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Abstract. Turing’s pioneer work in heuristic search has inspired many generations
of research in heuristic algorithms. In the last two decades, metaheuristic algorithms
have attracted strong attention in scientific communities with significant develop-
ments, especially in areas concerning swarm intelligence based algorithms. In this
work, we will briefly review some of the important achievements in metaheuris-
tics, and we will also discuss key implications in applications and topics for further
research.

1 Introduction

Alan Turing pioneered many areas from artificial intelligence to pattern formation.
Turing was also the first to use heuristic algorithms during the second World War for
his code-breaking work at Bletchley Park. Turing called his search method heuristic
search, as it could be expected it worked most of time, but there was no guarantee
to find the true or correct solution, but it was a tremendous success [6]. In 1945,
Turing was recruited to the National Physical Laboratory (NPL), UK where he set
out his design for the Automatic Computing Engine (ACE). In an NPL report on
Intelligent machinery in 1948 [33], he outlined his innovative ideas of machine in-
telligence and learning, neural networks and evolutionary algorithms [38]. In this
chapter, we will review the latest development in metaheuristic methods, especially
swarm intelligence based algorithms.

2 Metaheuristics

Metaheuristic algorithms, especially those based on swarm intelligence, form an im-
portant part of contemporary global optimization algorithms [21, 40, 2, 3, 4, 24, 26]
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Good examples are simulated annealing [22], particle swarm optimization [21] and
firefly algorithm [40, 41]. They work remarkably efficiently and have many advan-
tages over traditional, deterministic methods and algorithms, and thus they have been
applied in almost all area of science, engineering and industry [15, 11, 42, 43, 51].

Despite such a huge success in applications, mathematical analysis of algorithms
remains limited and many open problems are still un-resolved. There are three chal-
lenging areas for algorithm analysis: complexity, convergence and no-free-lunch
theory. Complexity analysis of traditional algorithms such as quick sort and ma-
trix inverse are well-established, as these algorithms are deterministic. In contrast,
complexity analysis of metaheuristics remains a challenging task, partly due to the
stochastic nature of these algorithms. However, good results do exist, concerning
randomization search techniques [2].

Convergence analysis is another challenging area. One of the main difficulties
concerning the convergence analysis of metaheuristic algorithms is that no generic
framework exists, though substantial studies have been carried out using dynamic
systems and Markov processes. However, convergence analysis still remains one of
the active research areas with many encouraging results [5, 17].

Along the mathematical analysis of optimization algorithms, another equally
challenging, and yet fruitful area is the theory on algorithm performance and com-
parison, leading to a wide range of no-free-lunch (NFL) theorems [36, 19]. While
in well-posed cases of optimization where its functional space forms finite domains,
NFL theorems do hold; however, free lunches are possible in continuous domains
[2, 37, 34].

In this chapter, we intend to provide a state-of-the-art review of widely used
metaheuristic algorithms. We will also briefly highlights some of the convergence
studies. Based on these studies, we will summarize and propose a series of recom-
mendations for further research.

3 Metaheuristic Algorithms

There are more than a dozen of swarm-based algorithms using the so-called swarm
intelligence. For a detailed introduction, please refer to [43, 26]. In this section, we
will focus on the main chararcteristics and the ways that each algorithm generate
new solutions, and we will not discuss each algorithm in details. Obviously, not all
metaheuristic algorithms are swarm-inspired, for example, harmony search is not a
swarm-intelligence-based algorithm. Similarly, genetic algorithms are bio-inspired,
or more generally nature-inspired, but they are not based on swarm intelligence.
Here we will introduce a few population-based metaheuristic algorithms which are
widely used or active research topics. Interested readers can follow the references
listed at the end of this chapter and also refer to other chapters of this book.
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3.1 Ant Algorithms

Ant algorithms, especially the ant colony optimization [10], mimic the foraging be-
haviour of social ants. Primarily, it uses pheromone as a chemical messenger and the
pheromone concentration as the indicator of quality solutions to a problem of inter-
est. As the solution is often linked with the pheromone concentration, the search
algorithms often produce routes and paths marked by the higher pheromone con-
centrations, and therefore, ants-based algorithms are particular suitable for discrete
optimization problems.

The movement of an ant is controlled by pheromone which will evaporate over
time. Without such time-dependent evaporation, the algorithms will lead to prema-
ture convergence to the (often wrong) solutions. With proper pheromone evapora-
tion, they usually behave very well.

There are two important issues here: the probability of choosing a route, and the
evaporation rate of pheromone. There are a few ways of solving these problems,
although it is still an area of active research. Here we introduce the current best
method.

For a network routing problem, the probability of ants at a particular node i to
choose the route from node i to node j is given by

pi j =
φα

i j dβ
i j

∑n
i, j=1 φα

i j dβ
i j

, (1)

where α > 0 and β > 0 are the influence parameters, and their typical values are α ≈
β ≈ 2. φi j is the pheromone concentration on the route between i and j, and di j the
desirability of the same route. Some a priori knowledge about the route such as the
distance si j is often used so that di j ∝ 1/si j, which implies that shorter routes will be
selected due to their shorter traveling time, and thus the pheromone concentrations
on these routes are higher. This is because the traveling time is shorter, and thus the
less amount of the pheromone has been evaporated during this period.

3.2 Bee Algorithms

Bees-inspired algorithms are more diverse, and some use pheromone and most do
not. Almost all bee algorithms are inspired by the foraging behaviour of honey bees
in nature. Interesting characteristics such as waggle dance, polarization and nectar
maximization are often used to simulate the allocation of the foraging bees along
flower patches and thus different search regions in the search space. For a more
comprehensive review, please refer to [26, 40].

In the honeybee-based algorithms, forager bees are allocated to different food
sources (or flower patches) so as to maximize the total nectar intake. The colony has
to ‘optimize’ the overall efficiency of nectar collection, the allocation of the bees is
thus depending on many factors such as the nectar richness and the proximity to the
hive [23, 39, 20, 27].
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The virtual bee algorithm (VBA), developed by Xin-She Yang in 2005, is an op-
timization algorithm specially formulated for solving both discrete and continuous
problems [39]. On the other hand, the artificial bee colony (ABC) optimization algo-
rithm was first developed by D. Karaboga in 2005. In the ABC algorithm, the bees
in a colony are divided into three groups: employed bees (forager bees), onlooker
bees (observer bees) and scouts. For each food source, there is only one employed
bee. That is to say, the number of employed bees is equal to the number of food
sources. The employed bee of an discarded food site is forced to become a scout for
searching new food sources randomly. Employed bees share information with the
onlooker bees in a hive so that onlooker bees can choose a food source to forage.
Unlike the honey bee algorithm which has two groups of the bees (forager bees and
observer bees), bees in ABC are more specialized [1, 20].

Similar to the ants-based algorithms, bee algorithms are also very flexible in deal-
ing with discrete optimization problems. Combinatorial optimization such as rout-
ing and optimal paths has been successfully solved by ant and bee algorithms. In
principle, they can solve both continuous optimization and discrete optimization
problems; however, they should not be the first choice for continuous problems.

3.3 Genetic Algorithms

Genetic algorithms are by far the most widely used [18], and one of the reasons is
that the GA appeared as early as in the 1960s, based on the evolutionary features of
biological systems. Genetic operators such as crossover and mutation are very pow-
erful in generating diverse solutions or search points, while elitism, adaptation and
selection of the fittest help to ensure the proper convergence of genetic algorithms.

Parameter choices are also important, but there are many parametric studies in
the literature, and the overall literature of genetic algorithms is vast. In essence, the
crossover should be more frequent with the highest probability, often above 0.7 to
0.95. On the other hand, mutation rate should be very low, because if the mutation
rate is too high, the solutions generated are too diverse, and thus makes it difficult
for the search process to converge properly. Therefore, mutation rate is typically 0.1
to 0.01.

Genetic algorithms have many variants and often combined with other algorithms
to form hybrid algorithms, and encode and decoding can be binary, real or even
imaginary. Interested readers can refer to the recent books, for example, Goldberg
[16] and other relevant books listed in the bibliography.

3.4 Differential Evolution

Differential evolution (DE) can be considered as a vectorized and improved genetic
algorithm, though DE has its own unique mutation operator and crossover operation
[32]. Mutation is carried out by the donor vector based on the difference of two ran-
domly chosen solution vectors; in this sense, its mutation is like an exploration move
in pattern search. Alternatively, we can consider it as a multi-site mutation vector,



Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 409

based on genetic algorithms. Crossover is more elaborate which can be performed
either in a binomial or exponential manner. There are many variants of DE and they
are often combined with other algorithms to form efficient hybrid algorithms [28].
DE can also be combined with other methods such as eagle strategy to get even
better results [48].

3.5 Particle Swarm Optimization

Particle swarm optimization (PSO) was developed by Kennedy and Eberhart in
1995 [21], based on the swarm behaviour such as fish and bird schooling in nature.
Since then, PSO has generated much wider interests, and forms an exciting, ever-
expanding research subject, called swarm intelligence. PSO has been applied to al-
most every area in optimization, computational intelligence, and design/scheduling
applications.

The movement of a swarming particle consists of two major components: a
stochastic component and a deterministic component. Each particle is attracted to-
ward the position of the current global best g∗ and its own best location x∗i in history,
while at the same time it has a tendency to move randomly.

Let xi and vi be the position vector and velocity for particle i, respectively. The
new velocity and location updating formulas are determined by

vt+1
i = vt

i +αε1[g
∗ − xt

i ]+β ε2[x
∗
i − xt

i ]. (2)

xt+1
i = xt

i + vt+1
i , (3)

where ε1 and ε2 are two random vectors, and each entry taking the values between 0
and 1. The parameters α and β are the learning parameters or acceleration constants,
which can typically be taken as, say, α ≈ β ≈ 2.

There are at least two dozen PSO variants which extend the standard PSO al-
gorithm, and the most noticeable improvement is probably to use inertia function
θ (t) so that vt

i is replaced by θ (t)vt
i where θ ∈ [0,1]. This is equivalent to introduc-

ing a virtual mass to stabilize the motion of the particles, and thus the algorithm is
expected to converge more quickly.

3.6 Firefly Algorithm

Firefly Algorithm (FA) was developed by Xin-She Yang at Cambridge University
[40, 41], which was based on the flashing patterns and behaviour of fireflies. In
essence, each firefly will be attracted to brighter ones, while at the same time, it
explores and searches for prey randomly. In addition, the brightness of a firefly is
determined by the landscape of the objective function.

The movement of a firefly i is attracted to another more attractive (brighter) firefly
j is determined by

xt+1
i = xt

i +β0e−γr2
i j (xt

j − xt
i)+αt εt

i , (4)
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where the second term is due to the attraction. The third term is randomization with
αt being the randomization parameter, and εt

i is a vector of random numbers drawn
from a Gaussian distribution or uniform distribution. Here is β0 ∈ [0,1] is the attrac-
tiveness at r = 0, and ri j = ||xt

i − xt
j|| is the Cartesian distance. For other problems

such as scheduling, any measure that can effectively characterize the quantities of
interest in the optimization problem can be used as the ‘distance’ r. For most imple-
mentations, we can take β0 = 1, α = O(1) and γ = O(1).

Ideally, the randomization parameter αt should be monotonically reduced gradu-
ally during iterations. A simple scheme is to use

αt = α0δ t , δ ∈ (0,1), (5)

where α0 is the initial randomness, while δ is a randomness reduction factor similar
to that used in a cooling schedule in simulated annealing. It is worth pointing out
that (4) is essentially a random walk biased towards the brighter fireflies. If β0 = 0,
it becomes a simple random walk. Furthermore, the randomization term can easily
be extended to other distributions such as Lévy flights. A basic implementation can
be obtained from this link.1 High nonlinear and non-convex global optimization
problems can be solved using firefly algorithm efficiently [14, 49]).

3.7 Harmony Search

Harmony Search (HS) is a music-inspired metaheuristic algorithm and it was first
developed by Z. W. Geem et al. in 2001 and a recent summary can be found at Geem
[12]. Harmony search has three components: usage of harmony memory, pitch ad-
justing, and randomization.

The usage of harmony memory is similar to choose the best fit individuals in
the genetic algorithms, while pitch adjustment is similar to the mutation operator in
genetic algorithms. Further more, randomization is used to increase the diversity of
the solutions.

3.8 Bat Algorithm

Bat algorithm is a relatively new metaheuristic, developed by Xin-She Yang in 2010
[44]. It was inspired by the echolocation behaviour of microbats. Microbats use a
type of sonar, called, echolocation, to detect prey, avoid obstacles, and locate their
roosting crevices in the dark. These bats emit a very loud sound pulse and listen for
the echo that bounces back from the surrounding objects. Their pulses vary in prop-
erties and can be correlated with their hunting strategies, depending on the species.
Most bats use short, frequency-modulated signals to sweep through about an octave,
while others more often use constant-frequency signals for echolocation. Their sig-
nal bandwidth varies depends on the species, and often increased by using more
harmonics.

1 http://www.mathworks.com/matlabcentral/fileexchange/29693-firefly-algorithm
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Inside the bat algorithm, it uses three idealized rules:

1. All bats use echolocation to sense distance, and they also ‘know’ the difference
between food/prey and background barriers in some magical way;

2. Bats fly randomly with velocity vi at position xi with a fixed frequency fmin,
varying wavelength λ and loudness A0 to search for prey. They can automatically
adjust the wavelength (or frequency) of their emitted pulses and adjust the rate
of pulse emission r ∈ [0,1], depending on the proximity of their target;

3. Although the loudness can vary in many ways, we assume that the loudness varies
from a large (positive) A0 to a minimum constant value Amin.

BA has been extended to multiobjective bat algorithm (MOBA) by [47], and pre-
liminary results suggested that it is very efficient.

3.9 Cuckoo Search

Cuckoo search (CS) is one of the latest nature-inspired metaheuristic algorithms,
developed in 2009 by Xin-She Yang and Suash Deb [45, 46]. CS is based on the
brood parasitism of some cuckoo species. In addition, this algorithm is enhanced by
the so-called Lévy flights, rather than by simple isotropic random walks. This algo-
rithm was inspired by the aggressive reproduction strategy of some cuckoo species
such as the ani and Guira cuckoos. These cuckoos lay their eggs in communal nests,
though they may remove others’ eggs to increase the hatching probability of their
own eggs. Quite a number of species engage the obligate brood parasitism by laying
their eggs in the nests of other host birds (often other species).

In the standard cuckoo search, the following three idealized rules are used:

• Each cuckoo lays one egg at a time, and dumps it in a randomly chosen nest;
• The best nests with high-quality eggs will be carried over to the next generations;
• The number of available host nests is fixed, and the egg laid by a cuckoo is

discovered by the host bird with a probability pa ∈ [0,1]. In this case, the host bird
can either get rid of the egg, or simply abandon the nest and build a completely
new nest.

As a further approximation, this last assumption can be approximated by a fraction
pa of the n host nests are replaced by new nests (with new random solutions). Recent
studies suggest that cuckoo search can outperform particle swarm optimization and
other algorithms [46].

This algorithm uses a balanced combination of a local random walk and the
global explorative random walk, controlled by a switching parameter pa. The lo-
cal random walk can be written as

xt+1
i = xt

i + s⊗H(pa− ε)⊗ (xt
j − xt

k), (6)

where xt
j and xt

k are two different solutions selected randomly by random permu-
tation, H(u) is a Heaviside function, ε is a random number drawn from a uniform
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distribution, and s is the step size. On the other hand, the global random walk is
carried out by using Lévy flights

xt+1
i = xt

i +αL(s,λ ), L(s,λ ) =
λΓ (λ )sin(πλ/2)

π
1

s1+λ , (s � s0 > 0). (7)

A vectorized implementation can be obtained from this link here.2

The literature on cuckoo search is expanding rapidly. Interestingly, cuckoo search
was originally published in 2009 and our matlab program was in the public domain
in 2010, while some authors later in 2011 used a different name, cuckoo optimiza-
tion algorithm, to essentially talk about the same inspiration from cuckoo behaviour.

There have been a lot of attention and recent studies using cuckoo search with
diverse range of applications [13, 35, 50]. Walton et al. improved the algorithm by
formulating a modified cuckoo search algorithm [35], while Yang and Deb extended
it to multiobjective optimization problems [50]. Durgun and Yildiz applied it to
structural design optimization [9].

There are other metaheuristic algorithms which have not been introduced here,
and interested readers can refer to more advanced literature [43, 26].

4 Artificial Neural Networks

Artificial neural networks in essence belong to optimization algorithms, though they
may work in a different context.

The basic mathematical model of an artificial neuron was first proposed by W.
McCulloch and W. Pitts in 1943, and this fundamental model is referred to as the
McCulloch-Pitts model. Other models and neural networks are based on it.

An artificial neuron with n inputs or impulses and an output yk will be activated
if the signal strength reaches a certain threshold θ . Each input has a corresponding
weight wi. The output of this neuron is given by

yl = Φ
( n

∑
i=1

wiui
)
, (8)

where the weighted sum ξ = ∑n
i=1 wiui is the total signal strength, and Φ is the so-

called activation function, which can be taken as a step function. That is, we have

Φ(ξ ) =
{

1 if ξ ≥ θ ,
0 if ξ < θ . (9)

We can see that the output is only activated to a non-zero value if the overall signal
strength is greater than the threshold θ .

The step function has discontinuity, sometimes, it is easier to use a nonlinear,
smooth function, called a Sigmoid function

2 http://www.mathworks.com/matlabcentral/fileexchange/29809-cuckoo-search-cs-
algorithm
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S(ξ ) =
1

1+ e−ξ , (10)

which approaches 1 as U → ∞, and becomes 0 as U →−∞. An interesting property
of this function is

S′(ξ ) = S(ξ )[1− S(ξ )]. (11)

4.1 Neural Networks

A single neuron can only perform a simple task – on or off. Complex functions can
be designed and performed using a network of interconnecting neurons or percep-
trons. The structure of a network can be complicated, and one of the most widely
used is to arrange them in a layered structure, with an input layer, an output layer,
and one or more hidden layer (see Fig. 1). The connection strength between two
neurons is represented by its corresponding weight. Some artificial neural networks
(ANNs) can perform complex tasks, and can simulate complex mathematical mod-
els, even if there is no explicit functional form mathematically. Neural networks
have developed over last few decades and have been applied in almost all areas of
science and engineering.

The construction of a neural network involves the estimation of the suitable
weights of a network system with some training/known data sets. The task of the
training is to find the suitable weights wi j so that the neural networks not only can
best-fit the known data, but also can predict outputs for new inputs. A good arti-
ficial neural network should be able to minimize both errors simultaneously – the
fitting/learning errors and the prediction errors.

The errors can be defined as the difference between the calculated (or predicated)
output ok and real output yk for all output neurons in the least-square sense

E =
1
2

no

∑
k=1

(ok − yk)
2. (12)

Here the output ok is a function of inputs/activations and weights. In order to mini-
mize this error, we can use the standard minimization techniques to find the solutions
of the weights.

A simple and yet efficient technique is the steepest descent method. For any initial
random weights, the weight increment for whk is

Δwhk =−η
∂E

∂whk
=−η

∂E
∂ok

∂ok

∂whk
, (13)

where η is the learning rate. Typically, we can choose η = 1.
From

Sk =
m

∑
h=1

whkoh, (k = 1,2, ...,no), (14)

and
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Fig. 1 Schematic representation of a three-layer neural networks with ni inputs, m hidden
nodes and no outputs.

ok = f (Sk) =
1

1+ e−Sk
, (15)

we have
f ′ = f (1− f ), (16)

∂ok

∂whk
=

∂ok

∂Sk

∂Sk

∂whk
= ok(1− ok)oh, (17)

and
∂E
∂ok

= (ok − yk). (18)

Therefore, we have

Δwhk =−ηδkoh, δk = ok(1− ok)(ok − yk). (19)

4.2 Back Propagation Algorithm

There are many ways of calculating weights by supervised learning. One of the sim-
plest and widely used methods is to use the back propagation algorithm for training
neural networks, often called back propagation neural networks (BPNNs).

The basic idea is to start from the output layer and propagate backwards so as to
estimate and update the weights.

From any initial random weighting matrices wih (for connecting the input nodes
to the hidden layer) and whk (for connecting the hidden layer to the output nodes),
we can calculate the outputs of the hidden layer oh

oh =
1

1+ exp[−∑ni
i=1 wihui]

, (h = 1,2, ...,m), (20)

and the outputs for the output nodes

ok =
1

1+ exp[−∑m
h=1 whkoh]

, (k = 1,2, ...,no). (21)
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The errors for the output nodes are given by

δk = ok(1− ok)(yk − ok), (k = 1,2, ...,no), (22)

where yk(k = 1,2, ...,no) are the data (real outputs) for the inputs ui(i = 1,2, ...,ni).
Similarly, the errors for the hidden nodes can be written as

δh = oh(1− oh)
no

∑
k=1

whkδk, (h = 1,2, ...,m). (23)

The updating formulae for weights at iteration t are

wt+1
hk = wt

hk +ηδkoh, (24)

and
wt+1

ih = wt
ih +ηδhui, (25)

where 0 < η ≤ 1 is the learning rate.
Here we can see that the weight increments are

Δwih = ηδhui, (26)

with similar updating formulae for whk. An improved version is to use the so-called
weight momentum α to increase the learning efficiency

Δwih = ηδhui +αwih(τ − 1), (27)

where τ is an extra parameter.

5 Characteristics of Metaheuristics

Metaheuristics can be considered as an efficient way to produce acceptable solutions
by trial and error to a complex problem in a reasonably practical time. The complex-
ity of the problem of interest makes it impossible to search every possible solution
or combination, the aim is to find good feasible solution in an acceptable timescale.
There is no guarantee that the best solutions can be found, and we even do not know
whether an algorithm will work and why if it does work. The idea is to have an
efficient but practical algorithm that will work most the time and is able to produce
good quality solutions. Among the found quality solutions, it is expected some of
them are nearly optimal, though there is often no guarantee for such optimality.

The main components of any metaheuristic algorithms are: intensification and
diversification, or exploitation and exploration [4, 40, 43]. Diversification means to
generate diverse solutions so as to explore the search space on the global scale, while
intensification means to focus on the search in a local region by exploiting the infor-
mation that a current good solution is found in this region. This is in combination
with the selection of the best solutions.
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As seen earlier, an important component in swarm intelligence and modern meta-
heuristics is randomization, which enables an algorithm to have the ability to jump
out of any local optimum so as to search globally. Randomization can also be used
for local search around the current best if steps are limited to a local region. When
the steps are large, randomization can explore the search space on a global scale.
Fine-tuning the randomness and balancing local search and global search are cru-
cially important in controlling the performance of any metaheuristic algorithm.

Randomization techniques can be a very simple method using uniform distri-
butions and/or Gaussian distributions, or more complex methods as those used in
Monte Carlo simulations. They can also be more elaborate, from Brownian random
walks to Lévy flights.

6 No-Free-Lunch Theorems

The seminal paper by Wolpert and Mcready in 1997 essentially proposed a frame-
work for performance comparison of optimization algorithms [36], using a com-
bination of Bayesian statistics and Markov random field theories. Let us sketch
Wolpert and Macready’s original idea. Assuming that the search space is finite
(though quite large), thus the space of possible objective values is also finite. This
means that objective function is simply a mapping f : X �→ Y , with F = Y X as
the space of all possible problems under permutation.

As an algorithm tends to produce a series of points or solutions in the search
space, it is further assumed that these points are distinct. That is, for k iterations, k
distinct visited points forms a time-ordered set

Ωk =
{(

Ω x
k (1),Ω

y
k (1)

)
, ...,

(
Ω x

k (k),Ω
y
k (k)

)}
. (28)

There are many ways to define a performance measure, though a good measure still
remains debatable [30]. Such a measure can depend on the number of iteration k, the
algorithm a and the actual cost function f , which can be denoted by P(Ω y

k‖ f ,k,a).
Here we follow the notation style in the seminal paper by Wolpert and Mcready
(1997). For any pair of algorithms a and b, the NFL theorem states

∑
f

P(Ω y
k | f ,k,a) = ∑

f

P(Ω y
k | f ,k,b). (29)

In other words, any algorithm is as good (bad) as a random search, when the perfor-
mance is averaged over all possible functions.

Along many relevant assumptions in proving the NFL theorems, two fundamental
assumptions are: finite states of the search space (and thus the objective values), and
the non-revisiting time-ordered sets.

The first assumption is a good approximation to many problems, especially in
finite-digit approximations. However, there is mathematical difference in countable
finite, and countable infinite. Therefore, the results for finite states/domains may
not directly applicable to infinite domains. Furthermore, as continuous problem are
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uncountable, NFL results for finite domains will usually not hold for continuous
domains [2].

The second assumption on non-revisiting iterative sequence is often considered
as an over-simplification, as almost all metaheuristic algorithms are revisiting in
practice, some points visited before will possibly be re-visited again in the future.
The only possible exception is the Tabu algorithm with a very long Tabu list [15].
Therefore, results for non-revisiting time-ordered iterations may not be true for the
cases of revisiting cases, because the revisiting iterations break an important as-
sumption of ‘closed under permutation’ (c.u.p) required for proving the NFL theo-
rems [25].

Furthermore, optimization problems do not necessarily concern the whole set
of all possible functions/problems, and it is often sufficient to consider a subset of
problems. It is worth pointing out active studies have carried out in constructing
algorithms that can work best on specific subsets of optimization problems, in fact,
NFL theorems do not hold in this case [8].

These theorems are vigorous and thus have important theoretical values. How-
ever, their practical implications are a different issue. In fact, it may not be so im-
portant in practice anyway, we will discuss this in a later section.

7 Search for Free Lunches

The validity of NFL theorems largely depends on the validity of their fundamen-
tal assumptions. However, whether these assumptions are valid in practice is an-
other question. Often, these assumptions are too stringent, and thus free lunches are
possible.

One of the assumptions is the non-revisiting nature of the k distinct points which
form a time-ordered set. For revisiting points as they do occur in practice in real-
world optimization algorithms, the ‘closed under permutation’ does not hold, which
renders NFL theorems invalid [29, 25, 31]. This means free lunches do exist in
practical applications.

Another basic assumption is the finiteness of the domains. For continuous do-
mains, Auger and Teytaud in 2010 have proven that the NFL theorem does not hold
[2], and therefore they concluded that ‘continuous free lunches exist’. Indeed, some
algorithms are better than others [7]. For example, for a 2D sphere function, they
demonstrated that an efficient algorithm only needs 4 iterations/steps to reach the
global minimum.

No-free-lunch theorems may be of theoretical importance, and they can also have
important implications for algorithm development in practice, though not everyone
agrees the real importance of these implications.

There are three kinds of opinions concerning the implications. The first group
may simply ignore these theorems, as they argue that the assumptions are too strin-
gent, and the performance measures based on average overall functions are irrele-
vant in practice. Therefore, no practical importance can be inferred, and research
just carries on.
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The second kind is that NFL theorems can be true, and they can accept that the
fact there is no universally efficient algorithm. But in practice some algorithms do
performance better than others for a specific problem or a subset of problems. Re-
search effort should focus on finding the right algorithms for the right type of prob-
lem. Problem-specific knowledge is always helpful to find the right algorithm(s).

The third kind of opinion is that NFL theorems are not true for other types of
problems such as continuous problems and NP-hard problems. Theoretical work
concerns more elaborate studies on extending NFL theorems to other cases or on
finding free lunches [2]. On the other hand, algorithm development continues to
design better algorithms which can work for a wider range of problems, not neces-
sarily all types of problems. As we have seen from the above analysis, free lunches
do exist, and better algorithms can be designed for a specific subset of problems
[41, 46].

Thus, free lunch or no free lunch is not just a simple question, it has impor-
tant and yet practical importance. There is certain truth in all the above arguments,
and their impacts on optimization community are somehow mixed. Obviously, in
reality, the algorithms with problem-specific knowledge typically work better than
random search, and we also realized that there is no universally generic tool that
works best for all the problems. Therefore, we have to seek balance between spe-
ciality and generality, between algorithm simplicity and problem complexity, and
between problem-specific knowledge and capability of handling black-box opti-
mization problems.
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10. Dorigo, M., Stütle, T.: Ant Colony Optimization. MIT Press (2004)
11. Floudas, C.A., Pardolos, P.M.: Encyclopedia of Optimization, 2nd edn. Springer (2009)



Metaheuristic Optimization: Nature-Inspired Algorithms and Applications 419

12. Geem, Z.W.: Music-Inspired Harmony Search Algorithm: Theory and Applications.
Springer (2009)

13. Gandomi, A.H., Yang, X.S., Alavi, A.H.: Cuckoo search algorithm: a meteheuristic ap-
proach to solve structural optimization problems. In: Engineering with Computers, July
29 (2011), doi:10.1007/s00366-011-0241-y

14. Gandomi, A.H., Yang, X.S., Talatahari, S., Deb, S.: Coupled eagle strategy and differ-
ential evolution for unconstrained and constrained global optimization. Computers &
Mathematics with Applications 63(1), 191–200 (2012)

15. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
16. Goldberg, D.E.: The Design of Innovation: Lessons from and for Competent Genetic

Algorithms. Addison-Wesley, Reading (2002)
17. Gutjahr, W.J.: Convergence Analysis of Metaheuristics. Annals of Information Sys-

tems 10, 159–187 (2010)
18. Holland, J.: Adaptation in Natural and Artificial systems. University of Michigan Press,

Ann Anbor (1975)
19. Igel, C., Toussaint, M.: On classes of functions for which no free lunch results hold.

Inform. Process. Lett. 86, 317–321 (2003)
20. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technical

Report TR06, Erciyes University, Turkey (2005)
21. Kennedy, J., Eberhart, R.: Particle swarm optimisation. In: Proc. of the IEEE Int. Conf.

on Neural Networks, Piscataway, NJ, pp. 1942–1948 (1995)
22. Kirkpatrick, S., Gellat, C.D., Vecchi, M.P.: Optimisation by simulated annealing. Sci-

ence 220, 671–680 (1983)
23. Nakrani, S., Tovey, C.: On Honey Bees and Dynamic Server Allocation in Internet Host-

ing Centers. Adaptive Behaviour 12(3-4), 223–240 (2004)
24. Neumann, F., Witt, C.: Bioinspired Computation in Combinatorial Optimization: Algo-

rithms and Their Computational Complexity. Springer (2010)
25. Marshall, J.A., Hinton, T.G.: Beyond no free lunch: realistic algorithms for arbitrary

problem classes. In: WCCI 2010 IEEE World Congress on Computational Intelligence,
Barcelona, Spain, July 18-23, pp. 1319–1324 (2010)

26. Parpinelli, R.S., Lopes, H.S.: New inspirations in swarm intelligence: a survey. Int. J.
Bio-Inspired Computation 3, 1–16 (2011)

27. Pham, D.T., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., Zaidi, M.: The Bees Algo-
rithm A Novel Tool for Complex Optimisation Problems. In: Proceedings of IPROMS
2006 Conference, pp. 454–461 (2006)

28. Price, K., Storn, R., Lampinen, J.: Differential Evolution: A Practical Approach to Global
Optimization. Springer (2005)

29. Schumacher, C., Vose, M., Whitley, D.: The no free lunch and problem description
length. In: Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 565–
570 (2001)

30. Shilane, D., Martikainen, J., Dudoit, S., Ovaska, S.J.: A general framework for statisti-
cal performance comparison of evolutionary computation algorithms. Information Sci-
ences 178, 2870–2879 (2008)

31. Spall, J.C., Hill, S.D., Stark, D.R.: Theoretical framework for comparing several stochas-
tic optimization algorithms. In: Probabilistic and Randomized Methods for Design Under
Uncertainty, pp. 99–117. Springer, London (2006)

32. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

33. Turing, A.M.: Intelligent Machinery. Technical Report, National Physical Laboratory
(1948)



420 X.-S. Yang

34. Villalobos-Arias, M., Coello Coello, C.A., Hernández-Lerma, O.: Asymptotic conver-
gence of metaheuristics for multiobjective optimization problems. Soft Computing 10,
1001–1005 (2005)

35. Walton, S., Hassan, O., Morgan, K., Brown, M.R.: Modified cuckoo search: a new gra-
dient free optimization algorithm. Chaos, Solitons & Fractals 44(9), 710–718 (2011)

36. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimisation. IEEE Trans-
action on Evolutionary Computation 1, 67–82 (1997)

37. Wolpert, D.H., Macready, W.G.: Coevolutonary free lunches. IEEE Trans. Evolutionary
Computation 9, 721–735 (2005)

38. Turing Archive for the History of Computing, www.alanturing.net
39. Yang, X.-S.: Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms. In:
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