.03/3.5 0.05/0.11 0.09 0.01 0.02 0.01
hole 8 0.17/14.0 0.01/2.3 0.14/14.0 0.27/9.23 0.28 0.01 0.02 0.01
hole 9 0.76/53.1 0.01/2.0 0.65/56.1 1.56/9.49 0.08 0.03 0.02 0.02
hole 10 3.14/212.1 0.14/15.6 2.22/132.1 29.98/10.53 0.22 0.05 0.03 0.02
hole 11 12.40/816.1 0.08/7.8 7.86/448.1 598.36/14.06 0.43 0.09 0.04 0.02
hole 12 40.13/1696.1 0.29/27.3 27.91/1344.1 t/o 1.07 0.14 0.04 0.03
hole 13 150.97/6528.1 1.96/124.1 88.41/3584.1 t/o 2.59 0.25 0.06 0.03
hole 14 552.01/18944.1 1.74/114.1 320.70/10752.1 t/o 7.09 0.44 0.09 0.03
hole 20 t/o t/o t/o t/o t/o 5.46 0.58 0.05
hole 30 t/o t/o t/o t/o t/o 54.09 5.58 0.20
chnl10 11 3.14/212.1 0.24/18.1 2.25/132.1 29.49/18.61 0.20 0.23 0.03 0.03
chnl10 12 3.66/212.1 0.07/9.1 3.10/224.1 49.55/12.84 0.23 0.33 0.04 0.03
chnl10 13 5.37/408.1 0.09/9.2 3.45/224.1 46.90/13.52 0.26 0.48 0.05 0.03
chnl11 12 12.44/816.1 0.13/15.7 7.79/448.1 367.69/16.05 0.43 0.46 0.05 0.03
chnl11 13 14.07/816.1 0.22/15.7 9.03/448.1 t/o 0.51 0.62 0.05 0.03
chnl11 20 53.41/3104.3 0.81/62.4 23.73/1184.3 t/o 1.02 5.32 0.17 0.05
fpga10 8 sat 1.19/102.1 0.82/57.1 0.84/56.1 0.00/9.11 0.07 n/a 0.02 0.02
fpga10 9 sat 1.51/112.1 0.52/54.6 1.29/84.1 4.38/9.88 0.15 n/a 0.03 0.02
fpga12 8 sat 5.91/376.1 2.85/218.1 4.09/224.1 0.00/9.11 0.16 n/a 0.03 0.03
fpga12 9 sat 9.34/424.1 11.05/852.1 7.85/448.1 0.00/9.23 0.34 n/a 0.03 0.03
fpga12 11 sat 23.26/1184.1 10.91/872.1 16.80/896.1 t/o 1.27 n/a 0.04 0.03
fpga12 12 sat 33.07/1696.1 3.10/218.1 20.76/1056.1 49.56/12.28 0.61 n/a 0.05 0.03
fpga13 9 sat 20.41/848.1 31.55/1704.1 16.24/896.1 0.00/9.24 0.37 n/a 0.04 0.03
fpga13 10 sat 39.28/1696.1 37.58/1744.1 31.97/1792.1 0.00/9.23 0.73 n/a 0.04 0.03
fpga13 12 sat 78.38/3392.1 46.47/3368.1 51.55/2112.1 0.00/9.24 0.59 n/a 0.06 0.03
Urq3 5 0.01/0.4 0.01/1.2 0.01/0.3 36.40/10.15 0.30 t/o 0.03 0.02
Urq4 5 0.01/0.8 0.83/54.6 0.01/0.6 t/o 5.30 t/o 0.42 0.12
Urq5 5 0.03/2.2 t/o 0.02/1.2 t/o t/o t/o 5.11 0.93
Urq6 5 0.04/3.2 t/o 0.04/2.3 t/o t/o t/o t/o t/o
Urq7 5 0.06/6.2 t/o 0.05/3.3 t/o t/o t/o t/o t/o
Urq8 5 0.12/12.2 t/o 0.08/6.4 t/o t/o t/o t/o t/o

Solving Difficult SAT Problems 267

obvious speedup. Our implementation (our) can be seen as a slightly advanced
version than Ebddres with –vetree, in the sense that we use advanced heuristic
for dividing all variables into several subgroups (buckets), and we quantify out all
variables in each bucket altogether each time. It can be seen in the experimental
results that identifying subgroups in variables can be sometimes useful compar-
ing to the performance of the DPLL-based solvers. Moreover, our implementation
using the greedy clique decomposition plus tree computation(+tree) outperforms
most other solvers in Table 2.

SSAT Solver As mentioned before, SSAT solver is merely a preprocessing tool.
It can be seen from the results that putting greedy clique decomposition in the
framework of OBDD-based satisfiability solving improves its performance, since
we can decide satisfiable instance fast and unsatisfiable instances faster than
SSAT. Note that our “fpga” instances are all satisfiable and therefore SSAT can
not be used to run these instances.

5 Conclusions

We introduce an algorithm to solve difficult SAT problems by using OBDDs and
greedy clique decomposition in this paper. Compared with some state-of-the-
art SAT solvers, our implementation shows that for problems of whose conflict
graphs possessing a clique-like structure, this algorithm is quite effective.

References

1. Stephen, A.: Cook. The Complexity of Theorem-Proving Procedures. In: STOC,
pp. 151–158. ACM (1971)

2. Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures
in the formal verification of superscalar and VLIW microprocessors. J. Symb.
Comput. 35(2), 73–106 (2003)

3. Nam, G.-J., Sakallah, K.A., Rutenbar, R.A.: A new FPGA detailed routing ap-
proach via search-based Boolean satisfiability. IEEE Trans. on CAD of Integrated
Circuits and Systems 21(6), 674–684 (2002)

4. Kautz, H.A., Selman, B.: Planning as Satisfiability. In: ECAI, pp. 359–363 (1992)
5. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M., Vanfleet,

W.M.: SBSAT: a State-Based, BDD-Based Satisfiability Solver. In: Giunchiglia, E.,
Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 398–410. Springer, Heidelberg
(2004)

6. Damiano, R.F., Kukula, J.H.: Checking satisfiability of a conjunction of BDDs. In:
DAC, pp. 818–823. ACM (2003)

7. Pan, G., Vardi, M.Y.: Search vs. Symbolic Techniques in Satisfiability Solving.
In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250.
Springer, Heidelberg (2005)

8. Rish, I., Dechter, R.: Resolution versus Search: Two Strategies for SAT. J. Autom.
Reasoning 24(1/2), 225–275 (2000)

9. Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simu-
late each other polynomially. Discrete Applied Mathematics 130(2), 157–171 (2003)

10. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff:
Engineering an Efficient SAT Solver. In: DAC, pp. 530–535. ACM (2001)

268 Y. Xu et al.

11. Chen, W., Zhang, W.: A direct construction of polynomial-size OBDD proof of
pigeon hole problem. Inf. Process. Lett. 109(10), 472–477 (2009)

12. Surynek, P.: Solving Difficult SAT Instances Using Greedy Clique Decomposition.
In: Miguel, I., Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 359–374.
Springer, Heidelberg (2007)

13. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

14. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers ACM
(1993)

15. Yue, W., Xu, Y., Su, K.: BDDRPA*: An Efficient BDD-Based Incremental Heuris-
tic Search Algorithm for Replanning. In: Sattar, A., Kang, B.H. (eds.) AI 2006.
LNCS (LNAI), vol. 4304, pp. 627–636. Springer, Heidelberg (2006)

16. Xu, Y., Yue, W.: A Generalized Framework for BDD-based Replanning A* Search.
In: Kim, H.-K., Lee, R.Y. (eds.) SNPD, pp. 133–139. IEEE Computer Society
(2009)

17. Xu, Y., Yue, W., Su, K.: The BDD-Based Dynamic A* Algorithm for Real-
Time Replanning. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS,
vol. 5598, pp. 271–282. Springer, Heidelberg (2009)

18. Pan, G., Vardi, M.Y.: Symbolic Techniques in Satisfiability Solving. J. Autom.
Reasoning 35(1-3), 25–50 (2005)

19. Jussila, T., Sinz, C., Biere, A.: Extended Resolution Proofs for Symbolic SAT
Solving with Quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS,
vol. 4121, pp. 54–60. Springer, Heidelberg (2006)

20. Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Grigoriev,
D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006)

21. Somenzi, F.: CUDD: CU Decision Diagram Package, Release 2.4.1. Technical re-
port, University of Colorado at Boulder (2005)

22. Aloul, F.A., Ramani, A., Markov, I.L., Sakallah, K.A.: Solving difficult SAT
instances in the presence of symmetry. In: DAC 2002: Proceedings of the 39th
Conference on Design Automation, pp. 731–736. ACM, New York (2002)

Zero-Sum Flow Numbers of Regular Graphs

Tao-Ming Wang and Shih-Wei Hu

Department of Applied Mathematics,
Tunghai University,

Taichung, Taiwan 40704, R.O.C.
wang@thu.edu.tw

Abstract. As an analogous concept of a nowhere-zero flow for directed
graphs, we consider zero-sum flows for undirected graphs in this article.
For an undirected graph G, a zero-sum flow is an assignment of non-
zero integers to the edges such that the sum of the values of all edges
incident with each vertex is zero, and we call it a zero-sum k-flow if the
values of edges are less than k. We define the zero-sum flow number of
G as the least integer k for which G admitting a zero-sum k-flow. In this
paper, among others we calculate the zero-sum flow numbers for regular
graphs and also the zero-sum flow numbers for Cartesian products of
regular graphs with paths.

1 Introduction to Zero-Sum Flows

Throughout this paper, all terminologies and notations on graph theory can be
referred to the textbook by D. West[13]. Let G be a directed graph. A nowhere-
zero flow on G is an assignment of non-zero integers to each edge such that for
every vertex the Kirchhoff current law holds, that is, the sum of the values of
incoming edges is equal to the sum of the values of outgoing edges. A nowhere-
zero k-flow is a nowhere-zero flow using edge labels with maximum absolute
value k − 1 . Note that for a directed graph, admitting nowhere-zero flows is
independent of the choice of the orientation, therefore one may consider such
concept over the underlying undirected graph. A celebrated conjecture of Tutte
in 1954 says that every bridgeless graph has a nowhere-zero 5-flow. F. Jaeger
showed in 1979 that every bridgeless graph has a nowhere-zero 8-flow[6], and
P. Seymour proved that every bridgeless graph has a nowhere-zero-6-flow[9] in
1981. However the original Tutte’s conjecture remains open. There is another
analogous and more general concept of a nowhere-zero flow that uses bidirected
edges instead of directed ones, first systematically developed by Bouchet[4] in
1983. Bouchet raised the conjecture that every bidirected graph with a nowhere-
zero integer flow has a nowhere-zero 6-flow, which is still unsettled. Recently
another related nowhere-zero flow concept has been studied, as a special case of
bi-directed one, over the undirected graphs by S. Akbari et al.[2] in 2009.

Definition 1. For an undirected graph G, a zero-sum flow is an assignment
of non-zero integers to the edges such that the sum of the values of all edges

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 269–278, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

270 T.-M. Wang and S.-W. Hu

incident with each vertex is zero. A zero-sum k-flow is a zero-sum flow whose
values are integers with absolute value less than k.

S. Akbari et al. raised a conjecture for zero-sum flows similar to the Tutte’s
5-flow Conjecture for nowhere-zero flows as follows:

Conjecture. (Zero-Sum 6-Flow Conjecture) If G is a graph with a zero-
sum flow, then G admits a zero-sum 6-flow.

It was proved in 2010 by Akbari et al. [1] that the above Zero-Sum 6-Flow Con-
jecture is equivalent to the Bouchet’s 6-Flow Conjecture for bidirected graphs,
and the existence of zero-sum 7-flows for regular graphs were also obtained.
Based upon the results, they raised another weaker conjecture for regular graphs:

Conjecture. (Zero-Sum 5-Flow Conjecture for Regular Graphs) If G
is a r-regular graph with r ≥ 3, then G admits a zero-sum 5-flow.

In literature a more general concept flow number, which is defined as the
least integer k for which a graph may admit a k-flow, has been studied for both
directed graphs and bidirected graphs. We extend the concept in 2011 to the
undirected graphs and call it zero-sum flow numbers[12], and also considered
general constant-sum flows for regular graphs[11]. In this paper, we study
zero-sum flows over undirected graphs and calculate zero-sum flow numbers for
regular graphs and zero-sum flow numbers for Cartesian products of regular
graphs with paths.

2 Zero-Sum Flow Numbers

In the study of both nowhere-zero flows of directed graphs and bidirected graphs,
one considers a more general concept flow number, namely, the least number
of k for which a graph may admit a k-flow. Some authors used the term flow
index instead in literature. In 2011 [12] we consider similar concepts for zero-
sum k-flows:

Definition 2. Let G be a undirected graph. The zero-sum flow number F (G)
is defined as the least number of k for which G may admit a zero-sum k-flow.
F (G) = ∞ if no such k exists.

Obviously the zero-sum flow numbers can provide with more detailed information
regarding zero-sum flows. For example, we may restate the previously mentioned
Zero-Sum Conjecture as follow: Suppose a undirected graph G has a zero-sum
flow, then F (G) ≤ 6.

In 2011, We showed some general properties of small flow numbers, so that
the calculation of zero-sum flow numbers gets easier. It is well known that, for
nowhere-zero flows over a graph with orientation, a graph G admits a nowhere-
zero 2-flow if and only if it is Eulerian (every vertex has even degree). We obtain
the following for zero-sum flows:

Zero-Sum Flow Numbers of Regular Graphs 271

Lemma 3. (T. Wang and S. Hu [12]) A graph G has zero-sum flow number
F (G) = 2 if and only if G is Eulerian with even size (even number of edges) in
each component.

Proof . We put the proof here for completion:
”⇒”
Without loss of generality, we may assume G is connected. Since a graph G has
flow index F (G) = 2 meaning it admits a zero-sum 2-flow, thus the edge function
f(e) ∈ {1,−1}. For each vertex v ∈ V (G), the number of incident edges labeled
1 must equal to the number of incident edges labeled -1. Note that both numbers
are equal to 1

2deg(v), therefore deg(v) must be even, and G is Eulerian. On the
other hand, the number of all 1-edges (or (-1)-edges) in G is

1

2

∑
v∈V (G)

(
1

2
deg(v)) =

1

2
|E(G)|

which is an integer, so |E(G)| are even.

”⇐”
We label the edges in an Euler tour of G by 1 and -1 alternatively, then every
vertex is incident with the same number of 1-edges and (-1)-edges, including the
starting(ending) vertex, since the number of edges is even. Therefore it will be
a zero-sum 2-flow in G. �

Tutte obtained in 1949 that a cubic graph has a nowhere-zero 3-flow if and only
if it is bipartite. Similarly for zero-sum flows we have the following:

Theorem 4. (T. Wang and S. Hu [12]) A cubic graph G has zero-sum flow
number F (G) = 3 if and only if G admits a perfect matching.

Also we obtain the zero-sum flow numbers for wheel graphs and fan graphs,
among others:

Theorem 5. (T. Wang and S. Hu [12]) The flow numbers of wheel graphs
Wn with n ≥ 3 are as follows:

F (Wn) =

⎧⎨
⎩

5, n = 5.
3, n = 3k, k ≥ 1.
4, otherwise.

Theorem 6. (T. Wang and S. Hu [12]) The flow numbers of fan graphs Fn

are as follows:

F (Fn) =

⎧⎨
⎩

∞, n = 1, 2, 3.
3, n = 3k + 1, k ≥ 1.
4, otherwise.

272 T.-M. Wang and S.-W. Hu

3 Flow Numbers for Regular Graphs

In this section we calculate the zero-sum flow numbers of regular graphs, which
is closely related the Zero-Sum 5-Flow Conjecture for Regular Graphs.
We start with the following well known factorization theorem for even regular
graphs:

Theorem 7. (Petersen, 1891[8]) Every regular graph of even degree is 2-
factorable.

First we consider regular graphs of even degree. Note that by Lemma 3 we
see that a 2-regular graph G has flow number F (G) = 2 if G consists of even
cycles only, and F (G) = ∞ if G contains at least one odd cycle. For other even
regular graphs, we obtain that the zero-sum flow numbers are either 2 or 3 in
the following lemmas.

Lemma 8. Let G be a connected even r-regular graph, r ≥ 4. If either (1)
r ≡ 2 (mod 4) and G is of even size (|E(G)| is even), or (2) r ≡ 0 (mod 4),
then F (G) = 2.

Proof
In the first case, G is Eulerian with even size, by Lemma 3, F (G) = 2. In the
second case, r ≡ 0 (mod 4) implies the size of G must be even. By Lemma 3,
F (G) = 2. �

Lemma 9. If G is a connected even r-regular, r ≥ 4, with odd size and r ≡
2 (mod 4), then F (G) = 3.

Proof
Since r ≡ 2(mod 4), let r = 4s + 6, s = 0, 1, 2, · · ·. By Theorem 7, G can be
decomposed into union of 2-factors as follows: G = R1 ⊕ R2 ⊕ R3 · · · ⊕ R2s+3,
where Ri are 2-factors. We set f as follow:

f(e) =

⎧⎪⎪⎨
⎪⎪⎩

1 , e ∈ R1 ∪ · · · ∪Rs, if s > 0
−1 , e ∈ Rs+1 ∪ · · · ∪R2s, if s > 0
2 , e ∈ R2s+1

−1 , e ∈ R2s+2 ∪R2s+3

Therefore f is a zero-sum 3-flow. On the other hand, the size of G is odd, by
Lemma 3, F (G) �= 2, thus F (G) = 3. �

Now we consider regular graphs of odd degree. Note that F (G) = ∞ if G is
1-regular. Note that in Theorem 4 we characterize 3-regular graphs with flow
number 3, which are those with perfect matchings. Naturally one will ask whether
this is true for other odd r-regular graphs, r ≥ 5. To answer the above question,
first we have the following sufficient condition of odd regular graphs having flow
numbers 3:

Zero-Sum Flow Numbers of Regular Graphs 273

Lemma 10. If G is an odd r-regular (r ≥ 3) graph with a perfect matching,
then F (G) = 3.

Proof
Let G be (2k + 3)-regular, k ≥ 0. Since G has a 1-factor, set G = E ⊕R, where
E is 1-factor and R is (2k+2)-factor. By Theorem 7, R can be decomposed into
union of 2-factors as follows: G = E ⊕ R1 ⊕ R2 · · · ⊕ Rk+1. We set f as follows
if k is even:

f(e) =

⎧⎪⎪⎨
⎪⎪⎩

1 , e ∈ R1 ∪ · · · ∪R k
2
, if k > 0

−1 , e ∈ R k
2+1 ∪ · · · ∪Rk, if k > 0

1 , e ∈ Rk+1

−2 , e ∈ E

And if k is odd:

f(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 , e ∈ R1 ∪ · · · ∪R k−1
2
, if k > 0

−1 , e ∈ R k−1
2 +1 ∪ · · · ∪Rk−1, if k > 0

2 , e ∈ Rk

−1 , e ∈ Rk+1

−2 , e ∈ E

Now, f forms a zero-sum 3-flow. On the other hand, the degrees of G are odd,
by Lemma 3 F (G) �= 2, thus F (G) = 3. �

However, on the other hand, we have an infinite family of examples of odd
r-regular (r ≥ 5) graphs without perfect matching, and whose zero-sum flow
numbers are 3.

Please see the following Figure 1 to the left, for the example of a 5-regular
graph on 60 vertices, without perfect matching, having zero-sum flow number
3. Note that in the Figure 1, the component C represents the piece of graph to
the right with indicated edge labels -1, 2, -2, and C′ means the graph obtained
from C by reversing the sign of each edge. The fact that this example is a
5-regular graph without perfect matching can be confirmed easily by the well
known Tutte’s characterization for graphs having a perfect matching.

With similar constructions, one may have examples of odd r-regular (r ≥ 7)
graphs G, without perfect matching, whose flow numbers are 3. Therefore we
can not expect the converse statement of Lemma 10 to be true.

In below is another result of zero-sum flow numbers for regular graphs, which
helps to improve the results one obtain so far for the zero-sum 5-flow conjecture
for regular graphs. First we need a result regarding regular factors in regular
graphs by Gallai dated back to 1950:

Theorem 11. (Gallai, 1950 [5]) Let r and k be integers such that 1 ≤ k < r,
and G be a λ-edge connected r-regular general graph, where λ ≥ 1. If r and k
are both odd and r

λ ≤ k, then G has a k-regular factor.

By the above Theorem 11, we have the following improved result for the flow
numbers of odd regular graphs:

274 T.-M. Wang and S.-W. Hu

Fig. 1. An example of a 5-regular graph G without perfect matching and F (G) = 3

Theorem 12. Let G be a 2-edge-connected (2m+ 1)-regular graph with m ≥ 2,
then F (G) = 3 when m ≥ 3, F (G) = 3 or 4 when G is 5-regular (m = 2).

Proof
By Theorem 11, we can see that G has a 3-factor for m ≥ 2. Let G = E ⊕ R
where E is a 3-factor, R is a (2m−2)-factor. By Petersen’s Theorem 7, R can be
factored as R1⊕R2⊕R3 · · ·⊕Rm−1 where Ri are 2-factors for all 1 ≤ i ≤ m−1.

Now we set up labeling function f as follows:
If m ≥ 4 is even:

f(e) =

⎧⎪⎪⎨
⎪⎪⎩

1 , e ∈ R1 ∪ · · · ∪Rm−4
2

, for m ≥ 6

−1 , e ∈ Rm−4
2 +1 ∪ · · · ∪Rm−4, for m ≥ 6

1 , e ∈ Rm−3 ∪Rm−2 ∪Rm−1

−2 , e ∈ E

If m ≥ 3 is odd:

f(e) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 , e ∈ R1 ∪ · · · ∪Rm−3
2

, for m ≥ 5

−1 , e ∈ Rm−3
2 +1 ∪ · · · ∪Rm−3, for m ≥ 5

1 , e ∈ Rm−2

2 , e ∈ Rm−1

−2 , e ∈ E

If m = 2:

f(e) =

{
3 , e ∈ R1

−2 , e ∈ E

This f forms a zero-sum flow for G and since G is odd-regular, F (G) �= 2. So
F (G) = 3 when m ≥ 3, F (G) ≤ 4 when m = 2. �

Note that recently S. Akbari et al. raised the Zero-Sum 5-Flow Conjecture
for Regular Graphs, and proved the following partial results regarding the
above conjecture:

Theorem 13. (S. Akbari et al., 2010 [1]) Let G be an r-regular graph, r ≥ 3.
Then G has a zero-sum 7-flow. If r is a multiple of 3, then G has a zero-sum
5-flow.

Zero-Sum Flow Numbers of Regular Graphs 275

More recently, S. Akbari et al. announced [3] to confirm the above conjecture of
existence of 5-flows for all r-regular graphs except r = 5, using the concept of
constant-sum flows (will be introduced in next section) and a result of M. Kano
regarding regular factors in regular graphs:

Theorem 14. (M. Kano, 1986 [7]) Let r ≥ 3 be an odd integer and let k be an
integer such that 1 ≤ k ≤ 2r

3 . Then every r-regular graph has a [k − 1, k]-factor
each component of which is regular.

We summarize results of zero-sum flow numbers for regular graphs and list two
open questions in below from the above Lemmas and Theorems:

Theorem 15. Suppose G is a r-regular graph, r ≥ 3, then

1. F (G) = 2 if r ≡ 0(mod 4), or r ≡ 2(mod 4) with even size.
2. F (G) = 3 if r ≡ 2(mod 4) with odd size, or G r-regular with perfect matching

and odd r ≥ 3, or G a 2-edge-connected r-regular graph with odd r ≥ 7.
3. F (G) = 3 or 4 if G 2-edge-connected 5-regular.
4. F (G) ≤ 5 if r �= 5, and F (G) ≤ 7 for G 5-regular.

Note that recently the Zero-Sum Flow Conjecture for Regular graphs is settled,
except one open case that F (G) ≤ 5 for G being 5-regular [3]. Therefore inspired
from the above results, we post the following closely related open problems for
further studies:

Problem. Characterize the (r-regular, r odd and r ≥ 5) graphs with zero-sum
flow number 3.

Problem. Calculate the flow number F (G) when G is 5-regular and not 2-
edge-connected (with bridges).

Problem. Calculate the flow number F (G) when G is a general odd regular
graph.

4 Flow Numbers for Cartesian Products

For calculating the flow numbers of Cartesian product of regular graphs with
paths, we define a general constant-sum flows in below:

Definition 16. For an undirected graph G, a constant c-sum k-flow of G is
an assignment of non-zero integers to the edges such that the sum of the values
of all edges incident with each vertex is constant c, and whose values are integers
with absolute value less than k.

The following is the formula for flow numbers of Cartesian product of regular
graphs with paths:

Theorem 17. Let Rr be a r-regular graph and Ps be a path with |V (Ps)| = s,
r ≥ 2, s ≥ 2. Then

F (Rr × Ps) =

{
2 , r is odd and s = 2.
3 , otherwise

276 T.-M. Wang and S.-W. Hu

Proof . We proceed with the following cases:

Case 1. r is odd, r ≥ 3.
Note that the order of Rr is even, so Rr × P2 is an Eulerian graph with even
size. By the Lemma 3, F (Rr × P2) = 2. Then we express Rr × Ps, s ≥ 3, as an
obvious union of s− 1 copies of Rr ×P2, so that the pairwise intersection is one
copy of Rr. Within each copy of Rr ×P2 in the Cartesian product, we name one
copy of Rr as A and the other copy of Rr as B. Now fix a zero-sum 2-flow of
Rr ×P2 as mentioned, so we have fixed ±1 edge labeling over A and B. Now we
set up a zero-sum 3-flow of Rr × Ps by adding up edge labels over the union, in
an order A, B, B, A, A, B, B, A, etc. such that the edge labels will be twice as
much as ±1, which is ±2, over each A or B part, except two end parts. Again
by Lemma 3, F (Rr × Ps) = 3 where s ≥ 3, since it has vertices of odd degree.

Case 2. r is even, r ≥ 4.
We use the 2-sum 3-flow and 0-sum 3-flow to build the labels of a zero-sum 3-flow
of Rr ×Ps. As the Figure 2 shows, we may get a 0-sum 3-flow by labeling a 2-sum
3-flow in the first copy ofRr, and labeling by 0-sum 3-flows in the following copies
of Rr, until labeling either a 2-sum 3-flow or a (-2)-sum 3-flow in the last copy of
Rr, depending on s is even or odd, respectively. Over the edges of the path Ps part
within the Cartesian product we label -2, 2 alternatively as in the Figure.

In the following, we show the existence of 2-sum 3-flow f2 (hence (−2)-sum
3-flow by reversing the sign of each edge label) and 0-sum 3-flow f0 over Rr:

Sub-case 2.1: r = 4l+ 4, Rr = E1 ⊕ E2 · · · ⊕ E2l+2, l = 0, 1, 2 · · ·.
Let

f2(e) =

⎧⎪⎪⎨
⎪⎪⎩

1 , e ∈ E1 ∪ · · · ∪El

−1 , e ∈ El+1 ∪ · · · ∪ E2l

2 , e ∈ E2l+1

−1 , e ∈ E2l+2

f0(e) =

{
1 , e ∈ E1 ∪ · · · ∪ El+1

−1 , e ∈ El+2 ∪ · · · ∪ E2l+2

Fig. 2. A zero-sum 3-flow of Rr × Ps

Zero-Sum Flow Numbers of Regular Graphs 277

Sub-case 2.2: r = 4l+ 6, Rr = E1 ⊕ E2 · · · ⊕ E2l+3, l = 0, 1, 2 · · ·.
Let

f2(e) =

⎧⎨
⎩

1 , e ∈ E1 ∪ · · · ∪El+1

−1 , e ∈ El+2 ∪ · · · ∪ E2l+2

1 , e ∈ E2l+3

f0(e) =

⎧⎪⎪⎨
⎪⎪⎩

1 , e ∈ E1 ∪ · · · ∪El

−1 , e ∈ El+1 ∪ · · · ∪ E2l

2 , e ∈ E2l+1

−1 , e ∈ E2l+2 ∪ E2l+3

Follows from the above two sub-cases and Lemma 3, F (Rr × Ps) = 3.

Case 3. r = 2.
Note that clearly R2 × P2 is a 3-regular graph with 1-factor, so we can label -1
in 2-regular part and 2 in 1-factor part. For s ≥ 3, similar as Case 1, consider
R2 × Ps as the union of s − 1 copies of R2 × P2’s so that they overlap with
each other along R2 part. We simply use the zero-sum 2-flow of R2 × P2 given
previously to build the label of R2 × Ps. By adding up the edge labels of ±1 on
the overlap part, we have the edge labels of ±2, hence a zero-sum 3-flow. There-
fore by Lemma 3 again, F (R2×Ps) = 3 for s ≥ 2, since it contains odd vertices.�

Acknowledgment. The authors wish to express their sincere thanks for the
referee’s comments and corrections.

References

1. Akbari, S., Daemi, A., Hatami, O., Javanmard, A., Mehrabian, A.: Zero-Sum Flows
in Regular Graphs. Graphs and Combinatorics 26, 603–615 (2010)

2. Akbari, S., Ghareghani, N., Khosrovshahi, G.B., Mahmoody, A.: On zero-sum
6-flows of graphs. Linear Algebra Appl. 430, 3047–3052 (2009)

3. Akbari, S., et al.: A note on zero-sum 5-flows in regular graphs. arXiv:1108.2950v1
[math.CO] (2011)

4. Bouchet, A.: Nowhere-zero integral flows on a bidirected graph. J. Combin. Theory
Ser. B 34, 279–292 (1983)

5. Gallai, T.: On factorisation of grahs. Acta Math. Acad. Sci. Hung 1, 133–153 (1950)
6. Jaeger, F.: Flows and generalized coloring theorems in graphs. J. Combin. Theory

Ser. B 26(2), 205–216 (1979)
7. Kano, M.: Factors of regular graph. J. Combin. Theory Ser. B 41, 27–36 (1986)
8. Petersen, J.: Die Theorie der regularen graphs. Acta Mathematica (15), 193–220

(1891)
9. Seymour, P.D.: Nowhere-zero 6-flows. J. Combin. Theory Ser. B 30(2), 130–135

(1981)
10. Tutte, W.T.: A contribution to the theory of chromatic polynomials. Can. J.

Math. 6, 80–91 (1954)

278 T.-M. Wang and S.-W. Hu

11. Wang, T.-M., Hu, S.-W.: Constant Sum Flows in Regular Graphs. In: Atallah, M.,
Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011. LNCS, vol. 6681, pp. 168–175. Springer,
Heidelberg (2011)

12. Wang, T.-M., Hu, S.-W.: Nowhere-zero constant-sum flows of graphs. Presented
in the 2nd India-Taiwan Conference on Discrete Mathematics, Coimbatore, Tamil
Nadu, India (September 2011) (manuscript)

13. West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall, Englewood
Cliffs (2001)

More Efficient Parallel Integer Sorting

Yijie Han1 and Xin He2

1 School of Computing and Engineering,
University of Missouri at Kansas City,

Kansas City, MO 64110, USA
hanyij@umkc.edu

2 Department of Computer Science and Engineering,
University at Buffalo, The State University of New York,

201 Bell Hall,
Buffalo, NY 14260-2000, USA

xinhe@buffalo.edu

Abstract. We present a more efficient CREW PRAM algorithm for
integer sorting. This algorithm sorts n integers in {0, 1, 2, ..., n1/2} in
O((log n)3/2/ log log n) time and O(n(log n/ log log n)1/2) operations. It
also sorts n integers in {0, 1, 2, ..., n− 1} in O((log n)3/2/ log log n) time
and O(n(log n/ log log n)1/2 log log log n) operations. Previous best algo-
rithm [13] on both cases has time complexity O(log n) but operation
complexity O(n(log n)1/2).

Keywords: Algorithms, design of algorithms, bucket sorting, integer
sorting, PRAM algorithms.

1 Introduction

Sorting is a classical problem which has been studied by many researchers
[1][2][3][6][11][12][13][14][16][17][18][19]. For elements in an ordered set compar-
ison sorting can be used to sort the elements. In the case when a set contains
only integers both comparison sorting and integer sorting can be used to sort
the elements. Since elements of a set are usually represented by binary numbers
in a digital computer, integer sorting can, in many cases, replace comparison
sorting. In this paper we study parallel integer sorting and present an algorithm
which outperforms the operation complexity of the best previous result.

The parallel computation model we use is the PRAM model[15] which is used
widely by parallel algorithm designers. Usually three variants of PRAM models
are used in the design of parallel algorithms, namely the EREW (Exclusive
Read Exclusive Write) PRAM, the CREW (Concurrent Read Exclusive Write)
PRAM and the CRCW (Concurrent Read Concurrent Write) PRAM[15]. In a
PRAM model a processor can access any memory cell. On the EREW PRAM
simultaneous access to a memory cell by more than one processor is prohibited.
On the CREW PRAM processors can read a memory cell simultaneously, but
simultaneous write to the same memory cell by several processors is prohibited.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 279–290, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

280 Y. Han and X. He

On the CRCW PRAM processors can simultaneously read or write to a memory
cell. The CREW PRAM is a more powerful model than the EREW PRAM. The
CRCW PRAM is the most powerful model among the three variants.

Parallel algorithms can be measured either by their time complexity and pro-
cessor complexity or by their time complexity and operation complexity which
is the time processor product. A parallel algorithm with small time complexity
is regarded as fast while a parallel algorithm with small operation complexity is
regarded as efficient. The operation complexity of a parallel algorithm can also
be compared with the time complexity of the best sequential algorithm for the
same problem. Let T1 be the time complexity of the best sequential algorithm
for a problem, Tp be the time complexity of a parallel algorithm using p proces-
sors for the same problem. Then Tp · p ≥ T1. That is, T1 is a lower bound for
the operation complexity of any parallel algorithm for the problem. A parallel
algorithm is said to be optimal if its operation complexity matches the time
complexity of the best sequential algorithm, i.e. Tp · p = O(T1).

On the CREW PRAM the best previous integer sorting algorithm [13] sorts n
integers in O(log n) time and O(n(log n)1/2) operations. In this paper we study
the problem of sorting n integers in {0, 1, ..., n1/2} and in {0, 1, ..., n−1}. The best
previous result for these two cases due to Han and Shen [13] also sorts in O(log n)
time and O(n(log n)1/2) operations. In this paper we present a CREW PRAM
algorithm which sorts n integers in {0, 1, ..., n1/2} in O((log n)3/2/ log logn) time
and O(n(log n/ log logn)1/2) operations. It also sorts n integers in {0, 1, ..., n−1}
in O((log n)3/2 log logn) time and O(n(log n/ log logn)1/2 log log logn)
operations.

When randomization is used usually better or even optimal algorithms can
be achieved. Rajasekaran and Reif first achieved an optimal randomized parallel
sorting algorithm [18]. Reif and Valiant first achieved an optimal randomized
parallel network sorting algorithm [19].

Parallel integer sorting is such a fundamental problem in parallel algorithm
design and many renowned researchers worked on this problem relentlessly. The
milestones on parallel integer sorting on exclusive write PRAMs include 1997
Albers and Hagerup’s paper [2] published on Information and Computation and
2002 Han and Shen’s improvement [13] published on SIAM Journal on Comput-
ing. There are many results of many researchers published before Albers and
Hagerup’s work without much progress passing over the O(n logm) operations
for sorting n integers in {0, 1, ..,m − 1}. After Han and Shen’s work there is
virtually no progress ever since. We worked very hard and only achieved the
not so big improvements presented in this paper. To our experience significant
improvement over Han and Shen’s work [13] on the operation complexity for
parallel integer sorting is very difficult. So to speak that the results we have
achieved and presented here is significant.

2 Nonconservative Sorting

First we will show the EREW PRAM algorithm in [13] to sort n1 = 24(logn)1/2

integers in {0, 1, ..., 2(logn)1/2} with word length (the number of bits in a word)

More Efficient Parallel Integer Sorting 281

logn. This algorithm is based on the AKS sorting network[1], Leighton’s column
sort[16], Albers and Hagerup’s test bit technique[2] and the Benes permutation
network[4][5].

Because the word length is O(log n) we can store c(logn)1/2 integers in a
word for a small constant c. Using the test bit technique[2][3] we can do pair-
wise comparison of the c(log n)1/2 integers in a word with the c(logn)1/2 integers
in another word in constant time using one processor. Moreover, using the result
of the comparison the c(logn)1/2 larger integers in all pairs in the two words
under comparison can be extracted into one word and the c(logn)1/2 smaller
integers in all pairs in these two words can be extracted into another word and
this can also be done in constant time using one processor[2][3]. Without loss
of generality we may also assume that c(log n)1/2 is a power of 2. We first pack
n1 input integers into n2 = n1/(c(logn)

1/2) words with each word containing
c(logn)1/2 integers. We then imagine an AKS sorting network [1] being built
on these n2 words. On the AKS sorting network we compare two words at each
internal node of the network. Thus each node of the AKS sorting network can
be used to compare the c(logn)1/2 integers in one word with the c(logn)1/2

integers in another word in parallel. At the output of the AKS sorting network
we have sorted c(logn)1/2 sets with the i-th set containing i-th integers in all
n2 words. In terms of Leighton’s column sort[16] we can view that we place n1

integers in c(logn)1/2 columns with each column containing n2 integers. The
i-th column, 0 ≤ i < c(logn)1/2, contains the i-th integer of every word. At
the output of the AKS sorting network, every column is sorted. The principle
of Leighton’s column sort says that to sort n1 integers we need only to sort
all c(log n)1/2 columns independently and concurrently for a constant number
of times (passes) and perform a fixed permutation among the n1 integers after
each pass. Besides, these fixed permutations are simple permutations such as
shuffle, unshuffle and shift. Applying the column sort principle, we perform a
fixed permutation among the n1 integers when they are output from the AKS
sorting network after each pass. The permutation can be done by disassembling
the integers from the words, applying the permutation and then reassembling the
integers into words. Thus each pass consisting of sorting on columns and then
permutation can be done in O((log n)1/2) time and O(n1) operations. According
to Leighton’s column sort we need only a constant number of passes in order to
have all the n1 integers sorted. Thus the sorting of n1 integers can be done in
O((log n)1/2) time and O(n1) operations.

For our purpose (see later section that we have integers not in an array but
in a linked list) we also need the following scheme to accomplish the permuta-
tion mentioned above. The permutation should be done by routing the integers
through a network N which is the butterfly network in conjunction with a re-
verse butterfly network(see Fig. 1.). NetworkN can be used to emulate the Benes
permutation network[4][5] to perform permutations.

282 Y. Han and X. He

0

1

2

3

4

5

6

7

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 Stage 6 Stage 7

Fig. 1. A permutation network

Each stage of the butterfly network emulates the processor connection along a
dimension on the hypercube and switches integers between words or within words
(within words means each integer is switched with another integer in the same
word. This is where we need c(logn)1/2 to be a power of 2). Because c(logn)1/2

is a power of 2 each stage of the butterfly network can be done in constant
time even when integers are switched within words. Because butterfly network
has O((log n)1/2) stages, the permutation can be done in O((log n)1/2) time.
Because there are only n2 words the operation complexity is time×processors=
O((log n)1/2)×n2 = O(n1). Note that since the permutations we performed here
are fixed permutations according to Leighton’s column sort, the setting of the
switches in the butterfly network can be precomputed (according to the way
Benes permutation network is used to perform permutations).

The following Lemmas 1 and 2 are the cornerstone of the paper [13] on SIAM
Journal on Computing.

Sorting integers into linked lists means, after sorting, integers of the same value
are in the same linked list and integers of different values are in different linked
lists. It does not imply integers of the same value are packed into consecutive
locations.
Lemma 1 [13]: n integers in the range {0, 1, ..., 2(logn)1/2} can be sorted into
linked lists on the EREW PRAM with word length O(log n) in O((log n)1/2)
time using O(n) operations and O(n) space.

Lemma 2 [13]: n′ integers in {0, 1, ..., 2t(logn)1/2} can be sorted into linked lists
on the EREW PRAM with word length logn in O(t(log n)1/2) time and O(tn′)
operations.

More Efficient Parallel Integer Sorting 283

Here in Lemma 2 n′ is not related to n. Lemma 2 is essentially the t iterations
of execution of Lemma 1.

Note that the result of Cook et al. [7] says that if we sort these integers in an
array it will need Ω(logn) time. The property of sorting into linked lists and the
small range of values for integers enabled Lemmas 1 and 2 to be proved in [13].

3 Sorting n Integers in {0, 1, ..., 2c(logn log logn)1/2}
We consider the problem of sorting n integers in the range

{0, 1, ..., 2c(logn log logn)1/2} on the CREW PRAM with word length O(log n),
where c is a small constant. For our purpose we assume that (logn/ log logn)1/2

is a power of 2.
In the first stage we pack every (logn/ log logn)1/2 integer into a word (called

original word later). This results in a set S1 of n3 = n/(logn/ log logn)1/2 words.
We now show how to sort these n3 words in S1.

The first step of this stage is to sort the integers (each having c(logn log logn)1/2

bits) within each word. This is done by a table lookup because we can precompute
such a table of size nc. This takes constant time (here we used concurrent read).

Then we take the most significant (log logn)/4 bits from each integer in each
word and pack them together to obtain a word containing (logn/ log logn)1/2

(log logn)/4 bits. We first use a mask to extract these bits as shown in the
first step in Fig. 2 (Applying mask). We cannot pack these extracted bits in
a word together independently for each word because of complexity considera-
tions. Therefore we shift the bits in a word and then do bitwise OR with another
word to combined two words into one word, and we repeatedly do this (repeat
log log logn times) to combine log logn words into one word. This is step 2 in Fig.
2 (Shift and bitwise OR) and takes O(log log logn) time and O(n3) operations.
Now all the extracted bits are stores in n3/ log logn words. Within each words
there are null bits between two blocks of extracted bits and therefore we pack
extracted bits to let them occupy consecutive bits in a word. We do this indepen-
dently for each word and because there are n3/ log log n words we can afford this.
This is the step 3 in Fig. 2 (Compack). This step takes O(log logn) time (Because
there are (logn/ log logn)1/2 blocks of extracted bits in one word. Using constant
operations we can reduce the number of blocks in a word w by half by taking
half of the blocks in w out and put them in another word w1 then shift bits in
w1 and then do wORw1.) and O(n3/ log logn× log logn) = O(n3) operations.
Now although extracted bits are packed, the order they appear in a word is ex-
tracted bits from original word1; extracted bits from original word2; ...; extracted
bits from original word(log logn); extracted bits from original word1; extracted
bits from original word2; ...; extracted bits from original word(log logn);.... Ex-
tracted bits come from different original words because of step 2 in Fig. 2. Our
objective is to pack extracted bits in each original word and store them in one
word. Therefore we now do step 4 in Fig 2. (Applying mask) and in log log logn
steps and O(n3) operations we separate (disassemble) one word into log logn
words and extracted bits from each original word is now in an independent

284 Y. Han and X. He

word. Because of step 3 in Fig. 2 the extracted bits are somewhat compacked
in a word and therefore we can again combine words together. This times we
can let extracted bits from one original word being consecutive but not com-
packed. This is step 5 in Fig. 2 (Shift and then bitwise OR). This step takes
O(log log logn) time and O(n3) operations. Now again we have put all extracted
bits in n3/ log log n words. And now we do step 6 in Fig. 2 (compack) indepen-
dently for each word. The complexity of this step is similar to that of step 3 (but
now we have (logn/ log logn)1/2 log logn blocks) and takes O(log logn) time and
O(n3) operations. Now we have extracted bits from each original word packed
in consecutive bits of a word. Now we do step 7 in Fig. 2, i.e. separate extracted
bits from each original word into an independent word. This step is similar to
step 4 and takes O(log logn) time and O(n3) operations.

Thus it takes O(log logn) time and O(n3) operations for all the steps in Fig. 2.
We call the set of these words obtained at the end of Fig. 2 S2. Note that because
many extracted bits in an original word have the same value (there are more
integers in a word ((log n/ log logn)1/2 of them) than the number of different
values of extracted bits (2(log logn)/4 of them) and integers within an original
word has been sorted, therefore a word in S2 of (logn/ log logn)1/2(log logn)/4

bit can have only
∑2(log log n)/4−1

i=1

(
(logn/ log log n)1/2

i

)
< (logn)1/2 values (different

sorted situation corresponds to different ways of setting the position of first
integer (extracted bits) among the integers (extracted bits’) of the same value
(except the first integer which assumes position 0)). Thus a word in S2 can be

uniquely represented by an integer i within 0 and 2(logn)1/2−1. Therefore i can be
represented using no more than (logn)1/2 bits. Again we can use table lookup
to convert a (logn/ log log n)1/2(log logn)/4 bit integer in S2 to an integer of
(logn)1/2 bits. We let set S3 to be the set of (logn)1/2-bit integers converted
from integers in S2. Each word in S3 corresponds to a word in S1.

We now partition the n3 words of S3 into n3/2
4(logn)1/2 groups with each

group containing 24(logn)1/2 words. We then sort every group concurrently using
the algorithm in Section 2. We spend O((log n)1/2) time and O(n3) operations.

We may assume that every integer value in {0, 1, ..., 2(logn)1/2−1} (for a word)
exists in each group. If such an integer value does not exist within a group we
add a dummy word to the group to represent this integer value. We thus added

no more than 2(logn)1/2 dummy words to each group which account for a very
small fraction of the total number of words in the group. Now because words in

each group has been sorted we can make 2(logn)1/2 linked lists for each group
with each linked list linking all integers with the same integer value in the group
together. Then we join a linked list for integer value i in a group g with lined
lists for integer value i of g’s left and right neighboring groups. With the help of

dummies we thus obtained 2(logn)1/2 linked lists for all groups.
Now we can link words in S1 the same way as we link words in S3 because each

word in S1 corresponds to a word in S3. The time complexity is O((log n)1/2)
and the operation complexity is O(n3).

This accomplishes the first stage.

More Efficient Parallel Integer Sorting 285

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

Applying mask

xxxxxxxxxxx

Shift then bitwise OR

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

{logloglogn steps

xxxx

Compack
(cloglogn steps)

xxxxx
xxxxx

xxxxxx
xxxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

Applying mask
(logloglogn steps)

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxxx
xxxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

Shift then bitwise OR

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

} 1

} 2

{logloglogn steps

} 1

} 2

Compack
(cloglogn steps)

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxx

xxxxx
xxxxxxxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxxx
xxxx
xxxx
xxxx
xxxx

xxx
xxx
xxx
xxx

xxx
xxx
xxx

}1

}2

xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxx
xxxx
xxxx
xxxx

xxxxxx
xxxxxx

xxxxx
xxxxx

xxxxxx
xxxxxx

xxxxx
xxxxx

xxxxx
xxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx

xxxxx
xxxxx

Applying mask
(logloglogn steps)

Fig. 2. Packing

286 Y. Han and X. He

In each subsequent stage we take the next (log logn)/4 bits from each integer
in a word in S1 to form a word in set S2 (now there is a set S2 for each linked
list). Then from S2 we obtain S3 (again one for each linked list) and then we
sort each group of S3 of each linked list.

Now we discuss how each linked list is split in each stage. Elements in each
linked list are sorted (using the sorting algorithm in Section 2 and here we need
to do permutation in the sorting algorithm using the butterfly network, see also
[13]) in each stage and this linked list is going to be split into multiple linked
lists such that elements of the same value will be in the same linked list and
elements of different value are sorted into different linked lists.

A linked list is short if it contains less than 24(logn)1/2 elements (words), is

long if it contains at least 24(logn)1/2 elements. We first group every consecutive
S elements in a linked list into one group. For a short linked list S is the number
of total elements in the linked list. For a long linked list S varies from group to

group but is at least 24(logn)1/2 and no more than 25(logn)1/2 .
If the linked list is short there is only one group in the linked list. The sorting

will then enable us to split the linked list into t ≤ 2(logn)1/2 linked lists such that
each linked list split contains all words whose integer values are the same, where
t is the number of different integer values. Here we note that for short linked list

t could be less than 2(logn)1/2 (for example if all integer values are the same t
will be equal to 1).

If the linked list is long we will always split the linked list into exactly 2(logn)1/2

linked lists no matter how many different integer values are there. After sorting

in each group, words in each group are split into 2(logn)1/2 linked lists. If an

integer value among the 2(logn)1/2 values does not exist we create a linked list
containing only one dummy element representing this integer value. Again as we

stated above, no more than 2(logn)1/2 dummy elements will be created for each
group. For consecutive (neighboring) groups on a long linked list we then join
the split linked lists in the groups such that linked lists with the same integer
values are joined together. With the help of those dummy elements we now have

split a long linked list into exactly 2(logn)1/2 linked lists.
With the existence of dummy elements in the linked list, the splitting process

should be modified a little bit. For a short linked list, after the grouping all
dummy elements will be eliminated. For a long linked list, the dummy elements
will also be eliminated after grouping, but new dummy elements could be created.

Since each group on a long linked list has at least 24(logn)1/2 elements and

since each such a group creates at most 2(logn)1/2 dummy elements, the total

number of dummy elements created in a stage is at most n3/2
3(logn)1/2 . Dummy

elements generated in a stage are eliminated in the next stage and new dummy
elements are generated for the next stage. For a total of O((log n)1/2) stages the
total number of dummy elements generated is no more than

O(n3(logn)
1/2/23(logn)1/2).

Because integers are now on linked lists, linked list contraction is needed to
form groups. This paragraph describes linked list contraction and is somewhat

More Efficient Parallel Integer Sorting 287

involved. Readers who are not very familiar with symmetry breaking and linked
list contraction can skip this paragraph. We apply symmetry breaking schemes
by Han[9][10] and Beame[8] to break a linked list into sublists of length no

more than log(c) n in O(log c) time for a constant c. Pointer jumping[20] is then
executed for each sublist. When pointer jumping finishes the sublist is contracted
into one node. Since the length of these sublists are different some sublists finish
pointer jumping faster and some sublists finish pointer jumping slower. If a
sublist is contracted into a single node v, the processor associated with v checks to
see if the neighboring sublists also have been contracted into single nodes. If one
of its neighboring sublist is contracted into a single node then nodes representing
the sublists form a new list and symmetry breaking and pointer jumping can be
applied to this new list. And therefore the contraction process continues. If v finds
out that both of its neighboring sublist have not finished pointer jumping then
v becomes inactive. In this case v will be picked up (activated and contracted
together with) by the contracted node representing the neighboring sublist which
first finishes pointer jumping. We define one step for a node as first picking up
its inactive neighbors and then if it is still active performing symmetry breaking
and a pointer jump. This whole contraction process can be viewed as contracting
a linked list of length l to a linked list of length 2l/3 in a step because if a node
is inactive then both of its neighbors are active in the contraction process. Thus
to contract S elements into a node takes only O(log S) time. For a long linked

list each group can be kept between 26(logn)1/2 and 27(logn)1/2 . Thus for each
stage the contraction can thus be done in O((log n)1/2) time with O(S log(c+1) n)

operations for each group (O(n3 log
(c+1) n) operations for all linked lists). This

factor of log(c+1) n is introduced because of pointer jumping. We can remove this
log(c+1) n factor because we can pack c(logn)1/2 words in S3 into one word and
therefore the pointer jumping needs not to be done by every word in S3. Thus
the linked list contraction takes O((log n)1/2) time and O(n3) operations.

More complications of this process such as where to store dummy elements,
how to move words to sorted position, etc., are explained in [13].

Let us estimate the complexity. Because each stage removes c(logn log logn)1/2

bits. there are O((log n/ log logn)1/2) stages. Because each stage takes
O((log n)1/2) time the time for our algorithm in this section is O(log n/
(log logn)1/2). Each stage takes O(n3) operations and therefore for all stages
it has O(n3 logn/(log logn)

1/2) = O(n) operations.
Now for each linked listL, the words ofS3 onL are all having the same value (i.e.

the j-th integer in all these words are the same. However, the i-th integer and the
j-th integermay be different.).We can group every (log n/ log logn)1/2 words onL
together anddo a transposition (put the j-th integer in all thesewords in oneword).
This takes O(log logn) time and O(n3 log logn) operations (this should be simple
and readers can work it out or see [13]). After that we sort the transposed words
into linked lists in O((log n log logn)1/2) time and O(n3(log logn)

1/2) operations
using Lemma 2 (note that now each word contains (logn/ log logn)1/2 integers of

the same value which is in {0, 1, ..., 2c(logn log logn)1/2 − 1}).
Thus we have:

288 Y. Han and X. He

Theorem 1: n integers in {0, 1, ..., 2c(logn log logn)1/2} can be sorted into linked
lists on the CREW PRAM with word length logn in O(log n/(log logn)1/2) time
and O(n) operations.

4 Sorting Integers in {0, 1, ..., n1/2} and in {0, 1, ..., n− 1}
To sort n integers in {0, 1, ..., n1/2} We apply Theorem 1 (1/(2c))(logn/
log logn)1/2) times and reach

Theorem 2: n integers in {0, 1, ..., n1/2} can be sorted on the CREW PRAM
withword length logn inO((log n)3/2/ log logn) timeandO(n(log n/ log logn)1/2)
operations.

The situation for sorting n integers in {0, 1, ..., n − 1} is different. For sorting
the most significant log n/2 bits we can apply Theorem 2. After that n integers
are partitioned into n1/2 sets and we have to sort every set concurrently and
independently. Here on the average each set has n1/2 integers. When we are
sorting n1/2 integers we cannot pack every (logn/ log logn)1/2 integers to form
words of logn bits in paragraph 2 of Section 3 (if the algorithm in Section 3 is
well understood then one can see that n integers corresponds to logn bits for
sorting). To sort n1/2 integers we can use only logn/2 bits and therefore we can

pack only (1/2)(logn/ log logn)1/2 integers in {0, 1, ..., 2c(logn log logn)1/2} into
one word. However, because the number of bits is reduced by half the number of
stages in the algorithm of Theorem 1 is also reduced by half. Thus sorting the
next logn/4 bits has half the time complexity but the same operation complexity
as sorting the most significant logn/2 bits. Again sorting the next log n/8 bits
takes the 1/4 time complexity and the same operation complexity as sorting the
most significant logn/2 bits.

Thus if we iterate t times we spend O((log n)3/2/ log logn) time and
O(tn(log n/ log logn)1/2) operations and we have logn/2t bits left to be sorted.
By Lemma 2 the remaining logn/2t bits can be sorted in O((log n)1/2/2t) time
and O(n(log n)1/2/2t) operations. Now to pick the optimal t let

tn(logn/ log log n)1/2 = n(logn)1/2/2t

and we obtain that t = (log log logn)/2. Thus we have that

Theorem 3: n integers in {0, 1, ..., n− 1} can be sorted on the CREW PRAM
with word length logn in O((log n)3/2/ log logn) time and
O(n(log n/ log logn)1/2 log log logn) operations.

5 Conclusions

We presented a CREW integer sorting algorithm which outperforms the opera-
tion complexity of previous best result. Many problems remains open such as:
can we remove concurrent read from our algorithm? can time complexity be low-
ered to O(log n)? can we sort integers with value larger than n? etc.. Note that

More Efficient Parallel Integer Sorting 289

Han proved before [11] that n integers in {0, 1, ...,m− 1} can be sorted on the
EREW PRAM in O((log n)2) time and O(n(log logn)2 log log logn) operations
provided that logm ≥ (log n)2. This provides a partial solution to one of the
open problems mentioned here. Our hunch is that removing the restriction of
integers being bounded by n probably should be the next target to achieve. We
hope our future research will resolve some of the open problems mentioned here.

References

1. Ajtia, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps.
Combinatorica 3, 1–19 (1983)

2. Albers, S., Hagerup, T.: Improved parallel integer sorting without concurrent writ-
ing. Information and Computation 136, 25–51 (1997)

3. Andersson, A., Hagerup, T., Nilsson, S., Raman, R.: Sorting in linear time? In:
Proc. 1995 Symposium on Theory of Computing, pp. 427–436 (1995)

4. Benes, V.E.: On rearrangeable three-stage connecting networks. Bell Syst. Tech.
J. 41, 1481–1492 (1962)

5. Benes, V.E.: Mathematical Theory of Connecting Networks and Telephone Traffic.
Academic, New York (1965)

6. Chen, S., Reif, J.H.: Using difficulty of prediction to decrease computation: fast
sort, priority queue and convex hull on entropy bounded inputs. In: 34th Annual
IEEE Conference on Foundations of Computer Science (FOCS 1993) Proceedings,
Palo Alto, CA, pp. 104–112 (November 1993)

7. Cook, S., Dwork, C., Reischuk, R.: Upper and Lower Time Bounds for Parallel
Random Access Machines without Simultaneous Writes. SIAM J. Comput. 15(1),
87–97 (1986)

8. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in
sparse graphs. SIAM J. on Discrete Math. 1(4), 447–471 (1988)

9. Han, Y.: Matching partition a linked list and its optimization. In: Proc. 1989
ACM Symposium on Parallel Algorithms and Architectures (SPAA 1989), Santa
Fe, Mexico, pp. 246–253 (June 1989)

10. Han, Y.: An optimal linked list prefix algorithm on a local memory computer.
In: Proc. 1989 Computer Science Conference (CSC 1989), pp. 278–286 (February
1989)

11. Han, Y.: Improved fast integer sorting in linear space. Information and Computa-
tion 170(1), 81–94 (2001)

12. Han, Y.: Deterministic sorting in O(n log log n) time and linear space. Journal of
Algorithms 50, 96–105 (2004)

13. Han, Y., Shen, X.: Parallel integer sorting is more efficient than parallel comparison
sorting on exclusive write PRAMs. SIAM J. Comput. 31(6), 1852–1878 (2002)

14. Hightower, W.L., Prins, J., Reif, J.H.: Implementations of randomized sorting on
large parallel machines. In: 4th Annual ACM Symposium on Parallel Algorithms
and Architectures (SPAA 1992), San Diego, CA, pp. 158–167 (July 1992)

15. JáJá, J.: An Introduction to Parallel Algorithms. Addison-Wesley (1992)
16. Leighton, T.: Tight bounds on the complexity of parallel sorting. IEEE Trans.

Comput. C-34, 344–354 (1985)
17. Reif, J.H.: An n1+ε processor, O(log n) time probabilistic sorting algorithm. In:

SIAM 2nd Conference on the Applications of Discrete Mathematics, Cambridge,
MA, pp. 27–29 (June 1983)

290 Y. Han and X. He

18. Rajasekaran, S., Reif, J.H.: An optimal parallel algorithm for integer sorting.
In: 26th Annual IEEE Symposium on Foundations of Computer Science, Port-
land, OR, pp. 496–503 (October 1985); Published as Optimal and sublogarithmic
time randomized parallel sorting algorithms. SIAM Journal on Computing 18(3),
594–607 (1989)

19. Valiant, L.G., Reif, J.H.: A Logarithmic Time Sort for Linear Size Networks. In:
15th Annual ACM Symposium on Theory of Computing, Boston, MA, pp. 10–16
(April 1983); Published in Journal of the ACM(JACM) 34(1), 60–76 (1987)

20. Wyllie, J.C.: The complexity of parallel computation, TR 79-387, Department of
Computer Science, Cornell University, Ithaca, NY (1979)

Fast Relative Lempel-Ziv Self-index

for Similar Sequences

Huy Hoang Do1, Jesper Jansson2, Kunihiko Sadakane3, and Wing-Kin Sung1

1 National University of Singapore, COM 1, 13 Computing Drive, Singapore 117417
{hoang,ksung}@comp.nus.edu.sg

2 Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
Jesper.Jansson@ocha.ac.jp

3 National Institute of Informatics, 2-1-2 Hitotsubashi, Tokyo 101-8430, Japan
sada@nii.ac.jp

Abstract. Recent advances in biotechnology and web technology are
generating huge collections of similar strings. People now face the prob-
lem of storing them compactly while supporting fast pattern searching.
One compression scheme called relative Lempel-Ziv compression uses tex-
tual substitutions from a reference text as follows: Given a (large) set S
of strings, represent each string in S as a concatenation of substrings
from a reference string R. This basic scheme gives a good compression
ratio when every string in S is similar to R, but does not provide any
pattern searching functionality. Here, we describe a new data structure
that supports fast pattern searching.

1 Introduction

There is an increasing need for indexing methods that can store collections
of similar strings (or repetitive text) compactly while supporting fast pattern
searching queries. For example, in genomic applications, the sequencing of in-
dividual genomes is becoming a feasible task. The “1000 Genomes Project” [1],
aimed at characterizing common human genetic variations, has already sequenced
the partial genomes of a large number of persons from various populations. In
the near future, researchers will face the problem of storing those individual (and
highly similar) genomic sequences compactly and indexing them efficiently. As
another example, Wikipedia documents are continually modified and snapshots
are taken every day to remember older versions of the data. Typically, changes
between versions are small. Hence, fast indexing methods for similar texts may
allow people to search archived versions of Wikipedia documents quickly.

To compress a single string S of length n, methods that are guaranteed to
achieve the empirical k-order entropy nHk(S) are often used. However, this
entropy measurement may not be a good bound for repetitive texts whose repeats
are longer than k. For example, the entropy for storing the text SS (where
|S| > k) is greater than 2nHk(S). On the other hand, one can easily encode the
text in nHk(S)+O(1) space. Thus, there are methods which achieve the empirical
k-order entropy, yet perform poorly for repetitive texts [24]. As a consequence,

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 291–302, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

292 H.H. Do et al.

compression methods have been designed for specific types of repetitive texts in
biology. Christley et al. [5] compressed DNA sequences with respect to a reference
sequence, and BioCompress [12] and XM [3] are other repetitive compressors
designed specifically for DNA. Alternative approaches include methods based
on grammar compression and LZ77 compression [26] for general repetitive texts.
These methods can store repetitive texts compactly, but do not allow random
access to the compressed text directly. Some previous work has addressed this
issue. Kreft and Navarro [14] provided the first efficient random access operations
for the LZ77 method. Bille et al. [2] built additional data structures on top of
an existing grammar-based compression scheme to allow random access of any
region with only logarithmic extra time per query.

However, one important operation on large text databases is indexing, in
which the occurrences of an arbitrary pattern inside the stored text need to be
located quickly. Some specialized data structures for indexing repetitive texts
have appeared recently. In a pioneering paper of Mäkinen et al. [19], a repetitive
text is defined as a collection of strings of total length N , where the strings
are assumed to be highly similar, each string length is approximately n, and
the strings share an alphabet of size σ. They employed run-length encoding to
reduce the redundancy of a suffix array structure. Their approach shrinks the
total index size greatly, but the space of the index is still proportional to the
number of strings. In another paper, Huang et al. [13] assumed that every string
contains at most m′ point mutations with respect to a reference string. They
designed a space-efficient data structure of size O(n log σ + m′ logm′) bits to
encode all such strings. Although the resulting data structure is small, their
approach cannot index certain other types of similar strings such as genome
rearrangements, formed by swapping substrings in genomic sequences, efficiently.
(When only a few such rearrangements have occurred, long substrings of the
genomic sequences will be preserved; they just occur in a different order.) Kreft
and Navarro [15] built a self-index based on LZ77 compression. If the text of
length N can be compressed using m LZ77 phrases, their data structure is of
size 2m logN +m logm + 5m logσ + O(m) + o(N) bits, but the query time is
O(2h+(+occ) logN), i.e., quadratic in the pattern length and also dependent
on the maximal depth of the phrases h ≤ m. In another line of research, Claude
and Navarro [6] proposed a self-index for grammar-based compression methods.
It uses O(r log r)+r logN bits, where r is the number of rules in their grammar,
and the resulting query time is quadratic (O((2+h(+occ)) log r)). Some results
for LZ78 compression and FM-index were given in [8]; on the negative side, these
methods require O(NHk) bits in the worst case, and they may not be good
enough to index a repetitive text in practice [24] or in theory [23]. In summary,
existing indexes for a set of similar strings either require: (1) a lot of space,
(2) that the indexed text has some special structure, or (3) quadratic query time.

New Results: Our main contribution is a data structure that stores a set S of
strings and a reference string R in asymptotically almost optimal space, while
providing almost linear-time pattern searching queries, as follows:

Fast Relative Lempel-Ziv Self-index for Similar Sequences 293

Theorem 1. Given a reference string R of length n over an alphabet Σ of size σ
and a set of strings S = {S1, . . . , St} over Σ, let m be the smallest possible
number of factors to represent S with respect to R. All exact occurrences of any
query pattern P of length can be reported within either of the following space
and time complexities:

(a) 2nHk(R) + 5.55n+O(m log n) bits and O((log σ + logn
log logn) + occ · (log n+

logm
logn)) query time; or, alternatively,

(b) 2nHk(R) + 5.55n+O(m log n log logn) bits and O((log σ+ log logn)+ occ ·
(logn+ logm

logn)) query time,

where occ is the number of occurrences of P .

In this paper, we assume that the reference R is given. In case no such R is
available, we can apply the method of Kuruppu et al. [17] to find a suitable one.

We compress each sequence in S using a new variant of the relative Lempel-
Ziv (RLZ) compression scheme from [16]. RLZ represents each Si ∈ S as a
concatenation of substrings of R (referred to as factors) obtained from the LZ77-
like factorization of R. See Fig. 1 for an example. Experiments on large scale
genomic data in [16] have shown that this method yields good compression ratios
for repetitive texts even when parts of the sequence are rearranged.

Our pattern searching algorithm follows a “standard” strategy for strings
decomposed into factors. It considers two cases: case 1, where the pattern P is
a substring of a single factor; and case 2, where P crosses at least one boundary
between two factors. (See Fig. 2.) For case 2, the pattern is usually divided into
two parts: left and right. The left part ends at one end of a factor, and the right
part begins at the start of another factor. Each part is searched independently
and then joined together by an appropriate 2D range query data structure.

Although using the same basic strategy, the currently existing methods require
quadratic time for pattern searching due to the fact that they need to re-search
the left part and right part for each possible boundary between two factors.
In our approach, we deploy multiple tricks to search all the possible left parts
and right parts in only one run, and combine the results effectively. Notably,
for the left part search (Section 4), we observe a mapping between the suffix
array of the factors and the reference sequence, and then simulate the search in
factors using the data structure for the reference. To implement the right part
search (Sections 5-6), we use dynamic programming and backward search to
utilize the results of previous searches. Note that these techniques are only valid
because of the properties provided by the RLZ compression scheme. According
to Theorem 1 above, the total space used by our data structure which supports
fast pattern searching queries is only O(nHk(R) + n+m logn) bits, where m is
the minimal number of encoding factors. This is very close to the minimal space
required by any RLZ variant, which is Ω(nHk(R) +m logn) bits.

We remark that recently, Gagie et al. [10] independently proposed a similar
method to index a set of sequences. Their space complexity is O(nHk(R) +
n + m(logn + logm log logm)) bits, and the query time is O((+ occ) logε n),
where ε > 0. (Thus, their method always uses more space than the method in

294 H.H. Do et al.

our Theorem 1 (a) above but is faster, and is incomparable to the method in
Theorem 1 (b).) Also note that in their method, the reference must be equal to
one of the sequences in S since otherwise false occurrences may be reported.

The paper is organized as follows. Section 2 defines the notation used through-
out the paper and outlines the framework of our new data structure. Section 3
describes some auxiliary data structures from the literature used in our con-
struction. Section 3 also presents a new data structure for answering a restricted
type of 2D range queries. Sections 4 – 6 describe further technical details of our
main data structure. Due to space limitations, the focus will be on describing
the construction of our new data structure; correctness proofs and additional
intermediate explanations will be available in the full version of the paper.

2 Data Structure Framework

2.1 The Relative Lempel-Ziv (RLZ) Compression Scheme

Let R be a reference sequence of length n over an alphabet Σ and let S =
{S1, . . . , St} be a given set of strings over Σ. Each sequence Si ∈ S is compressed
based on R by relative Lempel-Ziv (RLZ) compression [16], defined next: Given
two strings S and R, where R contains all the symbols in S, the Lempel-Ziv
factorization (or parsing) of S relative to R, denoted by LZ(S|R), is a way to
express S as a concatenation of substrings of the form S = w0w1w2 . . . wz such
that: (1) w0 is an empty string; and (2) wi for i > 0 is a non-empty substring
of S and wi is the longest prefix of S[(|w0..wi−1| + 1)..|S|] that occurs in R.
Each substring wi is called a factor (or phrase), and can be represented by a
pair of numbers (pi, li), where pi is a starting position of wi in R and li denotes
the length of wi. LZ(S|R) can be computed in linear time [16]. By definition,
the decomposition guarantees that no factor can be expanded any further to the
right. Furthermore, the RLZ compression scheme has the following property:

Lemma 1. LZ(S|R) represents S using the smallest possible number of factors.

R = ACGTGATAG

S1 = TGATAGACG = TGATAG, ACG = 8 2
S2 = GAGTACTA = GA, GT, AC, TA = 5 6 1 7
S3 = GTACGT = GT, ACGT = 6 3
S4 = AGGA = AG, GA = 4 5

(a)

T [...] Factor Pos. inR

1 AC 1..2

2 ACG 1..3

3 ACGT 1..4

4 AG 8..9

5 GA 5..6

6 GT 3..4

7 TA 7..8

8 TGATAG 4..9

(b)

Fig. 1. (a) A reference string R and a set of strings S = {S1, S2, S3, S4} decomposed
into the smallest possible number of factors from R. (b) The array T [1..8] (to be defined
in Section 2) consists of the distinct factors sorted in lexicographical order.

Fast Relative Lempel-Ziv Self-index for Similar Sequences 295

We will need some more definitions. Let m be the minimum number of factors
required to represent all of S with respect to R. Denote the Lempel-Ziv factor-
ization of each Si relative to R by Si = Si1Si2 . . . Sici for i = 1, 2, . . . , t. Next,
take all the s distinct factors that appear in the factorizations for S and let
T [1..s] be an array containing these factors sorted in lexicographical order (see
Fig. 1 (b)). Define m =

∑t
i=1 ci. Note that s ≤ min{n2,m}. Our data structure

stores T [1..s] in O(s log n) bits by encoding each T [j] by its starting and ending
positions in the reference string R, and the set S in O(m log s) = O(m log n)
bits by representing each Si ∈ S as a list of indices from T [1..s] (see Fig. 1 (a)).

Let F [1..m] be the lexicographically sorted array of all non-empty suffixes in
S that start with a factor; i.e., each element F [y] is of the form SipSi(p+1) . . . Sici ,
and is called a factor suffix from here on. For any string x, x denotes its reverse.
Let T [1..s] be an array of all reversed distinct factors Sij sorted lexicographically.

2.2 Pattern Searching

To find the occurrences of a query pattern P in S, we follow the basic strategy
briefly mentioned in Section 1. Suppose P is a query pattern. Each occurrence
of P in S1, . . . , St belongs to one of the following two main cases; see Fig. 2:

• Case 1: P lies completely inside one factor, denoted by Sip.
• Case 2: P is not a substring of a single factor, i.e., P = XSip . . . SiqY , where
X is a suffix of Si(p−1) and Y is a prefix of Si(q+1).

(Observe that the case P = XY is an instance of case 2.) To locate all occurrences
of P , our data structure uses a number of auxiliary data structures, as explained
next, to report all occurrences of P in S according to case 1 and case 2 separately.
Summing all their complexities together yields Theorem 1 above. Let occ1 and
occ2 be the number of occurrences of P as in case 1 and case 2, respectively.

Case 1: [P occurs inside a factor] We use the data structure I(T) defined in
Section 4 to find all occurrences of P in O(|P | + occ1 logn) time (Theorem 2).
The data structure is of size 2n+o(n)+O(s logn) bits. See Section 4 for details.

Case 2: [P is not a substring of a single factor] As illustrated in Fig. 2, in this
case, every occurrence of P can be divided into two parts: the left part (the suffix
of a factor), and the right part (starting with a factor). We use three additional

Si p

Si

P

Si p Si p+1 Si q

P

Si
X Y

Fig. 2. When P occurs in string Si, there are two possibilities, referred to as case 1 and
case 2. In case 1 (shown on the left), P is contained inside a single factor Sip. In case 2
(shown on the right), P stretches across two or more factors Si(p−1), Sip, . . . , Si(q+1).

296 H.H. Do et al.

data structures: (i) X (T) to find the left parts; (ii) Y(F, T) to find the right parts
by dynamic programming; and (iii) M to report the correct combinations of the
left parts and right parts. The technical details of X (T), Y(F, T), and M are
given in Sections 5, 6, and 3, respectively. Their usage is summarized as follows:

(i) X (T) in Section 5 uses O(s logn)+o(n) bits space. It finds all occurrences of
prefixes of P that are equal to a suffix of a factor Si(p−1) in O(|P | log logn)
time, More precisely, X (T) returns, for every j, the maximal range stj ..edj
in T such that P [1..j] is a prefix of every element in T [stj], . . . , T [edj].

(ii) Y(F, T) in Section 6 uses 2.55n+2nHk(R)+O(m log n) bits space. It finds
all occurrences of suffixes of P that are equal to a prefix of a factor suffix
in F , i.e., Sip . . . SiqY , where Y is a prefix of Si(q+1), in O(|P | log σ log logn)
time. More precisely, Y(F, T) returns, for every j, the maximal range st′j ..ed

′
j

such that P [(j + 1)..|P |] is a prefix of every element in F [st′j], . . . , F [ed′j].

(iii) Encode all combinations ofX and Sip . . . SiqY that are adjacent in some Si ∈
S as follows: Define M to be a binary (s×m)-matrix where M [x, y] = 1 iff
T [x] is the preceding factor of the suffix F [y], i.e., F [y] = SipSi(p+1) . . . Sici

and Si(p−1) = T [x] is the x-th lexicographically smallest in T . Note that each
column of the matrix M contains exactly one 1. All case 2 occurrences of P
can be found by listing the entries equal to 1 in the rectangles [stj , edj] ×
[st′j , ed

′
j] in M , for all j. Section 3 gives two alternative 2D range query

data structuresM that support the operation query 2d(M, [st, ed], [st′, ed′])
on M for finding these entries: If M is of size O(m log s log log s) bits, all
entries equal to 1 can be found in O((1 + occ) log log s) time, and if M is of
size O(m log s) bits, the query takes O(log s/ log log s+ occ · logε s) time.

As a final step, we decode all occurrences of case 1 and 2 to find their actual
locations in S. A simple array of m logn bits is used to store sampled occurrences
and an extra O(logm/logn) time for reporting each occurrence is required. (Due
to space constraints, the details are deferred to the full version of this paper.)

3 Some Useful Auxiliary Data Structures

Rank and Select and Integer Data Structures: Let B[1..n] be a bit vector
of length n with k ones and n − k zeros. The rank and select data structure
supports two operations: rankB(i) returns the number of ones in B[1..i]; and
selectB(i) returns the position in B of the ith one. Given an array A[1..n] of non-
negative integers, where each element is at most m, we are interested in the fol-
lowing operations: max indexA(i, j) returns argmaxk∈i..j A[k], and
range queryA(i, j, v) returns the set {k ∈ i..j : A[k] ≥ v}. We also need one
more operation for the case when A[1..n] is sorted in non-decreasing order, called
successor indexA(v), which returns the smallest index i such that A[i] ≥ v. The
data structure for this operation is called the y-fast trie [25]. The complexities
of some existing data structures supporting the above operations are listed in
the next table.

Fast Relative Lempel-Ziv Self-index for Similar Sequences 297

Operation Extra space Time Reference Remark
rankB(i), selectB(i) log

(
n
k

)
+ o(n) O(1) [22]

max indexA(i, j) 2n+ o(n) O(1) [9]
range queryA(i, j, v) O(n logm) O(1 + occ) [20], p. 660
successor indexA(v) O(n logm) O(log logm) [25] A is sorted

The Suffix Array and BWT Index: Consider any string R with a special
terminating character $ which is lexicographically smaller than all the other
characters. The suffix array SAR is the array of all suffixes of R sorted lexico-
graphically. Any substring x of R can be represented by a pair of indices (st, ed),
called a suffix range or SAR-range. For any given string P specified by its suffix
range (st, ed) in SAR, a BWT (Burrows-Wheeler transform) index of R supports
the following operations: lookupR(i) returns the value of SAR[i]; ΨR(i) returns
the index j such that SAR[j] = SAR[i] + 1; and backward searchR(c, (st, ed)),
where c is any character, returns the suffix range in SAR of the string cP .

Given any string R of length n over an alphabet of size σ, [7,18] showed how
to construct a BWT index of R that uses nHk(R) + o(n) bits and supports
backward searchR in O(log σ) time and ΨR in O(1) time. Using an additional
n+ o(n) bits, lookupR can be supported in O(log n) time.

A general BWT index is a BWT index extended to alphabets of unbounded
size. The next lemma is our simple extension of the normal BWT to the general
BWT case, obtained by applying the result from [11] and some additional arrays:

Lemma 2. Given any string S of length m over an alphabet of size s, there
exists a general BWT index of S that uses m log s+ o(m log s) bits and supports
backward searchS in O(log log s) time and ΨS in O(1) time. Using an additional
m log s+ o(m log s) bits, lookupS can be supported in O(logm/ log s) time.

A New Data Structure for a Special Case of 2D Range Queries:We now
describe the 2D range query data structure mentioned in Section 2 for case 2.
This data structure, called M, helps to combine the results of X (T) and Y(F, T)
to form the final answers for case 2. Let M be a binary (s×m)-matrix. We define
M [x, y] = 1 if T [x] is the preceding factor of the factor suffix F [y]. The operation
query 2d(M, [a1, a2], [b1, b2]) reports all points in the rectangle [a1, a2] × [b1, b2]
in M whose values are 1. Here, [a1, a2] and [b1, b2] specify consecutive rows and
consecutive columns of M , respectively. Using existing results by Chan et al. [4]
and Nekrich [21], we can improve the time complexity for 2D range queries for
the special case when each column of M contains exactly one 1. We obtain:

Lemma 3. Let M be a given binary matrix of size s×m, where s ≤ m and every
column contains exactly one entry equal to 1. We can store M while supporting
query 2d(M, [a1, a2], [b1, b2]) within the following space and time complexities:

1. O(m log s log log s) bits and O((1+occ) log log s) query time; or, alternatively,
2. O(m log s) bits and O(log s/ log log s+ occ · logε s) query time,

where ε > 0 is a constant and occ is the number of 1s in the specified rectangle.

298 H.H. Do et al.

4 The Data Structure I(T) for Case 1

Recall from Section 2 that the array T [1..s] stores the s distinct factors of R
that occur in the factorizations of S in lexicographical order. Here, we define
a data structure named I(T) and apply it to locate all occurrences of a query
pattern P that lie entirely inside single factors in T [1..s] (case 1 in Section 2).
The main result of this section is summarized in the following theorem:

Theorem 2. The data structure I(T) uses 2n + o(n) + O(s log n) bits. Given
the suffix range st..ed of a query pattern P in SAR, it reports all occurrences
of P inside factors stored in T [1..s] using O(occ1 logn) time, where occ1 is the
number of answers.

A naive solution is to concatenate all the factors in T [1..s] and then build a
suffix tree or an FM-index, but the space used by such an approach would be
proportional to the total size of S. Instead, we formulate the problem as an
interval cover problem. For each i ∈ {1, 2, . . . , s}, define spi and epi as the
starting and ending positions of the factor T [i] inside the reference string R, i.e.,
T [i] = R[spi..epi]. We say that any factor T [i] covers a position p if spi ≤ p ≤ epi.
Also, factor T [i] is to the left of factor T [j] if either: (1) spi < spj; or (2) spi = spj
and epi < epj . Let G[1..s] be an array of indices such that G[i] = j if T [j] is the i-
th leftmost factor. To be able to convert between indices, we define Is[j] = spG[i]

and Ie[j] = epG[i]. Note that Is[1] is the starting position of the leftmost factor
and that the values of Is[1..s] are non-decreasing.

Next, for every p ∈ {1, 2, . . . , n}, define D[p] = maxj=1..s{Ie[j]−p+1 : Is[j] ≤
p}. Intuitively, D[p] measures the distance from position p to the rightmost
ending position of all factors that cover p. Let D′[1..n] be an array such that
D′[p] = D[SAR[p]]. (For an example, see Fig. 3 (a).) D′[p] tells us the length of
the longest interval whose starting position equals SAR[p]. Hence, we can check
if a substring of R is covered by at least one factor according to the next lemma:

A C G T G A T A G

D 4 3 2 6 5 4 3 2 1

SAR 1 8 6 2 9 5 3 7 4
D’ 4 2 4 3 1 5 2 3 6

1
1
1
3
4
5
7
8

2
3
4
4
9
6
8
9

Is Ie
1
2
3
6
8
5
7
4

G A C G T G A T A G

SAR 1 8 6 2 9 5 3 7 4
B 1 1 0 0 0 1 1 1 1

 {2,3,4} {2} {2} {2} {2} {5}

L[1]

L[2]
L[3]
L[4]
L[5]
L[6]

1
2
3
4
5
6
7
8

T id
2
3
4
4
9
6
8
8

len
0
0
1
1
1
1
1
1

C

(a) (b)

Fig. 3. (a) The factors (displayed as grey bars) from the example in Fig. 1 listed in left-
to-right order, and the arrays G, Is, Ie, D, and D′ that define the data structure I(T)
in Section 4. (b) The same factors ordered lexicographically from top to bottom, and
the arrays B,C, and Γ that define the data structure X (T) in Section 5.

Fast Relative Lempel-Ziv Self-index for Similar Sequences 299

Algorithm Search Pattern(st, ed)

Input: The data structure I(T) and the suffix range st..ed of the pattern P in SAR.
Output: Every factor T [j] in which P occurs.

1: Compute q = max indexD′(st, ed)
2: if D′[q] ≥ |P | then
3: Report all factors that cover SAR[q]..(SAR[q] + |P | − 1) using Lemma 5
4: Search Pattern(st, q − 1)
5: Search Pattern(q + 1, ed)
6: end if

Fig. 4. Algorithm for computing all occurrences of P in T [1..s]

Lemma 4. For any index p and length , there exists a factor T [j] that covers
positions SAR[p]..(SAR[p] + − 1) in R if and only if D′[p] ≥ .

Now, we describe the new data structure I(T). It consists of: (i) The arrayG[1..s],
using s logn bits; (ii) A successor data structure (see Section 3) for Is, using
s logn+ o(n) bits; (iii) A range maximum data structure (see Section 3) for Ie,
using 2s + o(s) bits; and (iv) A range maximum data structure for D′, using
2n+ o(n) bits. Note that we do not explicitly store the arrays D[1..n], D′[1..n],
Is[1..s], and Ie[1..s]. Lemma 5 shows how to recover the values of D[p] and D′[p]
for any position p ∈ {1, 2, . . . , n} from the data structure I(T). Also, Is[i] and
Ie[i] can be computed in O(1) time given G[i] and information about the factors.

Lemma 5. Given two positions p and q in R, we can: (i) Compute D[p] in O(1)
time and D′[p] in O(log n) time; and (ii) Report all factors that cover positions
p..q in O(1 + occ) time.

Based on I(T) and the suffix range for the query pattern P , Algorithm
Search Pattern in Fig. 4 computes all occurrences of P in factors from T [1..s].
Let st..ed be the suffix range of P in SAR. The algorithm recursively finds every
index q such that st ≤ q ≤ ed (lines 4 and 5) and D′[q] ≥ |P | (lines 1 and 2). By
Lemma 4, this condition guarantees that SAR[q] and SAR[q] + |P | − 1 are cov-
ered by at least one factor. Since st ≤ q ≤ ed, it holds that R[SAR[q]..(SAR[q]+
|P |− 1)] is an occurrence of P in R. Then, the algorithm reports every T [j] that
contains P by using Lemma 5 on line 3.

5 The Data Structure X (T) for Case 2

We now turn our attention to case 2 in Section 2 (see Fig. 2 (b)). This section
gives the details of the data structure X (T) which supports the following query:
for any given pattern P , locate every occurrence of a prefix of P that equals a
suffix X of a factor of S.

First, note that each of the |P | − 1 non-empty proper prefixes of P may be
considered separately as a query pattern for X (T). Therefore, we only consider
how to locate the occurrences of the entire P as suffixes of factors. Secondly,
we assume that P is specified by the corresponding suffix range stP ..edP in the

300 H.H. Do et al.

suffix array SAR for the reference string R, along with the length of P . Thirdly,
recall that the array T [1..s] stores the s distinct factors of the form Sij ∈ S sorted
lexicographically, and that T [1..s] stores all reversed distinct factors Sij sorted
lexicographically. Thus, X (T) will output the maximal range p..q in T such
that P is a prefix of every element in T [p], . . . , T [q]. In Section 6, we will also
need the symmetric data structure X (T) which, for any given query pattern P ,
outputs the maximal range p..q in T such that P is a prefix of every element
in T [p], . . . , T [q]. To simplify the presentation, we only describe X (T) below.

Theorem 3. The data structure X (T) uses O(s logn)+o(n) bits. For any suffix
range st..ed in SAR of a query pattern P , it can report the maximal range p..q
such that P is a prefix of all T [j], where p ≤ j ≤ q, in O(log logn) time.

Since the factor T [j] is a substring of R, let stj ..edj denote the corresponding
suffix range of T [j] in SAR. For every i = 1, . . . , n, define Γ (i) = {|T [j]| : stj = i
and stj ..edj is the suffix range of T [j] in SAR}. In other words, Γ (i) is the set
of lengths of factors whose suffix ranges start at i in SAR. We use Γ (i) to map
a suffix range in SAR to a range of factors in T according to:

Lemma 6. Suppose stP ..edP is the suffix range of P in SAR. Then, p..q is
the range in T [1..s] such that P is a prefix of all T [j] where p ≤ j ≤ q, where

p = 1 +
∑stP−1

i=1 |Γ (i)|+ |{x ∈ Γ (stP) : x < |P |}| and q =
∑edP

i=1 |Γ (i)|.
Now, we define X (T) based on Lemma 6. First, let B[1..n] be a bit vector such
that B[i] = 1 if Γ (i) is non-empty, and B[i] = 0 otherwise. Next, suppose Γ (i) is
the r-th non-empty set, and let L[r] be a y-fast trie [25] for Γ (i) (see Section 3).
Let C[1..s] be a bit vector such that C [

∑r
i=1 |Γ (i)|] = 1, and 0 otherwise. See

Fig. 3 (b). We define X (T) to consist of three parts: (i) The rank data structure
for the bit vector B[1..n] (s logn+o(n) bits); (ii) The select data structure for the
bit vector C[1..s] (s logn+o(n) bits); and (iii) The y-fast trie data structure L[r]
for Γ (i) if Γ (i) is the r-th non-empty set (O(s log n) bits). In total, X (T) requires
O(s log n) + o(n) bits.

Note that, for any , we have
∑�

i=1 |Γ (i)| = selectC(rankB()) and |{x ∈ Γ () :
x < c}| = successor index(L[rankB()], c). Using X (T), they can be computed
in O(log logn) time. Hence, the values of p and q in Lemma 6 can be computed
in O(log logn) time. Theorem 3 follows.

6 The Data Structure Y(F, T) for Case 2

Our next task is: Given any pattern P , compute the range of P [i..|P |] in F
for 1 ≤ i ≤ |P |, i.e., the range st..ed in F such that P [i..|P |] is a prefix
of F [st], . . . , F [ed]. Let Q[i] denote the range for each i. This section introduces
a data structure Y(F, T) which allows us to compute these ranges efficiently:

Theorem 4. The data structure Y(F, T) uses 2.55n + 2nHk(R) + O(m log n)
bits. It can find all suffix ranges of F that match some suffix of a query pattern P
in O(|P |(log σ + log logn)) time.

For any F [i], define the head of F [i] to be the first factor of F [i]. Let S be the con-
catenation of the factor representations of all strings in S, and let B be a general
BWT index of S (see Section 3) supporting backward searchS(T [i], (st, ed)).

Fast Relative Lempel-Ziv Self-index for Similar Sequences 301

The array Q[i] can be computed as follows. Define A[i] = P [i..j], where j is
the largest index such that P [i..j] is a factor of S, if one exists, and nil otherwise.
Let Y [i] be the range st..ed in F such that P [i..|P |] is the prefix of all the heads
of factor suffixes F [st]..F [ed], if one exists, and nil otherwise. Then:

Q[i] =

⎧⎪⎨
⎪⎩
Y [i] if Y [i] �= nil

backward searchS(A[i], Q[i+ |A[i]|]) if Y [i] = nil & A[i] �= nil

nil otherwise

(1)

By Equation (1), Q[1..|P |] can be computed in three steps: (a) Compute A[i] for
i = 1 to |P |; (b) Compute Y [i] for i = |P | to 1; and (c) Compute Q[i] for i = |P |
to 1. Next, we present the data structure Y(F, T) and discuss steps (a)–(c). The
data structure Y(F, T) consists of:

• The BWT of R and the BWT of R. Used to compute A[1..|P |].
• The data structure X (T) (see Section 5). Used to compute A[1..|P |], Y [1..|P |].
• The select data structure for a bit-vector V [1..m], defined by V [i] = 1 if the
head of F [i] differs from the head of F [i + 1], and V [i] = 0 otherwise. Used
to compute Y [1..|P |].

• The general BWT index B of S. Used to compute Q[1..|P |].

In step (a), we compute A[1..|P |] in O(|P |(log σ+log logn)) time by using X (T)
along with a bi-directional BWT index. In step (b), we compute Y [1..|P |] in two
phases. The first phase computes another array Y ′[1..|P |], defined as follows:
Y ′[i] is the range st′..ed′ in T such that P [i..|P |] is the prefix of T [st′], . . . , T [ed′].
By using the X (T) data structure from Section 5, we can obtain Y ′[1..|P |].
Then, given Y ′[1..|P |], the second phase computes Y [1..|P |] with the select
data structure for V as follows: Y [i] = (selectV (st − 1) + 1, selectV (ed)), where
(st, ed) = Y ′[i]. Finally, in step (c), we apply Equation (1) to compute Q[1..|P |].

Acknowledgments. JJ, KS, and WKS were supported in part by the
Special Coordination Funds for Promoting Science and Technology (Japan),
KAKENHI 23240002, and the MOE’s AcRF Tier 2 funding R-252-000-444-112,
respectively.

References

1. The 1000 Genomes Project Consortium: A map of human genome variation from
population-scale sequencing. Nature 467(7319), 1061–1073 (2010)

2. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.:
Random access to grammar-compressed strings. In: SODA, pp. 373–389 (2011)

3. Cao, M.D., Dix, T.I., Allison, L., Mears, C.: A simple statistical algorithm for
biological sequence compression. In: DCC, pp. 43–52 (2007)

4. Chan, T.M., Larsen, K.G., Pătraşcu, M.: Orthogonal range searching on the RAM,
revisited. In: SoCG, pp. 1–10 (2011)

5. Christley, S., Lu, Y., Li, C., Xie, X.: Human genomes as email attachments. Bioin-
formatics 25(2), 274–275 (2009)

302 H.H. Do et al.

6. Claude, F., Navarro, G.: Self-indexed Text Compression Using Straight-Line Pro-
grams. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp.
235–246. Springer, Heidelberg (2009)

7. Ferragina, P., Manzini, G.: Compression boosting in optimal linear time using the
Burrows-Wheeler Transform. In: SODA, pp. 655–663 (2004)

8. Ferragina, P., Manzini, G.: Indexing compressed text. Journal of the ACM 52(4),
552–581 (2005)

9. Fischer, J., Heun, V.: A New Succinct Representation of RMQ-Information and
Improvements in the Enhanced Suffix Array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

10. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: A Faster
Grammar-Based Self-index. In: Dediu, A.-H., Mart́ın-Vide, C. (eds.) LATA 2012.
LNCS, vol. 7183, pp. 240–251. Springer, Heidelberg (2012)

11. Golynski, A., Munro, J.I., Rao, S.S.: Rank/select operations on large alphabets: a
tool for text indexing. In: SODA, pp. 368–373 (2006)

12. Grumbach, S., Tahi, F.: Compression of DNA sequences. In: DCC, pp. 340–350
(1993)

13. Huang, S., Lam, T.W., Sung, W.K., Tam, S.L., Yiu, S.M.: Indexing Similar DNA
Sequences. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 180–190. Springer,
Heidelberg (2010)

14. Kreft, S., Navarro, G.: LZ77-like compression with fast random access. In: DCC,
pp. 239–248 (2010)

15. Kreft, S., Navarro, G.: Self-indexing Based on LZ77. In: Giancarlo, R., Manzini,
G. (eds.) CPM 2011. LNCS, vol. 6661, pp. 41–54. Springer, Heidelberg (2011)

16. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv Compression of Genomes
for Large-Scale Storage and Retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE
2010. LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010)

17. Kuruppu, S., Puglisi, S.J., Zobel, J.: Reference Sequence Construction for Relative
Compression of Genomes. In: Grossi, R., Sebastiani, F., Silvestri, F. (eds.) SPIRE
2011. LNCS, vol. 7024, pp. 420–425. Springer, Heidelberg (2011)

18. Mäkinen, V., Navarro, G.: Implicit Compression Boosting with Applications to
Self-indexing. In: Ziviani, N., Baeza-Yates, R. (eds.) SPIRE 2007. LNCS, vol. 4726,
pp. 229–241. Springer, Heidelberg (2007)

19. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. of Computational Biology 17(3), 281–308 (2010)

20. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In:
SODA, pp. 657–666 (2002)

21. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Com-
putational Geometry 42(4), 342–351 (2009)

22. Pătraşcu, M.: Succincter. In: FOCS, pp. 305–313 (2008)
23. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of

grammar-based compression. Theoretical Computer Science 302, 211–222 (2003)
24. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-Length Compressed Indexes

Are Superior for Highly Repetitive Sequence Collections. In: Amir, A., Turpin, A.,
Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg
(2008)

25. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space Θ(N).
Information Processing Letters 17(2), 81–84 (1983)

26. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Transactions on Information Theory 23(3), 337–343 (1977)

A Comparison of Performance Measures

via Online Search�

Joan Boyar, Kim S. Larsen, and Abyayananda Maiti

Department of Mathematics and Computer Science, University of Southern Denmark,
Campusvej 55, DK-5230 Odense M, Denmark

{joan,kslarsen,abyaym}@imada.sdu.dk

Abstract. Since the introduction of competitive analysis, a number of
alternative measures for the quality of online algorithms have been pro-
posed, but, with a few exceptions, these have generally been applied only
to the online problem for which they were developed. Recently, a system-
atic study of performance measures for online algorithms was initiated
[Boyar, Irani, Larsen: WADS 2009], first focusing on a simple server prob-
lem. We continue this work by studying a fundamentally different online
problem, online search, and the Reservation Price Policies in particular.
The purpose of this line of work is to learn more about the applicability of
various performance measures in different situations and the properties
that the different measures emphasize. We investigate the following anal-
ysis techniques: Competitive, Relative Worst Order, Bijective, Average,
Relative Interval, and Random Order. In addition, we have established
the first optimality proof for Relative Interval Analysis.

1 Introduction

An optimization problem is online if input is revealed to an algorithm one piece
at a time and the algorithm has to commit to the part of the solution involving
the current piece before seeing the rest of the input [3]. The first and most
well-known analysis technique for determining the quality of online algorithms is
competitive analysis [16]. The competitive ratio expresses the asymptotic ratio of
the performance of an online algorithm compared to an optimal offline algorithm
with unlimited computational power. Though this works well in many contexts,
researchers realized from the beginning [16] that this “unfair” comparison would
sometimes make it impossible to distinguish between online algorithms of quite
different quality in practice.

In recent years, researchers have considered alternative methods for compar-
isons of online algorithms, some of which compare algorithms directly, as opposed
to computing independent ratios in a comparison to an offline algorithm. See ref-
erences below and [10] for a fairly recent survey. Most of the new methods have
been designed with one particular online problem in mind, trying to fix problems
with competitive analysis for that particular problem. Not that much is known

� Supported by the Danish Council for Independent Research.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 303–314, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

304 J. Boyar, K.S. Larsen, and A. Maiti

about the strengths and weaknesses of these alternatives in comparison with
each other. In [6], a systematic study of performance measures was initiated by
fixing a (simple) online server problem and applying a collection of performance
measures. Partial conclusions were obtained in demonstrating which measures
focus on greediness as an algorithmic quality. It was also observed that some
measures could not distinguish between certain pairs of algorithms where the
one performed at least as well as the other on every sequence.

We continue this systematic study here by investigating a fundamentally dif-
ferent problem which has not yet been studied as an online problem other than
with competitive analysis, the online search problem [13,12]. Online search is a
very simple online (profit) maximization problem; the online algorithm tries to
sell a specific item for the highest possible price. Prices, between the minimum
price of m and the maximum price of M , arrive online one at a time, and each
time a price is revealed, the algorithm can decide to accept that price and ter-
minate or decide to wait. The length of the input sequence is not known to the
algorithm in advance, but is revealed only when the last price is given, and the
algorithm must accept that price, if it has not accepted one earlier.

This simple model of a searching problem has enormous importance due to
its simplicity and its application in the much more complex problems of lowest
or highest price searching in various real-world applications in the fields of Eco-
nomics and Finance [15]. The online search problem is very similar to that of
the one-way trading problem [8,12,13]. In fact, one-way trading can be seen as
randomized searching. Note that the assumption of a known minimum and max-
imum price is often used for these types of problems because of the difficulties of
defining and analyzing algorithms without them. Reasonable bounds can often
be chosen by observing high and low values (of stock prices, currency exchange
rates, or whatever is being bought or sold) over an appropriate period of time.

The long-term goal of systematically comparing performance measures is to
be able to determine, based on characteristics of an online problem, how online
algorithms should be theoretically analyzed so as to accurately predict the rel-
ative quality of the algorithms in practice. Online search differs from the server
problem studied earlier in many respects, particularly in its consisting of a “one-
shot” choice, as opposed to incremental decisions, so the greediness studied in [6]
is not relevant here. In addition, online search is a maximization problem, in-
stead of minimization, and its last request has a different requirement than the
others (if nothing was chosen before then, the last value must be chosen). Thus,
the findings obtained here are complementary to the results obtained in [6]. The
difference between online search and many other problems also forced us to ex-
tend earlier definitions for some of the measures so that they could be applicable
here as well.

Our primary study is of the class of Reservation Price Policy (RPP) algo-
rithms [12,13]. This is a parameterized class, where the behavior of Rp is to
accept the first price greater than or equal to the so-called reservation price p.

Here we compare the six different quality measures on RPP algorithms with
different parameters. We have considered having an integral interval of possible

A Comparison of Performance Measures via Online Search 305

prices between m and M as well as a real-valued scenario; for the most part,
the results are similar. The following discussion in this introduction is assuming
a real-valued scenario, allowing us to state the results better typographically,
without rounding.

For the performance measures below, note that since profit is a constant
(between m and M), independent of the sequence length, for measures of an
asymptotic nature, we use the strict version since asymptotic results (allowing
an additive constant) would deem all algorithms optimal (ratio one compared
with an optimal algorithm—up to the additive constant). For the same reason,
the measures which were originally defined using limits on the profit (or cost)
achieved are modified here. In each section of the paper, we give the precise
definition of the measures used.

We find that Competitive Analysis as well as Random Order Analysis favor
R√

mM , the reason being that they focus on limiting the worst case ratio com-
pared to an optimal algorithm, independent of input length. Relative Interval
Analysis favorsRm+M

2
, similarly limiting the worst case difference, as opposed to

ratio. Average Analysis favors RM . This is basically due to focusing on the limit,
i.e., when input sequences become long enough, any event will occur eventually.
In Bijective Analysis, basically all algorithms are incomparable. Finally Relative
Worst Order Analysis deems the algorithms incomparable, but gives indication
that R√

mM is the best algorithm.
As an additional check that the different performance measures work “cor-

rectly”, we have also considered simple “bad” algorithms, such as R2
p, which

accepts the second price greater than or equal to p. As expected, this algorithm
turns out to be worse than Rp for most of the measures.

In addition to these findings, this paper contains the first optimality result
for Relative Interval Analysis, where we prove that no Rp algorithm can be
better than Rm+M

2
. For Relative Worst Order Analysis, we refine the discussion

of which algorithm is best through the concept of “superiority”, which seems to
be interesting for classes of parameterized algorithms. A first use of this concept,
without naming it, appeared when analyzing a parameterized variant of Lazy
Double Coverage for the server problem in [6].

Finally, we have investigated the sensitivity of the different measures with re-
gards to the choice of integral vs. real-valued domains, and most of the measures
seem very stable in this regard. Not surprisingly, using real values, Bijective Anal-
ysis indicates that all RPP algorithms are equivalent. Average analysis is inap-
plicable for a real-valued interval, but a generalization, which we call Expected
Analysis, can be applied, giving similar results to what Average Analysis gives for
integral values. Expected Analysis may be useful for other problems as well.

The rest of this paper is organized as follows. Section 2 defines the notation
used and each subsequent section treats one of the measures described above.
Due to space constraints, some of the proofs and results have been omitted. The
full version of this paper in arXiv [7] contains the omitted material.

306 J. Boyar, K.S. Larsen, and A. Maiti

2 Problem Preliminaries

Unless otherwise stated, we assume that the prices are integral and drawn from
some integral interval [m,M] with 0 < m ≤ M . In any time step, any value
from this closed interval can be drawn as a price, and there will be N = M −
m+1 possible prices. This assumption is made for the sake of consistency; some
methods of analysis are uninteresting for real-valued intervals; see Section 4, for
example. Also, this assumption is compatible with the real-world problems of
online search as the set of prices is generally finite (the market decides on an
agreed-upon number of digits after the decimal point).

We denote the length of the price sequence by n. Denote by In the set of all
input sequences of length n. Thus, the total number of possible input sequences
of length n is Nn. For an online algorithmA and an input sequence I, let A(I) be
the profit gained by A on I, i.e., the price chosen. In some analyses (for example
in Relative Worst Order Analysis), we need to permute the input sequences. We
always use σ as a permutation and denote the permuted sequence by σ(I).

Some of the analysis methods compare the online algorithms with a hypothet-
ical optimal offline algorithm which receives the input in its entirety in advance
and has unlimited computational power in determining a solution. We denote
this optimal algorithm by OPT and the profit gained by it from an input se-
quence I as OPT(I), which is the maximum price in that sequence.

To denote the relative performance of two online algorithmsA and B according
to an analysis method, x, we use the following notation. If B is better than A,
then we write A ≺x B, and if B is no worse than A, this is denoted by A /x B.
If the measure deems the algorithms equivalent, then this is denoted by A ≡x B.
Usually, we merely define either ≺x or /x and the other relations follow in the
standard way from that.

If n = 1, any algorithmmust take the only price, so all online search algorithms
are equivalent. To streamline the presentation of results, we always assume that
n ≥ 2. The core of this paper is concerned with the comparison of Rp and Rq for
p �= q. To avoid stating this every time, we always assume that m ≤ p < q ≤ M .

3 Competitive Analysis

The online search problem was first studied from an online algorithms perspec-
tive using Competitive Analysis by El-Yaniv et al. [12]. Competitive Analysis
evaluates an online algorithm in comparison to an optimal offline algorithm.

Definition 1. An online search algorithm A is strictly c-competitive if for all
finite input sequences I, OPT(I) ≤ c · A(I).
The competitive ratio of algorithm A is inf{c | A is c-competitive}.

Denote the competitive ratio of an online algorithm A by cA. If cA > cB, B is
better than A according to Competitive Analysis and we denote this by A ≺c B.

In [12], El-Yaniv formulated the Reservation Price Policy algorithm and proved
that for real-valued prices, the reservation price p∗ =

√
Mm is the optimal price

A Comparison of Performance Measures via Online Search 307

according to Competitive Analysis, and using this price, the competitive ratio is√
M/m. A very similar result and proof holds for integer-valued prices.

Theorem 1. According to Competitive Analysis, Rp ≺c Rq, Rp ≡c Rq and
Rq ≺c Rp if and only if Mm > p(q − 1), Mm = p(q − 1) and Mm < p(q − 1),
respectively.

Proof. In any price sequence for an RPP algorithm Rp, we consider two cases:
(i) all the prices are less than p, in which case the performance ratio, offline to
online, will be at most p−1

m with equality when there is a price p− 1 and the last
price is m; and (ii) at least one price is greater than or equal to p, in which case
the offline to online performance ratio would be at most M

p with equality when
the first price greater than or equal to p is exactly p and there is another price M
somewhere later. So, the competitive ratio of Rp will be cRp = max(p−1

m , M
p). It

is easy to observe that cRp > cRq if and only if M
p > q−1

m since p−1
m < q−1

m and
M
p > M

q . This argument proves that Rp ≺c Rq if and only if Mm > p(q − 1).
Similarly, we can conclude the other two results. �

Corollary 1. Let s =
⌈√

Mm
⌉
. According to Competitive Analysis, the best

RPP algorithm is Rs.

4 Bijective Analysis

In the Bijective Analysis model [1], we construct a bijection on the set of possible
input sequences. In this bijection, we aim to pair input sequences for online
algorithms A and B in such a way that the cost of A on every sequence I is
no more than the cost of B on the image of I, or vice versa, to show that the
algorithms are comparable. We present a version of the definition from [1] which
is suitable for profit maximization problems such as online search.

Definition 2. We say that an online search algorithm A is no better than an
online search algorithm B according to Bijective Analysis if there exists an integer
n0 ≥ 1 such that for each n ≥ n0, there is a bijection b : In ↔ In satisfying
A(I) ≤ B(b(I)) for each I ∈ In. We denote this by A /b B.

Theorem 2. According to Bijective Analysis, Rp ≺b Rq, if p = m and m <
q ≤ M . Otherwise, Rp and Rq are incomparable.

Proof. Consider the sequences with m < p. Note that with Rp, m will be chosen
as output if and only if it is the last price of the sequence and all the preceding
prices are smaller than p. As there are p−m such prices and, not counting the
last price, there are n−1 prices in the sequence, the number of possible sequence
with m as output is (p−m)n−1. With the same reasoning, for algorithm Rp, each
price in the range from m to p− 1 will be the output for (p−m)n−1 sequences.

For any prices in the range from p to M , algorithm Rp chooses this price
as output at its first occurrence in the price sequence if no price greater than

308 J. Boyar, K.S. Larsen, and A. Maiti

or equal to p has occurred before it. So all the preceding prices before this first
occurrence should be smaller than p (specifically in the range fromm to p−1) and
the following prices can have any value. For example, the number of sequences
where price p comes in the 3rd place in the sequence as well as taken as output
will be (p − m)2Nn−3. So the number of sequences which give output k if the
reservation price is p is

Np,k =

⎧⎨
⎩

(p−m)n−1, for m ≤ k < p
n∑

i=1

(p−m)i−1Nn−i, for p ≤ k ≤ M
(1)

Recall the assumption throughout the paper that q > p. We consider two cases
depending on p:

Case p > m: From Eq. (1), we can derive the fact that when p > m, the number
of sequences with lowest output for algorithm Rq (Nq,m) is greater than that
for algorithm Rp (Np,m) since (q −m)n−1 > (p−m)n−1. Thus, we cannot have
any bijective mapping b : In ↔ In that shows Rp(I) ≤ Rq(b(I)) for every
I ∈ In. On the other hand, it is also the case that the number of sequences
with highest output (M) for algorithm Rq is greater than that of algorithm Rp

since Nq,M > Np,M . So there is no bijection b such that Rp(I) ≥ Rq(b(I)) for
every I ∈ In. Thus for this case, Rp and Rq are incomparable according to the
Bijective Analysis.

Case p = m: For algorithm Rm, since the first price will be accepted, each
price will be the output for exactly Nn−1 sequences. We can derive the number
of sequences with specific output for algorithm Rq using Eq. (1). In this case,
each price in the range from m to q − 1 will emerge as output in (q − m)n−1

sequences and the number of sequences with output in the range from q to M
will be Nn−1 + (q −m)Nn−2 + (q −m)2Nn−3 + · · ·+ (q −m)n−1. Clearly, here
we can construct a bijective mapping b : In ↔ In where each sequence with
output k < q of algorithm Rm is mapped to sequences with the same output for
algorithm Rq. Let Em denote the number of excess sequences with output k < q
of Rm which cannot be mapped in the above way. We map each sequence with
output k ≥ q of algorithm Rm to sequences with the same output in algorithm
Rq. Let Eq denote the number of excess sequences with output k ≥ q of Rq

which can not be mapped in above way. Clearly, Em = Eq. Note that, for all of
these Em sequences, we can construct a mapping such that Rm(I) < Rq(b(I)).
This mapping shows that Rm(I) ≤ Rq(b(I)) for each I ∈ In, but there is no
bijection b′ such thatRm(I) ≥ Rq(b

′(I)) for all I ∈ In. This shows that if p = m,
Rm and Rq are comparable according to Bijective Analysis and Rm ≺b Rq. �

4.1 Real-Valued Price Interval

The result of comparing the two algorithms using Bijective Analysis changes
significantly when the values of the prices are real numbers: Bijective Analy-
sis cannot differentiate between algorithms when the number of sequences is
uncountable.

A Comparison of Performance Measures via Online Search 309

Theorem 3. Rp and Rq are equivalent according to Bijective Analysis if the
prices are drawn from real space in [m,M].

The same problem clearly arises for other online problems with real-valued
inputs.1

5 Average Analysis

In general, using Bijective Analysis, algorithms could be incomparable because it
is impossible to find a bijection showing that one algorithm dominates the other.
In some of these cases, if we take the average performance of the algorithms, then
we can still get an indication of which algorithm is better. In [1], Average Analysis
is defined with that aim and is formulated here in terms of online search.

Definition 3. We say that an online search algorithm A is no better than an
online search algorithm B according to Average Analysis if there exists an integer
n0 ≥ 1 such that for each n ≥ n0,

∑
I∈In

A(I) ≤
∑

I∈In
B(I). We denote this

by A /a B.

Theorem 4. For all n ≥
⌊

log(N/(q−p))
log(N/(N−1))

⌋
+ 1,

∑
I∈In

Rp(I) <
∑

I∈In
Rq(I).

Thus, according to Average Analysis, Rp ≺a Rq.

Proof. Let Sp,n denote the summation
∑

I∈In
Rp(I). We can derive the value of

Sp,n using Eq. (1) and that N = M −m+ 1. Sp,n equals

p−1∑
i=m

iNp,i +

M∑
i=p

iNp,i = (p−m)n−1

p−1∑
i=m

i +

(
n∑

i=1

(p−m)i−1Nn−i

)
M∑
i=p

i

=
(p−m)n(p+m− 1)

2
+

(
Nn − (p−m)n

N − (p−m)

)
(N +m+ p− 1)(N +m− p)

2

=
Nn+1 + pNn +mNn −Nn −N(p−m)n

2
(2)

To compare Rp and Rq , we show that the difference between the two corre-
sponding sums (Sq,n − Sp,n) is greater than zero for some n0 ≥ 1 and for each
n ≥ n0. Using Derivation (2), we have

Sq,n − Sp,n > 0 ⇔ Nn−1 >
(q −m)n − (p−m)n

q − p
(3)

Since q−m ≤ M − 1 and q > p, Eq. (3) holds for any n0. Thus, it holds for any

n0 satisfying Nn0−1 > (N−1)n0

q−p . Solving for n0 gives

(n0 − 1) logN > n0 log(N − 1)− log(q − p) ⇔ n0 >
log(N/(q − p))

log(N/(N − 1))

Therefore, for all n0 ≥
⌊

log(N/(q−p))
log(N/(N−1))

⌋
+ 1,

∑
I∈In

Rp(I) <
∑

I∈In
Rq(I). �

1 The authors are thankful to Leah Epstein, Asaf Levin and Alejandro López-Ortiz
for earlier discussions concerning this subject.

310 J. Boyar, K.S. Larsen, and A. Maiti

Corollary 2. According to Average Analysis, the best RPP algorithm is RM .

In AverageAnalysis, algorithms are compared by comparing the sums of their out-
puts on all possible sequences. For integral valued problems, this is equivalent to
comparing the the sum of the outputs and the expected outputs over a uniform dis-
tribution on all input sequences. In contrast, in the case of real-valued problems,
calculating the sum of the outputs of the infinitely many sequences is impossible.
However, if we know the distribution of the input prices in the sequences, then we
can derive the expected output of a sequence. We generalize Average Analysis to
Expected Analysis. For a detail analysis of this new measure see arXiv [7]. This
generalization may prove useful for other online problems as well.

Definition 4. We say that an online search algorithm A is no better than an
online search algorithm B according to Expected Analysis if there exists an in-
teger n0 ≥ 1 such that for each n ≥ n0, EI∈In [A(I)] ≤ EI∈In [B(I)]. We denote
this by A /e B.

6 Random Order Analysis

Kenyon [14] proposed another method for comparing the average behaviors of
online algorithms by considering the expected result of a random ordering of
an input sequence and comparing that to OPT’s result on the same sequence.
In [14], Kenyon defines the random order ratio in the context of the bin packing
problem which is a cost minimization problem.

Definition 5. The random order ratio RC(A) of an online bin packing algo-
rithm A is

RC(A) = lim sup
OPT(I)→∞

Eσ[A(σ(I))]

OPT(I)

where the expectation is taken over all permutations of I.

An online algorithm B is better than an online algorithmA according to Random
Order Analysis if RC(A) > RC(B). We denote this by A ≺r B. Since the value
of OPT(I) is bounded above by the constant M , the following definition, a
maximization version of the definition of random order ratio in [9], is used here
in place of the original definition.

RC(Rp) = lim sup
n→∞

OPT(I)

Eσ[Rp(σ(I))]
(4)

Theorem 5. The random order ratio of the RPP algorithm Rp is max(Mp , p−1
m)

when p > 1 and p > m. Consequently, Rp ≺r Rq if and only if Mm > p(q − 1).

Corollary 3. Let s =
⌈√

Mm
⌉
. According to Random Order Analysis, the best

RPP algorithm is Rs.

A Comparison of Performance Measures via Online Search 311

7 Relative Interval Analysis

Dorrigiv et. al. [11] proposed another analysis method, Relative Interval Analy-
sis, in the context of paging. Relative Interval Analysis also compares two online
algorithms directly, i.e., it does not use the optimal offline algorithm as the base-
line of the comparison. It compares two algorithms on the basis of the rate of
the outcomes over the length of the input sequence rather than their worst case
behavior. Here we define this analysis for profit maximization problems for two
algorithms A and B, following [11].

Definition 6. Let

MinA,B(n) = min
|I=n|

{A(I)− B(I)} and MaxA,B(n) = max
|I=n|

{A(I)− B(I)} .

These functions are used to define the following two measures:

Min(A,B) = lim inf
n→∞

MinA,B(n)

n
and Max(A,B) = lim sup

n→∞

MaxA,B(n)

n
. (5)

Note that Min(A,B) = −Max(B,A) and Max(A,B) = −Min(B,A). The rel-
ative interval of A and B is defined as l(A,B) = [Min(A,B),Max(A,B)]. If
Max(A,B) > |Min(A,B)|, then A is said to have better performance than B in
this model. In particular, if l(A,B) = [0, β] for β > 0, then it is said that A
dominates B since Min(A,B) = 0 indicates that A is never worse than B and
Max(A,B) > 0 says that A is better at least for some case(s).

Given the finite nature of the online search problem, the above limits are always
zero. We propose a modification of Relative Interval Analysis to make it suitable
for finite problems.

Definition 7. MinA,B(n) and MaxA,B(n) are as in Definition 6.
These functions are used to define the following two measures:

Min(A,B) = inf{MinA,B(n)} and Max(A,B) = sup{MaxA,B(n)}. (6)

The pair, fl(A,B) = [Min(A,B),Max(A,B)], is used to denote the Finite Rela-
tive Interval of A and B. Relative performance and dominance with regards to
fl(A,B) are defined as for l(A,B) from Definition 6.

Theorem 6. According to Finite Relative Interval Analysis, fl(Rq,Rp) = [m−
q + 1,M − p].

Proof. The minimum value of Rq(I) − Rp(I) is obtained by any sequence of
prices with all the prices smaller than q, where the first price is q − 1 and the
last price is m. In this case, MinRq,Rp(N) = m − q + 1. The maximum value
of Rq(I) − Rp(I) is M − p, which is obtained when the first price is p and the
second price is M . This proves that fl(Rq,Rp) = [m− q + 1,M − p]. �

Corollary 4. Let s =
⌈
M+m

2

⌉
. According to Finite Relative Interval Analysis,

the best RPP algorithm is Rs.

312 J. Boyar, K.S. Larsen, and A. Maiti

8 Relative Worst Order Analysis

Relative Worst Order Analysis [4] compares two online algorithms directly. It
compares two algorithms on their worst orderings of sequences which have the
same content, but possibly in different orders. The definition of this measure
is somewhat more involved; see [5] for more intuition on the various elements.
Here we use the definitions for the strict Relative Worst Order Analysis for profit
maximization problems.

Definition 8. Let I be any input sequence, and let n be the length of I. Let A
be any online search algorithm. Then AW (I) = minσ A(σ(I)).

Definition 9. For any pair of algorithms A and B, we define

cl(A,B) = sup {c | ∀I : AW (I) ≥ cBW (I)} and

cu(A,B) = inf {c | ∀I : AW (I) ≤ cBW (I)} .

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and
the strict relative worst order ratio WRA,B of algorithm A to algorithm B is
defined. Otherwise, WRA,B is undefined.

If cl(A,B) ≥ 1 then WRA,B = cu(A,B), and

if cu(A,B) ≤ 1 then WRA,B = cl(A,B).

If WRA,B > 1, algorithms A and B are said to be comparable in A’s favor.
Similarly, if WRA,B < 1, algorithms are said to be comparable in B’s favor.

When two algorithms happen to be incomparable, RelativeWorst Order Analysis
can still be used to express their relative performance.

Definition 10. If at least one of the ratios cu(A,B) and cu(B,A) is finite, the
algorithms A and B are (cu(A,B), cu(B,A))-related.

Theorem 7. According to Relative Worst Order Analysis, the algorithms Rq

and Rp are (Mp , q−1
m)-related. They are comparable in Rq’s favor if p = m and

q = m+ 1.

Proof. For the maximum value of the ratio of Rqw(I) and Rpw(I), we can con-
struct a sequence I with only one p and one M and all the other prices smaller
than q. Among all the permutations of I, the worst output for Rq is M and that
of Rp is p. This gives the value of the upper bound cu(Rq,Rp) as M

p . For the
lower bound, assume I has only one q− 1 and one m and all the other prices are
smaller than p. Then, Rp takes q − 1 as its output on every permutation of I,
but the worst output of Rq gives m. On this sequence, Rq performs worse than
Rp, and the ratio of the outputs of the two algorithms can never be lower than
that. So,

cl(Rq,Rp) =
m

q − 1

{
= 1, for q = m+ 1 and p = m
< 1, otherwise

cu(Rq,Rp) =
M

p
> 1

A Comparison of Performance Measures via Online Search 313

From the above expressions and the definitions of strict Relative Worst Order
Analysis, we can see that Rq and Rp are comparable when p = m and q = m+1.
For all the other cases, they are incomparable. For this single feasible condition
(cl(Rq,Rp) = 1), we have WRRq,Rp = M

p > 1, and we can say that algorithms
Rq and Rp are comparable in Rq’s favor. Using Definition 10, since all the ratios
are finite, cu(Rp,Rq) is

q−1
m and the algorithms Rq and Rp are (

M
p , q−1

m)-related.
�

Note that this relatedness result gives the same conditions indicating which
algorithm is better as Competitive and Random Order Analysis. Although the
original definition of relatedness in Relative Worst Order Ratio does not tell
explicitly which algorithm is better, we can get a strong indication regarding
this issue from the next corollary, using the concept of better performance [11]
from Relative Interval Analysis.

Corollary 5. Let s =
⌈√

Mm
⌉
. Then ∀q > s, if Rq and Rs are (c, c′)-related,

then c ≤ c′; and ∀p < s, if Rs and Rp are (c, c′)-related, then c > c′.

This corollary shows that whatever the value of x (x �= s), cu(Rs,Rx) ≥
cu(Rx,Rs). A similar result on a parameterized family of algorithms can be
found in [6]. This could be defined as a weak form of optimality within a class
of algorithms, and we will say that Rs is superior to any other RPP algorithm.

9 Concluding Remarks

With regards to the concrete results, for Competitive and Random Order Anal-
ysis, R√

mM is the best online algorithm. Relative Worst Order and Relative
Interval have more nuanced answers, but point to R√

mM and Rm+M
2

, respec-

tively. Bijective and Average Analysis seem to provide the least interesting in-
formation in this context; Average Analysis indicates RM as the best algorithm,
and Bijective Analysis deems most algorithms incomparable.

This points to three choices for the online player with regards to the opti-
mal reservation prices, namely

√
mM , m+M

2 , and M , depending on the different
analysis methods, i.e., the geometric mean, the arithmetic mean, and the max-
imum M of all possible values. This clearly shows that the objectives of the
different performance measures vary greatly, trying to limit poor performance in
a proportional or additive sense, or focusing equally on all scenarios, including
the possibly non-occurring upper bound of M . Thus, the different measures are
tailored towards different degrees of risk aversion—cautiousness vs. aggressive-
ness. The observations above complement the findings regarding greediness and
laziness from [6].

Studying performance measures and disclosing their properties and differences
from each other is work in progress. With this study, we have added Online
Search to the collection of problems that have been investigated with a spectrum
of measures. More online problem scenarios must be analyzed this broadly before
strong conclusions concerning the different performance measures can be drawn.

314 J. Boyar, K.S. Larsen, and A. Maiti

Another interesting direction for future work would be to incorporate other
aspects of financial problems into the analysis in the context of other the perfor-
mance measures, as it has been done for competitive analysis of financial games
in the risk-reward framework of al-Binali [2].

References

1. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence
of paging strategies. In: 18th Symposium on Discrete Algorithms, pp. 229–237.
Philadelphia, PA, USA (2007)

2. Al-Binali, S.: A risk-reward framework for the competitive analysis of financial
games. Algorithmica 25(1), 99–115 (1999)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

4. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for online algorithms.
ACM Transactions on Algorithms 3(2), article 22 (2007)

5. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to
paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)

6. Boyar, J., Irani, S., Larsen, K.S.: A Comparison of Performance Measures for
Online Algorithms. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.)
WADS 2009. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009), arXiv:
0806.0983v1 [cs.DS]

7. Boyar, J., Larsen, K.S., Maiti, A.: A comparison of performance measures via
online search. Tech. Rep. arXiv:1106.6136v1 [cs.DS], arXiv (2011)

8. Chen, G.-H., Kao, M.-Y., Lyuu, Y.-D., Wong, H.-K.: Optimal buy-and-hold strate-
gies for financial markets with bounded daily returns. SIAM Journal on Comput-
ing 31(2) (2001)

9. Coffman Jr., E.G., Csirik, J., Rónyai, L., Zsbán, A.: Random-order bin packing.
Discrete Applied Mathematics 156(14), 2810–2816 (2008)

10. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. SIGACT News 36(3), 67–81 (2005)

11. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging
algorithms. Theoretical Computer Science 410(38–40), 3694–3701 (2009)

12. El-Yaniv, R.: Competitive solutions for online financial problems. ACM Computing
Surveys 30(1), 28–69 (1998)

13. El-Yaniv, R., Fiat, A., Karp, R.M., Turpin, G.: Optimal search and one-way trading
online algorithms. Algorithmica 30(1), 101–139 (2001)

14. Kenyon, C.: Best-fit bin-packing with random order. In: 7th Symposium on Discrete
Algorithms, pp. 359–364 (1996)

15. Rothschild, M.: Searching for the lowest price when the distribution of prices is
unknown. Journal of Political Economy 82(4), 689–711 (1974)

16. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

Online Exploration of All Vertices

in a Simple Polygon�

Yuya Higashikawa and Naoki Katoh

Department of Architecture and Architectural Engineering, Kyoto University,
Nishikyo-ku, Kyoto 615-8540 Japan

{as.higashikawa,naoki}@archi.kyoto-u.ac.jp

Abstract. This paper considers an online exploration problem in a sim-
ple polygon where starting from a point in the interior of a simple poly-
gon, the searcher is required to explore a simple polygon to visit all its
vertices and finally return to the initial position as quickly as possible.
The information of the polygon is given online. As the exploration pro-
ceeds, the searcher gains more information of the polygon. We give a
1.219-competitive algorithm for this problem. We also study the case of
a rectilinear simple polygon, and give a 1.167-competitive algorithm.

Keywords: online algorithm, exploration, competitive analysis.

1 Introduction

The Tohoku Earthquake attacked East Japan area on March 11, 2011. When such
a big earthquake occurs in an urban area, it is predicted that many buildings
and underground shopping areas will be heavily damaged, and it is seriously
important to efficiently explore the inside of damaged areas in order to rescue
human beings left there. With this motivation, this paper deals with an online
exploration problem (OEP for short) in a simple polygon. Given a simple polygon
P , suppose the searcher is initially in the interior of P . Starting from the origin
o, the aim of the searcher is to visit all vertices of P at least once and to return
to the starting point as quickly as possible. The information of the polygon is
given online. Namely, at the beginning, the searcher has only the information
of a visible part of the polygon. As the exploration proceeds, the visible area
changes. However, the information of the region which has once become visible
is assumed to be accumulated. So, as the exploration proceeds, the searcher
gains more information of the polygon, and determines which vertex to visit
next based on the information obtained so far.

In general, the performance of an online algorithm is measured by a com-
petitive ratio which is defined as follows. Let S denote a class of objects to be
explored. When an online exploration algorithm ALG is used to explore an object
S ∈ S, let |ALG(S)| denote the tour length (cost) required to explore S by ALG.

� Supported by JSPS Grant-in-Aid for Scientific Research(B)(21300003).

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 315–326, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

316 Y. Higashikawa and N. Katoh

Let |OPT(S)| denote the tour length (cost) required to explore S by the offline
optimal algorithm. Then the competitive ratio of ALG is defined as follows.

sup
S∈S

|ALG(S)|
|OPT(S)| .

Previous Work: OEP has been extensively studied for the case of graphs.
Kalyanasundaram et al. [10] presented a 16-competitive algorithm for planar
undirected graphs. Megow et al. [8] recently extended this result to undirected
graphs with genus g and gave a 16(1+2g)-competitive algorithm. For the case of
a cycle, Miyazaki et al. [9] gave an optimal 1.37-competitive algorithm. All these
results are concerned with a single searcher. For the case of p(> 1) searchers,
there are some results. Fraigniaud et al. [3] gave an O(p/ log p)-competitive al-
gorithm for the case of a tree. Higashikawa et al. [6] gave (p/ log p + o(1))-
competitive algorithm for this problem. Dynia et al. [2] showed a lower bound
Ω(log p/ log log p) for any deterministic algorithm for this problem.

There are some papers that deal with OEP in geometric regions (see survey
paper [5]). Kalyanasundaram et al. [10] studied the case of a polygon with holes
where all edges are required to traverse. They gave a 17-competitive algorithm
for this case. Hoffmann et al. [7] studied the problem that asks to find a tour in
a simple polygon such that every vertex is visible from some point on the tour,
and gave a 26.5-competitive algorithm.

Our Results: We will show 1.219-competitive algorithm for OEP in a simple
polygon. We also study the case of a rectilinear simple polygon, and give a 1.167-
competitive algorithm. We will give a lower bound result that the competitive
ratio is at least 1.040 within a certain framework of exploration algorithms.

2 Strategy of AOE

In this paper, we define a simple polygon as a closed polygonal chain with no self-
intersction in the plane. In the followings, we use the term polygon to stand for a
simple polygon. Also an edge of a polygon (or a polygon edge) is defined as a line
segment forming a part of the polygonal chain, a vertex of a polygon (or a polygon
vertex) as a point where two polygon edges meet and the boundary of polygon
as a polygonal chain. Let P be a polygon and o be the origin. Sometimes we
abuse the notation P to stand for the interior (including the boundary) of P . Let
V = {v1, v2, ..., vn} be a polygon vertex set of P sorted in clockwise order along
the boundary and E = {e1, e2, ..., en} be a polygon edge set of P composed of
ei = (vi, vi+1) = (v1ei , v

2
ei) with 1 ≤ i ≤ n (vn+1 = v1 is assumed). let |e| denote

the length of edge e ∈ E and L =
∑

e∈E |e| be the boundary length of P . For
any two points x, y ∈ P , let sp(x, y) denote the shortest path from x to y that
lies in the inside of P , |sp(x, y)| be its length and |xy| be the Euclidean distance
from x to y. Note that sp(x, y) = sp(y, x) and |xy| ≤ |sp(x, y)|. Furthermore,
for any two vertices x, y ∈ V , let bp(x, y) denote the clockwise path along the
boundary of P from x to y and |bp(x, y)| be its length. The cost of a tour is
defined to be its length.

Online Exploration of All Vertices in a Simple Polygon 317

For a point x ∈ P and an edge e ∈ E, let

cost(x, e) = |sp(x, v1e)|+ |sp(x, v2e)| − |e|.

In the offline version of this problem, we will prove below that an optimal strategy
is that starting from the origin o, the searcher first goes to one endpoint of some
edge e, namely v2e , then follows the boundary path bp(v2e , v

1
e) and finally comes

back to o.

Lemma 1. For offline exploration problem in a polygon P , the cost of the offline
optimal algorithm satisfies the following.

|OPT(P)| = L+min
e∈E

cost(o, e).

Let eopt ∈ E be an edge satisfying the following equation.

cost(o, eopt) = min
e∈E

cost(o, e). (1)

For two points x, y ∈ P , we say that y is visible from x if the line segment xy
lies in the inside of P . Then the visibility polygon V P (P, x) is

V P (P, x) := {y ∈ P | y is visible from x}.

Note that an edge of the visibility polygon is not necessarily an edge of P (see
Fig. 1). For a polygon vertex b and a point x ∈ P , we call b a blocking vertex
with respect to x if b is visible from x and there is the unique edge incident to
b such that any point on the edge except b is not visible from x. Let b∗ be a
point where the extension of the line segment xb towards b first intersects the
boundary of P . Then we call b∗ a virtual vertex and the line segment bb∗ a cut
edge. Without loss of generality we assume that b∗ does not coincide with any
vertex in V . Also let ê be an edge of P containing b∗ then we regard a visible
part of ê as a new edge, which we call a virtual edge. Note that a cut edge bb∗

divides P in two areas, a polygon which contains V P (P, x) and the other not.
We call the latter area the invisible polygon IP (P, x, b). Notice that V P (P, x)
and IP (P, x, b) share a cut edge bb∗.

We assume that there is a blocking vertex b with respect to the origin o since
otherwise an optimal solution can be found by Lemma 1. Then we have the
following lemma.

x

VP(P, x)

Fig. 1. Visibility polygon

o

b

w

IP(P, o, b)e
b*

ve2

ve1

sp(o, w)sp(b, ve1)

sp(b, ve2)

Fig. 2. Illustration of sp(b, v1e), sp(b, v2e)
and sp(o,w)

318 Y. Higashikawa and N. Katoh

Lemma 2. For an invisible polygon IP (P, o, b) defined by a blocking vertex b,
let e ∈ E be a polygon edge both endpoints of which are in IP (P, o, b), and w ∈ V
be the polygon vertex adjacent to b which is not in IP (P, o, b). Then

cost(o, (b, w)) < cost(o, e).

Proof. First, we remark a simple fact. Let x, y, z be points in P such that both
line segments xz and zy are lying the inside of P . Then the following inequality
obviously holds.

|sp(x, y)| ≤ |xz|+ |zy|. (2)

Notice the equality holds only when either (i) sp(x, y) is a line segment xy and
z is on xy, or (ii) sp(x, y) is composed of two line segments xz and zy, i.e., y is
not visible from x (z is a blocking vertex with respect to x). See Fig. 2. From
the above observation and since b is visible from o, i.e., |sp(o, b)| = |ob|,

|sp(o, w)| < |ob|+ |bw| = |sp(o, b)|+ |bw|. (3)

Besides, from the triangle inequality with respect to b, v1e and v2e ,

cost(b, e) = |sp(b, v1e)|+ |sp(b, v2e)| − |e| ≥ 0. (4)

Furthermore both sp(o, v1e) and sp(o, v2e) pass through b. Hence, we have

|sp(o, b)|+ |sp(b, v1e)| = |sp(o, v1e)| and |sp(o, b)|+ |sp(b, v2e)| = |sp(o, v2e)|. (5)

Thus,

cost(o, (b, w)) = |sp(o, b)|+ |sp(o, w)| − |bw|
< |sp(o, b)|+ |sp(o, b)|+ |bw| − |bw| (from (3))

≤ 2|sp(o, b)|+ |sp(b, v1e)|+ |sp(b, v2e)| − |e| (from (4))

= cost(o, e) (from (5))

holds. �

For eopt defined by (1), the following corollary is immediate from Lemma 2.

Corollary 1. For an invisible polygon IP (P, o, b) defined by a blocking vertex
b, let e ∈ E be a polygon edge both endpoints of which are in IP (P, o, b). Then e
cannot be eopt satisfying (1).

Based on Corollary 1, candidates of eopt are edges of V P (P, o).
In what follows, we propose an online algorithm, AOE(Avoiding One Edge).

By Lemma 1, the offline optimal algorithm chooses the edge eopt which satisfies
(1). But we cannot obtain the whole information about P . So, the seemingly
best strategy based on the information of V P (P, o) is to choose an edge in the
same way as the offline optimal algorithm, assuming that there is no invisible
polygon, namely P = V P (P, o). Let E∗

1 denote an edge set composed of all e ∈ E

Online Exploration of All Vertices in a Simple Polygon 319

such that both endpoints of e are visible from o, E∗
2 denote a set of virtual edges

on the boundary of V P (P, o) and E∗ = E∗
1 ∪E∗

2 . Also for a virtual edge e ∈ E∗
2 ,

endpoints of e are labeled as v1e , v
2
e in clockwise order around o and let cost(o, e)

denote the value of |sp(o, v1e)|+ |sp(o, v2e)|−|e|. Let e∗ ∈ E∗ be an edge satisfying
the following equation.

cost(o, e∗) = min
e∈E∗

cost(o, e) (6)

Then Algorithm AOE is described as follows.

Step 1: Choose e∗ ∈ E∗ satisfying (6).
Step 2: If e∗ ∈ E∗

1 then let ê = e∗, else let ê be an edge of P containing e∗.
Step 3: Follow the tour sp(o, v2ê) → bp(v2ê , v

1
ê) → sp(v1ê , o).

3 Competitive Analysis of AOE

First, we show the following lemma.

Lemma 3. Let x be a point on the boundary of P and e∗ be an edge satisfying
(6). If x is visible from the origin o, then

cost(o, e∗)

2
≤ |ox|.

Proof. Let e′ ∈ E∗ be an edge of V P (P, o) containing x. Then from (2), we have
|ox| ≥ |sp(o, v1e′)| − |xv1e′ | and |ox| ≥ |sp(o, v2e′)| − |xv2e′ |. Therefore, we obtain

2|ox| ≥ |sp(o, v1e′)|+ |sp(o, v2e′)| − |xv1e′ | − |xv2e′ |
= |sp(o, v1e′)|+ |sp(o, v2e′)| − |e′| ≥ cost(o, e∗),

namely |ox| ≥ cost(o, e∗)/2. �

Furthermore, we show a lemma which plays a crucial role in our analysis.

Lemma 4. Let L be the length of the boundary of P and e∗ be an edge satisfying
(6). Then the following inequality holds.

L ≥ π · cost(o, e∗). (7)

Proof. Let C be a circle centered at the origin o with the radius of cost(o, e∗)/2.
From Lemma 3, any edge of P does not intersect C. Thus L is greater than the
length of the circumference of C, namely

L ≥ 2π · cost(o, e
∗)

2
= π · cost(o, e∗)

holds. �

Theorem 1. The competitive ratio of Algorithm AOE is at most 1.319.

Proof. The cost of Algorithm AOE obviously satisfies

|AOE(P)| = L+ cost(o, e∗).

320 Y. Higashikawa and N. Katoh

On the other hand, the cost of the offline optimal algorithm satisfies |OPT(P)| =
L+cost(o, eopt) holds from Lemma 1. By the triangle inequality, cost(o, eopt) ≥ 0,
namely |OPT(P)| ≥ L holds. Thus we have

|AOE(P)|
|OPT(P)| ≤ L+ cost(o, e∗)

L
= 1+

cost(o, e∗)

L
.

From this and (7),

|AOE(P)|
|OPT(P)| ≤ 1 +

cost(o, e∗)

π · cost(o, e∗) = 1 +
1

π
≤ 1.319

is obtained. �

Theorem 1 gives an upper bound of the competitive ratio. In the followings, we
will obtain a better bound by detailed analysis. First, we improve a lower bound
of |OPT(P)|. Note that for some points x, y, z ∈ P such that both y and z are
visible from x and the line segment yz is lying in P , we call ∠yxz the visual
angle at x formed by yz.

Lemma 5. For an edge e∗ ∈ E∗ satisfying (6), let d = cost(o, e∗) and θ (0 ≤
θ ≤ π) be a visual angle at o formed by a visible part of eopt. Then

|OPT(P)| ≥ L+ d− d sin
θ

2
. (8)

Proof. We first show the following claim.

Claim 1. Let b1 ∈ V (resp. b2) be the vertex visible from o such that the path
sp(o, v1eopt) (resp. sp(o, v

2
eopt)) passes through b1 (resp. b2) (see Fig. 3). Then

cost(o, eopt) ≥ |ob1|+ |ob2| − |b1b2|. (9)

Proof. This follows from |sp(o, v1eopt)| = |ob1| + |sp(b1, v1eopt)|, |sp(o, v2eopt)| =

|ob2| + |sp(b2, v2eopt)| and |eopt| = |sp(v1eopt , v2eopt)| ≤ |sp(b1, v1eopt)| + |b1b2| +
|sp(b2, v2eopt)|. �

From (9), we have

|OPT(P)| = L+ cost(o, eopt) ≥ L+ |ob1|+ |ob2| − |b1b2|. (10)

Furthermore b1 and b2 satisfy |ob1| ≥ d/2 and |ob2| ≥ d/2 from Lemma 3. Hence
there exist points u1, u2 on line segments ob1, ob2 such that |ou1| = |ou2| = d/2
(see Fig. 4). Then, from the triangle inequality with respect to u1, u2 and b1,

|u1u2| ≥ |u2b1| − |b1u1| = |u2b1| − (|ob1| −
d

2
)

holds. Similarly we have

|u2b1| ≥ |b1b2| − |u2b2| = |b1b2| − (|ob2| −
d

2
).

Online Exploration of All Vertices in a Simple Polygon 321

eopt

o

v1
eopt

v2
eopt

b1
b2

θ

sp(b1, v1
eopt)

sp(b1, v2
eopt)

Fig. 3. A visible part of eopt from o

o

b1

b2

u1

u2

d/2

d/2
d sin(θ/2)

θ/2

Fig. 4. u1 and u2

Thus we have

d− |u1u2| ≤ d− {|u2b1| − (|ob1| −
d

2
)} =

d

2
+ |ob1| − |u2b1|

≤ d

2
+ |ob1| − {|b1b2| − (|ob2| −

d

2
)} = |ob1|+ |ob2| − |b1b2|. (11)

In addition, the length of u1u2 satisfies the following equation.

|u1u2| =
d

2
· 2 sin θ

2
= d sin

θ

2
. (12)

By (10), (11) and (12),

|OPT(P)| ≥ L+ d− |u1u2| = L+ d− d sin
θ

2
.

is shown. �

Secondly, we show a better lower bound of L.

Lemma 6. Let d and θ as defined in Lemma 5. Then

L ≥ d(π − θ

2
+ tan

θ

2
). (13)

Proof. Let C be a circle centered at o with radius d/2. From Lemma 3, any edge
of P does not intersect C. Also let endpoints of a visible part of eopt from o
be w1, w2 in clockwise order around o. Then, we consider two cases; (Case 1)
∠ow1w2 ≤ π/2 and ∠ow2w1 ≤ π/2 and (Case 2) ∠ow1w2 > π/2 and ∠ow2w1 ≤
π/2 (see Fig. 5, 6). Note that the case of ∠ow1w2 ≤ π/2,∠ow2w1 > π/2 can be
treated in a manner similar to Case 2.

Case 1: Let w∗
1 (resp. w∗

2) be a point on the line segment ow1 (resp. ow2) such
that w1w2 is parallel to w∗

1w
∗
2 and the line segment w∗

1w
∗
2 touches the circle

C and let h be a tangent point of w∗
1w

∗
2 and C. Also let ∠w1oh = xθ and

∠w2oh = (1 − x)θ with some x (0 ≤ x ≤ 1). Then the length of w∗
1w

∗
2 satisfies

|w∗
1w

∗
2 | =

d

2
tanxθ +

d

2
tan(1 − x)θ.

322 Y. Higashikawa and N. Katoh

(1-x)θ

d/2

xθ

(d/2) tan xθ
(d/2) tan (1-x)θ

w*1 w*2

o

eopt

w1
w2

h

Fig. 5. Case 1

(d/2) tan θ

w*1

w*2

o

eopt

w1

w2

w**2

θ
d/2

Fig. 6. Case 2

The right-hand side of this equation attains the minimum value when x = 1/2.
Thus

|w∗
1w

∗
2 | ≥

d

2
tan

θ

2
+

d

2
tan

θ

2
= d tan

θ

2
. (14)

Furthermore the sum of the visual angle at o formed by a visible part of the
boundary other than w1w2 is equal to 2π − θ. Hence we have

L ≥ d

2
(2π − θ) + |w1w2|. (15)

Since |w1w2| ≥ |w∗
1w

∗
2 | obviously holds, from (14) and (15), we obtain

L ≥ d

2
(2π − θ) + d tan

θ

2
= d(π − θ

2
+ tan

θ

2
).

Case 2: Let w∗
1 (resp. w∗

2) be a point on the line segment ow1 (resp. ow2) such
that w1w2 is parallel to w∗

1w
∗
2 and |ow∗

1 | = d/2 (the circumference of C passes
through w∗

1). Also let w∗∗
2 an intersection point of the line segment ow2 and the

lineperpendicular to the line segment ow1 through w∗
1 . Then

|w∗
1w

∗
2 | > |w∗

1w
∗∗
2 | = d

2
tan θ ≥ d tan

θ

2
.

In the same way as Case 1, we obtain L ≥ d(π − θ/2 + tan(θ/2)). �

By Lemma 5 and 6, we prove the following theorem.

Theorem 2. The competitive ratio of Algorithm AOE is at most 1.219.

Online Exploration of All Vertices in a Simple Polygon 323

Proof. Let d and θ as defined in Lemma 5. Since |AOE(P)| = L+ d holds, from
(8), (13), we have

|AOE(P)|
|OPT(P)| ≤ L+ d

L+ d− d sin θ
2

≤
d(π − θ

2 + tan θ
2) + d

d(π − θ
2 + tan θ

2) + d− d sin θ
2

=
π − θ

2 + tan θ
2 + 1

π − θ
2 + tan θ

2 + 1− sin θ
2

(0 ≤ θ ≤ π). (16)

In the followings, we compute the maximum value of (16),

max
0≤θ≤π

{
z(θ) =

π − θ
2 + tan θ

2 + 1

π − θ
2 + tan θ

2 + 1− sin θ
2

}
. (17)

Generally the following fact about the fractional program is known [1,11].

Fact 1. Let X ⊆ Rn, f : Rn → R and g : Rn → R. Let us consider the following
fractional program formulated as

maximize

{
h(x) =

f(x)

g(x)

∣∣∣∣ x ∈ X

}
, (18)

where g(x) > 0 is assumed for any x ∈ X. Let x∗ ∈ argmaxx∈X h(x) denote an
optimal solution of (18) and λ∗ = h(x∗) denote the optimal value. Furthermore,
with a real parameter λ, let hλ(x) = f(x) − λg(x) and M(λ) = maxx∈X hλ(x).
Then M(λ) is monotone decreasing for λ and the followings hold.
(i) M(λ) < 0 ⇔ λ > λ∗, (ii) M(λ) = 0 ⇔ λ = λ∗, (iii) M(λ) > 0 ⇔ λ < λ∗.

In the same way as Theorem 2, with a real parameter λ, we define zλ(θ) and
M(λ) for z(θ) as follows.

zλ(θ) = π − θ

2
+ tan

θ

2
+ 1− λ(π − θ

2
+ tan

θ

2
+ 1− sin

θ

2
) (0 ≤ θ ≤ π),

M(λ) = max
0≤θ≤π

zλ(θ).

From Fact 1 (ii), λ∗ satisfying M(λ∗) = 0 is equal to (17), i.e., the maximum
value of z(θ). Hence we only need to compute λ∗.

Finally, let θ∗λ ∈ argmax0≤θ≤π zλ(θ), then we show θ∗λ is unique. A derivative
of zλ(θ) is calculated as

dzλ
dθ

= −λ− 1

2
tan2

θ

2
+

λ

2
cos

θ

2
.

This derivative is monotone decreasing in the interval 0 ≤ θ ≤ π, therefore
zλ(θ) is concave in this interval, then θ∗λ is unique. Indeed when λ = 1.219,
θ∗λ " 2.0706 then M(1.219) " −0.0010 < 0. Also when λ = 1.218, θ∗λ " 2.0718
then M(1.218) " 0.0029 > 0. Thus we obtain 1.218 < λ∗ < 1.219. �

3.1 Lower Bound

Theorem 3. The competitive ratio of Algorithm AOE is at least 1.040 (see
Fig. 7).

324 Y. Higashikawa and N. Katoh

10.00

8.18 19.17

16.36 14.04

8.18
19.17

14.04

ε

o

b

h

gfed

c

a

Fig. 7. Worst case polygon

o

width

height

Fig. 8. A rectilinear polygon

4 Competitive Analysis for Rectilinear Polygon

In this section, we analyze the competitive ratio of AOE for a rectilinear polygon
(see Fig. 8). Generally a rectilinear polygon is defined as a simple polygon all
of whose interior angles are π/2 or 3π/2. Edges of the rectilinear polygon are
classified as horizontal or vertical edges. Let R be a rectilinear polygon and R′

be the minimum enclosing rectangle of R. Then we define the height of R′ as the
height of R and also the width of R′ as the width of R. Note that the searcher
follows the Euclidean shortest path even if he/she is in the rectilinear polygon.

Lemma 7. For an edge e∗ ∈ E∗ satisfying (6), let d = cost(o, e∗) and θ (0 ≤
θ ≤ π) be a visual angle at o formed by a visible part of eopt. Then

L ≥ max{4d, 2d+ 2d tan
θ

2
}. (19)

Proof. First, we show L ≥ 4d. Let C be a circle centered at o with the radius
of d/2. From Lemma 3, any edge of R does not intersect C (see Fig. 9). Thus
each of the height and width of R is greater than d (the diameter of C), namely
L ≥ 4d holds.

Secondly, we show L ≥ 2d + 2d tan(θ/2). Note that we should just consider
the case of 4d ≤ 2d + 2d tan(θ/2), namely π/2 ≤ θ ≤ π because L ≥ 4d has
been proved. Without loss of generality we assume that eopt is a horizontal edge.

o

d/2 d/2

Fig. 9. L ≥ 4d

(1-x)θ
d/2

xθ

(d/2) tan xθ (d/2) tan (1-x)θ

o

eopt

w2w1

w*1 w*2h

Fig. 10. L ≥ 2d + 2d tan(θ/2)

Online Exploration of All Vertices in a Simple Polygon 325

We label endpoints of a visible part of eopt from o as w1, w2 in clockwise order
around o. Let w∗

1 (resp. w∗
2) be a point on the line segment ow1 (resp. ow2) such

that w1w2 is parallel to w∗
1w

∗
2 and the line segment w∗

1w
∗
2 touches the circle C

and h be a tangent point of w∗
1w

∗
2 and C (see Fig. 10). Also let ∠w1oh = xθ and

∠w2oh = (1 − x)θ with some x (0 ≤ x ≤ 1). Then the length of w∗
1w

∗
2 satisfies

|w∗
1w

∗
2 | =

d

2
tanxθ +

d

2
tan(1− x)θ ≥ d

2
tan

θ

2
+

d

2
tan

θ

2
= d tan

θ

2
.

Thus the width of R is greater than d tan(θ/2) and the height of R is greater
than d, then L ≥ 2d+ 2d tan(θ/2) holds. �

Theorem 4. For a rectilinear polygon, the competitive ratio of Algorithm AOE
is at most 1.167.

Proof. Based on (19), we consider two cases; (Case 1) 0 ≤ θ < π/2 and (Case
2) π/2 ≤ θ ≤ π. Note that 4d > 2d + 2d tan(θ/2) holds in Case 1 and 4d ≤
2d+ 2d tan(θ/2) holds in the other.

Case 1: From L ≥ 4d and (8), we obtain

|AOE(P)|
|OPT(P)| ≤ 4d+ d

4d+ d− d sin θ
2

=
5

5− sin θ
2

<
5

5− sin π
4

≤ 1.165.

Case 2: From L ≥ 2d+ 2d tan(θ/2) and (8), we obtain

|AOE(P)|
|OPT(P)| ≤

2d+ 2d tan θ
2 + d

2d+ 2d tan θ
2 + d− d sin θ

2

=
3 + 2 tan θ

2

3 + 2 tan θ
2 − sin θ

2

. (20)

We will compute the maximum value of (20) as in the proof of Theorem 2 by
defining zλ(θ) and M(λ) for a real parameter λ as follows.

zλ(θ) = 3 + 2 tan
θ

2
− λ(3 + 2 tan

θ

2
− sin

θ

2
) (

π

2
≤ θ ≤ π)

M(λ) = max
π
2 ≤θ≤π

zλ(θ)

Let θ∗λ ∈ argmax0≤θ≤π zλ(θ), then a derivative of zλ(θ) is calculated as

dzλ
dθ

= −(λ− 1)
1

cos2 θ
2

+
λ

2
cos

θ

2
.

This derivative is monotone decreasing in the interval π/2 ≤ θ ≤ π, therefore
zλ(θ) is concave in this interval, then θ∗λ is unique. Indeed when λ = 1.167,
θ∗λ " 1.7026 then M(1.167) " −0.0044 < 0. Also when λ = 1.166, θ∗λ " 1.7056
then M(1.166) " 7.6× 10−5 > 0. Thus we obtain 1.166 < λ∗ < 1.167. �

5 Discussion and Open Problems

We believe that the upper bound of the competitive ratio can be improved: the
least upper bound could be close to the lower bound 1.04 given in Section 3.1.

326 Y. Higashikawa and N. Katoh

As one of many variations of OEP, we could consider OEP with multiple
searchers. In this problem, all searchers are initially at the same origin o ∈ P .
The goal of the exploration is that each vertex is visited by at least one searcher
and that all searchers return to the origin o. We regard the time when the last
searcher comes back to the origin as the cost of the exploration. Note that our
algorithm can be easily adapted to the case of OEP with 2-searchers. For an
offline exploration problem with k-searchers, Frederickson et al. [4] proposed a
(e + 1 − 1/k)-approximation algorithm, where e is the approximation ratio of
some 1-searcher algorithm. Their idea is splitting a tour given by some 1-searcher
algorithm into k parts such that the cost of each part is equal, where the cost of a
part is the length of the shortest tour from o which passes along the part. When
k = 2, we can apply this idea to our algorithm as follows. First, choose similarly
e∗ ∈ E∗ satisfying (6). Then let one searcher go to v1e∗ and walk counterclockwise
along the boundary of P , and let symmetrically the other go to v2e∗ and walk
clockwise. When two searchers meet at a point on the boundary, two searchers
come back together to o along the shortest path in the inside of P . In this case,
we obtain an upper bound 1.719. However, when k ≥ 3, the above-mentioned
idea cannot be directly applied. So, it remains open.

References

1. Dinkelbach, W.: On nonlinear fractional programming. Management Science 13(7),
492–498 (1967)

2. Dynia, M., �Lopuszański, J., Schindelhauer, C.: Why Robots Need Maps. In:
Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer,
Heidelberg (2007)

3. Fraigniaud, P., Gsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

4. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some
routing problems. SIAM J. Comput. 7, 178–193 (1978)

5. Ghosh, S.K., Klein, R.: Online algorithms for searching and exploration in the
plane. Computer Science Review 4(4), 189–201 (2010)

6. Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.: Online Graph Explo-
ration Algorithms for Cycles and Trees by Multiple Searchers. In: Proc. 3rd AAAC
Annual Meeting (2010)

7. Hoffmann, F., Icking, C., Klein, R., Kriegel, K.: The polygon exploration problem.
SIAM J. Comput. 31(2), 577–600 (2002)

8. Megow, N., Mehlhorn, K., Schweitzer, P.: Online Graph Exploration: New Results
on Old and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP
2011, Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)

9. Miyazaki, S., Morimoto, N., Okabe, Y.: The online graph exploration problem on
restricted graphs. IEICE Trans. Inf. & Syst. E92-D(9), 1620–1627 (2009)

10. Kalyanasundaram, B., Pruhs, K.R.: Constructing competitive tours from local in-
formation. Theoretical Computer Science 130, 125–138 (1994)

11. Schaible, S., Ibaraki, T.: Fractional programming. European Journal of Operational
Research 12, 325–338 (1983)

In-Place Algorithms for Computing a Largest

Clique in Geometric Intersection Graphs

Minati De1, Subhas C. Nandy1, and Sasanka Roy2

1 Indian Statistical Institute, Kolkata - 700108, India
{minati r,nandysc}@isical.ac.in

2 Indian Institute of Science Education and Research, Kolkata, India
sasanka.ro@gmail.com

Abstract. In this paper, we study the problem of designing in-place
algorithms for finding the maximum clique in the intersection graphs of
axis-parallel rectangles and disks in 2D. We first propose O(n2 log n) time
in-place algorithms for finding the maximum clique of the intersection
graphs of a set of axis-parallel rectangles of arbitrary sizes. For the rect-
angle intersection graph of fixed height rectangles, the time complexity
can be slightly improved to O(n log n+ nK), where K is the size of the
maximum clique. For disk graphs, we consider two variations of the max-
imum clique problem, namely geometric clique and graphical clique. The
time complexity of our algorithm for finding the largest geometric clique
is O(n2 log n), and it works for disks of arbitrary radii. For graphical
clique, our proposed algorithm works for unit disks (i.e., of same radii)
and the worst case time complexity is O(n2 +mK4); m is the number of
edges in the unit disk intersection graph, and K is the size of the largest
clique in that graph. It uses O(n4) time in-place computation of maxi-
mum matching in a bipartite graph, which is of independent interest. All
these algorithms need O(1) work space in addition to the input array R.

1 Introduction

Due to the wide applications of sensor networks, nowadays there is a high demand
of space-efficient algorithms in the embedded software. So, designing space effi-
cient algorithms for different practical problems have become an important area
of research. Detailed survey on in-place algorithms for the geometric optimiza-
tion and search problems is available in [2,4]. We consider in-place algorithms
for the optimization problems on intersection graph of geometric objects.

In sophisticated database query and VLSI physical design, several
optimization problems are formulated using the intersection graph of axis-parallel
rectangles. Similarly, the disk graph plays an important role in formulating differ-
ent problems in mobile ad hoc networks. We concentrate on finding the largest
clique on several variations of the intersection graph of axis-parallel rectangles
and disks. An array of size n containing n objects is given as input; each array
element represents the corresponding object in minimum amount of space. Dur-
ing execution, the array elements can change their positions; but at the end of

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 327–338, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

328 M. De, S.C. Nandy, and S. Roy

the execution, each object will be available in the array. We are allowed to use at
most O(1) space for storing temporary results. From now onwards, by rectangle
intersection graph we will mean the intersection graph of axis-parallel rectangles.

The first polynomial time algorithm for finding the maximum clique in a
rectangle intersection graph was proposed in [8]. The best known algorithm for
this problem runs in O(n log n) time and O(n) space [7,10]. The best known
algorithm for finding the maximum clique of a set of axis-parallel rectangles in
d-dimensional space runs in O(nd−1) time [9].

Let us consider the intersection graph of a set of disks. Let C be a subset of
disks such that each pair of members in C intersect. In the aforesaid graph the
nodes corresponding to C define a clique. However, since the disks do not satisfy
Helly property, the members of C may not have a common intersection. Thus,
a clique in a disk graph is usually referred to as graphical clique. In particular,
if the members in a clique have common intersection region, then that clique is
referred to as a geometric clique. For demonstration, see Fig. 1.

Given a set of points in 2D, the best known

(a) (b)

Fig. 1. (a) Graphical clique and (b)
Geometric clique of disk graph

algorithm for computing the largest (graph-
ical) clique of the corresponding unit disk
graph takes O(n3.5 logn) time [1]. However,
the position of an unit disk containing max-
imum number of points can be mapped to
finding the maximum geometric clique of the
unit disk graph. Using a plane sweepmethod,
this can be solved in O(n2) time [3].

Our Results
We first propose an in-place O(n log n) time algorithm for computing the max-
imum clique of an intersection graph of a set of n intervals on the real line.
We use this algorithm to design an in-place algorithm for finding the maximum
clique of the intersection graph of a set of n axis-parallel rectangles of arbitrary
size in O(n2 logn) time. For fixed height rectangles, the time complexity can be
slightly improved to O(n logn+ nK), where K is the size of the largest clique.

Next, we consider the maximum clique problem for the disk graph. Our pro-
posed in-place algorithm for computing the largest geometric clique of the in-
tersection graph of a set of disks of arbitrary radii needs O(n2 logn) time. For
graphical clique, our in-place algorithm works for unit disks only, and it runs in
O(n2 + mK4) time, where n and m are the number of vertices and edges in the
unit disk graph, and K is the size of the maximum clique in that graph. To solve
this problem, we proposed an O(n4) time in-place algorithm for computing max-
imum matching in a bipartite graph G = (V1, V2, E) where the two sets of nodes
V1 and V2 are stored in two arrays, and the existence of an edge between a pair
of nodes can be checked on demand by an oracle in O(1) time. This is of indepen-
dent interest, since to our knowledge there does not exist any in-place algorithm
for computing the maximum matching in a bipartite graph in the literature.

The following table summarizes the results presented in the paper along with
the comparative study with the best known algorithm available in the literature.

In-Place Algorithms for Computing a Largest Clique 329

Notice that, the (time × extra-work-space) is less than or equal to the best-known
results for all the problems we have considered excepting the last one.

Table 1. Comparative study of our algorithms with the existing algorithms in the
literature for the largest clique problem of geometric intersection graphs

Problem Existing algorithm Our algorithm

Largest Clique for Time Work-space Reference Time Work-space

Interval graph O(n log n) O(n) [6] O(n log n) O(1)

Intersection graph of O(n log n) O(n) [7,10] O(n2 log n) O(1)
arbitrary size rectangles

Intersection graph of O(n log n) O(n) [7,10] O(n log n+ nK) O(1)
fixed height rectangles

Disk graph of arbitrary O(n2) O(n) [3] O(n2 log n) O(1)
radii (geometric clique)

Unit disk graph O(n3.5 log n) O(n) [1] O(n2K4) O(1)
(graphical clique)

2 Maximum Clique of an Interval Graph

Here a set of intervals I = {I1, I2, . . . , In} is given in an array. Each element Ii of
the array is a tuple (i, ri), that represents the coordinates of the left and right
end points of Ii on the real line. The goal is to design an in-place algorithm for
finding the maximum clique of the interval graph corresponding to the intervals
in I. In other words, we need to compute a point on the real line at which
maximum number of intervals in I overlap. From now onwards, I will denote
the array containing the given set of intervals.

Let L be the list of intervals in I sorted in increasing order of their coor-
dinates. We maintain the list L and a heap H in the same array I during the
execution. Initially, I contains the ordered list L and the heap H is empty. The
elements in L are considered for processing in order. When an element is consid-
ered, it is deleted from L, and put into the heap with respect to its r coordinate.
The root of the heap is the first element of the array I.

The algorithm considers the intervals in L in increasing order of their left-end
point (i values) until the first right-end point of an interval (say Ij = (j , rj)) is
encountered. It is available at the root of H . Thus, a maximal clique is observed
at rj . Note that, Ij will never contribute to any other clique; thus Ij needs to
be deleted from the data structure. Also note that, Ij is already deleted from L;
we delete Ij from H . The array I has three parts: (i) the heap H , (ii) the array
L, and (iii) the elements that are deleted from both L and H . We maintain two
index variables λ and μ; H = I[1, 2, . . . , λ], L = I[μ + 1, μ+ 2, . . . , n], and the
elementsD = I[λ+1, λ+2, . . . , μ] are deleted from both H and L. While deleting
an element in L, we increment λ and μ, swap I[μ] and I[λ], and then position
I[λ] in its appropriate position in the heap H . We use two scalar variables χ
and π to store the size and the point on the real line representing the maximum
clique. Algorithm terminates after considering all the elements in L.

330 M. De, S.C. Nandy, and S. Roy

Theorem 1. The time complexity of our algorithm for finding a clique of
maximum size is O(n log n). It uses O(1) extra space apart from the input array.

3 Maximum Clique for Arbitrary Size Rectangles

A set R of n axis-parallel rectangles of arbitrary size is given in IR2, and the
objective is to find a point in IR2 on which maximum number of rectangles
overlap. Each rectangle Ri is specified by a tuple (αi, βi), where αi = (xαi , yαi)
and βi = (xβi , yβi) are the coordinates of the top-left and bottom-right corners
of Ri. We use R as an array storing the set of rectangles {R1, R2, . . . , Rn}.

The plane sweep algorithm for finding the maximum clique of a set of axis-
parallel rectangles works as follows [10]. Sweep a horizontal line L from top
to bottom. When the top boundary of a rectangle Ri is faced by the line L, it
becomes active. When the bottom boundary of Ri is faced by the line L, we con-
sider only those active rectangles which overlap on the bottom boundary of Ri.
Each of these rectangles defines an interval corresponding to its portion of over-
lap with the bottom boundary of Ri. We compute the maximum clique among
those intervals. Sweep continues until all the bottom boundaries are processed.

Our in-place algorithm follows the same technique. It executes n iterations to
considers the rectangles in R in a top-to-bottom order of their bottom boundary.
A variable γ is maintained to store the y coordinate of the bottom boundary of
the last processed rectangle. In each iteration, we compare all the entries in array
R with γ to identify the bottom boundary of a rectangle Ri having maximum y
coordinate among the rectangles in R that are not yet processed. Next we swap
Ri with the first element of the array R and execute the following steps.

• Identify all the rectangles inR that overlap on the bottom boundary of Ri, and
bring them at the beginning of the array R. If there are mi such rectangles,
they will occupy the positions R[2, . . . ,mi + 1]. This can be done in O(n)
time. We use two pointers π1 and π2, where π1 moves from R[2] towards
right until it finds a rectangle Rj that does not overlap on Ri, and π2 moves
from R[n] towards left until it finds a rectangle Rk that overlaps on Ri. Rj

and Rk are swapped; the move proceeds until π1 = π2 is attained.
• Each of these mi rectangles define an interval on the bottom boundary of Ri.

We compute the clique of maximum size in this interval graph using the
algorithm proposed in Section 2 in O(mi logmi) time.

The fact that
∑n

i=1 mi = O(n2) lead to the following theorem.

Theorem 2. The maximum clique of the intersection graph of a set of n axis-
parallel rectangles can be computed in O(n2 logn) time and O(1) extra space.

4 Maximum Clique for Fixed Height Rectangles

We now consider a constrained version of the maximum clique problem of rectan-
gle intersection graph, where the height of all the rectangles in R are same, say δ.

In-Place Algorithms for Computing a Largest Clique 331

Here each rectangle Ri is represented by a triple (α(Ri), β(Ri), ω(Ri)); α(Ri),
β(Ri) and ω(Ri) represent the x-coordinates of left, right vertical boundaries
and the y-coordinate of the top boundary of Ri respectively.

Observation 1. If we split the plane into horizontal strips of width δ, such that
the horizontal boundary of no rectangle is aligned with any of the horizontal lines
defining the strips, then each member in R spans exactly two consecutive strips.

We split the region into horizontal strips satisfying Observation 1 and retain only
those strips that contain at least one member of R. We compute the maximum
clique in each strip, and report the one having maximum size. We maintain two
global counters χ and π to contain the size of the largest clique C and a point in
the region representing the largest clique, during the entire execution. We first
sort the members in R with respect to their ω-values. The elements stabbed by
the top (resp. bottom) boundary of a strip are stored in consecutive locations of
R. We now describe the method of processing a strip.

4.1 Processing of a Strip S

Let Rt and Rb denote the two sub-arrays of R that contain all the rectangles
stabbed by the top and bottom boundary of the strip S. We can designate the
sub-arraysRt and Rb in R using two integer tuples (m1,m2) and (n1, n2) respec-
tively. We compute the largest clique on the right boundary of each rectangle in
Rt ∪ Rb, and finally note down the largest one among them as CS .

Consider the processing of right boundary of a rectangle ρ ∈ Rt ∪ Rb. Let
R1∗ , R2∗ , . . . , Rk∗ ∈ Rt and R1′ , R2′ , . . . , R�′ ∈ Rb be the set of rectangles whose
left boundaries are to the left of the right boundary of ρ and whose right bound-
aries are to the right of right boundary of ρ. If the line containing the right
boundary of ρ intersects the top and bottom boundaries of S at the points α
and β respectively, then R1∗ , R2∗ , . . . , Rk∗ ∈ Rt and R1′ , R2′ , . . . , R�′ ∈ Rb form
clique at α and β, respectively. Thus, we have the following result.

Lemma 1. |CS | > max{k, }.

We process the members in Rt ∪ Rb in increasing order of their α-values. This
needs sorting of Rt and Rb in increasing order of their α-values (left boundaries).
During the execution, we arrange the rectangles in Rt (resp. Rb) into three
portions as stated below (see Fig. 2 (a)).

A: All the rectangles, whose both left and right boundaries are processed. This
portion stays at the left side of Rt (resp. Rb),

B: The rectangles whose left boundary is processed but the right boundary
is not yet processed. This portion stays at the middle of Rt (resp. Rb) in
decreasing order of their ω-values.

C: The rectangles whose both left and right boundaries are not processed. This
portion stays at the end of Rt (resp. Rb) in increasing order of their α-values.

332 M. De, S.C. Nandy, and S. Roy

R

Rt

Rb

Rt Rb

it

ib jb

A B C

A B C

jt

(a)

k = 2

l = 3

a

b

(b)

Fig. 2. (a) Arrangement of Rt ∪Rb, (b) Processing of Case 3

We maintain four index variables it, ib, jt and jb, where it and jt (it ≤ jt)
indicate the portion B of the array Rt, and ib and jb (ib ≤ jb) indicate the
portion B of the array Rb. First, we sort both Rt and Rb in increasing order
of their α-values. We also use two scalar variables ρt and ρb to maintain the
rectangle having leftmost right boundary (β-value) among the members in the
portion B in Rt and Rb respectively. Next, we start processing the elements of
Rt and Rb in a merge like fashion. Initially, it, ib, jt, jb are all set to 1; ρt = Rt[1]
and ρb = Rb[1]. At each step, we compare the α(Rt[jt+1]), α(Rb[jb+1]), β(ρt)
and β(ρb)

1. Here the following four situations may arise,

Case 1: α(Rt[jt + 1]) is minimum: Rt[jt + 1] is moved (from the C part) to
the appropriate position in the B part of Rt with respect to its ω-value using
a sequence of swap operations. If the β-value of the Rt[jt + 1] is less than
that of ρt, then ρt is updated by Rt[jt + 1]. Finally, jt is incremented by 1.

Case 2: α(Rb[jb + 1]) is minimum: This situation is similar to Case 1.
Case 3: β(ρt) is minimum: Below, we explain the processing of this situation.
Case 4: β(ρb) is minimum: This situation is handled as in Case 3.

Processing of Case 3
As mentioned in the proof of Lemma 1, all the rectangles Ri∗t , . . . , Rj∗t ∈ Rt

overlap at the point of intersection of ρt and the top-boundary of S. We initialize
a variable count with (jt − it). Next, we process the members of the B portion
of Rt (i.e., from the index position it to jt), and the members of the B portion
of Rb (i.e., from the index position ib to jb) together in decreasing order of
their ω-values in a merge like fashion. We initialize two index variables θt and
θb with it and ib. At each step, if ω(Rt[θt]) − δ > ω(Rb[θb]) then count is
decreased by one, and θt is incremented; otherwise (i) count is increased by
one, (ii) if count > χ, then the global counters χ and π are set with count,
the point of intersection of ρt and the rectangle Rb[θb], and then (iii) θb is
incremented. The process terminates when (i) θt reaches jt or (ii) θb reaches jb,
or (iii) max(ω(Rt[θt]) − δ, ω(Rb[θb]) < ω(ρt). At the end of processing ρt we
need to perform the following operations: (i) move ρt to the it-th position of
Rt (i.e., the A part of Rt) using a sequence of swap operations, (ii) set ρt by
sequentially inspecting the members in Rt from index position (it+1) to jt, and
(iii) increment it. See Fig. 2(b) for the demonstration.

1 Rt[jt +1] and Rb[jb +1] are the first element of the C part of the respective arrays.

In-Place Algorithms for Computing a Largest Clique 333

Lemma 2. The time complexity of processing a strip is O(nS lognS + nS|CS |),
where ns is the number of rectangles in R that intersects the strip S.

Proof. While processing a strip S, initial sorting of the members in Rt (resp. Rb)
with respect to their α-values need O(|Rt| log |Rt|) (resp. O(|Rb| log |Rb|)) time.
For each occurance of Case 1 (resp. Case 2) (i.e, a left boundary of a member in
R ∈ Rt (resp. Rb)) we need to position R in the B part of Rt (resp. Rb) with
respect to its ω-value. This needs at most O(jt − it) (resp. O(jb − ib)) swaps. By
Lemma 1, the size of the B part of both Rt and Rb is at most O(|CS |) at any
instant of time. We now analyze the time complexity of processing an instance
of Case 3, i.e., the right boundary of a rectangle ρt ∈ Rt.

While computing the largest clique along the right boundary of ρt, we inspect
the members of Rt from index position it to jt, and the members of Rb from
index position ib to jb whose top boundaries are above the bottom boundary of
ρt. Both these numbers are less than |CS | (by Lemma 1). Next, moving ρt to
the end of the portion A of Rt needs at most jt − it swaps. The setting ρt with
the existing members of B part of Rt for further processing in strip S needs
another jt− it computations. Thus, the total time complexity for processing the
right boundary of ρt is O(|CS |). The same arguments hold for processing the
right boundary of a member in Rb. Thus, processing the entire strip S needs
O(nS lognS + nS |CS |) time. �

Note that, each rectangle appears in exactly two strips, and if K be the size of
largest clique then K ≥ |CS | ∀ strips S. Now, we have the following theorem.

Theorem 3. The maximum size clique of an intersection graph of fixed height
rectangles can be computed in O(n log n+ nK) time and O(1) extra space.

5 Geometric Clique for Disks of Arbitrary Radii

We now follow the same method as in Section 2 to compute the maximum size
geometric clique of a set of disks of arbitrary radii. Here the input is an array
containing a set of disks C = {C1, C2, . . . , Cn}. Each element Ci ∈ C is a triple
(αi, βi, ri); (αi, βi) is the coordinate of the center of Ci and ri is its radius.

Observation 2. Any geometric clique of a disk graph corresponds to a closed
convex region bounded by arc segments of some/all the disks participating in it.

Ci

Ci

(a) (b)

Fig. 3. Closed and non-closed arc

Let us consider a disk Ci; Δ(Ci) be the
boundary of Ci. If a disk Cj ∈ C \ {Ci}
properly contains Ci, then it contributes a
closed arc along Δ(Ci) (see Fig. 3(a)). If
Cj ∈ C \ {Ci} properly intersects Ci, it con-
tributes a non-closed arc along Δ(Ci) (see
Fig. 3(b)).

However, if a disk Cj ∈ C \{Ci} is properly
contained in Ci, it does not contribute any

334 M. De, S.C. Nandy, and S. Roy

arc along Δ(Ci). Thus, we have a circular arc graph (see [6]) Gi with the closed
and non-closed arcs around Δ(Ci). By Observation 2, the maximum clique of
the disk graph with the set of disks C corresponds to the maximum clique of Gi

for some i = 1, 2, . . . , n. We consider each disk Ci ∈ C , and compute ηi, the size
of the maximum clique of Gi. Finally we report η = maxni=1 ηi.

5.1 Finding Maximum Clique of the Circular-Arc Graph around Ci

While processing Ci, it is swapped with the first element of the array C . Next,
a scan among the elements of C is performed to accumulate all the disks that
properly intersect Ci. Let us name this set of disks as Ci, ni = |Ci|. These are all
placed in the locations C [2 . . . ni]. During this traversal, we count the number
μi of disks that properly contain Ci. Next, we compute νi = the size of the
maximum clique of the circular-arc graph of the non-closed arcs around Δ(Ci)
as stated below. Finally, we compute ηi = μi + νi.

We fix a point θ on Δ(Ci). For each disk C ∈ Ci, the left and right end-points
(κleft and κright) of the arc κ generated by C on Δ(Ci) is computed as follows:

If θ ∈ C, then κleft (resp. κright) is the point of intersection of C and Ci in
anti-clockwise (resp. clockwise) direction from θ.

If θ �∈ C, then κleft (resp. κright) is the closest (resp. farthest) point of inter-
section of C and Ci from θ in the clockwise direction.

We sort the members of Ci in clockwise order of their left end-points. Note that,
we do not store the arcs alongΔ(Ci). While comparing a pair of arcs, we compute
the points of intersection of the corresponding disks with Ci. Next, we process
the end-points of the arcs in an ordered manner as in Section 2, implementing
both a heap H and a list L in the portion Ci of the array C along with a list of
elements deleted from both H and L. However unlike Section 2, after processing
all the left end-points, if H contains some non-deleted elements, the algorithm
does not stop. It again sorts all the deleted elements in H in clockwise order of
their left end-point, and continues the processing considering this list as L. The
processing continues until all the elements of H are processed. Thus, ηi = size
of the maximum clique around Ci, is computed.

Theorem 4. The geometric clique of maximum size among a set of n disks of
arbitrary radii can be computed in O(n2 logn) time, and it uses O(1) extra space.

6 Graphical Clique in the Unit Disk Graph

Let C = {C1, C2, . . . , Cn} be a set of unit disks stored in an array of size n. Each
element Ci ∈ C stores the coordinate of its center ci = (αi, βi). We show that
the algorithm proposed in [5] for computing the largest clique in the intersection
graph G = (C, E) can be made in-place. Here the vertices in G correspond to
the members in C, and (Ci, Cj) ∈ E indicates that the disks Ci and Cj intersect.

In-Place Algorithms for Computing a Largest Clique 335

Let χ ∈ C be a set of disks forming the largest clique, and ci, cj be the farthest
pair of centers among the disks in χ. Now, the centers of all the members in
χ lie in the region Rij formed by the intersection of circles of radius d(ci, cj)
centered at ci and cj as shown in Fig. 4(a) [5]. We use R1

ij snd R2
ij to denote

the parts of Rij lying above and below the line segment [ci, cj] respectively, and
C1
ij and C2

ij to denote the centers of C that lie in R1
ij and R2

ij respectively. Note

that, the Euclidean distance between each pair of centers in Ck
ij ∪ {Ci, Cj} is

less than or equal to 1 for both k = 1, 2. Thus, if we form a bipartite graph
GB = (C1

ij ∪ C2
ij , EB), where an edge between a pair of vertices implies that

their distance is greater than 1, then the set χ corresponds to the maximum
independent set in the graph GB [5]. Note that, Ck

ij ∪ {Ci, Cj} itself forms an
independent set in GB for each k = 1, 2.

Our algorithm starts with χ = 0, and considers each pair of disks Ci, Cj ∈ C.
If Ci, Cj ∈ C intersect, then we compute C1

ij and C2
ij . If χ denotes the size of

the largest clique obtained so far, and |C1
ij ∪ C2

ij ∪ {Ci, Cj}| ≤ χ, then the disks
centered at Rij will not produce a clique of size greater than χ. Otherwise, we
consider the graph GB using C1

ij and C2
ij as the two sets of vertices. and compute

the maximum matching in GB . Finally, we compute χ′ = |U | + |M |, where U
is the set of unmatched vertices in GB , and M is the number of matched edges
in GB. If |χ′| > |χ|, then replace χ by χ′, and remember i, j in a pair of integer
locations i′, j′. After considering all the pairs of vertices, we need to execute the
same algorithm for the pair of disks Ci′ and Cj′ to report the largest clique.

6.1 Bipartite Matching in GB

We first accumulate the centers of all the members C1
ij ∪ C2

ij = {ck|d(ci, ck) ≤
1 & d(cj , ck) ≤ 1}, and move them at the begining of the array C. Next, we
arrange the members in C1

ij and C2
ij in Rij with respect to the position of their

centers, i.e., above or below the line [ci, cj]. Let C1
ij = {C[k], k = 1, 2, . . . μ}, and

C2
ij = {C[k], k = μ + 1, μ + 2, . . .m}. At any instant of time, we use A1

ij (resp.

A2
ij) to denote the set of matched vertices, and B1

ij (resp. B2
ij) to denote the

set of unmatched (exposed) vertices in C1
ij (resp. C2

ij), |A1
ij | = |A2

ij | = α. Thus,

A1
ij [k] = C[k] and A2

ij [k] = C[μ + k] for k = 1, 2, . . . , α; The sets B1
ij and B2

ij

start from the locations C[α+ 1] and C[μ+ α+ 1] respectively.
Let |B1

ij | ≤ |B2
ij |. We consider each (exposed) vertex w = C[k] ∈ B1

ij (k ∈
{α+1, . . . , μ}) and compute an augmenting path with a sequence of matched and
unmatched edges that starts at w, and ends at an exposed vertex w′ = C[] ∈ B2

ij

(i.e., ∈ {μ+α+1, . . . ,m}) [11]. If an augmenting path is found, the matching
is augmented. The cardinality of both A1

ij and A2
ij are increased by one, and

the cardinality of both B1
ij and B2

ij are decreased by one. Otherwise, w is a
useless vertex in the sense that it will never appear in any augmenting path
in subsequent iterations (Corollary of Theorem 10.5 [12]). We move w at the
end of the list B1

ij . We use a variable γ such that the nodes of B1
ij stored in

C[γ], C[γ + 1], . . . , C[μ] are useless. Initially γ is set with μ + 1. The algorithm
stops when there does not exist augmenting path starting from any exposed

336 M. De, S.C. Nandy, and S. Roy

(a)

ci cj

R1
ij

R2
ij

A1
ij

A2
ij

α α

i

j

γ

μ

μ + 1

m

B1
ij

B2
ij

(b)

A1
ij

A2
ij

α α

i

γ

μ

μ + 1

m

B1
ij

B2
ijγ − 1

(c)

A1
ij

A2
ij

α α

i

j

γ

μ

μ + 1

m

B1
ij

B2
ij

(d)

Fig. 4. (a) Lens formed by two circles, (b-d) Different steps for augmenting a matching

vertex in B1
ij , i.e., γ = α + 1 for the current values of α and γ. The procedures

for finding an augmenting path and updating the matching are stated below.

Computing an Augmenting Path. Let w ∈ B1
ij be an exposed vertex stored

at C[i], α < i ≤ γ. Our algorithm for finding the augmenting path consists of two
stages. In Stage 1, we test whether there exists an exposed vertex w′ ∈ B2

ij such
that (w,w′) ∈ EB. If such a vertex exists (say at location C[j], μ+ α < j ≤ m),
we increment α by 1, and move w and w′ in A1

ij [α] and A2
ij [α] by executing

swap(C[i], C[α]) and swap(C[j], C[μ + α]) (see Fig. 4(b)). If no such vertex is
found, we execute Stage 2 to get an augmenting path of length greater than 1.

In Stage 2, we first test whether w has an edge with any member of A2
ij . If

no such vertex is observed, then w is an useless vertex. We move w at the end
of B1

ij by decrementing γ by 1, and executing swap(C[i], C[γ]) (see Fig. 4(c)).

If a vertex u = C[μ +] ∈ A2
ij is observed such that (w, u) ∈ EB , then w →

u → v is an alternating path, where v = C[] ∈ A1
ij , and (u, v) is a matched edge.

We move u and v at the beginning of the array A2
ij and A1

ij respectively. We use
a scalar variable β for this purpose; its initial value 0. To store a matched edge
(u, v) on the alternating path, we increment β by 1, and store u = C[μ +] and
v = C[] in C[μ + β] and C[β] respectively by executing swap(C[μ +], C[μ + β])
and swap(C[], C[β]). In the next step, we take v = C[β], and try to finish the
augmenting path by searching a vertex w′ ∈ B2

ij such that (v, w′) ∈ EB as we
did at the beginning of Step 2. If no such w′ is found, then we search for a vertex
u′ ∈ A2

ij such that (u′, v) ∈ EB . If such a vertex u′ is found, then we extend the

alternating path with the matched edge (u′, v′) (where v′ ∈ A1
ij) by incrementing

β by 1, and storing u′ and v′ in C[μ+β] and C[β] respectively as earlier. However,
if no such vertex u′ is found, then from v the alternating path can not be extended.
So, we decrement β by 1 to explore the other edges of C[β] for the current value of
β. Here it needs to be mentioned that, (i) the first part of the array A2

ij behaves
like a stack with β as its top pointer, and (ii) since the neighbors of a vertex inGB

are not available directly, we need to be careful (as explained below) in choosing
an edge of C[β] next time which was not chosen earlier.

In order to get a new vertex u′ ∈ A2
ij adjacent to v ∈ A1

ij , we may need to

inspect all the members in u′′ ∈ A2
ij irrespective of whether (u′′, v) ∈ EB

or not. There may be several vertices in A2
ij that are adjacent to v. At

In-Place Algorithms for Computing a Largest Clique 337

an instant of time, we choose one having minimum distance from the line
segment [ci, cj], among those which are not yet considered. We use a variable
dist for this purpose. This helps in avoiding the choice of same neighbor of
v many times. The choice of new edge (v, u′) is guided by the distance of
u′ from the line segment [ci, cj] and the coordinate of u∗, where (v, u∗) is
the current edge that failed to produce augmenting path. Thus, choosing a
neighbor of v in the set A2

ij needs O(|A2
ij |) time in the worst case.

Finally, if β = 0 is observed, we explore other neighbors of w in B2
ij . If we can

complete an augmenting path, say w = C[i] → A2
ij [1] → A1

ij [1] → A2
ij [2] →

A1
ij [2] → . . . → A2

ij [β− 1] → A1
ij [β− 1] → A2

ij [β] → A1
ij [β] → w′ = C[j] (w ∈ B1

ij

and w′ ∈ B2
ij), then the matching is updated as follows:

• Execute swap(C[i], C[k]) for k = 1, 2, . . . , β, and then execute swap(C[i], C[α+
1]) and swap(C[j], C[μ+ α+ 1]). Finally increment α by 1. (see Fig. 4(d)).

However, if there exists no other neighbor of w in the set A2
ij , no augmenting

path is possible from w; so w is moved at the end of B1
ij using the index variable

γ as stated earlier.

6.2 Complexity Analysis

Theorem 5. Given a set P of n points in 2D, the time complexity of our pro-
posed algorithm for computing the largest clique in the intersection graph G of
unit disks centered at the points in P is O(n2+mK4); m is the number of edges
in G and K is the size of the largest clique in G. The space complexity is O(1).

Proof. The first term in the time complexity is for testing the intersection of the
unit disks corresponding to each pair of points.

Let S be the number of points in a lens. The time complexity of our proposed
in-place algorithm for the bipartite matching in the graph GB formed with the
points in the aforesaid lens is O(S4) in the worst case. The reason is as follows:
(i) we check every exposed vertex once for augmenting the matching, (ii) the
process of checking the feasibility of augmenting the matching from an exposed
vertex has to visit all the edges of the graph, and (iii) getting an edge needs
needs O(S) time in the worst case. If there exists an augmenting path, then the
time required to augment the matching is proportional to its length, which is
O(S) in the worst case. Since S is the number of points in the lens, the size of
the clique is at least S

2 . The reason is that the points lying in one side of the line
joining pi and pj inside the lens always form a clique. The result follows from
the fact that the number of intersecting pairs of unit disks is m, and S ≤ 2K
(K is the size of the largest clique) for each intersecting pairs of unit disks. The
space complexity follows from the fact that apart from the points in the array
C, we have used a constant number of index variables and a location dist in our
algorithm. �

338 M. De, S.C. Nandy, and S. Roy

References

1. Breu, H.: Algorithmic Aspects of Constrained Unit Disk Graphs, Ph.D. Thesis,
University of British Columbia, Canada, Tech. Report No. TR-96-15 (1996)

2. Bronnimann, H., Chan, T.M., Chen, E.Y.: Towards in-place geometric algorithms
and data structures. In: Symp. on Computational Geometry, pp. 239–246 (2004)

3. Chazelle, B.M., Lee, D.T.: On a circle placement problem. Computing 36, 1–16
(1986)

4. Chan, T.M., Chen, E.Y.: Optimal in-place and cache-oblivious algorithms for 3-d
convex hulls and 2-d segment intersection. Comput. Geom. 43, 636–646 (2010)

5. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graph. Discrete Mathemat-
ics 86, 165–177 (1990)

6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press
(1980)

7. Imai, H., Asano, T.: Finding the connected components and maximum clique of
an intersection graph of rectangles in the plane. Journal of Algorithms 4, 310–323
(1983)

8. Lee, D.T., Preparata, F.P.: An improved algorithm for the rectangle enclosure
problem. Journal of Algorithms 3, 218–224 (1982)

9. Lee, D.T.: Maximum clique problem of rectangle graphs. In: Preparata, F.P. (ed.)
Advances in Computing Research, pp. 91–107. JAI Press (1983)

10. Nandy, S.C., Bhattacharya, B.B.: A unified algorithm for finding maximum and
minimum point enclosing rectangles and cuboids. Computers and Mathematics
with Applications 29(8), 45–61 (1995)

11. Preparata, F.P., Shamos, M.I.: Computational Geometry - an Introduction.
Springer (1990)

12. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Prentice Hall of India Pvt. Ltd., New Delhi (1997)

The Black-and-White Coloring Problem

on Distance-Hereditary Graphs
and Strongly Chordal Graphs

Ton Kloks1,�, Sheung-Hung Poon1, Feng-Ren Tsai2, and Yue-Li Wang3

1 Department of Computer Science
2 Institute of Information Systems and Applications,

National Tsing Hua University, No. 101, Sec. 2, Kuang Fu Rd., Hsinchu, Taiwan
spoon@cs.nthu.edu.tw, mevernom@gmail.com
3 Department of Information Management,

National Taiwan University of Science and Technology,
No. 43, Sec. 4, Keelung Rd., Taipei, 106, Taiwan

ylwang@cs.ntust.edu.tw

Abstract. Given a graph G and integers b and w. The black-and-white
coloring problem asks if there exist disjoint sets of vertices B and W

with |B| = b and |W| = w such that no vertex in B is adjacent to any
vertex in W. In this paper we show that the problem is polynomial when
restricted to cographs, distance-hereditary graphs, interval graphs and
strongly chordal graphs. We show that the problem is NP-complete on
splitgraphs.

Keywords: Black-and-white coloring, Cographs, Distance-hereditary
graphs, Strongly chordal graphs, Threshold graphs, Interval graphs.

1 Introduction

Definition 1. Let G = (V ,E) be a graph and let b and w be two integers. A
black-and-white coloring of G colors b vertices black and w vertices white such
that no black vertex is adjacent to any white vertex.

In other words, the black-and-white coloring problem asks for a complete bipar-
tite subgraph M in the complement Ḡ of G with b and w vertices in the two
color classes of M.

The black-and-white coloringproblem isNP-complete for graphs in general [22].
That paper also shows that the problem can be solved for trees inO(n3) time. In a
recent paper [6] the worst-case timebound for an algorithm on trees was improved
toO(n2 log3 n) time [6]. The paper [6] mentions, among other things, amanuscript
by Kobler, et al., which shows that the problem can be solved in polynomial time

� National Science Council of Taiwan Support Grant NSC 99–2218–E–007–016.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 339–350, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

340 T. Kloks et al.

for graphs of bounded treewidth. All classes that we consider in this paper either
contain arbitrarily large cliques or arbitrarily large complete bipartite graphsKt,t.
Hence none of these classes has bounded treewidth.

In this paper we investigate the complexity of the problem for some graph
classes. We start our analysis for the class of cographs.

A P4 is a path with four vertices.

Definition 2 ([13]). A graph is a cograph if it has no induced P4.

There are various characterizations of cographs. For algorithmic purposes the
following characterization is suitable.

Theorem 1. A graph is a cographs if and only if every induced subgraph H is
disconnected or the complement H̄ is disconnected.

It follows that a cograph has a tree decomposition which is called a cotree. A
cotree is a pair (T , f) comprising a rooted binary tree T together with a bijection
f from the vertices of the graph to the leaves of the tree. Each internal node of T ,
including the root, has a label ⊗ or ⊕. The ⊗ operation is called a join operation,
and it makes every vertex that is mapped to a leaf in the left subtree adjacent
to every vertex that is mapped to a leaf in the right subtree. The operator ⊕
is called a union operation. In that case the graph is the union of the graphs
defined by the left - and right subtree. A cotree decomposition can be obtained
in linear time [14].

2 Black-and-White Colorings of Cographs

In this section we show that the black-and-white coloring problem can be solved
in polynomial time for cographs.

Theorem 2. There exists an O(n3) algorithm which solves the black-and-white
coloring problem on cographs.

Proof. Let fG(b) be the maximum number of white vertices in a black-and-
white coloring of G with b black vertices. We prove that the function fG can be
computed in O(n3) time for cographs.

Let G be a cograph with n vertices. We write f instead of fG. By convention,

f(b) = 0 when b < 0 or b > n.

Assume that G has one vertex. Then

f(b) =

{
1 if b = 0

0 in all other cases.

The Black-and-White Coloring Problem on Distance-Hereditary Graphs 341

Assume that G is the join of two cographs G1 and G2. We write fi instead of
fGi

, for i ∈ {1, 2}. We have that f(0) = n, where n is the number of vertices in
G. When b > 0 we have

f(b) = max { f1(b), f2(b) }.

Assume that G is the union of two cographs G1 and G2. Then

f(b) = max
0�k�b

f1(k) + f2(b− k).

A cotree T has O(n) nodes and it can be computed in linear time [13]. Consider
a node i in T . Let Gi be the subgraph of G induced by the vertices that are
mapped to leaves in the subtree rooted at i. By the previous observations, the
function fi for the graph Gi can be computed in O(n2) time.

Since T has O(n) nodes this proves the theorem. �

2.1 Threshold Graphs

A subclass of the class of cographs are the threshold graphs.

Definition 3 ([12]). A graph G = (V ,E) is a threshold graph if there is a real
number T and a real number w(x) for every vertex x ∈ V such that a subset
S ⊆ V is an independent set if and only if∑

x∈S

w(x) � T .

There are many ways to characterize threshold graphs [30]. For example, a graph
is a threshold graph if it has no induced P4, C4 or 2K2.

� �

� �

� �

� �

� �

� �

Fig. 1. A graph is a threshold graph if it has no induced C4, P4 or 2K2

Another characterization is that a graph is a threshold graph if every induced
subgraph has a universal vertex or an isolated vertex [12, Theorem 1].

In [12, Corollary 1B] appears also the following characterization. A graph
G = (V ,E) is a threshold graph if and only if there is a partition of V into two
sets A and B, of which one is possibly empty, such that the following holds true.

1. A induces a clique, and
2. B induces an independent set, and
3. there is an ordering b1, . . . ,bk of the vertices in B such that

N(b1) ⊆ . . . ⊆ N(bk).

342 T. Kloks et al.

We use the notation N[x] to denote the closed neighborhood of a vertex x. Thus
N[x] = N(x) ∪ {x}.

Theorem 3. There exists a linear-time algorithm which, given a threshold graph
G and integers b and w, decides if there is a black-and-white coloring of G with
b vertices colored black and w vertices colored white.

Proof. Let x1, . . . , xn be an ordering of the vertices in G such that for all i < n

(a) N(xi) ⊆ N(xi+1) if xi and xi+1 are not adjacent, and

(b) N[xi] ⊆ N[xi+1] if xi and xi+1 are adjacent.

Assume that there exists a black-and-white coloring which colors b vertices black
and w vertices white. Assume that there is an index k � b +w such that xk is
uncolored. Then there exists an index � > b+w such that x� is colored black or
white. Then we may color xk with the color of x� and uncolor x� instead. Thus
we may assume that there exists a coloring such that x1, . . . , xb+w are colored
and all other vertices are uncolored.

Assume that b � w. We prove that there exists a coloring f such that

f(xi) =

{
black if 1 � i � b, and

white if b+ 1 � i � b+w.

We may assume that b � 1 and that w � 1. Assume that xi is adjacent to xj
for some i � b < j. Then

{xj, . . . , xb+w} ⊆ N(xi) and {xi, . . . , xj} ⊆ N[xj].

Thus all vertices in

{xi, . . . , xb+w}

are the same color. If they are all black then there are at least w + 1 black
vertices in the coloring, which contradicts b � w. If they are all white then we
have at least w+ 1 white vertices, which is a contradiction as well. Thus no two
vertices xi and xj with i � b < j are adjacent, which proves that the coloring
above is valid.

This proves the theorem, since an algorithm only needs to check if xb is
adjacent to xb+w or not. �

2.2 Difference Graphs

Definition 4 ([21]). A graph G = (V ,E) is a difference graph if there exists a
positive real number T and a real number w(x) for every vertex x ∈ V such that
w(x) � T for every x ∈ V and such that for any pair of vertices x and y

{x,y} ∈ E if and only if |w(x) −w(y)| � T .

The Black-and-White Coloring Problem on Distance-Hereditary Graphs 343

� �

�

�
�
�

�
�

�

� �

� �

�

�

�

�

�

�
��

�
��

�
��
�

��

Fig. 2. A graph is a difference graph if it has no induced triangle, 2K2 or C5

Difference graphs are sometimes called chain graphs [34].
Difference graphs can be characterized in many ways [21]. For example, a

graph is a difference graph if and only if it has no induced K3, 2K2 or C5 [21,
Proposition 2.6]. Difference graphs are bipartite. Let X and Y be a partition
of V into two color classes. Then the graph obtained by making a clique of
X is a threshold graph and this property characterizes difference graphs [21,
Lemma 2.1].

Theorem 4. There exists a linear-time algorithm which, given a difference graph
G and integers b and w, decides if there is a black-and-white coloring of G with
b black vertices and w white vertices.

Proof. An argument, similar to the one given in Theorem 3, provides the proof.
�

3 Distance-Hereditary Graphs

Definition 5 ([24]). A graph G is distance hereditary if for every pair of nonad-
jacent vertices x and y and for every connected induced subgraph H of G which
contains x and y, the distance between x and y in H is the same as the distance
between x and y in G.

In other words, a graph G is distance hereditary if for every nonadjacent pair x
and y of vertices, all chordless paths between x and y in G have the same length.

There are various characterizations of distance-hereditary graphs. One of them
states that a graph is distance hereditary if and only if it has no induced house,
hole, domino or gem [4,24]. Distance-hereditary graphs are also characterized
by the property that every induced subgraph has either an isolated vertex, or a
pendant vertex, or a true or false twin [4].

Distance-hereditary graphs are the graphs of rankwidth one. This implies that
they have a special decomposition tree which we describe next.

� �

� �

�

�� 		
�

�

�

�

�

	
		

�
��

�
��

� �

� �

� �

�

�

�

�

�

�
�
�
��

�
�
�
��

�
�� 	

		

Fig. 3. A graph is distance hereditary if it has no induced house, hole, domino or gem

344 T. Kloks et al.

A decomposition tree for a graph G = (V ,E) is a pair (T , f) consisting of a
rooted binary tree T and a bijection f from V to the leaves of T .

When G is distance hereditary it has a decomposition tree (T , f) with the
following three properties [11].

Consider an edge e = {p, c} in T where p is the parent of c. Let We ⊂ V be
the set of vertices of G that are mapped by f to the leaves in the subtree rooted
at c. Let Qe ⊆ We be the set of vertices in We that have neighbors in G−We.
The set Qe is called the twinset of e. The first property is that the subgraph of
G induced by Qe is a cograph for every edge e in T .

Consider an internal vertex p in T . Let c1 and c2 be the two children of p.
Let e1 = {p, c1} and let e2 = {p, c2}. Let Q1 and Q2 be the twinsets of e1 and
e2. The second property is that there is a join- or a union-operation between Q1

and Q2. Thus every vertex of Q1 has the same neighbors in Q2.
Let p be an internal vertex of T which is not the root. Let e be the line that

connects p with its parent. Let Qe be the twinset of e. Let c1 and c2 be the two
children of p in T . Let e1 = {p, c1} and let e2 = {p, c2}. Let Qi be the twinset of
ei, for i ∈ {1, 2}. The third, and final, property is that

Qe = Q1 or Qe = Q2 or Qe = Q1 ∪Q2.

When G is distance hereditary then a tree-decomposition for G with the three
properties described above can be obtained in linear time [11].

Notice that the first property is a consequence of the other two. As an example,
notice that cographs are distance hereditary. A cotree is a decomposition tree
for a cograph with the three properties mentioned above.

Theorem 5. There exists a polynomial-time algorithm that solves the black-and-
white coloring problem on distance-hereditary graphs.

The proof of this theorem can be found in [27].

4 Interval Graphs

In this section we show that there is an efficient algorithm to solve the black-
and-white coloring problem on interval graphs.

Definition 6 ([29]). A graph G is an interval graph if it is the intersection graph
of a collection of intervals on the real line.

There are various characterizations of interval graphs. For example, a graph is
an interval graph if and only if it is chordal and it has no asteroidal triple. Also,
a graph is an interval graph if and only if it has no C4 and the complement Ḡ
has a transitive orientation [19].

For our purposes the following characterization of interval graphs is suitable.

Theorem 6 ([19]). A graph G is an interval graph if and only if there is a linear
ordering L of its maximal cliques such that for every vertex, the maximal cliques
that contain that vertex are consecutive in L.

The Black-and-White Coloring Problem on Distance-Hereditary Graphs 345

Interval graphs can be recognized in linear time. When G is an interval graph
then G is chordal and so it has at most n maximal cliques. A linear ordering of
the maximal cliques can be obtained in O(n2) time [7].

Theorem 7. There exists an O(n6) algorithm that solves the black-and-white
coloring problem on interval graphs.

Proof. Let [C1, . . . ,Ct] be a linear ordering of the maximal cliques of an interval
graph G = (V ,E) such that for every vertex x, the maximal cliques that contain
x appear consecutively in this ordering.

Consider a black-and-white coloring of G. First assume that the first clique C1

contains no black or white vertices. Then we may remove the vertices that appear
in C1 from the graph and consider a black-and-white coloring of the vertices in
cliques of the linear ordering

[C∗
2, . . . ,C

∗
t], where, for i > 1, C∗

i = Ci \ C1.

Now assume that C1 contains some black vertices. Then, obviously, C1 contains
no white vertices. Let i be the maximal index such that all the cliques C� with
1 � � � i contain no white vertices. Remove all the vertices that appear in
C1, . . . ,Ci from the remaining cliques and consider the ordering

[C∗
i+1, . . . ,C

∗
t] where, for � > i, C∗

� = C� \

i⋃
k=1

Ck.

Then we may take an arbitrary black-and-white coloring of the graph induced by
the vertices ∪t

�=i+1C
∗
� and color an arbitrary number of vertices in ∪i

�=1C� black.
For this purpose define, for p � q,

Xp,q = { x ∈ V | x ∈ Ck if and only if p � k � q }.

Thus Xp,q consists of the vertices of which the indices of the first and the last
clique that contain the vertex are both in the interval [p,q].

For i � 1 let Gi be the graph with vertices in

t⋃
k=i

Ci
k, where, for k � i, Ci

k = Ck \

i−1⋃
�=1

C�.

The algorithm keeps a table with entries b,w ∈ {1, . . . ,n} and the boolean value
γi(b,w) which is true if and only if there exists a black-and-white coloring of
Gi with b black vertices and w white vertices. Then we have, for i = 1, . . . , t,

γi(b,w) = true if and only if ∃j�i ∃k 0 � k � |Xi,j| and{
(b,w) ∈ {(k, 0), (0, k)} if j = t, and

γj+1(b − k,w) or γj+1(b,w− k) if j < t.

346 T. Kloks et al.

To implement this algorithm one needs to compute the cardinalities |Xp,q|. Initial-
ize |Xp,q| = 0. We assume that we have, for each vertex x, the index F(x) of the
first clique that contains x and the index L(x) of the last clique that contains x.
Consider the vertices one by one. For a vertex x, add one to |Xp,q| for all p � F(x)
and all q � L(x). For each vertex x we need to update O(n2) cardinalities |Xp,q|.
Thus computing all cardinalities |Xp,q| can be done inO(n3) time.

For each i = 1, . . . , t, the table for Gi contains O(n2) boolean values γi(b,w).
For the computation of each γi(b,w) the algorithm searches the tables of Gj

for all j > i. Thus the computation of γi(b,w) takes O(n3) time. Thus the full
table for Gi can be obtained in O(n5) time and it follows that the algorithm can
be implemented to run in O(n6) time.

There exists a black-and-white coloring of G with b black vertices andw white
vertices if and only if γ1(b,w) = true. This proves the theorem. �

5 Strongly Chordal Graphs

The class of interval graphs is contained in the class of strongly chordal graphs.
In this section we generalize the results of Section 4 to the class of strongly
chordal graphs.

Definition 7. Let C = [x1, . . . , x2k] be a cycle of even length. A chord (xi, xj) in
C is an odd chord if the distance in C between xi and xj is odd.

Recall that a graph is chordal if it has no induced cycle of length more than
three [15,20].

Definition 8 ([16]). A graph G is strongly chordal if G is chordal and each cycle
in G of even length at least six has an odd chord.

Farber discovered the strongly chordal graphs as a subclass of chordal graph for
which the weighted domination problem is polynomial. The class of graphs is
closely related to the class of chordal bipartite graphs [9].

There are many ways to characterize strongly chordal graphs. For example, a
graph is strongly chordal if and only if its closed neighborhood matrix, or also,
its clique matrix, is totally balanced [2,3,9,16,23,28]. Strongly chordal graphs are
also characterized by the property that they have no induced cycles of length
more than three and no induced suns [9,16]. For k � 3, a k-sun consists of a
clique C = {c1, . . . , ck} and an independent set S = {s1, . . . , sk}. Each vertex si,
with 1 � i < k, is adjacent to ci and to ci+1 and sk is adjacent to ck and c1.

Another way to characterize strongly chordal graphs is by the property that
every induced subgraph has a simple vertex.

Definition 9. A vertex x in a graph G is simple if for all y, z ∈ N[x]

N[y] ⊆ N[z] or N[z] ⊆ N[y].

Notice that a simple vertex is simplicial, that is, its neighborhood is a clique.

The Black-and-White Coloring Problem on Distance-Hereditary Graphs 347

�

�

�

�

�

����

		�
�
�

		��
�
�
�

��
���

�

�

�

�

�

�

�

�

		
��

		
�
�
�

��
	
	
	
��

��
		

		

Fig. 4. A chordal graph is strongly chordal if it has no sun. The figure shows a 3-sun
and a 4-sun.

Theorem 8 ([10,16]). A graph is strongly chordal if and only if every induced
subgraph has a simple vertex.

The proof of the following theorem can be found in [27].

Theorem 9. There exists a polynomial-time algorithm that solves the black-and-
white coloring problem on strongly chordal graphs.

6 Splitgraphs

In this section we show that the black-and-white coloring problem on splitgraphs
is NP-complete.

Definition 10. A graph G = (V ,E) is a splitgraph if there exists a partition of
the vertices in two sets C and S such that C induces a clique in G and S induces
an independent set in G. Here, one of the two sets C and S may be empty.

A splitgraph can be characterized in various ways. Notice that, if G is a split-
graph then G is chordal and, furthermore, its complement Ḡ is also a splitgraph.
Actually, this property characterizes splitgraphs [17]; a graph G is a splitgraphs
if and only if G and its complement Ḡ are both chordal. Splitgraphs are exactly
the graphs that have no induced C4, C5 or 2K2 [17].

Theorem 10. The black-and-white coloring problem is NP-complete for the class
of splitgraphs.

Proof. Since splitgraphs are closed under complementation, we can formulate the
problem as a black-and-white coloring problem with all black vertices adjacent
to all white vertices. We call this the ‘inverse black-and-white coloring problem.’

We adapt a proof of Johnson, which proves the NP-completeness of finding a
balanced complete bipartite subgraph in a bipartite graph [25, Page 446].

� �

� �

�

�

�

�

�

�
��

�
��

�
��
�

��

� �

� �

Fig. 5. A graph is a splitgraph if it has no C4, C5 or 2K2

348 T. Kloks et al.

Let G = (V ,E) be a graph with |V | = n. Construct a splitgraph H as follows.
The clique of the splitgraph consists of the set V . The independent set of the
splitgraph consists of the set E. In the splitgraph, make a vertex x ∈ V adjacent
to an edge {y, z} ∈ E if and only if x is not an endpoint of {y, z}.

This completes the description of H.
Assume that the clique number of G is ω. We may assume that n is even and

n > 6, and that ω = n
2 [25].

To get an inverse black-and-white coloring, we color the vertices of the clique
white and the rest of V black. The edges of the clique are also colored white.
Then we have an inverse black-and-white coloring of H with

b = ω and w = ω+

(
ω

2

)
=

(
ω+ 1

2

)
. (1)

For the converse, assume that H has an inverse black-and-white coloring with the
numbers of black and white vertices as in Equation 1. Since E is an independent
set in H the colored vertices in E must all have the same color. First assume
that E contains no white vertices. Then V contains a set W of white vertices,
and V \W is black. Since

w = ω+

(
ω

2

)
> n = 2ω if n > 6,

this is not possible. Thus the inverse black-and-white coloring has white vertices
in E.

Assume that the inverse black-and-white coloring has a set E′ of white vertices
in E and a set of V ′ of ω black vertices in V . By the construction, no edge of E′

has an endpoint in V ′. Now |V \V ′| = ω and all the endpoints of E′ are in V \V ′.
The only possibility is that E′ is the set of edges of a clique V \V ′ of cardinality
ω in G.

This proves the theorem. �

References

1. Acharya, B., Las Vergnas, M.: Hypergraphs with cyclomatic number zero, trian-
gulated graphs, and an inequality. Journal of Combinatorial Theory, Series B 33,
52–56 (1982)

2. Anstee, R.: Hypergraphs with no special cycles. Combinatorica 3, 141–146 (1983)
3. Anstee, R., Farber, M.: Characterizations of totally balanced matrices. Journal

of Algorithms 5, 215–230 (1984)
4. Bandelt, H., Mulder, H.: Distance-hereditary graphs. Journal of Combinatorial

Theory, Series B 41, 182–208 (1986)

5. Beineke, L., Pippert, R.: The number of labeled k-dimensional trees. Journal of
Combinatorial Theory 6, 200–205 (1969)

6. Berend, D., Zucker, S.: The black-and-white coloring problem on trees. Journal
of Graph Algorithms and Applications 13, 133–152 (2009)

The Black-and-White Coloring Problem on Distance-Hereditary Graphs 349

7. Booth, K., Lueker, G.: Linear algorithms to recognize interval graphs and test for
the consecutive ones property. In: Proceedings STOC 1975, pp. 255–265. ACM
(1975)

8. Broersma, H., Kloks, T., Kratsch, D., Müller, H.: Independent sets in asteroidal
triple-free graphs. SIAM Journal on Discrete Mathematics 12, 276–287 (1999)

9. Brouwer, A., Duchet, P., Schrijver, A.: Graphs whose neighborhoods have no
special cycle. Discrete Mathematics 47, 177–182 (1983)

10. Brouwer, A., Kolen, A.: A super-balanced hypergraph has a nest point. Technical
Report ZW 146, Mathematisch Centrum, Amsterdam (1980)

11. Chang, M., Hsieh, S., Chen, G.: Dynamic Programming on Distance-Hereditary
Graphs. In: Leong, H.-V., Jain, S., Imai, H. (eds.) ISAAC 1997. LNCS, vol. 1350,
pp. 344–353. Springer, Heidelberg (1997)

12. Chvátal, V., Hammer, P.: Aggregation of inequalities in integer programming.
Technical Report STAN-CS-75-518, Stanford University, California (1975)

13. Corneil, D., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs.
Discrete Applied Mathematics 3, 163–174 (1981)

14. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs.
SIAM Journal on Computing 14, 926–934 (1985)

15. Dirac, G.: On rigid circuit graphs. Abhandlungen aus dem Mathematischen Sem-
inar der Universität Hamburg 25, 71–76 (1961)

16. Farber, M.: Characterizations of strongly chordal graphs. Discrete Mathemat-
ics 43, 173–189 (1983)

17. Földes, S., Hammer, P.: Split graphs. Congressus Numerantium 19, 311–315
(1977)

18. Gavril, F.: The intersection graphs of subtrees in trees are exactly the chordal
graphs. Journal of Combinatorial Theory, Series B 16, 47–56 (1974)

19. Gilmore, P., Hoffman, A.: A characterization of comparability graphs and of in-
terval graphs. The Canadian Journal of Mathematics 16, 539–548 (1964)

20. Hajnal, A., Surányi, J.: Über die Auflösung von Graphen in vollständige Teil-
graphen. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös
Nominatae – Sectio Mathematicae 1, 113–121 (1958)

21. Hammer, P., Peled, U., Sun, X.: Difference graphs. Discrete Applied Mathemat-
ics 28, 35–44 (1990)

22. Hansen, P., Hertz, A., Quinodos, N.: Splitting trees. Discrete Mathematics 165,
403–419 (1997)

23. Hoffman, A., Kolen, A., Sakarovitch, M.: Totally-balanced and greedy matrices.
Technical Report BW 165/82, Mathematisch Centrum, Amsterdam (1982)

24. Howorka, E.: A characterization of distance-hereditary graphs. The Quarterly
Journal of Mathematics 28, 417–420 (1977)

25. Johnson, D.: The NP-completeness column: An ongoing guide. Journal of Algo-
rithms 8, 438–448 (1987)

26. Kloks, T.: Treewidth – Computations and Approximations. LNCS, vol. 842.
Springer, Heidelberg (1994)

27. Kloks, T., Poon, S., Tsai, F., Wang, Y.: The black-and-white coloring problem
on distance-hereditary graphs and strongly chordal graphs. Manuscript on ArXiv:
1111.0867v1 (2011)

28. Lehel, J.: A characterization of totally balanced hypergraphs. Discrete Mathe-
matics 57, 59–65 (1985)

29. Lekkerkerker, C., Boland, D.: Representation of finite graphs by a set of intervals
on the real line. Fundamenta Mathematicae 51, 45–64 (1962)

350 T. Kloks et al.

30. Mahadev, N., Peled, U.: Threshold graphs and related topics. Elsevier Series An-
nals of Discrete Mathematics 56 (1995)

31. Moon, J.: The number of labeled k-trees. Journal of Combinatorial Theory 6,
196–199 (1969)

32. Rose, D.: Triangulated graphs and the elimination process. Journal of Mathemat-
ical Analysis and Applications 32, 597–609 (1970)

33. Rose, D.: On simple characterizations of k-trees. Discrete Mathematics 7, 317–322
(1974)

34. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM
Journal on Algebraic and Discrete Methods 3, 351–358 (1982)

An Improved Approximation Algorithm

for the Bandpass Problem

Weitian Tong1, Randy Goebel1, Wei Ding2, and Guohui Lin1,�

1 Department of Computing Science, University of Alberta,
Edmonton, Alberta T6G 2E8, Canada

2 Zhejiang Water Conservancy and Hydropower College,
Hangzhou, Zhejiang, China

{weitian,rgoebel,guohui}@ualberta.ca

dingweicumt@163.com

Abstract. The general Bandpass-B problem is NP-hard and can be
approximated by a reduction into the B-set packing problem, with a
worst case performance ratio of O(B2). When B = 2, a maximum weight
matching gives a 2-approximation to the problem. The Bandpass-2 prob-
lem, or simply the Bandpass problem, can be viewed as a variation of
the maximum traveling salesman problem, in which the edge weights
are dynamic rather than given at the front. We present in this pa-
per a 36

19
-approximation algorithm for the Bandpass problem, which is

the first improvement over the simple maximum weight matching based
2-approximation algorithm.

Keywords: Bandpass problem, approximation algorithm, edge color-
ing, maximum weight matching, worst case performance ratio.

1 Introduction

In optical communication networks, a sending point uses a binarymatrixAm×n to
send m information packages to n different destination points, in which the entry
aij = 1 if information package i is not destined for point j, or aij = 0 otherwise.
To achieve the highest cost reduction viawavelength divisionmultiplexing technol-
ogy, an optimal packing of information flows on different wavelengths into groups is
necessary [2]. Under this binarymatrix representation, everyB consecutive 1’s in a
column indicates an opportunity for merging information to reduce the communi-
cation cost, whereB is a pre-specified positive integer called the bandpass number.
Such a set ofB consecutive 1’s in a column of the matrix is said to form a bandpass.
When counting the number of bandpasses in the present matrix, no two of them
in the same column are allowed to share any common rows. The computational
problem, the Bandpass-B problem, is to find an optimal permutation of rows of
the input matrixAm×n such that the total number of extracted bandpasses in the

� Corresponding author.

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 351–358, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

352 W. Tong et al.

resultant matrix is maximized [3,2,8]. Note that though multiple bandpass num-
bers can be used in practice, for the sake of complexities and costs, usually only
one fixed bandpass number is considered [2].

The general Bandpass-B problem, for any fixed B ≥ 2, has been proven to be
NP-hard [8]. In fact, the NP-hardness of the Bandpass-2 problem can be proven
by a reduction from the well-known Hamiltonian path problem [6, GT39], where
in the constructed binary matrix Am×n, a row maps to a vertex, a column maps
to an edge, and aij = 1 if and only if edge ej is incident to vertex vi. It follows
that there is a row permutation achieving m− 1 bandpasses if and only if there
is a Hamiltonian path in the graph.

On the approximability, the Bandpass-B problem has a close connection to the
weighted B-set packing problem [6]. Given an instance I of a maximization prob-
lem Π , let C∗(I) (C(I), respectively) denote the value of the optimal solution
(the value of the solution produced by an algorithm, respectively). The perfor-

mance ratio of the algorithm on I is C∗(I)
C(I) . The algorithm is a ρ-approximation if

supI
C∗(I)
C(I) ≤ ρ. By taking advantages of the approximation algorithms designed

for the weighted B-set packing problem [1,4], the Bandpass-B problem can be
approximated within O(B2) [8]. Moreover, since the maximum weight match-
ing problem is solvable in cubic time, the Bandpass-2 problem admits a simple
maximum weight matching based 2-approximation algorithm [8].

In this paper, we present for the Bandpass-2 problem, or simply the Bandpass
problem, the first improved approximation algorithm, with the worst case per-
formance ratio proven to be at most 36

19 ≈ 1.895. Our algorithm is still based on
maximum weight matchings. While the algorithm is not too complex, our main
contribution lies in the non-trivial performance analysis.

2 The Approximation Algorithm

A reduction from the Hamiltonian path problem has been used to prove the
NP-hardness of the Bandpass problem. But the Bandpass problem does not
readily reduce to the maximum traveling salesman problem (Max-TSP) [6] for
approximation algorithm design. The main reason is that, an instance graph of
Max-TSP is static, in that all (non-negative) edge weights are given at the front,
while in the Bandpass problem the number of bandpasses extracted between two
consecutive rows in a row permutation is permutation dependent. Nevertheless,
as shown in the sequel, our design idea is based on maximum weight matchings,
the same as in approximating Max-TSP [10,7,5,9]. Formally, in Max-TSP, a
complete edge-weighted graph is given, where the edge weights are non-negative
integers, and the goal is to compute a Hamiltonian cycle with the maximum
weight. Note that there are several variants of Max-TSP been studied in the
literature. In our case, the input graph is undirected (or symmetric) and the
edge weights do not necessarily satisfy the triangle inequality. The following
Lemma 1 states the currently best approximation result for Max-TSP.

Lemma 1. [9] The Max-TSP admits a 9
7 -approximation algorithm.

An Improved Approximation Algorithm for the Bandpass Problem 353

In our Bandpass problem, since we can always add a row of all 0’s if needed, we
assume without loss of generality that the number of rows, m, is even.

Given the input binary matrix Am×n, let ri denote the i-th row. We first
construct a graphG of which the vertex set is exactly the row set {r1, r2, . . . , rm}.
Between rows ri and rj , the static edge weight is defined as the maximum number
of bandpasses that can be formed between the two rows, and is denoted as
w(i, j). In the sequel we use row (of the matrix) and vertex (of the graph)
interchangeably.

For a row permutation π = (π1, π2, . . . , πm), its i-th row is the πi-th row in
the input matrix. We call a maximal segment of consecutive 1’s in a column of
π a strip of π. The length of a strip is defined to be the number of 1’s therein. A
length- strip contributes exactly � �

2� bandpasses to the permutation π. We use
S�(π) to denote the set of all length- strips of π, and s�(π) = |S�(π)|. Let b(π)
denote the number of bandpasses extracted from the permutation π. We have

b(π) =
m∑
�=2

s�(π)

⌊

2

⌋
= s2(π) +

m∑
�=3

s�(π)

⌊

2

⌋
. (1)

Let p(π) denote the number of pairs of consecutive 1’s in the permutation π. We
have

p(π) =

m∑
�=2

s�(π)(− 1) = s2(π) +

m∑
�=3

s�(π)(− 1). (2)

2.1 Algorithm Description

In our algorithm denoted as Approx, the first step is to compute a maximum
weight matching M1 in graph G. Recall that there are an even number of rows.
Therefore,M1 is a perfect matching (even though some edge weights could be 0).
Let w(M1) denote the sum of its edge weights, indicating that exactly w(M1)
bandpasses can be extracted from the row pairings suggested by M1. These
bandpasses are called the bandpasses of M1.

Next, every 1 involved in a bandpass of M1 is changed to 0. Let the resultant
matrix be denoted as A′

m×n, the resultant edge weight between rows ri and rj be
w′(i, j)—which is themaximumnumber of bandpasses can be formed between the
two revised rows — and the corresponding resultant graph be denoted asG′. One
can see that if an edge (ri, rj) belongs toM1, then the new edge weightw′(i, j) = 0.
In the second step of Approx, we compute a maximum weight matching M2 in
graphG′, and letw′(M2) denote its weight or its number of bandpasses. It is noted
that no bandpass ofM1 shares a 1 with any bandpass ofM2.

If an edge (ri, rj) belongs to both M1 and M2, then it is removed from M2.
Such a removal does not decrease the weight of M2 as w′(i, j) = 0. Consider the
union of M1 and M2. Note that every cycle of this union, if any, must be an
even cycle with alternating edges of M1 and M2. The third step of Approx is
to break cycles, by removing for each cycle the least weight edge of M2. Let M
denote the final set of edges of the union, which form into disjoint paths.

354 W. Tong et al.

In the last step, we arbitrarily stack these paths to give a row permutation π.
The number of bandpasses extracted from π, b(π), is at least the weight of M ,
which is greater than or equal to w(M1) +

1
2w

′(M2).

2.2 Performance Analysis

Let π∗ denote the optimal row permutation such that its b(π∗) is maximized
over all row permutations. Correspondingly, S2(π

∗) denotes the set of length-2
strips in π∗, which contributes exactly s2(π

∗) bandpasses towards b(π∗). The key
part in the performance analysis for algorithm Approx is to estimate w′(M2),
as done in the following.

First, we partition the bandpasses of S2(π
∗) into four groups: B1, B2, B3, B4.

Note that bandpasses of S2(π
∗) do not share any 1 each other. B1 consists of the

bandpasses of S2(π
∗) that also belong to matching M1 (such as the one between

rows ra and rb in Figure 1); B2 consists of the bandpasses of S2(π
∗), each of

which shares (exactly) a 1 with exactly one bandpass of M1, and the other 1 of
the involved bandpass of M1 is shared by another bandpass in B2; B3 consists
of the bandpasses of S2(π

∗), each of which shares (exactly) a 1 with at least one
bandpass of M1, and if it shares a 1 with exactly one bandpass of M1 then the
other 1 of the involved bandpass of M1 is not shared by any other bandpass of
B2; B4 consists of the remaining bandpasses of S2(π

∗). Figure 1 illustrates some
examples of these bandpasses.

...

a : 1
b : 1

�

�

�

�B1

...
t : 0
i : 1
j : 1

�

�

�

�

k : 1
� : 1

�

�

�

�

u : 0 0
1
1

1
1

B3

0
1
1
1
�

�

�

�
B2

0

0

1
1

�

�

�

�
B4

...

Fig. 1. An illustration of the bandpasses of S2(π
∗) (in ovals) and the bandpasses of M1

(in boxes) for grouping purpose. A horizontal line in the figure represents a row, led by
its index. Rows that are adjacent in π∗ and/or row pairs of M1 are intentionally ordered
adjacently. In this figure, rows ra and rb are adjacent in π∗, denoted as (ra, rb) ∈ π∗,
and edge (ra, rb) ∈ M1 as well; the bandpasses between these two rows in S2(π

∗)
thus belong to B1. Edges (rt, ri), (rj , rk), (r�, ru) ∈ M1, while (ri, rj), (rk, r�) ∈ π∗; the
bandpasses between rows ri and rj and between rows rk and r� in S2(π

∗) shown in the
figure have their group memberships indicated beside them respectively.

By the definition of partition, we have

s2(π
∗) = |B1|+ |B2|+ |B3|+ |B4|. (3)

An Improved Approximation Algorithm for the Bandpass Problem 355

From these “group” definitions, we know all bandpasses of B1 are in M1. Also,
one pair of bandpasses of B2 correspond to a distinct bandpass of M1. Band-
passes of B3 can be further partitioned into subgroups such that a subgroup of
bandpasses together with a distinct maximal subset of bandpasses of M1 form
into an alternating cycle or path of length at least 2. Moreover, 1) when the
path length is even, the number of bandpasses of this subgroup of B3 is equal
to the number of bandpasses of this subset of bandpasses of M1; 2) when the
path length is odd, 2a) either the number of bandpasses of this subgroup of B3

is 1 greater than the number of bandpasses of this subset of bandpasses of M1,
2b) or the path length has to be at least 5 and so the number of bandpasses of
this subgroup of B3 is at least 2

3 of the number of bandpasses of this subset of
bandpasses of M1. It follows from 1), 2a) and 2b) that with respect to B3, M1

contains at least 2
3 |B3| corresponding bandpasses. That is,

w(M1) ≥ |B1|+
1

2
|B2|+

2

3
|B3|. (4)

Apparently, all bandpasses of B4 are in graph G′, while none of B1 ∪B2 ∪B3 is
in graph G′.

Note that the bandpasses of B2 are paired up such that each pair of the two
bandpasses share a 1 with a bandpass of M1. Assume without loss of generality
that these two bandpasses of B2 are formed between rows ri and rj and between
rows rk and r�, respectively, and that the involved bandpass of M1 is formed
between rows rj and rk (see Figure 1). That is, in the optimal row permutation
π∗, rows ri and rj are adjacent, and rows rk and r� are adjacent; while edge
(rj , rk) ∈ M1. We remark that these four rows are distinct. We conclude that
edge (ri, r�) /∈ M1. The proof is simple as otherwise in the particular column a
bandpass would be formed between rows ri and r�, making the two bandpasses
of B2 lose their group memberships (i.e., they would belong to B3).

Lemma 2. Assume edge (rj , rk) ∈ M1, and that one bandpass of (rj , rk) shares
1 with (two) bandpasses of B2. Then in G edge (rj , rk) is adjacent to at most
four edges in the optimal row permutation π∗, at most two of which are incident
at row rj and at most two of which are incident at row rk.

Proof. The lemma is straightforward from the above discussion, and the fact
that edge (rj , rk) does not belong to π∗.

Continuing with the above discussion, assuming that edge (rj , rk) ∈ M1, and
that one bandpass of (rj , rk) shares 1 with two bandpasses of B2, which are
formed between rows ri and rj and between rows rk and r�, respectively (see
Figure 1). We know that in graph G′, between rows ri and r�, in the same column
there is a bandpass (which contributes 1 towards the edge weight w′(i,)). We
call bandpasses constructed in this way the induced bandpasses. From Lemma 2,
edge (rj , rk) is adjacent to at most two edges of π∗ incident at row rj . It follows
that in graph G′, row r� can form induced bandpasses with at most four other
rows. In the other words, the subgraph of G′ induced by the edges containing
induced bandpasses, denoted as G′

s is a degree-4 graph.

356 W. Tong et al.

Lemma 3. G′
s is a degree-4 graph, and its weight w′(G′

s) ≥ 1
2 |B2|.

Proof. The first half of the lemma is a result of the above discussion. Since every
pair of bandpasses of B2 leads to an induced bandpass, all the edge weights in
G′

s sum up to at least 1
2 |B2|, which is the number of bandpass pairs in B2.

Lemma 4. The weight of matching M2 is w′(M2) ≥ max{ 1
10 |B2|, 1

2 |B4|} ≥
x 1
10 |B2|+ (1− x)12 |B4|, for any x ∈ [0, 1].

Proof. Vizing’s Theorem [11] states that the edge coloring (chromatic) number
of a graph is either the maximum degree Δ or Δ+ 1. Note that all edges of the
same color form a matching in the graph. We conclude from Lemma 3 that, even
in graph G′

s there is a matching of weight at least 1
5w

′(G′
s) ≥ 1

10 |B2|. As G′
s is a

subgraph ofG′ andM2 is the maximum weight matching ofG′, w′(M2) ≥ 1
10 |B2|.

On the other hand, graph G′ contains all bandpasses of B4.
Therefore, w′(M2) ≥ 1

2 |B4| as well. The last inequality in the lemma then follows
trivially,

max

{
1

10
|B2|,

1

2
|B4|

}
≥ x

1

10
|B2|+ (1− x)

1

2
|B4|,

for any x ∈ [0, 1].

Theorem 1. Algorithm Approx is a cubic time 36
19 -approximation for the

Bandpass problem.

Proof. The running time of algorithm Approx is dominated by the computing
for two maximum weight matchings, which can be done in cubic time. Since M1

is the maximum weight matching in graph G, from Eq. (2) we have

w(M1) ≥
1

2
p(π∗) ≥ 1

2

(
s2(π

∗) +
m∑
�=3

s�(π
∗)(− 1)

)
. (5)

Combining Eqs. (4) and (5), we have for any y ∈ [0, 1],

w(M1) ≥ y
1

2

(
s2(π

∗) +
m∑
�=3

s�(π
∗)(− 1)

)

+(1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
. (6)

The permutation π produced by algorithm Approx contains b(π) ≥ w(M1) +
1
2w

′(M2) bandpasses, as indicated at the end of Section 2.1. From Lemma 4, we
have for any x ∈ [0, 1],

b(π) ≥ w(M1) + x
1

20
|B2|+ (1 − x)

1

4
|B4|. (7)

An Improved Approximation Algorithm for the Bandpass Problem 357

Together with Eqs. (3) and (6), the above Eq. (7) becomes,

b(π) ≥ w(M1) + x
1

20
|B2|+ (1 − x)

1

4
|B4|

≥ y
1

2

(
s2(π

∗) +
m∑
�=3

s�(π
∗)(− 1)

)

+(1− y)

(
|B1|+

1

2
|B2|+

2

3
|B3|

)
+ x

1

20
|B2|+ (1− x)

1

4
|B4|

=
y

2

(
s2(π

∗) +
m∑
�=3

s�(π
∗)(− 1)

)

+(1− y)|B1|+
(
1− y

2
+

x

20

)
|B2|+

2(1− y)

3
|B3|+

1− x

4
|B4|

≥ 5

12

(
s2(π

∗) +
m∑
�=3

s�(π
∗)(− 1)

)
+

1

18
|B1|+

1

9
s2(π

∗), (8)

where the last inequality is achieved by setting x = 5
9 and y = 5

6 . Note that for

all ≥ 3, (− 1) ≥ 3
2�

�
2�. It then follows from Eqs. (8) and (1) that

b(π) ≥ 19

36

(
s2(π

∗) +
15

19
× 3

2

m∑
�=3

s�(π
∗)

⌊

2

⌋)
≥ 19

36
b(π∗). (9)

That is, the worst-case performance ratio of algorithm Approx is at most 36
19 .

3 Conclusions and Future Work

In this paper, we presented a 36
19 -approximation algorithm for the Bandpass prob-

lem, which is the first improvement (≈ 1.895) over the maximumweight matching
based 2-approximationalgorithm.Our algorithm is still based onmaximumweight
matchings, similar to tackling the closely relatedMax-TSP. Though our algorithm
description is not too complex, its performance analysis appears non-trivial.

It is noted that our algorithm applies to the Max-TSP as well, achieving
a worst case performance ratio 8

5 . We are not sure whether a better analy-
sis would narrow the gap between 8

5 and 36
19 on the Bandpass problem. For

the Max-TSP, Serdyukov presented a 4
3 -approximation algorithm based on the

maximum weight assignment (or called cycle cover) and the maximum weight
matching [10], which is further improved to the currently best 9

7 -approximation
algorithm in Lemma 1. But this assignment idea could not be easily adapted for
the Bandpass problem. Hassin and Rubinstein gave the currently best random-
ized approximation algorithm for the Max-TSP with expected performance ratio
33
25 [7] (which was subsequently de-randomized in [5]). It would be interesting to
design a randomized approximation for the Bandpass problem too, with better
than 36

19 expected performance ratio.

358 W. Tong et al.

Acknowledgement. This research was supported in part by NSERC.

References

1. Arkin, E.M., Hassin, R.: On local search for weighted packing problems. Mathe-
matics of Operations Research 23, 640–648 (1998)

2. Babayev, D.A., Bell, G.I., Nuriyev, U.G.: The bandpass problem: combinatorial
optimization and library of problems. Journal of Combinatorial Optimization 18,
151–172 (2009)

3. Bell, G.I., Babayev, D.A.: Bandpass problem. In: Annual INFORMSMeeting, Den-
ver, CO, USA (October 2004)

4. Chandra, B., Halldórsson, M.M.: Greedy local improvement and weighted set pack-
ing approximation. In: ACM-SIAM Proceedings of the Tenth Annual Symposium
on Discrete Algorithms (SODA 1999), pp. 169–176 (1999)

5. Chen, Z.-Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algo-
rithms for Max TSP. Information Processing Letters 95, 333–342 (2005)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. W. H. Freeman and Company, San Francisco (1979)

7. Hassin, R., Rubinstein, S.: Better approximations for Max TSP. Information Pro-
cessing Letters 75, 181–186 (2000)

8. Lin, G.: On the Bandpass problem. Journal of Combinatorial Optimization 22,
71–77 (2011)

9. Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 - Approximation Algorithm for the
Maximum Traveling Salesman Problem. In: Dinur, I., Jansen, K., Naor, J., Rolim,
J. (eds.) APPROX 2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009)

10. Serdyukov, A.I.: An algorithms for with an estimate for the traveling salesman
problem of the maximum. Upravlyaemye Sistemy 25, 80–86 (1984)

11. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskretnogo
Analiza 3, 25–30 (1964)

Partial Degree Bounded Edge Packing Problem

Peng Zhang

Shanghai Key Laboratory of Trustworthy Computing, East China Normal University
arena.zp@gmail.com

Abstract. In [1], whether a target binary string s can be represented
from a boolean formula with operands chosen from a set of binary strings
W was studied. In this paper, we first examine selecting a maximum
subset X from W , so that for any string t in X, t is not representable by
X \ {t}. We rephrase this problem as graph, and surprisingly find it give
rise to a broad model of edge packing problem, which itself falls into the
model of forbidden subgraph problem. Specifically, given a graph G(V,E)
and a constant c, the problem asks to choose as many as edges to form a
subgraph G′. So that in G′, for each edge, at least one of its endpoints has
degree no more than c. We call such G′ partial c degree bounded. This
edge packing problem model also has a direct interpretation in resource
allocation. There are n types of resources and m jobs. Each job needs two
types of resources. A job can be accomplished if either one of its necessary
resources is shared by no more than c other jobs. The problem then asks
to finish as many jobs as possible. For edge packing problem, when c = 1,
it turns out to be the complement of dominating set and able to be 2-
approximated. When c = 2, it can be 32/11-approximated. We also prove
it is NP-complete for any constant c on graphs and is O(|V |2) solvable
on trees. We believe this partial bounded graph problem is intrinsic and
merits more attention.

1 Introduction

An elementary problem of set operations is studied in [1]. Given two binary
strings of the same length, namely s1, s2, let s1 ∧ s2 (resp. s1 ∨ s2) be the binary
string produced by bitwise AND ∧ (resp. OR ∨) of s1 and s2. Given a set of m
bits long binary strings, namely, W = {s1, s2, · · · , sn}, si ∈ {0, 1}m, if there is
a formula φ which calculates s, with operators in {∧,∨} and operands in some
subset of W , then we say the target string s is representable by (or expressible
from) W via formula φ, or simply s is representable.

A natural variant of this problem is finding a maximum subset, in which
each string is not representable by the others. We call this variant Maximum
Expressive Independent Subset (MEI) problem and examine the restricted case
on strings with exactly two ones. Surprisingly, this is equivalent as maximum
edge packing under partial degree bounded by 2.

This paper is structured as follows. We study the hardness of edge packing
bounded by 1, by 2 and by a constant less than Δ(G) on graph in section 2.
Then we study the general edge packing on trees in section 3. In section 4,

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, pp. 359–367, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

360 P. Zhang

approximation algorithms for bounded 1 and bounded 2 edge packing are pre-
sented. Some conclusions are given in section 5. Since the problem only concerns
edges selecting, we assume the graph we deal with is free of isolated vertex.

1.1 Related Work

The decision problem of edge packing bounded by 1 turns out to be a parametric
dual of the well known Dominating Set (DS) problem. The parametric dual
means that for graph G(V,E), a k sized dominating set implies a |V | − k sized
edge packing, and vice versa. The parametric dual of DS was studied in [2], in
which the edges packed are called pendant edges. Further, the dual was well
studied under the framework of parameterized complexity by Frank Dehne, etc
in [3]. They coined the dual as NONBLOCKER problem and showed a linear
kernel of 5/3 · kd + 3, where kd is the solution size.

2 Maximum Expressible Independent Subset

At first, we introduce some notations used in [1]. Let x denote any binary string,
bxi denote the ith bit of x. So, x = bx1b

x
2 · · · bxm. Also, we define a function Zero :

Zero(x) = {i|bxi = 0}, from a binary string to a set of natural numbers which
denotes the indices of bits with value 0 in the binary string. Similarly, One(x)
denotes the indices of 1 valued bits of x. Also, 0 (resp. 1) denotes a binary string
with no 1 (resp. 0) valued bits. Let Ni denote the set of strings whose ith bit is
1, i.e, Ni = {y|byi = 1, y ∈ W}. In addition, Ti denotes the set of binary strings
in W whose ith bit value is 0, i.e., Ti = {x ∈ W |bxi = 0}. Let ti =

∨
x∈Ti

x.

Definition 1 (Expressible Independent Set (EI)). A setX of binary strings
is expressible independent if and only if for each binary string x ∈ X, x is not
expressible from X \ {x}.

Then the Maximum Expressible Independent Subset (MEIS) problem is defined
as follows. Given a set W of binary strings, MEIS asks to find a maximum
expressible independent subset of W . The decision version with parameter k is
denoted as MEIS(W,k).

2.1 MEIS on 2-Regular Set

We first pay attention to a restricted case of MEIS, when each binary string
has the same number of bits valued 1. And we refer to the following theorem 1
from [1].

Theorem 1. Given (W, s) where s �= 1, then s is expressible from W if and
only if ∀i ∈ Zero(s), One(s) ⊆ One(ti).

Definition 2 (c-regular set). A binary string is c-regular if and only if it
contains exactly c one bits. A set of binary strings is c-regular if and only if each
element is c-regular.

Partial Degree Bounded Edge Packing Problem 361

Lemma 1. Given a 2-regular set W and a 2-regular string x �∈ W , One(x) =
{i, j}, then x is expressible from W if and only if |Ni| ≥ 2 and |Nj | ≥ 2.

Proof. Sufficiency: We prove its contrapositive. By symmetry, suppose that
|Ni| ≤ 1. If |Ni| = 0, then i �∈ One(tl), l ∈ Zero(x). If Ni = {y}, assume that
One(y) = {l, i}, then i �∈ One(tl). In both cases, One(x) � One(tl), thus x is not
expressible from W according to Lemma 1.

Necessity: If |Ni| ≥ 2 and |Nj | ≥ 2, we assume {a, b} ⊆ Ni and {c, d} ⊆ Nj .
It is easy to check that (a ∧ b) ∨ (c ∧ d) = x.

Definition 3 (Partial Degree Bounded Graph). An undirected graph
G(V,E) is partial c bounded (PcB) if and only if ∀e(u,v)∈E(du ≤ c

∨
dv ≤ c).

du is the degree of u.

Given a graph G, the Maximum Partial c Degree Bounded Graph problem asks
to find a PcB subgraph G′ of G with maximum edges. The decision version with
parameter k is denoted as PcB(G, k). In the setting of resource allocation, each
vertex stands for a resource, each edge stands for a job. And an optimum PcB
subgraph maps to an optimum resource allocation.

Now, we will rephrase MEIS(W,k) on 2-regular set as P2B(G, k). Let W ⊆
{0, 1}m, we construct the corresponding graph G(V,E) as follows. Vertex vi ∈ V
corresponds to the ith bit of string. Each edge (vi, vj) ∈ E corresponds to a string
x ∈ W whose One(x) = {i, j}. According to Lemma 1, MEIS(W,k) has a solution
if and only if P2B(G, k) has a solution. Just select the corresponding edges in G,
and select the corresponding strings in W vice versa. The reduction can be done
in the reverse way. So it is just a rephrasing. The following lemma was proved
in [2], and we gave its proof here to make the paper more readable.

Lemma 2. P1B(G, k) is NP-complete.

Proof. Given a graph G(V,E), P1B(G, k) is in NP trivially because we can
check in O(|E|) time that whether the given subgraph G′ is partial 1 bounded.
We prove its NP-completeness by showing that, there is a a k sized partial 1
bounded subgraph G′ if and only if there is a n−k sized dominating set D of G,
n = |V |. Note that, any partial 1 bounded graph is a set of node-disjoint stars.

Necessity: If D = {v1, · · · , vk} is a dominating set, then we can construct a k
node-disjoint stars as following, which is a partition of G. Let Pi(Vi, Ei) denote
the ith star being constructed. For each vertex u ∈ V \D, if u is dominated by
vi, add u into Vi and (vi, u) into Ei. To make the stars node-disjoint, when u is
dominated by more than one vertices, break the ties arbitrarily. Note that, Ei

may be empty, that is, the Pi only contains an isolated vertex. So
∑

i≤k |Ei| =∑
i≤k |Vi| − k = n− k. Thus

⋃
vi∈D Pi is a n− k sized partial 1 bounded graph.

Sufficiency: If there is a G′ with |EG′ | = n− k. Suppose that G′ contains n0

stars without leaf (i.e., isolated vertices) and n1 stars with at least one leaf. It
is easy to see, n − k = (n − n0) − n1. Thus n0 + n1 = k, so we just select the
isolated vertices and the internal node of the n1 stars. They make up a k sized
dominating set.

362 P. Zhang

Lemma 3. P2B(G, k) is NP-complete, so is MEIS(W,k) on 2-regular set.

Proof. This problem is trivial to be in NP. We show its NP-completeness via a
reduction from P1B(G, k). Given a P1B(G, k) instance G(V,E), n = |V |, we
construct a P2B(G′, n+k) instance G′(V ′, E′) as follows. Adding a distinguished
vertex u into V , i.e., V ′ = V ∪ {u} and E′ = E ∪ {(u, v)|v ∈ V }.

Necessity: If M is a k sized partial 1 bounded subgraph in G, then adding
the n additional edges, i.e., E′ \ E into M will produce a n + k sized partial 2
bounded subgraph M ′.

Sufficiency: Let M ′ be a n + k sized partial 2 bounded subgraph in G′, and
let dM

′
v be the degree of v in M ′. We prove it case by case. Case 1: When

(E′ \ E) ⊆ EM ′ , then deleting all the n additional edges will make each node’s
degree in M ′ decrease 1, thus the remaining subgraph is a k sized partial 1
bounded subgraph. Case 2: When there exists an edge (u, vi) �∈ EM ′ , if dM

′
vi <

2, then we could just replace an arbitrarily edge (vj , vk) ∈ EM ′ by (u, vi). If

dM
′

vi ≥ 2, let (vi, vj) ∈ EM ′ , then we could replace (vi, vj) by (u, vi). Repeating
this swap, we eventually arrive at a n+ k sized partial 2 bounded subgraph M ′

which contains all the n addition edges, that is Case 1.

Theorem 2. PcB(G, k) is NP-complete.

Proof. We can easily generalize the proof technique of to any parameter c. Given
a P1B(G, k) instance G(V,E), n = |V |, we add c − 1 additional vertices and
(c − 1)|V | edges connecting each of the vertex in V to each additional vertex,
resulting a graphG′. Then P1B(G, k) is a YES instance if and only if PcB(G′, k+
(c− 1)|V |) is a YES instance. Note that, it is trivial to select all the edges when
c ≥ Δ(G), where Δ(G) stands for the maximum degree of G.

It is clear that PcB(G, k) is a case of forbidden subgraph of G, which asks to
find a maximum subgraph G′ of G so that G′ does contain a subgraph which is
isomorphic with the forbidden H . Here H is a tree with 2 internal nodes with
degree c + 1 and 2c leaf nodes. Each internal node has incident edges to c leaf
nodes and the other internal node.

3 Maximum Partial c Bounded Subgraph Problem on
Tree

Due to the NP-hardness of P2B on the general graph, we would first consider it on
some restricted structures, such as tree. In the scenario of Maximum Expressible
Independent Subset, this corresponds to restricted instances where for any subset
A ⊆ W , |

⋃
x∈AOne(x)| > |A|.

Lemma 4. PcB(G, k) is solvable in O(n2) for any parameter c via a dynamic
programming, where n = |V |.

Proof. The sketch of the algorithm is bottom-up for the tree as a whole, and
left to right knapsack like dynamic programming for selecting a vertex’s children.

Partial Degree Bounded Edge Packing Problem 363

Let T (V,E) denote the tree, and v1, · · · , vn be a breadth first ordering of vertices
of V . Further, let d′u be the number of u’s children and let T (u, i) be the subtree
induced by u, u’s first i children and all their descendants. Thus, T (u, d′u) is
the subtree rooted at u and T (u, 0) contains u alone. Let f(u, i, q) denote the
maximum PcB subtree in T (u, i) under the condition that u has q neighbors
in T (u, i). Let g1(u) denote the maximum PcB subtree in T (u, d′u) under the
condition that u has less than c neighbors, and g2(u) for exactly c neighbors and
g3(u) for more than c neighbors respectively. So only g1(u) and g3(u) can be
extended to have an edge connecting to u’s parent when we are working upward.
For simplicity, we abuse f(u, i, q) and gi(u) to denote their edge cardinalities.
Let MAX{· · · , ai, · · · } = argmaxi{ai}.

Algorithm 1. Solving Partial c Bounded Subgraph on Trees

1: for all u, u is a leaf do
2: f(u, 0, 0) = 0

3: for all u, all subtrees rooted at u’s children have been calculated do
4: for all i from 1 to d′u do
5: Let v be the ith child of u counting from left to right
6: for all q from 1 to i do
7: f(u, i, q) = f(u, i− 1, q) +MAX{g1(v), g2(v), g3(v) }
8: if q ≤ c then
9: f(u, i, q) = MAX{f(u, i, q), f(u, i − 1, q − 1) + 1 +

MAX{g1(v), g3(v)}}
10: else
11: f(u, i, q) = MAX{f(u, i, q), f(u, i− 1, q − 1) + 1 + g1(v)}
12: update g1(u), g2(u) and g3(u)

The algorithm above is correct because it enumerates every possible edge
selection by a knapsack like way. Lines 1-2 take O(|V |). It is important to note
that lines 3-12 take only Σ(d′i)

2 ≤ (Σd′i)
2 ≤ (2|V |)2. So the running time of the

algorithm is O(|V |2).

4 Approximation Algorithms for P1B and P2B

In this section, we are going to present two approximation algorithms. The first
one for partial 1 bounded subgraph runs in O(|E|) with approximation ratio 2,
and the one for partial 2 bounded runs in O(|V |) with ratio 32

11 in expectation. In
analyzing both algorithms, we only use upper bounds of the optimum solutions,
without exploring deep relationships between the optimum and the solution our
algorithm returned.

364 P. Zhang

4.1 A 2-Approximation Algorithm for Partial 1 Bounded Subgraph

Given a graph G(V,E), we first greedily calculate a dominating set with no more
than |V |/2 vertices and then construct a partial 1 bounded subgraph M with
no less than |V |/2 edges. Because the maximum P1B subgraph of G has less
than |V | edges, M is a 2 ratio approximation solution. The process is shown in
algorithm 2.

Algorithm 2. Approximation Algorithm for maximum partial 1 bounded sub-
graph of G(V,E)

1: D ⊆ V , A ⊆ V , initiate A = D = ∅
2: for all u ∈ V do
3: if u is not dominated by any vertex v ∈ D then
4: D = D

⋃
{u}

5: if |D| > |V |/2 then
6: D = V \D
7: for all u ∈ D do
8: for all edge (u, v) ∈ E do
9: if v ∈ D or v ∈ A then

10: delete (u, v)

11: if v �∈ D and v �∈ A then
12: A = A

⋃
{v}

13: G is a P1B graph

Lines 1-4 in algorithm 2 obtains a minimal dominating set (DS) D in O(|E|).
Then V \ D is also a minimal DS and lines 5-6 obtains a minimal DS with no
more than half vertices. Lines 7-12 obtains a P1B subgraph of G, this is proved
in lemma 2.

4.2 A 32/11-Approximation Algorithm for Partial 2 Bounded
Subgraph

We first present an upper bound of the optimum value and then give a random-
ized algorithm with expectation larger than 11

32 times the upper bound. Even-
tually we show the process of derandomization. Let N(u) = {v|(u, v) ∈ E}
denote the neighbors of u in graph G. Also, if A is a set of vertices, then let
N(A) =

⋃
u∈A N(u). In the sequel, n = |V |.

Lemma 5. If G(V,E) is a maximum partial c bounded graph on n vertices, then
∀(u,v)∈E(du ≥ c

∧
dv ≥ c).

Proof. If there is an edge (u, v) dissatisfies (du ≥ c
∧
dv ≥ c), i.e., (du < c

∨
dv <

c), we assume du < c. Let X = V \N(u, v), then X �= ∅ because u and v can have
at most 2c− 2 neighbors. Otherwise, we can construct a graph with more edges.
We do case by case proof as follows. Case 1: If ∃x∈Xdx > c, then we apply an

Partial Degree Bounded Edge Packing Problem 365

edge addition as E = E
⋃
{(u, x)}. This edge addition preserves G’s property as

a PcB, we call it valid. Case 2: If ∀x∈Xdx ≤ c, then dx ≤ c, we apply the same
edge addition as in Case 1. Both edge additions contradict the fact that G is a
maximum PcB. So the lemma holds.

According to lemma 5, ∀u∈V (du ≥ c). By definition of PcB, ∀(u,v)∈E

(du ≤ c
∧
dv ≤ c), then at least one endpoint has degree c. So the following

corollary is correct.

Corollary 1. If G(V,E) is a maximum partial c bounded graph on n vertices,
then
∀(u,v)∈E(du = c

∨
dv = c).

Lemma 6. If G(V,E) is a maximum partial c bounded graph on n vertices, then
∀(u,v)∈E(du = c

∧
dv > c).

Proof. If there is an edge (u, v) dissatisfies (du = c
∧
dv > c), then accord-

ing to lemma 5 and corrolary 1, the only possibility is (du = c
∧
dv = c).

Let X = V \ N(u, v), then X �= ∅. We do case by case proof as follows.
Case 1: If ∃x∈Xdx > c, then we can apply an valid edge augmentation as
E = (E \ {(u, v)})

⋃
{(u, x), (v, x)}. Case 2: If ∀x∈Xdx = c, then we can choose

an x arbitrarily and apply the same valid edge augmentation as in Case 1. How-
ever, both edge augmentations contradict that G is a maximum PcB. So the
lemma holds.

Theorem 3. For any partial c bounded graph G(V,E), |E| ≤ c · (|V | − c).

Proof. Let G(V,E) be a maximum PcB graph on n vertices. With the help of
lemma 6, we can calculate the number of vertices having degree c. Let y denote
this number. Suppose y > n− c, then there are less than c vertices with degree
more than c. Thus for any du = c, u can only have less than c neighbors, which
contradicts du = c. So y ≤ n− c, and |E| ≤ c · y ≤ c · (|V | − c). When y = n− c,
we can easily construct a PcB graph with c · (|V | − c) edges. So the theorem
holds.

We justify an assumption that ∀u∈G(d
G
u > 2) as follows. Let E′ = {(u, v)|dGu ≤ 2}

and M(VM , EM) be a partial 2 bounded subgraph. If E′ ⊆ EM , our assumption
holds because we only need to consider the graph with minimum degree larger
than 2. Otherwise, we repeatedly do the following swap in and out operations
till E′ ⊆ EM . Let (u, vi) ∈ E′ \ EM and (vi, vj) ∈ EM \ E′, then we could
EM = (EM \ {(vi, vj)}) ∪ {(u, vi)}, i.e., swap (vi, vj) out of M and swap (u, vi)
in M . The replaced M is also a P2B subgraph.

It is clear that B(VB , EB) is a partial 2 bounded subgraph of G. Now we
will analyze the size of EB. Let f(u) be the degree of u, u ∈ L, so |EM | =
Σu∈Lf(u). And let du be the degree of u inG, the expectation of f(u) is E[f(u)] =
1
2

(
1 · du

2du
+ 2 ·

(
1− 1+du

2du

))
= 1− 2+du

2du+1 ≥ 11
16 . Using the linearity of expectation,

E[EM] = Σu∈V E[f(u)] ≥ 11
16n > 11

32OPT , where OPT denotes the optimum
value. According to theorem 3 conditioned on c = 2, OPT < 2n and the last
inequality holds.

366 P. Zhang

Algorithm 3. Randomized Algorithm for maximum partial 2 bounded subgraph

1: B(VB , EB) is a bipartite graph, VB = L
⋃
R, initiate L = R = ∅

2: for all u ∈ V do
3: add u into L or R with equal probability 1/2

4: for all e(u, v) ∈ E with u ∈ L do
5: if u has no more than 2 edges in EB then
6: add e into EB

Lines 1-3 take up O(|V |) time and lines 4-6 take up O(|E|) time, so algorithm
3 takes O(|E|) time. Because it is not direct to show whether the variables
{f(u)|u ∈ V } are independent or with small dependency, so we are not sure
whether |EM | is sharply concentrated around its expectation in O(|E|). But we
can de-randomize algorithm 3, using conditional expectation to decide whether
the next vertex should be put in L or not. And the cost for deterministic algo-
rithm is O(|E|2).

5 Conclusion

This paper presents a new model of edge packing problem with partial degree
bounded constraint and several results on it. The author is still trying to study
more deep results in the following respects.

PcB in a Parameterized View
When c = 1, PcB is fixed parameter tractable (FPT) with respect to its solution
size. Does this hold for general c? When c is a constant, i.e., c = o(|V |), it is
easy to show PcB is in W [1] defined in [4]. For example, when c = 2, for each
forbidden subgraph of P2B, we create a antimonotone clause (e1

∨
e2
∨

· · · e5)
where each literal e1 corresponds to an edge in the subgraph. Thus there is a
PcB subgraph with k edges if and only if the weighted 5-CNF satisfiability has a
valid truth assignment with k variables being set true. Because weighted 5-CNF
satisfiability is W [1]-complete, so PcB is in W [1].

According to theorem 3, the solution may be close to c times n which renders
the solution size not a good parameter. For example, when c = 2, let k be
the parameter. Suppose k < Δ, let M be a maximum matching of G. Thus
k > |M | > n

Δ > n
k . So k >

√
n and

√
n is certainly not a good parameter.

Section 3 shows that PcB is in P on trees, whether PcB could be efficiently
(though not in P) solved on tree-like graph? Tree decomposition in [5] is a
measure for this. Courcelle’s theorem in [6] asserts that if a graph problem could
be described in monadic second order (MSO) logic, then it could be solved in
linear time with respect to its treewidth. Luckily, PcB is in MSO and thus
establishes its FPT with respect to the treewidth. The author is trying to design
a PcB specific algorithm with improved efficiency.

PcB in a Approximation View
In section 4, we only show algorithms which upper bounds optimum roughly. We
might elaborate the analysis by correlate the optimum with the solution returned

Partial Degree Bounded Edge Packing Problem 367

by our algorithm. Also, both algorithms can not be extended when c increases.
Constant ratio approximation algorithms for the general c or inapproximability
results which exclude them would be really interesting.

Acknowledgements. Special thanks to Jukka Suomela and Chandra Chekuri
for their valuable advice. Also, we would like to thank the anonymous referees
for their suggestions in improving the readability of this paper.

References

1. Bu, T.M., Yuan, C., Zhang, P.: Computing on Binary Strings. In: arXiv:1112.0278v2
(2012)

2. Nieminen, J.: Two bounds for the domination number of a graph. Journal of the
Institute of Mathematics and its Applications 14, 183–187 (1974)

3. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: nonblocker:
Parameterized Algorithmics for minimum dominating set. In: Wiedermann, J., Tel,
G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831,
pp. 237–245. Springer, Heidelberg (2006)

4. Downey, R.G., Fellows, M.R.: Parameterized complexity (1999)
5. Robertson, N., Seymour, P.: Graph minors. iii. planar tree-width. Journal of Com-

binatorial Theory, Series B 36(1), 49–64 (1984)
6. Courcelle, B.: The monadic second order theory of graphs i: Recognisable sets of

finite graphs. Information and Computation 85, 12–75 (1990)

Erratum: The Approximability of the Exemplar

Breakpoint Distance Problem

Zhixiang Chen1, Bin Fu1, and Binhai Zhu2

1 Department of Computer Science, University of Texas-American, Edinburg,
TX 78739-2999, USA

{chen,binfu}@cs.panam.edu
2 Department of Computer Science, Montana State University, Bozeman,

MT 59717-3880, USA
bhz@cs.montana.edu

Abstract. The paper “The Approximability of the Exemplar Break-
point Distance Problem” [1], which appeared in AAIM 2006, contained
several negative results and one positive result — a claimed O(log n)-
factor greedy approximation for the One-sided Exemplar Breakpoint
Distance Problem. Here, we show that the analysis was incorrect and
the approximation factor of the greedy algorithm could be Θ(n), where
n is the size of the alphabet.

In Section 5 of [1], a greedy algorithm is presented for the One-sided Exemplar
Breakpoint Distance Problem. The claimed approximation factor is O(log n).
We show that the factor could be Θ(n) with an example. In our example, G is
exemplar, so it satisfies the k-span condition. We start with a small n = 9.

G = 〈1, 2, 3, 4, 5, 6, 7, 8, 9〉, and
H = 〈9, 8, 7, 6, 1, 6, 2, 7, 3, 8, 4, 9, 5, 1, 2, 3, 4〉.

The optimal solution is to have H∗ = 〈6, 7, 8, 9, 5, 1, 2, 3, 4〉. In other words, we
will have two breakpoints between G and H∗.

The greedy algorithm would first select the NB-interval in H : 〈1, 2, 3, 4, 5〉. So
the greedy algorithm would have a solution H ′ = 〈9, 8, 7, 6, 1, 2, 3, 4, 5〉. In other
words, we will have four breakpoints between G and H ′. (We thank Minghui
Jiang for the idea regarding this example.)

By generalizing the alphabet to be n = 2m + 1, i.e., |G| = 2m + 1 and
|H | = 4m + 1, the greedy algorithm would generate m breakpoints while the
optimal solution only introduces two breakpoints. So the approximation factor
of the greedy algorithm is m/2 = Θ(n).

It is an open question whether the One-Sided Exemplar Breakpoint Distance
Problem admits a polynomial time o(n)-factor approximation. The only known
negative result is the APX-hardness of the problem.

Reference

1. Chen, Z., Fu, B., Zhu, B.: The Approximability of the Exemplar Breakpoint Dis-
tance Problem. In: Cheng, S.-W., Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041,
pp. 291–302. Springer, Heidelberg (2006)

J. Snoeyink, P. Lu, K. Su, and L. Wang (Eds.): FAW-AAIM 2012, LNCS 7285, p. 368, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Author Index

Bampis, Evripidis 149
Beigel, Richard 172
Boyar, Joan 303

Chen, Danny Z. 105
Chen, Jianer 199
Chen, Wei 259
Chen, Xin 161
Chen, Yong 26
Chen, Zhixiang 368
Chin, Francis Y.L. 82

De, Minati 327
Ding, Ning 161
Ding, Wei 351
Do, Huy Hoang 291
Dósa, György 161

Fan, Chenglin 36
Fernau, Henning 199
Fu, Bin 172, 182, 368

Goebel, Randy 351

Han, Xin 161
Han, Yijie 279
He, Bryan 1
He, Xin 13, 279
Higashikawa, Yuya 315
Hu, Jueliang 93
Hu, Shih-Wei 269
Hua, Xia 70

Jansson, Jesper 291
Jiang, Bo 47
Jiang, Minghui 58
Jiang, Yiwei 93

Katoh, Naoki 315
Kloks, Ton 339

Lan, Yan 161
Larsen, Kim S. 303
Letsios, Dimitrios 149
Lin, Guohui 351
Liu, Hong 235

Liu, Longcheng 26
Liu, Tian 129
Liu, Xiaomin 105
Lucarelli, Giorgio 149
Luo, Jun 36

Ma, Feifei 247
Maiti, Abyayananda 303
Markakis, Evangelos 149
Mei, Lili 139
Milis, Ioannis 149

Nandy, Subhas C. 327
Nishikawa, Kazuhide 117
Nishizeki, Takao 117

Poon, Sheung-Hung 339

Roy, Sasanka 327

Sadakane, Kunihiko 291
Shaw, Peter 199
Song, Yu 129
Su, Kaile 259
Sung, Wing-Kin 291

Tan, Xuehou 47
Tang, Bangsheng 192
Ting, Hing-Fung 82
Tong, Weitian 351
Tsai, Feng-Ren 339

Wang, Haitao 105
Wang, Jianxin 199
Wang, Jiun-Jie 13
Wang, Tao-Ming 269
Wang, Wencheng 36
Wang, Yue-Li 339
Weng, Zewei 93
Wu, Biao 26

Xu, Ke 129
Xu, Yanyan 259

Yan, Jun 247
Yang, Zhibiao 199

370 Author Index

Yao, Enyu 26
Ye, Deshi 139
Yin, Minghao 212

Zhang, Chihao 224
Zhang, Hongyang 224
Zhang, Jian 247
Zhang, Peng1 235

Zhang, Peng2 359

Zhang, Wenhui 259

Zhang, Yong 82

Zhou, Junping 212

Zhou, Xiao 117

Zhu, Binhai 36, 368

Zhu, Daming 235

1 Shandong University.
2 East China Normal University.

	Title
	Preface
	Organization
	Computational Geometry Approaches to Some Algorithmic Problems in Air Traffic Management
	Combinatorial Methods for Inferring Isoforms from Short Sequence Reads
	Table of Contents
	Optimal Binary Representation of Mosaic Floorplans and Baxter Permutations
	Introduction
	Floorplans and Mosaic Floorplans
	Applications of Floorplans and Mosaic Floorplans
	Baxter Permutations
	Previous Work on Representations of Floorplans and Mosaic Floorplans
	Main Result

	Optimal Representation of Mosaic Floorplans
	Standard Form of Mosaic Floorplans
	Staircases
	Deletable Rectangles
	Optimal Binary Representation

	Conclusion
	References

	Succinct Strictly Convex Greedy Drawing of 3-Connected Plane Graphs
	Introduction
	Preliminaries
	Metric Function H(u,v)
	Greedy Drawing Property
	Strictly Convex Embedding
	References

	Weighted Inverse Minimum Cut Problem under the Sum-Type Hamming Distance
	Introduction
	Preliminary Results
	Complexity of the General Case
	A Polynomial Solvable Case
	Concluding Remarks
	References

	Voronoi Diagram with Visual Restriction
	Introduction
	Combinatorial Complexity of VRVD
	Algorithm for Computing Visual Restriction Voronoi Diagram
	Concluding Remarks
	References

	Minimization of the Maximum Distance between the Two Guards Patrolling a Polygonal Region
	Introduction
	Preliminary
	Properties of the Min-max Walks
	Algorithm
	Concluding Remarks
	References

	On Covering Points with Minimum Turns
	Introduction
	Mistakes in Previous Algorithms
	Mistakes in Previous NP-Hardness Proofs
	New NP-Hardness Proofs
	References

	On Envy-Free Pareto Efficient Pricing
	Introduction
	Model and Solution Concepts
	Unit Demand Consumers
	Pareto Efficiency and Social Welfare
	Determining Pareto Efficiency
	Complexity of Computing REP

	Single-Minded Consumers
	References

	Online Pricing for Multi-type of Items
	Introduction
	Lower Bound of the Competitive Ratio
	Online Algorithm
	References

	Algorithms with Limited Number of Preemptions for Scheduling on Parallel Machines
	Introduction
	i-Preemptive Scheduling on m Identical Machines
	i-Preemptive Scheduling on Two Uniform Machines
	Algorithm for Non-preemptive Scheduling
	Algorithm for 1-Preemptive Scheduling

	Conclusions
	References

	Computing Maximum Non-crossing Matching in Convex Bipartite Graphs
	Introduction
	Notation and Problem Statement
	Related Work

	Preliminaries
	Our Algorithm
	The Description of the Main Algorithm
	The Algorithm Implementation and the Time Analysis
	Reporting an MNCM

	References

	Algorithms for Bandwidth Consecutive Multicolorings of Graphs
	Introduction
	Preliminaries
	Exact Algorithm for Series-Parallel Graphs
	FPTAS
	Partial k-Trees
	References

	Independent Domination on Tree Convex Bipartite Graphs
	Introduction
	Intractability of IDS on Star Convex Bipartite Graphs
	Intractability of IDS on Tree Convex Bipartite Graphs
	Tractability of IDS on Tree Convex Bipartite Graphs
	Conclusion and Open Problems
	References

	On-Line Scheduling of Parallel Jobs in Heterogeneous Multiple Clusters
	Introduction
	Different Widths
	Different Speeds
	Conclusions
	References

	On Multiprocessor Temperature-Aware Scheduling Problems
	Introduction
	Notation and Preliminaries
	Makespan Minimization
	Maximum Temperature Minimization
	Average Temperature Minimization
	Weighted Average Temperature Minimization

	Conclusions
	References

	Online Minimum Makespan Scheduling with a Buffer
	Introduction
	Preliminaries
	Two Algorithms for Identical Machines
	m Machines with a Buffer of Size 3m2
	Three Machines with a Buffer of Size Six

	A Simple Algorithm for Uniform Machines
	References

	A Dense Hierarchy of Sublinear Time Approximation Schemes for Bin Packing
	Introduction
	Models of Computation and Overview of Methods
	Overview of Our Method

	Adaptive Random Sampling for Bin Packing
	Main Results
	Streaming Approximation Scheme
	References

	Multivariate Polynomial Integration and Differentiation Are Polynomial Time Inapproximable Unless P=NP
	Introduction
	Notations
	Overview of Our Methods
	Intractability of High Dimensional Integration
	Integration of S2 Polynomial

	Inapproximation of Differentiation
	Some Tractable Integrations and Derivatives
	Bounded Width Product
	Tractable Differentiation

	References

	Some Remarks on the Incompressibility of Width-Parameterized SAT Instances
	Introduction
	Preliminary
	Incompressibility
	Incompressibility of Width Parameters
	Incompressibility of Instance Length

	Conclusion
	References

	Kernels for Packing and Covering Problems
	Introduction
	Re-cycling Kernel Results
	Crown Rules for Packing and for Covering
	Small Kernels for Tr-packing & covering Tr's
	Improving on Kernel Size: A Case Study
	Prospects
	References

	The Worst-Case Upper Bound for Exact 3-Satisfiability with the Number of Clauses as the Parameter
	Introduction
	Problem Definitions
	Estimating the Running Time

	Algorithm for Solving X3SAT
	Transformation Rules
	Helper Principle
	Algorithm X3SAT for Solving Exact 3SAT

	Conclusion
	References

	Fixed-Parameter Tractability of almost CSP Problem with Decisive Relations
	Introduction
	Preliminaries
	Parameterized Problems and Fixed-Parameter Tractability
	Constraint Satisfaction Problem
	Binary Boolean Relations
	Problem Statement and Main Result
	Graph and Separator

	Reduction by Iterative Compression
	p-MinMixedCut Is Fixed-Parameter Tractable
	Main Theorem
	Conclusions and Open Problems
	References

	On Editing Graphs into 2-Club Clusters
	Introduction
	Preliminaries
	NP-Hardness Proofs
	NP-Complteness of 2-Club Cluster Vertex Deletion
	NP-Complteness of 2-Club Cluster Editing

	Parameterized Algorithms
	An Improved Parameterized Algorithm for 2-Club Cluster Vertex Deletion
	An Improved Parameterized Algorithm for 2-Club Cluster Edge Deletion

	Conclusions
	References

	Solving Generalized Optimization Problems Subject to SMT Constraints
	Introduction
	Background
	DPLL(T) Framework
	Optimization Problem with Complex Constraints

	Solving Optimization Problems with DPLL(T)
	A Straightforward Method
	Optimization in Bunches
	Feasible Region Expansion
	The Algorithms

	Implementation and Experimental Results
	Related Works and Discussion
	Concluding Remarks
	References

	Solving Difficult SAT Problems by Using OBDDs and Greedy Clique Decomposition
	Introduction
	OBDD-Based Satisfiability Solving
	Ordered Binary Decision Diagrams(OBDDs)
	OBDD-Based Satisfiability Solving

	Greedy Clique Decomposition
	Experimental Results
	The SAT Solvers Used in Our Experiments
	Test Instances and Corresponding Clique Decomposition
	Results and Analysis

	Conclusions
	References

	Zero-Sum Flow Numbers of Regular Graphs
	Introduction to Zero-Sum Flows
	Zero-Sum Flow Numbers
	Flow Numbers for Regular Graphs
	Flow Numbers for Cartesian Products
	References

	More Efficient Parallel Integer Sorting
	Introduction
	Nonconservative Sorting
	Sorting n Integers in { 0, 1,..., 2c(logn loglogn)1/2 }
	Sorting Integers in { 0, 1, ..., n1/2 } and in {0, 1, ..., n-1}
	Conclusions
	References

	Fast Relative Lempel-Ziv Self-index for Similar Sequences
	Introduction
	Data Structure Framework
	The Relative Lempel-Ziv (RLZ) Compression Scheme
	Pattern Searching

	Some Useful Auxiliary Data Structures
	The Data Structure I(T) for Case 1
	The Data Structure X(T) for Case 2
	The Data Structure Y(F,T) for Case 2
	References

	A Comparison of Performance Measures via Online Search
	Introduction
	Problem Preliminaries
	Competitive Analysis
	Bijective Analysis
	Real-Valued Price Interval

	Average Analysis
	Random Order Analysis
	Relative Interval Analysis
	Relative Worst Order Analysis
	Concluding Remarks
	References

	Online Exploration of All Vertices in a Simple Polygon
	Introduction
	Strategy of AOE
	Competitive Analysis of AOE
	Lower Bound

	Competitive Analysis for Rectilinear Polygon
	Discussion and Open Problems
	References

	In-Place Algorithms for Computing a Largest Clique in Geometric Intersection Graphs
	Introduction
	Maximum Clique of an Interval Graph
	Maximum Clique for Arbitrary Size Rectangles
	Maximum Clique for Fixed Height Rectangles
	Processing of a Strip S

	Geometric Clique for Disks of Arbitrary Radii
	Finding Maximum Clique of the Circular-Arc Graph around Ci

	Graphical Clique in the Unit Disk Graph
	Bipartite Matching in GB
	Complexity Analysis

	References

	The Black-and-White Coloring Problem on Distance-Hereditary Graphs and Strongly Chordal Graphs
	Introduction
	Black-and-White Colorings of Cographs
	Threshold Graphs
	Difference Graphs

	Distance-Hereditary Graphs
	Interval Graphs
	Strongly Chordal Graphs
	Splitgraphs
	References

	An Improved Approximation Algorithm for the Bandpass Problem
	Introduction
	The Approximation Algorithm
	Algorithm Description
	Performance Analysis

	Conclusions and Future Work
	References

	Partial Degree Bounded Edge Packing Problem
	Introduction
	Related Work

	Maximum Expressible Independent Subset
	MEIS on 2-Regular Set

	Maximum Partial c Bounded Subgraph Problem on Tree
	Approximation Algorithms for P1B and P2B
	A 2-Approximation Algorithm for Partial 1 Bounded Subgraph
	A 32/11-Approximation Algorithm for Partial 2 Bounded Subgraph

	Conclusion
	References

	Erratum: The Approximability of the Exemplar Breakpoint Distance Problem
	Reference

	Author Index

